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Abstract California’s ongoing, unprecedented drought is having profound impacts on the state’s
resources. Here we assess its impact on 98 deep-seated, slow-moving landslides in Northern California. We
used aerial photograph analysis, satellite interferometry, and satellite pixel tracking to measure earthflow
velocities spanning 1944–2015 and compared these trends with the Palmer Drought Severity Index, a proxy
for soil moisture and pore pressure that governs landslide motion. We find that earthflow velocities reached a
historical low in the 2012–2015 drought, but that their deceleration began at the turn of the century in
response to a longer-term moisture deficit. Our analysis implies depth-dependent sensitivity of earthflows to
climate forcing, with thicker earthflows reflecting longer-term climate trends and thinner earthflows
exhibiting less systematic velocity variations. These findings have implications for mechanical-hydrologic
interactions that link landslide movement with climate change as well as sediment delivery in the region.

1. Introduction

Drought is an increasing global phenomenon [Dai, 2013] driven by precipitation deficits over periods of years
and amplified by increasing temperatures. California’s early 21st century drought reached historic propor-
tions in 2015 with 2012–2015 constituting a drought that is unprecedented in the state’s historical record
[Robeson, 2015]. Widespread consequences of the drought on the state’s resources and population include
a reduction in water supply and crop yields [Cooley et al., 2015], groundwater depletion [Borsa et al., 2014],
widespread forest mortality [Asner et al., 2016], and increased wildfire risk. A special issue in Geophysical
Research Letters delves deeper into the drought, its origins, and consequences [Swain, 2015], but little has
been reported on geomorphic response to drought, either in California or elsewhere [e.g., McSaveney and
Griffiths, 1987]. Here we utilize a novel combination of historic photoanalysis, automated satellite pixel track-
ing, and satellite interferometry (interferometric synthetic aperture radar (InSAR)) to assess the response of
multiple landslides to drought in Northern California.

Understanding and predicting landslide response to climate change are a significant challenge for Earth
scientists with implications for infrastructure and population centers globally. Although individual landslide
events tend to have relatively small impacts compared to other hazards such as earthquakes and floods,
landslides kill at least 5000 people a year globally [Petley, 2012] and cost an estimated $20 billion dollars or
17% of the annual losses from all natural disasters [Klose, 2015]. Much research on landslide response to
climate surrounds their response to extreme rainfall events [e.g., Guzzetti et al., 2007] and melting perma-
frost [e.g., Gruber, 2004], both of which are predicted to increase with climate change. However, landslide
response to drought, which is also predicted to increase [Dai, 2013], remains largely unexplored; McSaveney
and Griffiths [1987] provide one of the few assessments of landslide response to drought. Further research
on landslide response to drought as a climatic forcing event is needed to better understand the variable
response of landslides, and more generally, geomorphic and hydrologic processes to climate change
[Pelletier et al., 2015].

Deep-seated (>5m), slow-moving (<4myr�1) landslides, often referred to as earthflows [Hungr et al., 2014],
respond to changes in precipitation [Baum and Reid, 2000; Iverson and Major, 1987] through pore water
pressures at the basal shear surface [Schulz et al., 2009; Terzaghi, 1950; Van Asch et al., 1999], which are con-
trolled by groundwater dynamics [Iverson and Major, 1987]. Over time scales of>1 year, earthflowmovement
has been shown to be well correlated with surface moisture balance as expressed by indices such as the
Moisture Balance Drought Index, suggesting these to be useful proxies for basal pore pressures [Coe, 2012].
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This hydrologic linkage is supported by data of Iverson and Major [1987] showing the correspondence of
near-surface (~2m) and deep (~10m) groundwater levels, determined from wells in Minor Creek landslide
in Northern California. Numerical models and field-basedmeasurements suggest that increases in pore water
pressure that drive landslide motion predominantly diffuse vertically through the earthflow body from the
surface and can be approximated by a 1-D linear diffusion model [Berti and Simoni, 2010, 2012; Iverson and
Major, 1987]. On this basis, landslides should respond to changing soil moisture as a function of their thickness,
although values of the relevant hydrologic parameters remain unclear [Handwerger et al., 2013].

Here we compare themovement of multiple earthflows in Northern California over seven decades (1944–2015)
with the Palmer Drought Severity Index (PDSI), a surface moisture balance index and themost prominent index
of meteorological drought in the U.S. We further explore earthflow response to the 2012–2015 drought as a
function of earthflow thickness, which may reflect hydrologic-mechanical linkages.

