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ABSTRACT: Microplastic debris is a pervasive environ-
mental contaminant that has the potential to impact the
health of biota, although its modes of action remain somewhat
unclear. The current study tested the hypothesis that exposure
to fibrous and particulate microplastics would alter feeding,
impacting on lipid accumulation, and normal development
(e.g., growth, moulting) in an ecologically important coldwater
copepod Calanus f inmarchicus. Preadult copepods were
incubated in seawater containing a mixed assemblage of
cultured microalgae (control), with the addition of ∼50
microplastics mL−1 of nylon microplastic granules (10−30
μm) or fibers (10 × 30 μm), which are similar in shape and
size to the microalgal prey. The additive chemical profiles
showed the presence of stabilizers, lubricants, monomer residues, and byproducts. Prey selectivity was significantly altered in
copepods exposed to nylon fibers (ANOVA, P < 0.01) resulting in a nonsignificant 40% decrease in algal ingestion rates
(ANOVA, P = 0.07), and copepods exposed to nylon granules showed nonsignificant lipid accumulation (ANOVA, P = 0.62).
Both microplastics triggered premature moulting in juvenile copepods (Bernoulli GLM, P < 0.01). Our results emphasize that
the shape and chemical profile of a microplastic can influence its bioavailability and toxicity, drawing attention to the
importance of using environmentally relevant microplastics and chemically profiling plastics used in toxicity testing.

■ INTRODUCTION
Microplastics (1 μm to 1 mm) are a pervasive and persistent
environmental contaminant, impinging on freshwater, terres-
trial, and marine ecosystems across the globe.1,2 These
synthetic particulates and fibers are either directly manufac-
tured (e.g., exfoliates in personal care products), or derive from
fragmentation of larger plastic debris.3,4 It is conservatively
estimated that over 4.75 × 1012 plastic particles (in the size
range of 0.3−4.5 mm) are floating in the global ocean.5 As
complete mineralization of plastic debris is estimated to range
from tens to hundreds of years, and with plastic inputs
expected to rise for the foreseeable future, marine microplastic
concentrations are likely to increase.6,7 Owing to their small
size, microplastics can be directly or indirectly (i.e., via trophic
interactions) ingested by a range of marine organisms across
trophic levels, including zooplankton,8 shellfish,9 fish,10,11 and
megafauna.12,13 Microplastics contain additives, plasticizers,
and monomers (e.g., bisphenol A, polybrominated diphenyl
ethers) incorporated during their manufacture to provide a

wide range of functions including as emollients, stabilizers, and
flame retardants.14 Furthermore, they may carry persistent
organic pollutants (POPs), metals, and pathogens that adsorb
or adhere to their surface in the marine environment.15,16

Where equilibrium has not been reached (i.e., there is a
chemical gradient), there is evidence that POPs and metals
(e.g., copper, zinc) can transfer from microplastics into biota
potentially enhancing their toxicity.17,18 Laboratory testing has
highlighted the negative impacts microplastic ingestion can
have on marine organisms, including zooplankton, mussels,
oysters, crustaceans, and fish, with effects including reduced
feeding, fecundity, growth, and survival.19−24 These effects can
cascade through levels of biological organization, resulting in
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impacts on the ecological functionality of keystone species
(e.g., bioturbation, nutrient cycling).25

Copepods are an abundant class of marine zooplankton that
provide an essential trophic link between primary producers
and secondary consumers, and contribute to ecological
processes such as marine nutrient cycling.26 Laboratory
exposures have demonstrated the capacity for a range of
pelagic and benthic copepods, including Acartia spp., Calanus
spp, Centropages spp., Limnocalanus spp., Temora spp., and
Tigriopus spp., to ingest polystyrene microplastic beads and
fragments.27−30 Furthermore, wild copepods sampled from the
South China Sea31 and Northeast Pacific Ocean32 have been
shown to ingest microplastic fibers and particulates in the
natural environment. Exposure studies have highlighted that
polystyrene microspheres can negatively affect copepod
feeding and health. Exposed to a monoalgal diet and
polystyrene beads (20 μm; 65 microplastics mL−1), the
temperate calanoid copepod Calanus helgolandicus showed
significant reductions in their dietary intake of carbon owing to
a shift in feeding, with a preference for smaller, less nutritious
algae.22 After 3 days exposure, Cole et al.22 observed
microplastic exposed copepods produced significantly smaller
eggs with reduced hatching success, which was attributed to
reduced energetic intake. There is relatively little data currently
available to determine whether microplastics with different
physical properties (e.g., shape, size, density)33 will exhibit
altered bioavailability or toxicity, and there are few published
microplastic exposure studies focused on early life stages.
Incorporation of microplastics more representative of those
found in the environment (i.e., irregularly shaped, fibers) and
consideration of impacts on early life stages have been
encouraged within the scientific community.34,35

