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Abstract

This paper proposes a simple adaptive sliding mode observer to estimate the effectiveness level of actuators and uses
this information as part of an active fault tolerant controller. These observers create an FDI scheme at a ‘local’ level and
the effectiveness estimates are used to drive the online control allocation component in the overall scheme. The approach has
been tested on a model of JAXA’s MuPAL-α experimental aircraft. The nonlinear simulation results, in fault free and faulty
situations, show the efficacy of the scheme. Furthermore, the proposed sliding mode observer has been tested offline using
previously collected MuPAL-α flight data and good results are achieved.

I. INTRODUCTION

In the last decade, a series of cutting-edge aerospace-based fault detection and isolation (FDI) and fault tolerant control
(FTC) projects have been funded by the European Union, such as GARTEUR FM-AG16 [1], ADDSAFE [2], RECONFIG-
URE [3], [4] and most recently VISION. Thanks to the H2020/Japan co-funded project VISION (Validation of Integrated
Safety-enhanced Intelligent flight cONtrol), advanced FDI/FTC approaches developed within the academic community will
be verified/validated via piloted flight tests.

Sliding mode control schemes have an inherent capability to reject so-called matched uncertainty i.e. uncertainty which
occurs in the channels in which the control signals act [5]. It is easy to recognize that actuator faults and failures, by their
very definition, act in these channels and therefore can be considered to be a particular form of matched uncertainty [6].
Consequently, sliding mode controllers can be considered natural candidates for use as fault tolerant controllers. Recent
work has demonstrated the theoretical benefits of employing sliding mode controllers within a control allocation framework
for over-actuated systems [7], [8]. In these papers, online control allocation is exploited in conjunction with a sliding mode
control scheme, and the actuator effectiveness levels are explicitly used as part of the control law in order to mitigate total
failures.

In this paper, a simple adaptive sliding mode observer is developed to reconstruct the actuator effectiveness gains. The fault
reconstruction signal is created by exploiting the so-called ‘equivalent output error injection’ signal [5], [9]. If sliding occurs,
under the hypothesis of persistent excitation in terms of system inputs, the adaptation process ensures the fault reconstruction
signal estimates the actuator effectiveness gains (with exponential convergence to the actual values). By using the adaptive
observer proposed in this paper, the actuator effectiveness estimate will not be affected by the singularity problem suffered
by previous sliding mode estimation designs in situations in which the system inputs become close to zero.

The control law used here is identical to the one flight tested in [10]. In the preliminary implementation described in
[10], knowledge of the actuator effectiveness levels was assumed to be known perfectly. The contribution of this paper is to
introduce a practical implementable observer scheme to estimate these effectiveness levels based on local actuator information.
The observers in this paper will be integrated with the control laws in [10]. The results in this paper therefore represent
precursor tests on a nonlinear model prior to future flight testing with MuPAL-α [11], [12]. To prepare for the future flight
tests with MuPAL-α, the overall sliding mode online control allocation scheme (including the FDI estimate component) is
evaluated on a 6-DOF nonlinear simulation model. The validity of the model has been confirmed by the comparison between
flight test results and off-line calculations with the designed controllers in [12]. The nonlinear simulation results presented
in this paper show the efficacy of the scheme in both fault free and faulty situations. Furthermore, as a further check, the
efficacy of the adaptive sliding mode observer is also evaluated offline (and open loop) using previously collected flight test
data from [10].

II. SLIDING MODE ONLINE CONTROL ALLOCATION

This section briefly describes the overall LPV sliding mode online control allocation scheme.

A. An adaptive LPV sliding mode observer

In this section, a simple adaptive LPV sliding mode observer is developed, at a ‘local’ actuator system level, to reconstruct
the actuator effectiveness levels to identify the presence of faults. This is based on the hypothesis that each critical actuator
provides local measurements of the command and resulting actuator position to the FDI scheme. The observer is not
computationally heavy. Thus, it can be expected to be implemented on the Fly-By-Wire (FBW) system of MuPAL-α. In
many modern aerospace systems the position of the actuators are measured and used locally for safety monitoring in just
such an architecture [13].