2. Study Site

We focus on a 140 km2 area of the Eel River catchment containing 98 active earthflows originally mapped by
Mackey and Roering [2011]. The site is located within the Central Belt of the Franciscan mélange, a highly
sheared, Jurassic-Cretaceous accretionary prism complex within the Northern Californian Coast Range. As
is typical of mountainous regions with weak mélange lithology, erosion and landscape evolution in the
region is dominated by earthflows. Although slow-moving (0.2–4.2m yr�1), these features contribute
>50% of the total erosion in the region [Bennett et al., 2016; Kelsey, 1978; Mackey and Roering, 2011].
Comprehensive landslide mapping has revealed this stretch of the Eel River to have the highest earthflow
erosion rates in the region due to rapid rock uplift (~1mmyr�1) related to the migration of the Mendocino
Triple Junction [Bennett et al., 2016].

Precipitation is highly seasonal with most of the 1.4m of annual precipitation falling between October and
April. Surprisingly, earthflows in the region appear to respond to seasonal precipitation in a remarkably syn-
chronous fashion (within approximately 40 days following the onset of rainfall) despite a nearly order of mag-
nitude variation in thickness [Handwerger et al., 2013]. A detailed study of one earthflow in the region shows
its slow-down over the late 20th century, interpreted as a possible response to climate change or decline in
supply of landslidematerial from the headscarp region [Mackey et al., 2009]. Meteoric 10B analysis of the same
earthflow shows that it has experienced movement for at least 150 years, indicating that earthflows can sus-
tain perpetual movement for long periods of time [Mackey et al., 2009].

3. Methods

We combined manual mapping and automated pixel tracking to obtain earthflow velocities across our
study site spanning 1944–2015. First, we calculated mean 1944–2006 earthflow velocities for 98 earth-
flows by averaging tree displacements mapped from aerial photographs by Mackey and Roering [2011]
for each earthflow. Mackey et al. [2009] conducted more detailed mapping of tree displacements
for one of these earthflows (referred to as “Kekawaka” by Mackey et al. [2009] and “Kekawaka 2” by
Handwerger et al. [2013, 2015] and in this study) from more closely spaced aerial photographs between
1944 and 2006. We selected an additional nine earthflows to conduct more detailed mapping from a
sequence of orthorectified aerial photographs [Mackey et al., 2009; Mackey, 2009; Table S1]. Combining
our nine earthflow velocity time series with that of Mackey et al. [2009] yields 10 earthflow time series
for 1944–2006 with an average temporal resolution of 9 years with which to investigate decadal
velocity patterns.

Second, we measured the velocities of all 98 earthflows for the periods 2009–2012 and 2012–2015 using
automated pixel tracking. Notably, the latter period coincides with the period of unprecedented drought
[Robeson, 2015]. We conducted our analysis in the COSI CORR software package [Leprince et al., 2007] from
0.5m resolution Worldview satellite imagery. COSI CORR can measure millimeter-scale surface deformation
from optical imagery and has been widely and successfully applied to the study of fault displacement [e.g.,
Hollingsworth et al., 2012], regional glacier velocities [e.g., Scherler et al., 2011], and individual landslides
[Leprince et al., 2008; Roering et al., 2015; Stumpf et al., 2014]. We chose Worldview satellite imagery for its spa-
tial and temporal coverage of the study site and high resolution (0.5m), obtaining three panchromatic
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images for 2009, 2012, and 2015 and a stereo pair for 2014 (Table S2 in the supporting information).
Multitemporal images acquired at different viewing angles require both orthorectification with an accurate
digital elevation model (DEM) and coregistration, prior to their correlation in COSI CORR. We followed the
same procedure for image orthorectification and coregistration as Stumpf et al. [2014], performing our pro-
cessing in the ERDAS Imagine software package.

We correlated our orthorectified, co-registered images with COSI CORR to obtain displacements for the per-
iods 2009–2012 and 2012–2015. COSI CORR measures displacements in the north-south and east-west direc-
tions, which are combined to produce displacement fields. Our error analysis followed three steps,
estimation, and removal of systematic error in the displacement fields (Figures S1 and S2 in the supporting
information), filtering to reduce noise, and validation of our measured displacements based on coincident
InSAR measured displacements for a subset of earthflows [Handwerger et al., 2015] (Figure S3). On the basis
of poor 2015 image quality and noise in the resulting displacement 2012–2015 field, we also produced a dis-
placement field for 2012–2014.

While earthflows are known to have different kinematic zones [e.g., Handwerger et al., 2015], we are inter-
ested in the bulk earthflow behavior and thus calculated mean earthflow velocity as the mean displace-
ment (≥0) within the entire earthflow body as mapped by Mackey and Roering [2011]. We estimated that
the remaining random error in our displacement fields (Figure S2) contributes to an uncertainty on the
order of ±0.02m yr�1 when averaged over an earthflow. This is consistent with error in the manual
measurements [Mackey et al., 2009]. Finally, we omitted 5 of the 98 earthflows, including 2 of our 10 focus
earthflows, from further analysis for 2012–2015 on the basis of high nonsystematic error in the displace-
ment field (Figure S1c).

