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Abstract 

With the rapid development of Artificial Intelligence come concerns about how machines 
will make moral decisions, and the major challenge of quantifying societal expectations 
about the ethical principles that should guide machine behavior. To address this challenge, 
we deployed the Moral Machine, an online experimental platform designed to explore the 
moral dilemmas faced by autonomous vehicles. This platform gathered 40 million 
decisions in ten languages from millions of people in 233 countries and territories. First, 
we summarize global moral preferences. Second, we document individual variations in 
preferences, based on respondents’ demographics. Third, we report cross-cultural ethical 
variation, and uncover three major clusters of countries. Fourth, we show that these 
differences correlate with modern institutions and deep cultural traits. We discuss how 
these preferences can contribute to developing global, socially acceptable principles for 
machine ethics. All data used in this article can be accessed and downloaded at 
https://goo.gl/JXRrBP. 

 
We are entering an age in which machines are not only tasked to promote well-being and minimize harm, 
but also to distribute the well-being they create, and the harm they cannot eliminate. Distributing well-
being and harm inevitably creates tradeoffs, whose resolution falls in the moral domain1,2,3. Think of an 
autonomous vehicle (AV) that is about to crash, and cannot find a trajectory that would save everyone. 
Should it swerve onto one jaywalking teenager to spare its three elderly passengers? Even in the more 
common instances in which harm is not inevitable, but just possible, AVs will need to decide how to 
divvy up the risk of harm between the different stakeholders on the road. Car manufacturers and 
policymakers are currently struggling with these moral dilemmas, in large part because they cannot be 
solved by any simple normative ethical principles like Asimov's laws of robotics4.  
 
Asimov's laws were not designed to solve the problem of universal machine ethics, and they were not 
even designed to let machines distribute harm between humans. They were a narrative device whose goal 
was to generate good stories, by showcasing how challenging it is to create moral machines with a dozen 
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lines of code. And yet, we do not have the luxury to give up on creating moral machines5,6,7,8. AVs will 
cruise our roads soon, necessitating agreement on the principles that should apply when, inevitably, life-
threatening dilemmas emerge. The frequency at which these dilemma will emerge is extremely hard to 
estimate, just as it is extremely hard to estimate the rate at which human drivers find themselves in 
comparable situations. Human drivers who die in crashes cannot report whether they were faced with a 
dilemma; and human drivers who survive a crash may not have realized that they were in a dilemma 
situation. Note though that ethical guidelines for AV choices in dilemma situations do not depend on the 
frequency of these situations. Whether these cases are rare, very rare, or extremely rare, we need to agree 
beforehand on how they should be solved. 
 
The keyword here is “we”. As emphasized by former U.S. president Barack Obama9, consensus in this 
matter is going to be important. Decisions about the ethical principles that will guide AVs cannot be left 
to solely to either the engineers or the ethicists. For consumers to switch from traditional human-driven 
cars to AVs, and for the wider public to accept the proliferation of AI-driven vehicles on their roads, both 
groups will need to understand the origins of the ethical principles programmed into these vehicles10. In 
other words, even if ethicists were to agree on how AVs should solve moral dilemmas, their work would 
be useless if citizens were to disagree with their solution, and thus opt out of the future that AVs promise 
in lieu of the status quo. Any attempt to devise AI ethics must be at least cognizant of public morality.  
 
Accordingly, we need to gauge social expectations about the way AVs should solve moral dilemmas. This 
enterprise, however, is not without challenges11. The first challenge comes from the high-dimensionality 
of the problem. In a typical survey, one may test whether people prefer to spare many lives rather than 
few9,12,13; or whether people prefer to spare the young rather than the elderly14,15; or whether people prefer 
to spare pedestrians who cross legally, rather than pedestrians who jaywalk; or yet some other preference, 
or a simple combination of two or three of these preferences. But combining a dozen of such preferences 
leads to millions of possible scenarios, requiring a sample size that defies any conventional method of 
data collection.  
 
The second challenge makes sample size requirements even more daunting: if we are to make progress 
toward universal machine ethics (or at least identify the obstacles thereto), we need a fine-grained 
understanding of how different individuals and different countries may differ in their ethical 
preferences16,17. As a result, data must be collected worldwide, in order to assess demographic and 
cultural moderators of ethical preferences. 
 
As a response to these challenges, we designed the Moral Machine, a multilingual online “serious game” 
for collecting large-scale data on the way citizens would want AVs to solve moral dilemmas in the 
context of unavoidable accidents. The Moral Machine attracted worldwide attention, and allowed us to 
collect 39.61 million decisions in 233 countries, dependencies, or territories (Fig.1 (a)). In the main 
interface of the Moral Machine, users are shown unavoidable accident scenarios with two possible 
outcomes, depending on whether the AV swerves or stays on course (Fig.1 (b)). They then click on the 
outcome that they find preferable. Accidents scenarios are generated by the Moral Machine following an 
exploration strategy that focuses on nine factors: sparing humans (vs. pets), staying on course (vs. 
swerving), sparing passengers (vs. pedestrians), sparing more lives (vs. fewer lives), sparing men (vs. 
women), sparing the young (vs. the elderly), sparing pedestrians who cross legally (vs. jaywalk), sparing 
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the fit (vs. the less fit), and sparing those with higher social status (vs. lower social status). Additional 
characters were included in some scenarios (e.g., criminals, pregnant women, doctors), who were not 
linked to any of these nine factors. These characters mostly served to make scenarios less repetitive for 
the users. After completing a 13-accident session, participants can complete a survey that collects, among 
other variables, demographic information such as gender, age, income, and education, as well as religious 
and political attitudes. Participants are geolocated so that their coordinates can be used in a clustering 
analysis that seeks to identifies groups of countries or territories with homogeneous vectors of moral 
preferences.  
 
 

 
Figure 1. Coverage and interface. (a) World map highlighting the locations of Moral Machine visitors. Each point represents 
a location from which at least one visitor made at least one decision (n = 39.6M). The number of visitors or decisions from each 
location are not represented. (b) Moral Machine interface. An AV experiences a sudden brake failure. Staying on course would 
result in the death of two elderly men and an elderly woman, crossing on a “do not cross” signal (left). Swerving would result in 
the death of three passengers, an adult man, an adult woman, and a boy (right).  
 
 
Here we report the findings of the Moral Machine experiment, focusing on four levels of analysis, and 
considering for each level of analysis how the Moral Machine results can trace our path to universal 
machine ethics. First, what are the relative importances of the nine preferences we explored on the 
platform, when data are aggregated worldwide? Second, does the intensity of each preference depend on 
individual characteristics of respondents? Third, can we identify clusters of countries with homogeneous 
vectors of moral preferences? Fourth, do cultural and economic variations between countries predict 
variations in their vectors of moral preferences?  

 

  

a b



 4 

RESULTS 
 
GLOBAL PREFERENCES 
 
To test the relative importance of the nine preferences simultaneously explored by the Moral Machine, we 
used conjoint analysis to compute the average marginal component effect (AMCE) of each attribute (male 
character vs. female character, passengers vs. pedestrians, etc.)18. Fig.2 (a) shows the unbiased estimates 
of nine AMCEs extracted from the Moral Machine data. In each row, the bar shows the difference 
between the probability of sparing characters with the attribute on the right side, and the probability of 
sparing the characters with the attribute on the left side, over the joint distribution of all other attributes 
(see Supplementary Information for computational details and assumptions, and see Extended Data 
Figs.1, 2 for robustness checks).  
 
As shown in Fig.2 (a), the strongest preferences are observed for sparing humans over animals, sparing 
more lives, and sparing young lives. Accordingly, these three preferences may be considered essential 
building blocks for machine ethics, or at least essential topics to be considered by policymakers. Indeed, 
these three preferences starkly differ in the level of controversy they are likely to raise among ethicists.  
 
Consider, as a case in point, the ethical rules proposed in 2017 by the German Ethics Commission on 
Automated and Connected Driving19. This report represents the first and only attempt so far to provide 
official guidelines for the ethical choices of AVs. As such, it provides an important context for 
interpreting our findings and their relevance to other countries which would attempt to follow the German 
example in the future. German Ethical Rule #7 unambiguously states that in dilemma situations, the 
protection of human life should enjoy top priority over the protection of other animal life. This rule is in 
clear agreement with social expectations assessed through the Moral Machine. On the other hand, German 
Ethical Rule #9 does not take a clear stance on whether and when AVs should be programmed to sacrifice 
the few to spare the many, but leaves this possibility open: it is important, thus, to know that there would 
be strong public agreement with such programming, even if it is not mandated through regulation. 
 
In contrast, German Ethical Rule #9 also states that any distinction based on personal features, such as 
age, should be prohibited. This clearly clashes with the strong preference for sparing the young (such as 
children) that is assessed through the Moral Machine (see Fig. 2b for a stark illustration: the four most 
spared characters are the baby, the little girl, the little boy, and the pregnant woman). This does not mean 
that policymakers should necessarily go with public opinion and allow AVs to preferentially spare 
children, or for that matter, women over men, athletes over overweight persons, or executives over 
homeless persons--all of which we see weaker but clear effects for. But given the strong preference for 
sparing children, policymakers must be aware of a dual challenge if they decide not to give a special 
status to children: the challenge of explaining the rationale for such a decision, and the challenge of 
handling the strong backlash that will inevitably occur the day an AV sacrifices children in a dilemma 
situation. 
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Figure 2. Global Preferences. (a) Average marginal causal effect (AMCE) for each preference. In each row, !	#$ is the 
difference between the probability of sparing characters possessing the attribute on the right, and the probability of sparing 
characters possessing the attribute on the left, aggregated over all other attributes. For example (age) the probability of sparing 
young characters is 0.49 (SE = 0.0008) greater than the probability of sparing older characters. The 95% CIs of the means are 
omitted due to their insignificant width, given the sample size (n = 35.2M). For the number of characters (No. characters), effect 
sizes are shown for each number of additional characters (1 to 4; n1 = 1.52M, n2 = 1.52M, n3 = 1.52M, n4 = 1.53M); the effect 
size for 2 additional characters overlaps with the mean effect of the attribute. (b) Relative advantage or penalty for each 
character, compared to an adult man or woman. For each character, !	#$ is the difference the between probability of sparing 
this character (when presented alone) and the probability of sparing one adult man or woman (n = 1M). For example, the 
probability of sparing a girl is 0.15 (SE = 0.003) higher than the probability of sparing an adult man/woman. 
 
 
INDIVIDUAL VARIATIONS 
 
We assessed individual variations by further analyzing the responses of the subgroup of Moral Machine 
users (N = 492,921) who filled the optional demographic survey on age, education, gender, income, and 
political and religious views, to assess whether preferences were modulated by these six characteristics. 
First, when we include all six characteristic variables in regression-based estimators of each of the nine 
attributes, we find that individual variations have no sizable impact on any of the nine attributes (all 
below 0.1; see Extended Data Table 1). Of these, the most notable impacts are driven by gender and 
religiosity of respondents. For example, male respondents are 0.06 percentage point less inclined to spare 
females, while one increase in standard deviation of religiosity of respondent is associated with 0.09 more 
inclination to spare humans. 
 
More importantly, none of the six characteristics splits its subpopulations into opposing directions of 
effect. Based on a unilateral dichotomization of each of the six attributes, resulting in two subpopulations 
per each, Δ	Pr has a positive value for all considered subpopulations e.g. both male and female 
respondents indicated preference for Sparing Females, but the latter group showed stronger preference 
(see Extended Data Fig. 3). In sum, the individual variations we observe are theoretically important, but 
not essential information for policymakers. 
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CULTURAL CLUSTERS 
 
Geolocation allowed us to identify the country of residence of Moral Machine respondents, and to seek 
clusters of countries exhibiting homogeneous vectors of moral preferences. We selected the 130 countries 
with at least 100 respondents (N range = [101 - 448,125]), standardized the 9 target AMCEs of each 
country, and conducted a hierarchical clustering on these 9 scores, using Euclidean distance and ward 
variance minimization algorithm20. This analysis identified three distinct “moral clusters” of countries. 
These are shown in Fig.3 (a), and are broadly consistent with both geographical and cultural proximity 
according to the Inglehart-Welzel Cultural Map 2010-201421.  
 
The first cluster (which we label the Western cluster) contains North America as well as many European 
countries of Protestant, Catholic, and Orthodox Christian cultural groups. The internal structure within 
this cluster also exhibits notable face validity, with a sub-cluster containing Protestant / Scandinavian 
countries, and a sub-cluster containing Commonwealth / English-speaking countries. 
 
The second cluster (which we call the Eastern cluster) contains many far eastern countries such as Japan 
and Taiwan, belonging to the Confucianist cultural group, and Islamic countries such as Indonesia, 
Pakistan and Saudi Arabia.  
 
The third cluster (a broadly Southern cluster) consists of the Latin American countries of Central and 
South America, in addition to some countries that are characterized in part by French influence e.g., 
metropolitan France, French overseas territories, and territories that were at some point under French 
leadership. Latin American countries are cleanly separated in their own sub-cluster within the Southern 
cluster.  
 
To rule out the potential effect of language, we found that the same clusters also emerge when the 
clustering analysis is restricted to participants who only relied on the pictorial representations of the 
dilemmas, without accessing their written descriptions (see Extended Data Fig. 4 for more details).  
 
This clustering pattern (which is fairly robust, see Extended Data Fig. 5 for details) suggests that 
geographical and cultural proximity may allow groups of territories to converge on shared preferences for 
machine ethics. Between-cluster differences, though, may pose greater problems. As shown in Fig.3 (b), 
clusters largely differ in the weight they give to some preferences. For example, the preference to spare 
younger characters rather than older characters is much less pronounced for countries in the Eastern 
cluster, and much higher for countries in the Southern cluster. The same is true about the preference for 
sparing higher status characters.  Similarly, countries in the Southern cluster exhibit a much weaker 
preference for sparing humans over pets, compared to the other two clusters. Only the (weak) preference 
for sparing pedestrians over passengers and the (moderate) preference for sparing the lawful over the 
unlawful appear to be shared to the same extent in all clusters.  
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Figure 3. Country-Level Clusters. (a) Hierarchical Cluster of Countries based on average marginal causal effect. One 
hundred thirty countries with at least 100 respondents are selected (range = [101 - 448,125]).  Three colors of the dendrogram 
branches represent three large clusters -- Western, Eastern, and Southern. Names of the countries are colored according to 
Inglehart-Welzel Cultural Map 2010-201421.  Distributions across three clusters reveal stark differences.  For instance, cluster 2 
(Eastern) mostly consists of countries of Islamic and Confucian cultures.  In contrast, cluster 1 (Western) has large percentages 
of Protestant, Catholic, and Orthodox countries of Europe.  (b) Mean AMCE z-scores of the three major clusters. Radar plot of 
the mean AMCE z-scores of three clusters reveals striking pattern of differences between the clusters along the nine attributes. 
For example, countries belonging to the Southern cluster shows strong preference for sparing females compared to those of other 
clusters. 
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Finally, we observe some striking peculiarities, like the strong preference for sparing women and the 
strong preference for sparing fit characters in the Southern cluster. All the patterns of similarities and 
differences unveiled in Fig.3 (b), though, suggests that manufacturers and policymakers should be, if not 
responsive, at least cognizant of moral preferences in the countries in which they design AI systems and 
policies. Whereas the ethical preferences of the public should not necessarily be the primary arbiter of 
ethical policy, the people’s willingness to buy AVs and tolerate them on the roads will depend on the 
palatability of the ethical rules that are adopted. 
 
 
COUNTRY-LEVEL PREDICTORS 
 
Preferences revealed by the Moral Machine are highly correlated to cultural and economic variations 
between countries. These correlations provide support for the external validity of the platform, despite the 
self-selected nature of our sample. While we do not attempt to pin down the ultimate reason or 
mechanism behind these correlations, we document them here as they point at possible deeper 
explanations of the cross-country differences and the clusters identified in the previous section. 
 
As an illustration, consider the distance between the US and other countries in terms of the moral 
preferences extracted from the Moral Machine (MM distance). Figure 4c shows a substantial correlation 
(( = 0.49) between this MM distance and the cultural distance from the US based on the World Values 
Survey22. In other words, the more culturally similar a country is to the US, the more similarly its people 
play the Moral Machine. 
 
Next, we highlight four important cultural and economic predictors of Moral Machine preferences. First, 
we observe systematic differences between individualistic cultures and collectivistic cultures23. 
Participants from individualistic cultures, which emphasize the distinctive value of each individual23, 
show a stronger preference for sparing the greater number of characters (Figure 4a). Furthermore, 
participants from collectivistic cultures, which emphasize the respect that is due to older members of the 
community23, show a weaker preference for sparing younger characters (Figure 4a inset). Because the 
preference for sparing the many and the preference for sparing the young are arguably the most important 
for policymakers to consider, this split between individualistic and collectivistic cultures may prove an 
important obstacle for universal machine ethics (see Supplementary Information for more details). 
 
