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ABSTRACT 

 

Raised albumin-creatinine ratio (ACR) is an indicator of microvascular damage and renal 

disease. We aimed to identify genetic variants associated with raised ACR and study the 

implications of carrying multiple ACR-raising alleles with metabolic and vascular related 

disease. We performed a genome-wide association study of ACR using 437,027 

individuals from the UK Biobank in the discovery phase, 54,527 more than previous 

studies, and followed up our findings in independent studies. We identified 62 

independent associations with ACR across 56 loci (P<5x10-8), of which 20 were not 

previously reported. Pathway analyses and the identification of 20 of the 62 variants (at 

r
2
>0.8) coinciding with signals for at least sixteen related metabolic and vascular traits, 

suggested multiple pathways leading to raised ACR levels. After excluding variants at the 

CUBN locus, known to alter ACR via effects on renal absorption, an ACR genetic risk 

score was associated with a higher risk of hypertension, and less strongly, type 2 diabetes 

and stroke. For some rare genotype combinations at the CUBN locus, most individuals 

had ACR levels above the microalbuminuria clinical threshold. Contrary to our 

hypothesis, individuals carrying more CUBN ACR-raising alleles, and above the clinical 

threshold, had a higher frequency of vascular disease. The CUBN allele effects on ACR 

were twice as strong in people with diabetes – a result robust to an optimization-

algorithm approach to simulating interactions, validating previously reported gene-

diabetes interactions (P≤4x10-5). In conclusion, a variety of genetic mechanisms and 

traits contribute to variation in ACR.  
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INTRODUCTION 

 

High urinary albumin excretion is a marker of chronic kidney disease (CKD) and a 

predictor of mortality and cardiovascular events in the general population and in clinical 

populations, such as individuals with diabetes (1). Moreover, raised albuminuria is 

believed to be indicative of systemic endothelial microvascular damage (2). Albumin-

creatinine ratio (ACR) is an accepted marker of urinary excretion of albumin (3) 

available in large numbers of individuals through routine clinical testing.  

 

Genetic studies of ACR are important as individuals with raised ACR levels due to 

genetics affecting tubular reabsorption, for example, may not be at higher risk of vascular 

disease. Conversely, individuals with low ACR levels due to genotypes that directly alter 

ACR may be missed in clinical tests for microvascular damage. Genetic studies of ACR 

may identify new, or clarify the role of known, pathways altering microvascular function 

or kidney function, or both. 

 

Prior to the availability of data from the UK Biobank, previous genetic association 

studies had identified only one region of the genome robustly associated with ACR at the 

cubilin (CUBN) locus (4-6). Associations were mainly represented by a common single-

nucleotide polymorphism (SNP) (rs1801239) with a minor allele frequency (MAF) of 

10% (5). In addition, van Zuydam et al. showed a putative association between a signal 

on chromosome 6 (GABRR1) and diabetic microalbuminuria (7). Most recently, a rare 

SNP (rs141640975) with a MAF of 0.8% was identified as associated with albuminuria 
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through exome sequencing (8). Ahluwalia et al. also identified evidence of association 

for three genes (HES1, CDC73 and GRM4) after performing gene-based tests. Both 

Teumer et al. and Ahluwalia et al. provided evidence that the CUBN variant has a 3 to 4-

fold larger effect in people with diabetes. Teumer et al. identified two additional loci with 

stronger effects in individuals with diabetes (RAB38/CTSC and HS6ST1).  

 

Mutations in the CUBN gene cause an autosomal recessive disorder, Imerslund Gräsbeck 

Syndrome, characterized by Vitamin B12 malabsorption and, in many cases, mild 

proteinuria (9). Proteinuria in this context is likely to be due to a defect of the cubilin 

receptor which binds albumin in renal tubuli thus decreasing albumin reabsorption (10). 

Therefore, the CUBN variant may alter ACR directly without being associated with renal 

damage. 

 

To understand more about the genetic factors associated with variation in ACR and study 

the implications of carrying multiple ACR-raising alleles with metabolic and vascular 

related disease, we performed a genome-wide association study (GWAS) of ACR using 

437,027 individuals from the UK Biobank study with subsequent replication using 

publicly available data from the CDKGen consortium (5) and the EXTEND study. Our 

study follows those from Haas et al. and Zanetti et al. who identified 46 and 21 genetic 

associations with ACR at the conventional P<5x10
-8

 threshold respectively in smaller 

subsets of UK Biobank participants (N=382,500 and N=218,450 discovery sets 

respectively) (11, 12). In addition to the identification of 20 novel loci in our larger 

sample size, we focused our analyses on those very difficult to perform in the context of a 
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GWAS consortium of many smaller studies and not performed by Haas et al. These 

analyses included testing haplotype effects at the CUBN locus, colocalization of genetic 

associations, and gene-disease interactions in the UK Biobank. 

 

RESULTS 

 

Clinical characteristics of the 437,027 UK Biobank individuals of European ancestry and 

with ACR available are presented in Table 1 and Supplementary Figure 1. The 

characteristics of the EXTEND study individuals are also presented in Table 1.  

 

GWAS of ACR in UK Biobank identified sixty-two associated variants across fifty-

six loci, twenty of which have not been previously associated with ACR. 

