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Nutritional diversity is a key element of food security1–3. However, research on the effects of 6 

climate change on food security has, thus far, focussed on the major food grains4–8, while the 7 

response of other crops, particularly those that play an important role in the developing 8 

world, are poorly understood. Bananas are a staple food and a major export commodity for 9 

many tropical nations9. Here we show that for 27 countries – accounting for 86% of global 10 

dessert banana production – a changing climate since 1961 has increased yields by an average 11 

of 1.37 T.ha-1. While past gains have been largely ubiquitous across the countries assessed, 12 

African producers will continue to see yield increases into the future. Moreover, global yield 13 

gains could be dampened or disappear in the future, reducing to 0.59 T.ha-1 and 0.19 T.ha-1 by 14 

2050 under the RCP 4.5 and 8.5 climate scenarios, respectively, driven by declining yields 15 

amongst the largest producers and exporters. By quantifying climate-driven and technology-16 

driven influences on yield, we also identify countries at risk from climate change and those 17 

capable of mitigating its effects, or capitalising on its benefits. 18 

Bananas are widely cultivated in tropical and sub-tropical regions around the world, where they can 19 

provide a substantial proportion of affordable calories, dietary diversity and income9-11. Bananas are 20 

also ubiquitous in their availability in non-producing regions through international trade, which 21 

accounts for 15% of global production12. This international trade supplements nutritional diversity 22 

in non-producing countries, while making a large contribution to local and national economies in 23 

producing countries. For example, bananas and their derived products constitute the second largest 24 

agricultural export commodity of Ecuador and Costa Rica13. Globally, bananas (together with 25 

plantains) are amongst the top ten crops in terms of area of cultivation, yield and calories 26 

produced10. Given the importance of this crop for subsistence and trade, it is surprising how poorly 27 

represented bananas are in global assessments of climate change impacts on food and nutritional 28 

security4-6. 29 



Quantifying the optimal climatic conditions for banana productivity is central to assessing the 30 

crop’s climate sensitivity, and thereafter, predicting the potential impacts of climate change on 31 

banana production systems. Ideally, this requires the collation of data from experiments and field 32 

trials conducted over a range of environmental conditions, including sub-optimal combinations. 33 

While few such experiments have been conducted14-19, some of which constitute the core of most 34 

banana production models currently used (e.g. Global Agro-Ecological Zones; GAEZ), major 35 

challenges remain. Firstly, the small number of published studies, coupled with small sample sizes 36 

within them and the limited breadth of environmental conditions assessed, are inadequate to derive 37 

generalisable estimates of optimal conditions for a crop so widely cultivated across the world. 38 

Second, estimates of productivity-climate relationship parameters have not been rigorously 39 

validated against large quantities of observed production data. Consequently, the representation of 40 

bananas in existing crop models is likely to be based on abstractions derived from shared plant 41 

characteristics1, which may not accurately predict effects of climate change on productivity. 42 

Here we assess the climate sensitivity of global dessert banana (banana, hereafter) productivity or 43 

yield using a combination of national and sub-national production datasets from 27 countries (Table 44 

1) spanning varying time periods (Supplementary table S1), coupled with previously published 45 

expert information on banana physiology. In all, the data used in our analyses account for 46 

approximately 86% of the world’s banana production and covers 80% of global area under 47 

cultivation. The selected countries include the world’s largest and regionally important producers, 48 

as well as the largest exporters of bananas, e.g. Ecuador, Colombia, Costa Rica, Ivory Coast, 49 

Philippines, etc.20. This large geographically stratified set of nations is exposed to diverse climatic 50 

conditions – ideally suited for climate sensitivity assessments. We statistically fitted observed yield 51 

data from the 1281 geographic units over multiple years to elevation corrected mean annual 52 

temperature and total annual precipitation using a beta function21. This allowed us to empirically 53 

identify the optimum climate space for banana productivity, and develop a climate-driven relative 54 

yield coefficient model for bananas. Model fitting involved partitioning the observed data into six 55 



regional subsets (Table 1), resulting in six regional models and a single global model. Models were 56 

constructed at these two scales to assess the validity of using a single global model for bananas, 57 

given that regions and countries can vary widely in cultivation practices and cultivars of bananas 58 

grown. Thereafter, we employed the regional models to quantify historical climate change effects 59 

on productivity, as well as the contribution of change in cultivation efficiency over time 60 