Another important (yet under-discussed) question for policymakers to consider is the importance of 
whether pedestrians are abiding by or violating the law. Should those who are crossing the street illegally 
benefit from the same protection as pedestrians who cross legally? Or should the primacy of their 
protection in comparison to other ethical priorities be somewhat reduced? We observe that prosperity (as 
indexed by GDP per capita24) and the quality of rules and institutions (as indexed by the Rule of Law25) 
correlate with a greater preference against pedestrians who cross illegally (Figure 4b and inset). In other 
words, participants from countries which are poorer and suffer from weaker institutions are more tolerant 
of pedestrians who cross illegally, presumably because of their experience of lower rule compliance and 
weaker punishment of rule deviation26. This observation limits the generalizability of the recent German 



 9 

ethics guideline, for example, which state that “parties involved in the generation of mobility risks must 
not sacrifice non-involved parties.” (see Supplementary Information for more details) 
 

 
Figure 4. Association between Moral Machine preferences and other variables at the country level.  Each panel shows 
Spearman’s ( and p-value for the correlation test between the relevant pair of variables.  (a) Association between individualism 
and the preference for sparing more characters (n = 87), or the preference for sparing the young (inset; n = 87). (b) Association 
between the preference for sparing the lawful and each of rule of law (n = 122) and log of GDP per capita (inset; n = 110). (c) 
Association between cultural distance from US and MM distance (distance in terms of the moral preferences extracted from the 
Moral Machine) from US (n = 72). (d) Association between economic inequality (Gini coefficient) and the preference for sparing 
higher status (n = 98). (e) Association between the gender gap in health and survival and the preference for sparing females (n = 
104). 
 
Finally, our data revealed a set of preferences in which certain characters are preferred for demographic 
reasons. First, we observe that higher country-level economic inequality (as indexed by the country’s Gini 
coefficient) corresponds to how unequally characters of different social status are treated. Those from 
countries with less economic equality between the rich and poor also treat the rich and poor less equally 
in the Moral Machine. This relationship may be explained by regular encounters with inequality seeping 
into people’s moral preferences, or perhaps because broader egalitarian norms affect both how much 
inequality a country is willing to tolerate at the societal level, and how much inequality participants 
endorse in their Moral Machine judgments. Second, the differential treatment of male and female 
characters in the Moral Machine corresponded to the country-level gender gap in health and survival (a 

a b

c d e

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

ALB

ARG

AUS

AUT

BGD

BEL

BRA

BGR

CAN

CHL

CHN

COL

CRI

HRV
CZE

DNK

DOM

ECU
EGY

SLV
EST

FIN

FRA

DEU
GRC

GTM

HND

HKG

HUN

ISL

IND

IDN

IRN

IRQ

IRLISR

ITA

JAM

JPN

JOR

KEN

KWT

LVA

LBN

LTU
LUX

MYS

MLT

MEX
MAR

NLD

NZL

NOR

PAK

PAN

PER

PHL

POL

PRT

ROU

RUS
SAU

SRB
SGP

SVK

SVN

ZAF

KOR

ESP

LKA

SWE
CHE

TWN

THA

TTO

TUR

UKR

ARE

GBR

USA

URY

VEN

VNM

ρ = 0.5
 p < 1e−04

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

ρ = 0.43
 p < 1e−040.4

0.5

0.6

25 50 75
Individualism

Sp
ar

in
g 

th
e 

Yo
un

g

0.4

0.5

0.6

0 25 50 75 100
Individualism

Sp
ar

in
g 

M
or

e 
Ch

ar
ac

te
rs

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

● ●
●

●

●

●●●

●

●

● ● ●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

● ●

●

●
●

●
●

●
● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

AFG

AGO

ALB

ARE

ARG

ARM

AUS

AUT

AZE

BEL

BGD
BGR

BHR

BHS

BIH

BLR

BOL

BRA

BRB

BRN

CAN

CHE
CHL

CHN

COL
CRI

CYP

CZE

DEU

DNKDOM
DZA

ECU

EGY

ESP EST
FIN

FRA

GBR

GEO

GRC

GTM

GUM

HKG

HND

HRV

HUN

IDN

IND

IRL

IRN

IRQ

ISL

ISR

ITA

JAM

JEY

JOR

JPN

KAZ

KEN

KGZ

KHM
KOR

KWT

LBN

LKA

LTU

LUX

LVA

MAC

MAR

MDA

MDG

MDV

MEX

MKD

MLTMMR

MNEMNE

MNG

MTQ
MUS

MYS

NGA

NIC

NLD

NOR

NPL

NZL

OMN

PAK

PAN

PER

PHL

POL
PRI

PRT

PRY
QAT

REU

RUS

SAU

SGP

SLV

SRB

SVK
SVN

SWE

SYR

THA

TTO TUN

TUR

TWN

UKR

URY

USA

UZB

VEN

VNM

ZAF

ρ = 0.3
 p =  8e−04

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

ρ = 0.34
 p =  2e−04

0.25

0.30

0.35

0.40

0.45

3.5 4.0 4.5 5.0
Log GDP pc

Sp
ar

in
g 

th
e 

La
wf

ul

0.1

0.2

0.3

0.4

−2 −1 0 1 2
Rule of Law

Sp
ar

in
g 

th
e 

La
wf

ul Cluster
●

●

●

Cluster 1 (Western)
Cluster 2 (Eastern)
Cluster 3 (Southern)

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

DZA

AND

ARG

ARM

AUS

AZE

BHR

BLR

BRA

BGR

CAN

CHL

CHN

COL

CYP

ECU

EGY

EST

FIN

FRA

GEO

DEU

GTM

HKG

HUN
IND

IDN
IRN IRQ

ITA

JPN

JOR

KAZ

KWT

KGZ

LBN

MYS

MEX

MDA

MNEMNE

MAR
NLD

NZL

NGA

NOR

PAK

PSEPSE

PER

PHL

POL

QATROU

RUS

SRB

SGP

SVN

ZAF

KOR

ESP

SWE

CHE

TWN

THA

TTO

TUN

TUR

UKR

GBR

USA

URY UZB

VNM

ρ = 0.49
 p < 1e−040

2

4

6

0.00 0.05 0.10 0.15 0.20 0.25
Cultural distance from US

M
M

 d
is

ta
nc

e 
fr

om
 U

S

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●●

● ●

●

●

●

●

ALB

DZA

AGO

ARG

ARM

AUS

AUT

AZE

BGD

BLR

BEL

BOL

BIH

BRA

BGR

CAN

CHL

CHN

COL

CRI

HRV

CYP

CZE

DNK

DOM

ECU

EGY

SLV

EST

FIN

FRA

GEO

DEU
GRC

GTM

HND

HUN

ISL

IND

IDN

IRN

IRQ

IRL

ISR

ITA

JAM

JPN

JOR

KAZ

KEN

KGZ

LVA

LTU

LUX

MKD

MDG

MYS

MDV

MUS

MEX

MDA

MNG

MNEMNE

MAR

MMR

NLD

NIC

NOR

PAK

PSEPSE

PAN

PRY

PER

PHL

POL

PRT

ROU

RUS
SRB

SVK

SVN

ZAF

KOR

ESP

LKA

SWE

CHE

SYR

THA

TUN

TUR
UKR

GBR
USA

URY

UZB

VEN

VNM

ρ = 0.41

 p < 1e−04

0.2

0.3

0.4

0.5

30 40 50 60
Economic Inequality (Gini)

Sp
ar

in
g 

H
ig

he
r S

ta
tu

s

●

● ●

●

● ●
●●

●

●
●●

●

●

●

●●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●● ●

●

●

●

●

● ●●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

● ●

AGO

ALB
ARE

ARG

ARM
AUS

AUT
AZE

BEL

BGD

BGRBHR

BHS

BIH

BLR

BOLBRA

BRB

CAN
CHE

CHL

CHN

COL

CRI

CYP

CZE

DEU

DNK

DOM

DZA

ECU

EGY

ESP

EST
FIN

FRA

GBR

GEO

GRC

GTM

HND

HRV

HUN

IDN

IND

IRL

ISL

ISR

ITA

JAM

JOR

JPN

KAZ

KEN

KHM

KWT

LBN

LKA

LTULUX

LVA

MAR

MDA

MDG

MDV

MEX
MLT

MNEMNE MNG
MUS

MYS

NGA

NIC

NLD
NOR

NPL

NZL

OMN

PAK

PAN

PER
PHL

POL

PRT
PRY

QAT

ROU

SAU

SGP

SLV

SRB
SVN

SWE

SYR

THA

TTO

TUN

TUR

UKR

URY

USA

VEN

VNM ZAF

ρ = 0.29
 p =  0.0025

0.0

0.1

0.2

0.3

0.92 0.94 0.96 0.98
Gender Gap in Health and Survival

Sp
ar

in
g 

Fe
m

al
es



 10 

composite in which higher scores indicated higher ratios of female to male life expectancy and sex ratio at 
birth—a marker of female infanticide and anti-female sex-selective abortion). In nearly all countries, 
participants showed a preference for female characters, however, this preference was stronger in nations 
with better health and survival prospects for women. In other words, in places where there is less of a 
devaluation of women’s lives in health and at birth, males are seen as more expendable in Moral Machine 
decision-making (Figure 4e).  While not aiming to pin down the causes of these variation in Extended 
Data Table 2, we nevertheless provide a regression analysis that demonstrates that the results hold when 
controlling for several potentially confounding factors.    
 

DISCUSSION 
Never in the history of humanity have we allowed a machine to autonomously decide who should live and 
who should die, in a fraction of a second, outside of real-time supervision. We are going to cross that 
bridge any time now, and it will not happen in a distant theater of military operations; it will happen in 
that most mundane aspect of our lives: everyday transportation. Before we allow our cars to make ethical 
decisions, we need to have a global conversation to express our preferences to the companies that will 
design moral algorithms, and to the policymakers that will regulate them.  
 
The Moral Machine was deployed to initiate such a conversation, and millions of people weighed in from 
around the world. Respondents could be as parsimonious or thorough as they wished in the ethical 
framework they decided to follow. They could engage in a complicated weighting of all nine variables 
used in the Moral Machine, or adopt simple rules such as "let the car always go onward”. Our data helped 
us identify three strong preferences that can serve as building blocks for discussions of universal machine 
ethics, even if they are not ultimately endorsed by policymakers: the preference for sparing human lives, 
the preference for sparing more lives, and the preference for sparing young lives. Some preferences based 
on gender or social status vary considerably across countries, and appear to reflect underlying societal-
level preferences for egalitarianism27. 
 
The Moral Machine project was atypical in many respects. It was atypical in its objectives and ambitions: 
No research ever attempted to measure moral preferences using a 9-dimensional experimental design, in 
more than 200 countries. To achieve this unusual objective, we employed the unusual method of 
deploying a viral online platform, hoping that we would reach out to vast numbers of participants. This 
allowed us to collect data from millions of people over the entire world, a feat that would be nearly 
impossibly hard and costly to achieve through standard academic survey methods. For example, 
recruiting nationally representative samples of participants in hundreds of countries would already be 
extremely difficult, but testing a 9-factorial design in each of these samples would verge into the 
impossible.  Our approach allowed to bypass these difficulties, but its downside is that our sample is self-
selected, and not guaranteed to exactly match the socio-demographics of each country (see Extended Data 
Fig. 6). The fact that the cross-societal variation we observed aligns with previously established cultural 
clusters, as well as the fact that macro-economic variables are predictive of Moral Machine responses, are 
good signals about the reliability of our data; just as the post-stratification analysis we report in Extended 
Data Fig. 7 and in the Supplementary Information. But the fact that our samples are not guaranteed to be 
representative means that policymakers should not embrace our data as the final word on societal 
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preferences -- even if our sample is arguably close to the Internet-connected, tech-savvy population that is 
interested in driverless car technology, and more likely to participate in early adoption.  
 
Even with a sample size as large as ours, we could not do justice to all the complexity of AV dilemmas. 
For example, we did not introduce uncertainty about the fates of the characters, and we did not introduce 
any uncertainty about the classification of these characters. In our scenarios, characters were recognized 
as adults, children, etc. with 100% certainty, and life-and-death outcomes were predicted with 100% 
certainty. These assumptions are technologically unrealistic, but they were necessary to keep the project 
tractable. Similarly, we did not manipulate the hypothetical relation between respondents and characters 
(e.g. relatives, spouses). Our previous work did not find a strong impact of this variable on moral 
preferences12. 
 
Indeed, we can embrace the challenges of machine ethics as a unique opportunity to decide, as a 
community, what we believe to be right or wrong; and to make sure that machines, unlike humans, 
unerringly follow these moral preferences. We might not reach universal agreement: even the strongest 
preferences expressed through the Moral Machine showed substantial cultural variations, and our project 
builds on a long tradition of investigating cultural variations in ethical judgments29. But the fact that broad 
regions of the world displayed relative agreement suggests that our journey to consensual machine ethics 
is not doomed from the start. Attempts at establishing broad ethical codes for intelligent machines, like 
the Asilomar AI Principles30, often recommend that machine ethics should be aligned with human values. 
These codes seldom recognize, though, that humans experience inner conflict, interpersonal 
disagreements, and cultural dissimilarities in the moral domain31,32,33. Here we showed that these 
conflicts, disagreements, and dissimilarities, while substantial, may not be fatal.  
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METHODS 
The Moral Machine website was designed to collect data on the moral acceptability of decisions made by 
autonomous vehicles in situations of unavoidable accidents, in which they must decide who is spared and 
who is sacrificed. The Moral Machine was deployed in June 2016. In October 2016, a feature was added 
that offered users the option to fill a survey about their demographics, political views, and religious 
beliefs. Between November 2016 and March 2017, the website was progressively translated into nine 
languages in addition to English (Arabic, Chinese, French, German, Japanese, Korean, Portuguese, 
Russian, and Spanish). 
 
While the Moral Machine offers four different modes (see SI), the focus of this article is on the central 
data-gathering feature of the website, called the Judge mode. In this mode, users are presented with a 
series of dilemmas in which the AV must decide between two different outcomes. In each dilemma, one 
outcome amounts to sparing a group of 1 to 5 characters (chosen from a sample of 20 characters, see 
Figure 2b) and to kill another group of 1 to 5 characters. The other outcome reverses the fates of the two 
groups. The only task of the user is to choose between the two outcomes, as a response to the question 
'What should the self-driving car do?' Users have the option to click on a button labeled 'see description' 
to display a complete text description of the characters in the two groups, together with their fate in each 
outcome. 
 
While users can go through as many dilemmas as they wish, dilemmas are generated in sessions of 13. 
Within each session, one dilemma is entirely random. The other 12 dilemmas are sampled from a space of 
approximately 26 million possibilities (see below). Accordingly, it is extremely improbable for a given 
user to see the same dilemma twice, regardless of how many dilemmas they choose to go through, or how 
many time they visit the Moral Machine.  
 
Leaving aside the one entirely random dilemma, there are two dilemmas within each session that focus on 
each of six dimensions of moral preferences: character gender, character age, character physical fitness, 
character social status, character species, and character number. Furthermore, each dilemma 
simultaneously randomizes three additional attributes: which group of characters will be spared if the car 
does nothing; whether the two groups are pedestrians, or whether one group is in the car; and whether the 
pedestrian characters are crossing legally or illegally. This exploration strategy is supported by a dilemma 
generation algorithm whose details are presented in the SI, which also provides extensive descriptions of 
statistical analyses, robustness checks, and tests of internal and external validity. 
 
