
1

FISE: A Forwarding Table Structure for
Enterprise Networks

Shu Yang, Laizhong Cui, Xinhao Deng, Qi Li, Yulei Wu, Mingwei Xu, Dan Wang, Jianping Wu

Abstract—With increasing demands for more flexible ser-
vices, the routing policies in enterprise networks become much
richer. This has placed a heavy burden to the current router
forwarding plane in support of the increasing number of
policies, primarily due to the limited capacity in TCAM, which
further hinders the development of new network services
and applications. The scalable forwarding table structures
for enterprise networks have therefore attracted numerous
attentions from both academia and industry.

To tackle this challenge, in this paper we present the design
and implementation of a new forwarding table structure. It
separates the functions of TCAM and SRAM, and maximally
utilizes the large and flexible SRAM. A set of schemes are
progressively designed, to compress storage of forwarding
rules, and maintain correctness and achieve line-card speeds
of packet forwarding. We further design an incremental
update algorithm that allows less access to memory. The
proposed scheme is validated and evaluated through a realistic
implementation on a commercial router using real datasets.
Our proposal can be easily implemented in the existing
devices. The evaluation results show that the performance of
forwarding tables under the proposed scheme is promising.

Index Terms—Enterprise Network, Forwarding Table
Structure, Routing Policy

I. INTRODUCTION
Enterprise networks are facing great challenges due to

the ever-increasing demands for much more flexible routing
policies in enterprises [2]. A typical enterprise network
can host thousands of routers [3], and its management
is responsible for 80% of the IT budget and 62% of the
outages [4]. Different from backbone networks, with the
main purpose of providing reachability services, enterprise
networks need to support much more fine-grained routing
policies. For example, 1) Multi-homing: an enterprise
should be able to deliver the traffic of IPTV users to one
upstream ISP, and the traffic of VoIP users to another

This paper is an extendable version of the INFOCOM 2014 paper [1]
Shu Yang and Laizhong Cui are with the College of Computer Science

& Software Engineering, Shenzhen University, Shenzhen, PR.China and
with the Guangdong Laboratory of Artificial-Intelligence and Cyber-
Economics (SZ), Shenzhen University.

Laizhong Cui is the corresponding author(Email: cuilz@szu.edu.cn).
Xinhao Deng, Qi Li, Mingwei Xu and Jianping Wu are with the

department of Computer Science and Technology, Tsinghua University.
Yulei Wu is with the College of Engineering, Mathematics and Physical

Sciences, University of Exeter.
Dan Wang is with the department of computing, The Hong Kong

Polytechnic University.
This work has been partially supported by National Key R&D Pro-

gram of China under Grant No.2018YFB1800302, National Natural
Science Foundation of China under Grant No.61772345, No.61625203,
No.61902258 and No.61832013, and Tencent “Rhinoceros Birds” - Sci-
entific Research Foundation for Young Teachers of Shenzhen University.

upstream ISP; 2) Access control: a hospital needs to
implement strict access control to gurantee the security of
patients’ electronic records [5]; 3) Performance: a bank
should choose secure paths for its bank applications, and
low-latency paths for its financial applications [6]. Other
examples in enerprise networks include load balancing,
network virtualization, etc.

There exist many solutions to support flexible policies
for traffic control. For example, policy-based routing (PBR)
[7] implements policies into access control list (ACL), and
multi-topology routing (MTR) [8] supports multiple inde-
pendent control and forwarding planes. Currently, engineers
in IETF are proposing traffic class routing (TCR) [9, 10]
that adds more information, e.g., the source address, into
routing, such that routing decisions can be made based on
both destination and source addresses.

Although these solutions differ greatly in control plane,
they all need an enhanced forwarding plane to accommo-
date the increasing number of routing policies. Neverthe-
less, current solutions are not scalable. For example, MTR
uses a separate forwarding table for each topology, and it
can only support a limited number, i.e., 32 in most cases
[8], of topologies while current enterprise networks require
much more [11]; TCR recommends using one forwarding
table per source prefix, which scales even worse than MTR
and is only suitable for small networks.

Many other solutions, like PBR using the traditional
Cisco Access Control List (ACL) structure (named ACL-
like structure thereafter) in TCAM. A typical forwarding
table with ACL-like structure is shown in Table I. For
the purpose of illustration, we use 4-bit IP addresses.
The destination and source prefixes are concatenated as
an entry in TCAM. When a packet with the destination
address of 1011 and the source address of 1111 arrives,
the router will match destination prefix 101* and source
prefix 11** according to the longest match first (LMF) rule;
and then forward the packet to the interface of 1.0.0.2.
This ‘fat’ TCAM structure provides a fast lookup speed.
However, using ACL-like structure means the Forwarding
Information Base (FIB) table changes from {destination}
→ {action} to {(destination, source)} → {action}. This
structure tremendously increases the TCAM resources. In
the worst case, the number of TCAM entries can be
O(N ×M), where N and M are the size of destination
and source prefixes.

China Education and Research Network-2 (CERNET2)
is currently using this ACL-like structure. CERNET2 wants
to carry out policy routing between about 6,000 destination

2

prefixes and 100 source prefixes. This results in a require-
ment of at least 600,000 entries in TCAM, and this number
is also likely to increase in the future. Even after being
compressed, the table size is still too large for CERNET2.
Many modern enterprise networks face similar problems
after widely deploying lots of security, QoS and privacy
functions in networks [11]. It is well known that TCAM is
scarce in resource due to its small storage size, high cost
and high power consumption. It is also difficult to compress
it due to its unique structure [12]. Thousands of rules in
ACL will bring large overheads to an enterprise [13]. As
a matter of fact, the largest TCAM chip in market can
only accommodate 1 million IPv4 prefixes [14]. However,
existing forwarding plane solutions do not scale well in
TCAM, and this has become a bottleneck for developing
new services in enterprises [14, 15].

TABLE I: A Two Dimensional Forwarding Table Example

Destination
prefix

Source
prefix

Nexthop
action

1 **** **** 1.0.0.1
2 **** 101* 1.0.0.0
3 **** 11** 1.0.0.2
4 **** 01** 1.0.0.0
5 011* **** 1.0.0.2
6 110* **** 1.0.0.1
7 110* 111* 1.0.0.2
8 110* 101* 1.0.0.0
9 110* 100* 1.0.0.2
10 110* 11** 1.0.0.3

Destination
prefix

Source
prefix

Nexthop
action

11 110* 01** 1.0.0.2
12 101* **** 1.0.0.1
13 101* 101* 1.0.0.0
14 101* 11** 1.0.0.2
15 101* 01** 1.0.0.0
16 11** **** 1.0.0.2
17 11** 11** 1.0.0.3
18 10** **** 1.0.0.2
19 10** 100* 1.0.0.2
20 10** 11** 1.0.0.3

In this paper, we design a new forwarding table struc-
ture, which can handle the expanded policies in enterprise
networks. The proposed new forwarding table structure is
called FISE (FIB Structure for Enterprise). The key of FISE
is a separation of TCAM and SRAM. SRAM has larger
memory, and it is 10 times cheaper and consumes 100 times
less energy than TCAM. We move the storage from TCAM
to flexible, cheap and power-saving SRAM. An example
of FISE is shown in Fig. 1. FISE stores destination and
source prefixes in two separate TCAM tables, and keeps
other information in SRAM. In Table I, we only need to
store destination prefixes ****, 011*, 110*, 101*, 11** and
10** in one TCAM table, and source prefixes ****, 101*,
11**, 01**, 111* and 100* in another TCAM table.

In enterprise networks, it is important to enforce fine-
grained routing policies to achieve diversified performance
goal. Thus, this paper aims to develop a sophisticated
design to implement such scalable policy enforcement with
less overhead. By leveraging both TCAM and SRAM, we
can achieve fast rule lookup while significantly reducing
the memory for the next-hop storage. In particular, it
can substantially reduce the number of TCAM entries to
N + M while flexibly enforcing various policies without
rule redundancies.

However, there exist several challenges in the devel-
opment of FISE: 1) we need to guarantee the line-card
speeds and correctness of packet forwarding, and it is
difficult; 2) because, in principle, an update in FISE may
incur multiple accesses in memory, we need to develop
incremental update algorithms to minimize such accesses;
and 3) in practice, we want to make FISE more scalable and

TABLE II: Major notations used in the paper.
Notation Meaning
Γ Two dimensional table that stores the in-

dexed nexthop of each rule
Γ(x, y) The cell in xth row and yth column of

table Γ
Λ A New two dimensional table obtained

after updating the table Γ
Λ(x, y) The cell in xth row and yth column of

table Λ
s The source address
d The destination address
ps The source prefixes for s
pd The destination prefixes for d
a The action of a rule
Ps The set of source prefix
Pd The set of destination prefix
R The set of forwarding rules to be stored

accommodate a number of rules in the order of millions,
which is 100 times of that of today. In this paper, we present
a comprehensive study on FISE and progressively tackle
these problems. The FISE is implemented on a commercial
router, i.e., Bit-Engine 12004, and a set of practical imple-
mentation designs are elaborated. It is worth noting that
through careful redesign of the hardware logic, FISE can
be easily implemented on the existing devices, instead of
requiring new devices. Comprehensive evaluations with the
real implementation are carried out, using the real topology,
FIB, prefix and traffic data from CERNET2. The results
show that FISE can achieve line-card speeds of packet
forwarding, save TCAM and SRAM storage, and bring
acceptable update burden.

The rest of the paper is organized as follows: Section
II is devoted to FISE design. The FISE structure is in-
troduced, and its correctness for the forwarding operations
is proved. The TCAM and SRAM compression schemes
are presented in Section III. Section IV is devoted to the
design of FISE incremental updates. The implementation
design is elaborated in Section V, which can improve the
adoptation of FISE in practical situations. Section VI shows
the implementation of FISE on a commercial router. The
evaluation of FISE is carried out in Section VII. The related
work is presented in Section VIII. Finally, we conclude this
paper in Section IX.

II. FISE STRUCTURE AND LOOKUP

A. The Matching Rule
A conventional forwarding table means the table uses a

traditional ACL structure to organize rules, e.g., in Cisco
and Juniper routers, while a conventional router indicates
the router having the structure of a conventional forwarding
table. In conventional router, the LMF rule is used to decide
which destination prefix is matched. Here, we first present
the definition of the matching rule. Let d and s denote the
destination and source addresses, and pd and ps denote the
destination and source prefixes for d and s. Let a denote an
action, more specifically, the nexthop corresponding to pd
and ps. Each entry of the storage is a 3-tuple (pd, ps, a). In
Table II we summarized the major notations in the paper.

3

Definition 1. Matching Rule: Assume a packet with s and
d arrives at a router. The destination address d should first
match pd according to the LMF rule. The source address s
should then match ps according to the LMF rule among all
the 3-tuples given that pd is matched. The packet is then
forwarded to the next hop a.

