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 Abstract 
 

 

In recent years, building integrated photovoltaic (BIPV) applications have gained a 

considerable interest. Different semi-transparent photovoltaic (STPV) glazing can be used in such 

applications. This thesis aims to investigate the thermal performance, energy performance and 

daylight performance of a CdTe thin-film based semi-transparent PV glazing of different 

transparencies. 

Outdoor and indoor experimental setups were installed, in Penryn, UK, to investigate the 

performance of 35%, 25%, 19% and 0.5% CdTe thin-film based semi-transparent photovoltaic 

glazing in comparison to conventional clear glazing under realistic conditions. Data from the 

experimental setups were collected in different day conditions and different orientations that are 

South and South West. Overall heat transfer coefficient (U-value) and solar heat gain coefficient 

(SHGC) were calculated for thermal performance evaluation. Net energy performance was 

evaluated for energy performance assessment. Daylight glare index (DGI) and daylight factor (DF) 

were calculated for daylight performance evaluation. 

Results showed that, CdTe STPV glazing are better thermal insulators than conventional single 

glazing, and CdTe STPV glazing with lower transparencies have better thermal insulation property 

than higher transparency ones. In addition, compared to conventional single glazing, the 

application CdTe STPV glazing can achieved a net energy saving up to 20%. Moreover, Using 

CdTe STPV as a glazing façade can control the daylight glare inside the enclosures to acceptable 

levels, it also permits for usable daylight to be transmitted into enclosures. 
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1.1 Research Background 

 

Global awareness regarding energy generation from fossil fuels and its implications on 

pollution, global warming and climate changes has increased the need of reducing energy 

consumption and the use of green energy. Recent studies of International Energy Agency (IEA) 

[1] in 2018 showed that residential buildings are responsible for an average of 20% of energy 

consumption in Japan, Russia, India, US and China. Another study in Taiwan in 2013 [2] stated 

that the residential and commercial buildings are responsible for 40% of energy consumption. The 

major consumer of energy in this type of application is the cooling and heating loads. Other 

consumers are electric equipment and lighting. The excessive cooling and heating loads mainly 

result from the type of glazing used [3]. The glazing has to permit for heat transfer into the building 

during cold winter days and block heat transfer into the building during hot summer days. This 

makes the selection of the correct type of glazing of significant importance.  

Building-integrated photovoltaics (BIPV) have come to be regarded as a promising technology 

that reduces the life-cycle costs of building construction and generates energy simultaneously  [4] 

as shown in Figure 1.1 [5]. Apart from generating electricity, BIPV modules can be customized in 

a different dimension, thickness, shape, and colour to give a beautiful aesthetic view. BIPV 

products offer numerous advantages [6] such as to provide weather protection, thermal insulation, 

noise protection, and even structural strength, in addition to allowing the entry of daylight, 

providing a view to the outside, and generating electrical power. 

In general, most building surfaces are available for the integration of PV modules. The integration 

can be implemented in different ways bringing four classes of integration: 

a. PV facades (including glazing, curtains, etc),  
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b. PV roofs (including standing panels, tiles, etc),  

c. PV windows (including semi-transparent PV, glass laminated, etc.) and 

d.  PV sunshades (including blinds, panels, etc.) 

 

 Figure 1.1 Building Integrated Photovoltaic  

 

Different types of PV glazing systems are available to be used in BIPV applications [7]. Mainly, 

three different types of PVs such as Silicon-based PV, thin-film PV and organic solar cells are 

used in the production of BIPV. The selection of a semi-transparent photovoltaic (STPV) is 

achieved based on its cost, availability of raw materials, efficiency and environment in terms of 

energy saving and manufacturing process [4]. Thin-film and crystalline silicone-based PV 

dominate the market because they have proven their effectiveness in real applications [6]. However 
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thin-film PV modules have some advantages over crystalline silicone PV that can be summarized 

as follows: 

1. Availability and affordability of raw materials. 

2. The light weight of the PV 

3. The availability in rigid and flexible forms. 

4. The aesthetic appearance that encourages its usage in BIPV applications. 

5. The different available transparency levels while keeping acceptable efficiencies. 

Thin-film PVs are of different types depending on the material they are made of. Known materials 

include Cadmium sulfide (CdS), Copper indium diselinide (CIS) (CuInSe2) and Cadmium telluride 

(CdTe). Previous studies have shown that CdS thin-film PV have low efficiency that reaches a 

maximum of 6%. This has resulted in less research to be oriented toward them [7]. CIS thin-film 

PV have high efficiency that can reach up to 20% for PV cells and 13% for large area modules [8]. 

However, they have a drawback regarding the shortage in indium [9]. According to First Solar 

Company, CdTe thin-film PV are the most suitable for large scale applications [10]. They have a 

cell efficiency reaching 20.4% and a large module efficiency of 16.7%. This makes the choice of 

CdTe thin-film PV to be the best among other thin-film types. 

Recently, STPV-integrated window systems have become popular [11] . Onsite electricity 

generation capacity is the driving force behind the intense focus of research on STPV. However, 

like any other glazing system, the reflectivity, and transmissivity of STPV module change with the 

angle of incidence. The change in internal building daylight can be achieved by using different 

transparency STPV glazing. However, the high transparency of the glazing affects its power 

generation and permits for more heat to be transferred through it thus affecting its thermal 

properties. The excessive heat transfer through the glazing into the building results in an increase 
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in cooling load and a decrease in heating load. On the other hand, low transparency glazing leads 

to high power generation and decreases the heat transfer through them. Thus, decreasing the 

heating load and increasing the cooling load. However, this requires more lighting to be installed 

in the enclosures of the building in order to compensate for the lack of daylight which is unpleasant 

for human eyes as it makes them out of their comfort zone. 

On the other hand, for a given geographical location, the sun position changes within days which 

resulted in variation of the incidence angle for a static surface. This difference leads to decrease in 

STPV energy generation compared to normal incidence. Therefore, the real practical 

implementation of this technology might give different results from the lab-based experiments. 

Orientation, place of installation and local climatic characteristics are the determining factors for 

this optical or angular loss of power generation. Variation in ambient temperature which changes 

from place to place and the existence of built-in cooling units are major factors which directly 

affects the cell temperature and thus the module efficiencies [12]. Weather conditions include solar 

irradiance, sky clearness, ambient temperatures and wind speed. These factors not only affect the 

power generation of an STPV glazing, but also affect its thermal performance that is characterized 

by the overall heat transfer coefficient (U-value) and the solar heat gain coefficient (SHGC). 

Therefore, besides analyzing the data provided by the manufacturer, performance assessment of 

STPV system in real operating condition are necessary to know the economic potential in that 

particular location. The performance analysis in a local climatic condition also establishes the 

suitability of a given STPV technology in that specific location and builds confidence among the 

designer and architecture to apply their energy assessment tools in the new smart buildings. 
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1.2 Research Motivations 

 

Therefore, the scope of this research is set out because 

- The glazing is a key factor to reduce the building energy, but more work is needed to be 

improve performance Thin Film-based STPV. 

- Cooling loads are high in countries where high temperature is present and Façade with 

traditional glazing increases the electrical consumptions. Therefore, there is a need to 

investigate new glazing technology to reduce the cooling loads. 

- Silicon PVs are opaque and suffer a lack of uniformity if spacing is made for daylight 

improvement. So, the study of semi-transparent photovoltaic (STPV) is crucial for better 

optical comfort of occupants and daylight performance of the building. 

- Using STPV might reduce the cooling/heating loads in a building but it degrades the 

interior daylighting. Therefore, it is important to study the feasibility of using an STPV as 

a glazing through evaluating its daylight performance. 

- CdTe-based STPV have high efficiencies and low cost, however few researches have been 

reported on using them for Façade energy improvement. So, more investigation must be 

done on the mentioned STPV. 

- More research must be oriented towards the overall energy assessment including the Air-

conditioning consumption, artificial lighting consumption and PV generation for office-

based Façade because few researches have addressed them. 

- Practical experimentation needs to be performed on STPV glazing to validate the 

outcomes of previous researches that are based on simulated scenarios. 
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- More work needs to be performed to assess the STPV glazing in outdoor conditions under 

different orientations, transparencies and sizes because very limited research is oriented 

towards them.  

 

1.3 Research aim and objectives 

 

The general aim of this research is to evaluate the energy performance and thermal performance 

of a various semi-transparent photovoltaic glazing in different climate conditions. The aim can be 

achieved through the following list of research objectives: 

1. To design and implement an indoor and outdoor experimental setup with semi-transparent PV 

glazing be fitted on its wall and to develop the experimental methodology for a quantitative 

study that evaluates the glazing performance by calculating defined parameters. 

2. To evaluate the thermal performance of different transparency semi-transparent PV 

characterized by overall heat transfer (U-value) and solar heat gain coefficient (SHGC) and 

compare it to clear single glazing. 

3. To assess the net energy performance of an Air-conditioned office-based Façade integrating 

different transparency semi-transparent PVs and compare it to a clear glazing. 

4. To evaluate the daylight performance of an Air-conditioned office-based Façade integrating 

different transparency semi-transparent PVs and investigate the comfort measures. 
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1.4 Methodologies and approaches 
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The research program involves the methodology of the experiments, field measurements and 

data analysis for performance evaluation. Experimental setups used by previous studies were 

reviewed to select the one that best fits the aim and objectives of the research. Three 

experimental setups were installed, two of them are outdoor test enclosures and one is an indoor 

test enclosure. The outdoor experimental setups were oriented to face South and South West. 

These two orientations were specifically selected because they provide PVs with maximum 

solar radiation collection making them economically optimal in terms of PV power generation 

in northern hemisphere areas [13][14]. Results from different experimental setups and different 

orientations are compared for results validation. The required measurement equipment were 

identified, selected and calibrated for precise data collection. Measured data include solar 

irradiance, weather conditions, temperatures, PV glazing’s power generation, Paltier units’ 

power consumption and internal and external daylight illuminances. The collected data were 

used to evaluate the thermal performance, energy performance and daylight performance of 

CdTe thin-film based semi-transparent photovoltaic glazing. STPV glazing performance was 

compared to that of conventional single glazing for better physical interpretation of the results. 

The thermal performance was assessed by calculating the overall heat transfer coefficient (U-

value) and solar heat gain coefficient (SHGC) of glazing under study, using data collected from 

the three designed experiments. Energy performance was assessed by evaluating the net energy 

performance of the STPV glazing in outdoor experiments. Net energy evaluation involves 

STPV glazing power generation, Paltier units’ power consumption and artificial lighting power 

demand. In addition, daylight performance of the glazing was assessed through calculating 

daylight glare index (DGI) and daylight factor (DF). 

1.5 Research contribution 
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The contribution of the thesis can be summarized as: 

- Unique provision of new outdoor performance data for CdTe glazing systems for 

climates similar to that of the UK. 

- Thermal factors, represented by U-value and SHGC, assessment using different 

methods for different semi-transparent photovoltaic glazing transparencies have been 

determined. 

- Net energy performance has been evaluated practically using small-scale outdoor setup, 

including the air-conditioning consumption, artificial lighting consumption and PV 

generation. 

- Daylighting and glare assessment for a small office model setup, targeting semi-

transparent photovoltaic glazing. 

1.6 Arrangement of the Thesis 

 

The thesis consists of 7 chapters starting from a general introduction of the subject passing through 

technical analysis and ending with conclusions and scope for future work. Brief description of the 

chapters is presented below. 

Chapter 1 is an introductory chapter that presents the research background related to the 

photovoltaic (PV) systems in building and different BIPV technologies. Also, it provides the 

chapters outline in the thesis. The general aim and objectives are introduced in addition to the 

selected methodologies and approaches to achieve these objectives. 

Chapter 2 narrates the history of the PV systems and related to BIPV. Different PV technologies 

are discussed but more attention to thin film is drawn. The state of the art is reviewed addressing 

the BIPV systems and energy performance assessment. The review included the technologies, 
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research methodologies, the simulation and practical results and conclusions. Therefore, the 

research gaps are identified in this chapter and ensures the novelty of the research outcomes. 

Chapter 3   shows the design of the experimental apparatus and field measuring for the purpose of 

validating the theoretical calculation and drawing the conclusions. The discussion includes 

designing a test enclosure suitable for the thin film samples and equipping the required temperature 

sensors and other sensors (voltage, current, light) for data collection. The whole setup with the 

software is discussed. Initial tests are carried out indoor and outdoor to meet the safety and 

accuracy requirements. 

Chapter 4 presents the thermal performance measures that need to be defined like the U-value, and 

solar heat gain. Formulas are provided, and different testing methods are carried out to assess the 

thermal performance for different semi-transparent PV (0.5%, 19%, 25%, 35%) on the rooftop of 

the ESI building in Penryn- Cornwall as well as the indoor experiment.  The data is discussed, and 

some expectation are presented based on the test’s outcomes. 

Chapter 5 presents the use of thin film as BIPV system where it generates power and contributes 

to minimizing the air conditioning units power consumption. The study includes the power 

calculation of the STPV over selected days in different seasons as an example with the lighting 

requirements for a building. As a result, a net energy performance is discussed supported by all 

experimental data. 

Chapter 6 discusses the effects of thin film PV on daylighting control and cooling load in Façade 

buildings. Some figures are defined like Daylight glare indexes (DGI) and daylight factor (DF). 

The STPV glazing has been evaluated using an outdoor south facing and south-west facing test 

cells for clear sunny, intermittent cloudy and overcast cloudy days. The study produces a feasibility 
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measures of using the STPV in Façades and in traditional building and its relation to the enclosure 

lighting for different STPV transparencies. This provides us with expectation about the 

comfortability of the enclosure. 

Chapter 7 discusses the conclusions and reviews the achievement of the thesis aim. Finally, it 

provides some suggestions for future work based on the research outcomes and the expectations 

and presents some extended work for more investigation on other issues not addressed in this 

thesis. 
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This chapter presents the basic information that builds a solid understanding of the topics and 

issues covered in other chapters. It highlights different technologies which have been considered 

in the literature and reviews previous studies which addressed issues relevant to this thesis and 

identifies the contributions of others toward investigating the various properties of glazing and 

improving the energy consumption figures.  

2.1 Glazing and overall building energy performance 

 

Glazing units are essential parts of a building’s composition, whether they are used as windows or 

facades. Their primary role is to permit daylight transmission so that a contact between the inside 

and exterior environment is attained and as well as achieving optical comfort for the occupants. In 

addition, glazing provides an aesthetic architectural feature when used as facades. However, the 

use of glazing also permits heat gains and losses through glazed areas, leading to an increase in 

winter heating loads and summer cooling loads, which is a major issue when dealing with the 

overall energy performance of a building.  

In 2018, the international energy agency (IEA) published a report stating that an average of 20% 

of generated energy was being used by residential buildings in Japan, Russia, India, the U.S.A and 

China [1]. However, further scenarios considered by the International Energy Agency (IEA) 

indicate that the domestic sector will lead the total energy consumption by 2035 [15].  The main 

fraction of a building’s energy consumption is due to high cooling and heating loads that are mainly 

caused by low thermal insulation of glazing [3], as well as the use of artificial lighting, but in less 

proportion. Therefore, there is an urgent necessity to develop solutions that minimize heat transfer 

through building envelop to their surrounding areas while keeping the optical comfort and 

environmental contact within the acceptable ranges. 
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2.2 Factors affecting building energy consumption 

 

Different factors affect the energy performance of a building, including the size, type and 

orientation of glazing. In 2017, El Jojo [16], through numerical modelling, showed that a reduction 

of 40% in energy consumption and 30% in CO2 generation can be achieved by selecting the 

optimum position and type of glazing. Similarly, in a study in 2015  Pai and Siddhartha [17] 

showed that the energy performance of space cooling and lighting, measured in BTU, is affected 

by the orientation of glazing. In addition, Muhaisen and Dabbour [18] pointed out that, for optimal 

energy saving in the building, both the size of the glazing and glazing material have to be studied 

alongside the orientation of the glazing.  

According to many studies, glazing window-to-wall ratio (WWR) is a main parameter in 

determining the amount of energy consumption, as a lower WWR leads to lower cooling and 

heating loads  [19][20]. Saridar and El Kadi [21] studied the effect of different window-to-wall 

ratios at different orientations on the annual electricity consumption (in kilowatt-hours per m2) in 

Lebanon. Their study revealed a significant effect of WWR on energy consumption. Their results 

are shown in Table 2.1 shown below. 

Table 2.1 Effect of window-to-wall (WWR) on annual electricity consumption in Lebanon 

WWR Annual Electricity 

Consumption (KWh/m2) South Wall North Wall East/West Wall 

0.72 0.87 0.63 3.26 

0.25 0.25 0.08 30.52 

0.58 0.58 0.58 7.63 

1 0 0.44 20.37 
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Shading devices are also effective factors in building energy performance, as reported in [22] and 

[23]. The presence of a shading device decreases the heat losses and heat gains through the glazing, 

resulting in a decrease of both heating and cooling loads. However, shading devices affect the 

transmission of daylight into the enclosure, leading to excessive usage of artificial lighting. 

Another effective factor is the building’s location, which is characterized by solar irradiance and 

ambient temperature, which is a also a concern when analysing glazing performance, as discussed 

in [24]. 

In the light of these mentioned studies, it is clear that the energy performance of a building is 

strongly related to the thermal performance of the glazing, which that determines the summer 

cooling and winter heating loads, and the daylight performance of the glazing, which determines 

the need for usage of artificial lighting. This means that a full study of a building’s glazing 

performance has to cover the three main types of performance: energy, thermal and daylight 

performance, as these are interrelated. An example of this interrelation is using a 35% transparency 

glazing instead of the 90% clear glazing. This leads to better thermal performance and energy 

saving but less interior daylight.  

2.2.1 Thermal performance of a Building 

 

The thermal performance of a building strongly affects energy consumption. The building material 

is generally well insulated, except for the glazed areas, whether they are used as façades or 

windows. Current conventional residential windows are responsible for around 47% of heat loss 

[25].  

The main factors that describe the thermal performance of building glazing are the overall heat 

transfer coefficient (U-value) and the solar heat gain coefficient (SHGC). U-value is a coefficient 
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that measures how well a material transfers heat in (W/m2K). High U-values mean a lower 

insulating effect of a material while lower U-values indicate a higher insulation effect of a material. 

For example, single glazing has a U-value of about 5.8 W/m2K and air-filled double glazing has a 

U-value of about 3.7 W/m2K, while a gas-filled double glazing (such as argon filled) has a U-value 

of only 1.9 W/m2K, according to the Slimlite company in the U.K. [26]. The overall heat transfer 

coefficient measures the composite performance of an element, rather than describing the 

performance of its composing materials, and this gives an easier approach for comparison between 

different designs. 

Solar heat gain coefficient (SHGC) describes the fraction of solar irradiance that enters the 

enclosure through the glazing. The solar irradiance can be directly transmitted through the glazing 

or stored and emitted again. The SHGC is unitless and has a value between 0 and 1. Low SHGC 

indicates less solar irradiance transmission through the glazing and vice versa. According to the 

Royal Institute of British Architects (RIBA), the SHGC of a whole window, with frames included, 

is less than 0.8 [27]. 

