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Abstract

Control-based continuation (CBC) is a general and systematic method to probe the dy-
namics of nonlinear experiments. In this paper, CBC is combined with a novel continua-
tion algorithm that is robust to experimental noise and enables the tracking of geometric
features of the response surface such as folds. The method uses Gaussian process re-
gression to create a local model of the response surface on which standard numerical
continuation algorithms can be applied. The local model evolves as continuation explores
the experimental parameter space, exploiting previously captured data to actively select
the next data points to collect such that they maximise the potential information gain
about the feature of interest. The method is demonstrated experimentally on a nonlin-
ear structure featuring harmonically-coupled modes. Fold points present in the response
surface of the system are followed and reveal the presence of an isola, i.e. a branch of
periodic responses detached from the main resonance peak.

Keywords: nonlinear experiment, control-based continuation, regression-based continu-
ation, Gaussian process regression, active data selection.

1 Introduction

Numerical continuation is a popular and well-established method to systematically investigate
the behaviour of nonlinear dynamical systems and perform bifurcation analysis [1, 2]. At a
basic level, numerical continuation finds the solutions of a zero-problem f(x, λ) = 0 where x
are the system states, and tracks the evolution of the solutions as the parameter λ is varied.
Based on a mathematical model, the long-term behaviours of a system, such as steady-states
and periodic responses, can easily be represented by such a zero-problem. Bifurcations, and
hence stability changes, in those behaviours can then be detected along the solution path and
in turn tracked by adding suitable constraint condition(s) and free parameter(s). The princi-
ples of numerical continuation are extremely general such that the method has been applied
to a wide range of problems across engineering and the applied sciences as, for instance, in
bio-chemistry [3], physics [4], mechanics [5] and fluid dynamics [6].
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Without the need for a mathematical model, control-based continuation (CBC) is a means to
define a zero-problem based on the inputs and outputs of an experiment, thereby allowing the
principles of numerical continuation to be applied to a physical system directly during experi-
mental tests. The fundamental idea of CBC is to use feedback control to stabilise the dynamics
of the experiment whilst making the control system non-invasive such that it does not modify
the position in parameter space of the responses of the open-loop experiment of interest. This
non-invasiveness requirement defines a zero-problem whose solutions can be found and tracked
in the experiment using the same path-following principles and methods as in the numerical
context.

CBC is similar in principle to other methods such as the famous OGY (Ott, Grebogi, Yorke)
control technique that has been extensively used to stabilise unstable periodic responses em-
bedded in chaotic attractors [7]. The OGY method was coupled to continuation algorithms
in [8], but the application of this method to general nonlinear experiments1 remains challeng-
ing due to the particular form of control used in the OGY technique. Other examples of control
techniques used to experimentally measure unstable responses are the Pyragas delayed feed-
back control [9] and phase-locked loops [10]. The latter has recently been applied to several
nonlinear mechanical systems [11, 12, 13]. Although these methods and CBC share a number
of similarities, CBC does not assume any particular form of control.

CBC was first proposed by Sieber and Krauskopf [14], and experimentally demonstrated on
a parametrically-excited pendulum [15]. The method has since been successfully applied to a
range of mechanical systems, including an impact oscillator [16, 17, 18], oscillators with mag-
netic nonlinearities [19, 20] and a cantilever beam with a nonlinear mechanism at its free tip [21].
Through those studies, CBC proved to be a versatile technique that can extract important
nonlinear dynamic features such as nonlinear frequency response curves [22], nonlinear normal
modes [23, 24] and isola [21] directly in the experiment. However, the systematic application of
CBC to general nonlinear experiments remains challenging. Most existing continuation algo-
rithms are ideal only in a numerical context where the solution path is smooth and derivatives
can be evaluated to high precision. This is not easily achievable in experiments where solutions
and derivative estimates are corrupted by measurement noise. Schilder et al. [25] discussed
the effect of noise on continuation algorithms. In particular, the tangential prediction and or-
thogonal correction steps of the commonly-used pseudo-arclength continuation algorithm were
shown to perform poorly in a noisy experimental context. Similarly, continuation step size
control techniques that reduce continuation steps when convergence is not achieved were also
shown to be inadequate as reducing the step size usually makes noise distortions even more
apparent. Schilder et al. proposed alternative numerical strategies that are more robust to
noise [25]. These new strategies significantly improve the robustness of CBC as they are able
to trace solution paths that are no longer smooth due to noise. These strategies work well
for low levels of noise but are not sufficiently robust to find and track dynamic features that
are very sensitive to noise as, for instance, bifurcations which are defined in terms of derivatives.

This paper proposes an algorithm that not only makes CBC more robust to noise but also
enables the tracking of general dynamic features that are not directly measurable in the exper-
iment due to perturbations from noise for instance. The proposed approach is fundamentally
different from the one taken by Schilder and co-workers. Multivariate regression techniques

1The term “nonlinear experiment” refers to an experiment for which any model describing its behaviour has
to be nonlinear to be consistent with observations.
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are exploited to locally model the response surface of the experiment, providing local models
that are smooth and cheap to evaluate and thus enabling the use of established numerical con-
tinuation techniques. The proposed method is inspired by the work reported in [20] where a
single-parameter cubic polynomial regression was exploited to capture the geometry of the re-
sponse surface at a fixed forcing frequency and used to detect and track a limit-point bifurcation
in parameter space. The algorithm presented in [20] is however limited to bifurcation curves
with simple geometries. For instance, the algorithm cannot follow the bifurcation through a
cusp. The method proposed here overcomes this limitation.