After completing a session of 13 dilemmas, users are presented with a summary of their decisions: which 
character they spared the most, which character they sacrificed the most; and the relative importance of 
the nine target moral dimensions in their decisions, compared to their importance to the average of all 
other users so far. Users have the option to share this summary with their social network. Either before or 
after they see this summary (randomized order), users are asked if they want to 'help us better understand 
their decisions'. Users who click 'yes' are directed to a survey of their demographic, political, and 
religious characteristics. They also have the option to edit the summary of their decisions, to tell us about 
the self-perceived importance of the nine dimensions in their decisions. These self-perceptions are not 
analyzed in this article. 
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The country from which users access the website is geo-localized through the IP address of their 
computer or mobile device. This information is used to compute a vector of moral preferences for each 
country. In turn, these moral vectors are used both for cultural clustering, and for country-level 
correlations between moral preferences and socio-economic indicators. The source and period of 
reference for each socio-economic indicator is detailed in the SI. 
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EXTENDED DATA FIGURES AND TABLES 
 

 
Extended Data Fig. 1. Robustness Checks: Internal validation of three simplifying assumptions. Calculated values correspond 
to values in Figure 2 (a) i.e. average marginal causal effect (AMCE) calculated using conjoint analysis. For example, “Sparing 
Pedestrians [Relation to AVs]” refers to the difference between the probability of sparing pedestrians, and the probability of 
sparing passengers (attribute name: Relation to AVs), aggregated over all other attributes. Error bars represent 95% confidence 
intervals of the means. Validation of (a) Assumption 1 (Stability and No-Carryover Effect): Potential Outcomes remain stable 
regardless of scenario order. (b) Assumption 2 (No Profile-Order Effects): Potential Outcomes remain stable regardless of 
left/right positioning of choice options on the screen. (c) Assumption 3 (Randomization of the Profiles): Potential outcomes are 
statistically independent of the profiles. This assumption should be satisfied by design. However, a mismatch between the design 
and the collected data can happen during data collection. This panel shows that using theoretical proportions (by design) and 
actual proportions (in collected data) of subgroups results in similar effect estimates. See SI for more details. 
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Extended Data Fig. 2. Robustness Checks: External validation of three factors. Calculated values correspond to values in 
Figure 2 (a) i.e. average marginal causal effect (AMCE) calculated using conjoint analysis. For example, “Sparing Pedestrians 
[Relation to AVs]” refers to the difference between the probability of sparing pedestrians, and the probability of sparing 
passengers (attribute name: Relation to AVs), aggregated over all other attributes. Error bars represent 95% confidence 
intervals of the means. Validation of (a) Textual Description (seen vs. not seen). By default, respondents see only the visual 
representation of scenario. Interpretation of what type of characters they represent (e.g. female doctor) may not be obvious. 
Optionally, respondents can read a textual description of the scenario by clicking on “see description” button. This panel shows 
that direction and (except in one case) order of effect estimates remain stable. The magnitude of the effects increases for 
respondents who read the textual descriptions, which means that the effects reported in Figure 2 (a) were not overestimated 
because of visual ambiguity. (b) Device used (Desktop vs. Mobile). Direction and order of effect estimates remain stable 
regardless of whether respondents used Desktop or Mobile when completing the task. (c) Data set (all data vs. full first-session 
data vs. survey-only data). Direction and order of effect estimates remain stable regardless of whether the data used in analysis 
is all data, data restricted to only first completed (13-scenario) session by any user, or data restricted to completed sessions after 
which the demographic survey was taken. First completed session by any user is an interesting subset of the data because 1) 
respondents had not seen their summary of results yet and 2) respondents ended up completing the session. Survey-only data is 
also interesting given that conclusion about individual variations in the main paper and from Extended Data Fig. 3, and 
Extended Data Table 1 are drawn from this subset. See SI for more details. 
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Extended Data Fig. 3. Average marginal causal effect (AMCE) of attributes for different subpopulations characterized by 
respondents’ (a) age (older vs. younger), (b) gender (male vs. female), (c) education (less vs. more educated), (d) income 
(higher vs. lower income), (e) political views (conservative vs. progressive), and (f) religious views (not religious vs. very 
religious). Error bars represent 95% confidence intervals of the means. Note how AMCE has a positive value for all considered 
subpopulations e.g. both male and female respondents indicated preference for Sparing Females, but the latter group showed 
stronger preference. See SI for a detailed description of the cutoffs and the grouping of ordinal categories that were used to 
define each subpopulation. 
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Extended Data Fig. 4. Hierarchical Cluster of countries based on country-level effect sizes calculated after filtering out 
responses for which the linguistic description was seen, thus neutralizing any potential effect of languages. Three colors of the 
dendrogram branches represent three large clusters -- Western, Eastern, and Southern. Names of the countries are colored 
according to Inglehart-Welzel Cultural Map 2010-201421. See SI for more details: The dendrogram is essentially similar to that 
shown in Fig.3 (a). 
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Extended Data Fig. 5. Validation of Hierarchical Cluster of countries. Two internal metrics of validation of three linkage 
criteria of calculating hierarchical clustering (Ward, Complete and Average) in addition to K-means algorithm are (a) Calinski-
Harabasz Index and (b) Silhouette Index.  The x-axis indicates the number of clusters. For both internal metrics, higher index 
value indicates “better” fit of partition to the data. Two external metrics of validation of the used hierarchical clustering 
algorithm (Ward) versus those of random clustering assignment are (c) Purity and (d) Maximum Matching. Histogram in black 
shows the distributions of purity and maximum matching values derived from randomly assigning countries to nine clusters. The 
red dotted lines indicate purity and maximum matching values computed from clustering output of hierarchical clustering 
algorithm using ACME values. See SI for more details.  
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Extended Data Fig. 6. Demographic distributions of sample of population that filled the survey on Moral Machine website 
(MM), based on gender, age, income, and education attributes. This figure shows that most users on Moral Machine are male, 
went through college, and are between their 20s and 30s. While this indicates that the users of Moral Machine are not a 
representative sample, it is important to note that this sample at least covers broad demographics. See SI for more details. 
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Extended Data Fig. 7. Demographic distributions of US sample of population that filled the survey on Moral Machine website 
(MM) vs. US sample of population in American Community Survey (ACS) data set. Only (a) Gender, (b) Age, (c) Income, and 
(d) Education attributes are available for both data sets. One can see that MM US-sample has an over-representation from male 
population and from young population, as compared to the ACS US-sample. (e) A comparison of effect sizes as calculated for 
US respondents who took the survey on MM with the use of post-stratification to match the corresponding proportions for 
ACS sample. One can see that except for “Relation to AV” (the second smallest effect), the direction and order of all effects are 
unaffected. See SI for more details. 
 

a b

c d

Female

Male

0.0 0.2 0.4 0.6

Proportion

Gender distribution of US sample

Source
MM
ACS

65−74

55−64

45−54

35−44

25−34

15−24

0.0 0.2 0.4 0.6

Proportion

Age distribution of US sample

More than $100,001

$50,001 − $100,000

$25,001 − $50,000

$5,001 − $25,000

$0 − $5,000

0.0 0.1 0.2 0.3

Proportion

Income distribution of US sample

Graduate Degree

Bachelor Degree

Attended College

High School Diploma

Attended High School

0.0 0.1 0.2 0.3

Proportion

Education distribution of US sample

e

Sparing humans
 [Species]

Sparing more characters
 [No. Characters]

Sparing the younger
 [Age]

Sparing higher status
 [Social Status]

Sparing the lawful
[Law]

Sparing the fit
 [Fitness]

Sparing females
 [Gender]

Sparing pedestrians
 [Relation to AV]

Preference for inaction
 [Interventionism]

0.0 0.2 0.4 0.6 0.8
 ∆ Pr

Stratification
Pre−stratisification

Post−stratisification

Average Marginal Causal Effect (AMCE)



 24 

 
 
Extended Data Table. 1. Regression table showing the individual variations for each of the nine attributes. Dependent 
variables are recorded as to whether the preferred option was chosen (e.g. whether the respondent spared females). Continuous 
predictor variables are all standardized. All models include structural covariates (remaining attributes of a scenario). 
Coefficients are estimated using regression-based estimator with cluster-robust standard errors. Asterisks refer to the following 
significance levels: *p < 0.01, **p < 0.001, ***p < 0.0001. See SI for more details. 
 
  



 25 

 
 
Extended Data Table 2. Country-level OLS regressions showing the relationships between key ethical preferences and various 
social, political and economic measures. Pairwise exclusion was used for missing data. Predicted relationships are shown in 
bold. Asterisks refer to the following significance levels: *p < 0.10, **p < 0.05, ***p < 0.01. See SI for more details. 
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1 Overview of the Moral Machine

The Moral Machine website offers four different modes, Judge, Design, Browse, and Classic. The

Judge mode is the central data-gathering feature of the site, whose results we report in the main

paper, and whose design is described in this Supporting Information document. The Design mode

provides users with the possibility to create their own scenarios; the Browse mode allows to ex-

plore these user-generated scenarios; and the Classic mode features three classic trolley dilemmas

1



(Switch, Bridge, Loop) using the same visual presentation as the scenarios in the Judge mode,

but different icons and an olde time sepia color scheme. Data of the Design, Browse and Classic

modes are not discussed in the main article, and we accordingly focus on the Judge mode in this

Supplementary Information.

The Judge mode is illustrated in Fig. S1. In this mode, users are presented with a series of

moral dilemmas, with a simple point-and-click (or, in the case, of the mobile version, toggle-and-

commit) method to choose which outcome of the two possible for a given scenario was deemed

by the user to be most acceptable. A Moral Machine session comprises 13 scenarios, after which

the user is presented with a summary of their choices along with how they compare to other users.

Users are also asked to complete an optional survey (see below). Users can go through as many

sessions as they wish, or leave the site mid-session.

The website was initially available in English only, but was later translated into nine addi-

tional languages: Arabic, Chinese, French, German, Japanese, Portuguese, Korean, Spanish, and

Russian. Translation was performed through a process of forward-translation and back-translation

by two bilingual native speakers of each of the nine languages. Multilingualism helped to un-

derstand cultural specificities of non-English-speaking countries, both by reaching more represen-

tative samples of the (monolingual) non-English-speaking inhabitants of these countries, and by

collecting more accurate judgments by the (bilingual) non-native English-speaking inhabitants of

these countries ?.
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Figure S1: Moral Machine interface – Judge Interface. An example of a dilemma scenario: an AV

experiences a sudden brake failure. Staying on course would result in the death of a female doctor,

crossing on a “do not cross” signal (right). Swerving would result in the death of a male doctor,

crossing on a “go ahead” signal (left).

2 Scenario Generation

Each scenario features characters from the following set: C = {Man, Woman, Pregnant Woman,

Baby in Stroller, Elderly Man, Elderly Woman, Boy, Girl, Homeless Person, Large Woman, Large

Man, Criminal, Male Executive, Female Executive, Female Athlete, Male Athlete, Female Doctor,

Male Doctor, Dog, Cat}.
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The scenarios are generated using randomization under constraints, so that scenarios explore

the following dimensions:

1. Species. This dimension tests the extent to which users are willing to save or sacrifice pets

vs. humans. We consider two sets of characters: 1) pets: S1 = {Dog, Cat}, and 2) humans:

S2 = C \S1. The number of characters on each side1 (same number on both sides) z is sam-

pled from the set of positive integers {1, 2, . . . , 5}. Then, z pairs of characters are sampled

(unordered sampling with replacement) from the Cartesian product of the two sets S1⇥S2

(e.g. (Dog, Female Doctor)). The first entries of the ordered pairs (i.e. pets) go to one

side, while the second entries of the ordered pairs (i.e. humans) go to the other side. Ac-

cordingly,2 the number of distinct scenarios for this dimension is
P5

i=1

⇥�

x1+i�1
i

��

x2+i�1
i

�⇤

,

where x1 = |S1| = 2, and x2 = |S2| = 18. Hence, the number of distinct scenarios for this

dimension is N
Species

= 193, 038.

2. Social Value.3 This dimension tests the extent to which users are willing to save/sacrifice

characters of higher social value (e.g. a Pregnant Woman, or a Male Executive) when put

against characters of lower social value (e.g. a Criminal). We consider three sets of char-

acters, corresponding to three levels: 1) characters of low social value: L1 = {Homeless
1We use the term side to refer to one of the two options that the cars will choose to save/kill. Depending on the

relationship to vehicle dimension (mentioned later), the side can refer to inside the car, or on the zebra crossing ahead

or on the other lane.
2Note that in all cases we do unordered sampling with replacement. Hence, the formula

�n+k�1
k

�

.
3Note here that “social value” refers to the perceived social value i.e. the widespread perception of the characters.

We do not endorse the valuation of any humans above others, and we do not suggest that AVs should discriminate on

the basis of any of the classifications presented in Moral Machine.
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Person, Criminal}, 2) characters of neutral social value: L2 = {Man, Woman}, and 3)

characters of high social value: L3 = {Pregnant Woman, Male Executive, Female Ex-

ecutive, Female Doctor, Male Doctor}. In the main article, we restrict the analysis of

this dimension to Homeless Person vs Male and Female Executives, for a cleaner focus

on social status. The number of characters on each side (same number on both sides)

z is sampled from the set of positive integers {1, 2, . . . , 5}. Then, z pairs of characters

are sampled (unordered sampling with replacement) from the following set: (L1⇥L2) [

(L1⇥L3) [ (L2⇥L3). The first entries of the ordered pairs (i.e. lower-level characters)

go to one side, while the second entries of the ordered pairs (i.e. higher-level characters)

go to the other side. For example, (Criminal, Man), (Woman, Male Doctor), and

(Homeless Person, Female Executive) are all possible sampled pairs where the

first entries are strictly of lower value than the second entries. Given this, the number of

distinct scenarios of this dimension is

5
X

i=1

i
X

j=0

✓

x1 + j � 1

j

◆✓

x2 + i� j � 1

i� j

◆✓

x2 + x3 + j � 1

j

◆✓

x3 + i� j � 1

i� j

◆�

where x1 = |L1| = 2, x2 = |L2| = 2, and x3 = |L3| = 5. Hence, the number of distinct

scenarios of this dimension is N
SocialV

= 58, 547.

3. Gender. This dimension tests the extent to which users are willing to save/sacrifice female

characters when put against male characters. We consider two sets of characters: 1) female

characters: G1 = {Woman, Elderly Woman, Girl, Large Woman, Female Executive, Female

Athlete, Female Doctor}, 2) male characters: G2 = {m | m = g(f), f 2 G1}, where

g is a bijection that maps each female character to its corresponding male character (e.g.

g(Female Athlete) = Male Athlete). To generate a scenario of this dimension, the number of

characters on each side (same number on both sides) z is sampled from the set of positive

5



integers {1, 2, . . . , 5}. Then, z pairs of characters are sampled (unordered sampling with

replacement) from: {(f,m) | f 2 G1,m = g(f)}. The first entries of the ordered pairs

(i.e. female characters) go to one side, while the second entries of the ordered pairs (i.e.

male characters) go to the other side. Given this, the number of distinct scenarios of this

dimension is
�

x+4
5

�

� 1, where x = |G1|+1 = 8. Hence, the number of distinct scenarios of

this dimension is N
Gender

= 791.

4. Age. This dimension tests the extent to which users are willing to save/sacrifice characters of

younger age when put against characters of older age. We consider three sets of characters,

corresponding to three levels: 1) characters of young age: A1 = {Boy, Girl}, 2) neutral

adult characters: A2 = {Man, Woman}, and 3) elderly characters: A3 = {Elderly Man,

Elderly Woman}. Consider the following two gender-preserving bijections a1 : A1 ! A2,

and a2 : A2 ! A3 (e.g. a1(Boy) = Man, and a2(Woman) = Elderly Woman). To generate

a scenario of this dimension, the number of characters on each side (same number on both

sides) z is sampled from the set of positive integers {1, 2, . . . , 5}. Then, z pairs of characters

are sampled (unordered sampling with replacement) from the following set:

{(y, n) | y 2 A1, n = a1(y)}[

{(n, d) | n 2 A2, d = a2(n)}[

{(y, d) | y 2 A1, d = a2 � a1(y)}

The first entries of the ordered pairs (i.e. younger characters) go to one side, while the second

entries of the ordered pairs (i.e. older characters) go to the other side. Given this, the number
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of distinct scenarios of this dimension is
�

x+4
5

�

� 1, where x = |A1| + |A2| + |A1| + 1 =

2+2+2+1 = 7. Hence, the number of distinct scenarios of this dimension is N
Age

= 461.