In order to assess the response of earthflows to the 2012–2015 drought, we compared the velocity time series
of our 10 focus earthflows with annual mean Palmer Drought Severity Index (PDSI) downloaded from the
National Climate Data Center of NOAA for division 1 in California (Figure S4). PDSI is the most prominent
index of meteorological drought used in the United States [Palmer, 1965] and was used to demonstrate
the extreme and unprecedented nature of the 2012–2015 drought in California [Robeson, 2015]. It incorpo-
rates antecedent moisture conditions, precipitation, and potential evapotranspiration into a surface moisture
balance. It is a standardized measure, ranging from �10 (dry) to +10 (wet), with values <�3 representing
severe to extreme drought. Dai et al. [2004] and Dai [2011] showed that PDSI is significantly correlated with
measured soil moisture as well as satellite observations of water storage over many parts of the world,
including the U.S. We tested its suitability for representing surface (~2m) soil moisture at our study site by
comparing PDSI with soil moisture estimates from phase 2 of the North American Land Data Assimilation
System (NLDAS-2) [Xia et al., 2012]. A strong positive relationship (R2 = 0.7; Figure S5) suggests that PDSI
adequately represents soil moisture at our study site and is a useful proxy of pore pressure relevant for
earthflow movement.

Finally, we investigated the relationship between earthflow velocity and PDSI as a function of earthflow thick-
ness. We use the terms thickness and depth interchangeably throughout the text to refer to the average
depth from earthflow surface to the basal shear zone. Mean earthflow basal depths of 69 of our earthflows
were approximated from field and lidar calculations of earthflow toe height at the channel interface and
depth of gully incision through the earthflow body [Handwerger et al., 2013; Mackey and Roering, 2011].
These depths are minimum estimates as gullies and channels are not typically fully incised through the land-
slide mass. Thicknesses of our remaining 29 earthflows were approximated from earthflow areas using an
empirical scaling relationship developed for earthflows in the study area [Handwerger et al., 2013], D= αAγ,
where D is earthflow depth, A is earthflow planform area, α= 0.46, ϒ = 0.29, and the r2 value of the relation-
ship is 0.45.

4. Results

The mean velocity of all 98 earthflows decreased by more than 50% from 0.27 (0.02) m yr�1 in 1944–2006
to 0.12 (0.02)m yr�1 in 2009–2012 and subsequently more than halved again to 0.04 (0.01) m yr�1 in
2012–2015 (Figure 1), where value in parentheses reports standard error. Considering only earthflows
above our estimated error of 0.02m yr�1, ~25% of earthflows active in 1944–2006 exhibited
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undetectable motion between 2009 and 2012. A further 40 earthflows or ~50% of those still active in
2009–2012 exhibited undetectable motion (≤0.02m yr�1) in 2012–2014 (Figure S6). While the recent
decrease in earthflow velocities has been particularly rapid, it is part of a long-term slowing trend com-
mencing in the mid-late 1990s (Figure 2a).

The mean earthflow velocity of our 10 focus earthflows was relatively steady until the late 1990s when decel-
eration ensued (Figure 2a), coincident with the onset of drought conditions (PDSI< 0) (Figure 2b). Although the
recent 15 year period dominated by negative multiyear averaged PDSI values included a few years with slightly
positive PDSI values in 2005 and 2010, the average velocity of our studied earthflows has continually deceler-
ated since the turn of the century, reaching a historic low in the extreme 2012–2015 drought [Robeson, 2015].
Although the sparse nature of our data precludes a rigorous correlation, the general correspondence of our
velocity data with 9 year average PDSI values implies that earthflows may respond to climate trends beyond

Figure 1. Earthflow displacement fields clipped by earthflow polygonsmeasured for the 98 earthflows found by (a) manually
tracking of trees on sequential aerial photographs for the period 1944–2006 [Mackey and Roering, 2011], (b) automatically
using pixel tracking for 2009–2012, and (c) 2012–2014. Focus earthflows are a subset of 10 of the 98 earthflows with velocities
measured at a higher temporal resolution over the 1944–2006 period (Figure 2a). (d) Mean earthflow velocities, including
those measured from the 2012–2015 displacement map (Figure S1c), along with an inset location map of the study site (blue
star) in California. The central horizontal red line in box plot is the median, the edges of the blue box are the 25th and 75th
percentiles, the whiskers extend to 1.5 times the interquartile range, and the red crosses depict outliers.
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the time scale of storms or even
seasonal rainfall. Alternative factors
that may influence earthflow
motion, such as grazing, road con-
struction, forestry, and fire, do not
exhibit systematic temporal varia-
tions in our study area.

