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ABSTRACT 

Lack of discrimination power and poor weight dispersion remain major contention issues in Data 

Envelopment Analysis (DEA) models, which have also hampered the developments in the multiobjective 

DEA domain. Since the initial multi- criteria DEA (MCDEA) model of Li and Reeves ( 1999), only one 

other research by Bal, Örkcü and Çelebioğlu ( 2010) attempted to solve the MCDEA framework through 

two goal programming approaches, i.e. GPDEA-CCR and GPDEA-BCC. It was claimed that both models 

improved upon the discrimination power of DEA by balancing the distribution of input-output weights. It 

was also claimed that both GPDEA models are major improvements to the original MCDEA of Li and 

Reeves (1999). In this research we first checked the validity of GPDEA models and found that they do 

not improve the discrimination power as it has been claimed, we further propose an alternative solution to 

the formulation using bi-objective linear programming. It is shown that the proposed bi-objective multiple 

criteria DEA(BiO-MCDEA) performs better than the GPDEA models in the aspects of discrimination 

power and weight dispersion, as well as requiring less computational codes. An application of energy 

dependency among 26 European Union member countries is further used to describe the efficacy of our 

approach.  

Key words: Data envelopment analysis, Multiple criteria data envelopment analysis, Goal programming, 

Discrimination power.              

1. Introduction 

     Data envelopment analysis (DEA) was first proposed by Charnes et al. (Charnes, Cooper, & Rhodes, 

1978) and remained the leading technique for measuring the relative efficiency of decision-making units 

(DMUs) based on their respective multiple inputs and outputs. DEA has been the fastest growing 

discipline in the past three decades covering easily over a thousand papers in the Operations Research 

and Management Science discipline (see (Emrouznejad, Parker, & Tavares, 2008)). The efficiency of a 
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DMU is defined as a weighted sum of its outputs divided by the weighted sum of its inputs on a bounded 

ratio scale.  

One of the drawbacks of the DEA is the problem of lack of discrimination among efficient decision 

making units (DMUs) and hence yielding many DMUs as efficient. The problem is noted when the 

number of DMUs evaluated is significantly lesser than the number of inputs and outputs used in the 

evaluation. The weights derived post-hoc from the evaluation exercise may reveal that some inputs or 

outputs have zero values. This is counter-intuitive especially in a decision making exercise, where one 

expects to use all the inputs and output values that are rated for the DMUs. Hence, it further implies that 

some of the variables were not used in the evaluation exercise in achieving the final ranking. On the 

contrary, unrealistic weight distribution for DEA also occurs when some DMUs are rated as efficient 

because of extreme large weights in a single output and/or extreme small weights in a single input. 

Thompson et al. ( 1986) are among the first authors to propose the use of weight restriction to increase the 

discrimination power of DMUs. The issue was immediately picked up by many authors, including Dyson 

and Thanassoulis (Dyson & Thanassoulis, 1988), Charnes et al. (Charnes, Cooper, Huang, & Sun, 1990a),  

Thanassoulis et al. (Thanassoulis & Allen, 1998). Hence, several methods such as assurance region (AR) 

procedure (R. G. Thompson, Langemeier, Lee, & Thrall, 1990), cone ratio envelopment (Charnes, 

Cooper, Huang, & Sun, 1990b) area adressed in the literature as strategies to solve problems arising from 

unrealistic weight distribution. Subsequently, other DEA models were introduced in the literature  to 

overcome the discriminant power problems, such as the cross-efficiency evaluation technique (Anderson, 

Hollingsworth, & Inman, 2002; Doyle & Green, 1994, 1995; Green, Doyle, & Cook, 1996; Sexton, 

Silkman, & Hogan, 1986), super-efficiency model (Andersen & Petersen, 1993; Y. Chen, 2005), and 

multiple criteria (or multi-objective) DEA (Y.-W. Chen, Larbani, & Chang, 2009; Li & Reeves, 1999).  

The focus in this paper is on the most recent development in the area; that is, to introduce a weighted 

model for improving the discrimination power and weight dispersion, which focuses on multiple criteria 

Data Envelopment Analysis (MCDEA). The rest of the paper is organized as follows. Section 2 gives a 

brief description of the multiple criteria data envelopment analysis (MCDEA) and the more recent goal 

programming data envelopment analysis (GPDEA) as a procedure for MCDEA. Section 3 highlights 

some drawbacks on using GPDEA to represent MCDEA analysis. We therefore introduce an alternative 

bi-objective multiple criteria model (BiO-MCDEA) to improve the discrimination power of MCDEA in 

Section 4. An application of energy dependency among 26 EU member countries demonstrates the 

efficacy of the model in Section 5. Concluding remarks are given in Section 6.  

2. Improving discrimination power in DEA: Recent developments 



Multiple criteria data envelopment analysis (MCDEA) 

The MCDEA model; consisting of three objectives, was proposed by Li and Reeves (Li&Reeves, 1999) 

to improve the discriminating power of classical DEA model. Classical definition of relative efficiency is 

considered one of the criteria in this model, hence the classical DEA solution is said to be contained in the 

set of MCDEA solutions. In other words, a wider solution is possible with MCDEA, so as to gain more 

reasonable input and output weights. Another 2 objectives are the Minimax and Minsum criteria.  