A key difficulty in using online models is to devise a strategy to collect the experimental data
necessary to build them. We use Gaussian Process regression (GPR) techniques to address this
challenge. GPR has many desirable features, such as the ease of extension to models with mul-
tiple inputs and outputs, the ease of expressing uncertainty, the ability to capture a wide range
of behaviours using a simple (hyper-)parameterisation, and a natural Bayesian interpretation.
Here, based on the data points already captured, GPR will allow us to determine where to
collect new data points to maximise the potential information they will provide about the dy-
namic feature of interest. This active selection of the data based on our current knowledge and
the feature of interest contrasts with the approaches currently found in the literature [26, 27]
where data collection and identification are two activities often performed separately.

The proposed algorithm is presented in Section 2 and demonstrated on a nonlinear mechanical
structure composed of a cantilever beam with a nonlinearity attached at its free end (Sections 3
and 4). The natural frequencies of the first two modes of the structure are almost in a 3:1 ratio,
which leads to strong harmonic couplings between these modes and the presence of complicated
nonlinear dynamic behaviours. In particular, a branch of stable periodic responses detached
from the main resonance peak can be observed. Our new algorithm is employed to track fold
points present in the response surface of the system. The obtained curves are found to have a
complex geometry due to the presence of the modal interaction and to reveal the presence of
the isola.

2 Tracking dynamic features using an online regression-

based continuation algorithm

The zero-problem defining the responses tracked in the experiment is now explained (Sec-
tion 2.1). The algorithm used to experimentally solve and continue the solution of this zero-
problem is then presented in Section 2.2. Detailed discussions of the important components of
this algorithm are given in Sections 2.3 – 2.5.

2.1 Definition of the zero-problem

The response surface of an experiment such as the one considered here presents the generic
form shown in Figure 1, where A is the system response amplitude and (λ1, λ2) are parame-
ters. Such response surface can be easily obtained experimentally using an established CBC
algorithm [20]. In this paper, we are interested in directly tracking geometric features of that
response surface during the experiment and, in particular, the fold curve represented in solid
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Figure 1: Typical response surface that can be found in the experiment. A is a measure of the
response of the system and λ1 and λ2 are parameters, here selected as λ1 = ω and λ2 = Γ. Fold
curve (−) and its projection (−−) in parameter space.

Initialisation

(first GPR model)

Prediction

x̄k = xk−1 + htk−1

Correction

xk,i+1 = xk,i + ∆k,i

(fixed GPR model)

Improve model

with new data

(update GPR model)

k := k + 1 (next point on the solution curve)

Figure 2: Overall structure of the regression-based continuation algorithm proposed here. xk

is the kth solution found using the online regression-based continuation, h is the continuation
step size, tk is the tangent to the solution curve at xk. ∆k,i is the correction applied to xk,i at
the ith iteration of the correction algorithm.

black (−). Responses that lie on that curve satisfy the scalar constraint equation

dλ2(λ1, A)

dA
= 0. (1)

The response amplitude A is a natural choice for the parameterisation as it defines the fold
curve uniquely in many experiments (as in Figure 1). The parameter λ1 serves as the free
parameter for the continuation and, in the present experimental context, corresponds to the
forcing frequency ω. λ2 is the external harmonic force excitation amplitude Γ.

The choice of ω and A as independent variables in Eq. (1) also stems from the nature of these
variables in the experiment. More precisely, the response amplitude A is indirectly imposed by
the amplitude of the reference signal of the control system used in CBC (in particular, one of
its fundamental harmonic components). As such, A and ω can both be viewed as ‘controllable
inputs’ to the experiment. In contrast to continuation applied to a mathematical model, the
force amplitude Γ is here considered as a quantity that is difficult to set directly and hence one
that is measured from the experiment rather than imposed.
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2.2 Overview of the online regression-based algorithm

Finding data points experimentally that satisfy Eq. (1) can be difficult and error prone due
to the presence of noise affecting derivative calculations. This issue is addressed here by cre-
ating, online (i.e. while the experiment is running), regression models that capture the local
dependence of the applied force amplitude as a function of the forcing frequency and response
amplitude. Derivatives can be effectively and accurately calculated for these models, which in
turn allows us to find and then track the fold curve in the experiment using standard numerical
continuation algorithms.

The principal steps of the proposed algorithm are shown in Figure 2. The algorithm is ini-
tialised by collecting a user-defined number of data points n0 distributed in a regular pattern
around a starting point which is assumed to be close to a fold. This first set of experimental
data is then used to create the first GPR model and estimate the regression hyper-parameters
(Section 2.3). Using this model, a fold point is also found by solving Eq. (1) using a standard
Newton-like algorithm. From this first point, standard predictor-corrector continuation algo-
rithms can be exploited (Section 2.4). However, unlike in numerical simulations, the correction
step is followed by a data collection step that aims to make the solution of the zero-problem (1)
robust to new data points (Section 2.5). The addition of each new data point to the local
GPR model is followed by a correction procedure to update the solution of Eq. (1). When no
additional data is needed, a new prediction step is performed to progress along the solution
curve.

