
1

Using Social Behavior of Beetles to Establish a
Computational Model for Operational Control

Ameer Hamza Khan, Xinwei Cao, Shuai Li, and Chunbo Luo

Abstract—In this paper, we computationally model the social
behavior of beetles and apply it to the tracking control of
manipulators. The beetles demonstrate excellent skills to forage
food in a previously unknown environment by merely using their
olfactory senses. The goal of the beetle is to search the region
with the maximum smell. Therefore, the actions of the beetle
can be characterized as an optimization algorithm. This paper
mathematically models this behavior in the form of a Recurrent
Neural Network (RNN) with a temporal-feedback connection.
We apply the formulated RNN controller for the redundancy
resolution and tracking control of the redundant manipulators
with an unknown kinematic model. Most of the industrial robots
have redundant manipulators, and kinematic trajectory tracking
is a fundamental problem for any industrial task. The behavior
of the beetle allows us to formulate a position-level controller
without relying on the manipulation of the Jacobian matrix.
It is in contrast with the conventional velocity-level controllers,
which require an accurate kinematic model of the manipulator
and calculation of pseudo-inverse of Jacobian, a computationally
expensive task. The proposed algorithm, called Beetle Antennae
Olfactory Recurrent Neural Network (BAORNN) algorithm;
is capable of driving the manipulator by only using the
feedback from the position and orientation sensors. The stability
and convergence of the proposed algorithm are theoretically
proved, and simulations results using a 7-DOF industrial robotic
arm, KUKA LBR IIWA14, are presented to demonstrate the
performance of the proposed algorithm.

I. INTRODUCTION

The social behavior of living beings in their common
habitats serves as a great source of inspiration for the
development of nature-inspired metaheuristic algorithms.
Several nature-inspired optimization algorithms have been
proposed in literature [1]–[4]. The process of evolution and
natural over millions of years have optimized the behaviors of
these living beings to carry out their tasks efficiently. Behavior
of several animals have been formulated into an optimization
algorithm e.g. ants [5], honey bees [6], fireflies [7], cuckoo
[8] and bats [9]. However, most of these algorithms rely on
the swarming behaviors of these animals and therefore require
a large number of search particles. However, the natural
behaviors of beetles are peculiar, such that they do not work
in a swarm to search for food. An individual beetle alone
is capable of foraging food based on its olfactory sense. By
comparing the intensity of smell at two antennae locations, the
beetle can create a map of smell intensity and find an optimal

A. H. Khan is with Department of Computing, Hong Kong Polytechnic
University (email: ameer.h.khan@comp.polyu.edu.hk).

X. Cao is with Shanghai University, China (email: xinweicao@shu.edu.cn).
S. Li is with Swansea University, Swansea, UK (email: shuaili@ieee.org).
C. Luo is with Department of Computer Science, University of Exeter,

Exeter, EX4 4RN, UK. (email: c.luo@exeter.ac.uk).
X. Cao is the corresponding author.

Food Source

(Goal)

t = 0
g(xl) < g(xr)

δ0

t = 1
g(xl) > g(xr)

δ1
t = 2

g(xl) < g(xr)

δ2

t = 3
g(xl) > g(xr)

δ3

t = 4
Reached Goal (x∗)

Beetle Behavior:

* Measure intensity of smell at each step.

* Compare the smell intensity to estimate a

direction toward food source.

* Take step in that direction of size δt,

proportional to the difference in intensity.

Legend:

† g(x) denotes the intensity of smell.

‡ Color intensity ∝ g(x).

Fig. 1: Illustration of the beetle’s food foraging behavior. At
each step, the beetle stops and measure the smell intensity
using its antennae. Then by comparing the smell intensity, it
decides an optimal direction toward the food source.

direction leading toward the food source. The food foraging
behavior of the beetle is shown in Fig. 1. Jiang and Li [10]
mathematically modeled this behavior into the BAS algorithm.
In this paper, further building on their work, we propose an
RNN architecture to model the beetle behavior and apply it
to solve a real-world problem; tracking control of redundant
manipulators with an unknown model.

Most of the real-world systems are highly nonlinear,
and their real-time functioning requires efficiently solving a
time-varying non-convex optimization problem. One example
of such systems is redundant manipulators. With the advances
in mechatronics, control theory and computing systems,
using a multi-Degree Of Freedom (DOF) robots to perform
common tasks, e.g. picking, holding, packing, assembling, and
transporting have gained a lot of attention in academia as well
as in industry [11]–[19]. These robots usually have more DOF
then required by the underlying task; for example, robotic arms
have more than three joints when the task requires tracking a
path in 3D space [20], [21]. Kinematic modeling of such a
robot is a challenging task because redundant manipulators
can be connected in several different configurations, each
leading to an entirely different kinematic model. In fact
for most robotic arms with redundant joints, a closed-form
inverse kinematic solution model does not even exist [22],
[23]. Additionally, the redundancy provided by these extra
joints allow the robotic arm to have multiple solutions in

2

joint space for the same problem in task space. This extra
freedom available in joint space is exploited to optimize the
performance of robot and achieve secondary design objectives,
such as minimize energy consumption, optimize joint-torques
and obstacle avoidance [24]–[28].