∗ College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, UK. lc427@exeter.ac.uk,
h.alwi@exeter.ac.uk, C.Edwards@exeter.ac.uk

∗∗ Japan Aerospace Exploration Agency, Mitaka, Tokyo 181-0015, Japan. sato.masayuki@jaxa.jp



Consider a single input, signal output (SISO) actuator dynamic subject to a fault modelled as

ẋl(t) = al(ρ)xl(t) + bl(ρ)w(t)ul(t− h)

yl(t) = clxl(t)
(1)

with a known time delay (h > 0) and xl(τ) = xl(0) for all τ ∈ [−h, 0]. In (1), the quantities xl ∈ R and ul ∈ R denote
the actuator state and the command input respectively. The term y l(t) ∈ R represents the measured position of the actuator.
The time varying scheduling parameter ρ ∈ R

nr is assumed to be measured perfectly and to belong to a polytope Ω ⊂ R
nr .

In (1), the scalar function w(t) ∈ [0 1] represents the effectiveness levels of the actuator (to be estimated) [6], [14]. If
0 < w(t) < 1, the actuator behaves with reduced effectiveness (i.e. some level of fault is present). For a fault-free actuator
w(t) = 1, and for a completely failed actuator w(t) = 0. In this paper, the time delay h is assumed to be fixed and known.

Lemma 2.1: [15] A bounded and piecewise continuous vector or matrix Θ(t) is Persistently Exciting (PE), if for all t > 0,
there exists T > 0 and ε > 0, such that ∫ t+T

t

Θ(σ)TΘ(σ)dσ ≥ εI (2)

Furthermore under these conditions, the system
ξ̇ = −Θ(t)TΘ(t)ξ (3)

is exponentially stable. �
Assumption 2.1: It is assumed that

i) al(ρ) < 0 for all ρ ∈ Ω;
ii) the scalar function w(t) is slow varying, i.e. ẇ ≈ 0;

iii) the term bl(ρ)ul(t− h) is PE.
Remark 2.2: Assumption (iii) implies the trajectory, and hence u l(t− h), must be sufficiently exciting.

The proposed adaptive sliding mode observer is

˙̂xl(t)=al(ρ)x̂l(t)+bl(ρ)ŵ(t)ul(t−h)−gl(ρ)ey(t)−vl(t)
ŷl(t)=clx̂l(t)

(4)

where ey = yl − ŷl and vl = k(t)sign(ey) where k(t) denotes the positive real modulation gain to be selected to ensure
sliding. In (4) ŵ(t) denotes the estimate of the effectiveness level and g l(ρ) is a gain to be selected.
Define el = xl − x̂l and w̃ = w − ŵ, then the following error system is obtained from (1) and (4):

ėl = (al(ρ) + gl(ρ)cl)el + bl(ρ)ul(t− h)w̃ + vl (5)

Since (al(ρ), cl) are scalars, there always exists a gl(ρ) such that (al(ρ) + gl(ρ)c) < 0.
Proposition 2.1: If the modulation gain k(t) is chosen as

k(t) = |bl(ρ)||ul(t− h)|(|ŵ(t)|+ 1) + η (6)

where η > 0 , then ey will converge to zero and a sliding motion will take place in finite time.
Proof: Let ã(ρ) = al(ρ) + gl(ρ)cl and define as a candidate Lyapunov function V = 1

2e
2
y. Then it follows

V̇ = e2l c
2
l ã(ρ) + elc

2
l (bl(ρ)ul(t− h)w̃ + vl) ≤ elc

2
l (bl(ρ)ul(t− h)w̃ + vl) (7)

since ã(ρ) < 0. Using the fact |w̃| ≤ 1 + |ŵ|
V̇ ≤ |elc2l |(|bl(ρ)||ul(t− h)|(1 + |ŵ|)− k(t)) (8)

If (6) is satisfied, V̇ ≤ −η|cl||ey| ≤ −η|cl|
√
2V and ey will converge to zero and a sliding motion will take place in finite

time.
During the sliding motion, ėl(t) = el(t) = 0. Substituting these quantities into (4) yields

vleq = −bl(ρ)ul(t− h)w̃ (9)

where vleq is the equivalent output error injection signal in (5) necessary to maintain sliding [5].
To create ŵ, the following adaptation algorithm is proposed:

˙̂w = −τbl(ρ)ul(t− h)vleq and ŵ(0) = 1 (10)

where τ > 0 is a design scalar. Using the assumption ẇ ≈ 0, ˙̃w ≈ − ˙̂w and substituting (9) into (10) it follows

˙̃w = −τ(bl(ρ)ul(t− h))2w̃ (11)

Using the assumption that bl(ρ)ul(t−h) is PE, from Lemma 2.1, the system in (11) is exponentially stable. As a consequence,
w̃ → 0 and ŵ → w as t → ∞, and the effectiveness level of the actuator can be estimated in a ‘local’ level.
Remark 2.3: Without using the adaptive component in (10), the term wu l(t − h) will be reconstructed (instead of w). In
this situation, if ul(t− h) is close to zero, it is difficult to calculate a fault reconstruction signal from wu l(t− h).



