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Abstract

Recent observations show cool, oscillating prominence threads fading when observed in cool spectral lines and
appearing in warm spectral lines. A proposed mechanism to explain the observed temperature evolution is that the
threads were heated by turbulence driven by the Kelvin–Helmholtz instability that developed as a result of wave-
driven shear flows on the surface of the thread. As the Kelvin–Helmholtz instability is an instability that works to
mix the two fluids on either side of the velocity shear layer, in the solar corona it can be expected to work by
mixing the cool prominence material with that of the hot corona to form a warm boundary layer. In this paper, we
develop a simple phenomenological model of nonlinear Kelvin–Helmholtz mixing, using it to determine the
characteristic density and temperature of the mixing layer. For the case under study, with constant pressure across
the two fluids, these quantities are r r r=mixed 1 2 and =T T Tmixed 1 2 . One result from the model is that it
provides an accurate—as determined by comparison with simulation results—determination of the kinetic energy
in the mean velocity field. A consequence of this is that the magnitude of turbulence—and with it, the energy that
can be dissipated on fast timescales—as driven by this instability can be determined. For the prominence–corona
system, the mean temperature rise possible from turbulent heating is estimated to be less than 1% of the
characteristic temperature (which is found to be Tmixed=105 K). These results highlight that mixing, and not
heating, is likely to be the cause of the observed transition between cool to warm material. One consequence of this
result is that the mixing creates a region with higher radiative loss rates on average than either of the original fluids,
meaning that this instability could contribute a net loss of thermal energy from the corona, i.e., coronal cooling.

Key words: instabilities – magnetohydrodynamics (MHD) – Sun: corona – Sun: filaments, prominences –
turbulence – waves

1. Introduction

The dissipation of magnetohydrodynamic (MHD) wave
energy has been regarded for decades as a relevant agent in
explaining the heating of the solar corona; see Arregui (2015),
for a recent review. Since first proposed by Ionson (1978), the
resonant absorption of surface Alfvén waves has offered a means
to transfer wave energy from large to small spatial scales, thus
enhancing dissipative processes (Wentzel 1974, 1978, 1979;
Hollweg 1978). Theoretical and numerical advances have
recently shown that the nature of the resonantly damped
transverse kink wave (Goossens et al. 2009) and its associated
nonlinear dynamics leads to the development of Kelvin–
Helmholtz (KH) unstable flows (Terradas et al. 2008, 2018;
Antolin et al. 2014, 2015, 2016, 2017). The instability arises in
connection with resonant absorption processes because of the
creation of a shear velocity pattern around the resonance, but
owes its existence to the presence of a discontinuous shear flow
even in models with a density jump at the boundary of the
waveguide. It operates by extracting energy from the large-scale
dynamics to spread it among different spatial scales and
locations. The cause of the heating, though, is still under
investigation (Magyar & Van Doorsselaere 2016; Howson et al.
2017; Karampelas et al. 2017; Antolin et al. 2018). It has been
shown in some cases that mixing, as well as heating, plays a
dominant role in the thermal evolution (e.g., Magyar & Van
Doorsselaere 2016; Karampelas et al. 2017).

Only recently has observational evidence about these small-
scale physical processes begun to be pursued. Prominence
plasmas offer a natural laboratory in this context, because of the
occurrence of complex oscillatory and flow patterns at both

large scales (Berger et al. 2008; Hillier et al. 2013) and in their
fine structure (Okamoto et al. 2007, 2015). In particular, recent
observations by Okamoto et al. (2015), using the Interface
Region Imaging Spectrograph (IRIS; De Pontieu et al. 2014)
and Hinode Solar Optical Telescope (SOT; Tsuneta et al.
2008), found oscillations of prominences threads that display
velocity features consistent with resonant absorption. These
threads were often found to fade from the cool passbands on
Mg II K (observed by IRIS) and Ca II H (observed by Hinode
SOT), while becoming brighter in warmer (Si IV) IRIS
passbands. Antolin et al. (2015) simulated these processes,
showing that the concentration of the wave energy onto the
surface of the flux tube produced shear flows large enough to
develop an instability. The key process they proposed to be
behind the observed temperature evolution was heating as a
result of turbulence driven by the magnetic Kelvin–Helmholtz
instability. This mechanism has also been found in simulations
of oscillating coronal loops (Terradas et al. 2008).
The KH instability breaks up shear flows by creating vortices

at the shear layer (Chandrasekhar 1961), mixing the two
regions together. These vortices may themselves break up into
turbulence via secondary 3D instabilities. With the inclusion of
magnetic fields, magnetic tension works to suppress the KH
instability. Therefore, the most unstable modes become those
that vary little along the field. This instability has been found to
occur in a number of different situations in the solar
atmosphere, including in the interaction between prominences
and bubbles that form below them (Berger et al. 2010, 2017;
Ryutova et al. 2010), in internal prominence motions (Hillier &
Polito 2018; Yang et al. 2018), and as a result of eruptions in
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the solar atmosphere (Foullon et al. 2011; Ofman & Thompson
2011; Möstl et al. 2013). Soler et al. (2010) investigated how
this instability develops on the surface of a rotating flux tube, a
model used because of its geometrical connection to coronal
loops; they found that the fundamental physics of the linear
instability are not greatly altered by the change in geometry.
The studies of Hillier et al. (2019) and Barbulescu et al. (2019)
highlighted the important role the oscillatory nature of the flow
in wave-driven KHi could have in determining stability, with
both the KHi and resonance-induced parametric instabilities
existing. Once the linear instability has developed, nonlinea-
rities form; it is in this nonlinear stage that the important
processes of heating and mixing are driven.

The nonlinear stage of the instability is where the dynamics
that are key to explaining the observations should be occurring.
Ryu et al. (2000) investigated the 3D evolution of the MHD
KHi, finding the KHi vortices could become disrupted,
resulting in highly turbulent and efficient mixing of the two
layers. A detailed 2D analysis of the disruption process of a
KHi vortex via magnetic reconnection was presented in Mak
et al. (2017), finding that significant disruption would occur
when M2Rm=O(1) (M is the Alfvén Mach number and Rm is
the magnetic Reynolds number). Matsumoto & Seki (2010)
studied the nonlinear evolution of high density-contrast MHD
KHi in 2D simulations, finding that large asymmetric mixing
layers were formed. This implies that, for situations in the solar
atmosphere, both the magnetic field and density contrast can be
important for determining the mixing dynamics.