 

In MCDEA, the three objectives are analyzed separately; one at a time, and no preference order was set 

for those objectives. The solutions derived from each run are considered non-dominated in the multi 

objective linear programming (MOLP) sense. Li and Reeves (Li & Reeves, 1999) note that generally the 

Minimax criterion is more restrictive than the Minsum criterion, while the first criterion is the least 

restrictive of all. Since the Minimax and Minsum criteria tend to provide less number of efficient DMUs 

as compared to the first criteria, it is said to provide better discriminating power than a classical DEA 

model. As such, the Minimax and Minsum criteria are helpful when the number of DMUs is significantly 

larger than the number of inputs and outputs used for evaluation. 

Consider in evaluating the relative efficiency of n DMUs which use�݉�inputs (ݔ௜ǡ ݅ ൌ ͳǡǥ ǡ݉) to produce 

௝ǡݕ) outputs ݏ ݆ ൌ ͳǡǥ ǡ  The MCDEA model proposed by Li and Reeves (Li&Reeves, 1999) which .(ݏ

considers three objective functions: i) minimizing ݀௢(or maximizing ߠ௢), ii) minimizing the maximum 

deviation, and iii) minimizing the sum of deviation, is defined as follows in Model 1: 

Model 1: Multi criteria data envelopment analysis 
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The quantity݀௢   in the first objective function is bounded on an interval [0, 1) and is regarded as a 

measure of inefficiency. Thus, DMU o is efficient at h o =1-d o  where h o  is the efficiency measure in a 

classical DEA. In short, the first objective function (i.e. 1
min ( max )s

o o r ror
d or u yT

 
 ¦  ) is equivalent 

to the objective function of a classical DEA. The M in the second objective function (minmax criterion) 

represents the maximum quantity of all deviation variables ( 1,..., )jd j n . The third objective function is 

a Minsum of all deviation variables. Another noteworthy point is the introduction of the

0,( 1,..., )jM d j n� t  constraint in MCDEA, which does not alter the feasible region of the solution 

but merely to ensure that max 0jd t .  

 

Goal programming DEA models (GPDEA) 

 

Li and Reeves (Li&Reeves, 1999) did not suggest a solution for their proposed MCDEA model that 

optimizes all objectives simultaneously. The aim of their proposed MCDEA model solution process is not 

to extract an optimal solution; but instead, to find a series of non-dominated solutions that is left to the 

analyst in selecting the most preferred one, if need be. Therefore, goal programming as a solution for the 

MCDEA model can be seen as a natural progression in converting the multiple objective programming in 

the MCDEA model into a single objective problem. 

Goal programming is a type of multi-objective optimization, also known as multiple-criteria decision 

making which can provide a way of striving toward several such objectives simultaneously. The basic 

approach of goal programming is to establish a specific numeric goal for each of the objectives, formulate 

an objective function for each objective, and then seek a solution that minimizes the (weighted) sum of 

unwanted deviations of these objective functions from their respective goals. 

Bal et al. (Bal, et al., 2010) recently proposed the following goal programming to solve the formulation 

proposed by Li and Reeves (Li & Reeves, 1999).  The former adopted the non-weighted approach in their 

solution design and claimed to be an equivalent single objective form to the latter’s three objectives.   



Model 2: Goal programming data envelopment analysis under CRS 
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The above model is with the assumption of constant returns to scale (CRS) (Bal, et al., 2010), where 1d �

and 1d � are the unwanted deviations for the goal which the weighted sum of inputs equal to unity, 2d � and 

2d � are the wanted and unwanted deviation variables which make the weighted sum of outputs less than or 

equal to one, whereas 3 jd � and 3 jd �  (j=1,…, n) are the unwanted and wanted deviation variables for the 

goal 0 ( 1,..., )jM d j n� t  . M remains as the maximum deviation jd , for DMU j (j=1,…,n), which 

is also an unwanted deviation. A similar model under the variable returns to scale (VRS) assumption is 
placed in Appendix 1. 

The achievement objective function^ `1 1 2 3 j jj j
d d d d d� � � �� � � �¦ ¦ states that all deviations have been 

given equal weights. In the GPDEA’s case, minimizing the unwanted deviations from the goal values are 

to be desired (Ignizio, 1976; lee, 1972). However, there are fundamental flaws associated with the 

GPDEA model, ranging from the interpretation of a goal programming method to the reported results. We 

highlight some of these issue separately in the next section.  

 



3. Some drawbacks on both GPDEA models 

The purpose of this section is to highlight some drawbacks of the GPDEA models, which will help us to 

further develop the new bi-objective multiple criteria DEA (BiO-MCDEA) model in Section 4. 

The validity of GPDEA and the issue of zero weights for all variables in some DMUs 

We were initially intrigued by the use of goal programming as a means to achieve greater weight 

dispersion and discrimination power among criteria in DEA. When attempting to reproduce the analysis 

in Bal et al. (Bal, et al., 2010), we have noted some methodological and formulation problems. We found 

some of these  problems to be consistent for all datasets in Bal et al (Bal, et al., 2010). However, for the 

purpose of illustrating the inappropriateness of the GPDEA models, we only explain the solutions of 

‘dataset 1’ and ‘university dataset’ in Bal et al (Bal, et al., 2010). 