We match destination prefixes first, rather than match
destination and source prefixes with the same priority
[16], because we have to guarantee reachability and avoid
routing loops [17][18]. Note that the structure in our FISE
design is symmetric. Thereby we can define the priority of
prefix based on the order of rules according to application
scenarios.1. default 111* 101* 100* 11**0 1 2 3 4011*110*101*11**10** 12345

Source Table

TD-table

3

1

2

3

0123 1.0.0.01.0.0.11.0.0.21.0.0.3
Nexthop Interface

2

1

2

3

2

Mapping TableTD-cell
Nexthop IndexSource Index

D
e
s
tin

a
tio

n

T
a
b
le Destination Index

01**5
2

02 2 2

0 0

0default 1 0 2

TCAMSRAM
0

Fig. 1: FISE: A forwarding table structure for enterprise networks

B. FISE Basics and Correctness
1) FISE Basics: The key idea is a separation of TCAM

and SRAM (see Fig. 1). The destination and source prefixes
are stored in TCAM, with an offset table pointing to the
nexthop table stored in SRAM. As the nexthop information
is long, we have another mapping table so that the main
SRAM nexthop table only stores an index.

FISE has two tables in TCAM and another two tables in
SRAM. In TCAM, one table stores the destination prefixes
mapping to a destination index (we call it destination table
thereafter), and another table stores the source prefixes
mapping to a source index (we call it source table there-
after). One table in SRAM is a Two Dimensional table that
stores the indexed nexthop of each rule (we call it TD-table
thereafter), and we call each cell in the array TD-cell. The
destination and source indexes in TCAM correspond to a
TD-cell in SRAM. The other table in SRAM stores the
mapping relations of index values and the next hops (we
call it mapping-table thereafter).

For each rule (pd, ps, a), pd is stored in the destination
table, and ps is stored in the source table. The (pd, ps) cell
in the TD-table stores an index. From this index value, a is
stored in the corresponding position of the mapping table.

An example is shown in Fig. 1. For (110*,11**, 1.0.0.3),
110* is stored in the destination table and points to the
destination index 2, which is associated with the 3nd row;
and 11** is stored in the source table and points to the
source index 4, which is associated with the 5th column.
We can obtain that, in the TD-table, the cell (110*, 11**)
in the 3nd row and the 5th column has the index value of

1Source prefix match first rule is also used in some special designs,
e.g., egress-routing in multi-homing [9].

three. In the mapping table, the next hop with the index
value 3 is 1.0.0.3.

Theorem 1. The TCAM storage space of FISE is O(N +
M) bits. The SRAM storage space of FISE is O(N ×M ×
log(P)) bits, where P is the size of the mapping table.

See proof in [19]. Clearly, FISE migrates the “multi-
plication” factor into SRAM, rather than eliminate it. Such
migration is based on the following observations: 1) TCAM
storage capacity is much smaller than SRAM; 2) TCAM is
10-100 times more expensive than SRAM; 3) and TCAM
consumes 100+ times more power than SRAM [20, 21, 22].

This migration does not slow down the forwarding speed.
The dominant factor for forwarding speed is TCAM lookup,
which can be maintained by FISE. In FISE, there are
additional SRAM accesses. With pipelining scheme, which
is commonly used in routers, the lookup speed is the same
as the one of conventional routers. The delay of each lookup
is longer, but it is only a few nanoseconds and thus it is
acceptable.

Moreover, SRAM is more flexible than TCAM, such that
we can develop various compression algorithms in SRAM
to further reduce TD-table storage.

2) TD-cell Saturation: We establish a TD-table by in-
serting the entries (e.g., Table I) into an empty TD-table.
Fig. 1 shows the TD-table after inserting entries in Table I.

Note that after insertion, there will be empty cells.
Consider a packet with destination address 1011 and source
address 1111 arrives at the router, according to definition
1, the destination prefix 101* will first be matched. There
are four rules (including the default rule) associated with
the destination prefix 101*. Source prefix 11** will then be
matched. This leads to the rule (101*, 11**, 1.0.0.2). With
the new structure, however, destination prefix 101* will be
matched and source prefix 111* will be matched. Unfortu-
nately, the cell (101*, 111*) (4th row and 2nd column) in
TD-Table does not have any index value. Intrinsically, for
prefix pairs (pd, ps), if the length of a source prefix p′s that
is longer than ps, when a packet that matches both rules
arrives, the cell (pd, p

′
s) with the longer prefix rather than

(pd, ps) will be matched.
Definition 2. Conflicted cell: For a TD-cell (pd, p

′
s), if

the value of the cell is null but a rule associated with
(pd, ps, a) (where ps is a sub-prefix of p′s) exists, (pd, p

′
s)

is a conflicting cell.

To address the problem, we develop an algorithm TD-
Saturation() to saturate the conflicted cells with an appro-
priate index value. As an example, using this algorithm, the
TD-table of Fig. 1 becomes Fig. 2(a). The time complexity
of Algorithm 1 is O(N ×M), and the space complexity
of it is O(N × M). We can see that, routers preform
TD-cell saturation to pre-compute the next-hops for each
(destination, source) prefix pair, which provides possibility
for line-card speed lookup with the FISE structure.
Theorem 2. FISE (with TD-Saturation()) correctly handles
the rule defined in Definition1.

See proof in [19].

4

TD-
Saturation()

d

e

f

a

u

l

t

1

1

1

*

1

0

1

*

1

0

0

*

1

1

*

*

0 1 2 3 4

011*

110*

101*

11**

10**

1

2

3

4

5

3

1

2

3

2

1

2

3

2

0

1

*

*

5

2

0

2

2 2 2

0 0

0

default 1 0 22

2

1 0

2 2 2 2

2 1

3 2 2

3 2 2

(a) Apply TD-Saturation()

TCAM
Compression

d

e

f

a

u

l

t

1

1

1

*

1

0

1

*

1

0

0

*

1

1

*

*

0 1 2 3 4

011*

110*

101*

1***

1

2

3

4 3

1

2

2

1

3

2

0

1

*

*

5

0

2

2 2 2

0 0

0

default 1 0 22

2

1 0

2 2 2 2

2 1

3 2 2

(b) TCAM compression

TD-table
Compression

d

e

f

a

u

l

t

1

1

1

*

1

0

1

*

1

0

0

*

1

1

*

*

0 1 2 3 4

011*

110*

101*

1***

1

2

0

3

3

1

2

2

3

0

1

*

*

5

0

2

2 2 2

0

default

1 0 22

2

1 0

2 2 2 2

3 2 2

(c) SRAM - optimal TD-table

0

1

0

1

2

2

0

1

2

2 2

0

1

2

Catalog table

Dictionary table

2 0

2 2

3 2

Fixed Block

Deduplication

011*

110*

101*

1***

1

2

0

3

0

default

d

e

f

a

u

l

t

1

1

1

*

1

0

1

*

1

0

0

*

1

1

*

*

0

1

*

*

(d) SRAM - fixed block deduplication

Fig. 2: FISE forwarding table storage

Algorithm 1: TD-Saturation(R)

1 begin
// R is the set of forwarding rules to be stored

2 foreach pd, ps do
3 if 6 ∃(pd, ps, a) ∈ R then
4 S = {(p̄s, p̄d, ā) ∈ R|p̄d = pd}
5 S′ = {(p̃s, p̃d, ã) ∈ S|p̃s is a prefix of ps}
6 Find (p′′s , p

′′
d , a

′′) ∈ S′, ∀(p′d, p
′
s, a

′) ∈ S′, p′s is a
prefix of p′′s

7 Fill the cell (pd, ps) with index value of a′′.

C. A Non-Homogeneous FISE Structure

We expect that in practice, only a few prefixes, e.g.,
the prefixes that belong to famous web servers and data
centers, have more next hops than the default ones. It is
thus wasteful to leave a row for every destination prefix. To
become more compatible to the current router structure and
further reduce the SRAM space, we divide the forwarding
table into two parts. In the first part each prefix points
to a row in TD-table, and in the second part each prefix
points directly to an index value. For example, in Fig. 1,
destination prefix 011* does not need any specific source
prefix, so it is stored in the second part.

In our implementation, we logically divide the table into
two parts by using an indicator bit in the destination index
to separate them. More details are presented in Section VI.

D. FISE Lookup
We first present the basic lookup steps and then show

a pipeline lookup. We will show that the pipeline lookup
achieves the same performance as the conventional routers
for each lookup operation.

Lookup

source

address in

Source

Table

Lookup

destination

address in

Destination

Table

Lookup the cell in

nth row, mth column

in TD-table

Destination

Index = n

Source

Index = m

A Packet

Arrives

Lookup v in

mapping

table

Nexthop

Index = v

Obtain the

next hop

information
FIFO

Buffer

Fetch

destination

and source

index

Lookup the

entry in nth row,

(m/ῶ)th column

in catalog

Sub row

number = r
Lookup the entry in

rth row, (m%ῶ)th

column in dictionary

table

Sub-routine for the fixed block deduplication

Fig. 3: Lookup process in FISE

The lookup action is shown in Fig. 3. When a packet ar-
rives, the router matches the destination and source prefixes
in parallel in the destination and source tables in TCAM.
The destination table and source table then each outputs

Source and
destination table

TD-table

Mapping
table

Source and
destination index

Space

Time1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

Fig. 4: Space-time diagram of the lookup process pipeline

the SRAM addresses that point to the destination index and
source index, respectively. The SRAM addresses are passed
to an FIFO buffer, which resolves the un-matching clock-
rates between TCAM and SRAM. The router then obtains
the destination index and source index. The router can thus
identify the cell in the TD-table, and return the index value.
Using this index, the router looks up the mapping table, and
returns the nexthop.

Observation 1. The lookup speed of FISE is one TCAM
plus three SRAM clock cycles.

The theorem is true because source and destination tables
(indexes) can be accessed in parallel. As a comparison, the
conventional forwarding table stores prefixes in one TCAM,
and accesses both TCAM and SRAM once during a lookup.

We develop a pipeline lookup process (see Fig. 4) for
further pipelining each individual lookup operation.

Fig. 4 shows the process of pipeline processing for four
packets numbered with 1, 2, 3, and 4. When a packet
arrives, the router looks up the source and destination
addresses in the source and destination tables, respectively,
and obtains the source and destination indexes to look up
the corresponding cell in the TD-table. It finally obtains the
next hop in the mapping table according to the cell value.

This pipeline is possible since we have a saturated
TD-table. Pipelining is not new, and almost all routers
implement it today. Using the pipeline, the lookup speed
of FISE can achieve one packet per clock rate.

Observation 2. The lookup speed of the FISE routers (with
pipelining) is the same as conventional forwarding tables.

In practice, the SRAM clock cycle is smaller than TCAM
cycle [23].2 Also, the bottleneck of a router is normally
during delivering packets through the FIFO. These facts
further validate that FISE lookup speed is comparable to
conventional routers.

2TCAM is fast as it has extraordinary parallel process, yet also due to
such parallelism, each individual access is slower than SRAM.

5

III. FORWARDING TABLE COMPRESSION

The FISE structure provides us a framework that main-
tains the processing speed in TCAM and migrates the stor-
age to SRAM. Under this framework, we further minimize
both the TCAM tables and SRAM tables. We first formally
define the equivalent class of two tables. As such, we can
select another table in the equivalent class that has the
minimum size.

