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Abstract  Tidal Stream Turbines (TST) have the potential to 
become an important part of the sustainable energy mix. One of 
the main hurdles to commercialization is the reliability of the 
turbine components. Literature from the Offshore Wind sector 
has shown that the drive train and particularly the Pitch System 
(PS) are areas of frequent failures and downtime. The Tidal 
energy sector has much higher device reliability requirements 
than the wind industry because of the inaccessibility of the 
turbines. For Tidal energy to become commercially viable it is 
therefore crucial to make accurate reliability assessments to assist 
component design choices and to inform maintenance strategy. 
This paper presents a physics-based prognostics approach for the 
reliability assessment of Tidal Stream Turbines (TST) during 
operation. Measured tidal flow data is fed into a turbine 
hydrodynamic model to generate a synthetic loading regime which 
is then used in a Physics of Failure model to predict component 
Remaining Useful Life (RUL). The approach is demonstrated for 
the failure critical Pitch System (PS) bearing unit of a notional 
horizontal axis TST. It is anticipated that the approach developed 
here will enable device/project developers, technical consultants 
and third party certifiers to undertake robust reliability 
assessments both during turbine design and operational stages. 

Keywords  Tidal Turbines, Physics-based Prognostics, 
Reliability, Fatigue, RUL 

I. INTRODUCTION 

The potential of Tidal stream energy to be part of a 
diversified carbon free generation mix is recognised globally. 
However, one of the central challenges facing the industry is 
device reliability [1]. Both the European Commission and the 
United States Bureau of Ocean Energy Management have stated 
that ensuring the reliable operation of Tidal Stream Turbines 
(TST
viable. Improvements in component reliability and hence 
reductions in Operations & Maintenance (O&M) costs can be 
realised with the aid of Prognostics and Health Management 
(PHM) techniques. 

Physics based prognostic approaches use a physical model 
to describe the degradation behaviour of a component and 
incorporate measured data and usage conditions to determine the 
model parameters. These models are advantageous because they 
are intuitive and based on physical phenomena and are not 

computationally expensive [2]. However, they are highly 
component specific and care must be taken when using them 
because other failure driving mechanisms may inadvertently be 
neglected. Data driven approaches utilise historical sensor data 
to identify characteristics of degradation and predict future  
degradation trend. This approach requires a large quantity of 
sensor data that is difficult to come by in a nascent industry such 
as Tidal stream energy. 

The ocean current energy industry is currently in the pre-
commercial stage. Tidal barrages have been used for many years 
to extract energy from the vertical motion of the ocean, however 
they are less popular in modern day society because of their 
large impact on the local environment and their large capital 
costs [3]. TST have the potential to mitigate these issues by 
deploying out in the open ocean and having minimal impact on 

house the turbines). TST utilise the horizontal flow of ocean 
currents and convert this into electrical energy, with a power 
take off (PTO) arrangement akin to modern wind turbines. The 
appeal of tidal stream energy is partly because of the 

tides. The harmonic constituents of 
the tidal currents for a geographical location can be determined 
and quantified over millennia. This means that the resource is 
much more predictable than for wind energy and could 
potentially provide baseload power and displace traditional 
methods such as nuclear [4]. The main locations that have been 
earmarked for large scale tidal stream development are the 
Pentland Firth (United Kingdom), Bay of Fundy (Canada), 
Lombok Straights (Indonesia) and Alderney Race (France).  

This paper proposes a physics based prognostics approach 
for the reliability assessment of Tidal turbines during operation. 
A physics-based approach is beneficial as long term reliability 
predictions are more accurate than when using data driven 
techniques [2]. The lack of available historical sensor data also 
rules out data driven methods. The prognostics approach 
outlined here involves the continuous updating of a Physics of 
Failure (PoF) model with loading information. Tidal flow 
measurements from an Acoustic Doppler Current Profiler 
(ADCP) located at a site in the Pentland Firth, Scotland (Fig. 1) 
are used to generate representative daily flow profiles for the 
turbine hydrodynamic model. The hydrodynamic model then 
generates the loading profiles experienced by the turbine for 



 

 

each day. The PoF model calculates the bearing RUL based on 
the loading history experienced (inclusive of all days up to the 
current point in time). This approach enables the RUL estimate 
to be continuously refined as more data is fed into the model. 
The approach is demonstrated for the failure critical PS bearing 
unit. 