2.2.2 Building daylight performance 

 

One basic reason for using windows and glazing facades is the daylight transmittance through 

them for the visual comfort of occupants. One way of determining the daylight performance is by 

measuring the glare index. Glare index measures the difficulty of seeing in a certain environment. 

Better daylight performance is, in many instances, associated with lower thermal performance of 

glazing, as in cases of semi-transparent glazing. In addition, lower daylight performance is 

sometimes associated with better thermal performance, such as the use of shading devices and the 

use of low window-to-wall ratios [28]. The importance of studying glazing daylight performance 
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is also an issue of concern for determining the overall energy performance of a building, as 

explained by Boyano et al.[29], who point out that lighting has a significant effect on building 

energy consumption. 

In the light of the issues raised in this discussion, the search is in progress for the optimum glazing 

with good daylight transmission and low heat gains and losses, as well as low capital cost. This 

has made the use of constant transparency glazing the most popular type of glazing in recent years. 

2.3 Constant Transparency Glazing 

 

As mentioned in the above sections, glazing is used for windows and facades in building facilities 

to connect the occupants to the outer environment. However, glazing units induce high heat losses, 

leading to a higher heating load in cold areas and high heat gains, leading to high cooling loads in 

hot areas. In order to achieve an ideal glazing with good daylight transmission and low overall 

heat transfer, the glazing should have 100% transmission in the visible spectrum and 100% 

reflection in the infrared spectrum [30].  Different types of constant transparency glazing are 

available: the most used ones are discussed below. 

2.4 Single Glazing 

 

Single glazing is a common type of glazing used in windows and facades. It has the advantage of 

low initial and repair costs, compared to other types of glazing [31]. Moreover, clear single glazing 

has a transmittance percentage of 89% in the visible spectrum, which is a good property for 

daylight performance evaluation. However, the percentage of transmittance in the infrared 

spectrum is 84%. This is favourable in climates where heating is required, whereas it is not when 

cooling load is a concern, since it permits solar irradiance to pass though into the building [32]. 

Moreover, single glazing has a U-value of 5.8 W/m2K [33], which indicates that it permits high 
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heat transfer from outside to inside on summer days and heat loss from the heated space to the 

outer cold environment on winter days. Therefore, the search for a glazing that maintains the high 

daylight transmittance with better thermal properties has been an important issue. 

2.4.1 Double Glazing 

 

In its early stages of development, double glazing consisted of two glass panes with an air gap in 

between, as shown in Figure 2.1 [34]. The idea was to take advantage of the low thermal 

conductivity of stagnant air, which is 0.026 W/mK [35]. The amount of heat transfer through the 

double glazing depends on the distance between the glass panes. As the air gap increases, thermal 

insulation increases, which means lower heat loss. However, an excessive increase in the air gap 

leads the convective heat transfer to dominate the conductive heat transfer, thus the heat loss 

through the double glazing increases again [36]. According to a numerical study in Turkey, the 

optimum air gap distance is 18 mm to 21 mm for areas where the temperature difference between 

inside and ambient is 19 oC, 15 mm to 18 mm for a temperature difference of 25 oC to 34 oC and 

12 mm to 15 mm for a temperature difference of 49 oC [24].  

 

Figure 2.1 Components of double glazing  
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Researchers have sought to take maximum benefit of double-glazing systems. Gradually, the use 

of inert gases with lower thermal conductivities than air, such as Argon (0.016 W/mK), Krypton 

(0.0095 W/mK) and Xenon (0.005 W/mK), were introduced [32]. In addition, in order to reduce 

radiation heat transfer, infrared-absorbing gases were used [37] [38] [39].  Other glazing 

technologies have evolved from double glazing, such as evacuated glazing, which is similar to 

double glazing but with a vacuum gap between the glass panes [40]. This reduces the conduction 

and convection heat transfer dramatically, but a problem with radiation heat transfer arises. Thus, 

another glazing technology was developed in order to reduce radiation heat transfer in double 

glazing and evacuated glazing systems which is low e-coating glazing [32]. However, these 

modifications to double glazing have caused their initial cost to increase.  

A report by the IEA has predicted that cooling loads, heating loads and lighting demands will 

increase to more than double by 2050 [1]. The current usage of single and double glazing will not 

limit the energy performance of buildings. This has made enclosure for a new concept of glazing 

to be introduced to reduce the energy consumption of buildings, which is building integrated 

photovoltaic (BIPV), which uses different PV technologies as glazing and other parts of the 

building. 

2.4.2 Building Integrated Photovoltaic (BIPV) Glazing 

 

During the last decade, with the use of PV applications and increased efficiency of PV materials, 

the photovoltaic industry has grown rapidly. One area where PV materials are generally used is in 

developing integrated PV systems. Buildings provide a substantial support to the global energy 

use balance, accounting for 20-30% of the entire main energy utilization of industrialized countries 

[41]. Previously, determinations of energy efficiency in building design were only related to 

thermal insulation or air circulation to combine human wellbeing with the least energy 
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consumption. However, due to the benefits of photovoltaic applications, engineers now think about 

adding a provision of photovoltaic systems when designing buildings, so that it helps the building 

to produce its own electricity. The use of photovoltaic systems in buildings may have two 

methodologies: Building Attached Photovoltaic (BAPV) applications and Building Integrated 

Photovoltaic (BIPV) applications [42]. A BAPV system denotes that the photovoltaic modules are 

connected to the structure of the building as an add-on, exclusive of changing any operational 

segment of the building, resulting in added capital cost. However, in BIPV applications, 

“photovoltaics are considered as a functional part of the building structure, or they are 

architecturally integrated into the building design” [42]. The BIPV methodology substitutes the 

standard building constituents such as roof tiles, windows and even facades with PV systems and  

[3][43].  

Figure 2.2 [44] shows an illustration of BAPV and BIPV systems. The rack-mounted PV panel is 

the most well-recognized form of BAPV system. 

 

Figure 2.2 Example of (a) BIPV [45] and (b) BAVP systems on the roofs of buildings  
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In the recent past, the use of BIPV systems has attracted admiration from both economic and 

architectural perspectives whilst planning and building a new structure. BIPV systems produce 

power essential for household uses and the excess energy produced can be fed back into the grid, 

while such systems also substitute for the traditional building constituents as a weather protecting 

building envelope [46]. In addition, BIPV applications act as a substitute for using the land for 

energy production  through PV module installations [47]. A BIPV system could be a very 

appropriate choice as a micro-power plant, particularly for urban and suburban locations. The 

benefits of BIPVs can be summarized as follows [41]:  

1. No extra land is required for the installation of a PV system. As the building component 

itself is used for mounting the module. Heavily inhabited urban and sub-urban regions 

could seriously benefit from this.  

2. It may avoid the extra infrastructure required for setting up PV modules.  

3. Because of the on-site production of energy to be made use of in the buildings, the wastage 

of electricity during distribution and transmission can be reduced to a great extent.  

4. It reduces electricity bills, as free electricity will be generated throughout the daylight 

hours, which is then used by the building.  

5. The PV modules can replace the conventional building constituents and decrease the 

payback period of the installation.  

6. It can develop the artistic look of a building with a cosmetic layer of PV modules in a state-

of-the-art manner.  

7. It may decrease the planning costs to a huge extent.  
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The facades and the roof are believed to be the most appropriate selections for BIPV installations. 

The PV modules can be set up over the entire roof and facades, as shown in Figure 2.3 [48], 

providing concentrated exposure to the solar radiation. In addition, BIPV modules can be utilized 

as features such as skylights, building exterior cladding panels, a semi-transparent roof or semi-

transparent windows as well as   being conventionally integrated into a roof or façade [43][49]. 

 

Figure 2.3 Architectural designs for BIPV elements in the roof and façade of a building  

  

Various types of photovoltaic systems are available on the market and can be used as glazing. 

However, as stated earlier, the selection of the optimum glazing is related to different factors and 

the performance of the selected glazing has to be studied, as well. The next section describes the 

available PV glazing in the market. 

2.5 PV Glazing Technology 

 

Photovoltaic glazing technologies are available in different transparencies, giving them the ability 

to reduce the solar heat gain coefficient and allow for daylight control [14] [15] [16]. They also 

have an advantage over other types of glazing, which is power generation [17]. This triple benefit 

(daylight control, overall heat transfer reduction and power generation) has made PV glazing 
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favourable in different applications, such as building integrated photovoltaic (BIPV) applications 

[18] and roofs and facades [48]. 

The increasing demand for the use of photovoltaic (PV) applications has made enclosure for 

various technologies to enter the market. Photovoltaic technologies can be mainly be classified 

into silicone-based photovoltaic materials, thin-film based photovoltaic materials and organic solar 

cells. Among these types, thin-film PV and crystalline silicon PV materials are the most widely 

employed, because of their proven suitability in real applications. However, thin-film PV materials 

have some advantages over crystalline silicone, in terms of weight, form (rigid and elastic), 

aesthetic appearance and high transparency levels [6]. For a PV to be successfully commercialized, 

it has to be advantageous mainly in terms of cost, availability and environment. Fthenakis 

discussed the use of thin-film PV materials in the light of these three criteria and concluded that 

thin-film PVs are sustainable and can be enhanced with more research and development [30].  

Thin-film PV modules are experiencing a revolution regarding their mass production since the 

millennium, occupying about 15 – 20% of the market share in 2011 [50]. Figure 2.4 [51] shows 

the increase in the annual production of thin film PVs in the U.S from 2013 to 2024.  
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Figure 2.4 Thin-film PV production size in MW from 2013 to predicted size in 2024  

 

2.5.1 Silicon-Based PV 

 

Crystalline silicon (c-Si) solar cells have the highest cell and module efficiency. Commercially 

available PV modules can reach up to 22% [and 25.6% in cell efficiency]. Nevertheless, despite 

their wide-ranging possibilities, the field of standard c-Si applications in the building envelope is 

limited by several technical constraints. One of these constraints is known to be the loss of 

performance as a consequence of high temperatures and of shading caused by the surrounding 

buildings, their chimneys, or other kinds of obstacles: even one single partly shaded c-Si module 

will thus lead to a significant loss of power, not only in that particular module, but in all the others 

connected in series within the same circuit [52]. Furthermore, they are opaque, which means that 

the light transmission through the modules can be achieved only by altering the spacing between 

the cells. For example, for mono-crystalline PV glazing to be made semi-transparent, the solar 

cells are laminated with a space between them to allow light transmission to the indoor space, as 
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shown in Figure 2.5 [53]. The light obtained through this kind of glazing has a changing pattern 

of shading and non-uniform daylighting and thermal performance. 

 

 

Figure 2.5 Crystalline silicon semi-transparent solar cell  

 

2.5.2 Amorphous-silicon Thin-Film 

 

Amorphous silicon (a-Si) was one of the earliest thin-film PVs to be used. It was derived from the 

crystalline silicon photovoltaic technology [54]. a-Si can be integrated on glass with a layer of tin 

oxide (SnO2) in between to increase its conductivity, and it reaches an efficiency of 12% [55] [56]. 

However, when these PVs, are subjected to sunlight, their efficiencies drop. This led researchers 

in the field to refer instead to their stabilized efficiencies that lie in the range of 4 to 6% [50]. The 

initial efficiency of laboratory a-Si solar cells was initially 2.4%, in 1976, but  reached ~14–15% 

by 2016, as shown in Figure 2.6 [57]. 
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Figure 2.6 Best laboratory initial efficiencies for a-Si  

 

2.5.3 Cadmium Sulphide (CdS) Thin-Film 

 

Research and investigation on cadmium sulphide solar cells started in the 1950s. Their efficiency 

and environmental stability were low compared to silicon, as their best reachable efficiency was 

6% [58] [7]. This led to little research being oriented toward them. 

2.5.4 Cadmium Telluride (CdTe) Thin-Film 

 

The efficiency of CdTe PVs is one of the highest among other thin-film PVs. Its efficiency has 

reached 20.4% [10] and the efficiency of a large module has reached 16.7% [46] [59]. According 

to First Solar, this type of thin-film PV is the most suitable for large scale production [10]. The 

first study of CdTe efficiency in the laboratory was by Bonnet and Rabnehors [60] , who reported 

a solar cell with 6% efficiency, however the efficiency had reached 22 % in 2016, as shown in 

Figure 2.7 [57]. 
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Figure 2.7 Best laboratory efficiencies for CdTe  

 

2.5.5 Copper Indium Selenide (CIS) (CuInSe2) 

 

CIS thin-film technology has shown high efficiencies reaching, 20% in PV cells and 13% in large 

area modules [8][61]. This is due to the high optical absorption coefficient of its semi-conductor 

elements. However, some constraints are present that make it difficult to be affordable and 

commercialized. These constraints are the high production cost and the shortage of indium [9]. 

2.5.6 Emerging thin-film PV technologies 

 

Recent years have seen the rise of new technologies, based on organic and dye-sensitized PV 

materials. These PV technologies have the advantages of low production cost [62] and simple 

manufacturing processes [63]. In addition, the dye-sensitized solar cells can be available in 

different colours and transparencies, which gives them the advantage of a pleasing aesthetic 

appearance [64]. These PV cells have relatively low efficiencies and more research is being carried 

out on these technologies in order to increase their efficiency [62]. 



29 
 

2.6 Semi-Transparent Thin-Film-based PV glazing and its impact on building energy 

performance 

 

The primary reason for using PV glazing in building integrated photovoltaic applications is the 

reduction of energy consumption, in addition to power generation. Optimized selection of semi-

transparent PV glazing in a BIPV system offers less daylight transmission than using clear glazing. 

In other words, using semi-transparent PV units affects the heat transfer from solar source in form 

of radiation transmitted through the glazing of the building. This can lead to overall reduction in 

air-conditioning needs, thereby creating a system with less overall energy consumption [65]. 

Different types of PVs were investigated to establish their suitability to be used in BIPV 

applications. Silicon-based PVs, consisting of mono-crystalline and poly-crystalline silicon, were 

popular in research in the past. Studies in 2007 and 2008, in Brazil and Japan respectively, showed 

that using these types of photovoltaics as glazing could achieve an energy saving of 43% and 55%, 

compared to conventional single glazing [66][67]. However, recent studies, in 2018, have exposed 

some drawbacks in using mono-crystalline and poly-crystalline silicon PVs. Semba et al. [68] 

found that a degradation in power generated by crystalline silicon PV occurs at high temperatures 

and high pressures. Benghanem et al. [69] showed in their research that a loss in the maximum 

generated power can reach to 28% due to the dusting effect in desert countries. Quanesh and 

Adaramola [70] conducted a study on 29 mono- and poly-crystalline silicon PV  modules in six 

different locations in Ghana. They found that a loss in power generation occurs in a range of 0.8% 

to 6.5% per year. They also reported that observable defects such as bubble formation, 

delamination and the appearance of a yellowish/brown colour were noticed for both types of PV 

materials. Bouraiou et al. [71] analysed and evaluated 608 PV modules in the Saharan region.  

Among the promising types of photovoltaic materials are the semi-transparent thin-film based ones 

and this is mainly due to their high efficiency [72]. These PV materials were proven in research to 
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be superior to traditional single and double glazing. This is because they provide outdoor light 

transmittance for a building, together with power generation. Thus, adopting them in the façades 

of buildings is a promising solution, especially when the area of coverage is large, but several 

factors need to be considered for optimization of their use, such as orientation, place of installation, 

weather conditions, and PV transparency.  In 2009, Li et al. [73] showed that the use of semi-

transparent photovoltaic material with dimming control as a glazing in an office building in China 

could lead to a cooling load reduction of 450 kW and an overall electricity saving of 1203 MWh, 

through both energy saving and power generation. Moreover, CO2, SO2 and NOx emissions could 

be reduced by 852 tons, 2.62 tons and 0.11 tons respectively. Another study found that the use of 

BIPV modules in multi-family dwellings in Brazil had the ability to supply more energy generation 

than was consumed for 30% of the year [74]. 

Miyazaki et al. [75] have shown, through simulation, that the use of a 40% transparent STPV 

material as a window in an office building led to an energy saving of 54% compared to the standard 

double glazing model. Poh et al. [56] studied the use of a semi-transparent photovoltaic material 

in BIPV applications in Singapore. They concluded that this technology can adopted in all 

orientations and can give better performance compared to single and double glazing. However, 

optimization of the window-to-wall ratio (WWR) has to be considered for having the best energy 

performance. 

Olivieri et al. [76] conducted both numerical and experimental analysis, and showed that the use 

of an amorphous-silicon PV material could lead to an energy saving ranging from 5% to 59%, 

depending on the transparency of STPV material and the window-to-wall ratio. In a recent study, 

in 2016, Ghahremani and Fathy found that the efficiency of amorphous-silicon photovoltaic 

materials can be improved by 30% by using metallic nanoparticles inside their structure [77].  
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Emerging STPV technology such as CdTe has enormous potential, but the BIPV application has 

not received much attention in the available research work. Among thin-film photovoltaic 

materials, Cadmium Telluride (CdTe) thin-film PVs are the most suitable for large scale module 

production [78]. In 2018, Sorgato et al. [79] concluded in their study that the use of CdTe 

photovoltaic materials as facades and rooftops could meet all the energy demand of a four-story 

office in Brazil, making it a zero-energy building.  

Some studies have provided a performance assessment of using STPVs for a specific location, but 

there is a crucial need for a generalized case as an energy assessment tool. Furthermore, the effects 

of the angle of incidence on power generation are subject to the place of installation, module 

orientation, and transparency. This factor has rarely been studied and reported in the energy 

calculation of the STPV windows [80]. Moreover, although PV material might reflect some heat 

and reduce the air conditioning (AC) units' energy consumption, it might also degrade the light 

intensity inside the building.  Therefore, it is essential and meaningful to investigate the energy 

performance of an emerging STPV technology such as CdTe in applications as windows and 

facades. 

 

2.7 Thermal Performance of Thin-film based Photovoltaic Materials 

 

All external building elements should satisfy the thermal standards; this is generally described by 

an important property which is U-value. It is very important to know U-values to allow the designer 

to check the feasibility of projects and forecast the energy consumption and cooling/heating load 

required.  



32 
 

In a comparison of the performance of the three thin-film technologies, both Shen [81] and Aris et 

al. [82] found that amorphous-silicon semi-transparent PV glazing provides a better saving of the 

overall electricity consumption for cooling,  compared to the mono-crystalline semi-transparent 

PV glazing. Shen found that a high photovoltaic coverage ratio >70% lead to the reduction of the 

air conditioning (AC) electricity consumption. There is a small penalty that comes with this, 

especially for countries having long cold winters with sunny days: more energy for heating will be 

required but there will not be much saving for the AC energy demand in summer. James et al. [83] 

compared different alternative shading solutions for the atrium at the University of Southampton.   

They studied the use of semi-transparent BIPV, the studied a-Si PV in their research has a U-value 

of 1.4 W/m2 K, which is superior to standard double-glazed argon-filled units (∼1.8 W/m2 K). 

