
Controlling acoustic waves using magneto-elastic Fano resonances

❈♦♥tr♦❧❧✐♥❣ ❛❝♦✉st✐❝ ✇❛✈❡s ✉s✐♥❣ ♠❛❣♥❡t♦✲❡❧❛st✐❝ ❋❛♥♦ r❡s♦♥❛♥❝❡s
❖✳ ❙ ✳▲❛t❝❤❛♠✱✶ ❨✳ ●✉s✐❡✈❛✱✷ ❆✳ ❱✳ ❙❤②t♦✈✱✶ ❖✳ ❨✳ ●♦r♦❜❡ts✱✷ ❛♥❞ ❱✳ ❱✳ ❑r✉❣❧②❛❦✶✱ a)

1)University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom
2)Igor Sikorsky Kyiv Polytechnic Institute, 37 Prosp. Peremohy, Kyiv, 03056, Ukraine

(Dated: 20 July 2019)

We propose and analyze theoretically a class of energy-efficient magneto-elastic devices for analogue signal processing.

The signals are carried by transverse acoustic waves while the bias magnetic field controls their scattering from a

magneto-elastic slab. By tuning the bias field, one can alter the resonant frequency at which the propagating acoustic

waves hybridize with the magnetic modes, and thereby control transmission and reflection coefficients of the acoustic

waves. The scattering coefficients exhibit Breit-Wigner/Fano resonant behaviour akin to inelastic scattering in atomic

and nuclear physics. Employing oblique incidence geometry, one can effectively enhance the strength of magneto-

elastic coupling, and thus countermand the magnetic losses due to the Gilbert damping. We apply our theory to discuss

potential benefits and issues in realistic systems and suggest routes to enhance performance of the proposed devices.

Optical and, more generally, wave-based computing

paradigms gain momentum on a promise to replace and com-

plement the traditional semiconductor-based technology.1 The

energy savings inherent to non-volatile memory devices has

spurred the rapid growth of research in magnonics,2,3 in which

spin waves4 are exploited as a signal or data carrier. Yet, the

progress is hampered by the magnetic loss (damping).5,6 In-

deed, the propagation distance of spin waves is rather short in

ferromagnetic metals while low-damping magnetic insulators

are more difficult to structure into nanoscale devices. In con-

trast, the propagation distance of acoustic waves is typically

much longer than that of spin waves at the same frequencies.7

Hence, their use as the signal or data carrier could reduce the

propagation loss to a tolerable level. Notably, one could con-

trol the acoustic waves using a magnetic field by coupling

them to spin waves within magnetostrictive materials.8–10 To

minimize the magnetic loss, the size of such magneto-acoustic

functional elements should be kept minimal. This implies

coupling propagating acoustic waves to confined spin wave

modes of finite-sized magnetic elements. As we show below

this design idea opens a route towards hybrid devices combin-

ing functional benefits of magnonics2,3 with the energy effi-

ciency of phononics.7,11,12

The phenomena resulting from interaction between coher-

ent spin and acoustic waves have already been addressed

in the research literature: the spin wave excitation of prop-

agating acoustic waves7,13–15 and vice versa,8,16–18 acous-

tic parametric pumping of spin waves,19–21 magnon-phonon

coupling in cavities22–24 and mode locking,25 magnonic-

phononic crystals,26,27 Bragg scattering of spin waves from a

surface acoustic wave induced grating,28–30 topological prop-

erties of magneto-elastic excitations,15,31 acoustically driven

spin pumping and spin Seebeck effect,32,33 and optical excita-

tion and detection of magneto-acoustic waves.34–40 However,

studies of the interaction between propagating acoustic waves

and spin wave modes of finite-sized magnetic elements, which

are the most promising for applications, have been relatively

scarce to date.10,34,36,39

Here, we explore theoretically the class of magneto-

a)Electronic mail: V.V.Kruglyak@exeter.ac.uk

FIG. 1. The prototypical magneto-elastic resonator is a thin magnetic

slab (M) of width δ , biased by an external field HB, and embedded

into a non-magnetic (NM) matrix. The acoustic wave with amplitude

I incident at angle θ induces precession of the magnetisation vec-

tor M via the magneto-elastic coupling. As a result, the wave is partly

transmitted and reflected, with respective amplitudes Tω and Rω .

