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Wild quantitative genetic studies have focused on a subset of traits (largely morphological and life history), with others, such as be-
haviors, receiving much less attention. This is because it is challenging to obtain sufficient data, particularly for behaviors involving 
interactions between individuals. Here, we explore an indirect approach for pilot investigations of the role of genetic differences in 
generating variation in parental care. Variation in parental genetic effects for offspring performance is expected to arise from among-
parent genetic variation in parental care. Therefore, we used the animal model to predict maternal breeding values for lamb growth 
and used these predictions to select females for field observation, where maternal and lamb behaviors were recorded. Higher pre-
dicted maternal breeding value for lamb growth was associated with greater suckling success, but not with any other measures 
of suckling behavior. Though our work cannot explicitly estimate the genetic basis of the specific traits involved, it does provide a 
strategy for hypothesis generation and refinement that we hope could be used to justify data collection costs needed for confirmatory 
studies. Here, results suggest that behavioral genetic variation is involved in generating maternal genetic effects on lamb growth in 
Soay sheep. Though important caveats and cautions apply, our approach may extend the ability to initiate more genetic investigations 
of difficult-to-study behaviors and social interactions in natural populations.
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INTRODUCTION
Understanding the evolutionary trajectory of  a trait requires infor-
mation on the strength of  selection on the trait, its genetic basis, 
and the genetic correlations between it and other traits. By devel-
oping methodologies to estimate these parameters, quantitative 
genetics has enabled empirical tests of  evolutionary hypotheses 
(Falconer and Mackay 1996; Lynch and Walsh 1998). The applica-
tion of  quantitative genetic methods to studies of  natural popula-
tions has extended our understanding of  evolutionary processes in 
numerous areas, including the importance of  genetic correlations 
between traits for determining evolutionary outcomes (Brommer 
et al. 2007; Charmantier et al. 2006) and the role of  indirect ge-
netic effects (IGEs) in generating phenotypic variation (McAdam 
et al. 2002; Wilson et al. 2011).

IGEs occur when an individual’s phenotype is affected by geneti-
cally determined trait(s) in a conspecific (Wolf  et al. 1998). Maternal 

genetic effects are one specific kind of  IGE where maternal geno-
type affects offspring phenotype over and above the genes that off-
spring directly inherit. Maternal genetic effects are of  considerable 
interest due to their potential to alter evolutionary responses to se-
lection. For example, theoretical models have shown that depending 
on the covariance between maternal and offspring traits they can 
dampen or accelerate evolution (Kirkpatrick and Lande 1989; Wolf  
et  al. 1998; Wolf  2003). This growing appreciation of  the role of  
maternal genetic effects in mediating evolutionary outcomes has 
meant that maternal genetic effects are now widely incorporated 
into quantitative genetic studies of  wild populations. For example, 
such studies demonstrate that maternal genetic effects can be sub-
stantial (e.g., Wilson et al. 2005a, 2005b; Kruuk and Hadfield 2007; 
Quéméré et al. 2018) and that failing to account for them can lead 
to erroneous estimates of  heritability (Wilson et  al. 2005a; Kruuk 
and Hadfield 2007) and evolvability (McFarlane et al. 2015).

Despite the fact that it is now commonplace to account for ma-
ternal genetic effects in quantitative genetic analyses, we often 
know very little about the candidate traits mediating these effects. 
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Studies on livestock species have revealed significant heritabilities 
for traits such as milk yield and content (Torres-Vázquez et  al. 
2009; Aspilcueta-Borquis et al. 2010), but examinations of  behav-
ioral traits have produced contrasting results, with some studies re-
porting substantial heritability for maternal behavior (Hoppe et al. 
2008; Brown et al. 2016), while others find little evidence for her-
itability in behavioral traits (Everett-Hincks et al. 2005; Løvendahl 
et al. 2005; Gäde et al. 2008). Therefore, the role of  genetically de-
rived differences in behavior in mediating maternal genetic effects 
remains relatively poorly understood.

In general, behavioral traits have received much less attention 
from quantitative geneticists studying wild systems than mor-
phological and life-history traits (Postma 2014). This is despite 
the fact that understanding the genetic basis of  behavioral traits 
is vital for understanding how behavioral traits evolve and how 
they influence the evolution of  traits expressed in interacting in-
dividuals (Mousseau and Fox 1998; Wolf  et al. 1998; Wilson et al. 
2011; Bengston et  al. 2018). There are likely many reasons for 
the relative lack of  quantitative genetic studies of  behavior. For 
example, behavior is highly plastic and its repeatability can be 
hard to demonstrate. Additionally, understanding variation in be-
haviors involved in interactions between individuals are particu-
larly difficult to investigate because they require the study of  more 
than a single individual. For example, to understand variation in 
parental care, it is necessary to both quantify parental behaviors 
and their impact on offspring performance. Furthermore, the lack 
of  behavioral quantitative genetic studies is likely to reflect that 
quantifying behavior often involves many hours of  focal watches 
on each individual. This limits the number of  individuals that can 
be included, thereby preventing the collection of  the high vol-
umes of  data necessary to make quantitative genetic approaches 
tractable. For instance, robust inferences about the role of  genetic 
differences between mothers in generating behavioral variation 
during maternal care would require the estimation of  maternal 
genetic covariances between offspring performance traits, such 
as growth, and the measured behavioral traits using a multivar-
iate version of  a quantitative genetic approach known as the “an-
imal model.” Such models are notoriously data hungry and are 
likely to be out of  reach even in the most established long-term 
individual-based studies.