B. Sliding mode online control allocation

Suppose the LPV representation of the overall plant, subject to actuator faults/failures and ‘matched’ disturbances is

ẋp(t)=Ap(ρ)xp(t)+Bp(ρ)W (t)up(t)+Dp(ρ)ξ(t)

yc(t)=Ccxp(t)
(12)

where Ap(ρ) ∈ R
n×n, Bp(ρ) ∈ R

n×m, Cc ∈ R
l×n and l < m. Here it is assumed there are l < m controlled outputs and

therefore redundancy exists in the system. The state vector and the control input are denoted by x p ∈ R
n and up ∈ R

m,
respectively. In (12), Dp(ρ) ∈ R

n×k represents the disturbance distribution matrix and ξ(t) ∈ R
k denotes a ‘matched’

disturbance which is bounded and assumed to satisfy ‖ξ(t)‖ ≤ α(t, x). In (12), the weighting function matrix W (t) :=
diag(w1(t), . . . , wm(t)) where the time varying scalar functions w1(t), w2(t), . . . wm(t) represent the effectiveness levels
of the actuators which tie in with the actuator models described in (1). In this paper, it will be assumed each scalar w i(t)
is independently reconstructed, using a collection of the adaptive sliding mode observers as proposed in Section II-A. Note
the system measurements in (12) do not (generally) include the local measurements used in (1).
As in [9], define integrator states to induce tracking performance according to

ẋr = r(t) − Ccxp(t) (13)

where r(t) is a differentiable command signal. Combining (12) and (13) yields an augmented state space system of the form[
xr(t)
xp(t)

]
︸ ︷︷ ︸

xa(t)

=

[
0 −Cc

0 Ap(ρ)

]
︸ ︷︷ ︸

Aa(ρ)

[
xr(t)
xp(t)

]
+

[
0

Bp(ρ)

]
︸ ︷︷ ︸

Ba(ρ)

W (t)up(t) +

[
Il
0

]
︸︷︷︸
Bc

r(t) +

[
0

Dp(ρ)

]
︸ ︷︷ ︸

Da(ρ)

ξ(t)
(14)

As in [10], suppose Ba(ρ) in (14) can be factorized as

Ba(ρ) = BvB2(ρ) (15)

where Bv ∈ R
(n+l)×l is a known fixed matrix in which rank(Bv) = l, whilst B2(ρ) ∈ R

l×m is a matrix with varying
elements which satisfies rank(B2(ρ)) = l for all ρ ∈ Ω. Since Bv is full column rank, there always exists a coordinate
transformation matrix Ta = diag(Il, Tn) where Tn ∈ R

n×n and det(Tn) �= 0 such that

TaBv =

[
0
Il

]
(16)

In the new coordinate system x(t) = Taxa(t) it follows

ẋ(t)=A(ρ)x(t)+

[
0

B2(ρ)

]
W (t)up(t)+Bcr(t)+D(ρ)ξ(t) (17)

where A(ρ) = TaAa(ρ)T
−1
a and D(ρ) = TaDa(ρ). As in [10], define a virtual control signal v(t) ∈ R

l as

v(t) := B2(ρ)up(t) (18)

As argued in [10], if the actual physical control signals sent to the actuators are given by

up(t) := B2(ρ)
†v(t) (19)

where
B2(ρ)

† := Λ(t)B2(ρ)
T (B2(ρ)Λ(t)

2B2(ρ)
T )−1 (20)

and Λ(t) = diag(λ1(t), . . . , λm(t)) is a weighting matrix chosen to guarantee det(B2(ρ)Λ(t)
2B2(ρ)

T ) �= 0, then it is
clear that this choice of B2(ρ)

† in (20) ensures equation (19) is satisfied. In the case when Λ(t) = I , B2(ρ)
† is a right

pseudo-inverse of B2(ρ). In this paper, for the purpose of developing an online control allocation scheme, it is assumed
Λ(t) is the online estimate of W (t) i.e. Λ(t) = Ŵ (t) where Ŵ (t) = diag(ŵ1(t), . . . , ŵm(t)) and the ŵi(t) are estimated
from the adaption scheme in Section II-A. Typically Ŵ (t) �= W (t) for all time but assume