(technology trend), and project the future impacts of climate change. 61 

In our global model, optimum mean annual temperature for banana productivity was estimated at 62 

26.7°C (95% confidence interval = ± 0.04°C; Fig 1; Supplementary table S2), which is very similar 63 

to the commonly used optimum temperature of 27°C10,22,23. However, the optimum temperatures for 64 

regional models varied considerably, ranging from 20.1°C (95% CI = ± 0.1°C) for Brazil, to 30.4°C 65 

(95% CI = ± 0.1°C) for Africa (Fig 1; Supplementary table S2). Optimum total annual rainfall in 66 

our global model was estimated at 1673 mm (± 13 mm), which falls within the range previously 67 

reported23 (900 mm – 1700 mm). But again, regional models varied substantially (Fig 1; 68 

Supplementary table S2), with India showing the lowest optimum rainfall of 327 mm.y-1 (95% CI = 69 

± 16 mm.y-1) and China requiring the highest (2924 mm.y-1; 95% CI = ± 27 mm.y-1). Hence, relying 70 

on a single global model to understand the climate sensitivity of banana productivity is likely to 71 

result in considerable error at regional, national and sub-national scales. 72 

Our hindcast analysis, which utilised the regional climate-yield models, suggests that climate 73 

change over the recent past (1961 to 2016) has had a net benefit on global banana yields (Fig 2a), 74 

which have increased at a rate of 0.024 T.ha-1.y-1 (95% CI = ± 0.006 T.ha-1.y-1). Over the 56 years 75 

of the hindcast assessment this translates to an average global yield increase of 1.37 T.ha-1 (95% CI 76 

= ± 0.33 T.ha-1). Of the 27 countries included in our analyses, 21 showed a positive effect of recent 77 

climate change on banana yields, two (Kenya and Colombia) showed no effect, and four (Brazil, 78 

Indonesia, Malaysia and Philippines) showed climate-driven yield declines (Fig 2a; Supplementary 79 

table S3). On aggregating national yield trends to regional averages, we find that Africa, China, 80 



India, as well as Latin America and the Caribbean (LAC) show positive effects of climate change 81 

on banana yields, while Brazil, and south-east Asia and Australia (SEAA) have been negatively 82 

affected (Supplementary figure S8a; Supplementary table S3). Changes in yield appear to be 83 

primarily driven by consistent increases in temperature over the recent past (Supplementary figure 84 

S9; Supplementary table S6). Countries where warming has resulted in banana growing areas 85 

experiencing more optimal temperatures have seen productivity increases, while countries where 86 

temperatures have exceeded the regional optimum, show declines. However, we note that the 87 

inclusion of irrigated production in our analyses may obscure the influence of change in 88 

precipitation on yields. 89 

In countries such as Brazil and Malaysia, modelled climate-driven yield declines (Fig 2a) are also 90 

reflected in observed country level yield declines (Supplementary figure S10). However, large 91 

increases in observed yields in Indonesia and Philippines (Supplementary figure S10) run counter to 92 

modelled climate-driven yield declines. This could be attributed to the large positive effect of 93 

changes in cultivation efficiency or a positive technology-yield trend (an aggregate term that 94 

captures changes in cultivation practices, inputs, land management and investment in infrastructure, 95 

such as irrigation, etc.), which overwhelms the relatively smaller negative effect of climate change 96 

(Fig 3). Technology-yield trends were positive for most countries considered here, and of 97 

magnitudes much greater than climate-yield trends, thus enhancing observed country-scale yields. 98 

However, in some cases a strong negative technology-yield trend completely counteracted, and 99 

reversed yield gains due to climate change. For example, countries such as Cameroon, Ethiopia and 100 

Panama show a positive effect of climate change on yields, but a strong negative technology trend 101 