Let us first start with the hypothetical dataset consisting of 10 DMUs with four inputs and four outputs 

(see Table 1- which is reproduced from Bal et al. (Bal, et al., 2010) for ease of reference).  

 

We used Model 1 formulation for both CRS and VRS assumptions to reproduce the results as depicted in 

Table 2 and Table 3. It is easy to observe that the true efficiency values differ significantly from the ones 

reported in Bal et al. (Bal, et al., 2010). More importantly, we examined the weights and noticed contrary 

to what had been claimed in Bal et al. (Bal, et al., 2010), the input-output weights and efficiency values 

for some DMUs could attain zero values for all variables. For example in this case, zero weights assigned 

to all variables for DMU1 (under CRS) and DMU5 (under CRS and VRS). This just disproves the 

“…improvement of the dispersion of input-output weights and the improvement of discrimination 

power…” as claimed in Bal et al. (Bal, et al., 2010). This is problematic when some of the efficiency 

Table 1
Example 1 dataset 
DMU Outputs Inputs

yΌ y΍ yΎ yΏ xΌ x΍ xΎ xΏ
1 47 93 54 65 32 50 82 46
2 88 56 92 80 61 56 68 37
3 94 65 80 80 42 58 45 34
4 50 53 93 97 73 39 88 81
5 47 42 70 52 45 38 68 41
6 86 45 100 47 86 62 44 32
7 83 91 62 74 38 74 71 74
8 79 60 72 98 61 54 70 62
9 85 68 51 41 84 52 38 47
10 78 95 70 92 87 47 31 52



values can be 1 at the same instance, thus confirming the inability for the input and output weights to 

translate into technical efficiency effectively (see appendix 2 for proof). 

It is rather quite simple to reason where the problem lies. As one can easily observe in the next section, 

we impose some restrictions on the weights to avoid this issue. In an input-oriented model, it is necessary 

to set the constraint
1
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 ¦ , and seek to achieve an output that is as high as possible. This is a 

fundamental aspect of scaling and benchmarking, where one has to fix either the sum of input or the sum 

of output to be 1, before proceeding to determine the other. In Bal et al.’s case (Bal, et al., 2010), they 
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of 1 1d d� �� in the objective function.  

 

Table 2
GPDEA-CCR results based on example 1 dataset
DMU Output weights Input weights               Efficiency Efficiency 

uΌ u΍ uΎ uΏ vΌ v΍ vΎ vΏ   true values  Provided by Bal
1 0 0 0 0 0 0 0 0 0 0.968
2 0.00317 0.00434 0.00464 0 0.00403 0.0135 0 0 0.948 0.951
3 0.00333 0.00456 0.00488 0 0.00424 0.0142 0 0 1 1
4 0 0.00488 0.00797 0 0.00336 0.0118 0.0006 0.003 1 1
5 0 0 0 0 0 0 0 0 0 0.95
6 0.00268 0.00367 0.00392 0 0.00341 0.0114 0 0 0.788 0.794
7 0.0007 0.00371 0.00564 0 0.00245 0.0099 0 0.002 0.745 0.779
8 0.00084 0.00446 0.00679 0 0.00295 0.0119 0 0.003 0.823 0.843
9 0.00305 0.00417 0.00446 0 0.00388 0.013 0 0 0.771 0.767
10 0.00322 0.00441 0.00471 0 0.00409 0.0137 0 0 1 1



 

 

The validity of GPDEA when compared with the results of MCDEA 

To explore the results of MCDEA models we further compared the results of GPDEA with MCDEA. We 

discovered that the GPDEA models do not conduct nor achieve the same purposes as the MCDEA model. 

MCDEA model uses non-dominated solutions and each objective is handled one at a time; hence unlike 

the GPDEA models, MCDEA does not attempt to get a global optimal value but more towards generating 

a series of non-dominated solutions interactively. In other words, MCDEA can be used to achieve either a 

stricter or more lenient solution set, depending on whether more or less number of efficient DMUs are 

sought by the analyst in the decision making process.   

We recomputed the results of the MCDEA model of Li and Reeves using the Minsum objective function 

of jj
d¦  and reproduce them in Table 4 (CRS) and Table 5 (VRS). If one would compare the efficiency 

values of Table 4 and Table 5 with the GPDEA models of Table 2 and Table 3, the observation would 

yield similar efficiency values. Again, the comparison has to be made on the corrected values denoted as 

‘true values’ in Table 2 and Table 3 and not the ‘values reported in Bal et al. (2010)’. In summary, we 

found that the GPDEA models’ achievement objective function ൛݀ଵି൅݀ଵା൅݀ଶା ൅ σ ݀ଷ௝ି௝ ൅ σ ௝݀௝ ൟ cannot 

handle all three criteria of the MCDEA model. 