Redundancy resolution for robots with a known kinematic
model is a fundamental and well-studied problem in
kinematic control [21], [26], [29]–[33]. For a robot with
redundant manipulators, if a task is given in cartesian space,
correspondingly an infinite configurations exist in joint space
to perform the same task. Choosing an optimal configuration
presents a challenging problem. Traditionally, for a robot with
a known kinematic model, a general solution to redundancy
resolution problem involves Jacobian-matrix-pseudo-inverse
(JMPI) [34]–[36]. However, it was shown in [37] that the
method based on JMPI does not produce repeatable results
and can potentially lead to undesirable joint configuration.
Later approaches for model-based kinematic control of a robot
with redundant manipulators formulate redundancy resolution
as a constrained optimization problem [24]–[26], [38]. These
approaches use a fitness function, also called an objective
function, which assigns a fitness value to each configuration
in joint space. The solution to redundancy resolution
is to find a configuration with maximum fitness value.
The optimization-driven approach to redundancy resolution
provides a new perspective toward the robot control problem
because the objective function does not necessarily have
to be restricted, just to the kinematic control [39]–[42].
Inspired from this approach, [43] introduced additional penalty
terms in the objective function to constraint the joints inside
a mechanically optimal range. Similarly, [29], [44], [45]
proposed a dual Recurrent Neural Network (RNN) for solving
the optimization problem in real-time. A local optimization
algorithm for model-based redundancy resolution of serial
and parallel manipulators was proposed in [46], however
the solution is only locally optimal and and create large
approximation errors. It must be noted that all of the above
mentioned algorithms are highly dependent on the apriori
known kinematic model of the robot and suffer from Position
Error Accumulation (PEA) because of their open-loop nature.
Uncertainty in mechanical parameters of the robot, e.g., length
of links and location of joints, or the Denavit–Hartenberg (DH)
parameters introduce large errors in the designed controllers.
Even, when the mechanical parameter of the robot are exactly
known apriori, the effect of long-term use, e.g., friction and
wearing may introduce uncertainty in the initially known
mechanical parameters of the manipulator.

For a robot with an unknown kinematic model (which
is investigated in this paper), the problem of redundancy
resolution remains a challenging issue. Conventional methods
to solve this problem focus on numerically estimating
an inverse kinematic model of a robot using training
and data-driven approaches, such as neural networks [23],
[47]–[49]. The estimated model is then used to control
the robot directly. However, model estimation and training
of the neural network is a computationally expensive task,
which requires a large amount of training dataset and
cannot be accomplished in real-time. Some other algorithms

[20], [50], [51] focus on estimating the Jacobian of
the robot and design a kinematic controller in velocity
space. Similarly, approaches based on adaptive control and
barrier-Lyapunov-function [52]–[58] have been proposed.
Although the methods mentioned above are capable of solving
the problem of redundancy resolution for a robot with an
unknown kinematic model, however, these require estimation
of Jacobian matrix and calculation of its pseudo-inverse at
runtime for waypoint along the path of the robot. Calculation
of matrix pseudo-inverse is a computationally expensive task,
which reduces the real-time viability of these algorithms.

In this paper, we present a novel metaheuristic approach;
Beetle Antennae Olfactory Recurrent Neural Network, called
BAORNN from henceforth, to solve the problem of
redundancy resolution for model-free kinematic control of
robotic arms in real-time. Here we take advantage of the
fact that the redundancy resolution problem is essentially
equivalent to searching the joint space to find an optimal
configuration corresponding to a task in cartesian space.
Metaheuristic optimization algorithm are well-known [1], [2],
[59]–[62] for their efficiency to search non-convex spaces
for optimal solution of nonlinear objective functions [63],
[64]. Here we leverage this property to search the joint
space of our robotic arm at runtime to find an optimal
configuration. It must be noted that metaheuristic optimization
algorithms have not only been a focus of research interest
but have found several applications in real-world scenarios
[65], [66]. For example, several works have been proposed to
study the problem of inverse-kinematics using metaheuristic
optimization [28], [67]. The BAORNN algorithm, proposed
in this paper, is based on Beetle Antennae Olfactory (BAO)
algorithm [10], [68], which is a nature-inspired metaheuristic
optimization algorithm inspired by the food foraging behavior
of beetles. BAO algorithm is chosen because unlike other
metaheuristic algorithms; it makes use of only a single search
particle to search the optimum of an objective function,
which make it suitable for model-free optimization and
parameter tuning of real-world systems. In this paper, the BAO
algorithm is modeled as an RNN to solve the redundancy
resolution optimization problem in real-time and applied
for the kinematic control of a robotic arm. The BAORNN
algorithm starts from an initial configuration of the robotic
arm joints and efficiently searches the joint space to minimize
the tracking error.