Λ(t) = Ŵ (t) = (I +Δ(t))−1W (t) (21)

where Δ(t) is an unknown diagonal matrix such that

‖Δ(t)‖ < Δ̄ < 1 (22)

where Δ̄ is a fixed scalar which will be discussed in the sequel. In equation (21), Δ(t) encapsulates the error in the estimate
of W (t).
Define

W ⊆ {Λ(t) = diag(λ1, . . . , λm) : 0 ≤ λi ≤ 1} (23)



and assume for all W (t) ∈ W and ρ ∈ Ω,
det(B2(ρ)Λ(t)

2B2(ρ)
T ) �= 0 (24)

Clearly W is a nonempty set since Λ(t) = I ∈ W . From (21), in the situation when Δ(t) = 0 and Λ(t) = W (t), substituting
(19) and (20) into (17) yields

ẋ(t) = A(ρ)x(t)+

[
0
Il

]
v(t) +Bcr(t) +D(ρ)ξ(t) (25)

The aim is to create a virtual control law v(t) to ensure closed-loop stability of the system in (25) for all combinations of
faults/failures.
Partition the states in (25) as x = col(x1, x2) where x1 ∈ R

n and x2 ∈ R
l. Equation (25) in partitioned form becomes[

ẋ1(t)
ẋ2(t)

]
=

[
A11(ρ) A12(ρ)
A21(ρ) A22(ρ)

] [
x1(t)
x2(t)

]
+

[
0
Il

]
v(t) +

[
Bc1

Bc2

]
r(t) +

[
D1(ρ)
D2(ρ)

]
︸ ︷︷ ︸

D(ρ)

ξ(t)
(26)

Since ξ(t) is assumed to be ‘matched’ uncertainty, in (26) D1(ρ) = 0 so that range(D(ρ)) ⊆ range(Bv).

C. Define of the switching function

Here v(t) will be designed based on sliding mode concepts as described in [10]. Define a parameter-dependent switching
function as

s(t) = S(ρ)x(t) (27)

where
S(ρ) =

[
M(ρ) Il

]
(28)

In (28), M(ρ) ∈ R
l×n represents the design freedom. Assume that

A(ρ) = A0 +A1ρ1(t) . . .+Anrρnr(t)

M(ρ) = M0 +M1ρ1(t) . . .+Mnrρnr (t)
(29)

During sliding s(t) = 0 and therefore from (27) and (28)

x2(t) = −M(ρ)x1(t) (30)

Substituting (30) into (26) yields the expression for the reduce order sliding motion as

ẋ1(t) = Â11(ρ)x1(t) + B̂c1r(t) (31)

where Â11(ρ) = A11(ρ)−A12(ρ)M(ρ) and the fixed matrix B̂c1 = Bc1. Since Â11(ρ) is dependent on M(ρ), the choice of
M(ρ) can be viewed as a parameter-dependent state feedback problem for the pair (A 11(ρ), A12(ρ)). Since the scheduling
parameter ρ varies inside a polytope, the parameter-dependent state feedback problem can be solved using the vertex property.
As in [16], [10], M(ρ) can be calculated via LPV regional pole placement.

D. Control law with online control allocation

This section considers the development of a virtual control law v(t) to induce and maintain sliding in the most general case
where Λ(t) is an estimate of W (t), and specifically where Λ(t) = (I +Δ(t))−1W (t) as in (21). Let

We = {Λ = diag(λ1, . . . , λm) : B2(ρ)Λ
2B2(ρ)

T > εIl} (32)

where ε > 0 and 0 ≤ λi ≤ 1 and ρ ∈ Ω. Clearly We ⊂ W .
Here the virtual control law is selected to contain two components: v(t) = v0(t) + vn(t) where

v0(t)=−S(ρ)(A(ρ)x(t)+Bcr(t))−(M(ρ̇)−M0)x1(t)+Φs(t) (33)

and Φ is a Hurwitz matrix. The nonlinear term

vn(t) = −K(t, x) P2s(t)
‖P2s(t)‖ if s(t) �= 0 (34)

where the symmetric positive definite matrix P2 satisfies

P2Φ+ ΦTP2 = −Il (35)