5. Fitness. This dimension tests the extent to which users are willing to save/sacrifice char-

acters of higher physical fitness when put against characters of lower physical fitness. We

consider three sets of characters, corresponding to three levels: 1) characters of low fitness:

F1 = {Large Man, Large Woman}, 2) characters of neutral fitness: F2 = {Man, Woman},

and 3) characters of high fitness: F3 = {Male Athlete, Female Athlete}. Consider the fol-

lowing two gender-preserving bijections f1 : F1 ! F2, and f2 : F2 ! F3 (e.g. f1(Large

Man) = Man, and f2(Woman) = Female Athlete). To generate a scenario of this dimension,

the number of characters on each side (same number on both sides) z is sampled from the

set of positive integers {1, 2, . . . , 5}. Then, z pairs of characters are sampled (unordered

sampling with replacement) from the following set:

{(l, n) | l 2 F1, n = f1(l)}[

{(n, f) | n 2 F2, f = f2(n)}[

{(l, f) | l 2 F1, f = f2 � f1(l)}

The first entries of the ordered pairs (i.e. characters of lower fitness) go to one side, while

the second entries of the ordered pairs (i.e. characters of higher fitness) go to the other

side. Given this, the number of distinct scenarios of this dimension is
�

x+4
5

�

� 1, where

x = |F1|+ |F2|+ |F1|+ 1 = 2 + 2 + 2 + 1 = 7. Hence, the number of distinct scenarios of

this dimension is N
Fitness

= 461.
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6. Utilitarianism. This dimension tests the extent to which users are willing to save/sacrifice a

group of characters when put against the same group of characters in addition to a positive

number of characters. To generate a scenario of this dimension, the number of characters

on each side (same number on both sides) z is sampled from the set of positive integers

{1, 2, . . . , 4}. Then, z pairs of characters are sampled (unordered sampling with replace-

ment) from the following set: {(c, c) | c 2 C}, where C is the set of all characters, defined

above. This will create two sides with identical groups of characters. Then, the number of

additional characters u is sampled from the set of positive integers {1, . . . , 5� z}. Then, the

u additional characters are sampled (unordered sampling with replacement) from C. All the

additional characters go to the same side. Given this,4 the number of distinct scenarios of

this dimension is
�

x+4
5

�

�
�

x0+4
5

�

, where x0 = |C|+1 = 21, and x = x0 + |C| = 41. Hence,

the number of distinct scenarios of this dimension is N
Utilitarian

= 1, 168, 629.

Given that the six dimensions above are mutually exclusive in terms of the generated sce-

narios, the overall number of distinct scenarios of the six dimensions equal to the sum of the

numbers above i.e. N = 1, 421, 927. Each user is presented with two randomly sampled sce-

narios of each of the above dimensions, in addition to one completely random scenario (that can
4To see how this calculation is done, consider the following set

X = {(c, c) | c 2 C} [ {(c, ) | c 2 C} [ {( , )}

where “ 00 refers to no character in that entry. Now drawing unordered 5 samples with replacement can be done in

�|X|+4
5

�

ways. However, this includes undesirable cases e.g. drawing ( , .) five times, where “.00 is a character or “ 00.

Thus, the subtracted term.
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have any number of characters on each side and in any combination of characters). These to-

gether make the 13 scenarios per session. The order of the 13 scenarios is also counterbalanced

over sessions. Using a similar calculation as before, the number of distinct random scenarios is

⇥�

x+4
5

�

� 1

⇤2, where x = |C|+ 1 = 21. Hence, the number of distinct completely random scenar-

ios is N
Random

= 14, 102, 512, 516. These, of course, include scenarios from the six dimensions

above.

In addition to the above six dimensions, the following three dimensions are randomly sam-

pled in conjunction with every scenario of the six dimensions above:

1. Interventionism. This dimension tests the extent to which the omission bias (i.e. the favor-

ability of omission/inaction over the commission/action). In every scenario, the car has to

make a decision as to stay (omission) or to swerve (commission). To model this dimension,

each of the generated scenarios would have one side as the omission, and the other as the

commission, or vice versa. This multiplies the number of scenarios by two. To see why,

consider a gender-dimension scenario. It can have two possibilities when Interventionism is

added: females sacrificed on omission vs. males sacrificed on commission, and vice versa.

2. Relationship to vehicle. This dimension tests the preference to save the passengers over the

pedestrians and to what degree it differs from the case of saving pedestrians over other group

of pedestrians. Each scenario presents a tradeoff of either between passengers and pedestri-

ans, or between pedestrians and other groups of pedestrians. A large concrete barrier serves

as a visual indicator of the case where the passengers may be sacrificed. Pedestrians are ren-
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dered over a zebra crossing, which is split by an island in case of a pedestrian vs pedestrian

scenario. Pedestrians can be crossing either ahead of the car (for the case of passengers vs.

pedestrians), on the other lane (also for the case of passengers vs. pedestrians), or on both

lanes (for the case of pedestrians vs. pedestrians). To model this dimension, each of the gen-

erated scenarios would have both sides on zebra crossings; one side inside the car, and the

other on the zebra crossing; or vice versa. This multiplies the number of scenarios by three.

To see why, consider again the gender-dimension scenario. It can have in conjunction with

this dimension the following possibilities: female passengers vs. male pedestrians, female

pedestrians vs. male passengers, and female pedestrians vs. male pedestrians.

3. Concern for law. This dimension tests the effect of adding legal complications in the form of

pedestrian crossing signals. Scenarios can have no crossing signals (no legal complications),

crossing signals on either side of the crossing, that all have the same light color, red or green

(for the case passengers vs. pedestrians), or crossing signals on either side of each lane’s

crossing, if split by an island, where the light color of one side is different from the light

color of the other side e.g. green vs. red (for the case of pedestrians vs. pedestrians). In the

last case, the crossing signal on the main lane can be green (i.e. legal crossing), in which

case, the crossing signal on the other lane is red (illegal crossing), or vice versa. In the case

of matching green/red light crossing signals, the two signals are either both green (legal) or

red (illegal). To model this dimension, each of the generated scenarios would have no legal

complication, one side as legal, or the same side as illegal (the other side will be a function

of this side). This multiplies the number of scenarios by three. To see why, consider again
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the gender-dimension scenario. It can have in conjunction with this dimension the following

possibilities: female pedestrians with no legal considerations, female pedestrians crossing

legally, and female pedestrians crossing illegally. The other side would always feature male

pedestrians/passengers with their legal considerations determined as a function of the legal

considerations of the female pedestrians.

The above three extra dimension can be factored independently from each other. Hence,

they all together multiply the number of distinct scenarios by 18. Thus, the overall number of

distinct scenarios of the nine dimensions (i.e. excluding the completely random scenarios) is M =

18⇥N = 25, 594, 686 (or approximately 26M ).

The stay/swerve outcomes are rendered on the fly by overlaying vector graphic stylized icons

of the characters and dynamic objects on a static image background depicting the respective out-

come course, and the left/right position of each outcome is switched randomly, so as to avoid any

bias from handedness. A short delay featuring an animated visual distraction is forced between

choice commitment and the rendering of the next scenario, so as to allow the user to mentally clear

and shift.

The damage level to each character is depicted using either a skull icon (death), an equal-

armed cross icon (injury), or a question mark icon (unknown). For simplicity, scenarios generated

in the Judge interface have the possibility of death only. The other two levels (injury and unknown)

are only used in the Design interface.
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Apart from the instructions available on the main page, a brief description of each outcome

may also be viewed by clicking a button below the depiction of each outcome, describing the

circumstances of the vehicle (autopilot with sudden brake failure), its course in that outcome, and

any pedestrian crossing signal(s) involved, as well as a list of the impacted characters and the

damage to them that will result in that outcome.

After the user has completed assessing all 13 scenarios, they are presented with a summary

of their decisions, a sample of which can be seen in Fig. S2.

Figure S2: A sample of the summary results shown to users upon finishing all 13 scenarios. Only

three sliders out of the overall nine sliders are shown.
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Demographic Survey Four months after the initial deployment, an extension of the user result

interface was added to collect demographic information and feedback on the user’s perception of

their own moral priorities along each dimension. This survey helps us understand the type of users

visiting our website, and to assess the effects of demographic characteristics, political views or

religious beliefs on moral preferences 1. The survey contains demographic questions about age,

gender, income, education, religious views, and political views. Further, it asks users to provide

their stated preferences over the nine dimensions using sliders. Additionally, the survey contains

four questions that concern the attitude towards machine intelligence. However, we do not use

respondents’ answers to these questions here or in the main manuscript.

Whether the option to do the survey appeared before or after the user saw their Results

page was counterbalanced between users. In addition, the survey questions were presented in

four blocks. Each block contains one group of questions: (a) the stated preference sliders, (b) the

demographic questions (age, gender, income, and education), (c) the political and religious view

questions, and (d) the “attitude towards machine intelligence” questions. The order of the blocks

and the order of questions within each block was also counterbalanced between users.

3 Estimating Causal Effects

We employ conjoint analysis to identify causal effects of multiple treatment components (i.e. fac-

tors) simultaneously. In a conjoint design, respondents are asked to choose from, or rate profiles

that represent multiple attributes. For example, respondents may be asked to perform multiple tasks
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of voting for one out of three candidates after being presented with the age, gender, education, in-

come, etc. of each, and the components of competing profiles are manipulated independently.

Conjoint analysis has been introduced in political science by Green and Rao 2. Similar tools were

independently introduced by sociologists under names like “vignettes” or “factorial surveys” 3, 4.

We follow the framework proposed by Hainmueller et al. 5, in which they proposed the potential

outcomes framework of causal inference 6, 7 to analyze the causal properties of conjoint analy-

sis. They proposed two variations of outcome variable: choice-based variable (choosing one of

multiple profiles), and rating-based variable (rating each profile). Their framework allows for non-

parametric identification of causal effects under few testable assumptions that do not include any

modeling assumptions. Following, we review notation, assumptions, causal quantities of interest,

identification strategies, and estimation strategies, before we present how this can be applied to our

data. Then, we present our results, and conclude this part with robustness checks.

Notation. Consider a random sample of N respondents, indexed by i 2 {1, . . . , N}, from a pop-

ulation P . Each respondent i is presented with K tasks, indexed by k 2 {1, . . . , K}. In each task

k, respondent i chooses from (or rate each of) J profiles, indexed by j 2 {1, . . . , J}. Each profile

j in task k is characterised by L attributes, indexed by l 2 {1, . . . , L}. Each attribute l is assumed

to have D
l

levels, indexed by d
l

2 {t
l1, . . . , tlDl

} (continuous attributes are discretised).

For example, in the case of Moral Machine, the number of respondents is N = 2.3 M .

Each respondent is presented with K = 13 tasks.5 Each task consists of J = 2 profiles (left vs.
5Each complete session consists of 13 scenarios. A respondent may choose to complete more/less than a one

complete session. For that, a clean version of the analysis considers only the first complete session per respondent.
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right in the desktop interface or default vs. non-default in the mobile interface). Each profile is

characterised by L = 4 attributes (Interventionism, Relation to AV, legality, and characters type).

Each of the four attributes has D
l

= 2 levels.6 For the characters type, we will repeat the analysis

for each of the six dimensions (gender, age, fitness, social value/status, species, and utilitarianism),

and each of these attributes has two levels.

Let C be the Cartesian product of all possible levels of attributes: C =⇥L

l=1
{t

l1, . . . , tlDl
}.

We use an L-dimensional vector T
ijk

= [T
ijk1, . . . , TijkL

]

> 2 T ✓ C to denote a treatment that

is presented to respondent i as the jth profile in her kth task, where T
ijkl

is the lth attribute

of the profile, and T is the domain of all profiles of interest. An example of a treatment is

[Omission, Passengers, No Legality, Males], which represents a profile in which

an AV with all-male passengers would hit a barrier killing all passengers, if left without interven-

tion. We also use T
i

= (1, . . . ,T
iK

) to denote the set of all JK profiles presented to respondent

i, where T
ik

= [T
i1k, . . . , TiJk

]

> is the set of all attribute values for all J profiles in the task k

presented to respondent i. An example of a realization of T
ik

is:

t =

2

6

6

4

Omission Passengers No Legality Males

Commission Pedestrians No Legality Females

3

7

7

5

which represents a task with two profiles. The task features an AV with all-male passengers

This makes the number of respondents N less than 2.3 M .
6The attribute legality has Dl = 3 levels, but when we analyze the effect of this attribute, we only consider the two

levels of legal crossing and illegal crossing.
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that would hit a barrier killing all passengers, if left without intervention. On the other hand, if

the AV swerves, it will, instead, kill a group of all-female pedestrians crossing on a road with no

crossing signals.

Given t, a realization of T
ik

(or a sequence of profile attributes), let

Y
ik

(t) = [Y
i1k(t), . . . , YiJk

(t)]>

be the J-dimensional vector of potential outcomes for respondent i when presented with task k,

where Y
ijk

(t) is the potential outcome for profile j. Using the choice tasks, we have:

8i 8k 8t :

J

X

j=1

Y
ijk

(t) = 1

Assumptions. The conjoint analysis performed here relies on the following three simplifying as-

sumptions (taken from 5). The first assumption is that the potential outcomes remain stable regard-

less of the task order k. This means that a respondent’s response to a treatment is the same whether

she answers the task before or after answering other tasks.

Assumption 1 (Stability and No Carryover Effects). Potential outcomes always take

the same value as long as all the profiles in the same choice task have the same set of

attributes. Formally:

8i 8j 8k, k0 8T
i

,T0
i

: [T
ik

= T0
ik

0 ) Y
ijk

(T
i

) = Y
ijk

0
(T0

i

)]

where T
i

= (1, . . . ,T
iK

) and T0
i

= (1, . . . ,T0
iK

).
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The second assumption is that the potential outcomes remain stable regardless of the profile

order j within a task. This means that a respondent’s response to a task is the same no matter how

the profiles are ordered within this task.

Assumption 2 (No Profile-Order Effects). Potential outcomes always take the same

value regardless of the order of the profiles in the same choice task. Formally:

8i 8j, j0 8k 8T
ik

,T0
ik

: [(T
ijk

= T 0
ij

0
k

^ T
ij

0
k

= T 0
ijk

) ) Y
ij

(T
ik

) = Y
ij

0
(T0

ik

)]

where T
ik

= [1, . . . ,T
iJk

]

> and T0
ik

= [1, . . . ,T0
iJk

]

>.

The third assumption is that the potential outcomes are statistically independent of the profile.

This means that the attributes of each profile are randomly generated. This holds if attributes were

randomly assigned to each profile. This assumption has a second part in which every combination

of attribute values for which potential outcomes are defined has a non-zero probability.

Assumption 3 (Randomization of the Profiles). Potential outcomes are statistically

independent of the profiles. Further, all the possible attribute combinations for which

potential outcomes are defined have non-zero probability. Formally:

8i 8j 8k 8l 8t : [(Y
i

(t) ?? T
ijkl

) ^ (0 < p(t) ⌘ p(T
ik

= t) < 1)]

where independence is the pairwise independence between each element of Y
i

(t) and

T
ijkl

.
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Our design ensures the satisfaction of the first part of the third assumption and it allows us

to partially test for the first two assumptions. Given our design restrictions (to be mentioned later),

the second part of assumption 3 is only satisfied for combinations of interest.

Causal quantities of interest – identification and estimation strategies The main quantity of

interest is the average marginal component effect (AMCE), and it represents the marginal effect of

an attribute l averaged over the joint distribution of other attributes. Under assumptions 1, 2, and 3

above, this quantity is given by:

ˆ⇡̄
l

(t1, t0, p(t)) =
X

(t,t)2eT

n

E
⇥

Y
ijk

|T
ijkl

= t1, Tijk[�l] = t,T
i[�j]k = t

⇤

� E
⇥

Y
ijk

|T
ijkl

= t0, Tijk[�l] = t,T
i[�j]k = t

⇤

o

⇥ p
⇣

T
ijk[�l] = t,T

i[�j]k = t|(T
ijk[�l],Ti[�j]k) 2 eT

⌘

where T
ijk[�l] is the (L � 1)-vector of other components (for choice task k, profile j, faced

by respondent i), T
i[�j]k is the [(J � 1) ⇥ L]-matrix of other profiles (for choice task k faced by

respondent i), and eT is the intersection of the support of p(T
ijk[�l] = t,T

i[�j]k = t|T
ijkl

= t1) and

p(T
ijk[�l] = t,T

i[�j]k = t|T
ijkl

= t0).

Consider the following assumption:

Assumption 4 (Conditionally Independent Randomization). An attribute compo-
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nent of a treatment can take any value after conditioning on some of the other attribute

values. Formally:

8i 8j 8k 8l : [T
ijkl

?? {T S

ijk

, T
i[�j]k}|TR

ijk

]

where TR

ijk

is an LR-dimensional subvector of T
ijk[�l], and T S

ijk

is the relative comple-

ment of TR

ijk

w.r.t. T
ijk[�l].

Under assumptions 1,2,3, and 4, AMCE can be non-parametrically estimated using the fol-

lowing unbiased subclassification estimator:

ˆ

ˆ⇡̄
l

(t1, t0, p(t)) =
X

t

R2T R

(

P

N

i=1

P

J

j=1

P

K

k=1 Yijk

{T
ijkl

= t1, T
R

ijk

= tR}
n1tR

�
P

N

i=1

P

J

j=1

P

K

k=1 Yijk

{T
ijkl

= t0, T
R

ijk

= tR}
n0tR

)

⇥ P
⇣

TR

ijk

= tR
⌘

where n
dt

R is the number of profiles for which T
ijkl

= t
d

and TR

ijk

= tR, and T R is the intersection

of the supports of p(TR

ijk

= tR|T
ijkl

= t1) and p(TR

ijk

= tR|T
ijkl

= t0). A proof is provided in 5.