We identified 62 statistically independent SNPs in 56 loci associated with ACR at 

P<510
-8

 of which 42 reached P<610
-9

, a threshold that we estimate reflects better the 

5% type 1 error rate (13). Of the 62 associations, 18 were located in loci not previously 

reported to be associated with ACR, and 2 were in low linkage disequilibrium (r
2
<0.1) 

with lead SNPs previously reported. Of these 20 associations, 9 reached P<610
-9

 (Table 

2) The LD score regression intercept was 1.05 indicating limited inflation due to 

population stratification. Conditional analysis revealed five loci containing one additional 

signal and one containing two additional signals (CUBN) (Supplementary Table 1 and 

Supplementary Figs. 2-3).  
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Genetic variants validate in independent data. 

We used summary statistics from the CKDGen consortium meta-analysis of 54,451 

individuals (5) to check for directional consistency of the ACR associated variants. Of the 

62 variants, 47 were available in the summary statistics (including proxy variants at 

r
2
>0.8). The effect estimates of 39/47 SNPs showed directional consistency 

(Pbinomial<0.0001) (Supplementary Table 2). The variants not previously identified also 

showed strong evidence of validation - 15 of the 20 were present in the CKDGen 

consortium (or their proxies), and 11 of these were directionally consistent. In addition, 

8/15 analyzed by the CKDGen consortium reaching P<610
-9

 in our analysis, 7/8 effect 

estimates were directionally consistent. Of the 47 SNPs, the maximum variance 

explained by a single SNP in UK Biobank was 0.03%. We note the power to detect an 

association at P=510
-8

 explaining 0.03% of the variance in 54.451 individuals was 8%, 

and 76% at P=810
-4

 after Bonferroni correction for 62 tests (0.05/62). In the EXTEND 

study of 5,679 individuals with measures of ACR, the overall variance explained by all 

62 ACR-associated SNPs was 0.61% of the inverse-normalized trait (Supplementary 

Table 3). 

 

High genetic risk for ACR increases risk of microalbuminuria. 

We next assessed the risk of being above the clinical threshold of 3 mg/mmol for 

microalbuminuria using a genetic risk score (GRS) for ACR. A one unit increase in the 

ACR GRS was equivalent to 0.07 mg/mmol increase in ACR. In the UK Biobank, a one 

unit increase in the GRS for ACR was associated with a higher risk for being over the 

clinical threshold and this effect was stronger in men (odds-ratio (OR)=1.124, 95%CI: 
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1.116–1.133, P=4.0x10
-202

) than women (OR=1.059, 95%CI: 1.053–1.065, P=3.410
-85

; 

Pinteraction=9.3x10
-34

). To avoid inflated effect estimates due “winner’s curse” we repeated 

this analysis in the independent EXTEND study. A one unit higher genetic risk score for 

ACR was associated with an overall OR=1.062 (95%CI: 1.015 – 1.110, P=0.009). When 

restricting the analysis to CUBN raising alleles, we showed that the 19.9% of UK 

Biobank individuals carrying at least one CUBN raising allele had an OR=1.153 (95%CI: 

1.122–1.185, P=1.0x10
-24

) for being above the clinical threshold compared to those 

carrying no ACR-raising alleles at the locus.  

 

Individuals with a genetic risk score for high ACR have a higher risk of 

hypertension. 

We next tested the combined role of ACR-associated variants in five diseases related to 

vascular dysfunction in the UK Biobank: hypertension, type 2 diabetes (T2D), coronary 

artery disease (CAD), chronic kidney disease (CKD), and stroke. We reasoned this would 

reveal whether individuals with a high ACR genetic risk score were at high risk of 

vascular-related disease. The genetic risk score of raised ACR was associated with higher 

risk of hypertension [OR=1.013, 95%CI: 1.010-1.016, P=1.6x10
-16

], but much weaker or 

no evidence of association with stroke [OR=1.011, 95%CI: 1.001–1.022, P=0.027], T2D 

[OR=1.008, 95%CI: 1.000–1.017, P=0.045], CAD [OR=1.004, 95%CI: 0.999–1.010, 

P=0.13] and CKD [OR=0.996, 95%CI: 0.982–1.010, P=0.59]. These results were not 

strongly influenced by the large effect of SNPs in CUBN - we obtained similar results 

when using a GRS excluding the three variants in CUBN (Supplementary Table 4). We 

had no direct measure of vascular disease and therefore we were unable to establish if the 
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association between the ACR genetic risk score and hypertension was directly due to 

vascular dysfunction, but they imply that a higher genetic risk score for ACR is not 

benign.  

 

Analyses of pathways and variants previously associated with vascular and 

metabolic traits implicate multiple mechanisms.  