Let Pd and Ps be the set of destination prefix and
source prefix, respectively. Let fr(pd), pd ∈ Pd (or
fc(ps), ps ∈ Ps) be a mapping function that maps a
destination (or source) prefix pd (or ps) to a destination
index (or a source index). Let Γ(x, y) denote the cell in
xth row and yth column of TD-table. We use a 5-tuple
{Pd, Ps, fr(·), fc(·),Γ(·, ·)} to denote a FISE table.

Definition 3. Two FISE tables are equivalent if any packet
will be forwarded to the same nexthops indexed by two FISE
tables according to the matching rules in Definition 1.

For a given forwarding table, our objective is to find
an equivalent forwarding table with the minimum storage
space. Let us discuss TCAM and SRAM separately.

Algorithm 2: CompTCAM(Pd, Ps, fr(·), fc(·),Γ(·, ·))

Output : {P ′
d, P

′
s, f

′
r(·), f ′

c(·),Λ(·, ·)}
1 begin
2 Eliminate prefixes that will never be matched
3 ∀pd ∈ Pd,DF(pd) = SHA-1(

−−−−−−−−→
Γ(fr(pd), ·))

4 {P ′
d,DF′(·)} ← ORTC(Pd,DF(·))

5 ∀p′d ∈ P
′
d, f

′(p′d)← f(pd), ∃pd ∈ Pd,DF′(p′d) = DF(pd)

6 ∀ps ∈ Ps,SF(ps) = SHA-1(
−−−−−−−−→
Γ(·, fc(ps)))

7 {P ′
s,SF

′(·)} ← ORTC(Ps,SF(·))
8 ∀p′s ∈ P

′
s, f

′(p′s)← f(ps), ∃ps ∈ Ps,SF
′(p′s) = SF(ps)

9 ∀p′d ∈ P
′
d, p

′
s ∈ P

′
s,Λ(f ′

r(p′d), f ′
c(p′s))← Γ(f ′

r(p′d), f ′
c(p′s))

1) TCAM Compression: For TCAM compression, there
exists a dynamic programming based algorithm Optimal
Routing Table Constructor (ORTC) [24], which computes
the minimized TCAM for a set of prefixes in one dimen-
sional router. We separately merge the entries in the source
and destination table with ORTC to compress TCAM.

We develop algorithm CompTCAM(), based on the al-
gorithm Optimal Routing Table Constructor (ORTC) [24]
which computes the minimized TCAM for a one dimen-
sional forwarding table. In Algorithm 2, we first map each
row/column vector to a scalar using SHA-1 function. We
then apply ORTC separately to destination and source tables
in TCAM, and compute the minimized TCAM for the
corresponding rows and columns. Finally, we replace the
original TCAM with the compressed TCAM.
Theorem 3. CompTCAM(), applying ORTC twice on FISE,
leads to the minimum total TCAM storage. The complexity
of CompTCAM() is O(N ×M)

See proof in [19]. For example, after TCAM compres-
sion, the forwarding table in Fig. 2(a) becomes Fig. 2(b).

2) SRAM Compression: There are two tables in SRAM,
where the TD-table dominates. We thus focus on minimiz-
ing the TD-table.
Problem 1. Optimal TD-table Compression: Given a
FISE table {Pd, Ps, fr(·), fc(·),Γ(·, ·)}, we can find an

equivalent forwarding table {P ′d, P ′s, f ′r(·), f ′c(·),Λ(·, ·)} to
compress the table such that the storage space, i.e., N×M
(where N is the number of rows and M is the number of
columns in the TD-table), is minimized.

In this stage, we define the optimal TD-table compres-
sion is the TD-table without duplicated rows (columns).
To find the optimal TD-table compression, we compress
the TD-table by merging duplicated rows (columns). In a
one dimensional router, merging two entries requires two
destination prefixes to be aggregatable. It is unnecessary in
FISE structure since we can merge rows (columns) as long
as we make their destination (source) indexes the same.

We call two rows in TD-table duplicated rows if−−−−−−−→
Γ(fr(pd), ·) =

−−−−−−−→
Γ(fr(p

′
d), ·) (

−−−−−−−→
Γ(·, fc(ps)) =

−−−−−−−→
Γ(·, fc(p′s))).

Theorem 4. Eliminating the duplicated rows and columns
computes the optimal TD-table compression.

See proof in [19]. After eliminating duplicated rows
(columns), the table in Fig. 2(b) becomes Fig. 2(c).

Although we can find the optimal TD-table compression,
the rows that are entirely duplicated are rare, as such,
this alone has a very small compression ratio. Note that
SRAM is much more flexible than TCAM. We can take this
advantage to develop improvement schemes. We observe
there are abundant duplications if we only extract a sub-
chunk of a row. Intuitively, we can compress them. Our
goal is therefore to search the TD-table to find redundant
patterns, extract them, and use single pointers to replace
them. Similar methods in data compression for disk and
file systems can be found in [25].
Problem 2. Optimal SRAM Compression: Given a TD-
table, find a minimized representation of it such that 1)
given an xth row and yth column, it outputs the same
nexthop index with TD-table; 2) we can find a TD-cell in
constant time.

This problem is NP-complete (see proof in [19]). Due to
the complexity of the problem, we solve it with a heuristic
approach. More details are illustrated in Section V-A.

IV. FISE INCREMENTAL UPDATE

Although TD-Saturation() guarantees the correctness of
FISE. It needs to re-compute all conflicted cells, and re-
write them in SRAM once an update happens. Suppose
that there are 10,000 source prefixes, and 500 updates are
performed on destination prefixes per second. In the worst
case, there are 5,000,000 accesses in SRAM per second,
which almost exceeds the speed of hardware (in Bit-Engine
12004, line-cards work at 100MHz, and line-cards need 20
clock cycles for a read/write operation). Note that although
update is necessary, not all cells need to be re-written in
the update process. In this section, our objective is to find
an incremental algorithm that minimizes the number of cell
updates. We use function Γ(·, ·) to denote the TD-table. Let
Pd and Ps be the set of destination prefix and source prefix,
respectively. Let fr(pd), pd ∈ Pd (or fc(ps), ps ∈ Ps) be a
mapping function that maps a destination (or source) prefix
pd (or ps) to a destination index (or a source index). Let
Γ(x, y) denote the cell in xth row and yth column of TD-
table. The Action(pd, ps, a) represents the change of the

6

value of cell (pd, ps) in the TD-table. This operation is
performed when new data is added into the cell (pd, ps),
e.g., the value is updated or the cell is removed.
Problem 3. Optimal transformation: Given a TD-
table Γ(·, ·) and Action(pd, ps, a), find a new TD-table
Λ(·, ·) which is achieved by updating the TD-table with
Action(pd, ps, a), such that |{(pd, ps)|Γ(fr(pd), fc(ps)) 6=
Λ(fr(pd), fc(ps))}| is minimized.

The key insight of our solution is that the cells associated
with a destination prefix can be divided into two different
groups. One is the conflicted cells and one is the rest.
As such, we will first build a color tree data structure
to organize the cells. With this color tree, we develop
algorithms for insertion and deletion where only part of
the nodes will be updated. Intrinsically, updates can be
done only for a few nodes between confliction nodes. This
color tree is also stored in the router control plane (more
specifically in DRAM). Note that the conventional router
also stores data structure such as to organize prefixes. The
storage in DRAM is much larger and cheaper, so the extra
burden caused by our algorithms is acceptable. We will
prove that our algorithms can minimize the computation
cost and the number of cell rewrites.
A Color Tree Structure and Update Algorithm

In FISE, we enable matching destination prefix at first.
In order to avoid matching an empty cell, we need to
update all empty cells indicated by ps that are generated
by updating the value of cell (pd, ps). Therefore, we build
a color tree CT (pd) for each destination prefix pd. The
tree includes all source prefixes in source table as nodes
Node(ps). Node(ps) is an ancestor of Node(p′s) if ps is
also a prefix of p′s. The nodes are marked with two colors,
black and white, where white nodes are those conflicted
nodes in Definition 2, and the rests are black nodes. An
example is shown in Fig. 5.

Let B(pd) = {Node(ps)|∃(pd, ps, a) ∈ R} be the set
of black nodes, and W(pd) = {Node(ps)|¬∃(pd, ps, a) ∈
R} denote the set of white nodes. For example, in
Fig. 5, we show a color tree CT (101*) for desti-
nation prefix 101* where B(101*) = {Node(****),
Node(01**), Node(101*), Node(11**)} and W(101*) =
{Node(100*), Node(111*)}.

To compute optimal transformation of an update, we
define domain of a black node in color trees.
Definition 4. In CT (pd), domain of Node(ps) ∈ B(pd)
is D(pd, ps) = {Node(ps)} ∪ N, where N ⊆ W(pd) and
Node(p′s) ∈ N meets: 1) Node(p′s) is a child of Node(ps);
2) @Node(p′′s) ∈ B(pd), where Node(p′′s) is an ancestor
of Node(p′s) and a child of Node(ps).

For example, in Fig. 5, Node(11**) is an ancestor
of Node(111*) and a child of Node(****). Intuitively,
the domain of a black node is the largest sub-tree that
roots at itself and does not contain any other black nodes.
In other words, it contains the immediate white descen-
dants and possibly white descendants’ white descendants.
For example, in Fig. 5, the domain of Node(****) is
D(101*, ****) = {Node(****), Node(100*)}.

11**

111*

01** 100* 101*

Fig. 5: Color tree CT (101*) for Fig. 1

Theorem 5. The cell set {(pd, p′s)|Node(p′s) ∈ D(pd, ps)}
is the minimum set that is changed by Action(pd, ps, a).

See proof in [19]. From Theorem 5, we know that it
is enough to find the domain that needs to be updated.
We develop update algorithms using depth-first search on
the domain. Algorithm Action(pd, ps, a) shows the updating
process within FISE structure.
Theorem 6. The complexity of Algorithm 3 is O(M), where
M is the number of source prefixes (i.e., the number of color
tree nodes).

Proof: In order to update the cell set {(pd,
p′s)|Node(p′s) ∈ D(pd, ps)} that is changed by Ac-
tion(pd, ps, a), all related nodes will be pushed in
nodeStack once. Since the number of nodes that are
pushed to the nodestack is M in the worst case, the
complexity of this step is O(M). The complexity of the
update operation on the pop node (i.e., line 11 in Algorithm
3) is O(1). Therefore, we can obtain that the complexity
of Algorithm 3 is O(M).

Algorithm 3: Action(pd, ps, a)

1 begin
2 nodeStack ← ∅, find Node(ps) in CT (pd)
3 if Action is Insertion or Update then value← a
4
5 else if Action is Deletion then
6 Node(p′s)← parent of Node(ps),

value← Γ(fr(pd), fc(p′s))

7
8 Push Node(ps) into nodeStack
9 while nodeStack 6= ∅ do

10 Pop Node(p̂s) from nodeStack
11 Γ(fr(pd), fc(p̂s))← value
12 for all childNode ∈W(pd) of Node(p̂s) do
13 Push childNode into nodeStack

Moreover, in the worse case, a domain contains a row in
TD-table, and the complexity of updating table is O(M).
Note that the complexity of the algorithms is the size of
the domain to be updated. Our algorithms can be pipelined.
Using dual-port SRAM [26] 3, TD-table update also does
not need to interrupt the lookup process.