2.3 Gaussian Process Regression

The amplitude of excitation Γ is locally modelled as a function of the response amplitude
and excitation frequency using GPR. A Gaussian process is a probabilistic model that can
be used to capture a wide range of nonlinear functions from input-output data without any
explicit assumptions on their mathematical relationship [28]. The amplitude of excitation, Γ,
is modeled by the distribution2

Γ(x) ∼ GP (m(x), κ(x,x′)) , (2)

where x = (ω,A) is the vector of inputs, m(x) and κ(x,x) are the mean and covariance
functions. For the data point i, the measured excitation amplitude, denoted Fi, is assumed to
differ from the function values Γi by the presence of an additive Gaussian noise with zero mean
and variance σ2

n such that

Fi = Γi(x) + εi with εi ∼ N
(
0, σ2

n

)
. (3)

This ‘noise’ captures in fact measurement errors, which not only include measurement noise
but also other inaccuracies that arise in the collection of data points using CBC (see Section 4).

Given a data set D with n measurements

{(x1, F1), (x2, F2), ..., (xn, Fn)} ,
2Rigorously, our notations should distinguish the model output from the exact force amplitude Γ as the

model is only an approximation of the truth. However, in the present experimental context, the exact force
amplitude is unavailable to us. As such, to keep our notations simple, the model output will also be denoted Γ.

5



(a) (b)

0

4.5

|dΓ/dA|

Figure 3: Illustration of the local model obtained using GPR at the initialisation of the algo-
rithm. (a) and (b) correspond to different views of the same model. The colour map represents
the absolute value of Eq. (1), i.e. |dΓ/dA|. (•) Data points used to create the model. (×) Fold
point. (×) Predicted fold point. (−) Tangent vector to the solution curve at fold point (×).

grouped in an input matrix X = [x1,x2, ...,xn] and an output vector F = [F1, F2, ..., Fn]T , the
prediction of the force amplitude at n? unmeasured inputs X? is given by the mean of the
predictive distribution as

Γ? = κ (X,X?)
T κ (X,X)−1 F. (4)

where (·)T represents the transpose operation. κ (X,X?) corresponds to the n × n? matrix
resulting from the application of the covariance function κ (xi,x?j) for all i and j. Similarly
for κ (X,X). Note that GPR differs from parameter estimation techniques and the regres-
sion method used in [20] because measured data points are needed to perform predictions (see
Eq. (4)).

An effective computation of Eq. (4) can be achieved using the Cholesky factorization to de-
compose the covariance matrix κ (X,X) into a lower-triangular matrix and its conjugate trans-
pose [28]. The former is then stored and used to efficiently compute the inverse for different
unmeasured inputs x?. The Cholesky decomposition can also be efficiently updated when data
points are added or removed from the data set D as in Section 2.5. Note that the inputs (ω,A)
of the GPR model are assumed to be noise-free but they are in reality measured quantities cor-
rupted by noise. It is possible to extend the GPR model used here to address noisy inputs [29];
however this is not considered here as it was unnecessary for the system considered.

Although GPR is a non-parametric approach that does not make assumptions on the func-
tional form of the modelled function, assumptions regarding its smoothness are introduced in
the covariance function and the choice of hyper-parameters θ. The covariance function consid-
ered here is the widely-used, infinitely-differentiable squared-exponential (SE) or radial basis
function (see, for instance, Eq. (5.1) in [28]). With two-dimensional inputs and observation
noise, this covariance function includes four hyper-parameters θ = (σ2

n, σ
2
f , lω, lA). These pa-

rameters have a clear physical interpretation. In particular, lω and lA represent characteristic
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length scales that express the distance to be travelled along a particular axis in the input space
for covariance values to become uncorrelated. σ2

n is the variance associated with measurement
errors, and σ2

f is a magnitude factor. The hyper-parameters θ of the models were obtained by
maximizing the log marginal likelihood

log p(F|X, θ) =
1

2
FTκ (X,X)−1 F− 1

2
log |κ (X,X) | − n

2
log 2π (5)

where the first term represents the data fit of the model and the second term penalizes the
complexity of the model [28]. The optimization was performed using a Quasi-Newton algo-
rithm. Hyper-parameters were determined at the start of the algorithm using the first set of n0

data points captured. They were then kept constant during a continuation run. We note that
Gaussian priors on the hyper-parameters (hyper-priors) can be used. However, with limited
knowledge of the actual values and hence large covariances they had limited influence on the
optimal θ values.