Table 3
GPDEA-BCC results based on example 1 dataset
DMU Output weights Input weights  Efficiency Efficiency 

uΌ u΍ uΎ uΏ vΌ v΍ vΎ vΏ  true values  Provided by Bal
1 0.00762 0 0.00172 0 0.00155 0.019 0 0 0.765 0.971
2 0.0034 0.00328 0.00307 0 0.00368 0.0138 0 0 0.945 0.951
3 0.00355 0.00343 0.00321 0 0.00385 0.0145 0 0 1 1
4 0 0.005 0.00821 0 0.00314 0.0119 0.0003 0.003 1 1
5 0 0 0 0 0 0 0 0 0 0.961
6 0.00289 0.00279 0.00261 0 0.00313 0.0118 0 0 0.788 0.965
7 0.0052 0 0.00118 0 0.00106 0.013 0 0 0.718 0.798
8 0.00349 0.00338 0.00316 0 0.00379 0.0142 0 0 0.89 1
9 0.0033 0.00319 0.00298 0 0.00358 0.0135 0 0 0.824 0.909
10 0.0035 0.00338 0.00316 0 0.00379 0.0143 0 0 1 1



 

 

The validity of GPDEA when investigating the case of variable returns to scales (VRS) 

In classical VRS model (Banker, Charnes, Cooper 1984), oc  is a free variable placed in both the objective 

function and the inequality constraint. We ran the analysis based on a wrongly formulated VRS model on 

purpose by considering only oc in the constraint 0r rj i ij jr i
u y v x d� �  ¦ ¦ but not in the objective 

function of MCDEA Model 1 for the Minsum objective function of jj
d¦ (see Appendix 3). With the 

exception of DMU5, we achieved the same efficiency results as Bal et al. (Bal, et al., 2010) with this 

purposefully intended incorrect formulation! This can be observed by comparing the true values in Table 

3 against the efficiency values in Table 5. It can therefore be concluded that GPDEA model under VRS 

proposed by Bal et al.(Bal, et al., 2010), as seen in Appendix 3, is not an acceptable model as an extension 

of VRS model (Banker, Charnes, & Cooper, 1984) for MCDEA. 

Table 4
Minsum DEA-CCR results based on example 1 dataset
DMU Output weights Input weights   Efficiency

uΌ u΍ uΎ uΏ vΌ v΍ vΎ vΏ     
1 0.00102 0.00543 0.00827 0 0.00359 0.01453 0 0.0034 1
2 0.00317 0.00434 0.00464 0 0.00403 0.01347 0 0 0.948
3 0.00333 0.00456 0.00488 0 0.00424 0.01417 0 0 1
4 0 0.00488 0.00797 0 0.00336 0.01182 0.0006 0.003 1
5 0.00119 0.00636 0.00967 0 0.0042 0.01699 0 0.004 1
6 0.00268 0.00367 0.00392 0 0.00341 0.0114 0 0 0.788
7 0.0007 0.00371 0.00564 0 0.00245 0.0099 0 0.0024 0.745
8 0.00084 0.00446 0.00679 0 0.00295 0.01193 0 0.0028 0.823
9 0.00305 0.00417 0.00446 0 0.00388 0.01297 0 0 0.771
10 0.00322 0.00441 0.00471 0 0.00409 0.0137 0 0 1



 

 
The validity of GPDEA and the issue of zero weights on specific variable for all DMUs 

 
Table 6 is the same data as used in Bal et al. (Bal, et al., 2010), which is reproduced here for ease of 

reference.  The data consists of 7 departments (DMUs) in a university with the following input and output 

variables: number of academic staff ( 1x ), academic staff salaries in thousands of pounds ( 2x ), support 

staff salaries in thousands of pounds ( 3x ), number of undergraduate students ( 1y ), number of 

postgraduate students ( 2y ), number of research papers ( 3y ).  

 

 

 

When applying the GPDEA model, we first noticed the results reported in Bal et al (Bal, et al., 2010) 

were incorrect. We therefore reported the correct results in Table 7 to 10. It is easy to observe that the 

input-output weights do not discriminate well and the GPDEA model cannot be representative of the 

Table 5
Minsum DEA-BCC results based on example 1 dataset
DMU Output weights Input weights   Efficiency

uΌ u΍ uΎ uΏ vΌ v΍ vΎ vΏ     
1 0.00762 0 0.00172 0 0.00155 0.01901 0 0 0.765
2 0.0034 0.00328 0.00307 0 0.00368 0.01385 0 0 0.945
3 0.00355 0.00343 0.00321 0 0.00385 0.01446 0 0 1
4 0 0.005 0.00821 0 0.00314 0.0119 0.0003 0.0034 1
5 0.00491 0.00475 0.00444 0 0.00532 0.02001 0 0 1
6 0.00289 0.00279 0.00261 0 0.00313 0.01178 0 0 0.788
7 0.0052 0 0.00118 0 0.00106 0.01297 0 0 0.718
8 0.00349 0.00338 0.00316 0 0.00379 0.01424 0 0 0.89
9 0.0033 0.00319 0.00298 0 0.00358 0.01345 0 0 0.824
10 0.0035 0.00338 0.00316 0 0.00379 0.01426 0 0 1

Table 6
Example 2 university dataset
DMU Outputs Inputs

yΌ y΍ yΎ xΌ x΍ xΎ
1 60 35 17 12 400 20
2 139 41 40 19 750 70
3 225 68 75 42 1500 70
4 90 12 17 15 600 100
5 253 145 130 45 2000 250
6 132 45 45 19 730 50
7 305 159 97 41 2350 600



MCDEA model. Based on the correct weights reported in Tables 7 to 10 derived from the analysis, it can 

be noted that the third input is ignored by almost all DMUs in Tables 7 and 9. Also, the first and third 

outputs are ignored by all DMUs in Tables 8 and 10 (as it be seen all weights are set to zero). That 

suggests that these variables have no effect in the efficiency of values of the evaluation!. We will see that 

in the proposed model of Section 4; we would impose some restrictions on the weights to avoid this issue.  