There are three questions to which the answer would provide
information crucial to understanding the role of the KH
instability in heating the solar corona: (1) What is the
temperature in the KH layer achieved purely from mixing?
(2) How much heating can be driven by the instability? (3) On
what timescales does this heating occur? In this paper, we
present a phenomenological model of a turbulent MHD
Kelvin–Helmholtz mixing layer that we use to provide answers
to these three questions. We also use 3D MHD simulations to
confirm the predictions of the model and to highlight areas in
which the model can be improved.

2. Modeling the Nonlinear Kelvin–Helmholtz Instability
Mixing Layer

Our model aims at investigating the nonlinear solution of the
magnetic KH instability as pertinent to a surface flow on an
oscillating flux tube. For simplicity, we consider a phenomen-
ological model consisting of a plane-parallel shear flow defined
by:
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which is a discontinuous velocity field creating a shear layer at
y=0 (e.g., Figure 1) composed of two uniform layers that
have their own uniform density, but the gas pressure and
magnetic field strengths are constant throughout the domain,
which ensures equilibrium. The initial velocity profile is shown
in Figure 1.

2.1. The Position of the Mixing Layer

For the linear instability with a discontinuity in the velocity
and density at y=0, the instability is centered at y=0, with
the eigenfunction decaying from there as -k yexp( ∣ ∣) (e.g.,
Chandrasekhar 1961). However, the nonlinear evolution of the
instability is not required to obey the same rules. Therefore, the
initial step to understanding the nonlinear mixing is to
determine where a mixing layer would be centered. Here, our
first assumption is introduced: we assume that the mixing
works in the way that most efficiently uses the free energy
associated with the initial flow. Therefore, for a mixing layer of
width across the shear layer of 2l, it will be centered at the
position Y that maximizes the kinetic energy associated with
the shear flow.
As an aside, it is worth noting that the length scales of the

vortical/turbulent structures in the direction of the shear flow
generally control the width 2l. Using as a guide the Kelvin–
Stuart cat’s eye vortex flow (Kelvin 1880; Stuart 1967), which
is a steady-state flow solution producing a string of vortices
given by

e
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where V∞ is the velocity of the flow as  ¥y , k=2π/lflow,
with lflow being the length of the vortex in the direction of the
shear flow, and ε being the parameter that controls the
localization of the vorticity. Based on this solution, we expect
that 2l<lflow, with 2l≈lflow/2 being a common ratio. As the
length scales associated with the vortices/turbulence grow
linearly with time (e.g., Winant & Browand 1974), the width
should keep on increasing until geometric effects cause it to
saturate.
Determining the position Y has one major difficulty: the

kinetic energy measured for each component of a shear flow
will depend on the reference frame in which the flow is being
observed. Therefore, different initial conditions would result in
different layer positions. However, it should be expected that,
in situations with the same magnitude of density and velocity
jump at y=0 but with different velocity values, the properties
of the solution should not change, i.e., the problem is Galilean

Figure 1. Plot of the initial velocity distribution (normalized so that ΔV=1).
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invariant. Therefore, the question is: what is the correct
reference frame to view the problem so that the kinetic energy
available is the kinetic energy that can be used by the nonlinear
instability? For this, the natural choice is to put the velocities
into the zero-momentum reference frame, because it results in
the removal of any mean advection in the layer.

If we take a mixing layer of width 2l that is centered on Y,
where Y is in the range -l l,[ ], then a zero-momentum
reference frame can be calculated for that layer. This is given
by integrating the momentum across the layer and setting the
result to zero, i.e.:
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where Y′=Y/l. On solving this integral, we have:
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From this, we can show that the mean kinetic energy (KE)
for the layer in the zero-momentum frame is given by:

r a a

r a a
a a

=
- ¢

+
+ ¢

=
D ¢ - ¢ +
¢ - -

V
Y

V
Y

V Y Y

Y

KE
1

2

1

2

1 1

2 1
, 10

av 1 1
2

2 2
2

av 1 2
2

1 2

⎡
⎣⎢

⎤
⎦⎥

( )( )
[ ( ) ]

( )

where ρav is the average of the densities of the two layers. For
example, the mean kinetic energy for the band from y=−2l to
0 (centered on Y=−l), when put in the zero-momentum frame
of reference, has no kinetic energy because there is no velocity
shear in this region. The same can be said for the region y=0
to 2l (centered on Y= l). The mean kinetic energy peaks at
somewhere between these two values, at the point:
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A key point here is that this shift is completely independent of
the magnitude of the velocity shear; it is a function only of the
normalized densities. This gives the two velocities in this
reference frame as:
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This leads the maximum value for the mean KE in this layer to
be:
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Figure 2 shows the distribution of KE for given layer positions
for α1=1/11. The position of the peak value, as determined

in Equation (11), is shown by the vertical line. One interesting
property of this peak is that it is achieved when the layer is
placed such that the initial kinetic energy distribution becomes
continuous (i.e., the kinetic energy is the same on either side of
the discontinuity).

2.2. Density, Pressure, Magnetic Field, and Temperature

Once the position of the layer has been determined, the next
step is to estimate the values of the average density, pressure,
and magnetic field in the mixed layer. To do this, we will
consider conserved quantities in MHD flows, i.e., conservation
of mass, momentum, energy, and magnetic flux, to determine
the characteristic values of the density, pressure, and magnetic
field as achieved by mixing.
For a mixing layer consisting of a layer of width 2l, the

characteristic density that results from mixing (ρmixed) can be
calculated using conservation of mass from the two densities
(ρ1 and ρ2 respectively). That is to say, for a layer of width 2l
centered at Y, the following equality must hold:
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where, as before, Y′=Y/l. At ¢Ymax , this equals:

r r a a r r= =4 . 17mixed av 1 2 1 2 ( )

The mixed pressure pmixed follows from an averaging
process similar to that used for the density. First, we note that,
based on the first law of thermodynamics, we expect:

d d d+ =U W Q, 18( )

where δU is the change in internal energy, δW is the work done,
and δQ is the heating. In the case of no dissipation, then
enthalpy is conserved, i.e., δU+δW=0 (e.g., Vallis 2017). In