acoustic devices in which the signal is carried by acoustic

waves while the magnetic field controls its propagation via

the magnetoelastic interaction in thin isolated magnetic in-

clusions as shown in Fig. 1. By changing the applied mag-

netic field, one can alter the frequency at which the incident

acoustic waves hybridize with the magnetic modes of the in-

clusions. Thereby, one can control the acoustic waves by the

resonant behaviour of Breit-Wigner and Fano resonances in

the magnetic inclusion.41 We find that the strength of the res-

onances is suppressed by the ubiquitous magnetic damping

in realistic materials, but this can be mitigated by employing

oblique incidence geometry. To compare magneto-acoustic

materials for such devices, we introduce a figure of merit. The

magneto-elastic Fano resonance is identified as most promis-

ing in terms of frequency and field tuneability. To enhance res-

onant behaviour, we explore the oblique incidence as a means

by which to enhance the figure of merit.

We consider the simplest geometry in which magneto-

elastic coupling can affect sound propagation. A ferromag-
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Controlling acoustic waves using magneto-elastic Fano resonances 2

netic slab ("magnetic inclusion") of thickness δ , of the order

of 10nm, is embedded within a non-magnetic medium (Fig.1).

The slab is infinite in the Y −Z plane, has saturation magneti-

zation Ms, and is biased by the applied field HB =HBẑ. Due to

the magneto-elastic coupling, this equilibrium configuration is

perturbed by shear stresses in the xz- and yz planes associated

with the incident acoustic wave.

To derive the equations of motion, we represent the mag-

netic energy density F of the magnetic material as a sum of the

magneto-elastic FME and purely magnetic FM contributions.42

Taking into account the Zeeman and demagnetizing energies,

we write FM = −µ0HBM + µ0
2
(NxM2

x +NyM2
y ), where Nx(y)

are the demagnetising coefficients, Nx + Ny = 1, M is the

magnetization and µ0 is the magnetic permeability. In a crys-

tal of cubic symmetry, the magnetoelastic contribution takes

the form43

FME =
B

M2
s

∑
i 6= j

MiM jui j +
B′

M2
s
∑

i

M2
i uii, i, j = x,y,z, (1)

where B′ and B are the linear isotropic and anisotropic

magneto-elastic coupling constants, respectively.44 The strain

tensor is u jk = 1
2
(∂ jUk +∂kU j), where U j are the displace-

ment vector components. To maximize the effect of the cou-

pling B, we consider a transverse acoustic plane wave incident

on the slab from the left and polarized along the bias field, so

that Ux = Uy = 0, Uz = U(x,y, t). The non-vanishing com-

ponents of the strain tensor are uxz =
1
2
∂xU and uyz =

1
2
∂yU ,

and FME is linear in both M and U :

FME =
B

Ms
(Mxuxz +Myuyz). (2)

The magnetization dynamics in the slab is due to the effec-

tive magnetic field, µ0Heff = −δF/δM . We define m as

the small perturbation of the magnetic order, i.e. |m| ≪ Ms.

Linearizing the Landau-Lifshitz-Gilbert equation,4 we write

−∂mx

∂ t
= γµ0(HB +NyMs)my + γB

∂U

∂y
+α

∂my

∂ t
, (3)

∂my

∂ t
= γµ0 (HB +NxMs)mx + γB

∂U

∂x
+α

∂mx

∂ t
, (4)

where γ is the gyromagnetic ratio and α is the Gilbert

damping constant. To describe the acoustic wave, we in-

clude the magneto-elastic contribution to the stress, σ
(ME)
jk =

δFME/δu jk, into the momentum balance equation:

ρ
∂ 2U

∂ t2
=

∂

∂x

(
C

∂U

∂x
+

B

Ms
mx

)
+

∂

∂y

(
C

∂U

∂y
+

B

Ms
my

)
,

(5)

where C = c44 is the shear modulus and ρ is the mass density.

The non-magnetic medium is described by Eq.(5) with B = 0.

Since the values of C, B, and Nx,y are constant within each

individual material, we shall seek solutions of the equations in

the form of plane waves U,mx(y) ∝ exp[i(kω,xx+kω,yy−ωt)].
From herein, we consider all variables in the Fourier domain.