A two-dimensional numerical analysis of a double-glazed window with an integrated semi-

transparent thin film of a-Si photovoltaic (PV) cells was carried out [84]. It was found that a large 

quantity of heat transfer by radiation could be reduced, which was observed in the reduction of the 

U-value. 

Didone and Wagner [85] showed that an 8% transparent a-Si PV has a U-value of 1.67 W/m2K 

and a SHGC of 0.13, which is lower than conventional single glazing and double glazing, which 

have U-values of 5.82 W/m2K and 2.73 W/m2K respectively and SHGCs of 0.82 and 0.76 

respectively. This led to a significant reduction in energy required for air conditioning in different 

cities in Brazil. 

A study was carried out by Wang et al. [86] in 2017 to investigate the energy performance of two 

different a-Si semi-transparent PV materials. The calculated U-values and SHGC were 2.53 

W/m2K and 2.28 W/m2K, and 0.152 and 0.238 respectively. These STPVs had lower thermal 
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characteristics and achieved a 30% energy reduction compared to the conventional glazing which 

was used. 

Chae et al. [87] studied the effect of the transparency of a hydrogenated amorphous silicon (a-

Si:H) semi-transparent PV material on its thermal characteristics and energy performance. They 

concluded that the STPVs with transparencies of 40%, 30% and 12% had U-values of 2.58 W/m2K, 

2.65 W/m2K and 2.75 W/m2K, respectively, and SHGCs of 0.277, 0.128 and 0.054 respectively. 

The authors also pointed out that the optical properties must always be investigated because the 

energy performance is sensitive to these properties. 

It is clear from the literature that there is a lack of data regarding the thermal characteristics of the 

semi-transparent PV window, and a very few publications are available concerning CdTe thin-film 

PV materials. Thus, an experimental study is required to investigate the thermal performance of 

the different semi-transparent PV windows in order to generate the thermal characteristics of this 

type of window. Such data needs to be available for architects and civil engineers to adopt these 

types of BIPV units more widely in their designs and calculations. 

 

2.8 Daylight Performance of Thin-film Based Photovoltaic Materials 

 

There are different ways to integrate photovoltaic cells into glass facades and fenestration. These 

methods depend mainly on the type of the solar cell and the type of building structure for 

integration – roof, wall or window. These materials have different levels of transparency, and they 

are integrated into window glazing to change it to a source of electricity generation. The drawback 

of the semi-transparent PV windows is the blocking of the daylight from penetrating into the 

buildings. Daylight is always considered being the most energy efficient method to light the 



34 
 

interior of buildings and create visual comfort for the occupants, as lighting has a significant 

influence on a building’s energy consumption. One of the main investigations of the daylighting 

efficiency of an office building was carried out by Boyano et al. [29], who concluded that the 

solution lies in controlling the daylight effectively by carrying out a careful design to avoid the 

negative effects, such as unbalanced indoor daylight and overheating. 

Kapsis et al. used Daysim software to examine the daylight performance of three STPV facade 

configurations [88]. Both opaque spaced silicon solar cell modules and thin film technologies were 

investigated in this study. It was found that the use of the spaced silicon-based cells partially 

obstructs the view to the outdoors which not the case for the thin film technology. The Continuous 

Daylight Autonomy (CDA) and the Daylight Glare Probability (DGP) were used to evaluate the 

annual daylighting/lighting performance of different STPV modules. The authors found that STPV 

modules with 30 % transparency provided sufficient daylight inside the building enclosure. Other 

STPV modules with higher transparency were not recommended, because of the reduced annual 

generation of electricity and an increase in heat gain, resulting in an increase in the additional 

cooling load and, therefore, an increase in energy cost for cooling. 

Ghosh et al. investigated experimentally the performance of a combined switchable suspended 

particle device and evacuated glazing [89] [90]. This type of glazing has the ability to perform at 

different visible light transparencies. The glazing studied in that work was found to achieve a 

dynamic transmission range from 2% (opaque state) to 38% (transparent state). The same authors 

published another study regarding the variation of the interior colour rendering of daylight 

transmitted through the same window technology. In another study by the same authors [35], it 

was found that the luminous transmittance varies from 0.02 to 0.55 in the opaque and transparent 

state respectively. The colour rendering index (CRI) was found less than 80, below 0.14 
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transmittance.  This is a very good feature to modulate the transmittance of the total solar spectrum 

to control the daylight penetration. However, this technology consumes energy and requires power 

drivers, which is a disadvantage compared to the STPV windows that will generate electricity for 

the building and are less complex. 

Aste et al. used a different parameter to characterise the quality of light in the indoor space [91]: 

they have used the correlated colour temperature (CCT). They found that the integration of the 

luminescent solar concentrator (LSC) glazing system in the building façades lowered the CCT in 

comparison with a clear glass solution. They demonstrated that visual comfort is related to the 

colour of the glass. The yellow LSC window produces more pleasant light environment with 

suitable CCT values for the occupants within the office space.   

The colour rendering index (CRI) is a similar method to CCT, which was used by Lynn et al. to 

evaluate the colour rendering properties of STPV modules’ light transmittance [92]. It was found 

that the coloured STPV modules tested in laboratory conditions had a CRI of less than 90, which 

is considered as visually uncomfortable. 

Coloured a-Si:H transparent solar cells were designed and studied as a semi-transparent PV 

window [93]. This technology has a limited electrical efficiency of 6.36% at 23.5% average 

transmittance with a spectrum 500–800 nm. Thus, this technology requires an improvement in the 

conversion efficiency at the full range of the solar spectrum before it can be compared to the actual 

mature technologies of STPVs. 

An experiment was carried out in Hong Kong to compare the energy performance of PV double 

skin façades (PV-IGU) and PV insulating glass units (PV-IGU) [86]. Using a light-meter, it was 

found that, on sunny days, the daylighting illuminance in the enclosures installed with PV-DSF 



36 
 

was equal to 350 lux. This performance is better than that of the enclosure installed with PV-DSF, 

which reached only 200 lux.  

A numerical study investigated the potential energy benefits of STPV windows integrated into 

different orientations in a building [94]. The main finding of this study was that the east-facing 

window resulted in the largest annual lighting energy saving. These results are very important for 

the evaluation of the cost-effectiveness of STPV windows when they are installed in different 

building orientations; however, the results obtained need to be validated experimentally.  

This research concerns the experimental investigation of applying different transparent CdTe thin 

films and their impact on the glare and daylighting performance. The study was conducted using 

outdoor test enclosures at different orientations. The findings will contribute to the dataset of CdTe 

thin film experiments. Scaling up the measure can be implemented in future, for any building. 

2.9 Conclusion 

 

In this chapter, previous studies and research in relation to the thesis topic have been discussed 

and important contributions have been acknowledged. The following conclusions can be drawn 

and summarized as follows: 

1. Domestic buildings are the main consumers of energy, especially through glazing, which 

strongly affects cooling and heating loads and the use of artificial lighting. 

2. For the selection of the optimum glazing, thermal performance, daylight performance and 

overall energy performance have to be evaluated. These types of performance are affected 

by different factors, such as the location, orientation, size and transparency of the glazing 

and also the ambient conditions. 
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3. Building integrated photovoltaic (BIPV) technology is in serious demand, and it has a 

promising future, because of its significant advantages in terms of efficiency, affordability 

of materials, weight and appearance. 

4. Among the different available photovoltaic technologies, thin-film based PV materials are 

the most popular because of they are advantageous in terms of efficiency, affordability, 

availability and cost reliability. Thus, they have attracted researchers’ attention. 

 

In the light of the above discussion, it can be argued that a contribution to the topic of building 

integrated photovoltaic technology is essential. There is clearly a lack of in-depth research on the 

application of CdTe thin-film-based PV materials, so it is important to conduct a full study on this 

type of glazing. The research should include both theoretical investigation and practical validation, 

which will be provided by the current research. 
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This chapter demonstrates the use of the experimental setups selected by the 1st author for 

studying performance analysis in next chapters. Section 3.1 gives a background of experimental 

setups used by previous study and justifies the selection of the current setup. Sections 3.2 and 3.3 

give detailed data on the setup and the measurement equipment. Section 3.4 provides useful results 

of field measurements. 

3.1 Background of Experimental Setup 

Useful investigation of PV glazing performance requires an experiment that emulates the real 

application. The performance of PV glazing is entirely dependent on its material construction and 

weather conditions. The relevant environmental conditions include sunlight intensity (irradiance), 

temperature, wind speed and humidity. Selecting and designing the experiment that measures all 

these conditions is vital for reliable results.   

In this research, performance of semi-transparent thin-film PV glazing is investigated when it is 

used as a component in a building. Performances investigated are thermal, electrical and 

daylighting. The transparencies range from 0% to 35%. In order to choose the experimental 

arrangement that best fits the aims of the research, different types of experiments were reviewed. 

Familiar types of indoor and outdoor experiments are listed below. 

3.1.1 Previous Constructions of Experimental Rooms or Enclosures  

A. Guarded Hot Box  

Guarded hot box is a type of indoor experimental setup used for measuring U-value. It consists of 

three parts; cold box, guard box and metering box. Figure 3.1 shows a guarded hot box used by 

Fang et al. [95]. The tested element is installed between the cold box and metering box. The cold 

box has a controlled low temperature achieved by using any type of cooling system. The guard 
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box is used to envelope the metering box while being kept at a desired high temperature in order 

to reduce heat losses from the metering box. The metering box contains a heater so that heat is 

transferred to the cold box through the tested element.  

 

Figure 3.1 Guarded hot box used by Fang et al.  

B. Mobile Window Thermal Test (MoWiTT) 

This apparatus is designed to be mobile in order to permit location change. MoWiTT makes it 

possible to mimic the real environmental conditions for calculating U-value and/or G-value which 
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are the key parameters of the thermal performance of a glazing. Calorimeters and temperature 

sensors are required to measure the diurnal change of ambient temperatures and power 

consumption of the heat exchanger or the heat pump used for inside temperature control. Figure 

3.2 shows a MoWiTT used by Robinson and Littler in 1993 [96]. 

 

 

Figure 3.2 MoWiTT used by Robinson and Littler in 1993 

 

C. Outdoor test enclosures  

Test enclosures can be of different sizes to emulate the real performance of the installed glazing. 

They can be real size prototypes [97], or mini-scale prototypes [98][99], and both have shown 

reliable results. This facility permits the temperature inside the test enclosures to be controlled by 
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a warming/cooling system or fluctuate freely by environment changes. Parameters monitored are 

sun light intensity, temperature and wind speed. In order to measure the heat transfer in the 

enclosed air mass, two approaches can be applied. The first approach is the measurement of 

temperatures using thermocouples and to use heat transfer equations with the correct assumptions. 

The second approach is by using a heat flux sensor that measures the quantity of heat transferred 

through the glazing. It is to be noted that when using the heat flux, readings must be taken at night 

in order to eliminate the effect of solar radiation on the sensor’s measurements [100]. Also, 

readings should be taken over a minimum of three nights for the heat transfer to be steady. 

Of the available facilities, the 1st author decided to construct small-scale test enclosures. The reason 

behind this choice is that the aim of the research is to test different transparencies of PV cells 

simultaneously to compare their performance, so a real-scale prototype would not be feasible in 

terms of cost and space. However, the test enclosures are used in outdoor and indoor experiments. 

Some analogies are to be taken between the two experiments and are discussed throughout the 

chapters. Furthermore, the glazing samples available by the 1st author are small size and the indoor 

sun simulator test area is limited. 

3.1.2 Technical Consideration on Insulated Enclosures and Measurements.  

For the outdoor experiment, the designed test enclosures are implemented on the rooftop of a 

building at Exeter University – Penryn campus. To achieve accurate results of thermal, daylight 

and energy performances, some technical issues were considered and listed below: 

1. Different test enclosures are to be designed and installed. This is because different PV 

glazing are to be tested simultaneously so that comparison is made possible. 

2. The test enclosures are of small scale for the experimental setup to be cost effective while 

measuring different PV glazing at the same time. 
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3. Each test enclosure must be installed away from shading so that the tested element is 

exposed to whole quantity of irradiance uniformly. 

4. In order to conduct full comparative study and validate the obtained data, the test 

enclosures are oriented to face South and South West. 

5. The test enclosures have to be sufficiently separated from one another to avoid thermal or 

energy interference or any other effect. 

6. Convenient sensors must be selected to take readings of temperatures, irradiance, wind 

speed, power generation, power consumption and other data. 

7. Readings must be taken for sufficient periods so that full days and different weather 

conditions are covered. 

8. Data acquisition of measurements should be obtained using reliable equipment. 

9. Test enclosures’ walls should be made of insulating material so that one dimensional heat 

transfer can be assumed in analysis and calculation. 

Regarding the indoor experiment, the solar irradiance is replaced by a solar simulator that gives a 

reliable consistent radiation with time. The experiment should be set over a sufficient period so 

that a steady state heat transfer condition can be achieved. The consistent irradiance of solar 

simulator makes it possible to set up one experiment at a time instead of simultaneous experiments, 

yet the size of the test enclosures should be considered to fit the size of the simulator and to be 

comparative with the cells used in the outdoor experiment.  
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3.2 Description of Experimental Setup 

 

Eight identical test enclosures were designed and implemented at ESI building, Exeter University, 

Penryn, UK, where latitude and longitude coordinates are 50.169174 and -5.107088 respectively. 

The test enclosures were equipped with thermo-electric coolers (Peltier unit) in order to permit 

temperature control of the air enclosed by the insulated cell. Another two test enclosures of a larger 

size were used to fit the larger size glazing. These test enclosures are made of a well-insulated 

cooler/warmer unit with glazing fitted to one of its walls. An indicative drawing is shown in Figure 

3.3.   

 

Figure 3.3 3D design of one of the eight test enclosures 

 

3.2.1 Layout of the test enclosures 

Each test enclosure size is 0.22 m x 0.2 m x 0.18 m, made of polyisocyanurate (PIR) foam panel 

(thickness 2.5cm) laminated with aluminium foil sheets to provide good insulation so that any 

Peltier space 

STPV glazing 
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thermal disturbances can be neglected. Each test enclosure was installed in a box that protects it 

from rain, dust ingress and bad weather conditions. Each box was laminated with reflective mirror 

foil to reduce the effect of solar radiation on the sides of each box. Details of the test enclosures 

are presented in Table 3.1. Four test enclosures were oriented to face South and the other four test 

enclosures were oriented to face South West. This permits the study of four different glazing 

simultaneously in two different orientations. Details, layout and photographs of the test enclosures 

are shown in Figure 3.4 and Figure 3.5.  

 

Table 3.1 Test enclosure details 

Dimensions of the test enclosures 0.22 m x 0.2 m x 0.18 m 

Dimensions of glazing 0.15 m x 0.15 m 

Glazing area 0.0225 m2 

Wall material Polyisocyanurate laminated with aluminium foil 

Wall thickness 0.025 m 

Temperature control Thermo-electric cooler (Peltier unit) 
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Figure 3.4 Layout of single test enclosure (Dimensions in cm) 

 

Figure 3.5 Exploded view of two test enclosures side by side – oriented as if in box (omitted) 

The same test enclosures were then set for indoor experiment where an AAA+ type solar simulator 

was used to simulate solar irradiance and a constant speed fan was used to emulate the effect of 
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wind speed in the outdoor experiment. A photograph of the indoor experiment is shown in Figure 

3.6 

 

Figure 3.6 Photograph of the indoor experiment 

Another test enclosure which can warm and cool the enclosed air volume was used for glazing 

with larger dimensions. Details and photograph of the cooler/warmer unit test enclosure are shown 

in Table 3.2 and Figure 3.8 to Figure 3.9 
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Table 3.2 Cooler/Warmer dimensions 

Dimensions 0.49 m x 0.35 m x 0.34 m 

Dimensions of glazing 0.3 m x 0.3 m 

Glazing area 0.09 m2 

Wall material Polypropylene, Acrylonitrile butadiene 

styrene (ABS), Polystyrene 

Insulation Polyurethane foam – PIR laminated with 

aluminium foil 

 

 

Figure 3.7 Sketch of warmer/cooler unit test enclosures with 30 x 30 cm2 clear single glazing 
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Figure 3.8 Design of the two units test enclosures with a clear single glazing and STPV glazing 

 

 

 

Figure 3.9 Photograph of the test enclosures 

 

Heat flux sensor 

Luxmeter 

Wiring for power 

generating 

Thermocouple 
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3.2.2 Properties of PV glazing 

Semi-transparent thin-film PV glazing manufactured to four different transparencies are used in 

this research and they are referred to as S1, S2, S3 and S5. Details of the PV glazing are presented 

in Table 3.3. The main difference in the selected STPV glazing is their transparencies. According 

to Miyazaki et al. [75], the optimum transparency for a South West oriented STPV glazing is in 

the range of 30% to 40% in order to achieve lowest power consumption of a building, higher 

transparencies would result in lower power generation. Nevertheless, according to Barman et al. 

[80], South oriented STPV glazing favour lower transparency for better net energy saving. 

Therefore the selected transparencies of STPV glazing are 25%, 19%, 0.5% and 35% for S1, S2, 

S3 and S5 glazing respectively.  