It should be noted that unlike previous works, the proposed
method neither need the forward or inverse kinematic model
of the robotic arm nor the Jacobian and only relies on the
feedback provided by the cartesian position and orientation
sensor. This is in contrast to the traditional methods which use
an analytic or estimated kinematic model of the robot. Since
the proposed algorithm is Jacobian-free, therefore it does not
require the computation of matrix pseudo-inverse, which make
it very computationally efficient. We present the formulation
of the BAO algorithm for our robotic arm as a RNN and
theoretically prove its stability and convergence. The main
highlights of this paper are:

1) We proposed a model-free controller for the kinematic
control of a redundant joint robotic arm which does

3

not require estimation of the kinematic model or
Jacobian matrix and does not involve the calculation of
pseudo-inverse of Jacobian matrix.

2) For a given task in cartesian space, the proposed
controller leverage the efficiency of the metaheuristic
algorithm to efficiently search the joint spaces to find
an optimal joint configuration.

3) Theoretical analysis is done to prove the stability and
convergence of the proposed algorithm.

4) Simulation results using, KUKA LBR IIWA-14, a
popular 7-DOF industrial robotic arm, proves the
efficacy of the proposed approach.

The remainder of this paper is organized as follows:
Section II presents the problem formulation of the redundancy
resolution of a robotic arm with multiple manipulators. In
Section III, the details BAORNN algorithm are laid down
and theoretically shown that the algorithm produces a globally
convergent solution. Section IV presents the simulation
methodology, results, and discuss its importance. Section V
concludes the paper.

II. PROBLEM FORMULATION

In this section, we present the mathematical formulation of
redundancy resolution problem for a general redundant robotic
manipulators. Firstly, a brief introduction about the kinematics
model is provided, and the shortcoming of model-based
kinematic control is outlined. Next, the robotic task execution
is formulated as a quadratic optimization problem.

A. Redundant Manipulator Kinematics

Given a redundant joint robotic arm, the position and
orientation of end-effector are uniquely defined by the
configuration of its joints. Consider a robotic arm with m-DOF
robotic arm having m joints and operating in an n-dimensional
cartesian space. The following mapping from joint space
coordinates to the cartesian coordinates is surjective

x(t) = f(θ(t)), (1)

where x(t) ∈ Rn is the vector representing coordinates
of end-effector in cartesian space and θ(t) ∈ Rm are the
coordinates in joint space. Note m > n for a redundant
joint robotic arm. The mapping function f(.) is nonlinear
and represents the forward kinematics of the robotic arm.
Forward mapping function f(.) known for a given robotic
arm. However, the task for a robotic arm is usually defined
in the cartesian coordinates instead of the joint coordinates;,
therefore, the forward kinematics is of little interest. Based on
1, we can define the following inverse kinematics model

θ(t) = f−1(x(t)), (2)

where f−1(.) represents the mapping from the cartesian
space to the joint space and is inverse of the mapping
defined in (1). If the inverse mapping is known, then for
a given task in cartesian space the corresponding trajectory
in the joint space can be easily calculated using (2) and
robot’s joint can be directly controlled using the calculated
trajectory. Unfortunately, for a redundant robotic arm, the

forward mapping f(.) is surjective only and not one-to-one
i.e., there exist an infinite number of coordinates in joint space,
which are mapped to the same coordinate in the cartesian
space. Therefore, function f(.) is not uniquely invertible.
Furthermore, f(.) is a nonlinear , and its inverse cannot be
expressed analytically for most cases.

The above discussion pertains to the formulation of
the controller at position-level; however, the velocity-level
control is an alternate approach for approximating the inverse
kinematics of the robotic arm involving the Jacobian matrix.
Taking time derivative of the (1) yields

ẋ(t) = J(θ(t))θ̇(t), (3)

where ẋ(t) ∈ Rn and θ̇(t) ∈ Rm are the velocity
of robotic arm in cartesian and joint space respectively.
J(θ(t)) ∈ Rn×m is the Jacobian matrix and calculated as
J(θ(t)) = ∂f(θ(t))/∂θ(t), i.e., Jij = ∂fi/∂θj , where
Jij represent the element in ith row and jth column of the
Jacobian matrix. By analysing the equation (3), it can be
seen that it represent a surjective affine mapping from θ̇(t)
to ẋ(t) in the close neighbourhood of a specified joint space
coordinates and therefore a velocity-level inverse kinematic
model can be formulated as follow