As an example of a GPR model, Figure 3(a) shows a local model obtained at the start of a
continuation run after collecting 25 data points (•) regularly distributed in input space (ω,A)
around the estimated location of a fold point. A projection of the model in the two-dimensional
input space is also given in Figure 3(b). The surface is coloured according to |dΓ/dA| to high-
light the regions where Eq. (1) is satisfied. According to the model, fold points are expected in
two distinct regions (in dark-blue). The one where the response amplitude is higher is where
the actual folds are located. The lower one is in fact located outside the data set and is an
artifact feature created by the regression. These artifacts do not affect the algorithm as long as
the continuation steps are small enough to stay within the available data sets. In Section 2.5,
we will discuss how to improve such GPR models with additional experimental data but first
we discuss the continuation approach.

2.4 Numerical continuation

The continuation problem is to solve and track the solutions of Eq. (1). Starting from a known
solution xk−1, the next point along the solution path is predicted to be

x̃k = xk−1 + h tk−1 (6)

where h is the continuation step size and tk−1 is the tangent vector to the solution curve at
xk−1. The prediction will not in general satisfy the zero-problem such that the prediction must
be corrected using a Newton-like algorithm. However, to apply Newton iterations, an extra
equation has to be added to Eq. (1). The equation used here is the so-called pseudo-arclength
condition

tk−1.(x− xk−1)− h = 0, (7)

which constraints the corrections made to x̃k to be perpendicular to tk−1.

Figure 3 illustrates a fold point (×) predicted from a previously computed point (×). The
tangent vector used for this prediction is shown in green (−). It was found that GPR models
could diverge quickly from the actual response surface outside the set of collected data points
(see Section 2.3). As such, the size of the continuation steps were taken such that the prediction
and correction iterations remained within the cloud of available data points. Note that it is
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possible to allow larger continuation steps that leave the current data set by collecting new
data points after the prediction step, although this is not used here. After finding a solution
to Eqs. (1) and (7), additional data points are collected to refine this solution — this is now
discussed.

2.5 Improve solution with new data

To make sure that the solution of Eq. (1) is not an artifact of the model and does not criti-
cally depend on the current data, new data points are collected after the correction step of the
continuation algorithm. To this end, a fixed number ntest of prospective data points, xi

? with
i = 1, ..., ntest, uniformly distributed in an ellipse around the current solution of the continua-
tion problem are considered for data collection. The principal axis of this elliptical domain were
chosen equal to twice the length scale hyper-parameters lω and lA. The data point that most
influences the results is deemed to be the most interesting point and is then experimentally
collected using the established CBC technique summarised in Section 4.1.

To determine the sensitivity of the zero-problem (1) to new experimental data, an artificial
measurement of the force amplitude, F̄i, is created for each candidate data point xi

? using

F̄ i = Γi
?(x

i
?) +

√
var[Γi

?(x
i
?)], (8)

where Γi
? depends on currently available data and is given by Eq. (4). The variance at a

particular input point xi
? is given by

var[Γi
?] = κ

(
xi
?,x

i
?

)
− κ

(
X,xi

?

)T
κ (X,X)−1 κ

(
X,xi

?

)
, (9)

which is independent of any previous and future measurement of the force amplitude. The
artificial measurements are individually added to the GPR model and their effect on the zero-
problem assessed using

β =

∣∣∣∣∣ dΓ̃

dA

(
xk
)
− dΓ

dA

(
xk
)∣∣∣∣∣ (10)

where xk is the current solution of the continuation problem, Γ̃ is the GPR model including the
artificial measurement and Γ is the GPR model without (i.e. containing only the experimental
data). β is the zero-problem sensitivity to new data and is directly used to assess the potential
information gained by each artificial measurement.

Figure 4 illustrates this data selection approach. The colourmap represents the sensitivity, β,
of the zero-problem (1) to a new data point. Starting from Figure 4(a), a new data point is
collected where Eq. (10) is the largest (×). This new data point is added to the GPR model
and the correction step of the continuation algorithm repeated. Once a solution is found, the
influence of a new data point on the new GPR model is again assessed (Figure 4(b)). The
region where the first additional data point was added is now observed to be significantly less
influenced by any new point. According to the model predictions, informative data points are
now located in another region where a second data point is eventually recorded. Following the
same procedure, data points are collected until Eq. (10) is below a user-defined tolerance across
the whole region as in Figure 4(c). At this stage, the solution of the continuation problem is said
to be robust to new data and the continuation algorithm can perform a new prediction step. As
the continuation algorithm progresses in parameter space, more data points are added to the
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(a) (b) (c)

0 4 · 10−2 7 · 10−2

β

Figure 4: Illustrates the new data selection process. The colourmap shows the sensitivity of
the zero-problem β as estimated by Eq. (10). (a – c) Show the evolution of Eq. (10) when new
data points (×) are added to the GPR model. 4 × 10−2 is the user-defined threshold below
which no additional data point is collected.

GPR model. To keep computational costs low, an overall maximum number of data points nmax

in the model is maintained by removing data points that have less influence on the zero-problem.

During the experiment, the set of candidate data points is usually limited to 50 points. This
is a much smaller set of points than the one considered for the colour maps in Figure 4. This
explains why in Figure 4(b) there exist a small difference between the apparent location of the
maximum of Eq. (10) and the location where the new data point has been collected (×).