In this study, we investigate the impact of fibrous and
particulate microplastic exposure on feeding, lipid accumu-
lation, growth, and moulting in preadult Calanus f inmarchicus,
a boreal (coldwater) copepod that is widely distributed in the
northern hemisphere and the dominant mesozooplankton
species in the North Sea and Norwegian Sea.36 The energetic
reserve of C. f inmarchicus takes the form of a large oil sac,
comprising wax esters with long-chain fatty acids and fatty
alcohols, built-up during their juvenile life stages in periods of
high food availability.37,38 These lipid stores make C.
f inmarchicus nutritionally valuable to higher-trophic organisms
(e.g., fish, whales), and facilitate “diapause”, whereby the
copepods descend to deeper waters and enter a state of
dormancy over winter.39,40 We hypothesized that reductions in
algal feeding stemming from microplastic exposure would
result in reduced lipid accumulation in developing C.
f inmarchicus with consequences for the normal development
of the copepod. In our experiments, cohorts of preadult C.
f inmarchicus (copepodite stage, CV) were exposed to mixed
algal assemblages with the addition of either nylon microplastic
fibers or granules at a concentration of 50 microplastics mL−1

for 6 days, with sublethal end points including: algal ingestion
rates, growth, lipid mass and profiles, and moulting. Our results
provide evidence of the risks fibrous and particulate micro-
plastics pose to the energetics and development of a keystone
species.

■ MATERIALS AND METHODS
Copepods and Microalgae. Juvenile Calanus f inmarchicus

(CV) were subsampled from copepod cultures maintained at
the Norwegian University of Science and Technology

(NTNU). Copepods were fed a mixed assemblage of three
microalgal species of different size and shape (Supporting
Information, SI, Figure S1), which are part of the natural diet
of Calanus sp.: (i) the chlorophyte Dunaliella tertiolecta (9 × 13
μm); (ii) the chain-forming diatom Thalassiosira rotula (19 ×
24 μm); and (iii) the dinoflagellate Scripsiella trochoidea (29 ×
34 μm). Algae were cultured with F/2 media, with addition of
silica for T. rotula, and maintained at 18 °C at a 16:8 light/dark
cycle. Copepods were fed a nonlimiting concentration of
microalgae, comprising ∼200 cells mL−1 of D. tertiolecta, ∼50
cell mL−1 of T. rotula, and ∼15 cells mL−1 of S. trochoidea. D.
tertiolecta were quantified using a Coulter Counter (Beckman
Multisizer 3), while T. rotula and S. trochoidea were quantified
using a Sedgewick rafter chamber. C. f inmarchicus were
acclimated to their algal prey for 48 h prior to experiments.
The carbon biomass of algal prey was estimated using a
literature derived conversion factor of 5 nL biovolume ≈ 1 μg
C.41 To calculate algal biovolume, microalgae were imaged
under an inverted microscope (Nikon TE2000S), cellular
dimensions determined using ImageJ, and the formulas for a
volume of an ellipsoid (D. tertiolecta and S. trochoidea) or
cylinder (T. rotula) applied.

Microplastics. Nylon fibers (10 × 30 μm), of a similar
shape and size as the chain-forming microalgae T. rotula, were
prepared by sectioning polyamide nylon-6,6 polyfilament line
(Goodfellow; AM325705) per the method of Cole (2016).42

In brief, the polyfilament line was wrapped continuously
around a custom spool, embedded in TissueTek cryogenic
solution, and then sectioned at 30 μm intervals using a
cryogenic microtome (LEICA CM1950). Nylon granules (10−
30 μm), of a similar shape and size distribution as the
unicellular microalgae D. tertiolecta and S. trochoidea, were
prepared by size fractionating polyamide nylon-6 powder
(Goodfellow; AM306010) with 30 μm nylon mesh and 10 μm
polycarbonate membrane filters. Prior to use, microplastics
were rinsed with ethanol and copious amounts of ultrapure
water, suspended in ultrapure water and quantified using a
Sedgewick rafter chamber. For imaging purposes, a subsample
of the fibrous and granular microplastics were dyed with Nile
Red (500 μg mL−1).