Figure 2. Plot of the kinetic energy (using the normalized density and velocity
profiles) against Y′. Vertical solid line gives the position of the peak value as
given in Equation (11).
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the regime where compressive effects are small, this then
becomes δU≈0; for an adiabatic process, it reduces to a
conservation of total pressure equation. As we have assumed an
initial constant pressure, this implies that the mixing gives

=p p. 19mixed ( )

As we shall see later, the latter assumption of small
compressibility can be violated, but this provides a good
starting point to estimate the characteristic pressure in the
mixing layer—even though further work is necessary to make
it completely accurate in all cases. This implies that a measure
of the temperature in this mixed region can be given as

m
r

=T
p

R
, 20mixed

mixed

mixed g
( )

where μ is the mean molecular mass and Rg is the gas constant.
Therefore:

=T T T . 21mixed 1 2 ( )

The characteristic field strength in the mixing layer is
necessarily determined by conservation of flux. This again
leads to a simple averaging to determine the field strength—
being constant in the domain, it just gives:

=B B. 22mixed ( )

2.3. Developing a Simple Model to Estimate the Kinetic Energy
of the Mean Flow

One aim of this paper is to estimate the proportion of the
energy that is extracted from the mean flow, to create an upper
bound on the amount of energy that can exist in turbulent
flows. To do this, we must first make a model of the mean
velocity field that can be used to estimate the kinetic energy
that remains in the mean flow (i.e., is not available for turbulent
motions), and then whatever is left over can be used as the
upper limit for the turbulent kinetic energy.

2.3.1. Mean Density and Velocity Profiles

The profile across the mixing layer of the averaged density
and velocity would provide important information on the
kinetic energy distribution in the mixing layer. However, to
develop an approximation of these profiles, further constraints
and assumptions are necessary. The mixing layer has been
placed into its zero-momentum frame, so any velocity profile
needs to be such that this condition is maintained. On top of
this, conservation of mass of the layer must be observed.

To model rá ñ and á ñvx , we develop an approximate
polynomial solution, based on basic rules developed for the
mixing layer. We first apply the condition that both the rá ñ and
rá ñá ñvx are continuous; i.e., at either edge of the mixing layer,
they take the values of the background density and flow. This is
ρ1 and ρ2 for the density, and the results given in
Equations (12) and (13) for the velocity. Conservation of mass
demands that:
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where ¢ =dy dy l. The conservation of momentum is more
complex, with the true statement of the conservation of

momentum in the layer giving:
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where the primes denote the fluctuating component. We
assume that the fluctuations in the density and velocity fields
are essentially uncorrelated, meaning that the magnitude of the
fluctuating term goes to zero when integrated across the layer.
Thus, our condition becomes:
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We then require that the distributions of rá ñ and rá ñá ñvx vary
monotonically. We also prescribe that, as the mixing of the
momentum happens in conjunction with the mixing of the
density, the y position where r rá ñ = mixed is the same as the
position where rá ñá ñ =v 0x . Finally, as has been key to the
derivations performed so far, we have assumed that the
nonlinear dynamics works to release as much of the kinetic
energy from the mean flow as possible, i.e., that
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+ ¢
v dy 26
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1

1
1

2
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is minimized.
After applying these rules, third-order polynomials for rá ñ

and á ñvx are determined under the constraint of energy
minimization. The steps applied to this minimization are as
follows:

1. Using a uniform grid, the mixing layer is discretized into
1001 grid points.

2. Taking each point in the grid in turn as the point where
r r rá ñ = 1 2 , the polynomial for the density distribution
is determined using the rules on the total density and the
density at each end of the layer.

3. For a density distribution where the gradient is positive
throughout the layer, the velocity distribution is then
calculated.

4. Using the grid point where r r rá ñ = 1 2 , we set á ñ =v 0x

and determine the á ñvx solution based on the other
constraints on the momentum listed above.

5. All grid points on the grid are cycled through, and the
grid point selected will be the one that satisfies the
constraints on the distribution and is associated with the
least energy in the mean flow.

The approximate solutions are shown in Figure 3, with the
density distribution for our model using three different values
of α1 in panel (a) and the same for the velocity in panel (b).
Aside from the shift in the position of the layer, there are some
interesting effects from the changing of the density contrast—
the most important being that the density distribution becomes
heavily skewed. This results in the point where r rá ñ = mixed
becoming closer and closer to the high-density edge of the
mixing layer. It is worth noting that the distribution of the
α1=1/2 solution for á ñvx is similar to that of the error
function, which is important because this is the classic solution
(confirmed via comparison with experimental data) used to
explain turbulence developing between two flows (e.g., Winant
& Browand 1974). However, there is one important difference:
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as our model is separated into three layers, if a continuous,
smooth function were to be used to explain the distribution, it
would be nonanalytic.

The kinetic energy distribution in the mixing layer is given
by:

r= á ñá ñy vKE . 27xmixed
1

2
2( ) ( )

Because of the continuity of the density and velocity, this is
also a continuous distribution. An example of the kinetic
energy distribution, in this case for α1=1/11, is presented in
panel (a) of Figure 4. The total kinetic energy of this mean
component is also relatively simple to calculate. Using rá ñ and
á ñx and integrating over y gives:
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This can be compared to the initial kinetic energy of the band,
i.e., the energy before mixing:
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The comparison between these two is presented for a range of
α1 values in panel (b) of Figure 4, where it is clear that this
ratio is always less than 0.5 and becoming smaller as α1 tends
to zero. Therefore, we can approximate TKE by

r
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We note that the range of α1 used in panel (b) of Figure 4 is
reduced because the accuracy of the third-order polynomial
approximation deteriorates at small α1 values, due to the low
order of the polynomial used. This implies that further constraints
exist on the distributions, likely to be related to the various orders

Figure 3. Density and velocity field of the mixed region for a calculation of ΔV=1. The red line has α1=1/11, the blue line has α1=1/3, and the black line has
α=1/2.

Figure 4. Plot of the kinetic energy of the mean flow normalized by the value of the kinetic energy outside of the mixing layer for the case where α1=1/11. The
dashed line gives the initial kinetic energy distribution (left). Also plotted is the ratio of the mean-flow total kinetic energy (TKE) to the initial total kinetic energy
(TKEINIT) against α1.
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of the derivatives of the density, momentum, and kinetic energy
at the edges of the layer, which could be used to extend this
approximation to higher order—and with that, lower α1.