We next examined the 62 ACR-associated variants for pleiotropic effects. We observed 

these variants to likely influence ACR through a wide variety of mechanisms, many of 

which are known to be causally related to, or strongly associated with, vascular diseases 

and related traits. Previous GWAS had identified 20 of the ACR associated variants (or 

those in strong LD (r
2
 >0.8)) as associated with a trait related to metabolic, inflammatory 

or vascular disease at genome-wide significance levels (P<5x10
-8

). These associations 

were with a wide variety of traits, including blood lipid profiles, fasting glucose, blood 

pressure, and type 2 diabetes (Supplementary Table 5). Two variants represented 

known type 2 diabetes signals (a variant in the ARL15 locus and a variant in the SNX17 

locus that is in LD with highly pleiotropic variants at the GCKR locus (r
2
>0.85)), three 

represented known coronary artery disease signals (a variant near KCKN5, one near 

TRIB1 and one in the intron of CCDC97) and one represented a known blood pressure 

signal (a variant in HOTTIP). These variants are likely examples of variants with 

pleiotropic effects that affect ACR through additional mechanisms. For seven of the 20 

ACR associated variants in strong linkage disequilibrium with known signals for other 

traits, data was available to perform a co-localization analysis. All seven showed a high 

probability (>0.7) that variants associated with ACR represented the same signal as that 
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previously reported – including with those for blood lipid profiles, fasting glucose, blood 

pressure, and type 2 diabetes (Supplementary Table 6). Using MAGMA (14) we 

identified an enrichment of genes at associated loci involved in pathways related to lipid 

metabolism, genital and digestive tract development at P<0.05 after adjustment for 

multiple testing (Supplementary Table 7). We did not observe evidence of tissue 

enrichment for genes in the associated loci (Supplementary Figure 4). 

 

We observed three signals at the previously reported CUBN locus.  

We identified three independent SNPs associated with ACR at the CUBN locus 

(rs45619139, rs45551835 and rs141640975). These variants had common (rs45619139; 

minor allele frequency (MAF) 10.1%), low (rs45551835; MAF 1.4%) and rare 

(rs141640975; MAF 0.3%) allele frequencies and were weakly correlated (low linkage 

disequilibrium).  The minor alleles at the common, low frequency and rare variants were 

associated with 0.06, 0.19 and 0.46 standard deviation higher ACR, respectively (Table 3 

and Figure 1). The common variant previously reported was rs1801239, but this 

association was abolished after the adjustment for stronger lead SNP rs45619139 in the 

UK Biobank (r
2
=0.78). The low frequency (rs45551835) and rare (rs141640975) variants 

both alter the amino acid sequence of CUBN (g.16932384G>A, p.Ala2914Val) and 

(g.16992011G>A, p.Ala1690Val) respectively, and have previously been associated with 

variation in ACR. 

 

Haplotype analysis suggests alleles at the CUBN locus have additive effects on ACR.  

To test the effects of carrying more than one of the three CUBN variants, and whether in 
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cis (one copy of the CUBN gene carrying 2 or 3 minor alleles) or trans (both copies of the 

CUBN gene carrying at least one minor allele), we estimated the haplotypes formed by 

the three SNPs. The correlation between the three SNPs was low. However, the D’ 

measure of linkage disequilibrium was high, suggesting a limited number of 

recombination events have occurred between the three variants: D’=1 between 

rs141640975 and rs45551835 and between rs141640975 and rs45619139, and D’=0.92 

between rs45551835 and rs45619139. The variants formed five out of a maximum of 

eight haplotypes (Table 4). As expected from its very low frequency, the minor allele (A) 

at the rare variant rs141640975 occurred on only one haplotype – together with the 

common alleles at the two other variants (G-C-A; frequency=0.3%) and had the largest 

effect (0.48 SD). All four potential haplotypes formed by the common (rs45619139) and 

low frequency (rs45551835) CUBN variants were detected – indicating a recombination 

event must have occurred between them (or, less likely, a second identical mutation). 

However, the ACR-raising allele (A) at the low frequency variant occurred much more 

frequently on the same haplotype with the ACR-raising allele at the common variant (G) 

(A-G-G; frequency=1.3%), rather than with the ACR-lowering allele (C) (A-C-G; 

frequency=0.1%; Table 4). The A-G-G haplotype was associated with 0.2 SDs higher 

ACR compared to the commonest haplotype, formed by the three common alleles (G-C-

G). This effect was larger than that of the two haplotypes carrying only one of the ACR 

raising alleles for the low-frequency or common variant (A-C-G and G-G-G), consistent 

with an additive effect of the two alleles, suggesting that the presence of the two alleles in 

cis on the same haplotype did not change their effects (Table 4).   
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Carriers of ACR-raising CUBN alleles have higher disease frequency. 

We next classified UK Biobank individuals into 12 groups based on genotype 

combinations of the three CUBN variants (Supplementary Table 8 and Figure 2). We 

tested the hypothesis that people with clinically classifiably microalbuminuria partly due 

to their CUBN genetics would have a lower frequency of vascular related diseases 

compared to those without ACR raising alleles at the CUBN locus. We noted that for 

some very rare CUBN genotype combinations the majority of individuals would be 

classified as having microalbuminuria. For example, of the 25 individuals heterozygous 

at each of the three CUBN SNPs (<0.01% of the UK Biobank study), 21 (84%) had an 

ACR value that would classify them as having microalbuminuria (P<0.001 Fisher’s exact 

test, compared to individuals carrying no ACR raising alleles at the CUBN locus) (Figure 

2).  