Chemical Profiling. To ascertain what compounds (e.g.,
monomers, additives) were present in the microplastics,
samples of fibers (∼20 mg) and granules (∼50 mg) were
extracted using either 4 mL of dichloromethane (DCM,
Rathburn; n = 3) or 4 mL of ethyl acetate (EtOAc, Fluka; n =
3). Solvent was added to each sample and then the sample
sonicated for 30 min (Bandelin Sonorex Super RK 510H
ultrasonication bath, 640W, 35 kHz) at either room temper-
ature (DCM) or 65 °C (EtOAc). The solvent extract was
filtered through a pipette packed with Bilson cotton and a
small amount (∼50 mg) of anhydrous Na2SO4 to remove
particulates, and then concentrated by solvent evaporation (40
°C under a gentle flow of N2) to an approximate volume of
500 μL prior to analysis by GC-MS (Agilent 7890A GC
equipped with an Agilent 5975C Mass Selective Detector).
Here, the inlet was set to 250 °C, the transfer line to 300 °C,
the ion source to 230 °C and the quadrupole to 150 °C. The
carrier gas was helium, at a constant flow of 1.1 mL/min. One
μL of sample was injected by pulsed splitless injection (Agilent
DB5-MS ultrainert GC column; 30 m, 0.25 μm film thickness,
0.25 mm internal diameter). The GC oven was held at 40 °C
(2 min), ramped by 6 °C min−1 to 320 °C (20 min hold).
Mass spectra were recorded after 12 min of hold time (50−500
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m/z). Chromatograms and mass spectra were recorded using
Chemstation software, investigated in Masshunter Qualitative
Navigator B.08.00, further processed using Masshunter
Unknowns Analysis (“Unknowns”) followed by export to csv
format using Python and data processed in R. After initial
inspection of chromatograms, peaks were deconvoluted using
Unknowns algorithms and best hits from the NIST 2017
library were extracted. Compounds were filtered based on
observed presence in at least 3 of the 6 total replicates and
>80% match to NIST 2017 library mass spectra.
Exposure. Treatments comprised: (i) controls, (ii) nylon

fibers, and (iii) nylon granules. Exposure media consisted of
0.22 μm filtered natural seawater containing mixed algal prey
and 20 mL of Guillard’s F/2 media to ensure water remained
nutrient replete, plus 50 microplastics mL−1 of nylon fibers or
granules as applicable. Stocks were prepared daily, thoroughly
mixed with a perforated plunger, and then carefully poured
into 1 L glass bottles (n = 10 per treatment). Ten preadult
copepods (copepodite stage CV) were added to each bottle,
and exposure media used to fill all bottles to the brim (total
volume 1150 mL), thereby eliminating air bubbles. To account
for the natural growth of the algae (see Algal ingestion rates),
exposure media in 500 mL bottles (n = 5) was also incubated
without copepods on Day 3−4. Bottles were secured to a
rotating plankton wheel (<5 rpm) submerged in a water bath
for temperature stability, and the setup maintained at 8.7 ± 0.1
°C in the dark for a total of 6 days. Water changes were
conducted daily by gently pouring the contents of each bottle
through a partially submerged 500 μm mesh to isolate
copepods; on Day 3−4 media was preserved for calculation
of algal ingestion rates. The developmental stage of each
copepod was noted (see Moulting), and then the specimens
transferred to fresh media. Any individuals damaged during
water changes were removed and if experimental cohorts were
reduced by >50% the replicate was rejected. At the end of the
exposure, copepods were anaesthetised using FinQuel
(MS222), and then photographed under a stereo microscope
(Leica MZAPO/Nikon DigitalSight Fi1-U2). Individual
copepods were transferred to a cryovial, snap-frozen in liquid
nitrogen and subsequently stored at −80 °C prior to lipid
analysis.
Microplastic Uptake. To verify that juvenile C.

f inmarchicus had the capacity to ingest microplastics, we
conducted a 2 h exposure (per the experimental protocol
described above) using nylon fibers and granules dyed with
Nile Red (100 microplastics mL−1). Following the exposure,
copepods and their faecal pellets were isolated using a 63 μm
mesh, transferred to a clean glass Petri dish, and subsequently
visualized and photographed under a stereo microscope (Leica
MZAPO/Nikon DigitalSight Fi1-U2) equipped with a stereo-
fluorescence module (Leica “green” fluorescent filter;
excitation 546/10 nm, dichroic splitter 565 nm and emission
OG590).
Algal Ingestion Rates. Feeding rates (i.e., algal ingestion

rates) were assessed midway through the exposure (Day 3−4).
At T0 (Day 3), 200 mL subsamples of algal stocks were
collected and preserved with 2% Lugols solution (n = 5 per
treatment). After 24 h (Day 4), 200 mL subsamples were taken
from all bottles (including algal controls without predation),
and fixed with 2% Lugols. Preserved samples were maintained
in amber glass bottles prior to analysis to prevent degradation.
Microalgae were quantified using the Utermöhl technique
(BSEN15204:2006). In brief, samples were settled in 100 mL