(Fig 3), resulting in an overall decline in observed yields over time (Supplementary figure S10). 102 

Hence, the capacity to capitalise on the benefits of increasingly suitable climatic conditions for 103 

banana cultivation, or mitigating against future change is strongly dependent on how countries 104 

invest in maintaining and improving their cultivation efficiency. 105 



Regional model based forecasting revealed that by 2050, past positive effects of climate change on 106 

average global banana yields, though likely to continue, will be of lower magnitude. Yield increases 107 

could decline to 0.59 T.ha-1 (95% CI = ± 1.38 T.ha-1) and 0.19 T.ha-1 (95% CI = ± 1.86 T.ha-1) 108 

under the RCP 4.5 and more extreme RCP 8.5 climate scenarios, respectively, relative to yields 109 

modelled using long-term climate averages for 1970-2000 (Fig 2b and 2c; Supplementary tables S4 110 

and S5). Unlike the hindcast analysis, where only four countries in our assessment showed a 111 

negative effect of past climate change on yield, negative responses could be more widespread 112 

amongst countries in the future. Ten countries are predicted to show at least a negative trend, if not 113 

strong declines in yields (RCP 4.5 scenario). Importantly, these include India (the world’s largest 114 

producer and consumer of bananas), Brazil (fourth largest producer), as well as Colombia, Costa 115 

Rica, Guatemala, Panama and Philippines, all of which are major exporters. Some countries could 116 

continue to see benefits, or indeed increased benefits, of climate change in the future. These include 117 

all 10 African countries in our assessment, as well as Ecuador (the world’s largest exporter) and 118 

Honduras (also a major exporter). When aggregating future yield trends regionally, Africa 119 

unsurprisingly emerges as a key winner, while the strong positive effects of past climate change in 120 

the LAC countries declines to a positive trend. Similarly, China may not see any benefits of climate 121 

change in the future, as it did in the recent past. India could experience a major reversal with 122 

predicted negative effects of future climate change compared to positive effects in the past. Lastly, 123 

both Brazil and SEAA countries will continue along a negative trajectory into the future 124 

(Supplementary figures S8b and S8c; Supplementary tables S4 and S5). 125 

Combining forecasted climate-driven changes in yield with the technology-yield trend estimates – 126 

which we assume to represent a country’s capacity to adapt to production risks in the future – we 127 

qualitatively classified the climate risk to banana production in each of the 27 countries included in 128 

this study (Fig 4; Supplementary figure S11). Countries where forecasted climate-driven yield 129 

changes were negative, and that had negative or flat technology-yield trends in the past, were 130 

classified as ‘at risk’. These included Malaysia, Panama, Nicaragua, the world’s fourth largest 131 



producer – Brazil , as well as Colombia – a major exporter. The two largest producers, India and 132 

China, along with many LAC countries that are important exporters, as well as Australia, Indonesia 133 

and Philippines were classified as ‘adaptable’. These countries showed potential negative effects of 134 

climate change on yields, but strong positive technology-yield trends that may mitigate climate-135 

driven yield declines. Amongst the countries classified as at an ‘advantage’ - where forecasted 136 

changes in yield are strongly positive – are some of the largest current exporters (Ecuador and 137 

Honduras), and all 10 African countries that were assessed. However, it is important to note here, 138 

that our classification of risk is climate centric. Hence, realising the climate-driven advantage to 139 

banana productivity in many of the African countries will also be contingent on reversing negative 140 

technology-yield trends, e.g. by improving cultivation practices, investing in infrastructure, etc., in 141 

the future. If cultivation efficiency in the African nations can be improved, it could bolster local and 142 

regional nutritional security. In addition, it could also modify the existing configuration of the 143 

banana export market, especially given the negative impacts expected in some of the major current 144 

exporters. 145 

In summary, our study quantified region specific climate-yield relationships for banana cultivation 146 

that suggests that climate change in the recent past has been beneficial to global banana 147 

productivity, but will be less so in the near future. However, we note that our analysis is based on 148 

average climatic conditions and does not account for other climate change driven threats of 149 

increased frequencies of extreme events24, as well as the risk posed by established and emerging 150 

diseases25–27. In addition, our climate-yield models are based on observed production data rather 151 

than experimental assays. Hence, model fits are likely to be influenced by agro-economic factors in 152 

addition to banana plant physiology, and therefore, model interpretation requires caution (see 153 