Here, we explore an approach for preliminary investigations of  
the role of  genetic differences between individuals in generating 
variation in behavioral traits. We advocate this approach cautiously, 
not as an endpoint in itself, but as a useful way to take data that are 
often already available to generate hypotheses regarding the genetic 
basis of  behaviors, reducing the set of  plausible traits to explore 
in an exhaustive manner, and thus direct data collection more ef-
fectively. For example, although it may not be feasible to measure 
parental care traits in enough individuals to permit powerful quan-
titative genetic analysis, we often have large volumes of  data on off-
spring traits, such as growth. These traits are known to determine 
offspring fitness (e.g., Gaillard et al. 1997; Dantzer et al. 2013), and 
crucially they are often subject to parental effects (e.g., McAdam 
and Boutin 2004; Wilson et  al. 2007). As mentioned above, using 
the animal model framework, it is possible to estimate parental 
effects on offspring phenotypes, and this is now regularly done in 
studies of  wild vertebrates (e.g., Wilson et  al. 2005a; Mcfarlane 
et al. 2014). Importantly for current purposes, variation in parental 
genetic effects for offspring performance is expected to arise from 
among-parent genetic variation in parental care (Cheverud and 
Moore 1994). We suggest that predicted maternal (or paternal) 

genetic merits for offspring performance generated from animal 
models can be used to select individuals for targeted studies of  pa-
rental care behaviors to begin to understand the genetic compo-
nent of  behavioral variation. The analysis of  predicted genetic (or 
individual) merits is fraught with statistical issues (Hadfield et  al. 
2010; Houslay and Wilson 2017) and not all problems are avoided 
by treating them as predictors rather than responses. Consequently, 
subsequent inferences about the genetic basis of  parental care var-
iation will necessarily be subject to more assumptions and caveats 
than arise from quantitative genetic analyses of  behavioral data 
(discussed in full later). However, our indirect approach is poten-
tially applicable in situations where large sample sizes are nei-
ther available nor readily obtained. Our hope is that it provides a 
strategy for pilot studies that can ultimately be used to justify allo-
cation of  time and funds to the measurement of  behavioral traits 
sufficient for confirmatory studies using more robust quantitative 
genetic methods.

In this study, we ask whether estimated maternal breeding values 
for lamb growth predict behavioral variation over the maternal 
care period in a subset of  female Soay sheep selected for targeted 
observations. This system is well suited as a test case for this ap-
proach due to the marked variation in lamb growth (Clutton-Brock 
et  al. 2004), significant maternal genetic effects on early-life traits 
(Wilson et  al. 2005a; Bérénos et  al. 2014), availability of  high-
quality relatedness information, and ability to locate and follow 
uniquely identifiable individuals in the field. We first fit quantitative 
genetic models of  lamb growth to verify the presence of  maternal 
genetic effects and then used genomic best linear unbiased predic-
tion (gBLUP) to predict maternal breeding values (subsequently 
MBVgBLUP) from our models. We then used these predicted ma-
ternal breeding values to select a subset of  females for behavioral 
phenotyping (in 2014 or 2015). While care is normally viewed as 
a parental trait (albeit one that is often plastically adjusted in re-
sponse to offspring phenotype—Royle et  al. 2014), we observed 
both maternal and lamb behaviors here. This is because offspring 
behaviors can themselves be useful proxies of  parental care. For 
instance, suckling behavior is frequently used as a proxy for care 
provided by female mammals during lactation (Cameron 1998). We 
hypothesize that lambs predicted to grow more quickly as a result 
of  maternal (genetic) effects will be provisioned differently by their 
mothers. Specifically, we predict that mothers with high MBVgBLUP 
for lamb growth will suckle lambs more frequently or for longer 
and/or reject fewer suckling attempts. We also hypothesize that 
any variation in suckling behaviors will influence nonsuckling lamb 
behaviors, with lambs that suckle less and/or that have their suck-
ling attempts rejected more frequently being predicted to show in-
creased grazing behavior.

MATERIALS AND METHODS
Study population

The Village Bay populations of  Soay sheep on the island of  Hirta 
in the St. Kilda archipelago have been studied intensively since 
1985. More than 95% of  sheep are marked with plastic ear tags 
making them individually identifiable (Clutton-Brock et  al. 2004) 
and regular mortality checks and censuses enable the monitoring of  
individual life history on the whole population. Large amounts of  
phenotypic data, including lamb weights, are obtained through the 
capture of  most lambs shortly after birth and of  ~60% of  all indi-
viduals each August. Samples for genotyping are obtained from all 
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captured individuals, which enable the additive relatedness matrix 
among individuals to be determined from high-density single nucle-
otide polymorphism (SNP) data.