 

Fig. 1. Pentland Firth, Scotland 

II. THEORETICAL BACKGROUND 

A. Tidal Theory 

The tides are a result of the movement of the Moon and Sun. 
Every 24 hours and 50 minutes the Moon orbits the Earth. This 
creates the largest gravitational force experienced by the Earth 
and results in the largest tidal (harmonic) constituent: the 
principal lunar semi diurnal (M2) [5]. One period of the M2 is 
approximately 12 hours and 25 minutes which results in a high 
and a low tide. The principal solar semidiurnal constituent (S2) 
is a result of the position of the Sun relative to the Moon; the 
tidal height is increased (spring tide) when the two bodies 
gravitational forces are parallel and then decreased (neap tide) 
when the forces are perpendicular. This means that the life a tidal 
turbine can be approximated using a two week flow profile 
(representing one spring and one neap cycle [6]). The tidal flow 
regime is dictated largely by gravity along with seabed 
bathymetry and weather conditions. Thus, flow profiles tend to 
be site specific and hence turbine operating characteristics from 
one site may be very different to those at another site.   

The focus of this research is on the impact of the current flow 
and as such wave influence is neglected. As well as the velocity 
of the flow, turbulence is a key contributor to the tidal regime. 
Turbulent eddies are caused by the interaction of the flow with 
the seabed. The closer to the seabed the more retardation of the 
flow occurs. As the flow is slowed by the bed, higher up in the 
water column faster flowing water spills over the slower water 
resulting in a velocity gradient. A turbulent flow is in a 
continuously fluctuating state and thus in under to quantify it 
statistical descriptors are required [5]. The turbulence intensity 
(TI) is a commonly used descriptor: 

Where u is the mean velocity for a stationary time series of 
velocity measurements and  is the standard deviation of the 
measurements. The mean of a varying signal can be 
approximated with a variety of approaches (linear detrending 
was employed in this work as it is good at maintaining the 
integrity of the signal [7]). 

B. Hydrodynamic Modelling of Tidal Turbines 

The Tidal Turbine in this research is notional however it is 
based on typical early commercial turbines. The turbine has a 
drive train architecture akin to modern wind turbines which 
includes an electro-mechanical pitch system (PS), a permanent 
magnet generator (PMG), small epicyclic gearbox and a power 
converter. The rotor diameter is 18m and the turbine is rated at 
1.5MW at a flow speed of 3m/s. 

A Hydrodynamic model of the turbine is used to generate 
synthetic loading data. 
modelling environment. It is a Blade Element Momentum 
Theory (BEMT) software that performs time domain 
hydrodynamic loading calculations to provide information to aid 
turbine design. The software has been through an extensive 
validation regime, details of which can be found here [8]. The 
comparison between the simulated and measured flapwise 
(overturning) bending moment at the blade root for the 
ALSTOM Deepen turbine can be seen in Fig. 2. There is a good 
agreement between the modelled moment  and the strain 
gauge measurements. This provides a degree of certainty when 
using the hydrodynamic model to make predictions about 
turbine loading and performance. However, it is necessary to 
perform this validation exercise for each new turbine and 
location. 

 

Fig. 2. Flapwise bending moment (My) vs. mean velocity for simulated (red) 
and measured (blue) data. Upward triangles are max, dots are mean and 
downward triangles are min (from [8]) 

C. Physics of Failure for Tidal Turbines 

The PS is deemed to be one of the most failure critical 
components of horizontal axis turbines [9],[10]. One of the 



 

 

main parts of the PS is the bearing unit which exists at the root 
of each blade. Many studies have found that rolling contact 
fatigue at the bearing raceway is often the dominant failure 
mechanism in bearing units [11]. 