Given the correspondence between subclassification and linear regression, one can use linear

regression to compute the above estimator. As a result, the use of linear regression would allow for

non-parametric (unbiased) estimation, even though the outcome variable is binary.

A special case of Assumption 4 is when TR

ijk

has a length of zero, which corresponds to a

completely independent randomization. In this case, the above equation reduces to:
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ˆ

ˆ⇡̄
l

(t1, t0, p(t)) =
X

t

R2T R

(

P

N

i=1

P

J

j=1

P

K

k=1 Yijk

{T
ijkl

= t1}
n1

�
P

N

i=1

P

J

j=1

P

K

k=1 Yijk

{T
ijkl

= t0}
n0

)

where n
d

is the number of profiles for which T
ijkl

= t
d

.

For interaction, we do two types of interactions (both were suggested in 5): 1) interaction

between different components (formalized as the average component interaction effect (ACIE)),

and 2) interaction between components and respondent’s background information (formalized as

conditional AMCE). Both can be estimated by subclassification and applying linear regression

estimators (while including interaction terms).

For variance estimation, as proposed in 5, we calculate within-respondent cluster-robust stan-

dard errors to account for the fact that the observed choice outcomes within each task are strongly

negatively correlated for each respondent (a respondent will choose one outcome over the other,

especially in the 2-profile outcomes we consider), and to account for the fact that tasks within each

respondents are expected to be positively correlated (given respondent’s unobserved characteris-

tics).

Empirical design restrictions. It would be very simple, for the analysis, to consider all possible

combinations of attributes when creating profiles, and to test for all possible combinations of pairs

of profiles. However, this would result in unrealistic scenarios. As such, two types of restrictions

were applied: one at the level of profiles, and another at the level of profile pairing. An example of
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the former is a restriction that disallows some combination of levels of the two attributes relation

to AV and legality. Specifically, profiles that feature passengers cannot have legal considerations

(legal crossing or illegal crossing). This restriction stems from the requirement of a realistic sce-

nario in which passengers make no legality-related decisions. This restriction does not exist for

pedestrians who can make (il)legal decisions by crossing on a green or a red signal. Therefore,

comparing pooled profiles of pedestrians to pooled profiles of passengers would result in a biased

estimate of effect despite the random generation of the two factors, legality and relation to AV.

Fortunately, the fourth assumption above allows for conditioning on the no legality level in order

to produce an unbiased estimate for the effect of relation to AV (that is pedestrians and passengers

are compared only when there is no legality involved). Similarly, the same assumption allows us to

condition on the pedestrian level in order to produce an unbiased estimate for the effect of legality

(that is legal crossing and illegal crossing are compared only for pedestrians).

An example of the second type of restrictions (at the profile pairing level) is one that disal-

lows two profiles that both feature omission to be presented in the same task. Not enforcing this

restriction would result in a dilemma in which an AV has two decisions to make, these two deci-

sions would result in different outcomes, yet both decisions are no action decisions (i.e. omission).

One can easily see the value of enforcing such restriction. However, other similar restrictions that

were enforced at the level of profiles pairing are probably less obvious. For example, an argument

can be provided against pairing profiles that both require commission (though, it is less obvious);

omission level profiles are needed in every task, because it should be always possible for the AV

to do nothing. Given this, a restriction was put at the level of profile pairing, that is a profile with
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omission decision is always paired with a profile with commission decision, and vice versa. Simi-

lar pairing-level restrictions were also applied to other attributes. For example, while profiles with

pedestrians can be paired with profiles with either pedestrians or passengers, two profiles with pas-

sengers cannot be pit against each other. The reason is simply because tasks that weigh passengers

against another group of passengers would require adding another AV, a more complicated task

that we would like to postpone to future work for its game-theoretic consideration. Note that when

calculating the effect of relation to AV only tasks that pair pedestrians profiles with passengers

profiles are considered; that is scenarios that weigh pedestrians to another group of pedestrians

are excluded from analysis for this attribute. This level of restriction was also enforced beyond

the first three attributes, and applied to the character types attribute; up until recently, males were

always weighed against females, elderly always against young, fit always against large, high social

value always against low social value, humans always against pets, and more characters always

against fewer characters (utilitarian). Some of these restrictions are indeed crucial and remov-

ing them would result in unrealistic tasks such as the case for utilitarian scenarios; profiles with

more characters can only be paired with profiles with fewer characters. In other character types,

these restrictions are not needed but are still justifiable; for example in the case of age, one can

take profiles with young character to mean younger characters instead. In this case, profiles with

younger characters can only be paired with profiles with older characters (and the same for profiles

with older characters). Similar justification can be made for fitness, and social value character

types. This restriction however is not justified for the gender and species character types. One can

imagine realistic scenarios in which all-male characters are weighed against all-male characters, or
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all-pets against all-pets. This type of restriction does not bias the estimator either, but it limits the

interpretation of the estimated effect to scenarios that follow these restrictions. Recently, a small

proportion of scenarios that weigh a group of characters against a similar group of characters,

sampled from five out of the six character types above (utilitarianism is excluded) were added.

However, they were not included in the main results to avoid inconsistent interpretations. One

can expect that including these scenarios, and re-weighting to give them an equal representation

in data would result in halving the effect sizes of the five character type attributes; increasing the

effect sizes of interventionism, relation to AV, and legality; and having no effect on utilitarianism

attribute. This would make for an unfair comparison between the nine attributes.

One final consideration is the use of non-uniform distributions for some of the treatment lev-

els. An example of this is in legality attribute. For a simple analysis, one would assign each of the

three levels: no legality, legal crossing, and illegal crossing with equal probability. However, we

chose to present respondents with scenarios that have no legal considerations (no legality) more of-

ten than with scenarios that involve legal considerations. As such using the estimator above would

provide a biased estimate of the marginal effect of other attributes. To see why, note how given that

two attributes can “interact”, and probability of levels for the first attribute are not uniform, then

the marginal effect of the second attribute will be biased, or will have a different interpretation that

is conditional on the used distributions (which do not reflect distributions in reality, and thus are

not defensible). However, this can be fixed by weighting observation by the inverse probability of

the corresponding levels of legality (i.e. inverse probability of treatment). Weighting observations

here is done using the distribution chosen by design (theoretical probability of each subgroup), and
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it simply ensures that the regression function would calculate weighted means instead of pooled

means. Alternatively, one can avoid weighting by using a modified version of the estimator above

that would calculate the mean of each subgroup (each combination of attributes) and then would

take the mean of means for each attribute level.

Results. We consider “forced choice” outcome in which respondents choose one of the two pro-

files they are shown in each task. Each profile describes a potential decision that can be made by

an AV, and it would result in sacrificing a group of characters in order to spare another group of

characters. Thus, each task describes a dilemma faced by an AV in which it has to make one of two

decisions (two profiles). Respondents choose the decision (a profile described by four attributes)

that they prefer for the AV to make over the other decision. The less a profile is chosen, the more

the decision of sparing the characters in it is preferred by respondents.

The data is re-shaped so that each observation is a profile, and the outcome is a binary

variable representing whether characters in this profile were spared by the respondent (spared here

means the respondent chose for the AV to sacrifice the characters in the opposite profile).

Under the assumptions above, AMCEs were non-parametrically estimated using a simple

linear regression of the binary choice variable of sparing on the dummy variable of the attribute

with clustered standard errors. For relation to AV attribute, only scenarios that have pedestrians

vs. passengers, and that have no traffic lights (no legal complications) were considered. For law

attribute, only scenarios that have legal crossing vs. illegal crossing, and that have pedestrians vs.

pedestrians were considered. For Social Status, scenarios that include at least one of male/female
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doctor, pregnant, or criminal were excluded, in order to have a cleaner interpretation (though in-

cluding these scenarios yields a similar result and effect size). For all other attributes, all scenarios

were considered, but observations were re-weighted, as mentioned above, using inverse probabil-

ity of treatment for each subgroup. Coefficients of the treatment variables represent the value of

interest, the AMCE for that treatment (attribute).

Figure S3 shows the AMCEs for the nine attributes. These AMCEs can be also meaningfully

compared to each other. Coefficients and their standard errors are shown for each attribute level

as compared to the baseline level of each attribute. The baseline levels of each attribute were

chosen as to make all coefficient signals on the same side (all are positive). For each attribute,

the AMCE (x-axis) represents the increase in probability of sparing a group of characters when

the attribute value changes from a baseline value (values at the left e.g. sparing passengers) to the

other value (values at the right e.g. sparing pedestrians). In other words, for each attribute/row,

�P is the difference between the probability of sparing characters described by the attribute level

on the righthand side and the probability of sparing characters described by the attribute level on

the lefthand side (aggregated over other attributes). For example, in the case of age attribute, the

chosen probability of sparing a group of young characters is 0.49 (SE = 0.0008) greater than the

chosen probability of sparing a group of elderly characters, when an AV is to choose between

sparing a group of elderly characters and a group of young characters. The same goes for the other

attributes. In the case of intervention attribute, the probability of choosing inaction (to keep the AV

on its track) is 0.06 (SE = 0.0004) higher than the preference for action (to swerve the AV off its

track). As noted earlier, these interpretations are restricted to the cases where two different groups
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of characters are on each side of the dilemma.

Sparing Pets −> 
 Sparing Humans

Sparing Fewer Characters −> 
 Sparing More Characters

Sparing the Elderly −> 
 Sparing the Young

Sparing the Unlawful −> 
 Sparing the Lawful

Sparing Lower Status −> 
 Sparing Higher Status

Sparing the Large −> 
 Sparing the Fit

Sparing Males −> 
 Sparing Females

Sparing Passengers −> 
 Sparing Pedestrians

Preference for action −> 
 Preference for inaction

0.0 0.2 0.4 0.6
 ∆ Pr

Effect of attributes on decision for AV to spare

Figure S3: Average marginal causal effect (AMCE) of attributes in Moral Machine. Each row

represents the difference between the probability of saving characters possessing the attribute on

the right, and the probability of saving characters possessing the attribute on the left, aggregated

over all other attributes. Estimates are the coefficients of a simple linear regression of the binary

choice variable on the dummy variable of the attribute with clustered standard errors, and boxes

show the 95% CI of the mean. Fig.2 (a) in the main manuscript is a more visually appealing version

of this figure.

Next, we investigate interaction effects between attributes. This would be useful to analyze

whether the causal effect of some attributes vary depending on the value of another attribute. For

example, the causal effect of character type attributes may be different for passengers than for

pedestrians. For this example, one would condition on whether characters are passengers or pedes-

trians, and calculate AMCEs for each of the six character type attributes, as shown in Figure S4 (b).
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One can alternatively condition on interventionism and legality (as in Figure S4 (a), (c)).

Another interesting type of interaction is between respondents’ background and attributes.

This would be useful to analyze whether the causal effect of some attributes vary depending on

respondents’ background characteristics. For example, the causal effect of gender or age attributes

may very depending on the respondents’ gender or age. For these examples, one would con-

dition on whether respondents are males/females or on whether respondents are young/elderly,

as shown in Extended Data Fig. 4 (a), (b). For example, �P |female respondents vs.

�P |male respondents. In the case of gender, the two subpopulations are males and females.

As for the other respondents’ background variables, a cutoff or a grouping of categories was used

to define each subpopulation as the following: for age (15-75 years old), political views, and re-

ligious views, upper quartiles (Older, Progressive, Very Religious) and lower quartiles (Younger,

Conservative, Not Religious) were considered. For income, ordinal categories corresponding to

annual income that is below $10K were grouped together (Lower Income) and ordinal categories

corresponding to annual income that is more than $80K were grouped together (Higher Income).

For education, Vocational Training, High School degree or lower categories were grouped together

(Less Educated); while only Graduate Degree category was considered as its own group (More Ed-

ucated). Indicated values outside the above-mentioned values were discarded from this analysis.

Note how in each subfigure in Extended Data Fig. 4, the AMCE of each of the nine attributes has a

positive value for all subpopulations e.g. both males and females indicated preference for Sparing

Females, but the latter group showed stronger preference.
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Sparing Pets −> 
 Sparing Humans

Sparing Fewer Characters −> 
 Sparing More Characters

Sparing the Elderly −> 
 Sparing the Young

Sparing the Unlawful −> 
 Sparing the Lawful

Sparing Lower Status −> 
 Sparing Higher Status

Sparing the Large −> 
 Sparing the Fit

Sparing Males −> 
 Sparing Females

Sparing Passengers −> 
 Sparing Pedestrians

0.0 0.2 0.4 0.6 0.8
 ∆ Pr

Intervention
Commission
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Split on 'Intervention'
Effect of attributes on decision for AV to spare

(a) Split on Interventionism

Sparing Pets −> 
 Sparing Humans

Sparing Fewer Characters −> 
 Sparing More Characters

Sparing the Elderly −> 
 Sparing the Young

Sparing Lower Status −> 
 Sparing Higher Status

Sparing the Large −> 
 Sparing the Fit

Sparing Males −> 
 Sparing Females

Preference for action −> 
 Preference for inaction

0.0 0.2 0.4 0.6 0.8
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Barrier
Passengers

Pedestrians

Split on 'Barrier'
Effect of attributes on decision for AV to spare

(b) Split on Relation to AV

Sparing Pets −> 
 Sparing Humans

Sparing Fewer Characters −> 
 Sparing More Characters

Sparing the Elderly −> 
 Sparing the Young

Sparing Lower Status −> 
 Sparing Higher Status

Sparing the Large −> 
 Sparing the Fit

Sparing Males −> 
 Sparing Females

Preference for action −> 
 Preference for inaction

0.0 0.2 0.4 0.6 0.8
 ∆ Pr

CrossingSignal
Ilegal Crossing

Legal Crossing

No Legality

Split on 'CrossingSignal'
Effect of attributes on decision for AV to spare

(c) Split on Legality

Figure S4: Average marginal causal effect (AMCE) of attributes in Moral Machine conditioned on

(a) interventionism, (b) relation to AV, and (c) legality.
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There are three points to make about this kind of analysis. First, there is the danger of con-

tamination effects whereby whichever task was completed first–the ethical scenarios or the back-

ground characteristics survey–may have affected the results of the task completed subsequently.

In Moral Machine, for reasons related to respondent fatigue and boredom (very crucial aspect of

such a gamified survey), the survey always came after respondents completed a set of 13 scenarios.

While we believe the risk of contamination is low, it is more likely in the case for political and re-

ligious views than for age, gender, income or education, so one must be careful when interpreting

the interactions of the political and religious views. Second, the data used for this type of interac-

tion is limited to respondents who took the optional survey, who might not be representative of the

other survey non-takers. However, we show below that the AMCEs of these two groups (survey

takers and survey non-takers) are not substantially different.

Third, by conditioning on each demographic attribute unilaterally, we neglect the fact that

these attributes are correlated in our data e.g. our female respondents are more likely to be young.

This could potentially mean that differences based on gender are driven by differences based on

age. To address this, we include all six characteristic variables in regression-based estimators of

each of the nine attributes. The dependent variable for each attribute is re-coded as to whether

the respondent chose the preferred option or not. For example, in the case of Fitness the depen-

dent variable becomes whether the respondent spared the fit or not (binary), while the treatment

variable of “fitness” is removed from the regression. Furthermore, to account for the non-uniform

treatments of Legality and Relation to AV (which was accounted for by re-weighting in the main

effect), the treatment variables corresponding to Legality and Relation to AV (Structural Covari-

29



ates) were included. Moreover, “Income” variable is turned from bracketed categorical variable

into a continuous variable by choosing the midpoint of each bracket, while using $150K for the

top bracket (> $100K; calculated as the mean of an assumed Pareto Type I distribution with

↵ = 3, x = 100K). Then, it is standardized along with the other continuous predictor variables:

Age, Political views, and Religiosity, while Education variable is re-coded into a binary variable:

“Is college educated”. To account for correlation of responses within a respondent, cluster-robust

standard errors were computed. Finally, to account for multiple comparisons, more conservative

significance cutoff threshold were used at: 0.01, 0.001 and 0.0001 (see Extended Data Fig. 3).

The scale of the website allowed for randomization over other elements, which helped strengthen

the external validity of the results. Aside from the above-mentioned nine attributes, other attributes

were also varied. These were the number of characters in the profile, the difference in number of

characters between the paired profiles, and the characters themselves. This allows us to study the

effect of these attributes, using the same tools. However, some restrictions were also enforced

for these variables. As for the first two, their effect can be only studied within the “number of

characters” dimension and the completely random scenarios. This is due to fixing the number of

characters among the paired profiles in other character type attributes. Moreover, the characters

that are used in the dilemmas spanned a diverse possible groups of characters. Out of 20 different

characters, a subset of relevant characters were considered within each characters type attribute (as

explained earlier in the previous subsection).