Animal models and female selection

Using ASReml-R (Butler et  al. 2007), we built a univariate an-
imal model to partition the variation in lamb growth (treated as 
a trait of  the lamb) into genetic and environmental components. 
We calculated lamb growth as the change in weight (g/day) be-
tween birth and August measurements. We excluded individuals 
that were more than 5 days old when first weighed to minimize 
effects due to age at capture. The model contained lamb sex 
(two-level factor), litter size (two-level factor—singleton or twin), 
lamb julian birth date (covariate), and maternal age in years 
(linear and quadratic terms) as fixed effects. We included a series 
of  random effects to partition the variance in lamb growth into a 
number of  environmental and genetic components. As standard, 
we assumed all random effects were drawn from normal distribu-
tions with means of  zero and variance to be estimated. We fitted 
additive genetic merit of  the lamb to estimate the additive ge-
netic variance (VA), and the MBVgBLUP of  the mother to estimate 
the maternal genetic variance (VMG). We also modeled a direct-
maternal genetic covariance term (COVam), which was positive 
but nonsignificant (COVam = 6.35, χ2

(df=1) = 0.46, P = 0.50). To 
estimate genetic (co)variance terms, we used SNP-derived mater-
nity identities and relatedness information in the form of  a SNP-
derived realized genomic relatedness matrix (GRM—see Bérénos 
et al. 2014 for more details) rather than inferring the (expected) 
additive relatedness matrix from an explicit pedigree structure. 
We fitted additional random effects of  birth year (VYoB), maternal 
permanent environment (VME), and maternal identity associ-
ated with a matrix containing home range overlap information 
for all pairs of  females. We calculated individual home ranges 
using lifetime spatial locations for each individual and kernel 
density estimation methods. We then used Bhattacharyya’s af-
finity to quantify the home range overlap for each pair of  fe-
males. Individuals have an overlap of  one with themselves and 
zero with an individual whose home range does not overlap at all 
with their own. We incorporated this information into the model 
to account for the fact that closely related females often associate 
spatially as adults and thus to prevent bias in the estimates of  ge-
netic components due to spatially derived phenotypic similarity 
(see Regan et al. 2017).

We initially fitted our animal model in Autumn of  2014 using 
growth data for 1490 lambs born prior to 2013 and the realized 
genomic relatedness between these individuals. We found evidence 
for substantial maternal genetic effects, with the term accounting 
for 12% (SE = 4%) of  the variance in lamb growth (conditional on 
fixed effects). Dropping the maternal genetic effect resulted in a sig-
nificantly poorer model fit (χ2

(df=0,1) = 22.10, P < 0.001). MBVgBLUP, 
interpretable as the predicted deviation of  a lamb’s growth from 
the fixed-effect mean as a result of  maternal genes (over and above 
additive inheritance) were predicted by gBLUP.  gBLUP relies on 
the realized genomic relatedness between individuals rather than 
their expected relatedness and can therefore provide more accurate 
predicted breeding values than pedigree-based BLUP (Meuwissen 
et al. 2016). The use of  genomics to predict breeding values, now 
widespread in animal breeding, has only recently been taken up in 
quantitative genetics of  wild populations (e.g., great tits; Bosse et al. 
2017), but holds great promise for the future (Gienapp et al. 2017).

Using these predictions, we compiled a list of  60 females (aged 
3–8  years) known to be alive in summer 2014, with the intention 
of  selecting the upper and lower thirds of  the MBVgBLUP distribu-
tion for behavioral observations in the summer of  2015. In prac-
tice, the eventual data structure differed somewhat from this for 
the following reasons. First, only females surviving over winter and 
giving birth in the spring were available for selection. Second, be-
cause twinning rate was low (12% of  litters in 2015), we decided 
to limit behavioral work to mother–singleton pairs to avoid having 
to control for litter size effects. Third, we elected to opportunisti-
cally increase our sample size by including existing behavioral data 
collected in 2014 as part of  another study (see Regan et al. 2017). 
For those females observed in 2014, MBVgBLUP were thus predicted 
after behavioral observation, although we stress the genetic analysis 
conducted was “blind” with respect to behavioral variation. We ob-
served 64 females and their lambs in either 2014 or 2015, and used 
data for 33 of  these individuals, that were in either the upper or 
lower quartile of  the MBV distribution and therefore represented 
the extremes (see Supplementary Figure S1), for analysis. These 
were categorized as either high MBVgBLUP (females with MBVgBLUP 
>2.65 g.day−1) or low MBVgBLUP (females with MBVgBLUP <0.29 g.
day−1). Analyses using all individuals and treating MBVgBLUP as 
a covariate produce qualitatively similar results (Supplementary 
Table S1).