Methods). Previous studies have largely assessed climate driven changes in the extent of land 154 

suitable for banana cultivation10,22,23,28,29, without considering the potential for competition with 155 

other staple crops and land-use types30. In contrast, analyses here focused on the more practical 156 

quantity of yield changes where bananas are already being grown. In addition, we assessed the 157 



climate risk to major producer and exporter countries. We infer that future climate risks to banana 158 

production could largely be mitigated to secure local nutritional diversity and security. 159 

Nevertheless, securing supply to non-producing countries, where banana consumption is an 160 

important contributor to dietary diversity, is likely to require a reorganisation of the export market. 161 
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 241 
 242 
Tables 243 

Table 1. Banana producing countries (grouped by regions) used in this analysis. Country code is the 244 

abbreviation by which countries are referred to in figures associated with our analyses. Values for 245 

area harvested and production are for 2016 (ref. 21). The Exp:Prod variable represents the 246 

proportion of production that is exported. For regional names: LAC – Latin America and the 247 

Caribbean, SEAA – South East Asia + Australia.  248 

  249 



Figures 250 

 251 

Figure 1. Climate-yield model parameter estimates for bananas cultivation. The minimum 252 

(blue vertical lines), optimum (green vertical lines) and maximum (red vertical lines) temperature 253 

and rainfall cardinal values estimated using beta functions for banana yields. Estimates are 254 

presented for each of the six regional models and a single global banana climate-yield model. For 255 

clarity, 95% confidence limits around the estimated parameters are presented in Supplementary 256 

table S2. Curves fitted to observed data are presented in Supplementary figures S1-S7. (*) See 257 

Methods for notes on interpreting results for Brazil.  258 

*



 259 

Figure 2. Effects of past and future climate change on banana yields. Modelled contribution of 260 

climate change between 1961 and 2016 on banana yields in major producing countries from a 261 

hindcast analysis (a). b,c Predicted changes in banana yields by 2050 relative to yields modelled 262 

using long-term average climatic conditions (1970 to 2000) under RCP 4.5 (b) and RCP 8.5 (c) 263 

climate change scenarios. The black horizontal lines and grey areas in each panel represent the 264 

global area averaged change in yield due to climate change, and associated 95% confidence bounds. 265 

Error bars in all cases represent 95% confidence intervals. Each bar is associated with a two letter 266 

country name abbreviation and colour coded by region (see table 1).  267 

Country

(a)

(b)

(c)



 268 

Figure 3. Effect of changes in climate and cultivation efficiency (technology) on banana yields 269 

(1961 to 2016). Error bars represent 95% confidence intervals. Countries are colour coded by 270 

region and two letter country codes (table 1) are used to label each country.  271 

Climate trend

Technology trend

Africa LAC SEAA



 272 

Figure 4. Future climate risk assessment for major banana producing countries (by 2050). 273 

This categorisation was carried out by combining changes in predicted yield under the RCP 8.5 274 

climate change scenario and the effect of cultivation efficiency (technology trend) on past yields. 275 

Countries classified as ‘at risk’ are those where yields are predicted to decline due to climate change 276 

and that have shown a negative technology trend on past yields. ‘Adaptable’ countries could see 277 

future climate-driven yield declines, but mitigation could be possible given past positive technology 278 

trends. ‘At advantage’ countries are those that are predicted to experience climate-driven increases 279 

in yield by 2050.  280 
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Methods 281 

Data sources 282 

We used a time series of annual banana production data from 27 countries (Table 1), which 283 

included all the major producer and exporter countries. Our analyses focus on dessert bananas and 284 

we exclude data on plantain production. Consequently, we did not include Uganda in this study 285 

(despite having the highest per capita banana consumption) because the East African Highland 286 