Table 3.3 PV glazing specification 

PV Glazing S0 S1 S2 S3 

Type Clear Glazing CdTe Thin-film 

based PV glazing 

CdTe Thin-film 

based PV glazing 

CdTe Thin-film 

based PV glazing 

Transparency 90% 25% 19% 0.5% 

Dimensions 15 cm x 15 cm 15 cm x 15 cm 15 cm x 15 cm 15 cm x 15 cm 

Thickness 6 mm 6 mm 6 mm 6 mm 

Composition Single Glazing 3 mm tempered 

glass – thin film – 

3 mm tempered 

glass 

3 mm tempered 

glass – thin film 

– 3 mm tempered 

glass 

3 mm tempered 

glass – thin film 

– 3 mm tempered 

glass 
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Solar cell 

Dimensions 

Ø 11 cm x 11 cm 11 cm x 11 cm 11 cm x 11 cm 

Solar cell area Ø 0.0121 m2 0.0121 m2 0.0121 m2 

Solar cell ratio Ø 72.4 % 79.2 % 99.48 % 

Output power Ø 0.815 W 0.996 W 1.414 W 

Operating 

voltage 

Ø 7.05 V 7.57 V 8.647 V 

Operating 

current 

Ø 0.115 A 0.131 A 0.163 A 

Open-circuit 

voltage 

Ø 9.734 V 10.39 V 11.14 V 

Short-circuit 

current 

Ø 0.14 A 0.161 A 0.21 A 

Weight 0.75 Kg 0.9 Kg 0.9 Kg 0.9 Kg 

PV Glazing S4 S5 

Type Single Glazing CdTe Thin-film based PV glazing 

Transparency 90% 35% 

Dimensions 30 cm x 30 cm 30 cm x 30 cm 

Thickness 6 mm 6 mm 

Composition 3 mm tempered glass – thin film – 3 

mm tempered glass 

3 mm tempered glass – thin film – 3 

mm tempered glass 

Solar cell 

Dimensions 

Ø 26 cm x 26 cm 
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Solar cell 

area 

Ø 0.0676 m2 

Solar cell 

ratio 

Ø 61% 

Output 

power 

Ø 4.5 W 

 

Operating 

voltage 

Ø 16 V 

Operating 

current 

Ø 0.28 

Open-circuit 

voltage 

Ø 22 V 

Short-circuit 

current 

Ø 0.35 A 

Weight 1.5 Kg 1.8 Kg 

 

3.2.3 Thermo-Electric Cooler 

As mentioned in the above sections, a thermo-electric cooler (Peltier unit) is fitted to each test 

enclosure in order to enable the control of the inside temperature of the enclosed air and to measure 

its absorbed power for energy performance evaluation. Three identical thermo-electric coolers are 

fitted to each test enclosure to enable cooling the enclosures to a setpoint temperature. The 

specifications of the thermo-electric cooler are presented in Table 3.4. Photographs of the 

thermoelectric cooler with its installation and wiring are shown in Figure 3.10 and Figure 3.11 
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Table 3.4 Thermo-electric cooler specifications 

Item Thermo-electric Peltier cooler 

Size 20 cm x 15 cm x 15 cm 

Weight 0.44 kg 

Material Aluminium 

Voltage 12 V DC 

Current 6 A (2 A per unit) 

 

 

Figure 3.10 Photograph of a single thermo-electric cooler 
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Figure 3.11 Photograph of installed thermo-electric cooler wiring – Two test enclosures are 

shown 

 

3.3 Measurement Equipment 

3.3.1 Field Measurement 

Before setting the semi-transparent PV cells for experiment, a spectrometer was used to investigate 

their optical properties especially transmittance. Thereafter, the field experiment was conducted 

24 hours a day from September 2017 to September 2018. The equipment used includes I-V tracer, 

pyranometer, thermocouples, luxmeter, and a weather station. Real time readings were recorded 

using a data logger with an interval of 5 seconds during the period of the experiment. Details of 

the used equipment are presented in Table 3.5. 
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Table 3.5 Sensors and measurement equipment used in the experiments 

Device Specification and Manufacturer Measurements 

 

Spectrometer 

 

Perkin Elmer Lambda 1050, USA 

 

Spectral components of light 

 

Pyranometer 

 

Kipp & Zonen, CMP-6, 

Netherlands 

 

Global and diffuse solar 

irradiance 

 

Pyrheliometer Kipp & Zonen CMP1 Direct solar irradiance 

I-V Tracer EKO instruments, MP-160,  

Japan 

 

PV glazing current and voltage 

Thermocouple  K-type, UK Ambient temperature, 

temperature of air inside test 

enclosure, temperature of 

glazing inner and outer surface 

temperatures 

 

Heat flux sensor FHF02 Hukseflux, Netherlands Heat flux 

Luxmeter MESA Systemtechnik GmbH, D-

78467 Konstanz, Germany 

 

Outdoor and inside test 

enclosure luminance 

Data Logger  NI cDAQ-9131, U.S.A 

Omega RDXL12SD, UK 

Campbell Scientific CR1000, USA 

 

 

Data logging 

Weather Station Gill instruments MetPak weather 

station, UK 

Atmospheric pressure, ambient 

temperature, wind velocity 

 

3.3.2 Temperature Measurement 

A total of 30 K-type thermocouples were used to measure the temperature inside the test enclosures 

and the inside surface and the outside surface of the different PV glazing and single glazing and 

the ambient temperature. All thermocouples were connected to two data acquisition apparatus, one 

of them is made by National Instruments and the other is made by Omega. Thermocouples that are 

fitted on test enclosures with the same orientation were connected to the same data acquisition 

system so that simultaneous real time reading is ensured. The simultaneous temperature data were 
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captured once per five seconds and were sent to a PC through a network cable. The thermocouples 

were calibrated by placing them together in a boiling tube holding glycerine. This was in turn 

placed in a flask containing a saturated ice bath. Each thermocouple tested was within ±0.5 oC of 

0 oC. The glycerine tube was placed in a beaker of boiling water and after a stabilization period, 

each thermocouple was within ±0.5 oC of 100 oC. This is satisfactory for test requirements. To 

avoid the unnecessary solar heat gain from solar radiation on the thermocouple of the outer surface 

a piece of aluminium foil is needed to avoid direct solar radiation and minimize heating up the 

thermocouple. The thermocouples’ calibration and fixation are shown in figures Figure 3.12 and 

Figure 3.13 respectively. 

 

Figure 3.12 Thermocouple calibration 
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Figure 3.13 UV curing adhesive used to fix thermocouple to STPV glazing on inner and outer 

surface 

3.3.3 Heat flux measurement 

A 5cm x 5cm heat flux sensor was used to measure the heat per unit area passing through clear 

glazing and STPV glazing. The sensor is equipped with integrated T-type thermocouples with a 

temperature measurement range of -40 oC to 150 oC. Table 3.6 shows the specifications of the heat 

flux sensor. Figure 3.14 shows the heat flux sensor fitted to the surface of a STPV glazing. 

Table 3.6 Heat flux sensor specifications 

Specifications FHF02 Heat Flux Sensor 

Measurement Range (-10 to +10) x 10³ W/m² 

Nominal Sensitivity 5.5 x 10⁻⁶ V/(W/m²) 

Sensing Area 9 x 10⁻⁴ m² 

Uncertainty of Calibration ± 5 % 
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Figure 3.14 Fitting heat flux sensor to internal surface of STPV glazing 

3.3.4 Solar Irradiance Measurement 

Three pyranometers were installed on the roof of the building as a group. One pyranometer was 

used to measure the global solar irradiance on the horizontal plane. Another pyranometer, fitted 

with a shadow ring to block the direct sun, was used to measure the diffuse solar irradiance on the 

horizontal plane. The ring has a polar axis design that requires adjustment for solar declination 

periodically every few days. The third is a pyrheliometer that measures direct solar irradiation. 

The maximum solar irradiance range of the pyranometers is up to 2000 W/m2. A photograph of 

the pyranometers and pyrheliometer is shown in Figure 3.15. Properties of the pyrometers and 

pyrheliometers are shown in Table 3.7. 

The pyranometers were connected to a National Instrument data acquisition system in order to 

transfer solar irradiation data each five seconds for computer storage. It is to be noted that the 
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output of the pyranometers is voltage and the sensitivity of each pyranometer is used to calculate 

the exact solar irradiance. A LabView VI was built to collect the data from the data acquisition 

system. 

 

Figure 3.15  Photograph of pyranometer and pyrheliometer 

 

Table 3.7 Pyranometer and Pyrheliometer specifications 

Specification Pyranometer 

Sensitivity 7 to 14 µV/W/m² 

Wavelength 285 to 2800 nm 

Range 0-2000 W/m² 

Operating Temperature Range 40 °C to +80 °C 

Directional response (up to 80° with 1000 W/m² beam)  < 10 w/m2 

Response Time < 5 s 
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3.3.5 Output Power Measurement of PV Glazing 

In the outdoor experiment, the solar irradiance changes with time. As solar irradiance changes, the 

maximum power output of a photovoltaic glazing changes. The maximum power output is defined 

by the optimum voltage point multiplied by its corresponding current. So, a high accuracy 

maximum power point tracer (MPPT) system was used to trace the maximum power. And an I-V 

tracer was used to measure the voltage and current of each PV glazing at thirty seconds intervals 

throughout the experiment so the power can be calculated. Details of the used IV tracer are 

tabulated in Table 3.8. 

Table 3.8 I-V Tracer specifications 

Specifications IV Tracer 

Voltage Measurement Range 0.05 – 300 V 

Current Measurement Range 0.005 – 10 A 

Power Measurement Range 0 – 300 W 

Accuracy 0.5% 

Weight 9 kg 

Operating Temperature Range 0 – 40 oC 

Input Channels 1 channel 

 

3.3.6 Daylight Luminance Measurement 

GmbH, D-78467 luxmeters, shown in Figure 3.16, were used to measure the luminance outside 

and inside the test enclosures. The luxmeters are manufactured and calibrated by MESA 

Systemtechnik. Three luxmeters were used during the experiment. One was placed outside close 
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to the test enclosure at a height of 0.25 m to measure the daylight luminance before entering the 

test enclosures. The other two luxmeters were fixed inside at the front and back of the test 

enclosures. Measurements were taken for three days when the luxmeter was 2 mm away from the 

front of the glazing and another measurement had taken place during same period with the sensor 

fitted at the back (180 mm away from the glazing), to record the luminance after passing the 

glazing.  These measurements were taken with the test enclosures facing two orientations namely 

South and South West. 

The three luxmeters were connected to a computer directly through CR1000 data logger. The 

luminance data by luxmeter were recorded once per minute. The specifications of the luxmeter are 

presented in Table 3.9. 

 

Figure 3.16 Photograph of MESA SystemtechnikLuxmeter 
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Table 3.9 Luxmeter specifications 

Specifications Luxmeter 

Range 0..10klux (indoor) 0..160klux (outdoor) 

Accuracy < 4% at 100klux @22°C 

Response Time < 1 sec 

Operating Temperature -40 oC to 60 oC 

Temperature Drift < 0.1%/K 

Weight 150 gram 

 

3.3.7 Completed Setup Overview  

Figure 3.17 depicts an indoor test for one test enclosure under the sun simulator which provides 

various uniform irradiance per request over 20 * 20 cm2, thus, one enclosure per time is tested. All 

sensors are attached to the setup and data from them was collected by a computer. 

As shown in Figure 3.18, a simplified sketch illustrates the eight test enclosures. The first four 

enclosures are oriented to the South and the second four to the South West. Each has different 

glazing transparency as explained before, denoted as S1, S2, S3 and S4. All enclosures are 

equipped with various sensors and cooling units and send the data to a computer.  

 

 

 



63 
 

Figure 3.19 shows the completed setup installed on the roof of the building with all parts mentioned 

above. Each enclosure has been combined in one box but is still thermally insulated. Figure 3.20 

shows the outdoor experimental setup to test a bigger sample. The cooler/warmer test enclosures 

presented in Figure 3.20 are fitted with 30 x 30 cm2 double clear glazing and double STPV glazing. 

 

 

Figure 3.17 Photograph of the indoor experiment 
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Figure 3.18 Sketch of the outdoor experimental setup showing the eight test enclosures – 

The outer shield box was omitted for clarity 

 

Figure 3.19 Completed view of the whole setup (a) test cell (b) solar tracker (1) global and 

diffuse radiation (2) the direct radiation (c) data logger (3) IV-tracer (4) thermocouple data 

logger (d) weather station 
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Figure 3.20 Photograph of the full outdoor experimental setup with warmer/cooler units test 

enclosures are fitted with 30 x 30 cm2 double clear glazing and double STPV glazing 

 

3.4 General Measurements in the Field Experiment 

The outdoor experiment was conducted for one year from August 2017 to August 2018. Semi-

transparent photovoltaic glazing of different transparencies were tested throughout this period in 

two different orientations, namely South and South West. The semi-transparent photovoltaic 

(STPV) glazing were meant to experience different weather conditions in different seasons 

including both sunny and cloudy days. Main measurements included the reading of solar 

irradiance, temperatures and daylight luminance.  
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3.4.1 Solar Irradiance Measurements 

Direct, diffuse and global horizontal and vertical irradiances were recorded throughout the time of 

the experiment for both South and South West orientations. Four different days were selected to 

be representative of the weather conditions in Penryn, UK to justify the selection of which 

performance analysis was carried out. Figure 3.21 to Figure 3.24 show the horizontal, vertical 

South and vertical South West irradiances for each selected day. 

 

 

Figure 3.21 Vertical South, vertical South West and horizontal solar irradiances in Autumn 

season, September, 25th, 2017 

 

Starting with autumn season, September 25th, 2017, as shown in Figure 3.21 the horizontal solar 

irradiance shows a maximum of 650 W/m2 which is lower than vertical solar irradiance in both 

South and South West orientations that reach 870 W/m2 and 800 W/m2 respectively. 
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Figure 3.22 Vertical South, vertical South West and horizontal solar irradiances in Winter 

season, January 23rd, 2017 

Winter season, January 23rd, 2017, Figure 3.22 had the minimum solar irradiance among other 

seasons. The maximum horizontal irradiance was 109 W/m2, South West vertical irradiance 

showed very close values to horizontal irradiance especially at the mid-day time and the maximum 

irradiance reached 105 W/m2. However vertical irradiance at South was almost half these values 

reaching 50 W/m2. 
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Figure 3.23 Vertical South, vertical South West and horizontal solar irradiances in Spring season, 

March 27th, 2017 

 

In Spring season, March 27th, 2017, Figure 3.23 horizontal and vertical South irradiances were 

very close with the maximum value of horizontal irradiance being slightly less than that of vertical 

South as they both reached 840 W/m2 and 880 W/m2 respectively. However, the South West 

orientation showed the lowest irradiance in this season reaching a maximum of 370 W/m2. 
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Figure 3.24 Vertical south, vertical South West and horizontal solar irradiances in summer 

season, July 14th, 2017 

Summer season, July 14th, 2017, Figure 3.24 showed the maximum value of horizontal solar 

irradiance and South West vertical irradiance among all other seasons reaching values of about 

1100 W/m2 and 850 W/m2 respectively, however this was not the case for South vertical irradiance 

as they had values of 650 W/m2. 

Based on the analysis of seasonal conditions measurements, September 25th was selected to be 

the day in which analysis will be performed. This is because the irradiances have high values. 

Also, the vertical solar irradiances of South and South West orientations have close values. This 

means that the test enclosures will be exposed to similar conditions. This makes performance 

analysis of STPV glazing in both orientations measurably valid and useful comparison. 
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The measurements of global horizontal solar irradiance and diffuse horizontal solar irradiance 

were taken and presented in Figure 3.25 and Figure 3.26. Results showed that on a sunny day, 

diffuse solar irradiance accounts for a small portion of the global irradiance, however, on a cloudy 

day the diffuse solar irradiance is almost equal to global irradiance. 

 

Figure 3.25 Diurnal variation of global and diffuse horizontal irradiances on a sunny day, 

September 25th
, 2017  
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Figure 3.26 Diurnal variation of global and direct horizontal irradiances on a cloudy day, 

September 20th, 2017 

3.4.2 Semi-transparent photovoltaic glazing power generation and efficiency 

The diurnal variation of solar irradiance of a sunny day are plotted in the Figure 3.27. The diurnal 

variation of power generation of thin-film based semi-transparent photovoltaic glazing with 

different transparencies are also plotted on the same chart. Results demonstrate the similar 

behaviour of solar irradiance and STPV glazing power generation of all tested cells. Also, it was 

shown that the cells with lower transparencies generate more power. Nevertheless, Figure 3.28 

shows that the relation between solar irradiance and STPV glazing power generation is linear. 
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Figure 3.27 Diurnal variation of STPV glazing power generation and horizontal irradiance in a 

sunny day, September 25th  

 

Figure 3.28 Relation between vertical solar irradiance and STPV glazing power generation 

The efficiencies of the tested semi-transparent photovoltaic glazing with different transparencies 

were calculated based on the measured power generation. These efficiencies were plotted with the 

diurnal variation of the measured PV glazing surface temperatures and presented in Figure 3.29. 

Results demonstrate that STPV glazing with lower transparencies have higher efficiencies. Also, 
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the correlation between STPV glazing surface temperature and STPV glazing efficiency was 

shown in the chart relating both variables in Figure 3.30. The charts show that as PV glazing 

temperature increase its efficiency decreases and vice versa. 

 

Figure 3.29 Diurnal variation of STPV glazing temperature and efficiency 
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Figure 3.30 Variation of efficiency with STPV glazing surface temperature 

The calculated efficiency and temperature coefficient based on the measurements of STPV glazing 

temperatures and power generation are summarized in Table 3.10. The efficiency of S1 is 6.7%, 

S2 is 8.5% and S3 is 12%. With respect to temperature coefficient, is 0.42% for S1, 0.35% for S2 

and 0.15% for S3. 

Table 3.10 Summary of STPV glazing efficiencies and temperature coefficients 

STPV glazing Type and transparency STPV glazing 

maximum efficiency 

Temperature 

coefficient 

S1 

 

CdTe Thin-film – 25% 6.7% 0.42 

S2 

 

CdTe Thin-film – 19% 8.5% 0.35 

S3 CdTe Thin-film – 0.5% 12% 0.15 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

8 13 18 23 28 33

P
V

 g
la

zi
n

g 
Ef

fi
ci

en
cy

STPV glazing surface Temperature (oC)

S3

S2

S1



75 
 

3.4.3 Daylight Measurements 

One of the most important properties of a semi-transparent photovoltaic glazing is that it allows 

the passage of daylight into the enclosure. In tests, luminance was recorded outside and inside the 

test enclosures using single clear glazing and the STPV glazing of transparency 35% as an example 

for the purpose of comparing. Other sample transparencies could be used alternatively. The chart 

shows the identical tendency of the daylight outside and inside. Also, the inside luminance of clear 

glazing is more than quadruple than that of the STPV glazing as shown in Figure 3.31 and Figure 

3.32. 

 

Figure 3.31 Variation of illuminance outside and inside clear glazing and 35% transparency 

STPV glazing test enclosures 
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Figure 3.32 Variation of illuminance inside clear glazing and 35% transparency STPV glazing 

test enclosures with outdoor illuminance 

3.5 Conclusion 

Outdoor and indoor experimental setups were set in order to evaluate the thermal performance, 

energy performance and daylight performance of semi-transparent photovoltaic glazing with 

different transparencies and compare them to clear glazing. The data of the STPV glazing such as 

material, size and transparency were defined.  

The test enclosures were equipped with instruments which provide the reliable measurements 

needed in order to calculate the thermal, energy and daylight performance. The instruments were 

well calibrated and have clearly defined parameters such as accuracy and measurement ranges. 

The ambient conditions of the outdoor experiment were studied in terms of temperature and solar 

irradiance. Suitable days and orientations were selected accordingly for efficient evaluation of 

STPV glazing performances. Also, basic correlations were made to understand the dependence of 

the behaviour of different parameters. 
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The aim of this chapter is to investigate the thermal performance of Cadmium telluride 

(CdTe) thin-film based semi-transparent photovoltaic glazing of different transparencies. The 

thermal performance is evaluated in terms of temperature behaviour inside the test enclosures in 

addition to overall heat transfer coefficient (U-value) and solar heat gain coefficient (SHGC) 

evaluation. Different experiments were set and installed to achieve validation of results. 

Calculations were performed based on the readings taken from each experiment. 

4.1 Introduction 

In order to achieve the thermal performance evaluation of CdTe thin-film based semi-transparent 

photovoltaic (STPV) glazing, different experimental setups were installed and oriented to face 

South and South West. The experimental conditions used were as follows: 

1. Experiment 1: An outdoor experimental setup consisting of eight test enclosures was deployed 

in an outdoor environment. This experiment was used for investigating temperature behavior at 

glazing surface and inside the test enclosures and for evaluating U-value and SHGC. Further 

details regarding the test enclosures and the experiment’s installation are presented in Chapter 3 - 

section 3.2. 