 
There are numerous approaches used to calculate bearing 

fatigue life. The ISO Standard 281 is widely regarded as one of 
the most robust [12]. This approach is based on the Lundberg-
Palmgren theory that estimates rolling contact fatigue life [13]. 
The Lundberg-Palmgren model is associated with fatigue of the 
raceway surfaces and not the rolling elements (other methods 
can be used for this). Bearing life  is determined as a 
function of revolutions of the rotating raceway. The L10 
describes a 10% probability of failure (or 90% probability of 
survival) for a bearing unit in terms of millions of revolutions 
of the rotating raceway (or in terms of hours of operation). In 
TST applications (as well as wind turbines) the bearing motion 
is oscillatory and the life model must be extended to 
accommodate this. The L10 life equation as per the ISO 281 
method is: 

Where the exponent p is 3 for ball bearings and 10/3 for 
roller bearings. This exponent represents the slope of the fatigue 
curve and is dependent on material [14].   and  are life 
modification and ISO factors respectively,  is the equivalent 
dynamic load on the bearing and  is the basic dynamic axial 
load rating of the bearing (typically given in the manufacturers 
catalogue). For thrust roller bearings as used in this application 

 can be calculated: 

 Where  is a material factor based on CVD 52100 steel 

angle in degrees, Z is the number of rolling elements per row 
and D is the bearing outside diameter in millimeters.  

 Where  is the equivalent oscillation amplitude (details of 
this calculation can be found in [15]). The important loadings 
that affect the bearing fatigue life are the overturning moment 
(flapwise), the axial force and the radial force. For a given load 
case, it is necessary to calculate the equivalent loads that are 
acting on the bearing unit. The equivalent load is the constant 
load that is equivalent to the time varying load. Based on the 
methodology in the National Renewable Energy Laboratory 
(NREL) Wind turbine Design Guideline for Pitch Rolling 
Bearings [12], the dynamic equivalent axial load for each load 
case ( ) is calculated using: 

Where  is the pitch diameter in millimeters. The equivalent 
constant load for each of the time varying forces and moments 
is approximated with the root mean square (RMS) value as per 
the NREL design guideline. By accounting for the duty cycle 
( ), the oscillation speed ( ) and the oscillation amplitude ( ) 
each load case can be combined over each tidal cycle: 

The oscillation amplitude ( ) for each load case is calculated 
via differencing of the time series of the simulated PS degree 
movement. The differencing method determines the relative 
movement from one time step to another. The mean value of 
oscillation amplitude ( ) is calculated for each stationary 10-
minute window.  The oscillation speed ( ) is then calculated: 

D. Remaining Useful Life & Reliability Metrics 

The fatigue life (L10 life) of the bearing unit is calculated 
after two flood and two ebb tide cycles on a continuous basis. 
The L10 is then used to calculate the RUL of the bearing: 

 Where  is the total PS operating time up to the current 
time t. As more data is input into the life model, the RUL 
estimate becomes more refined and more representative. The 
L10 value, representing the time at which the PS bearing has a 
90% chance of being fully being operational can be converted 
into a probabilistic reliability function for the purposes of 
reliability assessment.  

The Weibull distribution is typically used to describe the 
failure behavior of components due to its flexibility. With an 
estimation of the dimensionless shape parameter  the Weibull 
distribution can be fully specified based on the calculated L10 
value. The cumulative distribution function (CDF) or 

given as: 

Where x is failure time in hours. The life parameter 
represents the time at which there is a 63.2% chance of failure. 
Assuming a  parameter value of 1.5 [16]  a straight line with 
gradient  can be plotted on Weibull probability paper and used 

63.2% ordinate point to the slope and then a vertical line down 
onship between 

and can be seen in Fig. 3. 