Behavioral observations and trait definition

We conducted 534 observations, each lasting 1 h, on 29 females in 
2014 and 35 in 2015, with 286 h of  observation on the 33 animals 
featured in our analysis. Observations were made over three field-
work trips per year (April–May, June–July, July–August) to mon-
itor mother and lamb behavior across the maternal care period. 
Mother–lamb pairs were observed 2–13 times (mean  =  8.3). We 
used binoculars (10x42 - Vortex, USA) and spotting scopes (16-48x 
- Opticron, UK) to locate individuals and subsequent observations 
were conducted from a distance of  at least 10 m to minimize distur-
bance. During each observation, we used “Animal behaviour Pro” 
(Newton-Fisher 2012) to continuously record lamb behavior, noting 
whether the lamb was suckling, grazing, resting, or playing, while 
also recording whether the mother was grazing, resting, or moving 
at 2-min intervals (see Supplementary Table S2 for behavior de-
scriptions). One hour focal observations took place between 08:00 
and 19:00 and the observations of  each pair were distributed across 
the day and between observers (two at any one time) to prevent any 
bias caused by the data collection procedure. Where mothers and 
lambs separated during an observation, we preferentially kept the 
lamb in view to accurately record non-suckling behaviors. If  either 
the mother or her lamb entered a cleit (dry-stone structures used for 
storage by the St. Kildans), we recorded them as “Out of  sight,” as 
in this case, we could be sure that no suckling events were missed. 
However, we terminated observations when both mother and lamb 
entered a cleit and excluded the session from further analysis.

From each focal observation, we calculated suckling frequency (number 
of  suckling events, whether successful or unsuccessful), total suckling 
time (time in seconds that a lamb spent suckling), mean suckle duration 
(total suckling time divided by suckling frequency), and suckling success 
[proportion of  successful suckling events (failed suckles were classi-
fied as being shorter than 5  s following Hass 1990; Birgersson and 
Ekvall 1994; Tollefson et al. 2011)]. Of  all failed suckling events, 92% 
were terminated by the mother and this variable is therefore indica-
tive of  the mother rejecting the lamb rather than of  lamb satiation. 
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When calculating these variables, we removed one suckling event that 
lasted 252 s as it was a clear outlier, having resulted from human dis-
turbance. See Table 1 for details on the correlations between suck-
ling traits. We also characterized nonsuckling behaviors of  both the 
mother and lamb. For the mother, we calculated the frequency of  
sampling points in which she was grazing, resting and moving (here-
after referred to as grazing frequency, resting frequency, and moving frequency, 
respectively). For the lamb, we calculated the total time spent grazing, 
playing and resting during each observation (subsequently referred to 
as grazing time, playing time, and resting time, respectively).

Statistical analysis

Behavioral data were analyzed using linear and generalized linear 
mixed models using the packages lme4 (Bates et  al. 2015) and 
glmmADMB (Skaug et al. 2006). We included pair identity (ID of  the 
mother–offspring pair) and observation date as random effects to ac-
count for the likely similarity between observations conducted on the 
same individuals and on the same day. All models included lamb age 
(covariate), maternal age (covariate), and year (two-level factor) as fixed 
effects. We compared four models to test whether the behavior of  a 
mother and/or her lamb was predicted by the mother’s MBVgBLUP for 
lamb growth. These models featured the linear or linear and quad-
ratic term for lamb age with and without with the mother’s MBVgBLUP 
group (high or low). All covariates were mean centered and scaled to 
aid convergence. We used Akaike’s Information Criterion corrected 
for small sample size (AICc) to assess the support for an effect of  
MBVgBLUP group on each of  the behaviors.

We used linear mixed models assuming a Gaussian error distri-
bution for resting time, grazing time (log transformed), and total suck-
ling time (log transformed). All other behaviors were analyzed using 
generalized linear mixed models. Suckling frequency, grazing frequency, 
resting frequency, and moving frequency were analyzed using negative bi-
nomial mixed models (in glmmADMB) because of  overdispersion 
apparent in the residuals when errors were assumed to approximate 
a Poisson distribution. We assumed a binomial distribution in the 
case of  suckling success, with the “bobyqa” optimizer used to aid con-
vergence. Results for playing time and the proportion of  suckling events 
terminated by the female are not presented because severe zero-inflation 
resulted in poor model performance. All analyses were conducted 
in R version 3.1.3 (R Development Core Team 2008).

RESULTS
Lamb behavior

Likelihood ratio tests of  models with and without the pair iden-
tity effect (and without any MBVgBLUP terms), using a mix-
ture of  zero and one  degrees of  freedom (Self  and Liang 1987), 

indicated that there was significant between-pair variation in 
all suckling behaviors (Suckling frequency—χ2(df  =  0,1)  =  6.7, 
P  =  0.003, Suckling time—χ2(df  =  0,1)  =  4.69, P  =  0.01, Mean 
suckling duration—χ2(df  =  0,1)  =  5.88, P  =  0.005, Suckling 
success—χ2(df  =  0,1)  =  6.19, P  =  0.004), but not in nonsuckling 
behaviors (Resting time—χ2(df = 0,1) = 0, P = 1, Grazing time—
χ2(df = 0,1) = 0.04, P = 0.59).