 

We next selected all UK Biobank individuals above the clinical threshold for 

microalbuminuria to quantify the extent to which those with at least one ACR-raising 

allele at CUBN would have a lower frequency of vascular related disease compared to 

those without a CUBN raising allele. Of the 40,491/437,027 individuals above the clinical 

threshold for microalbuminuria, 31,592 carried no ACR-raising alleles at the CUBN 

locus. Contrary to our hypothesis that CUBN ACR-raising alleles are benign for vascular 

related diseases, people above the clinical threshold and carrying ACR-raising alleles at 

the CUBN locus had a higher frequency of CAD (carriers 11.2% vs non-carriers 10.2%, 

P=0.005), T2D (carriers 6.7% vs non-carriers 5.7%, chi-squared P<0.001) and stroke 

(carriers 3.4% vs non-carriers 2.9%, chi-squared P=0.006, Supplementary Table 8).  
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Additional ACR-diabetes interaction effects at the CUBN locus observed. 

We performed interaction analyses to test whether the 62 lead variants had stronger 

effects in individuals with diabetes as previously observed for the CUBN locus (5, 8). We 

replicated the statistical interactions between the common and rare CUBN signals and 

diabetes status. In people with diabetes, each copy of the minor allele for the common 

variant rs45619139 was associated with a 0.12 SD (95%CI: 0.08–0.15) effect on ACR 

(inverse-normalized). The observed effect in people without diabetes was 0.06 SD 

(95%CI: 0.05–0.06) (Pinteraction=110
-5

) (Table 5 and Supplementary Table 9). The 

minor alleles at the low frequency and rare CUBN variants also showed evidence of 

statistical interaction with diabetes status, with larger effects on ACR in people with 

diabetes (rs45551835 Pinteraction=610
-7

; rs141640975 Pinteraction=410
-5

). These types of 

interaction are prone to statistical artefacts, especially when dichotomising groups of 

people (15). We recently developed a negative control method based on an computational 

optimization algorithm to assess the likelihood of such artefacts (16) (url: 

https://github.com/drarwood/gags ) - after 1,000 repeated interaction analyses of groups 

of individuals sampled to have the same means and standard deviations of ACR as 

individuals with and without a diagnosis of diabetes, we observed an empirical P-value 

0.02 (19 of 1000 tests were more significant than the observed interaction at most). This 

suggests that the interaction was unlikely to be a statistical artefact of the differences in 

the two underlying distributions of ACR (Table 5 and Supplementary Figure 5). After 

accounting for multiple testing, we found no evidence of interaction for the remaining 59 

index variants outside of the CUBN locus with main effects on ACR (Supplementary 

Table 10).  
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When combining variants into a weighted GRS (excluding CUBN variants), we observed 

evidence of interaction with diabetes status, with the GRS having larger effects in people 

with diabetes (Pinteraction=210
-6

). After random sampling (described above) we observed 

an empirical Pinteraction=0.11, suggesting the interaction may not be specific to diabetes 

(Supplementary Figure 5). This T2D interaction may be a feature of metabolic disease 

in general because we also identified evidence of interaction between the ACR GRS and 

other diseases – all with stronger effects in cases than controls: hypertension (GRS  

cases=0.036, 95%CI: 0.034-0.038; GRS  controls=0.025, 95%CI: 0.023-0.027; Pinteraction 

=210
-18

), CKD (GRS cases=0.043, 95%CI: 0.030-0.056; GRS controls=0.031, 95%CI: 

0.030-0.033; Pinteraction=410
-05

), CAD (GRS cases=0.034, 95%CI: 0.030-0.039; GRS 

controls=0.032, 95%CI: 0.031-0.034; Pinteraction=310
-02

), and stroke (GRS cases=0.039, 

95%CI: 0.030-0.048; GRS controls=0.032, 95%CI: 0.031-0.034; Pinteraction=210
-02

). In 

contrast to a previous study (5), we found no evidence of a gene-diabetes interaction at 

the HS6ST1 locus (Pinteraction=0.76) or RAB38/CTSC locus (Pinteraction=0.06). 

 

DISCUSSION 

 

We performed a GWAS of ACR in 437,027 individuals from the UK Biobank and 

identified 62 SNPs in 56 loci associated with increased ACR. Of these, we identified 20 

associations not previously known, of which 9 reached a stricter significance threshold of 

P<610
-9

. Prior to the availability of the UK Biobank data, only one of these 56 loci 

(CUBN) was known to be associated with variation in ACR in individuals of European 

ancestry (5, 6, 8). Recent analysis, of smaller sets of unrelated individuals from the UK 
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Biobank, identified 46 and 22 variants associated with ACR. The 62 variants we 

identified include 41/46 loci reported by the recent Haas et al. analysis (11). The five 

detected by Haas et al. but not us, despite our larger sample size, fell below the GWAS 

threshold of P<5x10
-8 

(P-values ranged between 1.5x10
-5

 and 4.9x10
-8

). This difference 

may reflect sampling error between our analyses. A more recent analyses of the UK 

Biobank data by Zenetti et al. (12) identified 19 associations with urinary ACR, but this 

analysis identified 22 variants after splitting the data into a discovery and replication 

dataset. These three analyses of the same data show the value in different groups 

analysing large genetic datasets with different approaches. 

 

A higher GRS for ACR was associated with higher risk of being above the clinical 

threshold for ACR. Like the Haas et al. study, we showed that people with a high ACR 

genetic risk score were at higher risk of hypertension compared to those with a lower 

ACR, but there was no association with other diseases, including diabetes.  