Banana which makes up the majority of Ugandan production, is (a) classified as plantain in 287 

production data available from the FAO, and (b) is cultivated at higher elevations (1400 – 2000m) 288 

than other production systems considered in this study. Data sources, spatial resolution and time 289 

period over which production data were available differed between countries (see supplementary 290 

table S1). Hereafter, we refer to the finest administrative scale at which data were available within 291 

each country as a geographic unit (GU). For example, production data were available at the whole 292 

country scale for countries such as Angola and Malaysia. Hence, in these cases, ‘country’ was 293 

assigned as the GU. On the other hand, for countries such as India and China, data were available at 294 

the district and province scale, respectively. Hence, individual districts or provinces were assigned 295 

as a GU. Data were ‘cleaned’ to remove non-sense values (e.g. where yield values were 296 

unrealistically high, or where production was reported, but area under cultivation was zero) and 297 

other values which indicated poor data quality or reliability. For instance, national scale data 298 

available from FAOSTAT (typically from 1961 to 2016) can contain a combination of officially 299 

reported values, as well as computed values (presumably when official data are not available). In 300 

such cases, we subsetted the time series of production data, such that the first data point 301 

corresponded to the first officially reported values. In the case of data from Brazil, there were many 302 

cases where data from the same GU in successive years were identical, suggesting that data were in 303 

fact not collected annually. In these cases, where three or more successive identical production and 304 

area harvested values were encountered, only the first was retained. Production and area under 305 



cultivation was used to calculate yield (T.ha-1) – the response variable of interest – for each GU-306 

year combination in the dataset. 307 

Climate data from the CRU TS 4.01 product31,32 was used to model climate sensitivity of banana 308 

yields, conduct the hindcast analysis and identify the contribution of change in cultivation 309 

efficiency (technology trend) on banana productivity over time. Mean annual temperature and total 310 

annual precipitation were extracted from the CRU dataset and assigned to the respective GU-year 311 

combinations in the production data. The temperature data was corrected for elevation. This was 312 

done to account for the lack of a good quality distribution map of banana growing areas, as well as 313 

the coarse resolution of the CRU dataset, which could result in individual pixels representing 314 

average temperatures over areas of high elevation, where bananas are less likely to grow. In other 315 

words, the relatively large area (approximately 360 km2) covered by a single CRU pixel could 316 

encompass areas of low and high elevation, and hence, uncorrected temperature values within a 317 

pixel represent the average temperature experienced across these elevations. Since bananas are less 318 

likely to grow at higher elevations, these uncorrected temperature values do not represent the 319 

temperatures experienced in banana plantations. The elevation based temperature correction was 320 

conducted by overlaying the 90 m resolution Shuttle Radar Telemetry Mission (SRTM) digital 321 

elevation model (DEM) with the CRU temperature dataset. A lapse rate of -0.0065 °C.m-1 was used 322 

to recalculate temperatures within each CRU pixel at the resolution of the DEM. Recalculated 323 

temperature values in DEM pixels where elevation was greater than 2000 m were eliminated (we 324 

assumed that there is a very low probability that bananas grow at elevations > 2000 m). For the 325 

remaining DEM pixels the elevation weighted average temperature was calculated. Weights were 326 

calculated using a logistic function 1/{1 + e[0.005(elevation – 1000)]}. The logistic function used assigns 327 

weights that tend to one for elevations < 500 m above sea level, declines in a near linear fashion 328 

from 500 m to 1500 m, with an inflection point at 1000 m (i.e. weight of 0.5 at 1000 m elevation), 329 

and tends to zero for elevations > 1500 m. 330 



In addition to the elevation correction of temperature, climate extraction for Mexico and Australia 331 

(both with country scale production data) was restricted to administrative units where banana 332 

cultivation had previously been reported in published literature10,22,23. This was done to avoid 333 

climate data from extremely arid environments (where bananas are unlikely to be cultivated, and 334 

which would not be accounted for with an elevation based temperature correction) influencing the 335 

analysis. For all 10 African countries in this study (country scale production data), no usable 336 

published information of banana growing areas could be used to inform the data extraction. 337 

Therefore, modelled banana cultivation areas33 were used to restrict climate data extraction. 338 