2. Experiment 2: A similar experimental set-up as described above was tested indoors. A solar 

simulator with a constant irradiance was used to emulate the solar irradiance and a constant speed 

fan was used to emulate the wind speed so that the convection heat transfer is not underestimated 

in an indoor environment as recommended by Robinson [101]. This experiment was used for U-

value calculation. According to the knowledge of the 1st author, this experimental set-up has not 
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been performed before, so similar results as experiment 1 setups would validate the results and the 

experiment.  

3. Experiment 3: A heat flux sensor was fitted at each of the test enclosures. This experiment was 

used for U-value evaluation using temperature and heat flux measurements. 

Details about the experiments’ locations and test enclosure sizes are presented in chapter 3 – 

section 3.2. The forthcoming sections are explaining about the results and their relevant 

discussions.  

 

Figure 4.1 Photograph of the test enclosures used for thermal performance evaluation 

 

4.2 Evaluation of Overall Heat Transfer Coefficient (U-value) 

4.2.1 Experiment 1: Outdoor test enclosures  

Eight outdoor test enclosures were installed. Four of the were oriented towards the South. Clear 

glazing S0 (90% transparency) and STPVs S1 (25% transparency), S2 (19% transparency) and S3 
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(0.5% transparency) were installed at each of the South-oriented test enclosures. Another four 

identical test enclosures with the attached glazing were installed and oriented towards the South 

West.  

4.2.1.1 Governing Equations for U-value Calculation 

Heat is transferred via three methods: conduction, convection and radiation.  In order to quantify 

the heat transfer through a system, the methods of heat transfer involved have to be identified and 

presented in the form of equations so that the total heat transfer coefficient (U-value) can be 

calculated.  In the present study, the heat is said to be radiated from the sun.  It then experiences 

convection from the atmospheric air outside the test cell.  After that, it is conducted through the 

insulation board and the STPV glazing in order to penetrate the test cell where it experiences 

convection again due to air inside the test cell.  Heat is then stored inside the test cell resulting in 

an increase of temperature to reach a value higher than ambient temperature.  This leads to heat 

transfer from inside the test cell to the outside via the same heat transfer methods of convection 

and conduction as prescribed above.  It is to be noted that the glazing absorbs part of the heat going 

out of the test cell to generate power. 

The equations presented in this section are as proposed by Ghosh et al. [102] based on the 

assumptions of steady state and one directional heat transfer from a test enclosure to the outside. 

The assumption of steady state heat transfer is valid for outdoor experiment held for a long period 

of time [103] whereas the assumption of one directional heat transfer is valid because of the high 

insulation property of the polyisocyanurate insulation board (thermal conductivity 𝐾 =

0.02 𝑊/𝑚𝑘) that makes heat transfer through it negligible compared to the glazing. The behaviour 
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of the incident heat from solar irradiation to the test enclosure can be represented as in equation 

(4.1).  

𝑄𝑖𝑛 = 𝑄𝑔 + 𝑄𝑡𝑐 + 𝑄𝑤 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟                       (4.1) 

Where; 

𝑄𝑖𝑛 is the incident solar heat to the glazing in (W) and it is represented through equation (4.2), 

𝑄𝑖𝑛 = 𝐼𝑣𝑒𝑟,𝑔𝑙𝑜𝑏𝑎𝑙𝐴𝜏𝛼                                                   (4.2) 

Where; 

 𝐼𝑣𝑒𝑟,𝑔𝑙𝑜𝑏𝑎𝑙 is the global vertical solar irradiance measured by the pyranometer (in W/m2).𝜏 and 𝛼 

are the transmittance and absorbance of the glazing respectively. 

𝑄𝑡𝑐 is the heat stored inside the test enclosure and it is related to mass of air inside the test 

enclosure, heat capacity of air and variation of the inside temperature with time as presented in 

equation (4.3). 

𝑄𝑡𝑐 = 𝑀𝑡𝑐𝐶𝑡𝑐
𝑑𝑇𝑖𝑛

𝑑𝑡
                                                                                              (4.3) 

Ctc is the heat capacity of air = 1.005 kJ/kg oC. 

The mass of air inside the test enclosure (𝑀𝑡𝑐) can be obtained from equation (4.4). 

𝑀𝑡𝑐 = 𝜌𝑎𝑖𝑟𝑉𝑡𝑐                                                                                  (4.4) 

Where, 𝜌𝑎𝑖𝑟 is the density of air = 1.23 kg/m3 
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𝑉𝑡𝑐 is the inner volume of the test enclosure in (m3) 

𝑄𝑤 is the heat transfer through inside and outside air convection and conduction through the 

insulation board wall. It can be calculated through equations (4.5) and (4.6). 

𝑄𝑤 = 𝑈𝑤𝐴𝑤(𝑇𝑖𝑛 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)                                                   (4.5) 

𝑈𝑤 = [
1

ℎ𝑜
+

𝐿

𝐾
+

1

ℎ𝑖
]−1                                           (4.6) 

Where,  

𝑈𝑤 is the combined U-value of the test enclosure’s wall with inside and ambient air. It is evaluated 

in (W/m2K) 

𝐴𝑤 is the area of the polyisocyanurate insulation board 

𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 is the ambient temperature in (oC) 

𝑇𝑖𝑛 is the temperature inside the test enclosure in (oC) 

K is the thermal conductivity of the polyisocyanurate insulation board and it is equal to 0.02 W/mK 

L is the thickness of the insulation board which is 0.025 m 

ℎ𝑜 and ℎ𝑖 are outside and inside convection heat transfer coefficients respectively in (W/m2K) and 

they are evaluated using equation (4.7) and (4.8) 

ℎ𝑜 = 5.7 + 8.8𝑉𝑤𝑖𝑛𝑑 [104]                                        (4.7)  
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ℎ𝑖 = 7 𝑊/𝑚2𝐾  [105]                                          (4.8) 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟  represents the power generated by the STPV in (W). 

Solving equations (4.2) to (4.8) leaves only one unknown in equation (4.1) which is 𝑄𝑔that 

represents the heat conducted through the glazing. 

Hence, it is possible to find the U-value of the glazing as shown in equation (4.9) 

𝑈 =  
𝑄𝑔

𝐴(𝑇𝑖𝑛 −𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)
                                   (4.9)  

The transmittance and reflectance of each glazing were measured using a Perkin Elmer Lambda 

1050 spectrometer and are shown in Figure 4.2 and Figure 4.3.  

Radiation has only three behaviours when passing through a glazing, namely reflection, 

transmission and absorption. Hence, the summation of percentages of the three behaviours gives a 

value of 100% signifying full incident radiation, thus the absorbance of the above PVs can be 

calculated and its variation with wavelength can be drawn out as shown in Figure 4.4. Table 4.1 

summarizes the optical and power generation properties of the tested glazing. 
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Figure 4.2 Variation of S0, S1, S2 and S3 transmittance and spectral irradiance with wavelength 

 

Figure 4.3 Variation of S0, S1, S2 and S3 reflectance and spectral irradiance with wavelength 
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Figure 4.4Variation of S0, S1, S2 and S3 absorbance and spectral irradiance with wavelength 

Table 4.1 Optical and power generation properties of glazing S0, S1, S2 and S3 

 S0 S1 S2 S3 

 Maximum Transmittance 90% 24.83% 18.66% ffa% 

Average Transmittance 85% 12% 9.3% 0.157% 

Maximum Reflectance 15.2% 41.12% 40% 40.37% 

Average Reflectance 11.97% 15.6% 15.9% 16.12% 

Maximum Absorbance 93.6% 94.11% 93.78% 95.02% 

Average Absorbance 3.9% 72.3% 74.7% 83.6 % 

Maximum Power Generation - 0.45 W 0.5 W 0.68 W 
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It is to be noted that the solution of equations (4.1-4.9) were based on the measurement of solar 

irradiation and temperatures throughout the day.  This leads to finding a U-value for glazing at 

each time step of the day.  

4.2.1.2 Experimental Results 

Readings were taken in different weather conditions during cloudy, intermittently cloudy and 

sunny days from August 2017 until August 2018. Chapter 3 – section 3.4 justifies the selection of 

the season of autumn for performing calculations. Figure 4.5 shows the weather conditions in terms 

of ambient temperature and clearness index for three different days of September; sunny day 

(September 25th), intermittently cloudy day (September 22nd) and cloudy day (September 20th). 

Clearness index is a parameter used to quantify the ratio of horizontal global irradiance to the 

irradiance available at the atmosphere. 
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Figure 4.5 Diurnal Variation of Ambient Temperature and Clearness Index of three different 

days 

The measurement of day conditions presented in Figure 4.5 shows that on the cloudy day the 

ambient temperature ranged between 11 oC and 13 oC and clearness index reached a maximum of 

0.12.  On the intermittently cloudy day the ambient temperature showed a fluctuation between 7.5 

oC to 13oC and clearness index had a maximum value of 0.52 only at 12:00 p.m. Moreover, the 

sunny day showed the highest values for ambient temperature and clearness index throughout the 

day reaching 14oC and 0.48 respectively. Therefore, in order to get the best characterization of 

thermal performance, calculations and analysis were performed based on the sunny day’s 

conditions, (25th September), as this was the day in which most heat transfer occurred. 
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Temperature clearly reflects the behaviour of a system with respect to heat transfer. In order to 

assess the thermal performance of STPVs S1, S2 and S3 and compare them to that of clear glazing, 

the temperatures inside the test enclosures and at the inner surfaces of the glazing were recorded 

in both orientations. 

The inside temperatures of all test enclosures were monitored and presented in Figure 4.6. 

Results show that all glazing had almost equal temperatures at night, this continued until about 

8:00 a.m. where all tested glazing responded to temperature change due to sun rise. The 

temperatures reached their peak values during the period between 12:00 p.m. and 05:00 p.m. for 

South West orientation and between 11:00 p.m. and 04:00 p.m. for South orientation. South West 

orientation has a time interval of peak temperatures shifted one hour later than the South 

orientation because as time comes close to sun set, the west orientation becomes directly exposed 

to solar radiations. The clear single glazing (S0) test enclosure was shown to have the highest 

temperature among all reaching 43oC in South West orientation and 40oC in South orientation, the 

thing that indicates the occurrence of higher heat transfer than semi-transparent photovoltaic (S1, 

S2 and S3) test enclosures. Whereas S1, S2 and S3 have shown maximum inside test enclosure 

temperatures of 34.3oC, 32.7oC and 31.1oC respectively for South West orientation and 33.7oC, 

31.8oC and 31.3oC respectively for South orientation respectively. At 08:00 p.m. as the sun sets, 

the temperature goes back to its initial settings with almost equal values of 11oC for both South 

and South West orientations. Both test enclosure orientations resulted in the same diurnal variation 

of inside temperatures for all tested glazing with South orientation having slightly higher 

temperature because South orientation is exposed to sun for a more extended period of time. 
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Figure 4.6 Diurnal variation of all test enclosures inside temperatures with different glazing 

installed to each 

Figure 4.7 shows the diurnal variation of inner surface temperature of tested glazing S0, S1, S2 

and S3. The temperatures showed similar behaviour as the test enclosure inside temperatures in 

terms of diurnal variation profile and peak time hours. Although the temperature inside the STPV 

test cell was higher than that of the single glazing, the inner surface temperature of STPV was 

shown to be lower.  The lowest recorded temperature was for single glazing that reached a 

maximum of 33.2oC in South West orientation and 30.2oC in South orientation. As for S3, S2 and 

S1 they showed maximum temperatures of 46.4 oC, 44.3 oC and 42.4oC in the South West oriented 

test enclosures and 44.3 oC, 43.5 oC and 38.7 oC in the South oriented test enclosure respectively. 

The STPVs have higher inner surface temperature than single glazing, this is because PVs absorb 

heat in order to generate electric power. The absorbed heat at the surface of the PV results in an 

increase in temperature.  
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Figure 4.7 Diurnal variation of all inner test enclosures temperatures with different glazing 

installed to each 

Temperature of CdTe-BIPV internal surface was relatively higher than test cell temperature while 

reverse behavior was achieved for single glazing.  This can be explained by thermal diffusivity 

and effusivity of glass and CdTe material. Thermal effusivity is related to the ability of the material 

to absorb heat, while diffusivity is the speed to reach thermal equilibrium. CdTe BIPV had two 

glass panes and CdTe material was sandwiched between them. Thus, enhanced heat flow and then 

reserved it in glass increased the internal glass temperature for CdTe BIPV while for single glass 

heat was transferred into the internal text cell. 

The analysis of thermal behaviour demonstrates that STPVs S1, S2 and S3 have better insulation 

properties than the single clear glazing S0, U-value quantifies this insulating property. Figure 4.8 

to Figure 4.15 show the diurnal variation of U-value of all tested glazing along with temperature 

difference and vertical global solar irradiance in both orientations South and South West.  
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In Figure 4.8, the diurnal variation of temperature difference between ambient and inside the test 

cell holding S0 glazing at South direction, showed a pattern similar to the vertical global solar 

irradiance. This is because of the response of inside temperature to the increase of solar irradiance 

during the day. As solar irradiance increases, the heat is transferred from outside to inside the test 

cell leading to an increase in its temperature. The U-value was found to be fluctuating with time 

with an average of 5.6 W/m2K. 
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Figure 4.8 Diurnal Variation Solar irradiation, Temperature Difference, and U-value in S0 

glazing Test Enclosure in South Orientation 

Results of S0 glazing in South West orientation are presented in Figure 4.9. The figure shows that 

the behaviour of temperature difference also matches that of the global vertical irradiance while 

the U-value is fluctuating. The average U-value is 5.67 W/m2K. The small difference between the 

U-values of S0 in south and south west orientation is because of the experimental measurements. 
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Figure 4.9 Diurnal Variation Solar irradiation, Temperature Difference, and U-value in S0 

glazing Test Enclosure in South West Orientation 

In  

Figure 4.10, the behaviour of South oriented S1 STPV glazing was presented. Results have shown 

a fluctuating U-value and a similar behaviour for temperature difference and vertical global 

irradiance. The average U-value was 2.64 W/m2K. 
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Figure 4.10 Diurnal Variation Solar irradiation, Temperature Difference, and U-value in S1 

glazing Test Enclosure in South Orientation 

In Figure 4.11, results of irradiance, temperature difference and U-value of S1 glazing oriented to 

South West are presented. The U-value is again fluctuating throughout the day and temperature 

difference is showing response to the changes of solar irradiance. The average U-value of S1 STPV 

glazing was found to be 2.7 W/m2K. 
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Figure 4.11 Diurnal Variation Solar irradiation, Temperature Difference, and U-value in S1 

glazing Test Enclosure in South West Orientation 

 

Results of S2 glazing test cell are presented in Figure 4.12 that shows similar pattern as previous 

cells in terms of fluctuation of U-value and the increase of temperature difference with the increase 

of solar irradiance. The average U-value of S2 glazing in South orientation is 2.35 W/m2K. 
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Figure 4.12 Diurnal Variation Solar irradiation, Temperature Difference, and U-value in S2 

glazing Test Enclosure in South Orientation 
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As for South West orientation of S2 glazing, results of Figure 4.13 show similar behaviour as 

described in figure 12 for temperature difference and U-value. The average U-value of S2 glazing 

is 2.3 W/m2K that is approximately equal to the value registered for S2 glazing in south orientation. 

 

 

Figure 4.13 Diurnal Variation Solar irradiation, Temperature Difference, and U-value in S2 

glazing Test Enclosure in South West Orientation 

 

Results for S3 glazing are presented in Figure 4.14 show a low U-value with an average of 0.248 

W/m2K. However, this low U-value does not prevent the temperature difference to respond to the 

changes of solar irradiance. This is because the heat transferred into the test cell is stored leading 

to an accumulated increase in temperature. 
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Figure 4.14 Diurnal Variation Solar irradiation, Temperature Difference, and U-value in S3 

glazing Test Enclosure in South Orientation 

The same pattern described in Figure 4.14 was present in Figure 4.15 for S3 glazing oriented 

towards South West orientation. The U-value was found to be low with an average of 0.24 W/m2K, 

and the temperature difference between inside test cell and ambient was found to have similar 

pattern. 
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Figure 4.15 Diurnal Variation Solar irradiation, Temperature Difference, and U-value in S3 

glazing Test Enclosure in South West Orientation 

 

4.2.1.3 Results Discussion 

 

In this experiment the U-value did not show a constant value throughout the day, as the steady 

state heat transfer can hardly be achieved in outdoor conditions. This is because the U-value is not 

a constant parameter and it varies with environment parameters such as temperature and wind 

speed [101]. However, taking the average value is efficient for describing the overall heat transfer 

coefficient U-value of the tested glazing according to BS ISO 9869-1:2014 [103], because a steady 

state heat transfer assumption is valid when performing an outdoor experiment for a long period 

of time. This was proven true in the case presented in this thesis as results of similar glazing have 

shown similar average U-values in South and South West orientations.  
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It was clear that glazing with higher transparency have higher U-values. This agrees with Figure 

4.2 shows that low transparency-glazing limits the irradiance for the whole range of wavelengths 

not only for visible range of solar irradiance. Clear single glazing was shown to have the highest 

U-value above other glazing having an average of 5.6 W/m2K in South orientation and 5.67 

W/m2K in South West orientation respectively. Semi-transparent photovoltaic S1 has the second 

highest U-value as it has an average of 2.64 W/m2K in South direction and 2.7 in South West 

direction. Whereas results of STPV S2 showed an average U-value of 2.35 W/m2K and 2.3 W/m2K 

in South and South West orientations respectively. The lowest registered U-value was for STPV 3 

whose average U-value was 0.248 W/m2K and 0.24 W/m2K when the glazing was oriented towards 

South and South West respectively. The low U-values of STPV glazing give them the advantage 

of achieving thermal comfort with low cooling power in hot weather conditions. Table 4.2 

summarizes the resulting U-values of the tested glazing in experiment 1. 

Table 4.2 Summary of U-values calculated using outdoor experiment (Experiment 1) 

Glazing U-value in South 

Direction (W/m2K) 

U-value in South West 

Direction (W/m2K) 

Average U-value 

(W/m2K) 

S0 5.6 5.67 5.64 

S1 2.64 2.7 2.67 

S2 2.35 2.3 2.33 

S3 0.248 0.240. 0.244 
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4.2.2 Experiment 2: Indoor test enclosures  

A similar experiment to the one presented in “Experiment 1” was carried out in an indoor 

environment. The purpose of using the indoor experiment is to have a steady heat transfer by using 

an AAA+ type constant irradiance solar simulator in addition to a constant speed fan. This leads 

to a constant U-value over time. The tested glazing S0, S1, S2 and S3 were exposed to a constant 

solar irradiance of 300 W/m2 which is equivalent to the averages of vertical global solar irradiance 

in South and South West orientations. Also, the constant speed fan was set to generate an air flow 

with a speed of 1.5 m/s. Readings were taken for 8 hours so that steady heat transfer can be 

achieved. It is to be noted that the experiment does not require the glazing to be tested 

simultaneously because of the fact that the solar irradiance and ambient conditions of temperature 

and wind speed can be kept constant. Further details of the experimental setup are presented in 

Chapter 3 - section 3.2. The equations used for calculating the U-value are the same equations used 

in “Experiment 1”. 