 

Our analysis of individual variants suggested that a higher genetic ACR results from a 

wide range of pathogenic mechanisms. Twenty of 62 ACR-associated SNPs have been 

previously associated at genome-wide significance with metabolic, inflammatory and 

vascular diseases and related traits. We identified over 200 separate ACR-SNP–second 

trait association entries in the NHGRI GWAS catalog (17), although over half included 

highly pleiotropic GCKR variants in LD with the our signal in SNX17 (18). With the 

exception of the SNX17 signal near GCKR, there were notably few that were known 

blood pressure, diabetes or CAD signals, and of these, they were not the most strongly 
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associated variants for these traits suggesting that the variants identified as associated 

with ACR are likely pleiotropic. The only T2D variant apart from that near GCKR 

associated with ACR is that in ARL15, where the ACR raising allele is associated with 

higher risk of T2D, but with a much lower odds ratio (1.06 [95%CI: 1.04-1.09)] (19) than 

many other known T2D variants. The ACR raising allele at ARL15 is also associated with 

apparently paradoxical effects on body composition (20) and poorer kidney function as 

measured by eGFR (6). That 20 of the 62 ACR-associated signals were previously known 

signals for a wide variety of traits, together with our pathway analyses implicating lipid 

metabolism and gut and genital development suggests a wide variety of mechanisms 

involved in normal variation in ACR. In addition, we note that 19/20 variant-ACR 

associations we present as novel are available in a recent meta-analysis of eGFR by 

Wuttke et al. (21). Of these, 16/19 effect estimates are directionally consistent with 

eGFR, with 10/16 at P<0.05 and 4/16 at P<5x10
-8

. 

 

Compared to previous studies, we performed a more extensive analysis of the previously 

reported CUBN locus (4, 5). We showed that the low frequency ACR-raising allele at 

rs45551835 most often occurs in cis with the more common ACR-raising allele at 

rs45619139 but this haplotype was associated with ACR consistent with the additive 

effects of the two alleles.  

 

The association with hypertension indicates that disease processes underlie a high ACR 

GRS, rather than benign effects on kidney reabsorption and means that it would be 

inappropriate to tailor the clinical threshold to a person’s GRS for ACR. This is likely to 
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be the case even for people carrying ACR-raising genotypes at the CUBN locus. These 

alleles might have been expected to be benign on disease risk, but for individuals above 

the microalbuminuria threshold our results provide evidence of higher frequencies of type 

2 diabetes, coronary heart disease, and stroke among CUBN allele carriers compared to 

non-carriers.  

 

The availability of individual level data from a large study also allowed us to test for 

gene–diabetes status interactions more extensively than before. Teumer et al. (2016) and 

Ahluwalia et al. (2019) showed that the ACR raising minor-allele in CUBN had a 3 to 4-

fold effect in people with diabetes compared to controls. Teumer et al. also reported 

larger effects in individuals with diabetes for variants in the HS6ST1 and RAB38/CTSC 

loci. We tested these reported interactions and performed negative control experiments to 

control for the different distributions of ACR between people with and without diabetes 

(15). We replicated the previously reported interactions for the common and rare signal at 

the CUBN locus but did not find evidence of gene-diabetes interactions or main effects at 

the HS6ST1 or RAB38/CTSC loci.  

 

Our analysis had a number of strengths, including the availability of individual level data 

from a single large-study that provided homogeneous measures of ACR. Access to 

individual level data facilitated analyses that would otherwise be difficult to perform, 

including haplotype analysis, disease prevalence among rare genotype groups, and 

interaction analysis with follow-up negative control experiments. 
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The main limitations of our study include the cross-sectional nature of the associations 

with disease prevalence. We are presently limited in our ability to evaluate the impact of 

ACR on disease outcomes prospectively in the UK Biobank within individuals who do 

not report having kidney disease. Second, the rare and low-frequency nature of the 

genetic variants with the largest effects mean replication of these signals will be difficult 

in many studies given relatively small sample sizes. Third, we calculated ACR in 

individuals with albumin levels below assay detection limits. Albumin levels were set to 

study-specific limits of detection – an approach previously used by other GWAS analyses 

of ACR (5). Finally, further work needs to be undertaken in other ethnicities to determine 

whether the findings in our study replicate in other ancestries.  

 

In conclusion, we have performed one of the largest genetic association studies on ACR 

and have gained further insight into the biological causes and clinical implications of 

raised ACR. 

 

MATERIALS AND METHODS 

 

Study individuals 

We used 437,027 UK Biobank individuals that had measures of ACR and were classified 

as European ancestry through principal components analyses and a k-means clustering 

approach using the first 4 principal components and 1000 Genomes Project samples as 

reference ancestral centers.  
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Albumin-creatine ratio in UK Biobank 

Measures of ACR were derived using urinary levels of albumin and creatinine. Albumin 

was measured in the UK Biobank samples using immuno-turbidimetric analysis method 

(Randox Bioscience, UK) while creatinine was measured using enzymatic analysis 

method (Beckman Coulter, UK). If albumin was <6.7 mg/L (the assay detection level in 

UK Biobank) then albumin was set at 6.7 mg/L prior to the calculation of the ratio, an 

approach consistent with previous studies (5).  