2.4. Estimate of the Fluctuating Energy Component

The next question we would like to approach is: how much
energy is there available to dissipate via the turbulent creation
of small scales? In other words, what energy is there available
for heating from the fluctuations of the velocity field (and in an
MHD system, the magnetic field) around their average values?
The density—and with it, the temperature—of the mixed layer
does not depend of the amount of free kinetic or magnetic
energy there is to dissipate; it is purely based on the density and
temperatures of the regions before they are mixed. However,
the total dissipation that can occur is highly dependent on these.

In Section 2.3.1, we formulated the mean velocity field of the
mixed region. This velocity field is related to the average
velocity profile and does not include the fluctuating component
of the velocity field, often referred to as the turbulent
component. The profile shows the lowest energy state the
velocity field can reach without further thickening of the
mixing layer through development of larger vortices or through
viscous dissipation, i.e., it is related to how much energy the
instability can release through turbulent motions. Therefore, the
energy held in the fluctuations can be estimated by the initial
energy available for the instability minus the newly developed
mean kinetic energy profile. The total kinetic energy of the
fluctuating component of the velocity field is given as:

r
a a
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which is minimized for large density differences. The average
turbulent kinetic energy across the layer is given as:

r
a a

a a
~

D
+

V
KE

1

4
. 32turb mixed

2
1 2

1 2

1 2
2

( )
( )

( )

The characteristic magnitude of the velocity fluctuations is
given by:
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The average increase in internal energy of an ideal gas as a
result of processes other than mixing is given by gD -p 1( ),
i.e., the heating must come from the dissipation of the turbulent
kinetic energy. Therefore, based on energy conservation, we
know:

g
a a
a a

r

g
g

a a
a a

a a
a a

D
~

D
» -

D
+

= -
+

D

~
+

D

D
=

T

T

p

p

V

p

V

C

V

C

V

C
M

1

4
1

4
1

1

4

1

16

1

16
, 34

mixed mixed

1 2
1 2 2

1 2
2

mixed

mixed

1 2
1 2

1 2
2

2

S,mix
2

1 2
1 2

1 2
2

2

S,mix
2

2

S,mix
2

2

( ) ( )
( )

( ) ( )
( )

( )
( )

( )

where γ is the adiabatic index, CS,mix is the characteristic sound
speed of the mixed region where the energy is being dissipated,

and M is the Mach number. Therefore, if we know the velocity
shear and can estimate the sound speed of the mixed region,
then we can give a bound for the average heating. If the density
ratio is also relatively well-constrained, then this can be used to
accurately estimate the heating.

2.4.1. Estimating the Effect of the Turbulent Pressures

Both the dynamic and magnetic pressures that result from the
fluctuating velocity and magnetic field, respectively, in the
mixing layer can work to expand the mixing layer by acting to
add to the total pressure of that region. The magnitude of these
two turbulent pressures is intrinsically related to the amount of
kinetic energy that is taken from the large-scale shear flow and
put into the turbulent components of the velocity and magnetic
field. The importance of these turbulent pressures can be
estimated using the characteristic Mach number of the instability
or the characteristic Alfvén Mach number of the instability,
depending on whether the system has high or low β, where if
these characteristic numbers are small then it can be expected
that the effect of turbulent pressure is negligible. See the results
in Section 2.4 for estimates of the kinetic energy that can be
transferred to these fluctuations (and with it, an approximation of
the total turbulent pressure they can create). As the turbulent
pressures are representative of the energy available for dissipa-
tion, similar arguments can be formed for loss of force balance
through the pressure increase through dissipative heating.

2.5. Timescales for Mixing

The previous parts of this section focused on the quantities
of the mixed layer. These are the quantities that the mixing is
driving the system to achieve, and they represent the mean
values of the layer during the mixing process. However, there
remains a very important question: what is the timescale over
which the mixing occurs?
To answer this, it is necessary to have a measure of the

magnitude of the velocity fluctuations in the mixing layer,
which can be taken from the fluctuating energy component.
Using the estimate for the turbulent velocity rms given in
Equation (33), the mixing time can be approximated by an
eddy turnover time:

t
a a
a a

»
D

+
l

V

l

V

2 2
2 , 35mixing

turb,rms

1 2

1 2
1 4( )

( )

which gives a measure of how long it takes to mix the region.
This mixing time will strongly correlate to the dissipation

timescale in the limit where τmixing=τviscous. In a turbulent
system, which is likely to form under the previously stated
conditions, the nature of the cascade implies that the longest
timescales are those at the largest scale. Therefore, as with the
mixing, the dissipation rate is connected (albeit in a complex
fashion) to the timescales at the largest scale. As such, the
mixing time can also be used as a very approximate measure of
the lower limit of the dissipation timescale in turbulent mixing.
The addition of a magnetic field to the problem adds a number

of other considerations. In flows with high Lundquist numbers,
the fluid is strongly tied to the magnetic field, which inhibits
mixing. Therefore, as discussed in the introduction, to have
quick efficient mixing, magnetic reconnection leading to the
disruption of vortices becomes necessary. In the 3D simulations
of Antolin et al. (2015), many current sheets were found to form
(a necessary condition for magnetic reconnection), showing that
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mixing is possible in the regime we are interested. Therefore,
assuming that the current sheets form on an eddy-turnover
timescale, i.e., the timescale we have estimated, this will still
hold as an approximate mixing timescale.

3. Numerical Simulations of Kelvin–Helmholtz Mixing

To both confirm the key predictions and evaluate the limits
of this model, we present the results from a 3D MHD
simulation of Kelvin–Helmholtz mixing.

3.1. Setup

Using the (PI P) code (Hillier et al. 2016), we solve the
nondimensionalized ideal MHD equations:
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This system of equations has been nondimensionalized in the
following way: the velocity v has been nondimensionalized
using the sound speed Cs, the density ρ by a reference density
ρ0, and the length scale by an arbitrary length L. Therefore,
time t is nondimensionalized by L/Cs=τD, the pressure P by

rCs
2

0, and the magnetic field B by p r=B C40 s 0 . Here, γ
is the adiabatic index and β is plasma β (the ratio of gas to
magnetic pressure calculated using the total gas pressure of the
fluids). We assume the ideal gas law, which in nondimensional
form becomes = g

r
T P .