Temperatures inside the test enclosures and at ambient conditions around the test enclosures were 

monitored each minute throughout the experiments and presented in Figure 4.16. Results show 

that test enclosures’ temperature changes sharply at the beginning of the experiment then becomes 

nearly flat for the rest of the experiments’ duration. This indicates the occurrence of steady heat 

transfer. The test enclosure that was equipped with clear single glazing S0 had the highest inside 

temperature reaching 33 oC. Following this result were the S1, S2 and S3 test enclosures with 

maximum temperatures of 31.5 oC, 29 oC and 27 oC respectively. As for ambient temperature 

around the test cell, this showed an increasing pattern with the continuous constant solar irradiance. 

It is to be noted that the temperature difference between inside the test enclosure and the ambient 
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is almost constant. The behaviour of inside temperature in the indoor experiment matches that of 

the outdoor experiment as the glazing with higher transparency has a higher inside test enclosure 

temperature. 

 

Figure 4.16 Variation of temperatures inside the test enclosures in indoor experiment 

Figure 4.17 shows the variation of inner surface temperature of glazing S0, S1, S2 and S3 with the 

duration of the indoor experiment time. Results show that a time of about 40 minutes was needed 

for the increase of temperature with the continuous radiation to become flat. This time interval is 

when transient heat transfer occurs before reaching steady state heat transfer. Glazing S0 showed 

the lowest surface temperature among other tested glazing with a maximum temperature reaching 

37 oC. Then the glazing can be ordered from lower surface temperature to higher surface 

temperature as S1, S2 and S3 with maximum temperatures of 38.5 oC, 40 oC and 42 oC 

respectively. The inner surface temperature of STPV glazing is higher than that of clear glazing 
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and this can again be illustrated by the fact that STPV glazing absorbs heat to generate electric 

power. 

 

Figure 4.17 Variation of inner surface temperature of tested glazing in indoor experiment 
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Figure 4.18 Power generated from STPV glazing in indoor experiment 

The generated power was monitored to be used in equation 4.1 and in order to calculate the U-

value of STPV glazing S1, S2 and S3. Results were presented in Figure 4.18. The highest power 

was shown to be generated from STPV S3 with a maximum value of 0.58 W, the second highest 

generated power was from STPV S2 with a maximum of 0.38 W and the lowest power generation 

was from STPV S1 with a maximum of 0.33 W. It is to be noted that power generated by STPV 

glazing decreases over time because their surface temperatures increase due to the continuous 

applied solar irradiance and this decreases their efficiencies. 

The U-values of glazing S0, S1, S2 and S3 were calculated based on the results of the indoor 

experiment and were shown in figure 4.18. Steady and constant U-values were obtained because 

steady heat transfer could be achieved in the indoor environment. The highest U-value (5.7 
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W/m2K) is achieved by S0. STPV S1 has the second highest U-value reaching 2.7 W/m2K while 

S2 and S3 have U-values of 2.3 W/m2K and 0.25 W/m2K respectively. Results were found to be 

similar to those obtained in the outdoor experiment (Experiment 1). This proves that the 

assumption of steady state heat transfer in outdoor experiment “experiment 1” is true. In addition, 

it is clear that in indoor experiment that almost a constant U-value could be obtained. This is 

because constant environmental parameters were set for the experiment such as solar irradiance 

and fan wind speed. 
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Figure 4.19 Results of U-values of glazing S0, S1, S2 and S3 from indoor experiment 

4.2.3 Experiment 3: Using heat flux sensor 

Heat flux is defined as the heat transferred per unit area. A heat flux sensor was used to evaluate 

the U-value of STPV S5 and compare it to single clear glazing S4 which is similar to S0 but with 
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larger dimensions. The reason S4 and S5 were not tested in the outdoor and indoor experiments 

(Experiments 1 and 2) is that it is of a larger size (30 cm x 30 cm) and cannot fit to the designed 

test enclosures. So, they were fitted to two cooler/warmer units test enclosures presented in chapter 

3. A 30 cm x 30 cm clear glazing S4 was used for results validation and physical interpretation. 

The experiment was set based on the recommendations of BS ISO 9869-1:2014 [103]. A heat flux 

sensor was attached to the inner wall of the glazing. Two thermocouples were placed at a distance 

5 cm away from inner and outer surfaces of the glazing. The temperature inside each test enclosure 

was controlled to meet a set point of 23 oC to create a temperature difference between inside and 

ambient conditions. The test enclosures were set in outdoor conditions and measurements were 

taken at night to avoid any influence of solar radiation on the heat flux sensor measurements. 

Measurements were taken from 15th February 2018 to 3rd March 2018. The maximum allowable 

standard deviation in U-value results must be in the range of 5% for three consecutive days for the 

measurements to be accepted as recommended by BS ISO 9869-1:2014 [103]. Equation 4.10 was 

used to calculate the U-value of the glazing. 

𝑈𝑔 =
𝑄

𝐴
×

1

𝑇𝑖𝑛−𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡
          (4.10) 

Where 
𝑄

𝐴
 is the heat flux in (W/m2) measured by the heat flux sensor. 

𝑈𝑔 is the U-value of the glazing and 𝑇𝑖𝑛 and 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 are temperatures inside the test cell and at 

ambient outdoor condition respectively. 

Measurements of inside temperature, ambient temperature and heat flux as well as the calculated 

U-value for test enclosure holding S4 glazing are presented in Figure 4.20. The figure shows the 
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results of three consecutive nights from February 20th to February 23rd from 18:00 to 06:00. Results 

show a steady U-value for the three nights with an average of 5.6 W/m2K and a standard deviation 

below 5%. The calculated U-value is equal to that calculated for clear glazing S0 in experiments 

1 and 2. This validates the results of the measurements. 

Figure 4.21 shows the measurement of inside temperature, ambient temperature and heat flux and 

calculated U-value on three consecutive nights from February 15th to February 18th for the test 

enclosure holding STPV S5 in the time range between 18:00 to 06:00. Results reveal a steady, 

almost constant U-value over the three nights with an average value of 3.1 W/m2K and a standard 

deviation not exceeding 5%.  

Results of U-values match the pattern deduced in experiments 1 and 2; that higher transparency 

glazing has higher U-values. Table 4.3 summarizes the U-values of S4 and S5. 
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Figure 4.20 Variation of U-value, inside temperature, ambient temperature and heat flux in three 

nights for S4 test enclosure    
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Figure 4.21 Variation of U-value, inside temperature, ambient temperature and heat flux in three 

nights for S5 test enclosure 

Table 4.3 U-values of S4 and S5 glazing 

 S4 S5 

U-value Standard 

deviation 

U-value Standard 

deviation 

Night 1 5.6 W/m2K 3% 3.1 W/m2K 1.6% 

Night 2 5.6 W/m2K 1.6% 3.04 W/m2K 2.5% 

Night 3 5.59 W/m2K 1.7% 3.16 W/m2K 4.8% 
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4.3 Evaluation of Solar Heat Gain Coefficient (SHGC) 

Solar heat gain coefficient (SHGC) measures the fraction of solar radiation that passes through the 

glazing as a fraction from vertical global solar radiation [90]. Higher SHGC indicates higher 

transmission of solar radiation through the glazing by being directly transmitted or by being stored 

and released again. 

4.3.1 Equations for calculating SHGC 

Considering the beam component of radiation being transmitted at an incident angle (𝜃), the solar 

heat gain coefficient (SHGC) can be calculated through the following series of equations [90]. 

𝑆𝐻𝐺𝐶 =
𝑇𝑆𝐸

𝐼𝑣𝑒𝑟,𝑔𝑙𝑜𝑏𝑎𝑙
                                                                                                       (4.11) 

Where, 𝑇𝑆𝐸 is the transmitted solar energy in (W/m2) and 𝐼𝑣𝑒𝑟,𝑔𝑙𝑜𝑏𝑎𝑙 is the vertical global 

irradiance in (W/m2) 

𝑇𝑆𝐸 = (𝐼ℎ𝑜𝑟,𝑑𝑖𝑟 + 𝐼ℎ𝑜𝑟,𝑑𝑖𝑓𝑓 × 𝐴𝑖) × 𝜏𝑑𝑖𝑟𝑅𝑏 + 𝐼ℎ𝑜𝑟,𝑑𝑖𝑓𝑓(1 + 𝐴𝑖) × 𝜏𝑑𝑖𝑓𝑓
(1+cos 𝛽)

2
+ 𝐼ℎ𝑜𝑟,𝑔𝑙𝑜𝑏𝑎𝑙 ×

𝜌𝑔 × 𝜏𝑔
(1−𝑐𝑜𝑠𝛽)

2
                                                               (4.12)  

Where 𝐼ℎ𝑜𝑟,𝑑𝑖𝑟, 𝐼ℎ𝑜𝑟,𝑑𝑖𝑓𝑓 and 𝐼ℎ𝑜𝑟,𝑔𝑙𝑜𝑏𝑎𝑙 are horizontal direct irradiance, horizontal diffuse 

irradiance and horizontal global irradiance respectively in (W/m2). 

𝜏𝑑𝑖𝑟, 𝜏𝑑𝑖𝑓𝑓 and 𝜏𝑔 are direct, diffuse and global transmittance respectively. 
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𝑅𝑏 is the factor of beam radiation, 𝜌𝑔is the solar reflectance of glazing and β is the the angle 

between the panel and the horizontal. 𝐴𝑖 is the anisotropic index and it can be calculated through 

equation 4.13 [99] 

𝐴𝑖 =
𝐼ℎ𝑜𝑟,𝑑𝑖𝑟

𝐼𝑜
                                                                                                                 (4.13) 

where 𝐼𝑜 is the extraterrestrial solar irradiance in (W/m2) and it can be calculated through equation 

(4.14) 

𝐼𝑜 = 𝐼𝑠𝑐(1 + 0.033 cos(
360 𝑁𝑑

365
)(𝑐𝑜𝑠𝜑 × 𝑐𝑜𝑠𝛿 × 𝑐𝑜𝑠𝜔 + 𝑠𝑖𝑛𝜑 × 𝑠𝑖𝑛𝛿)                (4.14) 

𝐼𝑠𝑐 is the solar constant irradiance that is equivalent to 1360 W/m2, 𝑁𝑑 is the day number, 𝜑 is the 

azimuth angle, 𝛿 is the declination angle presented in equation (4.15) and 𝜔′ is the hour angle 

included in equation (4.16) 

𝛿 = 23.45 sin ( 
360

365
× (284 + 𝑁𝑑))                                                                        (4.15) 

𝜔′ =
𝐴𝑆𝑇 (𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠)−720

4
                                                                                          (4.16) 

𝐴𝑆𝑇 is the apparent solar time and can be calculated using equation (4.17) 

𝐴𝑆𝑇 = 𝐿𝑆𝑇 + 4 × (𝐿𝑆𝑇𝑀 − 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒) + 𝐸𝑇                                                     (4.17) 

Where, 𝐿𝑆𝑇 is the local solar time, 𝐿𝑆𝑇𝑀 Local longitude of standard time meridian calculated 

through equation (4.18), and 𝐸𝑇 is the equation of time calculated through equation (4.19).  

𝐿𝑆𝑇𝑀 = 15 × (
𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒

15
)𝑟𝑜𝑢𝑛𝑑 𝑡𝑜 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                                                            (4.18)           
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𝐸𝑇 = 9.87𝑠𝑖𝑛 (2 × 360 (
𝑁𝑑−81

365
)) − 7.53𝑐𝑜𝑠 (360 (

𝑁𝑑−81

365
)) − 1.5𝑠𝑖𝑛(360 (

𝑁𝑑−81

365
))        (4.19)                                                                

Transmittances 𝜏𝑑𝑖𝑟, 𝜏𝑑𝑖𝑓𝑓 and 𝜏𝑔 included in equation (4.12) can be calculated through equation 

(4.20) [106]:        

𝜏 =
1

2
(

1−(
sin(𝜃−𝑛)

sin(𝜃+𝑛)
)

2

1+(2𝑛𝑔−1)(
sin(𝜃−𝑛)

sin(𝜃+𝑛)
)

+
1−(

tan(𝜃−𝑛)

tan(𝜃+𝑛)
)

2

1+(2𝑛𝑔−1)(
tan(𝜃−𝑛)

tan(𝜃+𝑛)
)
) × exp (

−𝐾𝑔𝑁𝑔𝑡𝑔
𝑐𝑜𝑠𝜃

⁄ )                      (4.20) 

𝐾𝑔 is the extinction coefficient, 𝑁𝑔is the number of the glass pane and 𝑡𝑔 is the thickness of glazing 

in (m) 

 𝜃 is the incident angle that can be calculated through one of the equations (4.21), (4.22) or (4.23). 

The suffixes “dir", "diff" and “g” after the transmittance in equation (4.12) are dependent on the 

value of incident angle 𝜃 as follows:  

𝜃𝑑𝑖𝑓𝑓 = 59.68 − 0.1388𝛽 + 0.001497𝛽2                      (4.21) 

𝜃𝑔 = 90 − 0.5788𝛽 + 0.002693𝛽2                            (4.22) 

cos(𝜃𝑑𝑖𝑟) = sin(𝛿) × sin (𝜑) × cos (𝛽) − sin (𝛿) × cos (𝜑) × sin (𝛽) × cos (𝛾) + cos (𝛿) ×

cos (𝜑) × cos (𝛽) × cos (𝜔′) + cos (𝛿) × sin (𝜑) × sin (𝛽) × cos (𝛾) × cos (𝜔′) + cos (𝛿) ×

sin (𝛽) × sin (𝛾) × sin (𝜔′)              (4.23) 

4.3.2 Results of SHGC 

Figure 4.22 shows the results of the calculated SHGC for glazing S0, S1, S2, S3 and S5. The 

highest SHGC belongs to clear single glazing S0 with a maximum value of 0.728. This value 
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agrees with the value published by the Royal Institute of British Architectural (RIBA) [27]. The 

second highest SHGC was for 35% transparent STPV S5 with a maximum value of 0.28. As for 

STPVs S1, S2 and S3, their SHGC had maximum values of 0.2, 0.14 and 0.0291 respectively. 

These values are unique as the SHGC of CdTe thin-film PV glazing was not calculated before, 

according to the author’s knowledge. However, the results signify that glazing with higher 

transparencies have higher solar heat gain coefficients and this matches the behaviour of results 

published  by Chae et al. [87]. This reveals that different transparencies of STPV glazing have the 

advantage of solar heat gain control. It was also noted that as incident angle increases the SHGC 

decreases for all tested glazing. 
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Figure 4.22 Variation of SHGC of glazing S0, S1, S2, S3 and S5 with incident angle 
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4.4 Conclusion 

Thermal performances of semi-transparent photovoltaic S1, S2, S3 and S5 were evaluated and 

compared to single clear glazing S0 and S4. U-values were calculated in three different 

experiments for results validation. Among the three experiments used for evaluating U-value, 

using the heat flux sensor delivered the steadiest results. Indoor experiment is the one that can be 

performed in a short time with reliable results, whereas the outdoor experiment shows the actual 

behaviour of glazing in realistic conditions. 

The outdoor experiment showed that STPV glazing can limit the heat transfer transmitted through 

them compared to clear single glazing in both tested orientations, South and South West. Also, 

STPVs have similar U-values in both orientations. This indicates that they have constant thermal 

properties. Nevertheless, both outdoor and indoor experiments revealed similar results in terms of 

temperature behaviour inside the test enclosures and evaluating U-values. This indicates that the 

results are validated. 

It was also shown that glazing with higher transparencies have less ability to limit the temperature 

rise inside the test enclosures. They also have higher U-values and SHGC compared to other less 

transparent glazing. Also, all semi-transparent photovoltaic glazing has shown lower U-values and 

SHGC than single clear glazing. This proves the good insulating properties of CdTe thin-film 

based STPV compared to conventional single glazing. These insulating properties make them able 

to reduce cooling loads if used as windows or facades in BIPV applications. Table 4.4 summarizes 

the U-values obtained from the three experiments used. 
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Table 4.4 Summary of calculated U-values 

 S0  

(W/m2K) 

S1  

(W/m2K) 

S2 

(W/m2K) 

S3 

(W/m2K) 

S4 

(W/m2K) 

S5  

(W/m2K) 

Experiment 1 5.64  2.67 2.33 0.244 - - 

Experiment 2 5.7 2.7 2.3 0.25 - - 

Experiment 3 - - - - 5.6 3.1 

Average 5.67 2.69 2.32 0.247 5.6 3.1 
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This chapter provides the performance assessment of CdTe Semi-Transparent PV glazing 

(S1, S2 and S3) for power saving in façade buildings in comparison with conventional clear single 

glazing (S0). The performance was evaluated in terms of net energy performance that include air 

conditioning energy consumption, artificial lighting energy consumption and STPV façade energy 

generation. The assessment was achieved using outdoor experimental setups of test enclosures 

oriented to face South and South West orientations. 

5.1 Introduction 

In order to investigate the energy performance of CdTe thin-film based STPV glazing under 

realistic weather and solar irradiance conditions, outdoor experimental setups were installed 

holding STPV glazing S1, S2 and S3 and single clear glazing S0.  

Energy consumption of Façade buildings, which are generally highly glazed, is even more 

significant when air conditioning (AC) is considered.  Energy is saved by more heat being reflected 

resulting in less AC power consumption with the STPV thermal properties. In addition, the optical 

and electrical properties provide indoor sunlight with power generation. This chapter investigates 

the net potential energy saving via applying cadmium telluride (CdTe) STPV glazing of different 

transparencies in Façade buildings.  The impact of PV glazing facade orientation was studied by 

implementing outdoor experiments facing South and South West orientations. 

5.2 STPV Glazing Electrical Propertie 

The electrical properties of the STPVs were investigated using WACOM AAA+ solar simulator.  

The IV curves for STPVs used are presented in Figure 5.1.  The I-V curves reveal that the 

maximum power point (MPP) of S3 is the highest compared to S2 and S1, which has the lowest 
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value of MPP.  Detailed results of STPVs properties are presented in Table 5.1.  The results show 

that the efficiency and power generation were found to be inversely proportional to transmittance.  

The maximum efficiency and power generation for both orientations was registered for S3 whereas 

S1 showed the lowest efficiency and power generation.  