As expected, lamb age was an important predictor in models for 
all lamb behaviors, with all measures of  suckling behavior, as well 
as resting time, decreasing with age, while grazing time increased as 
lambs approached weaning (Table 2). The best fit model for suckling 
success (Supplementary Table S3) included a main effect of  MBVgBLUP 
group, with this term indicating that lambs born to mothers in the 
low MBVgBLUP group were successful at suckling 13% less often than 

Table 1
Pearson correlation coefficients for suckling traits

Suckling 
frequency

Total  
suckling 
time

Mean  
suckling  
duration

Proportion  
of  successful  
suckles

Suckling frequency 1.00 0.65 −0.06 −0.25
Total suckling time 0.65 1.00 0.58 0.10
Mean suckling 
duration

−0.06 0.58 1.00 0.66

Proportion of  
successful suckles

−0.25 0.10 0.66 1.00

Table 2
Parameter estimates (±standard error) and AICc values from 
the full additive models for all lamb behaviors when using 
predicted maternal breeding values (MBVgBLUP) calculated using 
the genomic relatedness matrix (covering individuals born 
between 1985 and 2012). Nind = 33, Nobs = 286

Trait Term Est (SEM) t/z*

Suckling frequency Intercept 0.77 (0.24) 3.19 
 Lamb age −1.95 (0.26) −7.49 
AICc = 1169.17 Lamb age2 1.02 (0.28) 3.68
wi = 0.26 Maternal age −0.02 (0.04) −0.59 
 Year (2015) 0.27 (0.14) 1.90 
 MBVgBLUP 

(low)
−0.01 (0.13) -0.10 

Suckling time Intercept 2.54 (0.30) 8.53 
 Lamb age −2.88 (0.35) −8.23 
AICc = 948.70 Lamb age2 1.72 (0.35) 4.91 
wi = 0.26 Maternal age 0.05 (0.05) 0.92 
 Year (2015) 0.17 (0.18) 0.94 
 MBVgBLUP 

(low)
0.01 (0.16) 0.08 

Mean suckle 
duration

Intercept 2.21 (0.20) 10.94 

 Lamb age −1.09 (0.24) −4.60 
AICc = 483.16 Lamb age2 0.96 (0.25) 3.86 
wi = 0.32 Maternal age 0.06 (0.03) 1.88 
 Year (2015) 0.0007 (0.12) 0.006 
 MBVgBLUP 

(low)
−0.08 (0.11) −0.76 

Suckling success Intercept 0.52 (0.35) 1.46 
 Lamb age −1.36 (0.47) −2.89 
AICc = 541.74 Lamb age2 1.77 (0.55) 3.22 
wi = 0.84 Maternal age 0.17 (0.06) 2.92 
 Year (2015) −0.48 (0.22) −2.15 
 MBVgBLUP 

(low)
−0.49 (0.19) −2.56 

Resting time Intercept 1544.42 (230.68) 6.70 
 Lamb age −633.34 (283.64) −2.23 
AICc = 4739.54 Lamb age2 408.68 (284.18) 1.44 
wi = 0.17 Maternal age 27.36 (38.55) 0.71 
 Year (2015) −47.70 (145.84) −0.33 
 MBVgBLUP 

(low)
−100.42 (123.13) −0.82 

Grazing time Intercept 5.75 (0.47) 12.28 
 Lamb age 6.78 (0.58) 11.65 
AICc = 1203.37 Lamb age2 −5.01 (0.58) −8.62 
wi = 0.30 Maternal age −0.12 (0.08) −1.49 
 Year (2015) −0.35 (0.29) −1.19 
 MBVgBLUP 

(low)
0.15 (0.25) 0.61 

*t values for linear mixed effects models and z values for generalized linear 
mixed effects models.
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lambs born to females in the high MBVgBLUP group (Table 2, Figure 
1). MBVgBLUP group did not feature in the best fit model for any of  
the other measures of  lamb suckling behavior (Supplementary Tables 
S3 and S5). Similarly, MBVgBLUP group did not feature in the best fit 
model for either of  the nonsuckling behaviors (Table 2), but when 
using AICc, it was included in a competitive model for both grazing 
time (ΔAICc = 1.71) and resting time (ΔAICc = 1.38), indicating that 
lambs born to females in the high MBVgBLUP group had a tendency to 
spend more time per hour resting (MBVgBLUP [low] − Est = −101.38, 
SE = 116.57) and less time grazing (MBVgBLUP [low] − Est = 0.1564, 
SE = 0.2412). See Supplementary Table S3 for AICc values for all 
lamb behavior models.

Maternal behavior

We found evidence for significant between-pair differences in ma-
ternal movement behavior (χ2(1)  =  9.79, P  =  0.002), but not in 
maternal grazing or resting frequency (grazing—χ2(1) = 0, P = 1, 
resting—χ2(1) = 0, P = 1).