It is assumed that the uncertainty bound Δ̄ from (22) satisfies

Δ̄ <
1−Δmax

‖B2(ρ)‖‖B2(ρ)†‖ (36)



for all Λ(t) ∈ We and ρ ∈ Ω where the design parameter 0 < Δmax < 1. Then the following theorem can be proved.
Theorem 2.1: If the design matrix M(ρ) has been chosen such that Â11(ρ) is quadratically stable and Δ(t), capturing

the error in estimating W (t), satisfies (36), then choosing

K(t, x) ≥ ‖D2(ρ)‖α(t, x) + ηc + (1 −Δmax)‖v0‖
Δmax

(37)

where the variable ηc is a positive design scalar ensures a sliding motion takes place on s(t) = 0 in finite time.
Proof: Please refer to [10].

Remark 2.5: Notice that when Λ = I , B2(ρ)B2(ρ)
† = Il which implies ‖B2(ρ)‖‖B2(ρ)

†‖ > 1 and therefore the right hand
side of (36) is always less than unity.
By direct computation, from the definition of B2(ρ)

† in (20)

‖B2(ρ)
†‖2 = λmax((B2(ρ)

†)TB2(ρ)
†) = λmax(B2(ρ)Λ

2B2(ρ)
T )−1 (38)

Therefore if
B2(ρ)Λ

2B2(ρ)
T > εI (39)

for all ρ ∈ Ω then

‖B2(ρ)
†‖ <

1√
ε

(40)

and consequently for any Λ(t) ∈ We, ‖B2(ρ)
†‖ < 1√

ε
.

Thus for a given level of accuracy of effectiveness level estimation Δ̄, using (36), the design parameter Δmax must be
chosen to ensure

Δmax < 1− Δ̄‖B2(ρ)‖√
ε

(41)

Remark 2.6: Note that inequality (41) links together the design of the controller and the performance of the estimator scheme
through the choice of the parameter Δmax.

III. EVALUATION USING THE NONLINEAR MUPAL-α MODEL

In this section, the proposed scheme will be evaluated on a nonlinear simulation model of the JAXA Multi-Purpose
Aviation Laboratory (MuPAL-α) research aircraft. This aircraft is based on the 2-propeller engine Dornier Do228-202
aircraft modified to include a research FBW system [11], [12]. The simulation is a nonlinear 6-DOF model whose fidelity
has been confirmed in [12]. The nonlinear simulation model contains 6-DOF non-linear rigid body dynamics, thrust and
aerodynamic coefficients based on the MuPAL-α, and actuator models.

Fig. 1. JAXA’s Multipurpose Aviation Laboratory (MuPAL-α) aircraft



A. Design results

The LPV model in (12), used for the development of the controller, is described in [10]. The scheduling parameter are

ρ =
[
vias v2ias

]
(42)

In this paper, the evaluation aims to verify the roll and sideslip tracking performance in the face of actuator faults. The
lateral system states, selected to be those associated with the flight test described in [10], are roll angle φ, sideslip angle
β, yaw rate r and roll rate p. The system inputs are differential trust δ td, the aileron δa and rudder surface deflections δr.
During the nonlinear simulations, differential trust and the rudder are assumed to be fault free. The command signals are the
sideslip angle βc and the roll angle φc. Knowledge of the control surface effectiveness levels, used in the control allocation
component, are reconstructed from the adaptive sliding mode observer in Section II-A. During the simulation, the initial
indicated airspeed is fixed around 120kts.

In the formulations, the discontinuous output injection signal v l is approximated by

vl = −k
ey

|ey |+δl
(43)

where the modulation gain k = 40 and the smoothing factor δ l = 0.01. To generate a smooth fault reconstruction signal,
the learning rate τ in (10) is selected as 300. The initial value of ŵ(0) is 1, which corresponds to a fault-free situation.

In the controller, a ‘smooth’ approximation of the discontinuous output injection signal

vn = −K(t, x) P2s(ρ)
‖P2s(ρ)‖+δ (44)

is used where the modulation gain K = 0.2 and the smoothing factor δ = 0.05. The selection of M(ρ), the Lyapunov matrix
P2 and Φ are directly taken from [10]. From the LPV model, it is easy to estimate the upper bound of ‖B 2(ρ)‖ = 10.7987.
The bound of the uncertainty error in fault estimate can be computed from Fig. 4 and it satisfies Δ̄ = 0.05 for most of the
time. Then from (41), the design parameter Δmax = 1− 0.5399/2.1731 = 0.7515.