We further explored earthflow
sensitivity to climate forcing as a
function of earthflow depth,
focusing on velocity changes that
occurred during the recent
extreme drought. Figure 3
shows that the 89 earthflows
<15m thick showed high-velocity
variability between 2009–2012
and 2012–2014. Twenty-four (13)
accelerated and 74 (25) deceler-
ated by up to 3 (1) orders of magni-
tude, with values in brackets
referring to earthflows displaying
significant changes. In contrast,

Figure 2. (a) Earthflow velocities for our 10 focus earthflows. The vertical bars around the means represent the range of
velocities for each earthflow measured for the time intervals represented by the horizontal bars. Not all earthflows were
identifiable in every set of aerial photographs, leading to several overlapping measurement intervals. The number of
earthflows for each period (n) varies due to variable photo coverage of earthflows. Spline fit only considers mean earthflow
velocities where n> 1 for a given measurement interval. (b) Annual mean PDSI fit with a 9 year centered moving average
(black line). The pink bar highlights the most recent drought cycle.

Figure 3. Landslide velocity changes between 2009–2012 and 2012–2014 as
a function of earthflow depth; see also Figure S6. Significant earthflows had
mean velocities >0.02m yr�1 in both periods (greater than velocities that
may arise from random error alone) in both periods. Error in individual
earthflow depths is estimated to be 25% [Mackey and Roering, 2011].
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the nine thicker earthflows (>15m) uniformly decelerated and showed less variability in their deceleration,
slowing by a maximum of 1 order of magnitude.

5. Discussion and Conclusions

Results from this study are the first to document the geomorphic response to historic drought in California.
While deceleration of earthflows in response to the recent (2012–2015) drought has been particularly rapid,
we find that the vast majority of earthflows along the Eel River catchment have been decelerating since the
turn of the century coinciding with a longer-term moisture deficit in the region. We also observe the depth-
dependent sensitivity of landslides to climate forcing for the first time. Our findings have implications for
understanding mechanical-hydrologic controls on earthflow movement in the Eel River and beyond as well
as for understanding and predicting the variable response of landslides to climate change.

Earthflows <15m deep both accelerated and decelerated in the 2012–2015 drought, such that they do not
consistently slow down with the extreme drought conditions, as thicker earthflows appear to do. One
potential explanation is that individual storms may influence shallow landslides within this period owing
to shallow (and relatively rapid) perturbations to the groundwater regime [e.g., Iverson and Major, 1987].
Alternatively, shallow landslide movement may be influenced by groundwater conditions that are relatively
independent of long-term climate and thus hydrologic trends, for example, through development of perched
water tables. Furthermore, the variable response of these shallow features may have been affected by
changes in vegetation, resupply of material to the landslide by failures at the headscarp, or other changes
in landslide structure and hydrologic parameters [Mackey et al., 2009].

The consistent deceleration of thicker (>15m) earthflows in the 2012–2015 drought suggests that these
earthflows may be relatively insensitive to annual and subannual fluctuations and instead track changes in
longer-term moisture balance at time scales of >2 years. This inference is consistent with the broad
correspondence of the mean velocity of our 10 focus earthflows, 7 of which are >15m thick, with decadal
average PDSI. Our results have implications for predicting landslide movement based on climate predictions
[e.g., Coe, 2012]. While deeper earthflows may reflect long-term climate trends, our results suggest that
accurate prediction of shallow landslide response will be complicated as evidenced by their high variability.

The depth-dependent response of earthflows to multiannual climate forcing presented here differs from the
depth-independent response of earthflows to the onset of seasonal rainfall [Handwerger et al., 2013].
However, these differences in landslide behavior are not necessarily contradictory. As noted by
Handwerger et al. [2013], it is possible that earthflow response time to onset of seasonal rainfall is less than
the ~40 day resolution of their InSAR data, precluding observation of variability in earthflow response time
as a function of earthflow depth. Alternatively, it is possible that seasonal earthflow response is superimposed
on longer-term decadal earthflow response to climate forcing.

It will be both illuminating and important to continue to monitor these earthflows as rainfall returns, particu-
larly given the hypothesis that extreme drying may increase pathways for runoff into earthflows through
development of cracks [Krzeminska et al., 2013; McSaveney and Griffiths, 1987]. Catastrophic failure of earth-
flows is not common but the current extreme drought may generate an unprecedented, nonlinear response
[Pelletier et al., 2015].
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