Other approaches to decide where to collect data points could have also been used. For in-
stance, the effect of new data points on the solution of the zero-problem was investigated.
However, this approach was found to give similar results to the method above while needing
a solution to the nonlinear continuation problem for each candidate data point and hence be-
ing computationally much more expensive. Another approach was to select the data points
for which the variance, var[Γ?], of the predicted distribution was the largest. This approach
was however discarded as new data points were being positioned at the periphery of the data set.

3 Description of the experimental set-up

The experimental set-up considered for the experimental demonstration of our algorithm is
shown in Figure 5. The main structure is a steel (ρ ≈ 7850 Kg/m3, E ≈ 210 GPa) cantilever
beam of length 380 mm, width 31.9 mm and thickness 1.9 mm. The beam’s free end is attached
to two linear springs arranged as shown in Figure 5(b). This mechanism gives rise to geometric
nonlinearity at large amplitudes. Previous work has shown that the stiffness properties of this
mechanism can be approximated by a linear plus cubic term [30]. However, a mathematical
model of the nonlinearity is unnecessary for CBC. As such, neither the identification of the
nonlinear parameters nor the exploitation of the mathematical form of the nonlinearity were
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Laptop
Real-time controller box

Nonlinear mechanism

Beam

Shaker

Laser

Force sensor

Clamp

Figure 5: Experimental set-up. The structure corresponds to a cantilever beam with a nonlinear
mechanism attached at its free end. The structure is excited and controlled by means of an
electro-dynamic shaker. A displacement laser sensor is used to measure the motion of the beam
tip. CBC algorithms run on a laptop interconnected with the real-time controller box.

used. The length of the beam as well as the pre-tension in the springs were carefully adjusted
such that the ratio between the natural frequencies of the first two bending modes is close to,
but larger than 3. This leads to the presence of a 3:1 modal interaction between these modes.

The structure is excited approximately 40 mm away from the clamp using a GW-V4 Data
Physics shaker powered by a PA30E amplifier. The force applied to the structure is measured
using a PCB208C03 force transducer connected to a Kistler signal conditioner (type 5134). The
vibrations of the beam are measured at the tip using an Omron ZX2-LD100 displacement laser
sensor. The beam structure, the first laser sensor, the shaker and its power amplifier constitute
the nonlinear experiment tested using CBC.

The algorithm used by the CBC method and presented in Section 2 is run on a laptop com-
puter directly connected to the real-time controller (RTC) box via a USB cable. The RTC box
consists of a BeagleBone Black on which the feedback controller used by CBC is implemented.
Note that CBC algorithms do not run in real-time, only the feedback controller does. The
BeagleBone Black is fitted with a custom data acquisition board (hardware schematics and
associated software are open source and freely available [31]). All measurements are made at
1 kHz sampling with no filtering. Estimations of the Fourier coefficients of the response, input
force, and control action are calculated in real time on the control board using recursive esti-
mators [23]; however, this was for convenience rather than a necessity.
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The z-domain transfer function of the controller used by the CBC technique is given by

U(z)

E(z)
=

0.0053

z3 − 2.4521z2 + 1.9725z − 0.5155
, (11)

and aims to reduce the error E(z) between the beam tip response, y (laser 1), and a control
reference signal, y∗, (see Section 4.1). The control law, which was found to stabilise the dy-
namics of the experiment throughout the range of parameters considered in this study, was
designed using pole-placement techniques and a linear model of the experiment. This model
was obtained using low-amplitude broadband input-output data and captures the first two
bending modes of the beam whose natural frequencies (damping ratios) were estimated at
11.49 Hz (0.026) and 36.45 Hz (0.022), respectively. Additional details on the derivation of the
controller can be found in [21] where the nonlinear frequency response curves of the present
experiment were also investigated using CBC. Note that errors in the model do not affect the
results as long as the model is sufficiently accurate for designing a stabilising feedback controller.

4 Experimental results

The CBC technique used in this paper to collect experimental data points is briefly reviewed in
Section 4.1 and exploited to map out the complete response surface of the system of interest.
The new online regression-based algorithm is then demonstrated in Section 4.2 where it is used
to track fold points while the experiment is running. To validate the new algorithm, obtained
results are directly compared with the fold curves that can be extracted by post-processing the
response surface obtained using standard CBC approach as described in Section 4.1.

4.1 Extracting periodic responses

Considering periodic responses of the experiment, it is assumed that the control target, y∗(t),
and the control signal, u(t), can be decomposed into a finite number m of Fourier modes as

y∗(t) =
A∗0
2

+
m∑
j=1

A∗j cos(jωt) +B∗j sin(jωt), (12)

u(t) = Au
1 cos(ωt) +Bu

1 sin(ωt)︸ ︷︷ ︸
fundamental

(13)

+
Au

0

2
+

m∑
j=2

Au
j cos(jωt) +Bu

j sin(jωt)︸ ︷︷ ︸
higher harmonics

. (14)

CBC seeks a reference signal y∗(t) for which the control signal u is equal to zero for all times.
When this is achieved, the control signal is non invasive and does not alter the position in
parameter space of periodic responses compared to the underlying uncontrolled system of in-
terest. To achieve this non-invasive control signal, the higher harmonics (Au