V. PRACTICAL CONSIDERATIONS

We further improve the memory footprint and update
operations for practical situations.

A. Further SRAM Compression
1) Fixed Block Deduplication: We first develop a

heuristic approach to further compress SRAM storage. The
basic idea is to cut a full row into sub rows and then merge
them. Thus we can eliminate more duplicated sub rows.

Merging sub rows requires some modifications on TD-
table. Fortunately, SRAM is much more flexible than
TCAM to incorporate changes, and one more level of
indirection in the TD-table can solve the problem.

3Current dual-port SRAM can resolve the read-write collision, i.e., read
during write operation at the same cell.

7

A sub-row is a continuous group of cells in a row. Let
w̃ (0 < w̃ < M) be the length (number of cells) of a sub-
row. This w̃ is predetermined (we will analyze w̃ later) for
TD-table. We separate the TD-table into a catalog table
and a dictionary table (see an example in Fig. 2(d) where
w̃ = 3). The TD-table is divided into sub-row chunks. The
dictionary table contains all unique chunks. The catalog
table maps every chunk of sub-rows of the TD-table into
a single cell, where the value in the cell is the index to
the dictionary table. Note that TD-table and catalog table-
dictionary table is a one-to-one mapping.

Bloom

Filter

Finger-

print

Catalog

Dictionary
Table

Sub Rows
...

.

.

.

sub row
number Nexthop

Index

Finger-

print

Store

Exists

SHA-1

Sub

Row

In s e r t a n e w s u b r o w ,

F i l l th
e c e l l i n c a ta l o g ta b l e

Fill the

cell

Deduplication Process

Fig. 6: Storage structure and deduplication process for fixed block
deduplication

To construct the new catalog-dictionary tables and
achieve higher compression ratio, we use a deduplication
procedure that is widely used in data deduplication [27].
A formal flow chart is in [28]. Basically, we scan the
TD-table, and extract all sub-rows. For each sub-row, we
first compute its fingerprint, using SHA-1 function. With a
Bloom filter [29], we can judge whether the sub-row is a
duplicated one. If it is, we search in a data structure called
fingerprint store, which organizes all detected fingerprints
with < fingerprint,r, k > triples, where r is the sub-row
index in the dictionary table and k is the number of sub-
rows that are hashed to fingerprint. If we cannot find it
in fingerprint store (due to the false positive probability of
Bloom filter) or Bloom filter confirms it is not duplicated,
then we insert the sub-row into the dictionary table, and
a new triple into the fingerprint store. Using the search
result, we fill the corresponding cell of catalog table with
the sub-row index. The time complexity of doing fixed
block deduplication is O((M/w̃)N). We explain how the
Bloom filter and the fingerprint store can be implemented
in practice in Section V-A3.

After applying the fixed block deduplication, the TD-
table is separated into a catalog table and a dictionary table,
where we replace a sub-row with an index in the catalog
table, and the index points to a row in the dictionary table.
Within an extra indirection memory access, the lookup
speed increases by one SRAM clock cycle.

The update algorithm in Section IV is designed for
storage without deduplication. The deduplication of the
SRAM space, each time update happens, will take much
CPU time, although we can tolerate a little more storage
space and carry out deduplication at a certain interval, e.g.,
one hour.

Our design can effectively reduce redundancy in rules.
For example, it can significantly reduce the number of the

ASes path from one source prefix to a set of destination
prefixes [30]. But rules with little redundancy benefit much
less, e.g., security rules should be enforced in a fine-grained
manner [31].

2) Theoretical Analysis: Let pr (or pc) be the probabil-
ity that two cells in the same row (or column) are identical.
Let pu denote the probability that two cells in different
rows and different columns are identical. We assume that
p = pr = pc � pu, and N > M � 1. We present formal
analysis on the catalog-dictionary table structure in [28].
Two main analytical results can be summarized as: 1) we
should cut rows rather than columns and 2) for a sparser
TD-table, the block length should be larger; for a denser
TD-table, the block length should be smaller.

As an example, Fig. 7(a) shows the storage size as a
function of block length and p, with N = 100, 000, M =
10, 000 and the size of each cell in catalog and dictionary
tables to be one unit. We can see that at a fixed p, storage
size first decreases with block length, because of deflation
of catalog table; it then increases, because of the inflation
of dictionary table. In Fig. 7(b), we show the block length
that minimizes the storage size. The figure presents that if
p is large, i.e., TD-table is sparse, the block length should
be large. This is because for sparse TD-table, larger block
length reduces the catalog table while increasing dictionary
table a little.

0
200

400

0.95

1

0

2

4

6

8
x 10

8

Block lengthProbability

S
to

ra
g

e
 s

iz
e

(a) Storage size
0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

B
lo

c
k

 l
e

n
g

th
p

Block length that minimizes storage

(b) Optimal block length

Fig. 7: Relation between storage size and block length, p
3) Parameter Selection: In our fixed block deduplica-

tion procedure design, two parameters need to be settled
during implementation. Let us discuss them in detail.

Bloom filter: The basic Bloom filter is used to accelerate
the full storage deduplication process. To avoid unnecessary
lookups in the fingerprint store, there exists a summary
vector [32], which uses a vector of m bits. The Bloom
filter uses k independent hash functions, each mapping a
fingerprint randomly to a bit in the summary vector. The
Bloom filter is widely applied in many areas [27]. We
makes the false positive negligible by setting appropriate
parameters. To achieve this, we computed the probabilities
of false positives in Bloom filter with different settings
through a specific method [33]. We found that the false
positive will be below 0.2% when m is equal to 512K and
k is equal to 4, and it will be below 0.001% if m is equal
to 4M and k is equal to 4. Note that, even if a false positive
occurs, it will only result in a slight storage overhead. For
example, when m is equal to 512K and k is equal to 4,
false positive will only bring an additional 0.2% overhead.
Therefore, the impact of false positive is acceptable.

Fingerprint store: The fingerprint store organizes all
detected fingerprints. To achieve fast searching, it is im-
plemented with 256 buckets. The last byte is used to map

8

each fingerprint to a bucket. We then search in a bucket
using binary search.

We set the size of a cell in the catalog table to be 32
bits, and the size of a cell in dictionary table to be 8 bits,
which is also the size of a TD-cell.

The SHA-1 function of OpenSSL crypto library [34] is
used to generate the fingerprints. It can process over 2.5Gb
SRAM per second when a sub-row has 500 cells. It can
even be accelerated by more than 6 times if implemented
in hardware [35]. That is because deduplication overheads
are mostly due to the computation of fingerprints [36], so
1Gb SRAM can be deduplicated within about 1 second.
B. Reducing Update Burden on TD-table

Although the update actions minimize the number of
accesses to memory, we find that the updates on default
entries of the source table, e.g., Action(pd, *, a), can cause
a large number of rewrites. This is because 1) source default
prefix resides at the root node of the colored trees, thus
updating a default entry may cause a lot of subsequent
updates; 2) Unfortunately, the default entry changes more
frequently than others, as it represents the connectivity of
destination prefixes. Nowadays, the update frequency on
connectivity information can reach tens of thousands per
second [26].

We propose to isolate default entries from the source
table. We remove these entries from the source table, and
instead of being matched explicitly when the full wildcard
is hit, the default entry is matched when none entry in the
source table is matched. Fig. 8 shows the transformation.
More details are illustrated in Section VI.

Note that with this improvement, some cells in TD-table
may be empty. This is because in a colored tree after
removing the root node, a white node may not belong to
the domain of any black node. For example, in Fig. 5,
after isolating node(****), node(100*) does not belong
to the domain of any black node, thus cell (101∗, 100∗)
becomes empty. When a packet matches an empty cell, it
is forwarded to the nexthop of the default entry.

d

e

f

a

u

l

t

1

1

1

*

1

0

1

*

1

0

0

*

1

1

*

*

0 1 2 3 4

011*

110*

101*

11**

10**

1

2

3

4

5

3

1

2

3

2

1

2

3

2

0

1

*

*

5

2

0

2

2 2 2

0 0

0

default 1 0 22

2

1 0

2 2 2 2

2 1

3 2 2

3 2 2

1

1

1

*

1

0

1

*

1

0

0

*

1

1

*

*

0 1 2 3

011*

110*

101*

11**

10**

2

1

1

2

2

0

1

*

*

4

1

default

1

2

3

4

5

0

3

3

3

2

2

02 2 2

0 0

0 22

2

3

3

0

Fig. 8: Isolate default entry from source table

VI. IMPLEMENTATION

FISE is implemented on a commercial router, i.e., Bit-
Engine 12004, which supports 4 line-cards. Each line-
card has a CPU board (BitWay CPU8240 with clock rate
100MHz), two TCAM chips (IDT 75K62100), an FPGA
chip (Altera EP1S25-780), and several cascaded SRAM
chips (IDT 71T75602). Inside the FPGA chip, there exists
internal SRAM memory.

Our implementation is based on existing hardware and
does not need any new hardware. In order to achieve this,

we re-design the original destination-based router through
rewriting about 1500 lines of VHDL codes with some
additional C codes.
A. Router Framework

The logical implementation is depicted in Fig. 9, the
packet first arrives at the Interface module. After matching,
the TCAM module outputs the matched prefix, and through
the TCAM associated SRAM, FPGA obtains the destination
and source indexes. Then, FPGA accesses the internal
SRAM block for the TD-cell. After obtaining the nexthop
index, FPGA accesses the mapping table, which resides in
another internal SRAM block. FPGA then gets the next hop
information and delivers the packet to the next processing
module - switch co-process module, which switches the
packet to the right interface.

FPGA

FIFO

TCAM

SRAM

Interface

Module

Control Plane Update

Interface

Switch

Co-

process

Module

Clock

Module

① ②

④③

①:Destination table

②:Source table

③:TD-table

④:Mapping-table

Data Plane

Fig. 9: The framework of router design

B. A Scalable FISE Design
We incorporate the improvements mentioned in Section

II-C and V-B, such that FISE accommodates more rules
and allows more frequent updates. With this improvement,
the source index (see Figure 10(a)) only stores the column
address. However, the format of destination index changes
(see Figure 10(b)): 1) it has an indicator bit, which is set
only if the related destination prefix points to a row in TD-
table (see Section II-C); 2) it stores the default entry for
the related destination prefix (see Section V-B).

Column Number32 bits
(a) Source index format

Row Number
DefaultNexthopIndexIndicator bit32 bits 8bits1bit

(b) Destination index format
Fig. 10: Source and destination indexes format

Within the modified structure, the lookup process
changes. After obtaining destination and source indexes,
FISE checks the indicator bit. If it is unset, FISE gets the
default index directly; if none source prefix gets matched,
FISE uses the default index; if a source prefix is matched,
FISE accesses the corresponding cell in TD-table. If the
cell is empty, FISE switches back to the default index,
otherwise FISE gets the index value of the cell. Using
the obtained index value, FISE looks up in the mapping
table and gets the next hop information. Compared with the
original lookup process in Figure 3, the additional steps are
processed in CPU, so it does not bring additional accesses
in TCAM or SRAM.