 

 

 
Fig. 3. Relationship between Weibull shape and life parameters. Red dotted 
line highlights  value associated with  

III. PROGNOSTICS CONCEPT 

Prognostics predicts the future damage or degradation and 
remaining useful life (RUL) based on measured data. Typically, 
the data comes from sensors that are measuring the damage 
criteria on board the turbine. This can be a direct measurement 
(such as capacitance levels in a battery) or indirect measurement 
(such as particle counters on a gearbox as a measure of gear 
wear).  This sensor data can then be fed into a physical 
degradation model that relates the failure driver to some metric 
of usage e.g. time or cycles of operation. If no physical model 
exists and there is enough applicable historical data then 
statistical approaches can be used to learn this failure 
time/failure driver relationship. Given that the TST industry is 
currently in its nascent stage and there are few devices in the 
water, operational data is in short supply. However, this can be 
overcome by using a hydrodynamic model of the turbine to 
generate synthetic operational data. This synthetic data can then 
be run through Physics of Failure (PoF) models  in this case the 
bearing L10 model. In the future, as operational turbine sensor 
data becomes available, this can be incorporated into the process 
to calibrate the hydrodynamic model enabling more accurate 
RUL estimations. Calibration of the hydrodynamic model will 
also enable alterations to be made in a virtual environment (e.g. 
component design changes) and their effects on reliability 
assessed.  After a long enough period (approx. 2 years) when 
sufficient operational data has accumulated, the synthetic data 
could be disregarded.  

 
Fig. 4. Prognostics Methodology. Dashed Box highlights extension to current 
the model 

The prognostics approach outlined in this research is suitable 
for use during turbine operation. The measured flow data is 
collected from an ADCP or equivalent measuring device located 
upstream of the turbine (to avoid interference from the turbine 
wake). This data is processed to generate tidal flow profiles that 

describe the velocity and turbulence. Hydrodynamic simulations 
are then run using the flow profiles. The simulated loadings on 
the component of interest are then input to a PoF model. After a 
period of two ebb and two flood tides (approx. 24 hours) the load 
cases are updated. This occurs repeatedly every 24 hours. The 
choice of 24 hours as the updating period is a trade-off between 
the accuracy of the load cases and the simulation run time. This 
approach can be used for different components and different 
failure mechanisms. Turbine sensor data (e.g. direct readings 
from the turbine rather than simulated) can be used to calibrate 
the hydrodynamic model as data becomes available. Rather than 
using the turbine sensor data directly in the PoF model it is 
beneficial to use the data for calibration such that the 
hydrodynamic model accuracy can be improved. If the 
hydrodynamic model can be calibrated to closely mirror the 
performance of the physical asset, then it can be used as a Digital 
Twin, enabling alterations such as component design changes to 
be made in a virtual environment.    

IV. PITCH SYSTEM BEARING CASE STUDY 

 The prognostics concept is now demonstrated for the Pitch 
System bearing unit of a notional 1.5MW Tidal turbine. The 
same prognostics process can be followed for other components 
and failure mechanisms. 

A. Tidal Flow Profiles 

The first step in the approach involves the creation of 
representative flow profiles from the current flow measurements 
taken at the turbine site. The data is split into flood and ebb tides 
because the of the difference in turbulence intensity (TI) for each 
flow direction. The data is further split into 10-minute 
ensembles as this satisfies the condition of stationarity which 
must be applied when performing turbulence analysis [5]. The 
streamwise velocity is determined for each ensemble. The 
variation in the streamwise velocity over a two-week tidal cycle 
can be seen in Fig. 5. 

 
Fig. 5. Streamwise velocity variation for one spring and neap tidal cycle 

The TI should be calculated for each 10minute ensemble 
however due to limitations in the data set average values of TI 
for Ebb (9%) and Flood (12%) tides are taken from a nearby site 
in the Pentland Firth [7]. 

B. Load Cases 

Having extracted the necessary parameters from the tidal flow 
measurement data, the load cases can be generated. The load 
cases are updated after each 24-hour period (two flood and two 
ebb cycles).  



 

 

 

Fig. 6. Streamwise velocity profiles for Ebb and Flood tidal cycles after 4 days  

An example load case table is demonstrated in Table I. In reality 
the TI% would vary at different flow velocities however an 
average figure for each tidal cycle is used here. The Duty Cycle 
is another important parameter and represents the amount of 
time spent at each flow velocity. 