0 , A
u
j , B

u
j )mj=2 have

to be eliminated by finding suitable reference signal coefficients (A∗0, A
∗
j , B

∗
j )mj=2. This can be

performed using a derivative-free Picard-iteration algorithm. As for the fundamental harmonic
component of the control signal, Au

1 cos(ωt) +Bu
1 sin(ωt), it can be viewed as the harmonic ex-

citation applied to the experiment. If no other external excitation is applied to the experiment,
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Figure 6: S-curves collected using the simplified CBC algorithm presented in Section 4.1. Gray
surface is the output of a GPR model including all recorded data points (•). The darker gray
region is delimited by a fold curve. Data points in this region correspond to unstable response
of the underlying uncontrolled experiment.

the total harmonic excitation applied to the experiment is simply given by Γ =
√
Au2

1 +Bu2

1 .
The reader is referred to [19, 20] for a more detailed discussion on this approach that is often
referred to as the simplified CBC method.

The higher-harmonic coefficients (A∗0, A
∗
j , B

∗
j )mj=2 are determined to cancel out the higher-harmonic

coefficients of the control signal. One of the fundamental target coefficients (here B∗1) can also
be set equal to zero in order to set a phase reference between the response and the excitation.
As such, the only two adjustable inputs to the experiment are the frequency of excitation ω
and the fundamental target coefficients A∗1. The amplitude of the excitation Γ is viewed as a
free parameter as it is not fully determined by the user but depends on the response y(t) and
target y∗(t).

Considering a constant frequency, the response of the experiment to harmonic input can be
investigated by increasing the free fundamental target coefficient A∗1. The response curves col-
lected in this way form curves that resemble a S, as shown in Figure 6. At each data point (•),
full time series measurements containing 2000 samples, or between 22 and 29 oscillation cycles,
were made and used to estimate response and force amplitudes. The number of Fourier modes
considered in the calculation of amplitudes is equal to seven throughout the rest of the paper.

Response curves in Figure 6 were collected every 0.25 Hz between 10 Hz and 14 Hz with 0.2
mm steps in A∗1. The S-curve obtained at 12.5 Hz is notably different from the other S-curves
and includes an additional inflection point in its upper part. This curve lies in the region where
a modal interaction occurs between the first two modes of the structure and marks a change
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in the form of the response surface of the system. This change in the response surface leads to
the presence of an isola as further discussed in Section 4.2.

The S-curves collected can be post-processed to extract fold curves which will then be com-
pared to the fold curves directly tracked during the experiment. The post-processing approach
used to extract these curves is similar in principle to the one used in the online algorithm but
with the clear distinction that it does not influence the data points collected. A GPR model
including all collected data points is created and numerical continuation is exploited to follow
the solutions of Eq. (1). Figure 6 shows in gray the continuous surface constructed from the
GPR model. The darker gray region indicates where the underlying uncontrolled experiment
is unstable and thus unobservable without stabilising feedback control. The boundary of that
region is the fold curve found using continuation. This curve is sensitive to the spacing between
the different S-curves as well as the choice of hyper-parameters for the GPR. In particular, the
fold curve presents artifact oscillation as discussed later. The online algorithm will overcome
these issues.

4.2 Demonstration of the online regression-based algorithm

The online regression-based continuation algorithm presented in Section 2 is now demonstrated.
Figure 7 illustrates the first four steps of the algorithm which is initialized in the neighbour-
hood of a fold found at high response amplitudes on one of the S-curves collected in Section 4.1
(◦). Around that starting point, 25 new data points (•) regularly distributed in frequency and
control target amplitude are collected. This first data set is then used to estimate the hyper-
parameters of the GPR model using the marginalization approach presented in Section 2.3.
Hyper-parameters were found to be θ = (σ2

n, σ
2
f , lω, lA) ≈ (0.02, 2.02, 0.30, 1.09). The noise

variance, σ2
n, which is found to be relatively small compared to the other hyper-parameters,

captures the effects of measurement noise. It also encompasses potential inaccuracies that
could arise from the inaccurate cancellation of the control signal higher harmonics during data
collection.

After estimation of the hyper-parameters, the first GPR model is created (�) and a first solution
to Eq. (1) is found (×). The sequence of prediction and correction steps of the numerical
continuation algorithm can then be started. Data points collected during the continuation
process are shown in green (◦) and appear to be regularly distributed around the fold of
the response surface (see two-dimensional projections in Figure 7(b, c)). This comes from the
regular pattern used for the generation of candidate data points and the sensitivity criterion (10)
that is found to almost always have a structure similar to the one observed in Figure 4(a, b).
Note that to collect data points at the particular response amplitudes specified by the data
selection method in Section 2.5, a second regression mapping A to A∗1 is created during the
continuation. This mapping is observed to be almost linear throughout the range of parameters
considered in this study (Figure 8).