 

Albumin-creatine ratio in EXTEND 

Albumin and creatinine were measured in samples using immuno-turbidimetric and 

enzymatic methods, respectively. If albumin was <2.9 mg/L (the assay detection level) 

then albumin was set at 2.9 mg/L prior to the calculation of the ratio. 

 

Genome-wide association analysis 

Genetic associations for inverse-normalized ACR were tested using a linear-mixed model 

approach, implemented in BOLT-LMM (22). Models were adjusted for baseline age, sex, 

study center, and genotyping array. Imputed genotypes from the Haplotype Reference 

Consortium (HRC) from the UK Biobank were used(23). Variants with imputation 

quality (INFO) <0.3 or minor allele frequency (MAF) <0.1% were excluded. After 

quality control, 12,082,474 variants for association analysis remained. Lead SNPs were 

defined as those with the smallest P-value. Locus boundaries were defined using a ±0.5 

Mb distance from the lead SNP. Conditional analysis was performed by subsequently 

adding all lead SNPs for each locus as covariates. 
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Lookups of associations using summary statistics from the CKDGen consortium 

We downloaded summary statistics from the latest meta-analysis of ACR performed by 

CKDGen consortium to enable a comparison of directions of estimated effects for SNPs 

associated with ACR in the UK Biobank (5). We used proxies with r
2
>0.8 within 500kb 

if unavailable in CKDGen. 

 

Variation explained and validation of GRS in the EXTEND study 

We used the Exeter 10,000 (EXTEND) study to calculate the variance explained by 

discovered genetic associations in an independent cohort. EXTEND is a population-based 

study in the South West of England. Genotyping was performed using the Illumina 

Infinium Global Screening Array. Imputation of genotypes was performed using the 

Haplotype Reference Consortium (HRC) imputation reference panel (24). Analyses were 

based on 5,679 individuals with genotype data and measures of ACR. Association 

analyses were carried out using RVTEST, adjusting for relatedness and ancestry through 

a genomic relationship matrix (25). 

 

Genetic risk score derivation for raised ACR  

A weighted ACR genetic risk score (GRS) was calculated for each participant using the 

index variants identified from the UK Biobank analysis. Dosages were re-coded to ACR-

increasing alleles prior to weighting using the respective effect sizes observed in the UK 

Biobank. A weighted score was subsequently calculated as the sum of the weighted 

dosages (Equation 1) prior to re-scaling to reflect the number of ACR increasing alleles 

(Equation 2).  
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 Weighted score = 1 × SNP1 + 2 × SNP2 + … n × SNPn.  

(1) 

      
                       

∑ 
 

(2) 

 

Testing the ACR genetic risk score against risk of clinically defined microalbuminuria 

We tested whether a higher ACR genetic risk score was associated with being above the 

3 mg/mmol clinical threshold (NICE, https://www.nice.org.uk/guidance/cg182) for 

microalbuminuria using logistic regression.  

 

Testing whether a high ACR genetic risk score is associated with diabetes and vascular 

related disease. 

We used logistic regression to test the combined role of ACR-associated variants in five 

diseases related to vascular dysfunction and diabetes in the UK Biobank - hypertension, 

type 2 diabetes (T2D), coronary heart disease (CAD), chronic kidney disease (CKD) and 

stroke. Disease definitions were derived using a combination of questionnaire data, 

hospital episode statistics and interviews. Hypertension was defined as a systolic blood 

pressure of >140 mmHg, or a diastolic blood pressure of >90 mmHg, or the report of 

blood pressure medication usage using the baseline UK Biobank questionnaire. T2D was 

defined through self-report of diabetes using the UK Biobank questionnaire at baseline, 

>35 years of age, and without reporting of insulin use within the first year of diagnosis. 

We excluded individuals reporting diabetes diagnosed less than one year prior to baseline 
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data collection (N = 1,757) to exclude those who may be on insulin treatment within the 

first year of diagnosis and therefore could have other forms of diabetes. Incident cases 

(relative to UK Biobank baseline visit) of T2D were included using Hospital Episode 

Statistics (HES) data (from ICD10 code: E11.*). In addition, having any form of diabetes 

was defined for individuals who reported being informed of having the disease by their 

doctor (UK Biobank data field 2443). CAD was defined from HES and self-reported data 

from the UK Biobank questionnaire at baseline. Reporting of angina and/or myocardial 

infarction was used as criteria. CKD was defined using relevant primary and secondary 

ICD9 (580-629) and ICD10 codes (N00 to N99) available from HES data. Stroke was 

defined using codes 1583 (ischaemic stroke), 1081 (stroke), 1086 (subarachnoid 

haemorrhage) and 1491 (brain haemorrhage) from clinic nurses’ codes for non-cancer 

illness (UK Biobank data field 20002). 

 

Investigating the overlap of loci associated with ACR with other traits from previous 

genome-wide association studies. 

We downloaded association statistics from the NHGRI-EBI GWAS Catalog (17). We 

looked up lead SNPs for ACR and proxies (r
2 

> 0.8) against SNPs catalogued with P-

value<5x10
-8

.  