 

 

 

 

Table 7
GPDEA-CCR results of the university dataset 
DMU Output weights Input weights      Efficiency Efficiency

uΌ u΍ uΎ vΌ v΍ vΎ true values Provided by Bal
1 0 0 0 0 0 0 0 1
2 0.00333 0.00921 0.0029 0.02019 0.00082 0 0.9556 0.955
3 0.0016 0.00442 0.0014 0.0097 0.00039 0 0.7648 0.764
4 0 0 0 0 0 0 0 0.576
5 0.0013 0.00361 0.0011 0.00791 0.00032 0 1 1
6 0.00339 0.00936 0.0029 0.02053 0.00084 0 1 1
7 0.0026 0.00218 0 0 0.00041 6.4E-05 1 1

Table 8
GPDEA-BCC results of the university dataset 
DMU Output weights Input weights      Efficiency Efficiency

uΌ u΍ uΎ vΌ v΍ vΎ true values Provided by Bal
1 0 0 0 0 0 0 0 1
2 0.00834 0.007 0 0 0.00131 0.00021 1 0.963
3 0.0042 0.00353 0 0 0.00066 0.0001 0.9603 0.813
4 0.01031 0.00866 0 0 0.00162 0.00025 0.4796 0.576
5 0.00311 0.00261 0 0 0.00049 7.7E-05 1 1
6 0.00861 0.00722 0 0 0.00136 0.00021 1 1
7 0.0026 0.00218 0 0 0.00041 6.4E-05 1 1

Table 9
Minsum DEA-CCR results of the university dataset
DMU Output weights Input weights      Efficiency

uΌ u΍ uΎ vΌ v΍ vΎ
1 0.00583 0.01612 0.0051 0.03536 0.00144 0 1
2 0.00333 0.00921 0.0029 0.02019 0.00082 0 0.9556
3 0.0016 0.00442 0.0014 0.0097 0.00039 0 0.7648
4 0.00418 0.01157 0.0036 0.02537 0.00103 0 0.5769
5 0.0013 0.00361 0.0011 0.00791 0.00032 0 1
6 0.00339 0.00936 0.0029 0.02053 0.00084 0 1
7 0.00121 0.00334 0.001 0.00732 0.0003 0 1



 

 

4. A new bi-objective multiple criteria (BiO-MCDEA) model 

The aim of this section is to introduce an alternative MCDEA model which is able to provide better 

weight dispersion and discrimination while allowing multiple criteria to be optimised simultaneously. In 

our attempt, we seek to avoid the earlier issues raised in the GPDEA models.  

Although there are a variety of solution procedures for multi-objective or multi-criteria linear 

programming (MOLP or MCLP), only goal programming had been suggested for optimizing all 

objectives simultaneously. The difficulty of a multi-objective problem is not just in finding an optimal 

solution for each objective function but to find an optimal solution that simultaneously optimizes all 

objectives. In most cases, no single optimal solution would satisfy all the conditions simultaneously, thus 

requiring a set of efficient or non-dominated solutions. Further details on MOLP problem can be found in 

(Cohon, 1987; Dimitris P, 2003).  

In Li and Reeves (Li&Reeves, 1999) proposed MCDEA model, they used the ‘‘non-dominated’’ solution 

approach. Bal et al. (Bal, et al., 2010) proposed goal programming as an alternative for achieving all 

objectives simultaneously in the MCDEA model. It has been pointed out in the previous section that the 

proposed GPDEA models suffer from serious drawbacks. We are compelled therefore to consider an 

alternative approach to optimise all objectives simultaneously in a MCDEA model, i.e. a bi-objective 

weighted formulation. 

Recalling Li and Reeves (Li & Reeves, 1999) approach, the MCDEA model’s objective functions 

consistof three parts: min d o , min M, and min jj
d¦ as defined in model 1. In a weighted method, the 

MCDEA’s tri-objective function can be restated as follows, 1 2 3o jj
w d w M w d� � ¦  for the single 

Table 10
Minsum DEA-BCC results of the university dataset
DMU Output weights Input weights      Efficiency

uΌ u΍ uΎ vΌ v΍ vΎ
1 0.01575 0.01322 0 0 0.00248 0.00039 0.5639
2 0.00834 0.007 0 0 0.00131 0.00021 1
3 0.0042 0.00353 0 0 0.00066 0.0001 0.9603
4 0.01031 0.00866 0 0 0.00162 0.00025 0.4796
5 0.00311 0.00261 0 0 0.00049 7.7E-05 1
6 0.00861 0.00722 0 0 0.00136 0.00021 1
7 0.0026 0.00218 0 0 0.00041 6.4E-05 1



weighted objective equivalent. The weights ( 1,2,3)iw i  can be varied to obtain different efficient 

solutions.  