For future climate, mean annual temperature and total annual precipitation for 2050 was extracted 339 

from WorldClim CMIP5 downscaled projections34,35 (5-minute resolution bioclimatic variables) of 340 

19 and 17 GCMs for the RCP 4.5 and RCP 8.5 climate scenarios, respectively. Change in banana 341 

yields under future climate scenarios (forecast analysis) was calculated relative to yields modelled 342 

using the long term (1970 to 2000) climate averages extracted from WorldClim 2.036,37. Mean 343 

annual temperature data from WorldClim 2.0 and CMIP5 downscaled projections were also 344 

elevation corrected (as had been done with the CRU TS 4.01 temperature data).  345 

 346 

Climate-yield relationship estimation 347 

Our objective was to statistically fit observed annual banana yield data to prevailing mean 348 

temperature and total annual precipitation. The resulting relationship would be used for further 349 

analyses. We expected the relationship along both climate axes to be represented by a bell-shaped 350 

or unimodal function, which was not necessarily symmetrical around its peak (i.e. around the 351 

optimum). A beta function38 has been suggested as a suitable candidate model for such a non-linear 352 

process39. Here we implemented a modified version of the beta function22 that has also been used in 353 



past banana physiology studies14,17. The beta function along the temperature and precipitation 354 

variables are as follows: 355 

𝑅𝑡 = $%&'()%*+,
%&'()%*-.

/ $%*+,)%&01
%*-.)%&01

/
(34567389:)
(38<=73456)   (1) 356 

𝑅𝑝 = $?&'()?*+,
?&'()?*-.

/ $?*+,)?&01
?*-.)?&01

/
(@4567@89:)
(@8<=7@456)  (2) 357 

Where: 358 

Rt = Yield coefficient for temperature 359 

Tmax = Maximum annual average temperature, beyond which banana production stops 360 

Tmin = Minimum annual average temperature, below which banana production stops 361 

Topt = Optimum temperature for banana production 362 

Tobs = Observed annual average temperature 363 

Rp = Yield coefficient for precipitation 364 

Pmax = Maximum total annual precipitation, beyond which banana production stops 365 

Pmin = Minimum total annual precipitation, below which banana production stops 366 

Popt = Optimum total annual precipitation for banana production 367 

Pobs = Observed total annual precipitation 368 

As both equations (1) and (2) result in a value between zero and one, a scaling coefficient (S) is also 369 

estimated while fitting the yield data to the climate variables. The scaling coefficient represents the 370 



maximum average yield under optimum conditions of temperature and precipitation. As such the 371 

function being fit is given by: 372 

Yield = S.Rt.Rp  (3) 373 

The yield and climate data were partitioned in to six regional sub-sets (see Table 1), which were 374 

then fit to equation (3). Regional subsets were created to account for differences in cultivation 375 

practices and cultivars grown (cultivar identity was not explicitly included in our analyses as 376 

available production data does not differentiate between cultivars or varieties). Fitting models to 377 

regional, rather than country-level data subsets was also done to increase resolving power of the 378 

data, especially along the temperature axis. This attention to resolving power is important as 379 

tropical countries, in particular the small and/or island nations, can show a very limited temperature 380 

ranges in space and time, resulting in spurious non-linear model fits with unrealistic parameter 381 

estimates. Hence, relatively small countries, or those for which we only had country-scale data for 382 

were grouped into regions, while large countries (covering a larger climate space) with sub-national 383 

data formed regions by themselves (e.g. India, China and Brazil). In addition, a single ‘global’ 384 

model was also fitted. Here, regions were equally weighted, to account for differences in regional 385 

sample sizes. 386 

Data were first fitted to equation (3) by brute force (107 iterations), such that residual sums of 387 

squares were minimised. The observed data occupied a restricted range along the temperature axis. 388 

This range logically represents the temperature space where commercial cultivation of bananas is 389 

viable, but not necessarily the physiological limits of the banana plant. Hence, estimation of Tmin 390 

and Tmax in equation (1) needed to be informed by expert opinion or previous estimates10,22,23. 391 