 

Colocalization analysis of ACR-associated SNPs associated with other traits 

We performed colocalization analysis to determine the likelihood of shared causal 

variants at associated loci that overlap for other traits in the GWAS catalog. We used 

summary statistics for SNPs 500Kb either-side of the lead ACR-associated variant using 
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publicly available genome-wide association study data (16, 26-32), aligning the effects to 

the ACR effect alleles. We used the coloc.abf function to estimate the probability of each 

locus sharing a causal variant. 

 

Gene-set and tissue enrichment analyses 

Gene-set analyses and tissue expression analyses were performed using MAGMA (14) as 

implemented in the online Functional Mapping and Annotation of Genome-Wide 

Association Studies (FUMA) tool (33). 

 

Haplotype estimation and testing of associated SNPs in the CUBN locus 

Estimation and testing of haplotypes were performed using UNPHASED (version 3.1.7) 

(34). Genotypes were converted to best-guess genotypes (0, 1, or 2) prior to haplotype 

estimation. Effect estimates were made relative to the reference haplotype comprising of 

the common alleles. This analysis was performed in a subset of 367,882 unrelated UK 

Biobank individuals (<3
rd

 degree relatives). 

 

Interaction analyses. We performed interaction analyses for both novel and previously 

reported (5) SNPs to test for differences in effect sizes between diabetes cases and 

controls. These analyses were performed in the unrelated subset of 367,882 UK Biobank 

individuals. Of these, we classified 17,671 as having some form of diabetes. We 

compared effect sizes in diabetes cases versus controls by fitting the multiplicative 

interaction model and testing if not equal to zero - specifically:  
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ACR = SNPACR + diabetescase/control + SNPACR×diabetescase/control [+ covariates] 

(3) 

 

Negative control experiment to test specificity of interactions. We tested whether putative 

interactions were specific to the interacting condition (e.g. diabetes), or an artefact of the 

highly skewed distribution. Using a computational optimization (genetic) algorithm (url: 

https://github.com/drarwood/gags), we repeatedly sampled individuals from the UK 

Biobank to derive groups matched to the ACR distributions of diabetes cases and controls 

but randomized to diabetes status. We repeated this random sampling 1,000 times and 

compared the results to the observed interaction (15). 
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FIGURE LEGENDS 

 

Figure 1. Significance of SNP associations for three independent signals at the CUBN 

locus. A) association of SNPs from the initial GWAS analysis, B) strength of SNP 

associations after the first round of conditional analysis, and C) strength of SNP 

associations after the second round of conditional analysis. 
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Figure 2. ACR by CUBN genotype group. ACR mean values and standard deviations by 

genotype group based on SNPs in the CUBN locus. Solid black line is the clinical 

threshold for microalbuminuria.  
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TABLES 

 

Table 1. Characteristics of participants from the UK Biobank and EXTEND 

analysed. Data presented as mean (±standard deviation) or median [25
th

 -75
th

 percentile] 

where not otherwise stated.  

 

 

  UK Biobank EXTEND 

N 437,027 5,679 

Age (years) 57.28 (± 8.02) 54.31 (± 14.83) 

Sex (%Female - %Male) 54.18 - 45.82 62.85 - 37.15 

Height (cm) 168.7 (± 9.2) 168.5 (± 9.1) 

BMI 27.38 (± 4.74) 26.52 (± 4.62) 

ACR (mg/mml) 1.08 [0.68 - 1.82] 0.73 [0.42 - 1.34] 

CAD  (%Yes - %No) 10.47 - 89.53 3.79 - 96.21 

T2D  (%Yes - %No) 3.17 - 96.83 1.04 - 98.96 

Systolic BP (mmHg) 144.2 (± 24.0) 131.1 (± 19.8) 

Diastolic BP (mmHg) 86.3 (± 13.5) 77.4 (± 10.8) 

 

ACR = albumin-creatinine ratio; CAD = coronary artery disease; T2D = type 2 diabetes; 

BP = blood pressure.  
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Table 2. GWAS summary statistics in the UK Biobank for the 20 SNPs located in loci not previously 

reported or in low linkage disequilibrium (r
2
<0.1) with lead SNPs previously reported. Comparisons 

with publicly available data from the CKDGen consortium and lookups in the EXTEND study can be found 

in Supplementary Tables 2 and 3, respectively. 

 