However, given that the first objective w1 is in fact the equivalent to a conventional CCR model, it can be 

eliminated from the MCDEA in the weighted objective sense. Besides, Li and Reeves had demonstrated 

that the first objective yields lower discrimination power as compared to the other two objectives. Hence, 

for our proposed model, we solved the bi-objective weighted problem using both the second and third 

objectives. The value of 1w is set equal to zero because whenever jj
d¦ is minimized, od will be 

minimized as well. Thus, we proposed the following model:  

 

Model 3: A new bi-objective MCDEA (Bio-MCDM) model under CRS 
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where d o and d j ( j =1,…,n) are the deviation variables for ܯܦ ௢ܷ and the jth DMU respectively. ܯܦ ௢ܷis 

efficient if and only if ݀௢=0, otherwise the efficiency value of ܯܦ ௢ܷ  is ݄௢ ൌ ͳ െ ݀௢ .The effect of 

constraints ܯ െ ௝݀ǡ ሺ݆ ൌ ͳǡǥ ǡ ݊ሻ which do not change the feasible region of the solution is merely to 

make M the maximum deviation. The values of ru and rv are set to be greater than or equal to , thus 

ensuring that this lower bound specification will avoid inputs or the outputs from being ignored by the 

 .ݏܷܯܦ



We analyzed the dataset of ‘Example 1’ and the ‘university dataset’ with the proposed approach. The 

efficiency values in Table 11 and Table 12 perform better when compared against the actual efficiency 

values of the GPDEA-CCR models (Table 2 and Table 7, respectively). 

 

 

 

5. An Application of Energy Dependency among EU member countries 

We further illustrate our proposed model with a 3-inputs and 2-outputs data of 26 European Union (EU) 

member countries (except Malta) as presented in Appendix 4. Data were based on the EU Emissions 

Trading Scheme of more than 10,000 installations that generate an excess of 20MW each within the 

country. This is believed to capture about half of the CO2 emissions within EU. We termed the model as 

energy dependency as the choice of inputs are based on a set of resources that generate carbon emissions 

and the output will be the extent of those resources in limiting the carbon effects. The operational 

definition of the 3 inputs and 2 outputs are as follows: 

 

Table 11
Model (4) results based on example 1 dataset (ε=0.0001)

DMU Output weights Input weights   Efficiency Super Rank
uΌ u΍ uΎ uΏ vΌ v΍ vΎ vΏ     Efficiency

1 0.0042 0.00481 0.00573 0.0001 0.00453 0.01678 0.0001 0.0002 0.961 0.961 4
2 0.0029 0.00435 0.0048 0.0001 0.00404 0.01324 0.0001 0.0001 0.948 0.948 5
3 0.00358 0.00408 0.00488 0.0001 0.00386 0.01429 0.0001 0.0001 1 1.21 2
4 0.0001 0.00486 0.00782 0.0001 0.00344 0.01191 0.0006 0.0029 1 1.079 3
5 0.0042 0.00624 0.0069 0.0001 0.00576 0.01906 0.0001 0.0002 0.947 0.947 6
6 0.00245 0.00369 0.00408 0.0001 0.00344 0.01123 0.0001 0.0001 0.789 0.789 8
7 0.00116 0.00373 0.00522 0.0001 0.00283 0.01031 0.0001 0.0016 0.767 0.767 9
8 0.00147 0.00445 0.00617 0.0001 0.00339 0.01237 0.0001 0.0019 0.837 0.837 7
9 0.00279 0.00418 0.00463 0.0001 0.00389 0.01275 0.0001 0.0001 0.761 0.761 10
10 0.00294 0.00441 0.00488 0.0001 0.0041 0.01346 0.0001 0.0001 1 1.419 1

Table 12
Model (4) results of the university dataset (ε=0.0001)

DMU Output weights Input weights     Efficiency Super Rank
uΌ u΍ uΎ vΌ v΍ vΎ Efficiency

1 0.00584 0.01619 0.00486 0.0371 0.00138 0.0001 1 1.136 3
2 0.00335 0.0093 0.0027 0.022 0.00077 0.0001 0.955 0.955 5
3 0.00162 0.00452 0.0012 0.0115 0.00034 0.0001 0.763 0.763 6
4 0.00419 0.01162 0.00343 0.0271 0.00097 0.0001 0.575 0.575 7
5 0.00133 0.00372 0.00095 0.0098 0.00027 0.0001 1 1.171 2
6 0.00341 0.00947 0.00275 0.0224 0.00078 0.0001 1 1.037 4
7 0.00122 0.00342 0.00086 0.0091 0.00024 0.0001 1 1.241 1



Table 13  

Model Variables and Operational Definition 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although the weights of our proposed Model 4 can be varied to obtain a set of efficiency scores according 

to the decision analyst’s preference, we have set equal objectives such that w2=w3=0.5. The results are 

presented in Table 14 and compared against Bal et al.’s GPDEA CCR solution in Table 15. The results 

show that the proposed Model outperforms the GPDEA model; both, in terms of discrimination power 

and weight dispersion.  

Input Variables Definition 

Installation Count ሺ�ଵሻ An installation is a stationary technical unit where one or more 
activities are carried out, which could have an effect on 
emissions and pollution. 

Allocated Carbon 
Allowances ሺ�ଶሻ 

It is an allowance distributed each year for free to installations 
according to the national allocation plan, measured in tonnes of 
carbon dioxide equivalent.  