The scheme used is a fourth-order central difference scheme
using a four-step Runge–Kutta scheme for the time integration.
For stability of the scheme, we employ the artificial viscosity/
diffusion as described in Rempel et al. (2009). Because this is a
conservative scheme, the artificial dissipation results in an
internal energy increase matching the amount of energy that
has been dissipated.

The initial conditions used for the present simulation attempt
to, as closely as possible, both match the model developed and
include the general characteristics in terms of speed and density
of the flows believed to exist in the observed prominence
threads. Initial conditions for MHD simulations are given by:
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where ρ1=1, ρ2=10, p1=1/γ, = ´V 10 11 0.11 , and
D =V 0.1 (i.e., the sound speed of the cool region), which
initiates the instability in approximately its linear reference
frame (which is different from the frame we predict the
nonlinear dynamics will be at rest). We set the plasma β to be
b = =p B2 0.31 1

2 and take γ=5/3. The instability is seeded
with a random noise perturbation in vy at the level of 0.01Δ V.
The simulation is solved in the spatial domain of x=[−0.4,

0.4], y=[−1.5, 0.5] and z=[−8, 8] using 160×400×800
grid points. Here, we have taken the length of the z direction to
be much greater than that of either the x or y directions. This is
chosen because, without a sufficient length along the magnetic
field, the vortices will not be able to sufficiently wrap up the
magnetic field and will not disrupt, as there are insufficient
currents for magnetic reconnection to take place. The length
scale required for disruption to be possible can be estimated by
requiring that the rotation rate of the vortex is greater than the
frequency of an Alfvén wave, i.e.,:
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where 2l is the width of the vortex, L is the length along the
magnetic field and r=V BA 1 mixed . Therefore,
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where we have assumed a mixing layer width of 2l=1. As the
length of our z direction is greater than 11.8, we expect the
vortices to become disrupted.
In this calculation, we use the following boundary condi-

tions: the x and z boundaries are set as a periodic boundary,
with a symmetric boundary that cannot be penetrated by the
magnetic field for the y boundary.

3.2. Simulation Results

Figure 5 shows the contour plots of the temperature
distribution in the x–y plane at z=0. These plots show the
temperature structure at four different times (t=0, 20, 40, and
60) covering the initial conditions through the early nonlinear
stages toward a layer that is becoming well-mixed (note that the
lack of coherent vortex structures here is a sign that they have
become disrupted). Here, we can see that there is an increase in
temperature in the region y>0, and we will determine whether
this is created by mixing or heating.
Figure 6 shows the x–z averaged (a) density ( rá ñ), (b) x

velocity (á ñvx ), and (c) mean flow kinetic energy ( rá ñá ñv 2x
2 )

profiles across the mixing region at t=60 (solid black line).
Before looking at the distributions and the characteristic values
of these quantities in the mixing layer, we need to state how we
determined the position of the mixing layer. For this, we look at
the distribution of rá ñ and determine the point where the density
departs from the minimum level by 1%. This gives the position
of the y<0 end of the mixing layer. As the shift in the layer is
purely a function of α1 and α2, this is determined by the initial
conditions to be (in normalized units) approximately −0.52.
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Together, these uniquely determine the position of the mixing
layer associated with the minimum mean velocity. Visually, it
seems that the predicted shift is a good representation of the
shift in the mixing layer from the y=0 position.

Panel (a) of Figure 6 gives the profile of rá ñ against y. The
red lines show the simplified model used, which is not a perfect
representation but does provide a very good estimate of the rá ñ
distribution. Calculating from the simulation, the mean density
across the whole mixing layer gives a value of r = 3.21. The
predicted density from the model for the simulation parameters
is r = ~10 3.16mixed , which is a difference of less than 2%.
This small difference can be understood by the slight extension
of the mixing layer on the right-hand side resulting in slightly

more mass existing in the layer than predicted. Therefore, both
the total mass and the spatial distribution of rá ñ are well-
represented.
Panel (b) of Figure 6 gives the distribution of á ñvx against y.

The model for this quantity is shown in red, and this provides a
reasonably accurate model of the velocity profile. We can also
see that the bounds on the mixing layer for this quantity are
accurate.
Looking at panel (c) of Figure 6, which shows the kinetic

energy of the mean flow, this energy goes to zero in the center of
the mixing layer. The energy that has been removed from the
mean flow is 0.58 of the initial energy available in the mixing
region. The red line in the panel shows the model prediction for

Figure 5. Contour plots of the temperature distribution in the x–y plane, taken at z=0 for t=0, 20, 40, and 60, respectively.
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the kinetic energy of the mean flow. The model predicts that
0.53 of the total energy that exists in the mean flow initially in
the mixing layer has disappeared from the kinetic energy of the
mean flow. The distribution is narrower than the simulation
results, leading to the small underestimation. However, this
confirms that our model can provide a sufficiently accurate
representation of the energy available for turbulent motions—
and with this heating, in the nonlinear stages of the instability.
The dashed black lines in the panels of this figure show the
profiles achieved when time averaging is considered along with
spatial averaging. Though this appears to marginally improve
the (already good) match between the model and the simulation
results, the fact that the match is still not perfect highlights that
there are still constraints that exist but are not yet considered in
this model.

Figure 7 shows the distribution of the turbulent energy (i.e.,
the energy held in the velocity and magnetic field fluctuations)
normalized by the initial kinetic energy density in the zero-
momentum frame of the mixing layer at four separate times
during the simulation (t= 30, 40, 50, and 60). The trend over
time is that the magnitude of the turbulent energy decreases. This
is a clear signature of the dissipation of the turbulent energy.

Figure 8 shows the magnitude of the pressure fluctuations
áD ñp from pmixed (normalized by pmixed, which in the case of
this simulation =1/γ=0.6) taken at t=60. As can be seen,
the increase in the pressure that results from dissipation and any
compressible effects peaks at approximately 2% of pmixed. The
horizontal dashed red line gives the value of the average
pressure increase from heating of the model as given in
Equation (34), which is calculated as ∼0.017. This line can be
seen as a fair visual estimate of the average increase of the
pressure through heating. The actual value of Dp pmixed from
the simulation is D =p p 0.014mixed . This is less than the
prediction, but as there is still turbulent energy that can be
dissipated (see Figure 7), this could rise further over time.
Ultimately, due to the marginally increased extraction of mean
energy in the simulation, we would expect it to reach a value
slightly above that of the model. Nonetheless, the prediction is
a fair reflection of the increase in internal energy in the mixing
layer. The clear conclusion from this is that the temperature of
the mixing layer in the simulation is determined by the mixing
process and not by any heating in the simulation (see also
Section 4.3).