In Figure 7, the red curve (−•−) represents the solutions found by the continuation algorithm
and the force amplitude predicted at the solution by the GPR model. For each solution point,
a data point is also collected (− •−) and added to the GPR model. At the beginning of the
algorithm (around 14 Hz), the forcing amplitude estimated by the GPR model at the solution
is slightly different from the force amplitude actually measured. However, the GPR model
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Figure 7: First four steps of the regression-based continuation algorithm. (◦) S-curve used to
initialize the algorithm close to a fold. Data points (•) used to estimate hyper-parameters and
find the first fold point. Data points (◦) collected during the continuation process. (− • −)
and (− • −) are the fold curves found using continuation and where the force amplitude is
estimated by the GPR model and measured experimentally, respectively. (�) First local GPR
model. To help visualization, the response surface obtained in Figure 6 is superimposed to the
data obtained with the new algorithm. (b, c) Show two-dimensional projections of the data
points and curves shown in (a).
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Figure 8: Mapping between the response amplitude A (continuation variable) and the funda-
mental target coefficient A∗1 (experimental input). All the data points (•) presented in this
paper have been included.

predictions improve as more data points are added to it and the difference between the two
curves (−•−, −•−) becomes increasingly smaller, and negligible after 3 continuation steps.

Figure 9 illustrates the results obtained when applying the continuation algorithm throughout
the parameter range of interest. All the data points collected during the continuation are shown
in black (•), and the curve of fold points obtained by following the curve previously shown in
Figure 7 is in red (−). Two-dimensional projections of the fold curve are shown in Figure 9(b,
c). The curve has a complex geometry; especially in the region between 12 – 13 Hz where it is
observed to increase in response amplitude at almost constant forcing frequencies (Figure 9(b)).
This feature corresponds to the ‘saturation’ of the resonance frequency commonly observed in
nonlinear frequency response curves in the vicinity of modal interactions [32]. Closer inspec-
tion at this region reveals that the fold curve forms the shape of a swallowtail catastrophe
(Figure 9(c)) [33]. Although this feature is small and appears to be more affected by mea-
surement uncertainties than the rest of the curve, it was consistently observed in this region
of the parameter space. After this interaction region, the algorithm was found to reach and
successfully pass through a cusp (around 11 Hz).

The use of multivariate regression combined with a predictor-corrector continuation technique
makes the online regression-based algorithm more general and robust than the bifurcation track-
ing algorithm proposed in [20]. This latter standard method could not have tracked a curve
that exhibits the complex features of the fold curve in Figure 9. The present algorithm was
however not able to systematically continue the fold curve across the modal interaction region.
In particular, when the interaction region was approached from below, the fold curve was found
to come very close to a previously measured section of the curve. Within uncertainty, this close
proximity between the two portions of the curve gives rise to a branch point singularity which
cannot be addressed by our current continuation algorithm. As such, the online algorithm
was often found to ‘jump’ to and continue the upper part of the fold curve. To capture the
low-amplitude section of the fold curve located between 12.5 Hz and 14 Hz (− in Figure 9),
the online algorithm was restarted around the second fold point observed at low amplitude on
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the S-curve in Figure 7.

To validate the continuation results, fold points found at a particular force amplitude are com-
pared to the nonlinear frequency response (NLFR) curve obtained for the same excitation level.
To generate the NLFR curve, the raw data points shown in Figures 6 and 9 that correspond
approximately to the chosen force amplitude (within ±5%) are represented on the same graph.
The NLFR curves obtained for 2.0 N and 2.9N are shown in Figures 10(a) and 10(b), respec-
tively. Fold points are in red (×). At 2N (Figure 10(a)), the resonance peak leans towards
higher frequencies which highlights the hardening character of the nonlinearity in the system.
The locations of the two fold points found at that level match the folds in the NLFR. Data
points located between them are observed to be unstable periodic responses of the underlying
uncontrolled experiment. As the excitation is increased to 2.9 N (Figure 10(b)), the resonance
peak is qualitatively unchanged but an isolated branch of high-amplitude responses discon-
nected from the main resonance peak has appeared [30, 21]. The presence of this isola could
have been inferred from Figure 9(c) as a third fold point appears when the force amplitude
becomes larger than approximately 2.1 N.

To further validate the fold curves obtained using the online regression-based algorithm, re-
sults are compared to the fold curve obtained by post-processing the data points of the full
response surface. In particular, a GPR model including only the data points of Figure 6 is
created, and numerical continuation is applied to find and track the solutions of (1). Two sets
of hyper-parameters are considered to post-process the data. The first one corresponds to the
set of hyper-parameters used by the online algorithm. The second one is obtained by maximis-
ing the marginal likelihood for all the data points of the response surface. Hyper-parameters
found in this latter case are (σ2

n, σ
2
f , lω, lA) ≈ (0.01, 2.66, 0.28, 0.73). Although different from

the hyper-parameters found at the initialization of the online continuation algorithm, they are
found to have comparable magnitudes.

The resulting fold curves are compared in Figure 11. The two curves (−, −) obtained by post-
processing the response surface are almost identical, which shows that the difference between
the two sets of hyper-parameters does not play a significant role here. These curves are found to
oscillate around the fold curve measured online (−•−). These oscillations are artifact created
by the regression method due to the lack of data points (in particular at resonance between
successive S-curves). These oscillations are not present in the curve obtained directly during
the experiment due to the tailored collection of suitable data points during the continuation.
The blue curve is also found to reproduce the swallowtail catastrophe observed on the data
collected online. The post-processing applied to the data points of the response surface could
have also been applied to the data points collected by the online regression-based continuation
algorithm. The fold curve obtained in this way (−− in Figure 12) is a smooth and continuous
curve that is no longer affected by the ‘jump’ observed during the experiment and that also
reproduces the swallowtail catastrophe. The curve is also free from regression artifacts as col-
lected data points were suitably chosen.