TABLE I.  LOAD CASES FOR FLOOD & EBB TIDES AFTER TWO DAYS 
OPERATION 

Streamwise hub 
height velocity m/s 

Tide TI% Duty Cycle% 

3.06 Flood 12 21.8 

3.18 Flood 12 20.0 

3.29 Flood 12 14.5 

3.75 Flood 12 1.8 

3.86 Flood 12 5.5 

3.05 Ebb 9 9.1 

3.14 Ebb 9 16.4 

C. Hydrodynamic Simulations 

The radial and axial forces and overturning moments are then 
resolved from the simulated root bending moments and forces 
for each load case. The overturning moment forces are the 
largest in magnitude and hence are the biggest contributors to 
the dynamic equivalent load that the bearing experiences (and 
thus the L10 value). 

 
Fig. 7. Relationship between the overturning moment (My), pitch angle, pitch 
angular distance travelled and streamwise velocity.  

The forces experienced by the bearing are affected by the 
operation of the PS controller as well as the tidal flow 
characteristics. As the turbine is rated at 1.5MW the controller 
comes into operation at a certain flow velocity to feather the 
blades, shed power and maintain the turbine power output at 
rated. Fig. 7 demonstrates the simulated operation of the PS 
controller across a range of streamwise velocities (with TI 
neglected). The largest overturning moments occur at lower 
flow velocities. This is because the PS controller causes the 
blades to pitch by a larger amount at higher flow velocities (to 
shed increasing amounts of power) which has the effect of 
reducing the moments experienced by the blades.  

D. Physics of Failure 

The bearing design parameters used in the bearing life model 
are listed in Table II. The hypothetical bearing is of the tapered 
roller variety. The bearing design is based on that of a prominent 
manufacturers specification as found in [17] and is suitable for 
a turbine with 18m rotor diameter. One of the most influential 
bearing design parameters for fatigue life is the pitch diameter 

. Increasing the pitch diameter has a direct reduction on the 
magnitude of the overturning moment. 

TABLE II.  ROLLER BEARING DESIGN PARAMETERS 

Design Parameters ID Value 

Number of individual bearings Z 31 

Diameter of individual bearings dw 45mm 

Bearing contact angle alpha 45 

Pitch diameter dp 849mm 

Bearing Fatigue limit pu 800kN 

Axial Load Rating Ca 5.39MN 

 

E. Remaining Useful Life & Reliability Metrics 

The L10 life of the bearing is continuously updated mon a daily 
basis across the two-week tidal cycle as can be seen in Fig. 8. 
The estimates become more refined as data is included in the 
model. The variation in the bearing pitch diameter  has been 
investigated holding all other bearing design parameters 
constant. This parameter is one of the most sensitive in the 
model and has a large effect on the overturning moment. A 
larger pitch diameter results in a larger bearing L10 life.  As can 
be seen in Fig. 7 the largest overturning moments are 
experienced around the rated flow region. As the initial  
tidal flows are mainly concentrated around this region and 
because the overturning moment is the largest contributor to the 
fatigue life, the L10 estimate is low. 
added to the model the tidal profiles are not as concentrated 
around the rated flow region and as such the PS operates more 
to feather the blades and reduce the overturning moments. 



 

 

 
Fig. 8. Fatigue life estimate over the two-week tidal cycle for roller bearings 
with different pitch diameter  

Increasing the pitch diameter by 13% from 750mm to 
850mm has the effect of increasing the L10 life by approx. 43%. 
Increasing from 850mm to 890mm (4.7%) increases the L10 life 
by 11%.  

Reliability metrics such as the cumulative distribution 
function (CDF) which demonstrates the probability of failure 
can also be calculated. Translating the L10 into a reliability 
metric such as the CDF allows for the calculation of other 
reliability metrics such as failure rates which can then be used to 
inform design and maintenance strategy. As the L10 is specific 
to bearings, it is important to convert to a component agnostic 
metric such as the CDF to enable comparison with other 
components.  

Table III shows the L10 values and the equivalent characteristic 
life values ( ) after each  operation over the course of the 
two-week tidal cycle. 