During the brute force fitting procedure, Tmin was constrained between 10°C and 20°C, while 392 

Tmax was constrained between 30°C and 35°C. Estimation of precipitation parameters in equation 393 

(2) were not similarly constrained as land management or cultivation practices could alleviate 394 

restrictions imposed by low precipitation (use of irrigation) or high precipitation (infrastructure to 395 



promote soil drainage). Hence, we assume that banana cultivation is feasible under sub-396 

optimal/marginal precipitation conditions, subject to management intervention. As a consequence of 397 

production data including both rainfed and irrigated production systems, we treat estimated 398 

precipitation parameters with caution.  399 

As parameters estimated for equation (3) by brute force may not represent a true optimised fit, 400 

estimated brute force parameters were used as starting values in a constrained non-linear least 401 

squares curve fitting function (implemented using the Scipy optimize module in Python 3.6). 402 

Measures of variation around estimated parameters using the curve fitting function may be 403 

unreliable as estimated parameters often fell outside the bounds of the data (e.g. bananas are 404 

unlikely to be cultivated at their physiological minimum or maximum temperatures). Hence, the 405 

non-linear curve fitting procedure was bootstrapped (100 iterations), where each iteration was fitted 406 

using a resampled dataset with replacement. These bootstrapped estimates were used for 407 

interpretation and further analyses.  408 

 409 

Past contribution of climate change (hindcast) and cultivation efficiency (technology) to banana 410 

yields 411 

Regional models from equation (3) were used to calculate modelled yield for each CRU climate 412 

dataset pixel within the GUs of interest from 1961 to 2016. These modelled annual yields were 413 

averaged at a country-scale. Where sub-national production data were available, the average yield 414 

was weighted by the area under cultivation of GUs within the country. A generalised least squares 415 

(GLS) regression was then fitted to the modelled yield data over time for each country, using the gls 416 

function from the nlme package in R. The GLS regression allowed for a 1st order autoregressive 417 

correlation structure in the residuals, to account for the correlation over time in climate data. The 418 

parameters of the GLS regression represented the climate-driven trend in yields. Modelled annual 419 



yield data were then regionally averaged (weighted by area under cultivation within GUs). Regional 420 

climate-driven yield trends were then estimated using region specific GLS regressions. 421 

To determine if observed yield trends were driven by changes in temperature or precipitation, the 422 

relative yield coefficients for temperature (Rt; equation 1) and precipitation (Rp; equation 2) were 423 

calculated for each pixel in each year from 1961 to 2016. As with the hindcast analysis above, Rt 424 

and Rp were aggregated to the scale of countries. A GLS regression was then fitted to Rt and Rp 425 

separately, to estimate the trends in Rt (temperature RYC trend) and Rp (precipitation RYC trend). 426 

Similarly, trends for changes in mean annual temperature and total precipitation were calculated. 427 

Country-scale temperature RYC trends and precipitation RYC trends were plotted against country-428 

scale mean annual temperature and total precipitation trends (along with associated 95% confidence 429 

intervals) and visually inspected for consistent patterns.  430 

Modelled annual country-scale yields were subtracted from annual yield data available from FAO20  431 

for each of the 27 countries in the study. As modelled yields are solely climate-determined, the 432 

resulting difference in yields (tYield) represents the influence of ‘technology’ or cultivation 433 

efficiency on yield. We fitted a GLS regression to tYield over time and the parameter estimates of 434 

the regression represent the effect of a ‘technology trend’ on banana yields. 435 

To evaluate model performance, we calculated the correlation coefficient and root mean squared 436 

error (RMSE) between (a) observed yields (country-scale) from the FAO over time and country-437 

scale yields estimated using regional climate-yield models (hindcast yield values), and (b) observed 438 

yields (country-scale) from the FAO over time and hindcast yield values to which country-scale 439 

technology trends were added (Supplementary figure S30). 440 

 441 

Future climate change impacts on banana yields (forecast) and climate-risk classification 442 