4. Application to Prominence Observations—Mixing versus
Heating

To apply the results of the model presented in Section 2 to
the observations of Okamoto et al. (2015), we need to use some
characteristic values for the temperature, density, and velocity.
We use 10−15 g cm−3 and 106 K for the coronal density and
temperature, and 10−13 g cm−3 and 104 K for the density and
temperature of the prominence thread, which means that we
take a constant pressure between the two regions. We also
consider shear flows of magnitude 10 km s−1.
The first step is to assess the thermodynamic properties

expected of a mixing layer between prominence material and
the corona. For a Kelvin–Helmholtz mixing layer between
these two, the characteristic density of this layer would be
r = ´- -10 10mixed

13 15 g cm−3=10−14 g cm−3. The temp-
erature under these conditions is also determined by the

Figure 6. Plots of the mean density rá ñ (a), mean velocity á ñvx (b), and mean kinetic energy rá ñá ñv1 2 x
2 (c). The solid black curves give the simulation results at

t=60, the dashed black curves give the output averaged at 4τD intervals between t=40 and t=60, and the solid red lines show the model. The vertical dashed lines
give the range of the model mixing layer.

Figure 7. The y distribution of the turbulent energy held in both the velocity
and magnetic field fluctuations (averaged in both the x and z directions). This is
plotted for a number of separate times, showing that the energy in these
fluctuations is decreasing, i.e., that energy is being dissipated. Vertical dashed
lines give the extent of the mixing region in the model.
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geometric mean, so = ´T 10 10mixed
4 6 K=105 K. When

this process is observed in the cool (∼104 K) and warm (∼105

K) passbands of IRIS, this mixing would result in cool material
being removed by the mixing resulting in high-intensity
material disappearing from that passband. As the warmer
material forms in the mixing region, intensity would increase in
warm passbands. This could be expected to observationally
lead to the thinning of the prominence thread in cool lines, with
a thickening of the transition region of the prominence thread
when observed in warm lines.

It is worth noting that, to achieve the mixing temperatures
predicted by this model, locally the plasma has to relax from
the two different particle distributions that make up the
prominence and coronal plasmas to a single distribution that
is at transition region densities and temperatures. In MHD
simulations, a single Maxwellian distribution in each pixel is
assumed to form instantaneously, but for the prominence
corona system, it takes sufficient particle collisions between the
cooler and hotter particles to relax to a single temperature
particle distribution in a local area.

Along magnetic field lines in the solar corona, thermal
conduction can effectively perform this task, but across field
lines, the conduction is significantly reduced. To reach the
mixing temperatures, heat transport across the magnetic field is
essential. To make the mixing across the field more efficient, it
is necessary to break the connectivity of the magnetic field in
order to allow thermal conduction to transfer heat from the
hotter to the cooler components of the mixing layer. As long as
the lengths of the field lines hosting the prominence thread are
sufficiently longer than the width of the mixing layer (see
Equation (47) for an estimate), the instability can wrap up the
magnetic fields to produce the reconnection required to allow
field-aligned thermal conduction to become important. For a
mixing layer 100 km in width, this length would be
L≈4×103 km, which is sufficiently small to allow these
dynamics to occur on a prominence thread. Due to the
formation of many secondary vortices caused by the instability

as it nonlinearly develops (meaning smaller scales both along
and across the field), the dynamic evolution of the vortices
naturally produces many small-scale current sheets (e.g.,
Antolin et al. 2015). This, in turn, means that reconnection as
a result of the vortex evolution can be important for the
thermalization of the plasma.
An alternative method by which turbulent heat transport could

occur is as a result of the drift of neutral atoms across the
magnetic field. In the dense, cool material of prominences, the
degree of ionization has not been exactly determined—but
ranges of the ionization fraction of 0.2–0.9 (Engvold et al. 1990;
Labrosse et al. 2010) or ratios of electron to neutral hydrogen
density in the range 0.1–10 (Patsourakos & Vial 2002) have
both been reported. The work of Hillier (2019) highlights the
role of the motion of neutral particles across the magnetic field
for heat transport. As the neutral particles drift across the
magnetic field, they can act (through collisional coupling with
the local plasma they meet) as a heat sink for the hotter material
they interact with, resulting in a transfer of heat. Because the
relaxation to a single temperature distribution due to thermal
conduction is more effective in the hot, low-density coronal
plasma, and the relaxation by ion–neutral drift is more important
for regions of the mixing layer that have more cool material, it is
likely that both of these mechanisms could be important in this
mixing process in the solar corona.
We can use Equation (34) to estimate the heating by the

Kelvin–Helmholtz instability of prominence material in the
solar corona. For this, we can use a velocity shear of 10 km s−1,
and for a temperature of 105 K, the sound speed is 33 km s−1.
Combining these with the appropriate densities, this would give
an increase in temperature of the fluid of Δ T<0.003Tmixed.
That is to say, the energy available for rapid heating via
turbulent dissipation can possibly result in a temperature
increase that is only a fraction of a percent of the temperature
achieved through mixing, i.e., the possible heating is not
significant compared to the mixing in this situation, because
there is just not enough energy available for dissipation.
Using the estimate for the timescale given in Equation (35),

we can estimate the observable timescales for these processes.
Taking a mixing region of half-width 100 km would result in a
lower estimate for both the mixing timescale and the heating
timescale of ∼100 s (note that this increases linearly with
increases in the half-width). Based on the dominance of
mixing, it would be sensible to assume that this process would
take a few hundreds of seconds to significantly reduce the cool
intensity of a prominence thread while producing the warmer
material at a similar rate. Combining this timescale with the
total energy available for dissipation gives an energy dissipa-
tion rate of ∼10−4 erg cm−3 s−1. Note that this is much larger
than the 10−8 erg cm−3 s−1 estimated for quiescent prominence
turbulence by Hillier et al. (2017), though this difference is
mostly due to the localization assumed for the turbulence in this
study and the larger velocities used.