VII. EVALUATION AND SIMULATION

FISE is evaluated through experiments using real
datasets. We also conduct simulations to assist the evalua-
tion of SRAM compression under various settings. In the
worst case, the complexity of the FISE scheme is O(NM).

9

However, due to the real network operation strategies, e.g.,
default routing is widely configured in networks [9], the
actual complexity is far less than O(NM). According to
the real dataset, we cannot generate this situation either.

A. Evaluation Environment

Our evaluation environment are composed of three com-
ponents: 1) a PC host with a CPU of Intel Core2 Duo T6570
acting as the control plane, 2) a 4 Gigabit Ethernet linecard
equipped with both ACL-like and FISE structures, and 3)
a traffic generator (IXIA 1600T) with speed of 4Gbps. We
use an X86 platform PC to act as the main control board
of a router to compute and distribute forwarding rules. The
architectures are similar to the current mainstreaming router
vendors, e.g., Juniper, which also used X86 platforms to
implement their main control boards of routers. The traffic
generator is connected to the linecard through optical fibers,
and the linecard is connected to the PC host through serial
cables. The traffic generator sends packets of 64 bytes
(including 18 bytes Ethernet Header) at full 4Gbps speeds.
The linecard receives the packets, performs lookups and
sends the packets back to the traffic generator.

We control the forwarding table by the PC host through
the serial cable, update the forwarding table through the
pre-defined interfaces and test update at different frequency
(i.e., 500, 5,000, and 50,000 updates per second). The
TCAM memory is structured according to L-algorithm
[37]. More specifically, prefixes of the same length are
clustered together, and free space between different clusters
is reserved to guarantee fast updates in TCAM.

The storage footprint for TCAM and SRAM, and the
lookup and update processing speed are also evaluated.

B. Datasets

Two practical scenarios are investigated: policy routing
and load balancing. Both scenarios are based on the true
demands of CERNET2 [38], which provides the access
services for universities/institutions in more than 22 major
cities in China. CERNET2 has about 7000 prefixes in its
FIB, thus CERNET2 can even achieve full policies (49
millions rules, need 392Mb SRAM) between all destination
and source prefixes with FISE. This provides more room for
the development of policy routing, which may require much
more than 1 million rules in the future. However, this is still
not enough for larger enterprises. Actually, in our datasets,
the number of rules is less than 1 million, e.g., there are less
1,000 source prefixes and less 1,000 destination prefixes.
In particular, the reason that we consider a network with 1
million rules is that more rules will be enforced to achieve
flexible policy routing in a network deployed with FISE.

Within each scenario, we generate data sets of rules
that need to be stored in the forwarding table, and update
sequence. Based on the real data collected from CERNET2,
we can test the performance of FISE on IXIA 1600T.
Note that problems in these scenarios can be solved by
other techniques, e.g., MPLS. However, we focus on the
forwarding table design in this paper.

1) Scenario 1: Policy Routing in CERNET2: CERNET2
has two international exchange centers connecting to the
Internet: Beijing (CNGI-6IX) and Shanghai (CNGI-SHIX).
During operations, we find that CNGI-6IX is very con-
gested with an average throughput of 1.18Gbps (February
2011), and CNGI-SHIX is much more free with a maximal
throughput of 8.3Mbps at the same time. CERNET2 thus
wants to divert out-going International traffic to CNGI-
SHIX (Shanghai portal).

We collect the prefix and FIB information from CER-
NET2. There are 6973 prefixes in the FIB and 6407
are foreign prefixes. At the initial stage, we select three
universities: Tsinghua University (in Beijing, with 38 pre-
fixes), HUST (in Wuhan, with 18 prefixes) and SCUT (in
Guangzhou, with 28 prefixes), and forward their traffic to
CNGI-SHIX. We thus simulate three FIBs on three routers:
Beijing, Wuhan and Guangzhou (we call each FIB PR-BJ,
PR-WH, and PR-GZ, respectively).

We generate the update sequence on the router of Wuhan
as follows: the initial forwarding table only contains desti-
nation prefixes, and we add all rules into the forwarding
table all at once. In this way, we simulate a common
scenario, where ISPs decide to carry out a policy at some
time point. We show the number of rules in each forwarding
table, and the number of updates in each update sequence
in Table III.

TABLE III: An overview of the datasets
PR-BJ PR-GZ PR-WH LB-MO LB-AF LB-NI

Rules 250366 186306 365674 7118 7342 7410
Updates / / 365674 / / 475773

2) Scenario 2: Load Balancing in CERNET2: Fig. 11
(Y-axis is anonymized) shows the bandwidth utilization of
CNGI-6IX and CNGI-SHIX. The traffic is very dynamic,
thus we need dynamic load balancing mechanisms in the
future. As a case study, we collect one Tera-Byte of
NetFlow traffic data during Jan, 2012 on routers of Beijing,
Shanghai and Wuhan. We will redistribute the flows.

We try to redistribute each macro flow, identified by a
destination and source prefix pair, to different exchange
centers, such that load is balanced. The problem can be
reduced to Multi-Processor Scheduling problem [39] which
is NP-hard. Thus, we use the greedy first-fit algorithm,
which greedily assigns each macro flow to the least utilized
exchange center. The algorithm achieves an approximation
factor of 2.

We construct three forwarding tables, each at different
time points, i.e., 6:00, 14:00 and 22:00 during Jan 15, 2012
on the router of Wuhan (we call each forwarding table LB-
MO, LB-AF, and LB-EV, respectively). Among them, LB-
EV is the largest one, because more traffic should be moved
at 22:00 which is the peak traffic point during a day.

The update sequence is generated as follows: we compute
a new load balancing forwarding table every hour, and
compare it with that of the previous hour. According to the
difference between them, we obtain the update sequence of
each hour. Fig. 12 shows the number of updates per hour
in this scenario.

10

0 10 20 30
x

2x

3x

4x

5x

Time (day)

U
ti

li
z
a
ti

o
n

 (
%

)

CNGI−SHIX

CNGI−6IX

Fig. 11: Utilization of CNGI-6IX and
CNGI-SHIX

0 10 20 30
0

500

1000

Time (day)

N
u

m
b

e
r

o
f

u
p

d
a

te
s

LB

Fig. 12: Number of updates for load balancing

0 100 200 300
3.0475

3.0475

3.0475

3.0476

3.0476

3.0476

Time (sec)

R
a

te
 (

G
b

p
s

)

Receiving rate

Sending rate

Fig. 13: Receiving/Sending rate without update

Table III summarizes the number of rules and updates
(PR: policy routing LB: load balancing). For comparison,
we use the ACL-like structure as a benchmark. To update
rules, FISE controls outgoing flows by inserting rules
in PR scenarios, and periodically changes flow forwarding
rules by inserting and removing rules in LB scenarios.
Our dataset includes an average of 832 update operations
per hour, a maximum of 1301 update operations, and a
minimum of 547 update operations per hour.
C. Evaluation Results

1) Forwarding Table Size: We evaluate the storage
space that FISE consumes for all forwarding tables, and
the storage space after compression and adopting non-
homogeneous structure. As a comparison, we set the ACL-
like structure as a benchmark. We compare FISE and ACL-
like in each step. We also compare FISE with the SPliT [14]
structure, which first lookups in one dimension, outputs
a sub-table, and merges sub-tables if they are the same.
Because SPliT undergoes totally different steps, we only
compare FISE and SPliT in the final step.

In Fig. 14, we show the consumed TCAM and SRAM
storage space of each forwarding table.

Basic FISE and ACL-like Structure: In Fig. 14(a),
we can see that the TCAM space in FISE can be 1/50
as compared to the ACL-like structure. For example, in
PR-WH, FISE consumes 1Mb TCAM storage, while the
ACL-like structure consumes more than 72Mb. In the LB
scenarios, the gain from FISE is smaller. This is because
in the PR scenario, many rules share the same destination
or source prefixes yet in the LB scenario, there are much
less these rules. Because LB requires fine-grained control
on the flows by using such rules. LB could be achieved
only based on the source address. However, it cannot fully
leverage the advantages of multiple paths in Internet service
provider networks [40]. Therefore, LB upon source and
destination prefixes provides a better way to achieve fine-
grained control on traffic.

In Fig. 14(e), we can see that, in the PR scenario, the
SRAM space in FISE can be 1/40 as compared to that
of the ACL-like structure. For example, in PR-WH, FISE
consumes 3Mb SRAM storage, while ACL-like structure
consumes 125Mb. In the LB scenario, FISE consumes more
SRAM storage. This is because in the PR scenario, although
there are many rules, the TD-table is very dense, and
nexthop index further condenses the nexthop information.
In the LB scenario, the TD-table is much sparser. In Section
VII-D, we show that the SRAM storage of FISE can be
greatly reduced, due to the flexibility of SRAM.

Compression: Fig. 14(b) shows the TCAM space after
compression. We also compress the ACL-like structure
by minimizing the number of TowD rules. We can see
that, after TCAM compression, FISE still consumes much
less TCAM storage than the ACL-like structure. In Fig.
14(f) depicts the SRAM space after compression. We can
find that FISE can further compress SRAM after TCAM
compression. For example, the SRAM storage of PR-WH
is compressed to be less than 90K bits. This is because 1)
the flexible mapping structure of FISE; and 2) data redun-
dancies in TD-table. However, in the ACL-like forwarding
tables, the SRAM storage is proportional to the TCAM
storage and can not be further compressed.

Non-Homogeneous Structure: In Fig. 14(c), we show
the TCAM space with non-homogeneous structure. Non-
homogeneous structure does not save TCAM storage in
FISE but saves TCAM storage in the ACL-like structure.
However, to support non-homogeneous structure, the ACL-
like structure must be physically divided, because most
TCAM chips only support uniform entry width. In contrast,
with FISE, we can flexibly and logically divide the table
into two parts. Fig. 14(g) shows the SRAM space with
non-homogeneous structure. We can see that, with non-
homogeneous structure, FISE consumes much less SRAM
storage than the ACL-like structure in all forwarding tables.

Compression with Non-Homogenous Structure: In
Fig. 14(d) and 14(h), we apply non-homogeneous structure
and compression techniques to FISE and the ACL-like
structure. The resulting tables are the smallest among all
tables. We can find that TCAM and SRAM spaces in FISE
are much smaller than the ACL-like structure. The improve-
ment in SRAM is very large compared to non-homogenous
structure only, because there still exists redundancies after
using non-homogenous structure.

We also compare FISE with SPliT. In Fig. 14(d), we
see that in the PR scenario, although SPliT improves the
ACL-like structure, it still consumes much more TCAM
storage than FISE. For example, on PR-WH, SPliT con-
sumes more than 4.5Mb TCAM while FISE only consumes
800Kb. This is because SPliT does not fully eliminate the
“multiplication” factor in TCAM while FISE does. In the
LB scenario, the improvement is not obvious, because only
a few rules exist. In Fig. 14(h), we can observe that in the
PR scenario, SPliT consumes much more SRAM storage
than FISE. In the LB scenario, SPliT also consumes similar
SRAM storage with FISE.