In order to identify causal effects of characters, we employed a similar approach to the above.
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Consider the context-independent effect of character, which is shown in S5 (f). First, only scenarios

that are generated “randomly” (i.e. other than the six dimensions), and that feature one character on

one of the two sides are used for this calculation. Then, effects were non-parametrically estimated

using a simple linear regression of the binary choice variable of sparing on the dummy variable

of the character with clustered standard errors (while re-weighting, as before, using inverse prob-

ability of subgroups, that was chosen by design). The baseline case for each character is an adult

man or an adult woman (i.e. dummy variable of a character is 1 for the character, and 0 for adult

man/woman). So, Figure S5 (f) shows the effect of replacing an adult man/woman by each of the

other characters, ordered from the most positive to the most negative. For each character/row, �P

is the difference between probability of sparing this character (when it is alone) and the probability

of sparing one adult man/woman (aggregated over attributes Interventionism, Law, and Relation

to AV). For example, the probability of sparing a girl is 0.15 (SE = 0.003) higher than the proba-

bility of sparing an adult man/woman, while the probability of sparing a cat is 0.16 (SE = 0.003)

lower than the probability of sparing an adult man/woman. Other figures are generated similarly

after conditioning on an attribute (e.g. age, social status). For example, Figure S5 (a) shows that

within the age attribute, replacing one neutral character (man or woman) with an elderly man de-

crease the probability of choice for sparing this character by 0.03 (SE = 0.003). For this example,

these effects are conditional on the attribute (or context) of age. One can also show the change in

probability as a result of replacing two and three (neutral characters).
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(f) Within Random

Figure S5: Characters effect within dimensions: (a) age, (b) fitness, (c) species, (d) gender, and (e)

social value. (f) context-independent characters effect on the probability of choice for sparing this

character. Fig.2 (b) in the main manuscript is a more visually appealing version of figure (f).
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Robustness Checks. We now turn to checking the validity of the found results. We start with

internal validity. For that we need to check that the above-mentioned assumptions hold. For

assumption 1 (no carryover effect), this means that a respondent’s choice of a profile over another

in a task is the same regardless whether the respondent had seen other tasks before or not. This can

be achieved by estimating the AMCEs for each attribute in 13 sub-samples: 1st task subsample,

..., 13th task subsample. We are able to perform this because the order of the different tasks

is randomized (so each dimension and each combination of attributes can appear in any order).

Extended Data Fig. 1 (a) shows the AMCEs for each of the nine attributes (ten levels) across the

13 task orders. One can see how the AMCEs estimates are very similar for each task order. Even

when two AMCEs of an attribute are different for different task orders, the difference is small and

both are in the same direction.

We now turn to assumption 2 (no profile order effect). This means that a respondent’s choice

of a profile over another is the same regardless of the order of the two profiles within the task.

Similarly, this can be achieved by estimating the AMCEs for each attribute in two sub-samples:

left-hand (default in mobile) profiles and right-hand (non-default in mobile) profiles. We are able

to perform this because the order of the two profiles is randomized within a task (so each dimension

and each combination of attributes can appear on the left or on the right of the screen). Extended

Data Fig. 1 (b) shows the AMCEs for each of the nine attributes across the two orders. One can

see how the AMCEs estimates are very similar for each profile order. Even when two AMCEs of

an attribute are different for different profile orders, the difference is small and both are in the same

direction.
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As for assumption 3 (randomization of profiles). This means that attributes of each profile

are randomly generated. This should be satisfied by design. However, one can still check for that,

just to confirm that nothing wrong had happened during the randomization process. First, we note

that the actual representation of subgroups in our data almost matches the designed (true) propor-

tions of these subgroups. To check the extent of such mismatch, we compare the effects calculated

by weighting using actual proportions to the effects calculated by weighting using theoretical (de-

signed) proportions. Extended Data Fig. 1 (c) shows the AMCEs for each of the nine attributes

across the two weighting schemes. One can see how the AMCEs estimates are very similar for

each distribution (designed vs. actual).

We now turn to external validation. There are various factors to check. Two important factors

relate to the interface effect. First, whether respondents recognized the characters and were able to

differentiate between them can influence their judgment. It is possible that some characters are hard

to recognize. A useful feature of the website, that would help testing this is the “show description”

button. When this button is clicked, a description of the scenario and the involved characters is

provided. This description is not provided by default to avoid cognitive load. Thus, similar to the

check for profile order, we split data into two subsamples: 1) description is seen, and 2) description

is not seen. Extended Data Fig. 2 (a) shows the AMCEs for each of the nine attributes across these

two subsamples. Indeed, when respondents saw the description of the scenario, attributes had

larger effect. This means that the reported effects are possibly underestimated.

The second important factor is the platform used. Mainly, two platforms were used by re-
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spondents: desktop and mobile (the third one is the tablet by a smaller fraction). These two plat-

forms have slightly different interfaces, which can result in different assessment. For example,

because of the small screen of the mobile, only one profile can be seen at a time, unlike the case

with desktop in which respondents can see both profiles together (which makes it easier for com-

parison). Additionally, characters are smaller on mobile which might make it harder to recognize

them. To check for any platform effect, we split data into two subsamples: 1) data collected from

desktop, and 2) data collected from mobile. Extended Data Fig. 2 (b) shows the AMCEs for each

of the nine attributes across these two subsamples (platforms). One can see some differences for

some AMCEs. However, for every attribute, the difference between the two platforms is not very

large and both values are on the same direction.

Another check we perform in regard to external validity is the difference between three dif-

ferent data sets. As explained earlier, we use for analysis the full data set. However, a case could be

made against using all the collected data. After all, the full data set includes incomplete sessions,

and it includes multiple sessions per same respondent. Despite accounting for within-user correla-

tions, results could be biased to users who chose to take more sessions. Further, the inclusion of

repeated sessions per user can also have the problem of adapting respondents, who upon seeing a

summary of their results decided to make different decisions. For all these reasons, we constructed

another data set that includes the first completed session by each user. This second data set includes

equal representation of each user, and it does not include post-summary responses (i.e. responses

to scenarios presented after seeing one’s summary page), which deals with the above issues. How-

ever, it introduces another issue, that it excludes a possibly different group of respondents.
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The third data set we consider is the responses in a sessions after which a survey was filled

by the corresponding respondent. Recall that when analyzing the interaction between respondent’s

background attributes and profile attributes, we had to limit this analysis to a subset of the full data;

a subset that includes only the observations for which respondents chose to take the survey. One

can see how this subset of data could result in different results from the full data set. After all, the

respondents contributing to this data are the ones who voluntarily chose to take the optional survey

at the end. Those respondents can be fundamentally different from the remaining participants.

Extended Data Fig. 2 (c) shows the AMCEs for each of the nine attributes across the three data

sets. One can see some differences between the three data sets, but the direction and the magnitudes

of the effects are in agreement.

Another point that can be made is about the representativeness of respondents. After all,

respondents in our case are the ones who chose to visit the website and take the test. It is important

first to note what kind of demographics these respondents represent. Extended Data Fig. 8 shows

that most users are male, went through college, and are between their 20s and 30s. While this

indicates that the users of Moral Machine are not equally representative of all demographics, it is

important to note that this sample at least covers broad demographics. The unequal representation,

however, could be taken to mean that it represents the population that uses the Internet, which

includes, to be more specific, the tech-savvy users and AI/AV enthusiasts. These are the individuals

that are the most interested in the technology of the AVs, and are thus the most likely to have

formed an opinion about this technology, and most likely to adopt this technology in the future.

Furthermore, compared to data collected from lab-based experiments, online experiments, and field
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experiments for research conducted in psychology, cognitive science, and behavioral economics,

this respondent sample falls on the less biased side of the spectrum 8.

In addition, the problem of disproportionate representation of demographics can be partly

dealt with in different ways, if one is willing to make further assumptions. For example, given

that 70% of participants are males, the reported effect sizes are skewed towards male preferences,

which differ from female preferences in some aspects (as shown in Extended Data Fig. 4 (b)). One

way to deal with this follows from the above argument to treat the sample of respondents as a rep-

resentative sample of the “population of interest” (e.g. tech-savy, AI/AV enthusiasts). This entails

conceding that this population is comprised of 28% females, the truth of which is hard to validate.

Another way to deal with it, is to re-weight the observations so that female respondents have 50%

representation in the data. This can be done easily by re-weighting using inverse probability of

each group of respondents (males vs. females). In fact the result of doing so can be inferred from

Extended Data Fig. 4 (b). The effects would be pulled in the direction of female preferences half

way. One can simply look at that Extended Data Fig. 4 to know how the effects would become

if we try to balance the representation of high-income vs. low-income, highly-educated vs. less-

educated, etc. However, one has to note that re-weighting is not perfect either, and it relies on the

assumption that, for example, females who chose to take the Moral Machine test are very similar

to females who did not choose to do so. This, of course, might not be the case. The same holds for

other demographic attributes. Furthermore, it is very likely that our sample is not representative

with respect to the combination of the observed demographic variables (e.g. disproportionate rep-

resentation of young non-religious males). In the next subsection, we provide a post-stratification
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analysis for the respondents in the US only (who took our survey). However, given the prob-

lem mentioned above about post-stratification, and the difficulty of obtaining data and performing

same analysis for all countries, we opt for treating the respondents sample as representative of the

“population of interest” in the main paper.

A similar but perhaps more interesting case could be made about the country of respondents.

The reported results are conditional on the proportion of respondents visiting from each country.

As such, some countries (e.g. US, Russia, Canada, Germany, France) have more representation

than others. The same choices as above hold here; either accept these percentages as representative

of the “population of interest”, or re-weight relying on the above assumption of representative

samples from each country (e.g., Indians who took the test are similar to Indians who did not).

One might object here that not only is this a strong assumption, but also that re-weighing in this

regard would give small countries like Luxembourg an equal weight to large populous countries.

Another possibility is to re-weight so that, instead of countries having equal representation in the

data, that countries have weights proportional to their actual population proportion. This would

give higher weight to countries with high population (e.g. China, India, Russia, US, etc.), which

some would find problematic for other reasons. So, each of the three possibilities we just presented

is both justifiable and open to criticism.

Post-Stratification. To analyze the extent of performing post-stratification, we focus on US re-

spondents only. From Moral Machine data we extract data for respondents from US who took

the survey. Discarded from this data are respondents who indicated age outside (15-75) years old,
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and respondents who indicated “vocational training” or “others” as their educational level. Income

levels are shrinked from the previous nine levels, and Age levels are created using equal-width

discretization. For external “representative” dataset, we use population-level data from US Census

Bureau’s 2012–2016 American Community Survey (ACS) 5-year Public Use Microdata Sample

(PUMS), accessed through American FactFinder 9. This dataset has 15M records. Extended Data

Fig. 9 (a)-(d) shows the proportion of the two US population samples (MM vs. ACS) across levels

of each of the four attributes: Age (6 levels), Gender (2 levels), Income (5 levels), and Education

(5 levels). One can see that MM US-sample has an over-representation from Male population and

from young population, as compared to the ACS US-sample.

After that, we calculate the number of people in each cell of Age (6 levels) x Gender (2

levels) x Income (5 levels) x Education (5 levels) = 300 levels. The ACS dataset has data that cover

all 300 levels. However, MM Survey in US data has only data that cover 280 cells. The remaining

20 cells cover less than 4% of the ACS data (those cells were discarded). The levels above are

chosen minimally to cover as many cells as possible.

In order to perform post-stratification, we first calculate the effect size of the nine attributes

for the above MM dataset. Then, we follow the following procedure : 1) calculate the percentage

of respondents in each of the 280 cells in MM data and in ACS data, 2) divide the numbers for

ACS by the numbers for MM, 3) use the answers to re-weight instances in the regression function.

Extended Data Fig. 9 (e) shows the comparison between pre- and post-stratification. It

shows that, except for Sparing Pedestrians, re-weighting does not make much difference for effect
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sizes. In fact, for the attributes that have the strongest effects (the last five rows in Extended

Data Fig. 9 (e)), there is no change in order and there are only small changes in estimates. This

analysis is of course not sufficient to establish what the effect would be had we had representative

samples. First, as mentioned before, post-stratification is not perfect because it assumes that the

participating subjects in a cell are similar to non-participating subjects from that cell, which is a

strong assumption. Second, for cross-country results, one would need to repeat the same analysis

for each of the remaining 129 countries.

4 Identifying Cross-Country Variations

In this section, we describe our approach to identifying cross-cultural differences and similarities

among countries in ethical preferences observed in Moral Machine.

In addition to the response data, Moral Machine captures approximate geo-location infor-

mation of the respondents through the IP addresses of the computers and mobile devices that the

respondents used to access the website. Using the geo-location information, we identified the

country of residence of the respondents at the time when the respondent engaged in judgement

mode of Moral Machine. With the knowledge of country of residence, we divided the judgments

based on the respondent’s country of residence, which gave us the information to study the cultural

differences in preferences among countries represented in Moral Machine.

In order to maintain consistency and high fidelity of the AMCE values, we excluded judg-

ments from countries that had fewer than 100 respondents; as a result, we narrowed down the
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analysis to 130 countries. Using the responses collected from each country, we computed the nine

ACME values for each country using the methodology described in Sec. 3, and in order to compare

the distributions of the effect sizes in a comparable scale, we converted the nine ACME values into

nine z-scores (x�µ

�

) for each country.

Figure S6 shows a matrix plot for pairwise correlation and scatter plots of the nine attributes

at the level of countries (130 countries). Remarkably, the nine attributes show only few pairwise

notable correlations: (More, Young), (Young, High), (High, Inaction), and (High, Fit).

Hierarchical/Agglomerative Clustering While there is panoply of clustering algorithms in ma-

chine learning literature such as K-means, Gaussian Mixture Models, and DBSCAN 10, most

clustering algorithms do not provide results that enable us to analyze structural patterns within

a cluster. A methodology that uncovers structural patterns within clusters is a general family of

clustering algorithms called hierarchical clustering algorithms. Hierarchical clustering algorithms

build nested clusters by merging or splitting the clusters successively in multiple iteration and rep-

resent the nested structure as a dendrogram tree. The root of the tree encompasses all of the data,

and the leaves of the tree represents a single data point as it’s own cluster. Agglomerative algo-

rithm performs hierarchical clustering via a bottom up approach wherein each data point starts as

its own cluster. The algorithm builds nested clusters by merging or splitting the clusters succes-

sively in multiple iterations and represents the nested structure as a dendrogram tree. The root of

the tree holds all data points, and the individual leaf of the tree represents single data point as its

own cluster.