4.1. Radiative Losses and the Possibility of Coronal Cooling

One important consequence of the dominant role of mixing is
that, while it does not efficiently heat the system, it does alter the
temperature of the plasma, changing the radiative losses. As
shown in Figure 2 of Anzer & Heinzel (2008), for example, the
loss function Λ(T) for optically thin radiative losses for coronal
plasma at constant pressure varies with temperature, with the
total radiative losses given by R=n2Λ(T) (where n is the

Figure 8. Magnitude of the pressure fluctuations, averaged in the x and z
directions, normalized by pmixed at t=60. Vertical dashed lines give the extent
of the mixing region in the model. The horizontal dashed red line gives the
predicted increase in pressure as a result of turbulent heating.
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number density). For the mixing of cool (104 K) prominence
plasma with hot (106 K) coronal plasma, the characteristic
temperature of the mixing layer is 105 K. Their calculations show
that the radiative losses from the mixing region are going to be
greater than the losses for either of the plasmas before mixing.

For the coronal plasma we are using, the timescale for radiative
loss is approximately 103 s, and for the prominence plasma, this
becomes approximately 1 s (though it should be noted that the
use of optically thin radiation to model the optically thick
radiative losses of the prominence strongly underestimates this
timescale). The result of the mixing gives a timescale of
approximately 1 s for what will be an optically thin plasma,
which equates to an energy loss rate of ∼0.1 erg cm−3 s−1.
Therefore, the cooling times have been drastically reduced by
mixing. When compared to the heating rate as a result of
turbulence, it is clear that the cooling rate dominates this,
meaning that even though there is heating occurring, thermal
energy is being lost from the system as a result of the Kelvin–
Helmholtz instability occurring faster than it is being replaced.
Therefore, the overall result of the mixing process is more likely
to be cooling of the solar corona, rather than heating.

It is important to note that the estimates for the change in the
radiative losses presented above were calculated using ρmixed

and Tmixed. However, these are just characteristic values for the
mixing layer, and as shown in Figure 3 for large density
contrasts, the density—and with it, the temperature—has a
nonlinear distribution across the mixing layer. Therefore, these
estimates should only be taken as characteristic values to
highlight how the cooling timescale of the prominence corona
system will evolve as a result of the KHi.

This estimate of the cooling time is based on the fluids
having become well-mixed, but even before this process has
taken place, i.e., in the early stages of the instability when
vortices are forming but the fluids remain relatively distinct, it
is likely that the radiative losses of the prominence–corona
system would increase. The high-temperature component of
this system is optically thin, so the corrugation of the boundary
between the two fluids does not change the losses from this
material. However, the optically thick emission from the
prominence material is determined in part by the surface area
through which the photons can escape; see the shell emission
found for optically thick lines from radiative transfer models of
simulations presented in Figure 8 of Okamoto et al. (2015).

Taking the linear instability to have reached a displacement
of the boundary of 1/k, i.e., the instability will be developing
nonlinearities (e.g., Hillier 2019), and using the plane wave
solution of the linear instability (so we can assume a sine
wave form of the boundary displacement), the surface area
of the boundary increases by approximately 25%. Using
the results from Anzer & Heinzel (2000), the energy flux
from the prominence material as a result of radiative losses is
∼3×104 erg cm−2 s−1. Therefore, the radiative losses from a
prominence thread of thickness 108 cm with the instability
growing on a scale of 107 cm would approximately increase the
radiative losses per unit length of the prominence thread from
2×1013 to 2.5×1013 erg cm−1 s−1 (assuming all the losses
are from optically thick lines). Though this is not as effective as
the large radiative losses that occur once mixing is fully
developed, it does highlight that the increase in radiative losses
can occur through all stages of the instability.

The example using prominence material embedded in the solar
corona has a large temperature difference, and as such, the

possible heating by the KHi is limited. However, coronal loops
are of a temperature and density similar to those of the ambient
corona. In this situation, as the density contrast is small, the
heating will be at its most effective, and as the temperature
contrast is small, Tmixed will not differ greatly for the background
temperatures. The latter means that the radiative losses will not be
greatly affected, making it possible that heating rates can outstrip
loss rates, and the former means that the maximum heating would
be given as ∼M2/16, around the most efficient it can be.

4.2. Some Thoughts on Driven Oscillations

In this section, we have focused on the case where the KHi
develops as a result of an oscillation that is driven by a
impulsive kick and then left to evolve, but another possibility is
that an oscillation in a flux tube in the solar atmosphere is being
continuously driven at its ends in the photosphere. Assuming
that the driven oscillations are not strong enough to completely
destroy the structure of the flux tube, there would be a constant
energy source to drive instability—and with it, turbulence. This
would again create the mixing layer via the KHi process
presented in this paper. However, we can hypothesize that,
once this layer has become large enough compared to the
radius of the flux tube, the boundary between the flux tube and
the external corona would become sufficiently thick that
instabilities cannot grow. This can be seen in our simulations
(see panel d of Figure 5) where even though there is still shear
flow (and with it, free energy that could be used for both
mixing and heating), the mixing layer has become sufficiently
large compared to the width of the box that it is no longer able
to extract more energy from the flow. This implies the
existence of geometrical constraints on the absolute thickness
of mixing layer on a flux tube. Inside this layer, as there are
going to be radial density variations, there is the possibility of
resonances between the local Aflvén frequency and the
frequency of the large scale oscillation, which may allow
further, localized excitation of the KHi—and with that, further
dissipation as discussed in Terradas et al. (2008).
Another aspect to consider is the timescale of the mixing

(given in Equation (33)). This is limited by the velocity shear
(shorter for larger shears) and by the density contrast (longer
for larger contrasts), so it is easy to conceive cases where the
timescale for mixing (and with it heating) is longer than the
characteristic timescale for energy input into the flux tube. This
can be mitigated by energy being injected only at the relatively
small cross section of the footpoints of a flux tube, in contrast
with the large regions on the flanks of a flux tube that can be
dissipating energy via the KHi. This implies that, even if the
characteristic timescale for energy dissipation is longer, a larger
region is involved in the dissipation, meaning the total energy
input into oscillating flows of the flux tube and the total energy
extracted from these flows can balance. However, when this is
not the case, there are three possibilities: other dissipation
mechanisms dominate, the excess energy leaks from the tube,
or (in the case the driver is resonant with the flux tube kink
frequency), the oscillations get larger and larger until the KHi
heating timescale matches the energy input timescale.