Utermöhl chambers for 48 h, samples viewed under inverted
microscope (Olympus IMT2) and cells systematically
enumerated. Cell concentrations and mean carbon biomass
of the microalgae were subsequently used to calculate algal
ingestion rates (μg C individual−1 day−1) per the equation of
Frost.43

Prosome Length. The prosome length (μm) of copepods
was ascertained for copepods subsampled from initial stocks
(Day 0, n = 25) and juvenile, female and male copepods at the
end of the 6-day exposure. In all cases, individual copepods
were anaesthetised and photographed under a stereo micro-
scope (Leica MZAPO/Nikon DigitalSight Fi1-U2), and
prosome length measured using ImageJ software.

Total Lipid Mass and Lipid Profiles. Copepod lipids
were extracted by adapting the protocol of Folch et al.,44

adding 500 μL of chloroform−methanol (2:1 v/v) and then
placing the sample in a −20 °C freezer for 4 h. Next, a phase
separation of nonpolar lipids and polar organics/compounds
was undertaken by adding 130 μL potassium chloride (0.88%
w/w), and then vortexing (12−16 rpm), and centrifuging (2.5
min, 2500 rpm) the sample. A glass-steel pipette was used to
carefully extract and transfer the bottom phase (containing
nonpolar lipids) to a preweighed glass vial. The solvent was
gently evaporated using nitrogen gas, and the sample
desiccated under vacuum in the dark for 30 min. Finally, the
vial was weighed on a mass balance to ascertain the total lipid
mass (mg). To assess the lipid content of the microalgae, 1−2
mL of microalgae were filtered through a GFF; filters were
placed in 7 mL glass vials, the lipids extracted using 5 mL of
chloroform−methanol (2:1 v/v), and then processed as above.
Prior to lipid profiling, 250 μL of chloroform was added to
each vial, and samples stored at −20 °C. For determination of
lipid profiles, internal standards (23:0, fatty acid and 19:0 fatty
alcohol) were added to the total lipid samples prior to
methylation in 1% methanol for 16 h at 50 °C. Fatty acid
methyl esters and free fatty alcohols were purified using High
Performance Thin Layer Chromatography (HPTLC) and
analyzed by gas chromatography using a Thermo Trace 2000
GC equipped with a Resteck Stabilwax column.

Moulting. Every 24 h the developmental stage of copepods
was determined, based upon the morphological characteristics
of each copepod (SI Figure S2). For adult copepods, their sex
was determined at the end of the exposure period through
morphological assessment of anaesthetised specimens.

Statistical Analyses. Statistical analysis was conducted
using R statistical software V 1.0.136.45 Data were tested for
normality using a Shapiro-Wilk test and homogeneity of
variance was visually inspected to satisfy apriori parametric
requisites. An ANOVA with posthoc Tukey tests was used to
compare biological data including algal ingestion rates,
prosome length, and lipid mass. A General Linear Model
(GLM) was used to compare fatty acid and alcohol data.
Moulting data were assembled into binary format (“Moulted =
1”, “Not-moulted = 0”), and a Bernoulli GLM used to assess
the probability of copepod moulting for each treatment, with
homogeneity among replicates determined using “binomial”
family and “logit” link functions. Model assumptions were
validated by extracting deviance residuals and examining their
distribution. Data are presented as mean ± standard error, with
statistical significance assigned where P < 0.05.
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■ RESULTS

Microplastic Uptake. Following a 2 h exposure, nylon
fibers and granules were visualized in the intestinal tracts and
faecal pellets of the juvenile copepods, confirming uptake and
egestion (Figure 1).

Additive Chemical Profiling. A range of monomers,
manufacturing byproducts and additives, including lubricants,
stabilizers and antimicrobials, were tentatively identified (based
on >85% match) in the nylon fibers (SI Table S1) and granules
(SI Table S2). Four compounds were common to both
plastics: the monomer caprolactam (hexano-6-lactam); the
lubricants cyclomethicone 6 (dodecamethylcyclohexasiloxane)
and cyclomethicone 5 (decamethylcyclopentasiloxane); and
1H-tetrazol-5-amine. The UV stabilizer benzophenone was
identified in nylon fibers.
Algal Ingestion Rates. Average microalgal dimensions (SI