Gross Inland energy 
consumption (GIC), by 
fuel ሺ�ଷሻ 

GIC is the quantity of energy, expressed in oil equivalents, 
consumed within the borders of a country. It is calculated as 
total domestic energy production plus energy imports and 
changes in stocks minus energy exports.  

  
Output Variables  

Electricity Generated From 
Renewable Sources ሺ�ଵሻ 

Percentage of gross electricity consumed.  
 
 

Share of renewable energy 
in fuel consumption of 
transport ሺ�ଶሻ 

The degree to which conventional fuels have been substituted 
by biofuels in transportation.  



 

Table 14
Model (4) results of the 26-country dataset (Ɛ = 0.0001) 
DMU Output Weights Inputs Weight    Efficiency  Rank

    u1     u2       v1     v2       v3

Austria 0.1762 0.0165 0.0001 3.1433 0.0001 0.1887 8
Belgium 0.4010 0.0793 5.5165 0.0001 0.0001 0.0669 14
Bulgaria 0.0737 0.2344 0.0001 0.0001 9.6501 0.0272 23
Cyprus 0.5878 1.8698 0.0001 0.0001 76.9715 0.4355 4
Czech Republic 0.0348 0.1107 0.0001 0.0001 4.5564 0.0473 17
Denmark 0.3558 0.0703 4.8945 0.0001 0.0001 0.1492 10
Estonia 0.2523 0.8026 0.0001 0.0001 33.0405 0.0417 18
Finland 0.2196 0.0434 3.0211 0.0001 0.0001 0.0964 11
France 0.0784 0.0074 0.0001 1.3977 0.0001 0.0210 24
Germany 0.0077 0.0243 0.0001 0.0001 0.9998 0.0180 25
Greece 0.0473 0.1505 0.0001 0.0001 6.1934 0.0279 21
Hungary 0.5376 0.1063 7.3962 0.0001 0.0001 0.0946 12
Ireland 1.1707 0.2314 16.1047 0.0001 0.0001 0.2952 6
Italy 0.0969 0.0091 0.0001 1.7278 0.0001 0.0338 20
Latvia 0.9906 0.0929 0.0001 17.6725 0.0001 0.7431 3
Lithuania 1.2734 0.2517 17.5175 0.0001 0.0001 0.2279 7
Luxembourg 9.6775 1.9132 133.1332 0.0001 0.0001 1.0000 1
Netherlands 0.0357 0.1135 0.0001 0.0001 4.6723 0.0603 15
Poland 0.0148 0.0471 0.0001 0.0001 1.9389 0.0276 22
Portugal 0.3279 0.0307 0.0001 5.8497 0.0001 0.1762 9
Romania 0.0405 0.1287 0.0001 0.0001 5.2964 0.0409 19
Slovakia 0.7222 0.1428 9.9352 0.0001 0.0001 0.3361 5
Slovenia 1.4516 0.2870 19.9699 0.0001 0.0001 0.8628 2
Spain 0.1270 0.0251 1.7470 0.0001 0.0001 0.0592 16
Sweden 0.0981 0.0092 0.0001 1.7505 0.0001 0.0906 13
United Kingdom 0.0138 0.0438 0.0001 0.0001 1.8016 0.0151 26
Note: The results are based on the normalized version of the raw data provided in Appendix 4



 

Comparing the two, it can be easily observed from Table 13 and Table 14 that the efficiency scores from 
our proposed model could provide easy ranking without any ties. Such is not the case for the GPDEA 
efficiency scores in Table 14. All the efficiency scores and weights for GPDEA appear to be approximate 
to zero.  

6. Concluding remarks 

Table 15
Bal et al.'s GPDEA-CCR results of the 26-country dataset (Ɛ = 0.0001) 
DMU Output Weights Inputs Weight      Efficiency

    u1     u2       v1     v2       v3

Austria 0.0001 0.0001 0.00089 0.0001 0.00359 0.00018
Belgium 0.0001 0.0001 0.00089 0.0001 0.00359 0.00005
Bulgaria 0.0001 0.0001 0.00089 0.0001 0.00359 0.00002
Cyprus 0.0001 0.0001 0.00089 0.0001 0.00359 0.00002
Czech Republic 0.0001 0.0001 0.00089 0.0001 0.00359 0.00005
Denmark 0.0001 0.0001 0.00089 0.0001 0.00359 0.00005
Estonia 0.0001 0.0001 0.00089 0.0001 0.00359 0.00001
Finland 0.0001 0.0001 0.00089 0.0001 0.00359 0.00007
France 0.0001 0.0001 0.00089 0.0001 0.00359 0.00009
Germany 0.0001 0.0001 0.00089 0.0001 0.00359 0.00009
Greece 0.0001 0.0001 0.00089 0.0001 0.00359 0.00003
Hungary 0.0001 0.0001 0.00089 0.0001 0.00359 0.00005
Ireland 0.0001 0.0001 0.00089 0.0001 0.00359 0.00004
Italy 0.0001 0.0001 0.00089 0.0001 0.00359 0.00007
Latvia 0.0001 0.0001 0.00089 0.0001 0.00359 0.00009
Lithuania 0.0001 0.0001 0.00089 0.0001 0.00359 0.00006
Luxembourg 0.0001 0.0001 0.00089 0.0001 0.00359 0.00003
Netherlands 0.0001 0.0001 0.00089 0.0001 0.00359 0.00006
Poland 0.0001 0.0001 0.00089 0.0001 0.00359 0.00006
Portugal 0.0001 0.0001 0.00089 0.0001 0.00359 0.00009
Romania 0.0001 0.0001 0.00089 0.0001 0.00359 0.00006
Slovakia 0.0001 0.0001 0.00089 0.0001 0.00359 0.00013
Slovenia 0.0001 0.0001 0.00089 0.0001 0.00359 0.00008
Spain 0.0001 0.0001 0.00089 0.0001 0.00359 0.00008
Sweden 0.0001 0.0001 0.00089 0.0001 0.00359 0.00017
United Kingdom 0.0001 0.0001 0.00089 0.0001 0.00359 0.00004
Note: The analysis above is based on Bal et al.'s GPDEA-CCR model.  The weights and 
         efficiency values are close to zero, rendering the model to have poor weight dispersion
         and discriminant power. The results are based on the normalized version of the raw data 
         provided in Appendix 4.