From the above evaluations, we can conclude that com-
pared to the ACL-like structure, FISE can save large TCAM

11

storage space. Although the SRAM storage space may be
larger initially, through various flexible techniques, SRAM
storage space of FISE can be largely reduced. Note that
the storage can be converted to monetary cost and power
consumption, thus ISPs can save money/power [28].

2) Lookup and Update Operations: We show the lookup
and update performance of FISE, and compare it with the
ACL-like structure4.

Lookup Speed: Fig. 13 presents the lookup speed with-
out updates. We can observe that without updates, both
sending and receiving rates reach line speeds (Ethernet
frame contains 8 bytes preamble and 12 bytes gap, thus
the maximum rate is 4 × 64

64+20 ≈ 3.0476Gbps). We also
look into the data traces, and find no packet loss. Note that
the speed reaches the upper limit of the linecard we use,
and it could be higher with better linecards.

TCAM Accesses During Update:
We evaluate the number of accesses to TCAM because

updates in TCAM will interrupt the lookup. Fig. 15(a)
shows the number of TCAM accesses per 100 updates in
PR and LB scenarios. We can see that the number of TCAM
accesses that FISE causes are three orders less than that of
the ACL-like structure. For example, in the PR scenario,
FISE causes 2-3 TCAM accesses per 100 updates while
the ACL-like structure causes several thousands. This is
because FISE stores much less information in TCAM.

Fig. 15(b) and 15(c) present the lookup speed, i.e.,
receiving rate on the traffic generator, of FISE with different
update frequencies during 5 minutes. In Fig. 15(b), we can
see that in the PR scenario, FISE has no influence on lookup
while the ACL-like structure degrades the lookup speeds by
7% in the worst case. This is because FISE causes much
fewer accesses to TCAM. In Fig. 15(c), we can find that
in the LB scenario, FISE does influence the lookup speeds
when there are 50,000 updates per second; however, the
influence is still much smaller than the ACL-like structure.

We conclude that the FISE structure will not impose
high update burden on lookups. In the PR scenario, all
updates can be finished in less than 10 seconds without
influencing lookups, which is fast enough for installing a
policy. In the LB scenario, the maximum number of updates
per hour is 1,301, which can be finished within 1 second
without influencing lookup. Note that, 1,301 is the number
of times required to update rather than the update frequency.
In our experiments, updates are asynchronous. We extract
all the update sequences in the dataset and replay them
with different frequencies, and then evaluate the effect of
the update on the lookup. The maximum number of updates
1,301 is actually the worst case.

Fig. 16 shows cumulative probability of slowing down
during lookup with different update frequency. We found
that, as the update frequency increases, the lookup speed is
more likely to slow down. When the lookup speed is less
than 3 Gbps, the update speed will not be affected. For
example, as shown in Figure 16(c), the update speed can
reach 50,000 times per second.

4SPliT does not have an online incremental update algorithm.

Influence of SRAM Accesses During Update: FISE
causes more accesses to SRAM. Although it does not
interrupt the lookup with dual-port SRAM, it is limited by
hardware capacities and computing resources.

In Fig. 17, we show the number of accesses to SRAM
with the incremental update and TD-Saturation(). We can
find that for both PR and LB scenario, incremental updates
cause much less accesses to SRAM. This is because during
each update, TD-Saturation() has to reset all conflicted cells
while incremental updates only have to reset a small part of
them. For example, in the LB scenario, the incremental up-
date causes 600 accesses in SRAM, while TD-Saturation()
causes 10,814. In the PR scenario, the incremental update
causes only 100 accesses; this is because the source table is
composed of prefixes from U1 and U2, whose prefixes are
disjoint except for two prefixes (240c::/28 and 240c:3::/32).
Thus, updating a cell in TD-table brings almost none
conflicted cells.

In Fig. 17b, we also show the computation time per 100
updates for both incremental update and TD-Saturation().
The result is similar with Fig. 17, because more accesses
to SRAM indicate more cells that have to be computed.

In Fig. 18, we show the number of accesses to SRAM
with and without isolating default entry in source tables.
We only consider the LB scenario, because PR scenario
is a special case where all nodes in the colored tree
of any destination prefix are black, thus isolating default
entry has no effect. In the LB scenario, we randomly
insert 100 updates on the default next hops of destination
prefixes, after each hour when load balancing is carried
out. In Fig. 18, we can see that with isolation, each update
cause none additional accesses to SRAM, because we only
have to update the TCAM and destination index. However,
without isolation, each 100 updates cause 10,000 accesses
to SRAM, because we also have to update the conflicted
cells in TD-table.

3) Evaluation Summary: Our evaluation shows that
FISE can well accommodate 365,674 rules (this data is
obtained from the PR-WH in the CERNET2 dataset.). For
all scenarios, FISE consumes at most 1Mb TCAM and
7Mb SRAM space; this is because we fully eliminate the
multiplicative effect in TCAM, and we can take advantage
of the flexibility of SRAM to design advanced compres-
sion schemes. As a matter of fact, we believe that our
limited scenarios from CERNET2 cannot fully illustrate
the potential of FISE. Our experience shows that FISE can
accommodate more rules. FISE achieves constant lookup
time and works well with 50,000 updates per second, and
we believe these do not hit the limit of FISE potential as
well.
D. Simulation

We set up simulations, to make a thorough evaluation on
the storage size of FISE and the performance of fixed block
deduplication. The rules are generated with the similar
method mentioned in [41], which randomly selects the
prefix pairs from the public routing tables to construct
rules. To represent policies between organizations, e.g.,
enterprises [42], we randomly select K ASes from the

12

PR−BJ PR−GZPR−WHLB−MOLB−AF LB−EV2
0
2
5

2
10
2
15
2
20
2
25
2
30
2
35

FISE

ACL−like

(a) TCAM with basic structure
PR−BJ PR−GZPR−WHLB−MOLB−AF LB−EV2

0
2
5

2
10
2
15
2
20
2
25
2
30
2
35

TCAM−Compress

SRAM−Compress

ACL−like

(b) TCAM after compression
PR−BJ PR−GZPR−WHLB−MOLB−AF LB−EV2

0
2
5

2
10
2
15
2
20
2
25
2
30
2
35

FISE

ACL−like

(c) TCAM with non-homogeneous
PR−BJ PR−GZPR−WHLB−MOLB−AF LB−EV2

0
2
5

2
10
2
15
2
20
2
25
2
30
2
35

FISE

ACL−like

SPliT

(d) TCAM after compression, with
non-homo

PR−BJ PR−GZPR−WHLB−MOLB−AF LB−EV2
0
2
5

2
10
2
15
2
20
2
25
2
30
2
35

FISE

ACL−like

(e) SRAM with basic structure
PR−BJ PR−GZPR−WHLB−MOLB−AF LB−EV2

0
2
5

2
10
2
15
2
20
2
25
2
30
2
35

TCAM−Compress

SRAM−Compress

ACL−like

(f) SRAM after compression
PR−BJ PR−GZPR−WHLB−MOLB−AF LB−EV2

0
2
5

2
10
2
15
2
20
2
25
2
30
2
35

FISE

ACL−like

(g) SRAM with non-homogeneous
PR−BJ PR−GZPR−WHLB−MOLB−AF LB−EV2

0
2
5

2
10
2
15
2
20
2
25
2
30
2
35

FIST

ACL−like

SPliT

(h) SRAM after compression, with
non-homo

Fig. 14: Size of each forwarding table

0 500 1000 1500 2000 2500
10

0

10
2

10
4

10
6

N
u

m
b

e
r

o
f

a
c

c
e

s
s

e
s

 t
o

 T
C

A
M

Update sequence number (x 100)

LB−FIST

LB−ACL−LIKE

PR−FIST

PR−ACL−LIKE

(a) of accesses to TCAM per 100 updates

2.8

2.9

3

Time (sec)

FIST

0 100 200 300
2.8

2.9

3

Seconds

R
e
c
e
iv

in
g

 r
a
te

 (
G

b
p

s
)

ACL−like
PR−50000

PR−5000

PR−500

(b) Lookup speed with updates for PR

2.8

2.9

3

Time (sec)

FIST

0 100 200 300
2.8

2.9

3

Seconds

R
e
c
e
iv

in
g

 r
a
te

 (
G

b
p

s
)

ACL−like
LB−50000

LB−5000

LB−500

(c) Lookup speed with updates for LB

Fig. 15: Lookup speed with updates

3.01 3.015 3.02 3.025 3.03 3.035 3.04 3.045 3.05

Lookup speed (Gbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

v
e
 p

ro
b

a
b

il
it

y
 o

f
s
lo

w
in

g
 d

o
w

n PR-50000

LB-50000

(a) Cumulative probability of slowing down
during lookup with 500 updates pre second

3.032 3.034 3.036 3.038 3.04 3.042 3.044 3.046 3.048

Lookup speed (Gbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

v
e
 p

ro
b

a
b

il
it

y
 o

f
s
lo

w
in

g
 d

o
w

n PR-5000

LB-5000

(b) Cumulative probability of slowing down
during lookup with 5000 updates pre second

3.046 3.0462 3.0464 3.0466 3.0468 3.047 3.0472 3.0474 3.0476 3.0478

Lookup speed (Gbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

v
e
 p

ro
b

a
b

il
it

y
 o

f
s
lo

w
in

g
 d

o
w

n PR-500

LB-500

(c) Cumulative probability of slowing down
during lookup with 50000 updates pre second

Fig. 16: Cumulative probability of slowing down during lookup with different update times pre second

0 500 1000 1500 2000 2500
10

1

10
2

10
3

10
4

N
u

m
b

e
r

o
f

a
c

c
e

s
s

e
s

 t
o

 S
R

A
M

Update sequence number (x 100)

LB−FIST

LB−ACL−LIKE

PR−FIST

PR−ACL−LIKE

(a) # of accesses to SRAM per 100 updates

0 500 1000 1500 2000 2500

10
2

10
3

10
4

C
om

pu
ta

tio
n

tim
e

(
µs

)

Update sequence number (x 100)

LB−Incremental
PR−Incremental

LB−Saturation
PR−Saturation

(b) Computation time per 100 updates

Fig. 17: Comparison between incremental updates and TD-Saturation()

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

10
5

Time (day)

N
um

be
r

of
 u

pd
at

es

LB−Non−Isolation
LB−Isolation

Fig. 18: Isolation VS.
non-isolation

global ASes as the destination ASes, and another K ASes
as the source ASes. Then, we choose χ destination and
source AS pairs. For each pair, we randomly select a next
hop between 1 and 255 (0 is reserved), such that all source
prefixes in the source AS towards all destination prefixes
will go through this next hop. We use the routviews prefix
to AS mapping dataset for the simulation [43]. We define
fill ratio as χ

K2 , to evaluate the performance of FISE within
different densities.

We use TCAM/SRAM size as the metric to compare
FISE with fully compressed ACL-like structure, and use
deduplication ratio, that is the SRAM size before dedupli-

cation divided by the SRAM size after deduplication, to
evaluate the performance of deduplication.