Table S3) were used to calculate mean carbon biomass per cell
values of 0.98 ng C for D. tertiolecta, 1.66 ng C for T. rotula,
and 25.2 ng C for S. trochoidea. Mean microplastic
concentrations in aqueous media were 46.6 fibers and 53.4
granules mL−1; mean ingestion rates for microplastics were
∼1700 fibers copepod−1 d−1 and ∼5700 granules copepod−1

d−1. Copepods exposed to both fibers and granules showed a
slight (nonsignificant) increase in algal ingestion rates for D.
tertiolecta (ANOVA, P = 0.30; Figure 2A). Copepods exposed
to nylon fibers showed significant reductions in algal ingestion
rates for T. rotula and S. trochoidea (ANOVA, P < 0.01; Figure
2B/C), whereas copepods exposed to nylon granules showed
no differences in feeding rates for T. rotula (ANOVA, P =
0.44) or S. trochoidea (ANOVA, P = 0.87). Overall, copepods
exposed to fibers showed an average 40% reduction in algal
ingestion (ANOVA, P = 0.07; Figure 2D). No difference in
total algal ingestion rates were observed for copepods exposed
to nylon granules (ANOVA, P = 0.88).
Prosome Length. There was no significant difference in

the prosome length of juvenile (ANOVA, P = 0.65), female
(ANOVA, P = 0.09), or male (ANOVA, P = 0.58) copepods
exposed to either type of microplastic (SI Figure S3).
Total Lipid Mass and Lipid Profiles. The average lipid

mass of juvenile copepods at the start of the experiment was
66.7 ± 5.5 μg. Significant lipid accumulation was observed in
juvenile copepods in the control and fiber treatments
(ANOVA, P < 0.01), but not the granule treatment

(ANOVA, P = 0.63; Figure 3). The average lipid content of
juvenile copepods in the control treatment (100.4 ± 7.0 μg)
exceeded that of copepods in the granule treatment (77.2 ±
6.3 μg), however this difference was not statistically significant
(ANOVA, P = 0.07; Figure 3). Furthermore, no significant
differences were observed in the lipid mass of female
(ANOVA, P = 0.42) or male (ANOVA, P = 0.96) copepods.
There was no significant difference in juvenile copepod fatty
acid (GLM, control-fibers, P = 0.09; GLM, control-granules P
= 0.34; SI Figure S4) or fatty alcohol (GLM, control-fibers P =
0.80; GLM, control-granules P = 0.90; SI Figure S5)
composition. For individual fatty acids and alcohols, the
prevalence of palmitoleic acid (16:1 (n−7)) and linoleic acid
(18:2 (n−6)) were significantly reduced in the fiber treatment
(GLM, P < 0.05), and the prevalence of palmityl alcohol

Figure 1. Ingestion and egestion of microplastics by juvenile Calanus
f inmarchicus: (A) nylon fibers (10 × 30 μm) in the intestinal tract;
(B) nylon granules (10−30 μm) in the faecal pellets. Nylon
microplastics were fluorescently dyed with Nile Red and visualized
under stereo microscope (Leica MZAPO/Nikon DigitalSight Fi1-U2)
equipped with a Leica “green” fluorescent filter (excitation 546/10
nm, dichroic splitter 565 nm and emission OG590). Yellow bars: 100
μm. Figure 2. Juvenile Calanus f inmarchicus ingestion rates (μg C

individual−1 day−1) for: (A) D. tertiolecta; (B) T. rotula; (C) S.
trochoidea; and (D) total algae. Results displayed as mean with
standard error. * denotes significant different from control (P < 0.05).

Figure 3. Impact of fibrous and particulate microplastics on lipid
accumulation in C. f inmarchicus. The lipid mass (μg) of juvenile
(CV), female and male C. f inmarchicus prior to the start of experiment
(Tzero; checked pattern) and following a 6-day exposure period.
Treatments: control (white), nylon fibers (light gray), and nylon
granules (dark gray). Letters show significant difference between
treatments (ANOVA with posthoc Tukey).
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(16:0) significantly reduced and arachidyl alcohol (20:1)
significantly increased in the granule treatment (GLM, P <
0.05).
Moulting. Across Days 0−4 there was no evidence of

moulting in any treatment (Figure 4). The Bernoulli GLM

showed the “replicate” factor was not significantly different
among treatments for Day 5 (b = 0.03, z = 0.51, P = 0.61) or
Day 6 (b = −0.07, z = −0.84, P = 0.40) and was therefore
excluded from further analyses. On Day 5, 9.0 ± 3.2% of
copepods had moulted in the control treatment, while a
significantly greater proportion of copepods had moulted in
the nylon fiber treatment (36.1 ± 8.6%; Bernoulli GLM, b =
1.47, z = 0.5, P < 0.01) and nylon granule treatments (34.4 ±
10.7%; Bernoulli GLM, b = 1.42, z = 0.51, P < 0.01; Figure 4).
The proportion of copepods reaching adulthood increased
between Days 5 and 6 for all treatments. On Day 6 30.6 ±
9.5% of controls had moulted, with a higher proportion of
moults in copepods exposed to nylon fibers (52.3 ± 7.5%;
Bernoulli GLM, b = 0.86, z = 1.84, P = 0.07) and a statistically
significant higher proportion of moults in copepods exposed to
nylon granules (55.9 ± 9.9%; Bernoulli GLM, b = 1.14, z =
0.49, P < 0.05).