The impact of future climate change on banana yields was quantified as the change in predicted 443 

yields by 2050 (future yields) relative to modelled yields given long-term average temperature and 444 

precipitation between 1970 and 2000 (current yield). Regional yield models from equation (3) were 445 

used to calculate current yield for each WorldClim 2.0 pixel within the GUs of interest. Similarly, 446 

future yields were calculated using regional models and climate data from WorldClim CMIP5 447 

downscaled projections for 2050. Future yields were predicted using downscaled data from 19 448 

GCMs representing the RCP 4.5 scenario and 17 GCMs for the RCP 8.5 scenario. Differences 449 

between current and future yields were averaged across GCMs for each pixel, and pixel-scale yield 450 

differences were averaged to country-scale (averages weighted by area under cultivation of GUs 451 

within countries were used when sub-national production data were available). Regional average 452 

yield differences were then calculated, weighted by area under cultivation.  453 

Climate risk for countries was classified by combining yield differences under the RCP 8.5 scenario 454 

and estimated technology trends. This was a climate centric classification. Hence, if a country was 455 

predicted to show increases in climate-driven yields, it was classified as being at an ‘advantage’, 456 

regardless of its past technology trend. If a country was predicted to show a negative effect or no 457 

effect of climate on yields, and a past positive technology trend, it was classified as being 458 

‘adaptable’. Lastly, if a country was predicted to show negative effects of future climate on yields, 459 

and negative or flat past technology trend, it was classified as being ‘at risk’. 460 

 461 

Caveats and unaccounted for sources of variation 462 

The analysis presented has utilised the best and most comprehensive data sources available at the 463 

time of writing. However, we note that further improvements in available data quality would be 464 

beneficial to carry out an even more accurate and fine grained assessment. A few shortcomings of 465 

the data used include – varying spatial resolution of the datasets, non-uniform gaps in the 466 



production time series for different regions and countries within regions, lack of variety specific 467 

production data, quantities of agricultural inputs and use of irrigation for cultivation. Fertilisation 468 

effects of increased CO2 in the atmosphere could also have an effect on banana productivity, but has 469 

not been accounted for in our analyses. Consequently, a level of caution is required in interpreting 470 

results, especially where high variation in yield is observed across climatic gradients. For example, 471 

production data from Brazil showed a large variation across the range of mean annual temperatures 472 

and levels of total annual precipitation encompassed by the dataset. In addition, the best fit beta 473 

model for yield revealed the lowest optimum temperature (20.06°C) compared to the other regions 474 

assessed in this analysis. Such a result could be due to overlapping (and reinforcing) gradients of 475 

climatic conditions and economic indicators. Compared to the north, southern Brazil experiences 476 

cooler and more seasonal climatic conditions, and fares better in economic terms. Higher incomes 477 

in the south could facilitate greater productivity due to greater capacity for the use of agricultural 478 

inputs, and therefore, lower the estimated optimum temperature in our fitted model. Hence, model 479 

interpretation should be carried out with caution and further detailed region-/country-specific 480 

research that incorporates socio-economic variables are a logical next step. 481 

Secondly, in the absence of robust experimental data, we have statistically modelled climate-yield 482 

relationships using a top-down approach and observed production data. However, it is important to 483 

note that the distribution of banana producing areas are not solely a consequence of the banana 484 

plant's physiology. Agro-economic considerations, such as available cultivation infrastructure, 485 

transport links and access to markets also influence where bananas are grown. The production data 486 

incorporate these factors, and hence, our model fits cannot be interpreted as a purely physiological 487 

climate-yield relationship. For example, cultivation efficiency and yields can be substantially be 488 

improved in drier areas with irrigation. However, the extent of irrigation in use was not accounted 489 

for in our analyses, and low optimum precipitation estimates (e.g. India) should be interpreted with 490 

care. 491 



Lastly, we also acknowledge that our analyses only consider the average annual climatic condition, 492 

and do not account for seasonal variation, nor the occurrence of extreme climatic events. Future 493 

region- and country-specific research would benefit from including these parameters, especially if 494 

more detailed production data are available to cope with increased model complexity. 495 

 496 

Code availability statement 497 

No custom code was used in the analysis. 498 
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