TABLE III.  RELIABILITY METRICS FOR BEARING  = 850MM 

 L10 hrs  hrs 

Day 1 63,046 281,667 

Day 2 83,042 371,009 

Day 3 80,112 357,919 

Day 4 82,264 367,539 

Day 5 93,509 417,782 

Day 6 97,335 434,880 

Day 7 100,108 447,266 

Day 8 102,126 457,809 

Day 9 104,140 466,837 

Day 10 104,795 469,774 

Day 11 103,055 461,974 

Day 12 101,455 454,801 

Day 13 100,786 451,802 

Day 14 100,108 448,763 

 
The probability of failure estimate for the bearing unit during 
the first week of operation can be seen in Fig. 9. The refinement 
of the estimation is evident. 

 
Fig. 9. Weibull failure probability function for the Pitch System bearing unit 
after over the first week of operation ( =1.5, =850mm) 

F. Calibration with sensor data 

As tidal turbine development proceeds and more devices 
become operational it is envisaged that turbine sensor data will 
become available and can then be incorporated into the 
prognostic methodology. Blade strain gauge data and PS sensor 
data can be used to calibrate the hydrodynamics model so that 
the performance of the model closely resembles that of the 
actual turbine, c cceptable 
calibration to take place, a minimum of 1 tidal cycle (two-
weeks) operating data would be required.  

V. DISCUSSION 

The bearing life and reliability are sensitive to the tidal 
flow characteristics, the design parameters and the operation of 
the pitch system. The controller set point dictates at what flow 
velocity the pitch system operates and this directly influences 
the L10 life of the bearing. At regions close to the rated flow 
(i.e. near to the controller set point), the PS does not operate as 
much as when the flow velocity is larger. Therefore, the 
magnitude of the influential overturning moment  is only 
slightly reduced when the flow velocity is near rated.  When the 
flow increases to approx. 3.2m/s (8% above rated) the PS is 
operating continuously and as such the magnitude of  is 
reduced.  

The effect of changing the pitch diameter  has also 
been explored. A larger  has the effect of increasing the L10 
life.  This is because an increased bearing diameter results in a 
greater distribution of the forces acting on the bearing (rather 
than a higher concentration in a smaller area). A 43% increase 
in bearing fatigue life can be achieved by increasing the pitch 
diameter from 750mm to 850mm. However, the effect of this 
design change on other components such as the blades must be 
considered. A larger pitch diameter would mean a larger 
diameter blade which would likely have a higher failure rate 
than a smaller diameter blade. It is important when conducting 



 

 

reliability assessments such as this to not neglect other 
components and failure mechanisms. 

VI. CONCLUSIONS & FURTHER WORK 

This paper has demonstrated a physics-based 
prognostics approach for the RUL estimation for the fatigue life 
of a Tidal Stream Turbine Pitch System bearing unit. Being a 
failure critical area and given a lack of operational data and very 
high reliability requirements, it is important for tidal stream 
turbine developers to be able to accurately quantify reliability 
and make informed RUL estimates.  

The approach demonstrated here allows for a 
refinement of the life estimate of the component on a 
continuous basis, in keeping with typical prognostics methods. 
A continuous updating procedure is proposed that re-calculates 
the bearing life based on new loading information. This enables 
near real-time estimates of the RUL to be made. The method 
also demonstrates converting the L10 life metric into a 
component agnostic reliability metric such as the cumulative 
distribution function.  This enables direct comparison between 
different components which is important for a nascent industry 
such as tidal energy in which turbine development is still going 
through iterative design.  

Reliability has many drivers and although this paper 
has investigated one failure mechanism for one specific 
component, it is anticipated that more mechanisms can be 
incorporated and further failure critical components assessed. 
Also, the incorporation of operational turbine sensor data in the 
future will enable a calibration of the hydrodynamic model and 
more certainty in the life estimations. This extension would 
enable the operation of the hydrodynamic model as a Digital 
Twin in which the real turbine operation is mirrored in the 
virtual domain. This would be invaluable for the design process 
as the effect on the life of components by making design 
changes could be assessed in the virtual space.  

It is anticipated that tidal turbine developers will 
benefit from the physics based prognostics approach developed 
here that enables RUL estimates in the absence of degradation 
data. Also, third party verifiers can use this approach to assess 
the designs of turbines as part of the certification process. 
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