Fig. 19(a) compares the TCAM storage size of FISE and
the ACL-like structure at different fill ratio. We can see
that no matter how large the fill ratio is, FISE consumes
less TCAM. This is because FISE fully eliminates the
“multiplication” factor. When the fill ratio increases, the
TCAM storage of FISE remains roughly the same, while
the TCAM storage of ACL-like structure increases rapidly.
For example, when the fill ratio is 0.10 and K is 500, the
ACL-like structure consumes 129Mb TCAM, while FISE
only consumes 319Kb TCAM. This is because the ACL-

13

0.02 0.04 0.06 0.08 0.1
10

4

10
6

10
8

Fill ratio

T
C

A
M

 s
to

ra
ge

 s
iz

e
(b

its
)

ACL−LIKE(K=100)
ACL−LIKE(K=500)
ACK−LIKE(K=1000)

FISE(K=100)
FISE(K=500)
FISE(K=1000)

(a) TCAM storage size as a function of fill ratio
0.02 0.04 0.06 0.08 0.1

10
5

10
10

Fill ratio

S
R

A
M

 s
to

ra
ge

 s
iz

e
(b

its
)

ACL−LIKE(K=100)
ACL−LIKE(K=500)
ACL−LIKE(K=1000)

FISE(K=100)
FISE(K=500)
FISE(K=1000)

(b) SRAM storage size as a function of fill ratio

Fig. 19: Storage size as a function of fill ratio

20 40 60 80 100 120

2

4

6

8

D
ed

u
p

lic
at

io
n

 r
at

io

Block length (cells)

Fill ratio = 0.01
Fill ratio = 0.03
Fill ratio = 0.05
Fill ratio = 0.07
Fill ratio = 0.09

Fig. 20: Deduplication ratio as a function of
block length with K = 500

like structure contains much redundancy.
Fig. 19(b) compares the SRAM size of FISE and the

ACL-like structure. We can see when the fill ratio is small,
FISE and ACL-like structure consume roughly the same
SRAM, because FISE deduplicates most empty storage.
When the fill ratio increases, both FISE and ACL-like struc-
ture consume more SRAM. However, the SRAM storage of
FISE increases much slower, due to the flexible indexing
structure.

In Fig. 20, we study the impact of block length. We
set K to be 500 and evaluate the deduplication ratio with
different block lengths. When the block length increases,
the deduplication ratio increases first, due to the deflation
of the catalog table; then it decreases, due to the inflation
of the dictionary table. When the fill ratio is low, the block
length that maximizes the deduplication ratio is large. The
result agrees with the observation in Section V-A2. But
more detailed work is out of the scope of this work.

VIII. RELATED WORK
With increasing demands from users and ISPs for bet-

ter and more flexible services, more routing policies are
added into routers[13]. Many research works focus on
new routing solutions, e.g., PBR [7], MTR [8], TCR [9]
and recent software-defined networking (SDN). In Layer-
3, more routing schemes make the routing decisions based
on both source and destination addresses, such as policy
routing [44], NIRA [45], customer-specific routing [15].
Recently, in IETF, many drafts have been proposed for
Destination/Source routing [17]. Most of these solutions
focus on re-designing the routing control plane. Our work
re-designs the forwarding plane, which is orthogonal with
them. The Lulea algorithm [46] also performed well in
FIB lookup. However similar to other algorithm-based or
caching-based methods, they do not have deterministic
lookup speed [47, 48], which limit their practical deploy-
ment.

To support rich policies, the solutions can be divided
into two broad categories: CAM-based and algorithmic
solutions [49]. In this paper, we focus on CAM-based
solutions. CAM-based, especially TCAM-based solutions
are the de facto standard in industry. Most enterprise
networks uses the ACL-like structure, which is ‘fat’ in
TCAM and ‘thin’ in SRAM [14]. However, TCAM-based
solutions are limited by its capacity [14]. In addition,
TCAM is highly customized, so there are limited techniques
we can use to compress it. The most popular technique
is aggregation [12, 20, 50]. In [51, 52], the optimal two
dimensional forwarding table compression is studied. How-
ever, in the extreme case, the compression ratio is only

20.0% on average [12]. In [12], a non-prefix approach that
re-orders the ternary strings in prefixes to compress TCAM
is investigated. Compared with them, we move the storage
from TCAM to SRAM, thus 1) TCAM storage is reduced;
and 2) More compression techniques can be used in SRAM.

HERMES [53] aims to minimize TCAM insertion times,
and propose a novel idea that divides the TCAM table into
shadow table and main table. However, lookups happen in
both tables sequentially, thus HERMES belongs to ”fat”
TCAM structure, and still contains the ”multiplication”
factor in TCAM. Compared with HERMES, FISE wants
to support the increasing number of policies and solve the
limited capacity in TCAM, so divides the TCAM table into
source table and destination table, and migrates storage to
flexible SRAM. FISE changes the ”fat” TCAM structure
to ”thin” TCAM structure, eliminating the ”multiplication”
factor in TCAM.

There are studies proposing new structures to reduce the
“multiplicative” effect in TCAM [14]. In [14], a scheme
called SPliT first lookups in a one dimensional table storing
destination prefixes, and outputs a sub-table. Thus, it can
merge different sub-tables if they are the same. Compared
with SPliT, we make one step further and fully eliminate
the effect.

More works are proposed for algorithmic solutions, such
as trie-based, decision-tree, and bitmap-based approaches
[49]. A decision tree is a flowchart-like structure in which
each internal node represents a “test” on an attribute, e.g.,
whether a coin flip comes up heads or tails, each branch
represents the outcome of the test, and each leaf node
represents a class label, i.e., decision taken after computing
all attributes. The paths from root to leaf represent classi-
fication rules. Each time a packet arrives, the decision tree
is traversed to find a leaf node, which stores a small num-
ber of rules. However, they suffer from non-deterministic
performance and do not scale well [13]. Although we
focus on CAM-based, we borrow the ideas from other
non-CAM solutions. Bit-vector linear search [54] performs
individual lookups in each dimension, and each dimension
outputs a O(n) length vector representing matched rules.
By interseting bit-vectors, the algorithm computes the final
result. Cross-producting [55] extracts the elements in each
dimension, and stores all combinations in a database. Based
on their ideas, we formally organize the rules into TCAM
and a compact matrix in SRAM, which is simple and can
provide deterministic lookup speed. The Lulea algorithm
also performs well in this situation, which can be applied in
software-based routers. However, our FISE aims to provide
hardware-based (i.e., TCAM-based) solution.

14

IX. CONCLUSION

In this paper, we have proposed a new forwarding
table structure called FISE. Our focus is to accommodate
the increasing number of policies in enterprise networks.
Through the separation between TCAM and SRAM, FISE
greatly reduces the TCAM storage and keeps fast lookup
speed. By proposing an improved prefix tree called colored
tree, we have designed the incremental updating algorithm,
which can minimize the computation complexity and the
number of accesses to memory. We have implemented
the FISE-based forwarding table on a commercial router.
Our design does not need any new devices and can be
implemented on the existing hardware routers. We have
also made comprehensive evaluations with the real imple-
mentation on a commercial router and the datasets from
CERNET2. The results have shown that the performance
of FISE is promising. This paper has focused on a Layer-
3 two dimensional table, due to the importance of source
address in routing. It is also an initial step towards higher
dimensional forwarding in our future work. Besides, we
can further reduce the size of the TD-table by leveraging
the existing deduplication algorithms.

REFERENCES
[1] Shu Yang, Mingwei Xu, Dan Wang, Gautier Bayzelon, and Jianping Wu. Scal-

able forwarding tables for supporting flexible policies in enterprise networks.
In Infocom, IEEE, 2014.

[2] Y.E. Sung, Xin Sun, S.G. Rao, G.G. Xie, and D.A. Maltz. Towards systematic
design of enterprise networks. IEEE/ACM Transactions on Networking,
19(3):695 –708, 2011.

[3] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia
Ratnasamy, and Vyas Sekar. Making middleboxes someone else’s problem:
network processing as a cloud service. In Proc. ACM SIGCOMM’12, Helsinki,
Finland, Aug 2012.

[4] Minlan Yu. Scalable Management of Enterprise and Data-Center Networks.
PhD thesis, Princeton University, Sep 2011.

[5] Yinghui Zhang, Robert H. Deng, Gang Han, and Dong Zheng. Secure
smart health with privacy-aware aggregate authentication and access control
in internet of things. Journal of Network and Computer Applications, 123:89
– 100, 2018.

[6] Keke Gai, Meikang Qiu, and Xiaotong Sun. A survey on fintech. Journal of
Network and Computer Applications, 103:262 – 273, 2018.

[7] Cisco. Policy-Based Routing (white paper), 1996.
[8] Juniper. Multi-topology routing (white paper), Aug 2010.
[9] F. Baker. IPv6 Source/Destination Routing using OSPFv3. Internet Draft, Feb

2013. draft-baker-ipv6-ospf-dst-src-routing-00.
[10] A. Lindem, S. Mirtorabi, A. Roy, and F. Baker. Ospfv3 lsa extendibility.

Internet Draft, May 2013. draft-acee-ospfv3-lsa-extend-01.
[11] Theophilus Benson, Aditya Akella, and David A. Maltz. Mining policies from

enterprise network configuration. In Proc. ACM IMC’09, Chicago, IL, Nov
2009.

[12] C.R. Meiners, A.X. Liu, and E. Torng. Bit weaving: A non-prefix approach
to compressing packet classifiers in tcams. In Proc. IEEE ICNP’09, Orlando,
Florida, Oct 2009.

[13] Yadi Ma and Suman Banerjee. A smart pre-classifier to reduce power
consumption of tcams for multi-dimensional packet classification. In Proc
ACM SIGCOMM’12, Helsinki, Finland, Aug 2012.

[14] Chad R. Meiners, Alex X. Liu, Eric Torng, and Jignesh Patel. Split: Optimizing
space, power, and throughput for tcam-based classification. In Proc. ACM/IEEE
ANCS’11, Brooklyn, NY, Oct 2011.

[15] Jing Fu and Jennifer Rexford. Efficient ip-address lookup with a shared
forwarding table for multiple virtual routers. In Proc. ACM CoNEXT’08,
Madrid, Spain, Dec 2008.

[16] Haibin Lu and Sartaj Sahni. Conflict detection and resolution in two-
dimensional prefix router tables. IEEE/ACM Trans. Netw., 13(6):1353–1363,
2005.

[17] D. Lamparter. Destination/source routing. Internet Draft, Oct 2014. draft-
lamparter-rtgwg-dst-src-routing-00.txt.

[18] Anindya Tahsin Prodhan, Rajkumar Das, Humayun Kabir, and Gholamali C.
Shoja. Ttl based routing in opportunistic networks. Journal of Network and
Computer Applications, 34(5):1660 – 1670, 2011.

[19] Shu Yang, Laizhong Cui, Xinhao Deng, Qi Li, Yulei Wu, Mingwei Xu, Dan
Wang, and Jianping Wu. Two dimensional router: Design and implementation.
Technical report, Tsinghua University, Aug 2019. https://arxiv.org/pdf/1908.
04374.pdf.