■ DISCUSSION
Our study reveals that microplastic exposure can impact upon
prey selectivity, feeding, lipid accumulation, and moulting in a
keystone marine organism. Microplastic shape influenced
bioavailability and observed effects, with exposure to nylon
fibers causing significant shifts in prey selectivity resulting in a
40% decrease in algal ingestion rates, and nylon granules
negatively affecting lipid accumulation. We further observed
that both microplastic types caused premature moulting,
although the mechanism underpinning this developmental
shift remains unclear. These results add to the growing
evidence that at high concentrations, marine microplastics can
significantly affect copepod feeding and health, with potential
knock-on effects for marine food webs and ecological processes
in which copepods play vital roles.
Uptake. Ingestion and egestion of both nylon microplastic

fibers and granules was observed in juvenile C. f inmarchicus.
The capacity for copepods and other zooplankton to ingest
spherical polystyrene beads under laboratory conditions has
been widely demonstrated,34 and juvenile (CV), female and
male C. f inmarchicus have been shown to readily ingest and

egest polystyrene fragments (<30 μm diameter).30 Further-
more, irregularly shaped and fibrous microplastics have been
identified in wild copepods sampled from the natural
environment.31,32

Feeding. When exposed to the fibrous microplastics,
juvenile C. f inmarchicus demonstrated substantial shifts in
feeding, with significantly reduced ingestion rates for the
largest algae T. rotula (19 × 24 μm) and S. trochoidea (29 × 34
μm), contributing to a 40% decrease in ingested biomass
compared with controls. A comparable shift in feeding
selectivity was observed in the temperate copepod Calanus
helgolandicus, in which exposure to 20 μm polystyrene beads
resulted in a preferential shift toward smaller algae, similarly
resulting in a 40% reduction in ingested biomass.22 In mixed
algal assemblages C. f inmarchicus typically predate on larger,
nutritionally valuable prey (e.g., diatoms, dinoflagellates, and
ciliates),46,47 for which they display higher filtration rates and
feeding efficiencies.48,49 This preference for larger algae is
evident for copepods in the control and granule treatments,
with >50% of ingested biomass derived from S. trochoidea.
However, for copepods exposed to fibers the majority of
ingested biomass came from the smallest algae, D. tertiolecta (9
× 13 μm). This shift in prey selectivity would therefore suggest
copepods are avoiding microalgae of similar shape (i.e., chain-
forming D. tertiolecta) and size (i.e., S. trochoidea) to the nylon
fibers (10 × 30 μm). This hypothesis is further supported by
our finding that fibers were ingested far less readily than
granules. Why this is the case is currently unclear. Perhaps
their elongated shape make fibers harder to capture, handle,
and ingest, or, when consumed, fibers are more prone to
causing physical damage owing to their sharp edges
(Supporting Information, Figure S1); conversely, granules are
relatively spherical in shape, and are likely handled similarly to
naturally occurring particulates (e.g., pumice, wood, black
carbon, and silt) to which copepods are well adapted. The risks
microplastic fibers pose to biota is relatively underexplored,
however exposure studies have identified that in the freshwater
zooplankton Daphnia magna and Gammarus fossasrum
ingestion of synthetic fibers resulted in early mortality50 and
impaired feeding51 respectively.

Lipids. In juvenile C. f inmarchicus (CV), approximately
40% of energy derived from their food goes toward the buildup
of their lipid store.49 On the basis of the observed reduction in
feeding in juvenile C. f inmarchicus exposed to microplastic
fibers and the shift to smaller, less nutritious algae, it was
anticipated that the lipid mass of these copepods would be
negatively affected; furthermore, we surmised that a shift in
feeding may result in an altered lipid profile. Yet, there was no
significant difference in the total lipid mass of juvenile, female,
or male copepods at the end of the exposure period, nor were
the lipid profiles of the juvenile copepods significantly altered.
Given that a nonlimiting supply of food was provided to the
copepods, it is plausible that even with a 40% reduction in
ingested biomass that the juvenile C. f inmarchicus still
consumed sufficient energy to continue laying down their
lipid reserves. Certainly, high latitude zooplankton can display
a range of strategies to survive periods of low food
availability,52 and C. f inmarchicus exhibit far greater starvation
tolerance (>21 days) than temperate species.39