Nearest Gene SNP Chr 

Position 

(b37) EA/OA EA Freq Beta SE P 

MST01 rs35202981 1 155578042 G/A 0.139 0.017 0.003 1.4E-08 

EDEM3 rs78444298 1 184672098 G/A 0.980 0.045 0.007 1.4E-09 

GPD2 rs111688960 2 157599687 A/G 0.013 0.051 0.009 1.2E-08 

FAT1 rs62342738 4 187656129 C/G 0.181 0.015 0.003 5.5E-09 

C5orf56 rs11242113 5 131777234 A/G 0.188 0.016 0.003 1.6E-09 

KCNK5 rs1544935 6 39124448 G/T 0.216 0.017 0.002 2.2E-11 

VEGFA rs3734692 6 43817791 T/A 0.310 0.016 0.002 1.8E-13 

AUTS2 rs35692677 7 69902654 G/A 0.813 0.015 0.003 1.1E-08 

ZBTB1 rs11990607 8 81363534 A/G 0.835 0.015 0.003 2.5E-08 

MLLT10 rs6482189 10 21889138 G/A 0.683 0.013 0.002 1.6E-09 

CYP26A1  rs2068888 10 94839642 G/A 0.550 0.012 0.002 1.0E-09 

SBF2 rs11042685 11 10262551 C/T 0.493 0.011 0.002 2.1E-08 

NUMA1 rs7115200 11 71752160 G/T 0.440 0.012 0.002 1.4E-09 

OAF rs12790943 11 120058623 T/C 0.421 0.011 0.002 3.0E-08 

NAV3 rs10860332 12 78748014 A/G 0.414 0.011 0.002 4.4E-08 

DLEU1/BCMS rs3116613 13 51143055 G/T 0.211 0.014 0.002 3.9E-08 

WDR81 rs550628400 17 1639795 G/A 0.006 0.075 0.013 2.1E-08 

CYP2A7 rs79600176 19 41392490 T/C 0.978 0.038 0.007 3.6E-08 

CCDC97 rs56254331 19 41826020 A/C 0.831 0.017 0.003 7.9E-10 

ZBTB46 rs11697610 20 62379531 G/A 0.387 0.012 0.002 1.9E-08 

 

SNP = single nucleotide polymorphism; b37 = build 37; EA/OA = effect allele / other allele; 

Freq = Frequency; SE = standard error; P = P-value. 
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Table 3. Independent signals identified at the CUBN locus on chromosome 10. Associations in the CUBN locus with ACR in UK Biobank 

whole cohort. Univariable results when each SNP is entered individually and multivariable results when all three SNPs are entered in the same 

regression model. 

 

  SNP 

Position 

(b37) 

Effect/Other 

Allele 

Frequency 

Effect Allele Model Beta SE P 

 
rs141640975 10:16992011 A/G 0.003 

Univariable 0.463 0.022 4E-99 

  Multivariable 0.470 0.022 3E-102 

CUBN 
rs45551835 10:16932384 A/G 0.014 

Univariable 0.188 0.009 2E-90 

  Multivariable 0.156 0.010 1E-56 

 
rs45619139 10:16940846 G/C 0.101 

Univariable 0.059 0.004 1E-57 

  Multivariable 0.040 0.004 7E-25 

 

SNP = single nucleotide polymorphism; b37 = build 37; SE = standard error; P = P-value
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Table 4. Haplotype associations with ACR based on the 3 SNPs in the CUBN locus. 

Effect sizes are given in standard deviations of inverse-normalized ACR and are relative to 

the baseline haplotype group formed by the three common alleles of the three SNPs. The 
2
 

test statistics and P-values for each haplotype correspond to the significance of the 

association when compared against all other haplotypes pooled. Alleles are ordered across 

haplotypes based on genomic position and represent 1) the low-frequency variant 

rs45551835, 2) the common variant rs45619139, and 3) the rare variant rs141640975. 

 

 

Haplotype Frequency Additive Effect 95% CI 
2
 P 

G-C-G (000) 0.895 REF REF 352.7 1E-78 

G-G-G (010) 0.086 0.039 0.031, 0.047 72.6 2E-17 

A-G-G (110) 0.013 0.201 0.181, 0.221 370.1 2E-82 

G-C-A (001) 0.003 0.482 0.437, 0.527 421.9 2E-94 

A-C-G (100) 0.001 0.138 0.065, 0.211 15.2 1E-04 

 

95% CI = ninety-five percent confidence interval; 
2
= chi-squared test statistic; P = P-value  

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddz243/5599707 by U

niversity of Exeter user on 29 O
ctober 2019



37 
 

Table 5. Associations of the three statistically independent SNPs at the CUBN locus within individuals with diabetes and without 

diabetes. The interaction term with diabetes is presented. Empirical P refers to the control experiment that involved the repeated sampling of 

two groups (x1,000) matched on the distributions of ACR observed in individuals with- and without diabetes prior to interaction analysis of the 

dummy group variable. 

 
 

    Individuals with diabetes Individuals  without diabetes Interaction Term 

SNP Effect Allele Beta SE P Beta SE P Beta SE P 
Empirical 

P 

rs45551835 A 0.358 0.044 3.8E-16 0.179 0.010 1.4E-78 0.213 0.043 6E-07 0.001 

rs45619139 G 0.115 0.017 4.7E-11 0.055 0.004 3.7E-49 0.075 0.017 1E-05 0.002 

rs141640975 A 0.781 0.107 2.6E-13 0.449 0.022 1.3E-89 0.426 0.104 4E-05 0.020 

 

SNP = single nucleotide polymorphism; SE = standard error; P = P-value
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ABBREVIATIONS 

 

ACR  Albumin-creatinine ratio 

CAD  Coronary artery disease 

CI  Confidence interval 

CKD  Chronic kidney disease 

EXTEND Exeter 10,000  

GRS  Genetic risk score 

GWAS Genome-wide association study 

HES  Hospital Episode Statistic 

HRC  Haplotype Reference Consortium 

ICD  International Classification of Diseases 

LD  Linkage disequilibrium 

MAF  Minor allele frequency 

OR  Odds Ratio 

SD  Standard Deviation 

SNP  Single nucleotide polymorphism 

T2D  Type 2 diabetes 
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