 

Figure 5.1 The I-V curve of STPVs used in south-west-oriented test cell 
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Table 5.1 Electrical properties of STPV cells 

Parameters South West Orientation South Orientation 

S3 S2 S1 S3 S2 S1 

Nominal Power [Pm] (W) 1.53 0.99 0.815 1.41 0.987 0.815 

Short Circuit Current [Isc] (A) 0.22 0.16 0.14 0.21 0.16 0.14 

Open Circuit Voltage [Voc] (V) 11.21 10.39 9.734 11.14 10.08 9.734 

Current at Maximum Power Point 

[Imp] (A) 

0.18 0.13 0.115 0.163 0.13 0.115 

Voltage at Maximum Power Point 

[Vmp] (V) 

8.49 7.57 7.05 8.65 7.43 7.05 

Efficiency [η] (%) 12.6 8.23 6.7 11.69 8.15 6.7 

 

5.3 Energy and Power Measurement 

In order to establish a performance assessment for all cells under the same conditions, an 

experimental setup had been built consisting of eight sample enclosures.  A data acquisition and 

logging system had been used to gather data and save it in an excel sheet.  The setup was installed 

at ESI building, Exeter University, UK as described in section 3.2. 

The design had two identical sets of four enclosures set to the south and south-west directions.  

Because of the constraint of a fixed size of the available STPV (20 X 20 cm2) the enclosures had 

been designed with dimensions of 20 X 20 cm2.  It is worth mentioning that the active area of the 

STPV is within the 10 X 10 cm2. 
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The enclosures utilized Peltier-based cooling systems for mimicking the AC units in the buildings.  

Also, each enclosure was equipped with: 

- K-type temperature inside the enclosure for thermal evaluation 

- voltage and current sensors for AC power consumption measurements 

- a voltage sensor for the STPV power generation measurement 

All enclosures are installed in a box provided by ventilation holes and fans.  Figure 5.2 shows the 

completed experimental setup. 

 

Figure 5.2 The Completed view of the whole setup: (a) test cell (b) solar tracker (1) global and 

diffuse radiation (2) the direct radiation (c) data logger (3) IV-tracer (4) thermocouple data 

logger (d) weather station   
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Outdoor experiments were dedicated to the overall system energy evaluations in real weather.  The 

evaluations included orientation aspects, wind and shading disturbances, and inside-light 

measurement when the facades were vertically assembled. 

5.4 Enclosure temperature and Air conditioning 

As per Lomas and Kane [107], the range of comfort temperature in winter and summer seasons is 

below 24°C.  Also according to Seppanen et al. [108], the performances increase with temperatures 

up to 22°C and decreases with temperatures above 24°C.  In this trial, the thermostat was set at 

20°C for cooling to calculate the AC loads.  According to the UK weather, keeping the inside 

temperature of the enclosure below 20°C is not hard. However, in hot countries, for example in 

the Middle East, it needs the AC to work for a longer time with higher capacity to achieve the 

20°C regulation. 

Figure 5.3, Figure 5.4 and Figure 5.5 depict the temperature profiles for three different days; 6 

May 2018, 23 NOV 2017, and 12 DEC 2017 respectively. Different days are tested to provide an 

evidence of the selected days later and to test the cells under the conditions which are proportionate 

to achieve the aim of this thesis. These figures show that for hot days in May the AC units needed 

to work harder and longer than the other days in November and December.  On those days in 

November, Figure 5.4, and December, Figure 5.5, the AC units were hardly required or not at all 

as the temperature is below the AC unit operating threshold.  On the November 23rd sample, the 

AC in enclosures with S0 and S1 ran for a short period during the day, while enclosures with S2 

and S3 kept the temperature below 20°C all time. This contributes to the objective of the paper 

and the feasibility of using STPV.  On the DEC sample, the temperature is below 12°C and no 

power consumed by the AC units for all glazing. To emphasis the value of saving even more, 
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sample days that has relatively higher temperature profiles will be selected between May to 

September over the year. 
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Figure 5.3 The inner-temperature profiles of the south-facing enclosures on 6 May 2018
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Figure 5.4 The inner-temperature profiles of the south-facing enclosures on 23 November 2017 
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Figure 5.5 The inner-temperature profiles of the south-facing enclosures on 12 December 2017 
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5.5 Results and discussion 

5.5.1 AC power consumption 

The power consumption data has been recorded during the May sample day for the four enclosures 

in both directions: south and south-west. Figure 5.6 shows the accumulated energy consumption 

over the twenty-four-hour period for both orientations with the various transparencies. The 

consumption of the S0 enclosure in both orientations is proven to be the most while S3 is the least.  

Respectively, the energy savings for S1, S2, and S3 compared to the reference enclosure S0 are 

4.8%, 8.6%, and 11.6% for the south orientation and 7.9%, 14.4%, and 23.2% for the south-west-

oriented enclosures. 

  

Figure 5.6 The AC energy consumption for different orientations and different transparencies on 

6 May 2018 

It was noticed that the consumption of the south-west oriented S0 enclosure is slightly less than 

the south-oriented, which is close to the south-west oriented S1 enclosure.  This is because the 
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south enclosures are facing the sun for more extended periods of time with higher radiation, which 

transfer more heat inside the enclosures.  Therefore, the south enclosures require more cooling 

energy for all STPVs. 

A caveat can be concluded for very hot weathers and south-facing facades, but the savings could 

be insignificant.  This is also shown for the power consumption on 24 November in Figure 5.7, 

which is a relatively colder day.  The energy saving figures for that day are 43.5%, 54.5%, and 

61.1% for the south-facing S1, S2, and S3 enclosures respectively. 

  

Figure 5.7 The AC energy consumption for different orientations and different transparencies on 

24 Nov 2017 

Furthermore, the working hours for the AC units in May is about thirteen hours while it is six 

hours in November.  This contributes to more savings in November than May.  According to the 

finding by Barman et al. [14], the determining factors for cooling loads, U-value and SHGC, for 
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window systems are higher than for the opaque wall.  Therefore, as the window to wall ratio 

(WWR) increases, the thermal load of the building rises. 

5.5.2  STPV generation 

Instead of the clear glazing, using STPV introduces more reflectance and absorption to the visual 

light penetrating the windows. Therefore, less sunlight will serve the interior lighting during the 

working hours and more artificial light consumption will be required. Figure 5.8 illustrates the 

direct, diffused, and global irradiance on 6 May, which reflects a relatively sunny day. 

 

Figure 5.8 The direct, diffused, and global irradiance on 6 May 2018 

As the STPVs are used to decrease the heat transfer to the building and save cooling energy, they 

also contribute to power generation.  For example, the S1 STPV sample can generate 30 kJ of 

energy, which can be directly used by some loads or stored in energy storage systems.  This amount 

of energy is small when it is compared with the AC power consumption, which on the same day, 
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exceeded the 4.5 MJ as shown in Figure 5.6.  The calculated average power and accumulated 

energy generation of the S1 STPV results are shown Figure 5.9.  Moreover, the solar PV module 

has the same area and reflectance as the STPVs, but because of the modules lesser transmittance 

it absorbs more radiation.  This is subsequently converted into electrical energy.   Therefore, the 

S2 and S3 are expected to provide more power of up to 70% of the S1 production, which is limited 

to 51 kJ.  These energy generations are expectable from the finding in a previous research work 

[109].   

 

Figure 5.9 The generated power and energy of the S1 STPV enclosure 

5.5.3 Interior lighting compensation 

In UK standards, the lighting requirement for a façade building for offices is about 500 lumen/m2 

[110].  This can be translated into 9 – 13 W/m2 if tubular fluorescent lighting is used [111].  For 

twelve hours (7 am to 7 pm) a 10 W/m2 had been chosen as the average required value.  With an 

artificial lighting dimming control system introduced the artificial lighting will be activated and 
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reach the required illuminance level, with the extra electricity consumption calculated when the 

daylight illuminance level is below 500 Lux.  

Figure 5.10 shows the required irradiance and the available interior irradiance for one of the 

enclosures, which has window S1 with the highest STPV transparency. It is evident that the 

available light can meet the required value for a short time on that sunny day (6 May 2018). 

However, it does need some artificial lighting to satisfy the entire duration.  Also, for cloudy days 

or winter days, the expectations from the penetrated sunlight is less. 

 

 

Figure 5.10 The inner irradiance of the enclosure (S1) and the required lighting energy 

The required lighting energy using 10 W/m2 as a reference, has been calculated during the twelve 

hours as shown in Figure 5.10.  In total, 220 kJ is needed.   The generated energy from S1 STPV 

as shown in Figure 5.9 might be used to cover a portion of this consumption, which represents 
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13.1%.  This saving will be less with the lower transparency STPV (S2 and S3) as less sunlight is 

allowed to penetrate. 

5.5.4 Net energy performance 

The effects of the STPV window systems on the net energy performance has been analyzed by 

using the following relation: 

Net energy performance = AC energy consumption + Artificial lighting energy consumption − 

STPV energy generation.  

Figure 5.11 shows the net energy performance for both orientations and all STPV transparencies-

based enclosures considering the enclosures (S0) as references.  The AC power consumption 

decreases with lower transparency PVs.  For the south-facing enclosures, the S1, S2, and S3 

consumption relative to S0 are 4.85%, 8.6%, and 11.6% less respectively, while the figures are 

7.97%, 14.4%, and 23.27% for the south-west oriented-enclosures.  Furthermore, more details are 

found in Table 5.2. 

The clear glazing allows more sunlight to serve the interior lighting of the enclosures, while STPV 

introduces shading and reflection so that less sunlight penetrates. Thus, more lighting consumption 

is observed to be used relative to the S0 enclosures.  The results are 33.3%, 60.4%, and 82.9% 

more for the S1, S2, and S3 south enclosures respectively.  The south-west enclosures figures are 

67.3%, 82.2%, and 83.7% more for S1, S2, and S3. 
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Figure 5.11 Net generation performance 

Table 5.2 The net energy saving 

 South-facing Enclosures South-West-facing Enclosures 

 
 (S0)  (S1)  (S2)  (S3)  (S0)  (S1)  (S2)  (S3) 

AC consumption (MJ) 4.825 4.591 4.410 4.263 4.640 4.270 3.970 3.560 

Light consumption (kJ) 219.3 292.4 352.0 401.2 222.2 371.8 395.9 408.3 

STPV generation (kJ) 0 293.3 348.3 524.2 0 234.6 278.6 419.4 

Net Energy (kJ) 504.4 485.4 472.7 461.1 486.2 461.8 398.1 392.6 

Saving (kJ) 0 190.1 317.1 432.5 0 243.8 880.5 935.8 

Saving (%) 0 3.77 6.28 8.57 0 5.01 18.10 19.24 
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Compared to the total power consumption of the single glazing S0 case, the energy savings for S1 

is about 3.77%, S2 is 6.28%, and S3 is 8.5% for the south facing enclosures while the savings are 

5% for S1, 18.1% for S2, and 19.2% for S3 south-west facing enclosures.  The saving of the south-

west enclosures compared to the south enclosures are 4.86% for S1, 15.77% for S2, and 14.86% 

for S3.  Therefore, installing this technology is promising for south-west faces. 

Lastly, it is essential to consider the friendly environment and health sides for the residents.  Using 

low transparency PVs might affect health issues and mental states [112].   As a trade-off, using the 

S1 sample on the south-west facing windows might be a good choice according to the results in 

Table 5.2. 

5.6 Conclusion 

In this chapter, a thermal performance analysis and electrical power saving assessment have been 

carried out for a CdTe-based STPV integrated window system in the climate of the UK. The 

experimental results of the power and thermal performance testing were presented in detail. The 

thermal performance, which was quantified as solar heat gain coefficient (SHGC) and U-value, 

for the STPVs promoting them as good insulators compared with the single glazing case. The 

south-west facing enclosures introduced more savings when it is compared to the south facing 

enclosures.  The saving is higher when the transparency is lower. A trade-off can be achieved by 

using a 25% STPV on the south-west oriented enclosures to keep the impact on the mental state at 

a minimum. 
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This chapter illustrates the concept and evaluation of daylight performance of CdTe semi-

transparent photovoltaic glazing S5 (35% transparency) in comparison to clear single glazing S4 

in two orientations under realistic outdoor conditions in Penryn, UK. 

6.1 Introduction 

 

Daylight performance refers to the practice in which glazing is placed in order to transmit adequate 

internal lighting during daylight hours [113].  A sufficient amount of daylight is vital to daily 

survival as it affects visual performance, energy efficiency, lighting quality, and even human 

performance. In terms of energy performance, daylight can be a key factor that leads to energy 

conservation through reduction of artificial energy requirements. The concept of daylight design 

is intended to maximize utilization of the available lighting from outdoor illuminance without 

necessarily causing glare or having very low internal illuminance levels.  

Different studies have reported different values for the acceptable range of illuminance for 

occupants’ optical comfort and useful daylight illuminance (UDI). In this study, consideration was 

given to the horizontal illuminance on a work plane located inside two South oriented test 

enclosures. STPV glazing S5 was fitted to one of the enclosures and single clear glazing S4 was 

fitted to the other. Three days were considered for measurement and performance evaluation 

namely a sunny, an intermittently cloudy and a cloudy day. UDI levels as well as daylight glare 

index (DGI) and daylight factor (DF) (which is defined as the ratio of horizontal inside illuminance 

to horizontal outside illuminance), were considered. 
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6.2 Glare and Daylight Factor Evaluation 

6.2.1 Glare Index 

 

Table 6.1 lists the different values of comfortable daylight illuminance noted in previous 

publications. Vine et al. [114] considers daylight illuminance values between 840 lux – 2416 lux 

as comfortable, while Roache et al. [115][116] go for lower range of values that is between 700 

lux – 1800 lux. According to Reinhart [117], comfortable daylight illuminance is achieved once 

the illuminance exceeds 150 lux. The authors Nabil and Mardaljevic [118] and Berardi and 

Anaraki [119] have agreed on the same range of values of considering a comfortable daylight 

illuminance that is 100 to 2000 lux. However for CIBSE [110] the comfortable daylight 

illuminance is at 500 lux. Figure 6.1 shows these ranges by graph. The illuminance related to the 

literature with the assigned comfort zone. The difference in these values is due to the fact that 

comfort ranges may differ upon changes in sun position, sky condition and individual position 

with respect to the source of illumination such as a window or a glazing façade. However, the 

useful daylight illuminance (UDI) is between 100 lux to 2000 lux [120]. An illuminance above 

2000 lux may lead to discomfort and glare due to the oversupply of natural light. The daylight 

glare discomfort can be evaluated using the daylight glare index (DGI) whereby a value below 100 

lux is insufficient, and another source of light is required to reach the UDI level. 
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Figure 6.1 Comfortable daylight illuminance 

 

Table 6.1 Ranges of comfortable daylight illuminance 

Author (year) Comfortable Daylight Illuminance (lux) 

Vine et al.[114] 840 lux – 2416 lux 

Roache et al.[115][116] 700 lux – 1800 lux 

Reinhart [117] Greater than or equal 150 lux 

Nabil and Mardaljevic [118] 100 lux – 2000 lux 

Berardi and Anaraki [119] 100 lux – 2000 lux 

CIBSE [110] 500 lux 
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Different methods are presented for evaluating the daylight glare index (DGI) as shown in 

equations 6.1 to 6.4. 

- British glare index [121]  

𝐵𝐺𝐼 = 10 log10 0.478 ∑
𝐿𝑠

1.6𝜔𝑠
0.8

𝐿𝑏𝑃1.6
𝑛
𝑖=1                                                                                     (6.1) 

Where, 𝐿𝑠 is the source illuminance in (foot-lamberts), 𝐿𝑏is the background illuminance (foot-

lamberts), 𝜔 is the apparent area of source (steradians) and P is a function of the angle between 

the direction of the light source and the observer's direction of view. 

- The Cornell glare equation [122] 

𝐺𝐼 =  10 log10 0.478 ∑
𝐿𝑠

1.6Ω0.8

𝐿𝑏+0.07𝜔𝑠
0.5𝐿𝑠

𝑛
𝑖=1                                                                    (6.2) 

Where, 𝐿𝑠, 𝐿𝑏, and 𝜔 are is in previous equation 6.1 and Ω is the modified solid angular subtense 

of the source 

- CIE glare index [123] 

𝐶𝐺𝐼 = 10 log10 0.1.
[1+𝐸𝑑/500]

𝐸𝑑+𝐸𝑖
∑

𝐿𝑠
2𝜔𝑜

𝑃2
𝑛
𝑖=1                                                                   (6.3) 

Where, 𝐿𝑠 is the source illuminance in (cd/m2), 𝜔𝑜 is the solid angle of source in steradian, P is 

Guth position index, Ed is direct vertical illuminance at eye due to all sources in (lux) and Ei is the 

indirect vertical illuminance at eye due to inter-reflected light in (lux) 

- Modified version by Chauvel et al. [124]  

𝐺𝐼 =  10 log10 0.478 ∑
𝐿𝑠

1.6Ω0.8

𝐿𝑏+0.07𝜔0.5𝐿𝑠

𝑛
𝑖=1                                                                     (6.4) 
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Where, Where, 𝐿𝑠, 𝐿𝑏, 𝜔 and Ω are is in previous equation 6.2 

Among the abovementioned methods, the CIE glare index method is applicable for artificial or 

uniform light sources, so it cannot be used in our case. The other methods have complicated 

measurements for physical and geometrical parameters. 

A daylight glare index evaluation equation was developed by Nazzal [125] and is presented in 

equation 6.5. This equation was formulated for evaluating DGI in daylight applications. It also 

takes into consideration the observation position and has simpler definitions for geometrical 

parameters. In addition, the equation considers the adaptation luminance which provides the 

contribution of the immediate surrounding luminance of the light source, which is recognized to 

play a key role on the observer’s eye adaptation level. 

- Daylight Glare Index (DGI)  

𝐷𝐺𝐼 =  10log10 0.478 ∑
𝐿𝑒𝑥𝑡

1.6 Ω𝑠
0.8

𝐿𝑎𝑑𝑝+0.07𝜔0.5𝐿𝑤𝑖𝑛

𝑛
𝑖=1                                                            (6.5) 

Where, Lext is the exterior luminance level for the outdoor source of light which includes direct 

sunlight, reflected light from the ground, diffuse skylight as well as other external surfaces (cd/m
2

), 

Ladp as the adaptation luminance level from the surroundings such as internal surface reflections 

(cd/m
2

), Lwin as window luminance level (cd/m
2

), 𝜔 is the solid angle subtended by the window and 

Ωs angle subtended by the light glare source. 

Glazing luminance level (𝐿𝑤𝑖𝑛), exterior luminance level (𝐿𝑒𝑥𝑡) and adaptation luminance level 

(𝐿𝑎𝑑𝑝) can be calculated as in equations (6.6) to (6.8). 

𝐿𝑤𝑖𝑛 =
𝐸𝑣,𝑤𝑖𝑛

2𝜋𝜑
                                                                                                                                         (6.6) 



135 
 

𝐿𝑒𝑥𝑡 = 𝐿𝑛𝑒𝑎𝑔 =
𝐸𝑣,𝑛𝑒𝑎𝑔

2(𝜋−1)
                                                                                                                                         (6.7) 

𝐿𝑎𝑑𝑝 =
𝐸𝑣,𝑎𝑑𝑝

𝜋
                                                                                                                                  (6.8)        

Where Ev,win, Ev,neag and Ev,adp are window vertical illuminance (lux), near glazing vertical 

illuminance (lux) and adaptation vertical illuminance (lux) and are measured using light sensors. 