For the magnetization precession in the magnetic layer driven

by the acoustic wave, we thus obtain

mx =
γB(ωkω,y + iω̃ykω,x)

ω2 − ω̃xω̃y

U, (6)

my =
iγB(ω̃xkω,y + iωkω,x)

ω2 − ω̃xω̃y

U, (7)

where we have denoted ωx(y) = γµ0(HB + Nx(y)Ms) and

ω̃x(y) = ωx(y) − iωα . The complex-valued wave number kω

is given by the dispersion relation

k2
ω =

ω2ρ
(
ω2 − ω̃xω̃y

)

C
[
ω2 − ω̃xω̃y +

γB2

MsC

(
ω̃ycos2θ + ω̃xsin2θ

)] . (8)

Eq. (8) describes the hybridization between acoustic waves

and magnetic precession at frequencies close to ferromag-

netic resonance (FMR) at frequency ωFMR, with linewidth

ΓFMR. The frequency at which the precession ampli-

tudes (Eqs. (6) and (7)) diverge is given by the condition

(ωFMR + iΓFMR/2)2 = ω̃xω̃y. In the limit of small α , this

yields ωFMR = ωxωy and ΓFMR = α(ωx +ωy). Away from

the resonance, Eq. (8) gives the linear dispersion of acous-

tic waves. In the non-magnetic medium (B = 0), one finds

k2
0 = ω2ρ0/C0. Here and below, the subscript ’0’ is used to

mark quantities pertaining to the non-magnetic matrix.

To calculate the reflection and transmission coefficients, Rω

and Tω , for a magnetic inclusion, we introduce the mechanical

impedance as Z = iσxz/ωUω . Solution of the wave matching

problem can then be expressed via the ratio of load (ZME) and

source (Z0) impedances. For the magnetic slab, we find

Zω,ME =
Ckω cosθ

ω

(
1+

γB2ω̃y

MsC(ω2 − ω̃xω̃y)

)
. (9)

For the non-magnetic material, Eq. (9) recovers the usual

acoustic impedance45 Z0 = cosθ
√

ρ0C0. Due to magnon-

phonon hybridization, Zω,ME diverges at ωFMR and vanishes

at a nearby frequency ωME. For α = 0, the latter is given by

ωME =

√

ωxωy −
γB2

MsC

(
ωycos2θ +ωxsin2θ

)
. (10)

Reflection Rω , and transmission Tω coefficients are then found

via the well-known relations45 as

Rω =

(
η2

ω −1
)
· sin(kω,xδ )

(η2
ω +1) · sin(kω,xδ )+2iηω · cos(kω,xδ )

, (11)

Tω =
2iηω

(η2
ω +1) · sin(kω,xδ )+2iηω · cos(kω,xδ )

, (12)

where δ is the thickness of the magnetic inclusion and

ηω = Zω ,ME/Z0.46 In close proximity to the resonance, the

impedance changes rapidly. For matching elastic properties

of the magnetic and non-magnetic materials, Eq. (11) is ex-

panded near ωME. In the limit kω δ ≪ 1, we obtain

Rω =
iΓR/2

(ω −ωME)+ iΓR/2
+R0, (13)
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Controlling acoustic waves using magneto-elastic Fano resonances 3
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FIG. 2. The frequency dependence of the absolute values of (a) reflection and (b) transmission coefficients and (c) absorbance is shown

for a 20nm thick magnetic inclusion. The vertical dashed and solid black lines represent the ferromagnetic resonance frequency ωFMR and

magneto-elastic resonance frequency ωME respectively. The non-magnetic and magnetic materials are assumed to be silicon nitride and cobalt,

respectively, with parameters given in the text. The bias field is µ0HB = 50mT, which leads to fME ≈ 7.138 GHz.

where R0 represents the smooth non-resonant contribution due

to elastic mismatch at the interfaces. In a system with no mag-

netic damping, the hybridization yields a resonance of finite

linewidth ΓR,

ΓR =
γB2

2MsC

√
ρ

C

(
ωycos2θ +ωxsin2θ

)
δ . (14)

The origin of this linewidth can be explained as follows. Due

to the magneto-elastic coupling incident propagating acoustic

modes can be converted into localised magnon modes. These

modes in turn either decay due to the Gilbert damping or are

re-emitted as phonons. The rates of these transitions are pro-

portional to ΓFMR and ΓR, respectively, and the total decay

rate is Γ = ΓR +ΓFMR. This is similar to resonant scattering

in quantum theory47, such that ΓR and ΓFMR are analogous to

the the elastic (Γe) and inelastic (Γi) linewidths respectively.

When α = 0, ΓFMR vanishes, and Γ = ΓR.