4.3. Differentiating between Heating and Mixing in
Simulations

When looking at the results of a 3D simulation, especially
the incredibly complex simulations of the Kelvin–Helmholtz
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instability forming on the surface of oscillating prominence
threads, it can be difficult to determine whether features that
appear are the result of heating or of mixing. Fortunately, as the
mixing solution is based on having no change in internal
energy, which implies conservation of pressure, it is possible to
estimate the temperature distribution from mixing by just
knowing the density distribution.

For the case where the initial pressure profile is constant, it
would be expected, based on application of the ideal gas law,
that the temperature at any point in the mixing layer as a result
of mixing alone is T∝1/ρ. For a situation where the gas
pressure is not constant, this can be more complicated to
estimate, but it is possible to determine a linear map between
the density and the expected pressure achieved through mixing.
The density at any point in the mixing layer can be written as
the sum of the fractions of the densities outside the mixing
layer given by:

r r r= +x xA A , 481 1 2 2( ) ( ) ( )

where A1 (x)+A2 (x)=1, which allows for A1 and A2 to be
uniquely determined from simulation data at each point in the
mixing layer. This means that the pressure expected from
mixing at any point in the mixing layer is given by:

= +x xp A p A p . 491 1 2 2( ) ( ) ( )

Then, using an ideal gas law, the temperature at that point in
the mixing layer expected to occur as a result of mixing
associated with these values of ρ and p can be determined. By
comparing this estimate to the simulated temperature distribu-
tion, it is possible to estimate the position and level of the
temperature increase by removing the influence of the mixing.

To highlight this, we have applied these arguments to our
simulations. This is presented in Figure 9, where the difference
between the local temperature of the plasma and the
temperature estimated using the mixing arguments (all normal-
ized by the estimated temperature) is plotted for a slice in the
simulation at z=0. In the KHi layer, there are areas where
heating (either through compression or dissipation) has lead to
temperature increases. However, the magnitude of these
increases only reaches to the level of ∼2.5% of the temperature
the plasma reaches through mixing.

There is a caveat to this estimate, and that comes as a result
of compression. The model in the previous paragraphs assumes
no change in internal energy, so any change found in internal
energy could be attributed to turbulent heating. However,
changes in internal energy can come about through work done
through compression. If there is an initial pressure jump or the
turbulence is large enough to have a noticeable turbulent
pressure, there will be a compressive or expansive effect that
will alter the temperature from the mixing value—but without
being associated with energy dissipation. Therefore, it would
always be worth estimating the order of these effects before
making the comparison, to make sure the heating estimate is
not misleading.

5. Summary and Discussion

In this paper, we have presented a simple phenomenological
model for mixing by the magnetic Kelvin–Helmholtz instabil-
ity in a uniform pressure and magnetic field. The model was
constructed using conservation of mass, momentum, and
energy, and this has been used to predict the characteristic

values of the density, pressure, magnetic field, temperature,
velocity, and kinetic energy associated with the mixing layer.
The key results are:

(i) The central position of the mixing layer is shifted by
having a density jump toward the low-density side. The
larger the density difference, the larger the shift.

(ii) The characteristic density in this layer is given by r r1 2 ,
and the characteristic value of the temperature is

=T T Tmixed 1 2 .
(iii) The total fluctuating energy can be calculated and used as

an estimate for the energy that can be dissipated in the
system and is bounded above by M2/16 where M is the
Mach number of the flow.

(iv) In flows with high Reynolds numbers, an estimate for the
lower bound of the timescale for mixing/heating can be
given by:

t
a a
a aD

+
 l

V

2
2 , 50mixed

1 2

1 2
1 4( )

( )

with this also providing an estimate of the dissipation
timescale of the system.

(v) The predictions of this model are well-supported by
numerical calculations.

Application of this model to the formation of a thick
transition region between a cool, high-density region and the
hot, tenuous solar corona highlights that it is much more likely
for mixing, rather than heating, to drive the observed
temperature changes presented in Okamoto et al. (2015).
Predictions for the temperature material created by mixing give
estimates of 105 K. This leads to one of the greatest
consequences of Kelvin–Helmholtz instability: the mixing
process does not add much heat to the system, but it does
greatly increase the efficiency of the radiative losses by creating
thick regions at transition region temperatures and densities.

Figure 9. Difference between temperature and mixing temperature normalized
by mixing temperature in the KHi layer at t=60.
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Ultimately, this process makes energy loss from the corona,
i.e., coronal cooling, more likely than coronal heating.

The current level of the model does not take into account
many possible variations: for example, how oscillatory flow
changes the nonlinear evolution (the linear stability problem
was investigated in Barbulescu et al. (2019) and Hillier et al.
(2019)), or how changes in the gas and magnetic pressure
across the shear layer change the mixing process. However, the
current model provides sufficiently accurate estimates and
scalings for the basic model proposed, based on the conserva-
tion of mass, momentum, and energy of the system, so any
extension of the model to more complex scenarios will still
have the same constraints. Therefore, the general conclusions
are likely not to be greatly altered.

One area that is worthy of discussion, though beyond the
scope of the current paper, is the influence of a nonpotential
magnetic field on the energy released. It can be expected that,
as with the kinetic energy, the total of the mean magnetic
energy distribution after mixing is smaller than that held in the
initial distribution (see Figure 4 for the change in the kinetic
energy). Simulations by Howson et al. (2017) numerically
investigated this possibility, with their results suggesting that
more heating would be possible as a result of the KHi
developing in a twisted magnetic field. As such, an important
further development for the model we present in this paper is
the inclusion of these effects.

The model presented in this paper has been used to
investigate the nonlinear MHD Kelvin–Helmholtz instability
relating to solar prominences, but all the arguments in Section 2
are equally applicable in the case where B=0, i.e., it also
applies to hydrodynamic systems, and to other MHD systems
(e.g., the flanks of CMEs (Foullon et al. (2011)). Therefore,
though the application of the model looked at in this paper is
for the solar atmosphere, the model (along with its promised
extensions) will be significantly more versatile in reality, and
can be applied to estimate the mixing and heating behavior of
any system undergoing the MHD KHi.
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