Solid angles subtended by the glare source (Ω) and solid angle subtended by the window (𝜔) are 

calculated through the following equations 

Ω = 2𝜋𝜑′                                                                                                                        (6.9) 

𝜔 =
[𝑎𝑏 cos(tan−1 𝑋) cos(tan−1 𝑌)]

𝑑2                                                                                          (6.10) 

Where (𝜑) is the configuration coefficient and it was calculated using the dimensions of the glazing 

through the following series of equations presented below [126]. 

𝜑′ =
𝐴 tan−1 𝐵+𝐶 tan−1 𝐷

𝜋
                                                                                               (6.11) 

𝐴 =
𝑋

√1+𝑋2
                                                                                                                  (6.12) 

𝐵 =
𝑌

√1+𝑋2
                                                                                                                                 (6.13) 

𝐶 =
𝑌

√1+𝑌2
                                                         (6.14) 

𝐷 =
𝑋

√1+𝑌2
                                                                                                                                  (6.15) 

Where dimensionless parameters 𝑋 and 𝑌 are as below 

𝑋 =
𝑎

2𝑑
                                                                                                                                      (6.16) 
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𝑌 =
𝑏

2𝑑
                                                                                                                                      (6.17) 

Where, 𝑎 is the width of the glazing, 𝑏 is the height of glazing and d is the direct distance from 

point of observation to the centre of glazing. 

The level of light related to the DGI figure is shown in Table 5.2. An average value of 22 is 

considered as acceptable according to [127] and [128]. 

Table 6.2 Ranges of comfortable daylight illuminance 

 

Level of light DGI 

Just perceptible 16 

Perceptible 18 

Just acceptable 20 

Acceptable 22 

Just uncomfortable 24 

Uncomfortable 26 

Just intolerable 28 

 

 

6.2.2 Daylight factor 

 

Daylight factor (DF) is defined as the ratio of horizontal inside illuminance to the horizontal 

outside illuminance. It can be evaluated as a percentage through the equation presented below 

𝐷𝐹 =
𝐿𝑖

𝐿𝑜
× 100                                                                                                     (6.18) 
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Where, Li is the horizontal inside illuminance in (lux) and Lo is the outside illuminance in (lux) 

and they are measured using daylight sensors. 

6.3 Daylight Illuminance Measurement 

 

In order to evaluate the DGI and DF, an experimental setup was installed. Figure 6.2 shows the 

cooler/warmer test enclosures that were oriented to the south direction and holding clear glazing 

S4 (to the left) and STPV glazing S5 (to the right). Figure 6.3 shows the inside vertical daylight 

sensor. Details of the experimental setup are presented in Chapter 3 – section 3.2. 

 

Figure 6.2 Test enclosures holding glazing S4 and S5 
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Figure 6.3 Test enclosure holding glazing S4 with light sensor shown inside 

 

Four light sensors were fitted to each of the test enclosures. One sensor was fitted one cm away 

from the glazing in order to measure the vertical illuminance near the glazing (𝐸𝑣,𝑛𝑒𝑎𝑔). Another 

sensor was installed facing the center of the glazing at a distance 18 cm away from the glazing 

with a restricted field of view using a pyramid shaped black shield in order to measure the window 

vertical illuminance (𝐸𝑣,𝑤𝑖𝑛). The black pyramid shield was used to prevent any effect of light 

reflection coming from walls. A third sensor was installed just below the pyramid cone in order to 

measure the adaptation illuminance (𝐸𝑣,𝑎𝑑𝑝). The location and installation of the three sensors 

mentioned above  were set based on A. Nazzal’s recommendations [125]. A fourth sensor was 

fitted 12 cm away from the front wall at a height of 20 cm from the ground to measure the 

horizontal illuminance (𝐸𝐻). Figure 6.4 shows a schematic diagram of the experiment with sensors 

locations and Figure 6.5 clarifies the dimensions of the glazing and distance from measurement 

point. 
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Figure 6.4 Schematic diagram of the experiment used for determining DGI 

 

 

Figure 6.5 Schematic drawing showing the dimensions of the glazing and the distance from 

measurement point 
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Dimensions 𝑎′, 𝑏′ and 𝑑′ of the restriction shield are shown in Figure 6.4 and Figure 6.6 and were 

selected based on equation 6.19. 

𝑎

𝑎′
=

𝑏

𝑏′
=

𝑑

𝑑′
                                                                                                               (6.19) 

Where 𝑎′ is the width of the pyramid, 𝑏′ is the height of the pyramid and 𝑑′ is the distance between 

Ev,win sensor the opening of the pyramid as shown in Figure 6.6 [123]. 

 

 

Figure 6.6 Dimensions of the pyramid-shape restriction shield  

 

6.4 Results 

6.4.1 Daylight Glare Index for South facing facade 

 

The daylight glare index of the glazing under test were calculated for each of a sunny, an 

intermittently cloudy and an overcast day using equation 6.5. 
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Figure 6.7 illustrates the measured illuminance for the three differently positioned illuminance 

sensors as described in the previous section for the STPV and clear glazing respectively on a sunny 

day.  The luminance is calculated from the equations 6.6 to 6.8 using the measured values and then 

the daylight glare index is calculated and shown in Figure 6.8. It is clear that the STPV is able to 

provide acceptable glare levels ranging between 18 and 23 over the time slot of interest between 

08:00 and 17:00. On the other hand, the clear glazing provides high glare levels which are 

considered as unacceptable and uncomfortable over the whole time slot. In hot countries this 

situation is the norm over the year and for that, a usage of associated technologies, for example 

shading, might be utilized to decrease these levels. In Façade buildings where the glazing is used 

on the entire front, the glare might increase even more. However, the STPV will keep it within the 

comfortable zones. Consequently, STPV glazing is very promising for Façades in hot countries 

where the light is much more intense and for a longer duration of time. 

Similarly,  

Figure 6.9 illustrates the measured illuminance on an intermittent cloudy day and the daylight glare 

index was calculated and shown in Figure 6.10. Again, it is clear that the STPV is the superior 

solution when it is compared with the clear glazing. It provides the comfortable glare levels over 

89% of the time slot in which we are interested. That means, this solution is passively suitable for 

office enclosures. The clear glazing still provides uncomfortable levels even with intermittently 

cloudy weather. As far as Facade is concerned, the STPV in hot countries works more effectively. 

However, the transparency should be considered to obtain the desirable levels. 

The same is repeated for the data obtained on a cloudy day and the measured illuminance is shown 

in Figure 6.11. The daylight glare index was calculated and shown in Figure 6.12. The clear glazing 
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is still struggling to provide the acceptable levels while the STPV glazing, again, provides an 

average of 18 DGI which is just acceptable and can be considered in the acceptable zone. 

04:00 08:00 12:00 16:00 20:00
0

4000

8000

12000

16000

20000

04:00 08:00 12:00 16:00 20:00
0

20000

40000

60000

80000

04:00 08:00 12:00 16:00 20:00
0

500

1000

1500

2000

2500

3000

04:00 08:00 12:00 16:00 20:00
0

2000

4000

6000

8000

10000

Il
lu

m
in

a
n

c
e

 (
lu

x
)

Time (hh:mm)

 Ev,neag

Il
lu

m
in

a
n

c
e

 (
lu

x
)

Time (hh:mm)

 Ev,neag

Il
lu

m
in

a
n

c
e

 (
lu

x
)

Time (hh:mm)

 Ev,win

 Ev,adp
Il
lu

m
in

a
n

c
e

 (
lu

x
)

Time (hh:mm)

 Ev,win

 Ev,adp

 

  

a. Illuminance level for STPV S5 b. Illuminance level for clear glazing S4 

 

Figure 6.7 Sunny day Illuminance level for STPV S5 and clear glazing S4 
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Figure 6.8 DGI of clear glazing and STPV for a sunny day 
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a. Illuminance level for STPV S5 b. Illuminance level for clear glazing S4 

 

Figure 6.9 Intermittent cloudy day Illuminance level for STPV S5 and clear glazing S4 
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Figure 6.10 DGI of clear glazing and STPV for an intermittent cloudy day 
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a. Illuminance level for STPV S5 b. Illuminance level for clear glazing S4 

 

Figure 6.11 Cloudy day Illuminance level for STPV S5 and clear glazing S4 
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Figure 6.12 DGI of clear glazing and STPV for a cloudy day 

6.4.2 Daylight Glare Index for South-West facing façade 

 

The same experiment has been carried out for the same glazing but with a south-west-oriented 

enclosure. All measurements have been recorded over three distinct days to provide a 

comprehensive study. 

 

Figure 6.13 illustrates the measured illuminance on a sunny day while the daylight glare index is 

calculated and shown in Figure 6.14. It is clear that the STPV is able to provide less glare levels 

than the clear glazing ranging between 15 and 24 over the time slot of interest between 8:00 and 

17:00. These levels for short time are over the acceptable levels. On the other hand, the clear 

glazing provides high glare levels which are considered as unacceptable and uncomfortable over 

the whole time slot. Again, STPV glazing is very promising for Façades in hot countries where the 

light is much more and for long duration of time. 
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Similarly, Figure 6.15 illustrates the measured illuminance in an intermittent cloudy day and the 

daylight glare index was calculated and shown in Figure 6.16. Again, it is clear that the STPV is 

the superior solution when it is compared with the clear glazing. It provides the comfortable glare 

levels over 90% of the time slot of interest.  

The same is repeated for the data obtained on a cloudy day and the measured illuminance is shown 

in Figure 6.17. The daylight glare index was calculated and shown in Figure 6.18. The clear glazing 

succeeds to provide the acceptable levels while the STPV glazing provides an average of 17 DGI 

which is within the perceptible zone. 

04:00 08:00 12:00 16:00 20:00
0

5000

10000

15000

20000

04:00 08:00 12:00 16:00 20:00
0

10000

20000

30000

40000

50000

60000

70000

80000

04:00 08:00 12:00 16:00 20:00
0

500

1000

1500

2000

2500

04:00 08:00 12:00 16:00 20:00
0

1000

2000

3000

4000

5000

6000

7000

Il
lu

m
in

a
n

c
e

 (
lu

x
)

Time (hh:mm)

 Ev,neag

Il
lu

m
in

a
n

c
e

 (
lu

x
)

Time (hh:mm)

 Ev,neag

Il
lu

m
in

a
n

c
e

 (
lu

x
)

Time (hh:mm)

 Ev,win

 Ev,adp

Il
lu

m
in

a
n

c
e

 (
lu

x
)

Time (hh:mm)

 Ev,win

 Ev,adp

 

Figure 6.13 Sunny day Illuminance level for south-west-facing STPV S5 and clear glazing S4 

 

a. Illuminance level for STPV S5 b. Illuminance level for clear glazing S4 
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Figure 6.14 DGI of south-west facing clear glazing and STPV for a sunny day 
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Figure 6.15 Intermittent cloudy day Illuminance level for south-west-facing STPV S5 and clear 

glazing S4 
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Figure 6.16 DGI of south-west-facing clear glazing and STPV for an intermittent cloudy day 
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Figure 6.17 Cloudy day Illuminance level for south-west-facing STPV S5 and clear glazing S4 
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Figure 6.18 DGI of south-west-facing clear glazing and STPV for a cloudy day 

6.4.3 Daylight factor 

 

As stated in the equation 6.18, the daylight factor can be calculated using the measured horizontal 

illuminance of the interior and exterior sides of the glazing. Figure 6.19 indicates the daylight 

factor (DF) for the clear glazing and the STPV units. The value should be equal for any day as it 

referred to the material structure. A range of 2% to 5% DF is considered as usable daylight, while 

DF higher than 5% is considered as a fully daylight environment [129]. 

Figure 6.19 shows that the STPV can meet the zone of the usable daylight along the time slot of 

interest over the day. On the other hand, the clear glazing, S4, attains a result way above the 

targeted value reaching over 20% which means achieving an environment that is fully reliable on 

daylight. However, daylight glare index (DGI) results showed that the enclosure where clear 

glazing S4 was used is over lit and exposed and is considered as uncomfortable. As Façade in hot 

countries is a concern, the clear glazing would require other means of shading to reduce the DF 

while the STPV passively provides the acceptable range. Similarly, Figure 6.20 illustrates the 
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expected values for both clear and STPV glazing. The daylight factor for the STPV slightly 

exceeds 5% for a short period which is acceptable while the clear glazing shows higher values that 

are over lit as illustrated in DGI analysis in section 6.4.2. 
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Figure 6.19 Daylight Factor (DF) for south-facing clear glazing and STPV 
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Figure 6.20 Daylight Factor (DF) for south-west-facing clear glazing and STPV 

6.4.4 Advantages of using CdTe STPV glazing  

 

In addition to what has been found, that the STPV is a passive solution which contributes towards 

creating a comfortable environment, the STPV can also generate energy compared with the clear 

glazing and with the suspended particle devices which consume energy to react. In some cases 

where the glare or daylight is lower than the desirable values, artificial lighting might be used. If 

it is assumed that the CdTe glazing of 1 m2 is able to generate 240Wh per day, the artificial light 

to maintain 4% DF for 12h will be 720Wh if a 60W light bulb is used. Consequently, a greater 

area of CdTe is needed to cover the lighting needs and that would be achievable in Facades 

buildings. 
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6.5 Conclusion 

An outdoor experimental setup was installed to evaluate the daylight performance of a 35%-

transparency CdTe thin-film based STPV glazing and compare it to clear single glazing in two 

different orientations. Daylight performance was represented by daylight glare index (DGI) and 

daylight factor (DF).  

Results showed that CdTe thin-film based STPV glazing can be a good solution for daylight glare 

control if suitable transparency has been chosen. It provides glare reduction as it mitigates the high 

sunlight and brings it within the acceptable ranges. This property can be more beneficial in sunny 

and hot countries because glazing is exposed to high illuminance levels.  

In addition, results of daylight factor revealed that using STPV glazing leads internal illuminance 

to reach a usable daylight level for a large portion of the targeted time slot. For the periods when 

internal daylight is not sufficient, artificial lighting will be needed. However, power generation 

from the STPV glazing can compensate for lighting power consumption especially if glazing is of 

larger areas such as facades. 
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7 Chapter 7 Conclusions and Future 

Work 
 

This chapter aims to summarize the work explained throughout the thesis showing a 

background knowledge of the topic and the contribution of this work in the specified field of study. 

It also clearly shows the drawn-out findings as well as suggestions for future work. 

7.1 Contribution 

The study contributes to the body of knowledge of BIPV applications as it considers full 

performance analysis of using a PV glazing which little research has targeted. It shows a realistic 

outdoor thermal, energy and daylight performances for CdTe thin-film based PV glazing. In 
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thermal performance analysis, different experimental methods have been used and compared for 

evaluating the overall heat transfer coefficient (U-value. Also, the solar heat gain coefficient 

(SHGC) was calculated. Moreover, a practical net energy performance has been assessed through 

the analysis of air conditioning power consumption, artificial lighting power consumption and PV 

power generation. In addition, daylight performance of the semi-transparent CdTe PV glazing was 

analysed and quantified and this, to 1st author’s knowledge, has not been performed before. 

7.2 Findings 

The findings revealed by this study are highlighted below 

1. Small test enclosures were designed and implemented in order to evaluate the thermal, energy 

and daylight performances of semi-transparent CdTe thin-film based PV glazing of various 

transparencies and oriented towards South and South West orientations.  

2. Thermal performance of the STPV glazing under study was evaluated. It was concluded the 

CdTe STPV glazing can limit temperature rise inside the test enclosures better than conventional 

single glazing. However, the STPV glazing have higher inner surface temperature than 

conventional single glazing because of the absorbed heat that is used for power generation. Also, 

the calculations have shown that glazing with higher transparencies have lower U-values and 

SHGCs. The low U-values and SHGCs signifies that lower transparency CdTe STPV glazing have 

better insulation property than higher transparency ones. U-values were calculated using three 

different methods, namely, outdoor test enclosure, indoor test enclosure and outdoor heat flux 

sensor. Outdoor experiment is the one that reflects the real thermal behaviour throughout the day. 

While indoor experiment has the advantage of achieving steady state heat transfer in short time. 

Whereas using heat flux sensor is the one that gives the steadiest results. Nevertheless, it was also 
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concluded that the thermal parameters of CdTe STPV glazing are similar in South and South West 

Orientations. 

3. Energy performance of CdTe thin-film based STPV glazing of different transparencies was 

investigated under different weather conditions and in South and South West orientations. It was 

concluded that lower transparency STPV glazing generate higher power. Also, South oriented test 

enclosures consume more cooling power than south-west oriented ones. This is because at south 

orientation, the glazing is exposed to solar irradiance for longer time, thus more heat can be 

transferred into the test enclosures. The saving in cooling power can reach up to 61% compared to 

conventional single glazing. Nevertheless, net energy evaluation has shown that higher net energy 

saving can be achieved by using CdTe STPV glazing in cold weather conditions than in hot 

weather conditions. Compared to conventional clear glazing, the net energy saving can reach up 

to 8.5% in South and 19.2% in South West orientation. 

4. The study of daylight performance of the CdTe STPV glazing has revealed that using CdTe 

thin-film based STPV glazing offers the ability to control daylight glare to acceptable levels. 

Moreover, usable daylight level can be achieved using CdTe thin-film based STPV glazing for 

high percentage of the aimed time slot. The times when daylight is not sufficient, artificial lighting 

is required. The power consumption of artificial lighting can be compensated by the power 

generation of the STPV glazing if optimized STPV glazing transparency is selected and used in 

large areas. 

7.3 Future work 

The proposed thin-film based semi-transparent PV glazing was found to be effective in cooling 

load mitigation, net energy saving and daylight comfort. However, more work is necessary to be 

done for the comprehensive research to reach the end goal of having optimum PV glazing material 
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in BIPV applications, especially that the material investigated in this study is little targeted in 

research for such applications. Below is a list of future work that is proposed by the 1st author: 

1. The performance of CdTe STPV glazing has to be studied in different locations of different 

climatic conditions such as desert climate, Mediterranean climate and tropical climate to find the 

best location it can be used in.  

2. The effect of important factors on the performance of CdTe thin-film based STPV glazing can 

be studied. Such as window-to-wall ratio (WWR), soiling and PV glazing surface temperature  

3. Two- and three-dimensional model of finite heat transfer can be developed to compare with the 

experimental results for further results validation. 

4. Comprehensive thermo-optical dynamic model can be developed in order to simulate the 

thermal comfort level for such applications. 

5. Cost analysis, including capital cost and saving in running cost, is required for more realistic 

findings. 

6. Design modifications can be done on the studied CdTe thin-film based STPV such as being 

double glazing or air flow PV glazing. This helps in achieving the optimum design for maximum 

benefit of the PV material under study. 

7.4 Closure 

This study has presented a full performance analysis of a CdTe thin-film based semi-transparent 

PV glazing of different transparencies using outdoor experimental methods. The objectives that 

are presented at the beginning of the work has been fully covered and fulfilled. It is hoped that this 
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study would help in achieving the end goal of further reduction in global energy consumption and 

environmental pollution. 
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