We did observe that lipid accumulation was stymied in
preadult copepods exposed to nylon granules. This was
surprising given that nylon granules caused no impact on
feeding rate. This intriguing result might be explained by the

Figure 4. Impact of fibrous and particulate microplastics on moulting
in C. f inmarchicus. Percentage of copepods which moulted on each
day of the exposure period. Treatments: control (white), nylon fibers
(light gray), and nylon granules (dark gray). Letters denote significant
difference (in moulting each day) between treatments (P < 0.05).
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substantially higher ingestion rate for granules, as compared
with fibers: high microplastic loads in the intestinal tract could
limit assimilation efficiencies, as observed in the freshwater
amphipod G. fossarum;53 alternatively, higher microplastic
loads could lead to greater quantities of toxic additives or
monomers permeating from the microplastic into tissues.51

Lipid mass is directly related to the depth at which copepods
can successfully descend during diapause; smaller lipid reserves
would result in overwintering at shallower depths leaving these
copepods more prone to predation.54 There are also
repercussions for the wider marine food web, as a reduced
lipid content would make these copepods less nutritionally
valuable as a food source for higher trophic organisms
including commercially important fish species and mega-
fauna.36

Moulting. Our study further identified that copepods
exposed to nylon microplastics moulted significantly earlier
than copepods in the control treatment. Juvenile C.
f inmarchicus have a flexible life history, where they can either
enter diapause or moult into their adult life stage. Tarrant et
al.40 notes, “the factors that regulate this developmental
plasticity are poorly understood”, although lipid profiles,
temperature, light, food availability, and endogenous clocks
have all been mooted as contributing factors in diapause.55

Cultured C. f inmarchicus do not initiate diapause, instead
undergoing morphological changes, including gonad matura-
tion, tooth formation, and apolysis (separation of the cuticle
from the epidermis), prior to their terminal moult.56 Reduced
feeding and stymied lipid accumulation may both have
contributed to earlier moulting; however endocrine disruption
might also have played a role. A transcriptomic evaluation of
juvenile C. f inmarchicus (CV) has identified an array of genes
linked to moulting, activated by an ecdysteroid hormone
signaling cascade.40 A range of endocrine disrupting com-
pounds have been shown to interfere with ecdysteroid
pathways and affect moulting in crustacea;57 for example,
estrogenic compounds have been shown to inhibit or delay
moulting in the copepod Acartia tonsa,58 while the pesticide
emamectin benzoate has been demonstrated to cause
premature moulting in American lobster, Homarus ameri-
canus.59 Chemical analysis revealed the nylon microplastics
used in these exposures contain compounds that may cause
toxicity or endocrine disruptionalthough it should be noted
this analysis does not tell us which compounds, nor how much,
could be expected to leach from the nylon either in seawater or
the intestinal tract of a copepod. For example, the UV-
stabilizer benzophenone, identified in the nylon fibers, has
been shown to increase DNA methylation and significantly
reduce egg hatching success in the marine copepod
Gladioferens pectinatus,60 and act as an oestradiol agonist in
rats61 and fish.62,63 It is crucial to recognize that plastics are not
an inert material, but a complex mixture of polymers
containing a wide spectrum of compounds that have the
potential to leach out.64 Given the capacity for these
compounds to cause endocrine disruption or toxicity, it is
crucial that chemical profiling of microplastics used in toxicity
testing becomes more commonplace.
Environmental Relevance. In this exposure study we

demonstrate that microplastics have the capacity to reduce
feeding, stymie lipid accumulation, and trigger premature
moulting in a boreal copepod. It should be noted that
microplastic concentrations used in our exposure studies
exceed those currently observed in the marine environment

although we would also highlight there is very little
environmental data relating to concentrations of particles
10−30 μm in size owing to the technical challenges of
sampling, extracting and identifying plastic particles of this size
and where data are available, it suggests the smaller the
microplastics the higher the concentration becomes.65−68