B. Simulation results

This section shows the nonlinear simulation results in a faulty situation. The trajectories of system states, in the faulty
situation, are shown in Fig. 2. Clearly from Fig. 2, good roll and sideslip tracking performance is retained for the same
manoeuvre despite the loss of 50% of the aileron effectiveness.

The reconstructed aileron effectiveness level, in the faulty situation, is shown in Fig. 3. Clearly from Fig. 3, the recon-
structed aileron effectiveness level (blue line) converges to 0.5 (actual effectiveness level–red line) and therefore the loss of
aileron effectiveness is well estimated. It is also clear from Fig. 3 that there exists small deviations just after 60sec due to
the change of roll angle commands. Nevertheless, the fault estimate re-converges to 0.5. The (normalised) error in aileron
fault estimation Δ(t) is shown in Fig. 4.

Fig. 5 show the smooth aileron and rudder demands and their surface deflection signals in the face of the 50% loss of
aileron effectiveness. The sliding surfaces, associated with the sliding mode control law, are shown in Fig. 6 and it is clear
that by choosing a suitable modulation gain and smoothing factor, the switching functions are maintained close to zero
despite the change of roll angle commands.

IV. FAULT RECONSTRUCTION FROM FLIGHT TEST DATA

To further test the new FDI scheme proposed in this paper (prior to flight testing), earlier flight test data, collected from
one of a series of actual flight tests conducted by a crew of JAXA personnel in January 2017 [10] will be used in an offline
evaluation. Since the flight tests described in [10] only focused on evaluating the lateral-directional control performance,
during the flight tests, longitudinal control of altitude and speed were manually maintained by the evaluation pilot through
column and throttle lever inputs. The lateral-directional manoeuvres were created manually by the evaluation pilot via pedal
and wheel manipulations which were translated into roll and sideslip commands. The lateral system states, inputs and
reference commands are the same as those used for the nonlinear simulation. During the flight test, differential trust was not
used for control allocation to mitigate risk. During the flight tests, a fault in the aileron was introduced giving a reduction
in efficiency of 50%. For safety reasons, the fault was introduced at a software level. During the flight tests, air data inertial
reference system (ADIRS) data and actuator performance levels were logged for monitoring and evaluation purposes [10].

The trajectories of the aircraft states associated with the lateral-directional motion are shown in Fig. 7. During the flight
test, a coordinated ‘S-turn’ manoeuvre, with a roll angle of ±20deg was introduced by the pilot. The actuator commands
and their surface deflections are shown in Fig. 8. It can be seen from Fig. 8 that the fault free rudder operates at its full
efficiency (the right figure in Fig. 8) and the aileron only operates at 50% efficiency due to the presence of the fault (the
left figure in Fig. 8).

The fault reconstruction results from using the adaptive observer scheme proposed in this paper (in the face of a 50%
aileron efficacy fault) are shown in Fig. 9. Clearly, the switching function is maintained close to zero. After sliding occurs,
the fault reconstruction signal ŵ (blue line) approximates the actual effectiveness of the actuator (red line) i.e. w = 0.5. It
can also be seen from Fig. 9 that there exists a small deviation in the fault reconstruction signal just after 60sec. This is
due to the steady turn manoeuvre in which the roll angle changes from 20 to −20 degree after 60sec (as shown in Fig. 7).
A good estimate of the effectiveness level is achieved.
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Fig. 2. The trajectories of states in the faulty situation
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Fig. 3. Fault reconstruction performance in the faulty situation
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Fig. 6. Controller sliding surfaces in the faulty situation
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Fig. 7. States recorded during the flight test
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Fig. 8. Actuator demands and surface deflections
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Fig. 9. Observer Sliding surface and Fault reconstruction

V. CONCLUSION

This paper has proposed an adaptive sliding mode observer to estimate the health levels of actuators at a ‘local’ level.
Specifically the observer identifies the so-called effectiveness levels of each actuator. These effectiveness levels constitute
an important component of an online control allocation based sliding mode scheme which can cope with a class of faults
and total failures in overactuated systems. The proposed scheme was applied to the MuPAL-α nonlinear simulation model
with the aileron only working at 50% effectiveness. The observer scheme has also been tested offline based on previously
collected flight data from a previous MuPAL-α test flight in preparation for future flight test evaluations.
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