As for the lamb behaviors, lamb age was important in explaining 
variation in the mother’s behavior, particularly in the case of  grazing 
frequency, which decreased over the maternal care period, and resting 
frequency which increased as lambs approached weaning (Table 3). 
MBVgBLUP group did not predict grazing frequency, resting fre-
quency, or moving frequency (Table 3). See Supplementary Table 
S4 for AICc values for all maternal behavior models.

Post hoc analyses

We found that lambs with higher average suckling success tended 
to have higher growth rates (Supplementary Table S9), and that 
there was a tendency for females in the high MBVgBLUP group to be 

heavier, though this relationship was not statistically significant (β 
(SE) = −2.06 (1.26), P = 0.12).

DISCUSSION
Here, we show that MBVgBLUP for lamb growth predicted variation 
in behavior associated with maternal care in Soay sheep. This sug-
gests that at least some of  the maternal genetic variance in lamb 
growth is likely to be explained by heritable behavioral traits linked 
to maternal provisioning. We did so using a novel approach that 
combines information from the quantitative genetic animal model 
with targeted behavioral observations that could not logistically be 
conducted on the whole population. Lambs born to mothers with 
high predicted breeding values for offspring growth had a greater 
proportion of  successful suckling events, and a tendency to spend 
greater time resting and less time grazing. These results were con-
sistent whether we used breeding values predicted using the genomic 
relatedness matrix (using phenotype data for lambs born between 
1985 and 2012)  or an updated pedigree that included individuals 
born between 2013 and 2016 (see Supplementary Tables S7 and S8). 
Maternal performance has been linked to body mass in species in-
cluding sheep (Réale and Festa-Bianchet 2000) and we did find that 
females in the high MBVgBLUP group tended to be slightly heavier, 
though not significantly so. This may suggest that differences in body 
mass were partially driving the behavioral differences we observed, 
but given that body mass is not necessarily an accurate measure of  
condition due to size differences between individuals, differences in 
body mass may not be entirely responsible for the results found.

We found evidence for a relationship between MBVgBLUP and 
one behavior: suckling success. This finding could, in part, reflect 
that this behavioral trait is largely under maternal control, with 
the majority of  suckling events being terminated by the mother. 
However, we cannot rule out differences between females in the 
quality or quantity of  their milk, and resulting differences in 

Predicted breeding value group

High Low

1.00

0.75

Pr
op

or
tio

n 
of

 s
uc

ce
ss

fu
l s

uc
kl

in
g 

ev
en

ts

0.50

0.25

0.00

Figure 1
The proportion of  successful suckling events was greater for lambs born 
to females whose predicted breeding value for lamb growth was high. 
Shown are point estimates and 95% confidence intervals from the best fit 
generalized linear mixed model using maternal breeding values (MBVgBLUP) 
predicted with the genomic relatedness matrix. To aid interpretation we 
plot the relationship for 2015 only.

Table 3
Parameter estimates (±standard error) and AICc values from 
the full additive models for all female behaviors when using 
predicted maternal breeding values (MBVgBLUP) calculated using 
the genomic relatedness matrix (covering individuals born 
between 1985 and 2012). Nind = 33, Nobs = 286

Trait Term Est (SEM) t/z*

Grazing frequency Intercept 3.10 (0.08) 37.89 
 Lamb Age −0.17 (0.10) −1.73 
AICc = 1998.52 Lamb age2 0.06 (0.10) 0.65 
wi = 0.09 Maternal age −0.01 (0.01) −0.60 
 Year (2015) 0.006 (0.05) 0.13 
 MBVgBLUP(low) 0.03 (0.05) 0.67 
† Intercept −0.99 (0.44) −2.23 
 Lamb Age −0.23 (0.38) −0.60 
AICc = 725.53 Lamb age2 0.31 (0.38) 0.81 
wi = 0.13 Maternal age 0.09 (0.07) 1.24 
 Year (2015) 0.43 (0.26) 1.62 
 MBVgBLUP (low) −0.26 (0.24) −1.07 
Resting frequency Intercept 1.65 (0.45) 3.65 
 Lamb Age 0.93 (0.60) 1.55 
AICc = 1366.20 Lamb age2 −0.49 (0.59) −0.83 
wi = 0.09 Maternal age 0.02 (0.08) 0.30 
 Year (2015) −0.27 (0.27) −1.01 
 MBVgBLUP (low) −0.15 (0.24) −0.62 

*t values for linear mixed effects models and z values for generalized linear 
mixed effects models.
†Date was removed due to convergence problems.
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lamb satiation, as a cause of  these differences in suckling success. 
Indeed, the use of  suckling behavior as an indicator of  milk in-
take and maternal investment during lactation has been criticized 
(summarized in Cameron 1998). For example, there might be in-
dividual differences in nutritional quality of  a female’s milk, which 
may influence the level of  satiation of  her offspring (Skibiel and 
Hood 2015), and there may be differences between offspring in the 
efficiency with which they obtain milk (Cameron 1998). We must 
also acknowledge that it is possible that our inability to detect a 
relationship between MBVgBLUP and the other behaviors may be 
due to a lack of  statistical power, particularly given that variation 
in any one of  these behaviors is likely to come from a vast array 
of  sources.