Acoustic waves in the geometry of Fig. 1 can be scat-

tered via several channels. E.g. in a non-magnetic system

(B = 0), elastic mismatch can yield Fabry-Pérot resonance

due to the quarter wavelength matching of δ and the acous-

7.05 7.10 7.15 7.20
Frequency, f (GHz)

0.05

0.10

0.15

0.20

|R
(f
)|

0◦
15◦

30◦

45◦

FIG. 3. Peak R( f ) is enhanced and slightly shifted to the left in the

oblique incidence geometry (θ > 0◦). Coloured curves represent spe-

cific incidence angles sweeping 0◦ to 45◦. Moderate Gilbert damping

of α = 10−3 is assumed.

tic wavelength. However, this occurs at very high frequen-

cies, which we do not consider here. To understand the res-

onant magneto-elastic response, it is instructive to consider

first the case of normal incidence (θ = 0), when the demag-

netising energy takes a simplified form due to the lack of im-

mediate interfaces to form surface poles in y the direction,

so that Nx = 1 and Ny = 0. Including magneto-elastic cou-

pling (B 6= 0), we plot the frequency dependence of Rω and

Tω using Eq. (11) and (12) in Fig.2. To gain a quantita-

tive insight, we analysed a magnetic inclusion made of cobalt

(ρ = 8900kgm−3, B = 10MPa, C = 80GPa, γ = 176GHzT−1,

M = 1MAm−1), embedded into a silicon nitride non-magnetic

matrix (ρ0 = 3192kgm−3,C0 = 298GPa). To highlight the

resonant behaviour, we first suppress α to 10−4. The re-

flection coefficient exhibits an asymmetric non-monotonic de-

pendence, shown as a black curve in Fig.2(a), characteristic

of Fano resonance.27,41 This line shape can be attributed to

coupling between the discrete FMR mode of the magnetic

inclusion and the continuum of propagating acoustic modes

in the surrounding non-magnetic material.41 If the two ma-

terials had matching elastic properties, Rω would exhibit a

symmetric Breit-Wigner lineshape.47 The transmission shown

in Fig.2(b) exhibits an approximately symmetric dip near

the resonance.48 The absorbance |Aω |2 = 1− |Rω |2 − |Tω |2,

shown in Fig.2(c) exhibits a symmetric peak, since the acous-

tic waves are damped in our model only due to the coupling

with spin waves.

To consider how the magneto-elastic resonance is affected

by the damping, we also plot the response for α of 10−3 and

10−2, red and blue curves in Fig.2, respectively. An increase

of α from 10−4 to 10−3 significantly suppresses and broad-

ens the resonant peak. For a more common, realistic value of

10−2 the resonance is quenched entirely. A stronger magne-

toelastic coupling (i.e. high values of B) could, in principle,

countermand this suppression. This, however, is also likely

to enhance the phonon contribution to the magnetic damping,

leading to a correlation between B and α observed in realistic

magnetic materials.49

To characterise the strength of the Fano resonance, we note

that the fate of the magnon excited by the incident acoustic

wave is decided by the relation between the emission rate ΓR,

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
1
5
3
8
7



Controlling acoustic waves using magneto-elastic Fano resonances 4

see Eq. (14), and absorption rate ΓFMR. Hence, we introduce

the respective figure of merit as ϒ = ΓR/ΓFMR. This quan-

tity depends upon the material parameters, device geometry,

and bias field. As seen from the first terms on the l.h.s. of

Eqs. (6) and (7), the relation between the dynamic magnetisa-

tion components mx,y are determined by the quantities ωx and

ωy. Equating these terms, one finds mx ∝ my

√
ωy/ωx, i.e. the

precession of m is highly elliptical,50 due to the demagnetis-

ing field along x. This negatively affects the phonon-magnon

coupling for normal incidence (ky = 0): the acoustic wave

couples only to mx, as given by the second term in Eqs. (6)

and (7). One way to mitigate this is to increase HB, mov-

ing the ratio ωy/ωx closer to 1 and thus improving the figure

of merit. To compare different magneto-elastic materials, the

dependence on the layer thickness δ and elastic properties of

the non-magnetic matrix (i.e. ρ0 and C0) can be eliminated by

calculating a ratio of the figures of merit for the compared ma-

terials. The comparison can be performed either at the same

value of the bias field, or at the same operating frequency. The

latter situation is more appropriate for a device application,

but to avoid unphysical parameters, we present our results for

the same µ0HB. An example of such comparisons for yttrium

iron garnet (YIG), cobalt (Co) and permalloy (Py) is offered

in Table I.