While it is important the field of microplastics research shifts
toward better understanding the risks environmentally relevant
concentrations of microplastic pose to marine life, at this stage
it remains essential to build a clearer picture of the modes of
action by which microplastics can cause harm, identify relevant
end points, and gauge the sensitivity of different life-stages and
species.69 Such knowledge is key in establishing probable and
no-effect thresholds for risk assessment. In this study, the use
of preadult copepods highlights that microplastics can affect
moulting, which will inform future experimental work. As our
results demonstrate, the shape and chemical profile of a
microplastic can influence bioavailability and toxicity, and we
would therefore promote the call for future studies to better
incorporate a greater diversity of environmentally relevant
microplastics.
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Meyer, B. Calanus finmarchicus seasonal cycle and diapause in
relation to gene expression, physiology, and endogenous clocks.
Limnol. Oceanogr. 2018, 63 (6), 2815−2838.
(56) Crain, J. A.; Miller, C. B. Effects of starvation on intermolt
development in Calanus finmarchicus copepodites: a comparison
between theoretical models and field studies. Deep Sea Res., Part II
2001, 48 (1−3), 551−566.
(57) Rodríguez, E. M.; Medesani, D. A.; Fingerman, M. Endocrine
disruption in crustaceans due to pollutants: a review. Comp. Biochem.
Physiol., Part A: Mol. Integr. Physiol. 2007, 146 (4), 661−671.
(58) Andersen, H. R.; Wollenberger, L.; Halling-Sørensen, B.; Kusk,
K. O. Development of copepod nauplii to copepoditesa parameter
for chronic toxicity including endocrine disruption. Environ. Toxicol.
Chem. 2001, 20 (12), 2821−2829.
(59) Waddy, S.; Burridge, L.; Hamilton, M.; Mercer, S.; Aiken, D.;
Haya, K. Rapid communication/communication rapide emamectin
benzoate induces molting in American lobster, Homarus americanus.
Can. J. Fish. Aquat. Sci. 2002, 59 (7), 1096−1099.

(60) Guyon, A.; Smith, K. F.; Charry, M. P.; Champeau, O.;
Tremblay, L. A. Effects of chronic exposure to benzophenone and
diclofenac on DNA methylation levels and reproductive success in a
marine copepod. J. Xenobiot. 2018, 8 (1), 7674.
(61) Jarry, H.; Christoffel, J.; Rimoldi, G.; Koch, L.; Wuttke, W.
Multi-organic endocrine disrupting activity of the UV screen
benzophenone 2 (BP2) in ovariectomized adult rats after 5 days
treatment. Toxicology 2004, 205 (1−2), 87−93.
(62) Kim, S.; Jung, D.; Kho, Y.; Choi, K. Effects of benzophenone-3
exposure on endocrine disruption and reproduction of Japanese
medaka (Oryzias latipes)A two generation exposure study. Aquat.
Toxicol. 2014, 155, 244−252.
(63) Kinnberg, K. L.; Petersen, G. I.; Albrektsen, M.; Minghlani, M.;
Awad, S. M.; Holbech, B. F.; Green, J. W.; Bjerregaard, P.; Holbech,
H. Endocrine-disrupting effect of the ultraviolet filter benzophenone-3
in zebrafish, Danio rerio. Environ. Toxicol. Chem. 2015, 34 (12),
2833−2840.
(64) Rochman, C. M.; Brookson, C.; Bikker, J.; Djuric, N.; Earn, A.;
Bucci, K.; Athey, S.; Huntington, A.; McIlwraith, H.; Munno, K.; et al.
Rethinking microplastics as a diverse contaminant suite. Environ.
Toxicol. Chem. 2019, 38 (4), 703−711.
(65) de Sa,́ L. C.; Oliveira, M.; Ribeiro, F.; Rocha, T. L.; Futter, M.
N. Studies of the effects of microplastics on aquatic organisms: What
do we know and where should we focus our efforts in the future? Sci.
Total Environ. 2018, 645, 1029−1039.
(66) Lusher, A.; Welden, N.; Sobral, P.; Cole, M. Sampling, isolating
and identifying microplastics ingested by fish and invertebrates. Anal.
Methods 2017, 9, 1346−1360.
(67) Erni-Cassola, G.; Zadjelovic, V.; Gibson, M. I.; Christie-Oleza,
J. A. Distribution of plastic polymer types in the marine environment;
A meta-analysis. J. Hazard. Mater. 2019, 369, 691−698.
(68) Enders, K.; Lenz, R.; Stedmon, C. A.; Nielsen, T. G.
Abundance, size and polymer composition of marine microplastics≥
10 μm in the Atlantic Ocean and their modelled vertical distribution.
Mar. Pollut. Bull. 2015, 100 (1), 70−81.
(69) Huvet, A.; Paul-Pont, I.; Fabioux, C.; Lambert, C.; Suquet, M.;
Thomas, Y.; Robbens, J.; Soudant, P.; Sussarellu, R. Reply to Lenz et
al.: Quantifying the smallest microplastics is the challenge for a
comprehensive view of their environmental impacts. Proc. Natl. Acad.
Sci. U. S. A. 2016, 113 (29), E4123−E4124.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.9b01853
Environ. Sci. Technol. 2019, 53, 7075−7082

7082

http://dx.doi.org/10.1038/srep34519
http://dx.doi.org/10.1021/acs.est.9b01853