Relatively little work has examined the role of  genetic differ-
ences in generating variation in the parental care shown by indi-
viduals living under natural conditions, with only a small number 
of  studies demonstrating heritability in traits such as yolk and 
egg mass (Tschirren et al. 2009) and the provisioning rate of  pas-
serine parents (MacColl and Hatchwell 2003). Such studies are 
important for establishing the contribution of  genetic effects to 
variation in parental care that is apparent in natural populations, 
thereby advancing our understanding of  how parental care re-
sponds to selection in natural systems. They are also important 
given the potential environmental dependence of  heritability esti-
mates (Charmantier and Garant 2005) and the need to use empir-
ical data on parental and offspring traits to develop the quantitative 
genetic models that provide the theoretical basis for studying the 
evolution of  parental care (Hadfield 2012). Though sample sizes 
preclude direct estimation of  genetic parameters for behaviors 
observed, our approach provides some indirect and preliminary 
evidence that genetic differences between female Soay sheep are as-
sociated with variation in behavior over the maternal care period. 
This in turn suggests that behavioral variation is involved in the 
pathway that generates maternal genetic effects on lamb growth in 
this population.

The number of  long-term individual-based studies of  natural 
populations has been steadily increasing since the first studies on 
birds began in the 1940s. Although these studies are largely re-
stricted to mammals and birds, they now cover a range of  species 
that vary substantially in the parental care provided, including pas-
serines (e.g., Verhulst et al. 1997), seabirds (e.g., Grist et al. 2014), 
marsupials (e.g., Gélin et al. 2013), rodents (e.g., Hayes et al. 2017), 
and primates (e.g., Alberts et  al. 2003). Many of  these studies are 
likely to have the data necessary to calculate a suitable proxy for 
parental care, thereby making the approach we have used in this 
paper tractable in these systems. Offspring growth is likely to be 
one of  the most important and widely available measures of  off-
spring performance for two reasons. First, many long-term studies 
involve the capture of  offspring shortly after birth or hatching and 
before weaning or fledging, thereby providing data on growth for 
a large number of  individuals. Second, offspring growth in both 
birds and mammals is closely linked with the investment of  parents 
into care given that offspring of  many species are entirely reliant 
on resources from the parent(s) early in life (Clutton-Brock 1991). 
Our approach provides a promising way to begin to study the ge-
netic basis of  parental care in the wild, but it may also prove ben-
eficial to use the approach to direct studies when appropriate data 
for semicaptive populations are available. This may be particularly 
useful for taxa other than mammals and birds where it is very dif-
ficult to establish long-term individual-based studies. In doing so, 
it may be possible to begin to understand the role of  genetics in 

generating variation in a more complete range of  parental care 
patterns. Furthermore, our approach is not necessarily restricted 
to looking at the mediators of  genetic sources of  trait variation, 
given that it is entirely possible to use this method to look more 
broadly at traits that may be driving overall phenotypic differences 
between individuals (i.e., consisting of  both genetic and environ-
mental determinants).

The use of  the animal model to direct field sampling on a subset 
of  individuals could provide a starting point for understanding 
how genetic differences between individuals result in variation in 
traits other than those associated with parental care. In our case, 
we started by estimating the maternal genetic effect (a special case 
of  IGEs) on lamb growth. However, by modeling different IGEs, 
this approach could be used whenever the interest is in how the 
genotype of  a specific individual influences the phenotype of  an 
interacting individual. Indeed, studies on wild populations are be-
ginning to examine how specific traits in an interacting individual 
influence a focal individual’s phenotype (McGlothlin and Brodie 
2009), and incorporate a wider range of  IGEs into the animal 
model, such as IGEs on social dominance (Wilson et  al. 2011) 
and reproductive traits such as laying date (Brommer and Rattiste 
2008). Thus, given an appropriate pedigree and a suitable proxy for 
the trait of  interest, our approach provides a tractable means for 
understanding whether focal individual’s predicted breeding value 
for a trait expressed in an interacting individual can be used to 
predict how it behaves towards the other individual. This could in-
clude understanding how the genes carried by a focal individual in-
fluences its reproductive investment or the ways in which individual 
genetics influences competitive behaviors, such as dominance or 
aggression, or social behaviors, such as cooperative breeding or 
antipredator behaviors.