[20] A.X. Liu, C.R. Meiners, and E. Torng. Tcam razor: A systematic approach
towards minimizing packet classifiers in tcams. Networking, IEEE/ACM
Transactions on, 18(2):490 –500, 2010.

[21] Yasunobu Chiba, Yusuke Shinohara, and Hideyuki Shimonishi. Source flow:
handling millions of flows on flow-based nodes. In Proc. ACM SIGCOMM’10,
New Delhi, India, Sep 2010.

[22] Router fib technology. http://www.firstpr.com.au/ip/sramip -forwarding/router-
fib/.

[23] Junghwan Kim, Myeong-Cheol Ko, Hyun-Kyu Kang, and Jinsoo Kim. A
hybrid ip forwarding engine with high performance and low power. In Proc.
ICCSA’09, Seoul, Korea, Jun 2009.

[24] Richard P. Draves, Christopher King, Srinivasan Venkatachary, and Brian N.
Zill. Constructing optimal ip routing tables. In Proc. IEEE INFOCOM’99,
New York, NY, March 1999.

[25] Nagapramod Mandagere, Pin Zhou, Mark A Smith, and Sandeep Uttam-
chandani. Demystifying data deduplication. In Proc. ACM/IFIP/USENIX
Companion’08, Leuven, Belgium, Dec 2008.

[26] Tania Mishra and Sartaj Sahni. Duos - simple dual tcam architecture for routing
tables with incremental update. In Proc. IEEE ISCC’10, Riccione, Italy, Jun
2010.

[27] D. Geer. Reducing the storage burden via data deduplication. Computer,
41(12):15 –17, 2008.

[28] Shu Yang, Dan Wang, Mingwei Xu, and Jianping Wu. Two dimensional router:
Design and implementation. Technical report, Tsinghua University, Aug 2012.
http://www.wdklife.com/tech.pdf.

[29] Ju Hyoung Mun and Hyesook Lim. Cache sharing using bloom filters in named
data networking. Journal of Network and Computer Applications, 90:74 – 82,
2017.

[30] João Luı́s Sobrinho, Laurent Vanbever, Franck Le, and Jennifer Rexford.
Distributed route aggregation on the global network. In Proceedings of the
10th ACM International on Conference on Emerging Networking Experiments
and Technologies, New York, NY, USA, Dec 2014.

[31] S. Maity, P. Bera, and S. K. Ghosh. Policy based acl configuration synthesis
in enterprise networks: A formal approach. In 2012 International Symposium
on Electronic System Design (ISED), Kolkata, India, Dec 2012.

[32] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck in
the data domain deduplication file system. In Proc. USENIX FAST’08, San
Jose, California, Feb 2008.

[33] Biplob Debnath, Sudipta Sengupta, Jin Li, David J Lilja, and David HC Du.
Bloomflash: Bloom filter on flash-based storage. In 2011 31st International
Conference on Distributed Computing Systems, pages 635–644. IEEE, 2011.

[34] Openssl. http://www.openssl.org.
[35] Mohamed Khalil-Hani, Vishnu P. Nambiar, and M. N. Marsono. Hardware

acceleration of openssl cryptographic functions for high-performance internet
security. In Proc. International Conference on Intelligent Systems, Modelling
and Simulation, Liverpool, UK, Jan 2010.

[36] Calicrates Policroniades and Ian Pratt. Alternatives for detecting redundancy
in storage systems data. In Proc. USENIX ATEC’04, Jun 2004.

[37] Devavrat Shah and Pankaj Gupta. Fast updating algorithms for tcams. IEEE
Micro, 21(1):36–47, 2001.

[38] Jianping Wu, Jessie Hui Wang, and Jiahai Yang. Cngi-cernet2: an ipv6
deployment in china. ACM SIGCOMM Computer Communication Review,
41(2):48–52, 2011.

[39] J. Blazewicz, M. Drabowski, and J. Weglarz. Scheduling multiprocessor tasks
to minimize schedule length. IEEE Trans. Comput., 35(5):389–393, 1986.

[40] Juan Antonio Cordero. Multi-path tcp performance evaluation in dual-homed
(wired/wireless) devices. Journal of Network and Computer Applications,
70:131 – 139, 2016.

[41] Florin Baboescu, Priyank Warkhede, Subhash Suri, and George Varghese. Fast
packet classification for two-dimensional conflict-free filters. Comput. Netw.,
50(11):1831–1842, 2006.

[42] Patrick Agyapong and Marvin Sirbu. The economic implications of edge-
directed routing: a network operator’s perspective. In Proc. INTERNET 2012,
Venice, Italy, Jun 2012.

[43] CAIDA. Routevies prefix to as mapping dataset. http://www.caida.org/data/
routing/routeviews-prefix2as.xml.

[44] Arun Seehra, Jad Naous, Michael Walfish, David Maziššres, Antonio Nicolosi,
and Scott Shenker. A policy framework for the future internet. In Proc. ACM
HotNets’09, New York, NY, Oct 2009.

[45] Xiaowei Yang, David Clark, and Arthur W. Berger. Nira: A new inter-domain
routing architecture. IEEE/ACM TRANSACTIONS ON NETWORKING, 15,
2007.

[46] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink. Small
forwarding tables for fast routing lookups. In Proceedings of the ACM
SIGCOMM ’97 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, New York, NY, USA, Oct 1997.

[47] Dr. Zahid Ullah, Manish Jaiswal, and Ray C.C. Cheung. Z-tcam: An sram-
based architecture for tcam. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 23(2):402–406, 2015.

[48] Andrey Belenkiy and Necdet Uzun. Deterministic ip table lookup at wire
speed. In Proc. INET99, 1999.

[49] George Varghese. Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices. Morgan Kaufmann, Waltham, MA, 2005.

[50] Shui Yu, Meng Liu, Wanchun Dou, Xiting Liu, and Sanming Zhou. Networking
for big data: A survey. IEEE Communications Surveys Tutorials, 19(1):531–
549, 2017.

https://arxiv.org/pdf/1908.04374.pdf
https://arxiv.org/pdf/1908.04374.pdf
http://www.wdklife.com/tech.pdf
http://www.openssl.org
http://www.caida.org/data/routing/routeviews-prefix2as.xml
http://www.caida.org/data/routing/routeviews-prefix2as.xml

15

[51] Subhash Suri, Tuomas Sandholm, and Priyank Warkhede. Compressing two-
dimensional routing tables. Algorithmica, 35:287–300, 2003.

[52] Bohao Feng, Hongke Zhang, Huachun Zhou, and Shui Yu. Locator/identifier
split networking: A promising future internet architecture. IEEE Communica-
tions Surveys Tutorials, 19(4):2927–2948, 2017.

[53] Huan Chen and Theophilus Benson. Hermes: Providing tight control over high-
performance sdn switches. In Proceedings of the 13th International Conference
on emerging Networking EXperiments and Technologies, pages 283–295. ACM,
2017.

[54] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forward-
ing using efficient multi-dimensional range matching. SIGCOMM Comput.
Commun. Rev., 28(4):203–214, 1998.

[55] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable layer
four switching. In Proc. ACM SIGCOMM’98, Vancouver, British Columbia,
Canada, Aug 1998.

Shu Yang received his B.Sc. degree from Beijing Uni-
versity of Posts and Telecommunications and Ph.D. degree
from Tsinghua University. His research interest includes
network architecture and high performance router.

Laizhong Cui received the B.S. degree from Jilin Uni-
versity, Changchun, China, in 2007 and Ph.D. degree in
computer science and technology from Tsinghua Univer-
sity, Beijing, China, in 2012. He is currently an associate
professor in the College of Computer Science and Software
Engineering at Shenzhen University, China. He led the
projects of the National Key Research and Development
Program of China and the National Natural Science Foun-
dation, and several projects of Guangdong Province and
Shenzhen City. His research interests include future Internet
architecture, edge computing, big data, IoT, computational
intelligence, software-defined network and machine learn-
ing.

Xinhao Deng received his B.Sc. degree from Hangzhou
Dianzi University. He is a master candidate in Institute for
Network Sciences and Cyberspace, Tsinghua University.
His research interest includes network functions virtualiza-
tion and high performance router.

Qi Li received the PhD degree from Tsinghua University.
Now he is an associate professor of Institute for Network
Sciences and Cyberspace, Tsinghua University. He has ever
worked in ETH Zurich, the University of Texas at San
Antonio, The Chinese University of Hong Kong, and Chi-
nese Academy of Sciences. His research interests include
network and system security, particularly in Internet and
cloud security, mobile security, and big data security. He
is currently an editorial board member of IEEE TDSC and
ACM DTRAP.

Yulei Wu received the Ph.D. degree in Computing and
Mathematics and the B.Sc. degree (1st Class Hons.) in
Computer Science from the University of Bradford, United
Kingdom, in 2010 and 2006, respectively. He is a Senior
Lecturer in the Department of Computer Science with
the University of Exeter, United Kingdom. His expertise
is on networking and his main research interests include
intelligent networking technologies, network slicing and
softwarization, etc. He is an Editor of IEEE Transactions
on Network and Service Management, Elsevier Computer
Networks and IEEE Access. He contributes to major con-
ferences on networking as various roles including a Steering
Committee Chair, a General Chair, a Program Chair, and
a Technical Program Committee Member. He is a Senior
Member of the IEEE, and a Fellow of the HEA (Higher
Education Academy).

16

Mingwei Xu received his B.Sc. degree and Ph.D. degree
from Tsinghua University. He is a full professor with the
Department of Computer Science. His research interest
includes computer network architecture, high-speed router
architecture. He is a member of the IEEE.

Dan Wang received his B. Sc from Peking University,
M. Sc from Case Western Reserve University and Ph. D.
from Simon Fraser University. He is an Associate Professor
of Department of Computing. His research interest includes
Sensor Networks, Internet Routing. He is a member of the
IEEE.

Jianping Wu received his B.S., M.S., and Ph.D. from
Tsinghua University. He is a Full professor and director of
Network Research Center, Ph.D. Supervisor of Department
of Computer Science, Tsinghua University. His research
interests include next generation Internet, IPv6 deployment
and technologies, Internet protocol design and engineering.
He is an IEEE fellow.

	Introduction
	FISE Structure and Lookup
	The Matching Rule
	FISE Basics and Correctness
	FISE Basics
	TD-cell Saturation

	A Non-Homogeneous FISE Structure
	FISE Lookup

	Forwarding Table Compression
	TCAM Compression
	SRAM Compression

	FISE Incremental Update
	Practical Considerations
	Further SRAM Compression
	blackFixed Block Deduplication
	blackTheoretical Analysis
	blackParameter Selection

	Reducing Update Burden on TD-table

	Implementation
	Router Framework
	A Scalable FISE Design

	Evaluation and Simulation
	Evaluation Environment
	Datasets
	Scenario 1: Policy Routing in CERNET2
	Scenario 2: Load Balancing in CERNET2

	Evaluation Results
	Forwarding Table Size
	Lookup and Update Operations
	Evaluation Summary

	Simulation

	Related Work
	Conclusion