TABLE I. Comparison of the figure of merit ϒ for different materi-

als, assuming δ = 20nm, µ0HB = 50mT and a silicon nitride non-

magnetic matrix.

Parameters YIG Co Py

ϒ(θ = 0◦) 4.3x10−3 1.5x10−3 1.9x10−4

ΓR (GHz) 3.0x10−6 6.5x10−3 1.4x10−4

ΓFMR (GHz) 7.0x10−4 4.3 0.74

ϒ(θ = 30◦) 8.1x10−3 1.1x10−2 1.1x10−3

ΓR (GHz) 5.6x10−6 4.7x10−2 8.0x10−4

ΓFMR (GHz) 7.0x10−4 4.3 0.74

ωME (GHz) 0.48 7.14 6.26

B (MJm−3) 0.55 10 -0.9

E (GPa) 74 80 50

ρ (kgm−3) 5170 8900 8720

α 0.9x10−4 1.8x10−2 4.0x10−3

Ms (kAm−1) 140 1000 760

Another way to improve ϒ is to employ the oblique inci-

dence (θ 6= 0), in which the acoustic mode is also coupled to

the magnetisation component my. The latter is not suppressed

by the demagnetisation effects if Ny ≪ 1. The resulting en-

hancement in ϒ is reflected in the full equation by the inclu-

sion of ωx and ωy from ΓR,

ϒ =
ΓR

ΓFMR
=

γδ

2

√
ρ0

C0

B2
(
HBcos2θ +Mssin2θ

)

αCM2
s

, (15)

where ωx ≫ ωy and HB ≪ Ms is assumed. For small θ , the

approximation Nx ≃ 1 and Ny ≃ 0 still holds. As a result, non-

zero θ increases peak reflectivity, as seen in Fig.3. Note also

the θ dependence of the resonant frequency ωME as reflected

in Eq. (10). Though larger incidence may be hard to imple-
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FIG. 4. Figure of merit ϒ, and radiative linewidth ΓR, are both en-

hanced in the oblique incidence geometry (θ > 0◦). Ferromagnetic

linewidth ΓFMR remains unchanged. Co is assumed with α = 10−3.

ment in a practical device, resonant scattering is still signifi-

cantly enhanced at smaller angles: θ ≈
√

HB/Ms ≪ 1 yields

a twofold increase in ΓR and ϒ, as illustrated in Fig.4.

Above, we have focused on the simplest geometry that ad-

mits full analytic treatment. To implement our idea exper-

imentally, particular care should be taken about the acous-

tic waves polarization and propagation direction relative to

the direction of the magnetization. Indeed, our choice max-

imises magnetoelastic response. If however, the polariza-

tion is orthogonal to the bias field HB, i.e. Uz = 0, the cou-

pling would be second-order in magnetization components

mx,y, and would not contribute to the linearized LLG equation.

Furthermore, we have neglected the exchange and magneto-

dipolar fields that could arise due to the non-uniformity of the

magnetization. To assess the accuracy of this approximation,

we note that the length scale of this non-uniformity is set by

the acoustic wavelength λ , of about 420nm for our parame-

ters rather than by the magnetic slab thickness δ . The asso-

ciated exchange field is µ0Ms(klex)
2 ≃ 9mT. The k-dependent

contributions to the magneto-dipole field vanish at normal in-

cidence but may become significant at oblique incidence, giv-

ing µ0Mskyδ ≃ 98mT at θ = 15◦. In principle, these could

increase the resonant frequency of the slab by a few GHz but

would complicate the theory significantly. The detailed analy-

sis of the associated effects is beyond the scope of this report.

In summary, we have demonstrated that the coupling be-

tween the magnetisation and strain fields can be used to con-

trol acoustic waves by magnetic inclusions. We show that

the frequency dependence of the waves’ reflection coefficient

from the inclusions has a Fano-like lineshape, which is partic-

ularly sensitive to the magnetic damping. Figure of merit is

introduced to compare magnetoelastic materials and to char-

acterize device performance. In particular, the figure of merit

is significantly enhanced for oblique incidence of acoustic

waves, which enhances their coupling to the magnetic modes.

We envision that further routes may be taken to transform

our prototype designs into working devices, such as forming

a magneto-acoustic metamaterial to take advantage of spatial

resonance.
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