Despite the potential utility of  the animal model for directing 
field sampling schemes, such an approach does come with caveats 
that must be acknowledged. The power to estimate genetic and 
environmental components within the animal model relies on the 
ability to parametrize an appropriate model, which itself  is de-
pendent on the pedigree and phenotypic data available (Clément 
et al. 2001; Kruuk 2004; Kruuk and Hadfield 2007; Wilson et al. 
2010). Therefore, we stress that the breeding values we used to se-
lect individuals are only predictions (generated by gBLUP), and 
although genomic estimated breeding values are generally more ac-
curate than breeding values estimated using pedigree data (Clark 
et al. 2012; Gienapp et al. 2017), they will necessarily be associated 
with error and bias (Postma 2006; Hadfield et al. 2010). Statistical 
hypothesis testing can be substantially anticonservative when BLUP 
are treated as response variables and the uncertainty around them 
is ignored, a practice that has been shown to be problematic in both 
evolutionary and behavioral studies (Hadfield et al. 2010; Houslay 
and Wilson 2017). Here, we use BLUP as a basis for selecting indi-
viduals for targeted study, and (analytically) we treat them as pre-
dictors rather than response variables. This approach still suffers 
from the uncertainty around the predicted breeding values and thus 
violates the assumption of  linear models that predictors are meas-
ured without error. The result of  this failure to propagate error is 
unclear and is why we strongly advocate this approach not as a ge-
neral alternative to quantitative genetic modeling of  high volume 
behavioral data where it can be obtained, but very specifically as a 
necessarily exploratory approach where it cannot.

We reiterate that our results show relationships between pre-
dicted, as opposed to true, maternal breeding values and ob-
served behaviors. The accuracy of  predicted breeding values is 
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determined by the information available, for example, the extent 
to which data are available for individuals of  varying degrees of  
relatedness (Postma 2006), and by the appropriateness of  the model 
used to predict them. However, given that observations on the focal 
individual and its close relatives contribute most information to the 
prediction of  breeding values, predicted breeding values tend to be 
more closely correlated with the phenotypic observations than true 
breeding values (Postma 2006; Hadfield et  al. 2010). This means 
that an individual’s predicted breeding value is, at least to some ex-
tent, determined by environmental effects on the individual’s phe-
notype. To better understand whether our results were likely to 
have been somewhat driven by the environmental component of  
a mother’s phenotype, we repeated our analyses using maternal 
breeding values predicted from an animal model where the growth 
rates of  each mother’s lambs were removed in turn. When using 
AICc, there was some support for the model containing MBVgBLUP 
group, with this being only 0.33 AICc units from the best model 
and having a similar AICc weight (0.32) to the best fit model (0.37).

We acknowledge that explicitly estimating the maternal genetic 
covariance between lamb growth and each of  the observed behav-
iors using a bivariate animal model would be the most appropriate 
and robust means for understanding whether the maternal genetic 
effect on lamb growth was mediated by differences in maternal be-
havior. This is the strategy we advocate for confirmatory studies. 
However, such an approach is often precluded, as in our case, by 
the limited availability of  behavioral data. Small sample sizes mean 
that, even where it is possible to use the animal model to estimate 
these parameters, it is not possible to draw substantive conclu-
sions from the estimates. For example, we estimated the maternal 
genetic covariance between lamb growth and each of  the behav-
ioral traits using a series of  bivariate animal models in ASReml-R 
(see Section 6 in Supplementary Information), but in all cases, 
our variance or covariance estimates had the boundary condition 
making them very difficult to interpret (see Supplementary Table 
S11). This is expected given the low sample size of  behaviorally 
phenotypes mothers, and the low variance in relatedness among 
them (mean genomic relatedness  =  0.009, variance  =  0.003). To 
verify that the data structure precluded meaningful application of  
the bivariate animal model, we conducted a power analysis using 
the package “pedantics” (Morrissey and Wilson 2010) to assess our 
ability to detect variance components given our real data structure 
(see Section 7 in Supplementary Information for details). Given the 
mothers and lambs observed, we were unable to recover simulated 
components (Supplementary Table S12), indicating that it was not 
possible to use the more appropriate bivariate approach in our 
case. Therefore, although obtaining precise estimates of  these co-
variances would be a more appropriate approach for determining 
whether or not maternal genetic effects were mediated by differ-
ences in maternal care behavior, using this approach is not possible 
with the limited data available. Thus, our approach may serve as 
the starting point and justification for a more exhaustive sampling 
scheme involving a bivariate animal model approach if  predicted 
breeding values were found to predict variation in the trait(s) meas-
ured in the selected subset of  individuals.

In summary, by using an animal model of  lamb growth to se-
lect females whose genotypes were associated with differing lamb 
growth rates, we show that suckling behavior differed between in-
dividuals born to females with different predicted breeding values. 
Further work is needed to establish the more specific maternal traits 
underlying the differences in behavior we observed here and to pro-
vide better estimates of  the genetic basis of  maternal care in this 

population. The number of  long-term studies with the data nec-
essary to make the approach proposed here possible is increasing 
and the continuing development of  genomics tools is likely to make 
analyses such as ours possible in species where pedigree informa-
tion is not available (Gienapp et  al. 2017). As a result, we believe 
that using animal model estimates of  breeding values to target the 
collection of  phenotypic data from a subset of  animals may be a 
valuable approach for starting to uncover the traits mediating ma-
ternal and other IGEs.

SUPPLEMENTARY MATERIAL
Supplementary data are available at Behavioral Ecology online.
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