41



●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

● ●
●

●

●
●

●

●

● ●

● ●

●

●
●

●

●
●

●

●

●
●

●
●

●
●● ●

●

●
●● ●● ●

● ●

● ●

●

●

●●
●

●

● ●

●

●

●

●

●
●

●

●
●
● ●

●

●
● ●

●

●●

●

●
●●
●

●

●

●● ●

●

●
●

●

●

●

●
●

●
●

●
●

●
●● ●

●

●

●●
●

●

●

●

●
●●●

●

●

●

●

●

●

●
●
● ●

●●

●

●
●●

●

●

●

●●
●

●

● ●

●

●

●
● ●
●

●
●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●
●

●

●

●

● ●

●
● ●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

● ●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●
●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●● ●

●●

●

●
●

●
●●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●●● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●●
●

● ● ●
●

●
●●●

●

●
● ●●●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●
●

●

● ●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

● ●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●
● ●
●

●● ●

●
●

●

● ●
●

●

●

●
●

●

●

●
●

●

●
● ●

●

●
●

●●● ●

●

●

●

● ●

●●
●

●

●

●
●●

●

●
● ●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

● ●

● ● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●●

●●

●

●

●
● ●

●
●

●
●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●

●
●
●

●

● ●

●

●

●

●
●

●

●
●

●

●●

● ●●
●
●

●
●

●

●
● ●

●

● ●

●

●

●
●

●

●

●●

●

●
● ●

●

●●
●

●● ●
● ●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

● ●

●

●

● ●

●
●

●●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

● ●

●

●
●●

●
● ●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●● ●
●●

●

●
●

●

●

●

●
●●● ●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●
●
●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●
●● ●

●

●

●

●

●
●

●

●●

●

●
●●● ●

●

●

●

●●
●

●
●

●

●

●
●

●

●●

●

●
●

Corr:
0.034

●

●

●

●

●
●

● ●
● ●

●

●
● ●

●

●

●

●● ●

●

● ●

●

●

●
●●

●

●
●

●

●
●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●
●
●

●

●
●
●

●
●

●

●

●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●● ●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●
●
●
● ●

●

●
●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●●
●

●●
●

●
●
●●●

●

●
●● ●●

●
●

●

●

●

● ●

●

●

●

●

●
●●

●

●
●
●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

● ●

●

●

●
●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●●
● ●

●
●●●

●
●

●

●●
●

●

●

●
●

●

●

●
●

●

●
● ●

●

●
●

●● ●●

●

●

●

● ●

● ●
●

●

●

●
●●

●

●
●●

●

●●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●● ●

●●

●

●

●
●●

●
●
●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

● ●●
●

●

●
●

●

●
● ●

●

● ●

●

●

●
●

●

●

●●

●

●
●●

●

●●
●

● ●●
●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●
●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●
●

●

● ●

●

●
● ●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●● ●
●●

●

●
●

●

●

●

●
● ●● ●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●
●

●●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●
●●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●
●● ●

●

●

●

●

●
●

●

●●

●

●
●● ● ●

●

●

●

● ●
●

●
●

●

●

●
●

●

●●

●

●
●

Corr:
−0.17

Corr:
−0.046

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

● ●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●●

● ●

●

●
●

●
●●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●●● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

● ●
●

●●●
●

●
● ●●

●

●
●●● ●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●
●
●
●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

● ●

● ●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●
● ●

●
● ●●

●
●

●

●●
●
●

●

●
●

●

●

●
●

●

●
● ●
●

●
●
●●● ●

●

●

●

●●

● ●
●
●

●

●
● ●

●

●
●●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●● ●

●●

●

●

●
● ●

●
●
●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

● ●

● ●●
●

●

●
●

●

●
●●

●

●●

●

●

●
●

●

●

● ●

●

●
●●

●

●●
●

●●●
●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●
●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●
●

●

●

●
●●

●
●

●

●●

●

●
●●

●
●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ● ●
●●

●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

● ●
●
● ●
●
● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

● ●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●
● ●●

●

●

●

●

●
●

●

● ●

●

●
●●● ●

●

●

●

●●
●

●
●

●

●

●
●

●

●●

●

●
●

Corr:
−0.07

Corr:
−0.14

Corr:
0.088

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

● ● ●

●●

●

●
●

●
●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●●● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

● ●
●

●●
●

●
●
● ●●

●

●
● ●●●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●
●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●●
● ●

●
●●●

●
●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●
●

●● ●●

●

●

●

●●

● ●
●

●

●

●
● ●

●

●
●●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

● ●

●● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●● ●

●●

●

●

●
● ●

●
●
●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●●●
●

●

●
●

●

●
● ●

●

●●

●

●

●
●

●

●

● ●

●

●
●●

●

●●
●

● ●●
● ●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

● ●

●

●

●●

●
●

●●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●
●

●

● ●

●

●
●●

●
● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●● ●
●●

●

●
●

●

●

●

●
●●●●

●

●
●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

● ●
●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●
●● ●

●

●

●

●

●
●

●

● ●

●

●
●●● ●

●

●

●

●●
●

●
●

●

●

●
●

●

●●

●

●
●

Corr:
−0.4

Corr:
−0.12

Corr:
0.18

Corr:
0.34

●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

● ●
●

●●●
●

●
● ●●

●

●
● ●● ●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●
●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

● ●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●
●●

●
● ●●

●
●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●
●

●●●●

●

●

●

●●

● ●
●

●

●

●
● ●

●

●
●●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●● ●

●●

●

●

●
●●

●
●

●
●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

● ●

●● ●
●

●

●
●

●

●
●●

●

●●

●

●

●
●

●

●

● ●

●

●
●●

●

●●
●

● ●●
● ●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●
●

● ●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●●

●

●
●●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●
● ●

●

●
●

●

●

●

●
● ●●●

●

●
●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●●
●

● ●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●
● ●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●
●●●

●

●

●

●

●
●

●

● ●

●

●
●●●●

●

●

●

●●
●

●
●

●

●

●
●

●

● ●

●

●
●

Corr:
0.071

Corr:
−0.072

Corr:
0.062

Corr:
−0.076

Corr:
−0.17

●

●
● ●
●

●
●

● ●● ●

●

●

●

● ●

●●
●

●

●

●
●●

●

●
●●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

● ●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●● ●

●●

●

●

●
●●

●
●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

● ●

● ●●
●
●

●
●

●

●
●●

●

● ●

●

●

●
●

●

●

●●

●

●
●●

●

●●
●

●● ●
●●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●
●

●●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●●

●

●
●●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●
●●

●

●
●

●

●

●

●
● ●● ●
●

●
●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●●
●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●
●●●

●

●

●

●

●
●

●

● ●

●

●
●●●●

●

●

●

●●
●

●
●

●

●

●
●

●

●●

●

●
●

Corr:
−0.17

Corr:
−0.048

Corr:
0.21

Corr:
0.29

Corr:
0.47

Corr:
−0.11

● ●

●●●
●

●

●
●

●

●
● ●

●

●●

●

●

●
●

●

●

●●

●

●
●●

●

●●
●

●●●
●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●●

●

●

●●

●
●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●
●

●

●

●
● ●

●
●

●

●●

●

●
●●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●
●●

●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

● ●
●
● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

● ●
●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●
●●●

●

●

●

●

●
●

●

● ●

●

●
●●● ●

●

●

●

●●
●

●
●

●

●

●
●

●

● ●

●

●
●

Corr:
−0.032

Corr:
−0.02

Corr:
0.18

Corr:
0.16

Corr:
0.17

Corr:
−0.24

Corr:
0.65

●●
●
●●

●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

● ●
●

● ●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

● ●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●
●●●

●

●

●

●

●
●

●

● ●

●

●
●●● ●

●

●

●

● ●
●

●
●

●

●

●
●

●

● ●

●

●
●

Corr:
0.29

Corr:
−0.013

Corr:
−0.17

Corr:
−0.26

Corr:
−0.19

Corr:
0.13

Corr:
0.0043

Corr:
0.11

Inaction Pedestrians Female Fit High Legal Young More Humans

Inaction
Pedestrians

Fem
ale

Fit
High

Legal
Young

M
ore

Hum
ans

0.00 0.03 0.06 0.09 0.0 0.1 0.2 0.0 0.1 0.2 0.3 0.05 0.10 0.15 0.20 0.250.2 0.3 0.4 0.5 0.25 0.30 0.35 0.40 0.45 0.4 0.5 0.6 0.40 0.45 0.50 0.55 0.60 0.3 0.4 0.5 0.6 0.7

0

5

10

15

0.0

0.1

0.2

0.0

0.1

0.2

0.3

0.05

0.10

0.15

0.20

0.25

0.2

0.3

0.4

0.5

0.25

0.30

0.35

0.40

0.45

0.4

0.5

0.6

0.40

0.45

0.50

0.55

0.60

0.3

0.4

0.5

0.6

0.7

Figure S6: Pairwise correlations of the nine attributes at the level of country. One can see that

attributes have few pairwise correlations, with the exception of some interesting ones like the one

between sparing more and sparing the young.

Adopting notations from 11, we define a data set X as a set of N data points represented as

vectors of F dimensions. A clustering of X is a set of disjoint clusters that partitions X into K
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groups C = {c1, c2, ..., cK} where [
ck2Cck = X and c

l

\ c
k

= ;, 8k 6= l.

In the first iteration,
�

N

2

�

distance values between base N clusters are computed using a

distance metrics. We used Euclidean distance for our analysis. After the distance values have

been evaluated, a linkage criteria is used to determine two clusters c
i

and c
j

to combine to form

a new cluster c
k

. There are many linkage criterions and depending on the choice of linkage cri-

terion, agglomerative hierarchical clustering algorithm can yield different dendrogram structures

and clustering outcomes. We explored the following three popular linkage criterions:

• Ward variance minimization (Ward)
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where c
k

is a newly formed clustered consisting of clusters c
i

and c
j

and c
l

is an unused

cluster.

• Complete or Maximum linkage (Complete)
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k
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l
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ci2ck
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• Average linkage (Average)

d(c
k

, c
l

) =

X

ci2ck

X

cj2cl

d(c
i

, c
j

)

|c
k

| ⇤ |c
l

| (3)

Validation. In machine learning literature, a substantial volume of research exists in theoretical

guarantees and empirical evaluations of supervised machine learning algorithms. In contrast, re-

search in validation metrics of unsupervised machine learning algorithms, including clustering
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algorithms, is a relatively novel and open-area of research. Nevertheless, machine learning re-

searchers have introduced several metrics to evaluate clustering algorithms, and the vast majority

of the metrics can be classified into two categories: internal and external metrics. For both internal

metrics, higher index value indicates “better” fit of partition to the data.

Internal Validation. Internal metrics are values derived from the data itself to measure the good-

ness of clusters by computing compactness and separation of the clusters. Here, we use the internal

metrics to compare the three distance measures of clusters and select the best viable distance met-

ric to study cross-cultural differences in AMCE values. Of the numerous metrics in literature, we

utilized two well-established internal metrics:

• Calinski-Harabasz Index 12 as defined by

CH(C) =

N �K

K � 1

P

ck2C |c
k

|d(c̄
k

, ¯X)

P

ck2C
P

xi2ck ||xi

, c̄
k

||2)
(4)

which measures cohesion based on the distances from the points in a cluster to its centroid

c̄
k

=

1
|ck|

P

xi2ck xi

. The separation is measured as the distance from the centroids to the

global centroid ¯X =

1
N

P

xi2X x
i

.

• Silhouette Index 13 as defined by
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1
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X
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X
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which measures cohesion as the distance between all points in the same cluster and separa-

tion as the distance to the nearest neighbor.

We tested the performances of the three linkage criterions by computing the two internal

metrics from the outputs of the algorithm across increasing number of clusters |C|. By increasing

the number of clusters and testing the algorithms fit independently, we measured consistency in the

performances of the algorithms as the algorithm explore deeper levels of the dendrogram hierarchy.

We also included K-means algorithm as a benchmark in this experiment.

As measured by Calinski-Harabasz Index, the Ward variance minimization criterion outper-

forms Complete and Average methods where |C| < 20; albeit, it performs relatively poor com-

pared to the K-means. However, as the cluster size increases, all four algorithms converge toward

the same index value (Extended Data Fig. 6 (a)).

As measured by Silouette Index, Average criterion outperforms other algorithms where

|C| < 10; however, as the cluster size increase, Ward variance minimization criterion outper-

forms other methods until the cluster number is large enough that all four methods converges to

the same value (Extended Data Fig. 6 (b)).

This validation process using the two internal metrics reveals that Ward variance minimiza-

tion criterion yields partitions that are relatively stronger fit on the country level AMCE values.

Henceforth, we applied Ward variance minimization criterion in our hierarchical clustering analy-
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sis in the following section.

External Validation. In contrast to internal metrics, external metrics utilize information not avail-

able in the data source such as clustering output performed by human experts or broadly agreed on

clustering output as labels (i.e. ground truth) to measure goodness of fit of clustering algorithm.

Here, we define the number of clusters in the hierarchical clustering algorithm to nine clusters,

and compared the distribution of countries (see Table S1) in the nine clusters against nine cultural

groups of Inglehart-Welzel (IW) cultural map, which are (1) South Asia, (2) Protestant, (3) Or-

thodox, (4) Latin America, (5) Islamic, (6) English, (7) Confucian, (8) Catholic, and (9) Baltic

14.

We use two external metrics, Purity and Maximum Matching as measures of goodness of fit.

Purity quantifies the extent that cluster i contains points (i.e. countries) only from one partition in

the ground truth clusters, and it is computed as

purity =

1

N

K

X

i=1

max

j2(1,...,K)
n
ij

(8)

where K is the number of clusters/cultural groups, N is the number of countries, and n
ij

is the

total number of countries that are both in cluster i and in cultural group j.

Purity permits multiple clusters to correspond to one partition in the ground truth. Ideally,

one would like to evaluate the quality of a 1-to-1 correspondence between clusters and cultural

groups. For that, maximum matching computes the proportion of mutual countries in 1-to-1 cluster-

group pairs.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Switzerland Italy United Kingdom Poland Cambodia

Germany Bulgaria Austria Latvia Japan
Norway Croatia New Zealand Slovenia Macao

Denmark Romania Ireland Ukraine China
Netherlands Estonia United States Russia South Korea

Finland Serbia Canada Belarus Taiwan
Luxembourg Montenegro South Africa Moldova Thailand

Austria Belgium Lithuania Georgia Kuwait
Iceland Spain Vietnam Kazakhstan Saudi Arabia
Sweden Portugal Tunisia Brazil Hong Kong
Cyprus Greece Qatar Indonesia

Sri Lanka Bosnia & Herzegovina Albania Malaysia
Singapore Trinidad & Tabago

Jamaica
Iraq

Bangladesh
Cluster 6 Cluster 7 Cluster 8 Cluster 9

Iran New Caledonia Azerbaijan Kenya
Nepal Reunion Turkey

Pakistan Malta Peru
Jordan Mongolia Argentina

Palestinian Territory Algeria Uruguay
Armenia Morocco Bolivia

Macedonia Dominican Republic Ecuador
India France Columbia

Mauritius Czech Republic Venezuela
United Arab Emirates Hungary Honduras

Egypt Slovakia El Salvador
Lebanon Panama

Philippines
Guatemala
Paraguay

Chile
Puerto Rico
Costa Rica

Mexico

Table S1: Partition of countries into nine clusters found via hierarchical clustering algorithm.

We leave out countries such as Nigeria and Israel that are not classified in the Inglehart-Welzel (IW)

cultural map 14. 47



In order to evaluate the quality of the clusters we found in Table S1 and how closely they can

be matched to Inglehart-Welzel (IW) cultural groups, we consider the set of our clusters and the

cultural groups as the vertices of a graph G. Here, maximum matching refers to the quality of our

clusters, and it is the value of the maximum weighted bipartite matching, where an edge between

a cluster and a group is weighted by the number of shared countries between them.

Formally, let M be the set of all possible perfect matchings of G. A matching M 2 M is a

set of edges. Let n(e
ij

) be a function that computes the weight of each edge e
ij

between cluster i

and cultural group j. Maximum matching is given by:

maxmatching =

1

N
max

M2M

X

eij2M

n(e
ij

) (9)

Application of hierarchical clustering algorithm to AMCE values yields purity value of

0.5888 and maximum matching value of 0.5421. In addition, in order to evaluate hierarchical clus-

tering algorithm, we tested the algorithm’s purity and maximum matching metrics against those of

random clustering assignments. We generated 1000 randomly assigned clusters and computed pu-

rity and maximum matching values. Extended Data Fig. 6 shows the distribution of (c) purity and

(d) maximum matching values of the randomly assigned clusters. The red dotted lines mark the

purity and max-matching values of the outcome of hierarchical clustering algorithm. The striking

differences in the values from hierarchical clustering algorithm against those from random cluster-

ing assignment suggests that hierarchical clustering algorithm yields robust clustering outcomes.
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Furthermore, they indicate that hierarchical clustering algorithm using AMCE values in Moral Ma-

chine yields a clustering pattern consistent with broadly accepted understanding of global cultural

groups.

Southern
Eastern

Western
Southern

South Asia

Protestant

Orthodox

Latin 
America

Islamic

English

Confucian

Catholic

Baltic

Other

Eastern
Western

Figure S7: Hierarchical Cluster of Countries based on average marginal causal effect. One

hundred thirty countries with at least 100 user responses are selected. Three colors of the den-

drogram branches represent three large clusters – Western, Eastern, and Southern. Names of the

countries are colored according to Inglehart-Welzel cultural map 14. This is Fig.3 (a) from the main

manuscript, copied here for convenience.
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Results The structure of the dendrogram (See Figure S7) reveals patterns that are consistent with

our existing views about cultural and geographical groupings among countries around the world.

At the highest level, the dendrogram has three major clusters, which we label Western, Eastern, and

Southern. We use the labels based on the overall pattern of countries represented in each cluster.

For instance, the Western cluster contains many European and North American countries whereas

the Eastern cluster contains the countries in the Middle-East and the Far East. The Southern cluster

consists of many countries in South and Central America, in addition to some countries that are

characterized in part by French influence e.g., metropolitan France, French overseas territories,

and territories that were at some point under French leadership. Latin American countries are

cleanly separated in their own sub-cluster within the Southern cluster. These patterns in the clusters

suggests that the judgment data in Moral Machine has captured moral preferences consistent in

geographic and cultural clusters of countries around the world.

Aggregating the AMCE values of the countries into three large clusters show striking differ-

ences in the distribution of preferences between the clusters along the nine dimensions (See Figure

S8). For instance, countries in the Western cluster show stronger preference for inaction in the In-

tervention dimension compared to those of the other clusters whereas the Southern cluster exhibits

stronger preference for sparing female characters compared to the other cluster. On the other hand,

all three clusters share similar distributions on the dimension about relation to AV suggesting that

there are certain moral dimensions that most cultures concur.