    Since 1999 when Li and Reeves first proposed the MCDEA, there is only but one other proposed 

solution approach that was suggested for MCDEA, which is the GPDEA. We have shown that the 

GPDEA models are not alternatives to the MCDEA model. It has major drawbacks in both discrimination 

power and weight dispersion, aside from the misreported efficiency values of all the tests. Hence, the fair 

basis of comparison would be between our proposed model and the GPDEA models, given that the 

MCDEA model merely provided a mathematical formulation with an interactive solution procedure 

without any emphasis placed on the issues of discrimination power and weight dispersion.  

Hence, we have illustrated that our bi-objective multiple criteria DEA model outperforms the GPDEA 

model in terms of both weight dispersion and discrimination power.  

Although we have proposed a bi-objective weighted method for solving the MCDEA model, we stress 

that there may be other procedures that can be used to extract solutions under multiobjective LP 

environment. We merely show a procedure that performs better than the GPDEA in terms of ease of 

formulation and mathematical programming (i.e. less computational codes). We hope that future 

researchers in DEA will provide better solution procedures for the MCDEA model.   
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Appendix 1:  

Goal programming DEA model under variable returns to scale as proposed in Bal et al’s (Bal, et al., 
2010)  (see also appendix 3) 
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Appendix 2:  

Proof of logical invalidity of GPDEA formulation 

 

From Bal el al.’s GPDEA-CCR model (2): 
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Multiplying equality (II) by -1: 
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adding ሺܫሻand ሺܸܫሻyields: 
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Since the efficiency value for DMU under evaluation, ݄௢, must be equal to σ ௥௢௦ݕ௥ݑ
௥ୀଵ ,(I) can be restated 

as: 
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Since݄௢ ൌ ͳ െ ݀௢�in classical DEA, ݀௢ ൌ ሺ݀ଶି െ ݀ଶାሻ in ሺܸܫܫܫሻ. Therefore, the value of ݀ଵି െ ݀ଵା in ሺܸܫܫሻ 
must be equal to zero to render correctness. Nonetheless, in Bal el al.’s GPDEA models, the weighted 
sum of inputs for DMU under evaluationσ ௜௢௠ݔ௜ݒ

௜ୀଵ , can be zero or less than unity, which is highly 
problematic. Without loss of generality, the same problem applies to the GPDEA-BCC model.  

 

Appendix 3: 

Minsum BCC-DEA model under variable returns to scale, a wrongly formulated VRS model 
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Appendix 4: 

The Energy Dependency Dataset 

 

 

Dataset of 26 countries
Countries Outputs Inputs

      Y1       Y2      X1        X2             X3

Austria 66.793 6.5 225 8810 31887710
Belgium 6.083 3.3 362 2242 56797576
Bulgaria 9.808 0.6 146 1087 40591231
Cyprus 0.073 2.0 13 98 5089082
Czech Republic 6.783 3.4 425 2425 85968002
Denmark 27.390 0.4 408 3242 23912314
Estonia 6.105 0.2 56 717 11855527
Finland 25.777 2.3 661 7887 37069940
France 13.547 6.0 1125 19811 128660709
Germany 16.200 5.7 1997 27693 391714624
Greece 12.276 1.1 162 1861 63246705
Hungary 6.988 3.1 270 1854 23844843
Ireland 13.925 1.9 124 641 19951911
Italy 20.536 3.8 1201 16026 208982856
Latvia 49.232 1.2 111 1567 3532491
Lithuania 5.505 4.2 114 874 7573712
Luxembourg 3.678 2.1 15 121 2488229
Netherlands 9.152 4.2 443 3148 83834170
Poland 5.804 4.8 943 6265 202011597
Portugal 33.267 3.6 280 4734 30902050
Romania 27.916 1.6 275 5270 73956515
Slovakia 17.880 8.6 201 1214 32140581
Slovenia 36.783 1.9 100 887 8216051
Spain 25.747 3.5 1143 12091 150707494
Sweden 56.378 7.3 821 15819 21103878
United Kingdom 6.664 2.7 1140 6214 217404830
Note: The data are taken from three databases: European commision's Eurostat,  
          Carbonmarketdata.com and i-insights.com
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