The collection of data points not only at the dynamical feature of interest but also around
it enables us to analyse the sensitivity of this feature to experimentally collected data points
and distinguish between features that are robust (such as the swallowtail) and those that are
genuinely uncertain (fold connection near the singularity). To visualize this uncertainty, 300
fold curves were numerically computed for different data sets. Each set is based on all the
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Figure 9: (—, —) Fold curves captured experimentally using the regression-based continua-
tion algorithm. (•) Data points automatically collected during continuation using the method
proposed in Section 2.5. (b, c) Two-dimensional projections of the fold curves shown in (a).
The close-up in (c) shows the presence of a swallowtail catastrophe.

17



10 11 12 13 14
Frequency (Hz)

0

2

4

6

8

10

R
es

po
ns

e 
am

pl
itu

de
 (

m
m

)

(a)

10 11 12 13 14
Frequency (Hz)

0

2

4

6

8

10

R
es

po
ns

e 
am

pl
itu

de
 (

m
m

)

(b)

Figure 10: Nonlinear frequency response of the system obtained by selecting data points in
Figures 6 and 9 that correspond approximately (within ±5%) to (a) 2.0 N and (b) 2.9 N. Fold
points (×) obtained with the regression-based continuation algorithm of Section 2.

data points collected using the online algorithm but with 10% of the points, selected randomly,
removed. The hyper-parameters of the GPR model were marginalized for each data set. Fold
curves (−) are shown in Figure 12. Regions of larger result variability, i.e. where the overall
bifurcation curve appears thicker, are located on the lower part of the curve (Figure 12(a)).
This is expected as this region of the response surface is significantly less curved than the
resonance region and hence more affected by measurement uncertainties. Large variability
is also noticeable at the cusp as well as at the modal interaction region. In the latter, the
distinction between the upper and lower part of the fold curve can disappear as some fold
curves are found to cross and have a branch point. Other continuation runs are also found to
lead to disjoint fold curves — one before and one after the modal interaction. This important
variability in the results highlights the “flat” nature of the response surface in that region
and hence the increased difficulty in inferring the presence of folds (inset in Figure 12(a)). In
general, the presence of uncertainty may make it difficult to draw strong conclusions on the
precise geometry of the fold curve in such a region. Figure 12(b) shows the sensitivity of the
results in terms of the bifurcations parameters forcing frequency and amplitude. As observed
experimentally, the swallowtail catastrophe appears to be a robust feature of the system’s
dynamics as it is present for almost all data sets.

5 Conclusions

Control-based continuation is a general and systematic method to probe the dynamics of non-
linear experiments. In this paper, CBC is combined with a novel continuation algorithm that
is robust to experimental noise and enables the tracking of geometric features of the response
surface. The online regression-based CBC uses Gaussian process regression to create local
models of the response surface. These models are smooth (noise-free) which enables the use
of standard numerical continuation algorithms. An novel aspect of the proposed method is a
separate data collection step. This step selects input values maximizing information about the
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Figure 11: Comparison between the fold curve (− • −) obtained during the experiment and
the fold curves (−, −) obtained by post-processing the data points of the response surface.
Hyper-parameters used to obtain (−) are identical to those used in the experiment, whereas
the hyper-parameters used for (−) result from the maximisation of the marginal likelihood for
all the data points in the response surface.

dynamic feature of interest. This approach is similar in principle to an experimental design
problem in statistics and could a priori be applied to other problems such as nonlinear param-
eter estimation and model selection.

The online regression-based algorithm was experimentally demonstrated on a nonlinear struc-
ture with harmonically-coupled modes by tracking fold points in the structure response to
harmonic excitation. The algorithm was able to address the complex geometry of the fold
curve arising from the presence of a modal interaction. However, the close proximity between
two portions of the fold curve lead, within uncertainties in the experiment, to a branch point
singularity which could not be addressed by the current continuation algorithm.

The online regression-based algorithm presented in this paper is very general and could be ex-
ploited to capture other types of dynamic features such as backbone curves (nonlinear normal
modes) and nonlinear frequency response curves. The regression algorithm used here relies
however on a unique parameterisation of the solution curve in terms of the continuation vari-
ables. If this assumption is not satisfied, further improvements of the method to consider local
coordinates for the regression, or a larger set of continuation variables might be necessary.

Data Statement

Experimental data collected in this study are available at [DOI to be inserted at proofing ].
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(a) (b)

Figure 12: (−−) fold curve obtained by post-processing all the data points collected using the
online continuation algorithm. (−) 300 fold curves obtained by post-processing some of the
data points measured using online continuation. For each curve, 10% of the data points are
randomly selected and removed from the data set. Each curve is also computed with hyper-
parameters values obtained via the maximization of the marginal likelihood for the particular
data set considered.
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