To further analyze the relationships between countries based on the moral preferences re-
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Figure S8: Density plots of the AMCE z-scores show differences in distributions of the effect

sizes between the three large clusters. Higher z-scores indicate stronger preference for the de-

fault choice; for instance, the high z-score distribution in the Southern cluster along the Gender

dimension reveals that the countries in this cluster have stronger preference for sparing female

characters.

vealed in Moral Machine, we conducted dimensionality reduction using Principle Component

Analysis (PCA) on the original nine AMCE values (Figure S9(a)). We transformed the data that

consisted of the original nine AMCE values into two dimensional values. Distribution of the coun-

tries along the two new basis reveals that the three large clusters divide the countries into three

cluster that are consistent with variance maximizing dimensions.

Pearson correlation values in AMCE z-scores between countries (Figure S9(b)) show con-

sistent pattern that matches the structural patterns in the dendrogram. Countries that belong to the
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(a) (b)

Figure S9: Principle component analysis and Pearson correlation matrix. (a) Scatter plot

of countries along the first two principle components after performing dimensionality reduction

using Principle Component Analysis. (b) Pearson correlation matrix of the nine AMCE values and

dendrogram from hierarchical clustering.
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same cluster show generally higher degree of correlation validating the outcome of the hierarchical

clustering algorithm.

Neutralizing language effect The reader might note that the clusters might have formed as a

result of the language used (recall that the website is available in ten languages). An example for

this with respect to the French language can be seen in Figure 3 (a) from the main manuscript.

Some countries in the Southern cluster are identified as former French colonies. There can be

various cultural or otherwise reasons for these countries having closer responses to each other.

Nevertheless, one might suspect that the use of the French version of the website had a special

effect on responses from those countries. The French language seems to be the only clear example

for this case. For example, Spain is in a different cluster from the Southern cluster which includes

many Spanish-speaking countries. One needs to note here that the scenarios on Moral Machine

are heavily pictorial and the only use of language is in the optional textual description which is not

shown by default to respondents. In fact, when we exclude responses for which the description

was seen by respondents (that is, consider only scenarios where respondents depended only on

pictures to make their decisions) we find that the same clusters persist with some minimal changes,

especially in regard to the French-related countries (see Extended Data Fig. 5).
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5 Explaining Cross-Country Variations

Societies vary widely along many dimensions: the proper functioning of large-scale institutions

like democracy, the consistency of the rule of law, corruption, and GDP per capita. One of the im-

portant dimensions is one that relates to cultural differences captured by Hofstede’s Individualism-

collectivism dimension. In this section, we establish that cross-societal variation in these dimen-

sions are highly correlated of Moral Machine decisions. In other words, inter-societal differences

in Moral Machine behavior vary systematically with underlying societal characteristics, as op-

posed to being independent. While we document a systematic variation, we do not attempt to pin

down the ultimate reasons for the inter-societal variation. A growing body of literature suggests,

however, that they are deeply rooted in societies longer-term history (see 15 for an overview).

The systematic variation highlights that societies attribute different weights to moral dilem-

mas arising through technological innovations. This has important implications when designing

and implementing regulations. On the one hand, objectives and implementing procedures are

highly contingent on societal values and norms. On the other hand, even if there was such a thing

as a universally morally right behavior based on a normative theory, from which formal regulations

could be inspired, they would be only effective and followed if they are perceived to be legitimate

and palatable to the local population. The variation we document suggests that universal regula-

tions face an uphill battle and that regulations will need to take societal differences into account.

We document cultural differences to the degree that individuals value rules and rule-following.

Individuals in the Moral Machine make choices in trade-offs between sparing rule-followers
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Figure S10: (a) Individualism and Moral Machine Behavior. Top panel reveals the association

between individualism and the preference for inaction, middle panel the association with the prob-

ability to spare more (vs fewer) people, and bottom panel the probability to spare the young. (b)

Rule of Law and Moral Machine Behavior. Top panel reveals the association between societies

rule of law and the probability to spare the higher status, second panel the association with the

probability to spare humans, third panel the association with the probability to spare more charac-

ters, and the last panel the association with the probability to spare rule-followers. Colors follow

clusters colors from Figure 3 in the manuscript.
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vs rule-flouters. A higher propensity to spare rule-followers reflects a greater respect (or perceived

legitimacy) of formal rules. Consequently, we expect participants from societies that score higher

on the governance indicator rule of law–which measures perceptions of the quality of ones soci-

etys body of legal rules and institutions–exhibit a higher propensity to spare rule-followers. On

the one hand, individuals growing up in societies with well-functioning institutions learn to trust

institutions and to internalize the norm so that deviations do not pay off for them. On the other

hand, weak institutions can be an expression of lower societal inclination to follow formal rules

16. Figure S10 (b) indeed reveals a positive association: a one-standard deviation increase in the

rule of law (based on the world banks governance indicator) is associated with an 3.4 percentage

point increase in sparing rule-followers over rule-flouters. Given the well-established importance

of well-functioning institutions for economic prosperity, log GDP per capita measure is likewise

highly predictive of sparing rule-followers (see Figure 4 (b) in the main text).

Systematic variation also exists regarding other choices. Consistent with the ideal that em-

phasizes equality before the law and human rights, individuals from high rule of law countries

are also more likely to spare more characters, more likely to favor humans over non-humans, and

less likely to favor higher-status (over lower-status) characters. Higher societal-level inequality

(as measured by the Gini-coefficient) is likewise associated with a higher propensity of sparing

higher-status (over lower-status) individuals. This may be due to the fact that people with higher

status – and more likely to be early adopters of driverless cars – are overrepresented in our sample,

especially in countries with high income inequality. This points to a potential moral hazard in these

countries, whereby driverless cars would protect their wealthy owners at the expense of others (see
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Extended Data Fig. 7 for the simple and linear regression models including our key cross-national

predictor variables.)

The difference between “individualistic” cultures (which emphasize personal freedom and

achievement) and “collectivistic” cultures (which stress embeddedness into a larger group) has

emerged as a key and frequently discussed distinction in cross-cultural research 17. The distinction

has been used to explain differences in institutional quality and economic prosperity 18 19, and is

likely deeply rooted in societies kin-network structures (Schulz, Bahrami-Rad, Beauchamp, and

Henrich in prep). Tight kin-network structures are not only negatively associated with individu-

alism but can also explain modern day institutional failure 20. Figure S10 (a) demonstrates that

individualism is highly predictive of Moral Machine choices. Consistent with the emphasis on the

individual, the probability of sparing more (vs fewer) people increases in individualistic countries,

and the value assigned to human (vs non-human) lives is likewise higher. Meanwhile, the often

very hierarchical structure of collectivist societies, with its emphasis on conformity and obedience

towards older relatives, is reflected in the relatively lower likelihood of sparing younger people in

the Moral Machine decisions made by those in more collectivist countries.

Overall, this demonstrates that societal indicators are predictive of choices on Moral Ma-

chine. The cluster analysis has already demonstrated that the range of participating societies ex-

hibit clustering in these choices. Now, we go a step further by investigating cultural transmission.

This is an important factor in explaining cultural similarities among societies. Culture is transmit-

ted vertically from parent to child, as well as horizontally across populations. Work by Spolaore
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and Wacziarg 21 and Muthukrishna et al. 22 has demonstrated that genetic relatedness at the societal

level is significantly associated with cultural similarities. The idea is that (i) populations that are

more closely genetically related shared a longer common ancestry and thus will have had less time

to diverge from each other on culturally transmitted traits and (ii) genetically more closely related

populations have a higher propensity to adopt novel norms and values from each other. Genetic

relatedness (or distance) measures differences in gene distributions across populations. It is based

on neutral genes that change randomly over time and do not impact behavior. The measure thus

reflects common ancestry (or the time elapsed when different populations were separated). Ances-

trally closer populations are genetically more similar, share a longer common history and thus face

fewer barriers to transmission of culture.

To investigate whether ancestrally closer societies also behave similarly in the Moral Ma-

chine we correlated genetic distance to the US (based on 23) to Moral Machine distance to the

US. Moral Machine behavioral distance (see Figure S11 (a)) is computed using Euclidean distance

of the nine attribute values of each country from those of the US. Figure S11 (b) reveals a high

correlation. To rule out the possibility that correlation is trivially driven by geographic proximity

(ancestral closer population residing closer together), we ran a simple OLS regression analysis

controlling for geodesic distance, and demonstrate that the relation holds (Table 1, Column 1).

This suggests that common ancestry, which is determined in the distant past when human’s started

to emigrate from Africa, and Moral Machine behavior are closely linked. Societies that are genet-

ically more related also behave in a similar way.

58



a

b

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●● ●

●

●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

DZA

AND

ARG

ARM

AUS

AZE

BHR

BLR

BRA

BGR

CAN

CHL

CHN

COL

CYP

ECU

EGY

EST

FIN

FRA

GEO
DEU

GTM

HKG

HUN
IND

IDNIRN IRQ

ITA

JPN

JOR

KAZ

KWT

KGZ

LBN

MYS

MEX

MDA

MNEMNE

MAR
NLD

NZL

NGA

NOR

PAK

PSEPSE

PER

PHL

POL

QATROU

RUS

SRB
SGP

SVN

ZAF

KOR

ESP

SWE

CHE

TWN

THA

TTO

TUN

TUR

UKR

GBR

USA

URY UZB

VNM

ρ = 0.49
 p < 1e−04

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
● ●

●
●

●

●●●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

AFG

ALB

DZA

AGO

ARG

ARM

AUS

AUT

AZE

BHS

BHR

BGD

BRB

BLR

BEL

BOL

BRA

BGR

KHM

CAN

CHL

CHN

COL

CRIHRV

CYP

CZE

DNK

DOM

ECU

EGY

SLV

EST

FIN

FRA

GEO
DEU

GRC

GTM

HND HKG

HUN

ISL

IND

IDNIRNIRQ

IRL

ISRITA

JAM

JPN

JOR

KAZ

KEN

KWT

KGZ

LVA
LBN

LTU

LUX

MKD

MDG

MYS

MLT

MUS

MEX

MDA

MNG

MAR

MMR

NPL

NLD

NZL

NIC

NGA

NOR

OMN

PAK PAN

PRY

PER

PHL

POL

PRT

QATROU

RUS

SAU

SGPSVK

SVN

ZAF

KOR

ESP

LKA

SWE

CHE

SYR

TWN

THA

TTO

TUN

TUR

UKR

ARE

GBR

USA

URY UZB

VEN

VNM

ρ = 0.58
 p < 1e−04

Cultural Distance from US Genetic Distance from US

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.01 0.02 0.03 0.04 0.05
0

2

4

6

M
M

 d
is

ta
nc

e 
fro

m
 U

S
● ●●● ●

●

●
●
●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
● ●USA CANAUS GBR ZAF

IRL

NZL

CYP

SWE

TUN BGRISL

LUX

EST

ALB

GEO

KAZ

HRV

AUT

MDA

SVN

CRI

ITA

BRB

CZE

MLT

ISR

DEU

ESP

QAT

ROU

HUN

NLD

SGP

VNM

SVK

BIH

ARE

NOR

LTU

MEX

BEL

IND

NIC

MAR

SRB

JAM

LKA

PRT

CHE

GRC

PRY

PRI

KGZ

FIN

CHL

DNKJEY

TTO

LVA

BLR

MNE

MNE

ARG

POL

DOM

LBN

DZA

UKR

RUS

FRA

URY

EGY

UZB

MKD

MUS

IRN

KEN

IRQ

NPL

IDN

GUM

SYR

PER

BGD

MDV

SLV

IMN

BHS

MYS

ARM

GTM

PHL

PAK

TUR

MTQ

PAN

ECU

COL

MNG

AFG

HND

NCL

HKG

BOL

KWT

KOR

PYF

KHM

AND

MMR

SAU

THA

JOR

VEN

AZE

TWN

BRA

CHN

NGA

PSE

PSE

BHR

OMN

AGO

MACMCO

REU

JPN

MDG BRN

0 1 2 3 4 5 6
MM distance from US

Cluster
●

●

●

Cluster 1 (Western)
Cluster 2 (Eastern)
Cluster 3 (Southern)

Figure S11: Moral Machine scale of AI Ethics distance. (a) Distance between each country and

US. Vertical positioning (height and signal) has no indication beyond visual clarity. (b) Association

between MM Distance and cultural distance (left panel, based on the WVS) and genetic distance

(right panel). Each distance is measured to US. Colors follow clusters’ colors from Figure 3 in the

manuscript.

Using a measure of cultural distance based on Muthukrishna et al. 22 likewise reveals a highly

significant association. The cultural distance indicator of Muthukrishna et al. is based on a synthe-

size of a large set of world value survey questions. Resting on this large set of questions it draws a

comprehensive picture of cultural distance. The association between the Moral Machine distance

and cultural distance again demonstrates that cross-societal differences in Moral Machine behavior
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are systematic (and likewise not trivially explained by geodesic distance, Table S2, Column 2).

MM distance from US

(1) (2)

Genetic distance 26.79⇤⇤

(10.991)

Cultural distance 9.32⇤⇤⇤

(2.611)

Geodesic distance -0.00 -0.00
(0.000) (0.000)

Constant 2.82⇤⇤⇤ 2.05⇤⇤⇤

(0.282) (0.382)

N 96 65

R2 0.063 0.183

Table S2: Country-level OLS regressions of Moral Machine distance from the US on Genetic

distance from the US (Column 1) and cultural distance from the US (Column 2). The re-

gression controls for geodesic distance (in km) from the US. Robust standard errors are reported

in parentheses. Asterisks refer to the following significance levels: ⇤ p < 0.10, ⇤ ⇤ p < 0.05,

⇤ ⇤ ⇤ p < 0.01
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Indicators:

• Rule of law: This indicator is one of the World Bank’s governance indicators (see 24). Rule

of law captures perceptions of the extent to which agents have confidence in and abide by

the rules of society, and in particular the quality of contract enforcement, property rights, the

police, and the courts, as well as the likelihood of crime and violence.

• Individualism: This indicator is based on Hofstede 25 (retrieved from http://geert-hofstede.com/,

accessed 28.10.2015). According to Hofstede, individualism (vs collectivism) captures the

following underlying concept: The high side of this dimension, called individualism, can be

defined as a preference for a loosely-knit social framework in which individuals are expected

to take care of only themselves and their immediate families. Its opposite, collectivism, rep-

resents a preference for a tightly-knit framework in society in which individuals can expect

their relatives or members of a particular in-group to look after them in exchange for un-

questioning loyalty. A society’s position on this dimension is reflected in whether people’s

self-image is defined in terms of “I” or “we.” The indicator is based on 30 questions and

largely rests on IBM employees around the world.

• Genetic distance: This indicator is based on 23. This measure captures how distant human

societies are in terms of the frequency of neutral genes among them. As such, 21 describe

it as a molecular clock that characterizes the degree of relatedness between human popu-

lations in terms of the number of generations that separate them from a common ancestor

population. Genetic distance is measured by a fixation index (F
ST

). If two populations have
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identical allele frequencies at a given locus, F
ST

is zero. If two populations are completely

different F
ST

takes the value one. The underlying data on F
ST

genetic distance is based on

26, who compiled data on 267 populations. 23 match populations to countries, using ethnic

composition data by country from 27. The indicator is weighted by the frequency of different

populations residing in a country. It thus represents the expected genetic distance between

two randomly selected individuals, one from each country.

• Cultural distance: This indicator is based on 22. They apply the method from population

genetics and calculate a fixation index (F
ST

) for cultural distance based on answers to the

World Value Survey. Among several technical advantages (e.g. it does not assume that traits

fall along a single dimension and it can handle binary, continuous and nominal traits) it rests

on a comprehensive set of WVS based questions.

• Economic inequality (Gini coefficient). This indicator is based on the UN development

report of the year 2015 or latest 28. The Gini coefficient measures the deviation of the distri-

bution of income among individuals or households within a country from a perfectly equal

distribution. A value of 0 represents absolute equality, a value of 100 absolute inequality.

• Gender gap in health and survival: This is a subindex of the World Economic Forum’s Global

Gender Gap Index 29. It measures disparities between the healthy lives of men and women

focusing on two dimensions: first, the sex ratio at birth, which provides an indication of the

number of girls that are ”missing” due to sex-selective abortions or infanticide. The second

dimension is the life expectancy difference between women and men, up to a maximum

score of parity.
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• Log Gross Domestic Product (GDP) per capita. The GDP per capita data is purchasing

power parity-adjusted GDP per capita in constant 2017 international dollars from the World

Economic Outlook Database by International Monetary Fund 30.
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