θ̇(t) = J−1(θ(t))ẋ(t). (4)

However, for a redundant manipulator robotic arm the
Jacobian J(θ(t)) is a rectangular matrix; therefore the above
relation requires calculating the pseudo-inverse of a matrix
which is a computationally intensive process. Furthermore,
a specific value of Jacobian, e.g. J(θ0) is only valid in
the close neighbourhood of θ0 i.e. ||θ − θ0||2 < ε for
an arbitrary small constant ε and needs to be re-evaluated
several times for the entire trajectory of the robotic arm.
The recalculation of Jacobian and the subsequent matrix
inversion make this process unsuitable for commonly available
embedded processors.

The above discussion assumes that the forward kinematics
mapping f(.) is precisely known, its Jacobian can be
calculated and generate a non-singular matrix so that the
pseudo-inverse can also be calculated. All of these assumptions
suffer for a high degree of uncertainty, modeling errors,
and requires intensive offline model estimations to provide
desirable results at runtime. In contrast, our algorithm is
formulated on the assumption that we do not have any
information about the kinematic model of the robotic arm and
only have access to the sensor data measuring the position
and orientation of the end-effector in cartesian space. By
using the measured cartesian coordinates in feedback, our
control algorithm can accurately track any arbitrary reference
trajectory in a model-free manner.

B. Kinematic Trajectory Tracking

Consider the task of moving a payload with a robotic arm.
The task requires that the robotic arm grabs the object using
end-effector, move the payload along a desired trajectory in
cartesian space and release the object at the destination. The
goal of the kinematic control is to find an optimal trajectory in

4

the joint space to trace the desired trajectory in cartesian space.
Consider a reference path xr(t) in cartesian coordinates which
we want the end-effector to trace, then the corresponding
trajectory in joint space must satisfy the following relation

xr(t) = f(θr(t)), (5)

where θr(t) is a trajectory in the joint space corresponding
to xr(t). Note that for a redundant manipulator, an infinite
number of trajectories θr(t) satisfy this relation for a
given trajectory xr(t), many of which might not satisfy the
mechanical limits of the joints, for example, extending a
prismatic joint beyond its maximum length. Our goal is to
find a trajectory in joint space which satisfies the (5) while
respecting the constraints on the mechanically optimal range
of joint motion. Without loss of generality, we can model
the optimal trajectory tracking as the following constrained
quadratic optimization problem

min
θ

g(xr(t),θ(t)) =
1

2
||xr(t)− f(θ(t))||22 (6)

subject to:

θ−1 < θ1 < θ+1 , θ−2 < θ2 < θ+2 , θ−m < θm < θ+m.

where g(xr(t),θ(t)) denotes the objective function, m denotes
the total number of joints, θ−k and θ+k (k ∈ {1, 2, ...,m})
represents the minumum and maximum position limits of the
kth joint. To simplify the notation lets define tracking error as

e = xr(t)− f(θ(t))

and the optimization problem (6) can be concisely written as

min
θ

g(xr(t),θ(t)) = eTe (7)

subject to:

θ− < θ < θ+.

where θ− = [θ−1 , θ
−
2 , ..., θ

−
m]T and θ+ = [θ+1 , θ

+
2 , ..., θ

+
m]T .

The solution θ∗ of optimization problem (7) gives us the
required trajectory in the joint space, i.e.,

θr = θ∗.

As already mentioned in Section II-A, our algorithm is
formulated on the assumption that the kinematic model f(.)
of the robotic arm is unknown, and we only have access to
position and orientation data from the sensor. Therefore in our
case, we define tracking error e as

e = xr(t)− x̂(θ(t))

where x̂(θ(t)) denotes the real cartesian coordinate of the
end-effector coming directly from the sensor. It is worth
pointing out that most the traditional methods rely on the
forward kinematic model f(.) to estimate the current cartesian
coordinates instead of sensor data. Based on this definition, the
final objective function for our algorithm becomes

g(xr(t),θ(t)) = ||xr(t)− x̂(θ(t))||22. (8)

The BAORNN algorithm solves the constrained optimization
problem (7) with objective function given in (8).

Although numerical methods are available to solve the
proposed optimization problem on point to point basis, at
each time sample, for the entire trajectory of the robotic
arm, however, the computation cost for such a strategy is
inversely proportional to the sampling interval. For small
time intervals, such a strategy have huge computation cost.
However, in this paper, we propose the BAORNN algorithm,
which uses metaheuristic information from past time steps
to solve the optimization problem at runtime using recurrent
neural networks while simultaneously moving the robotic arm.

Remark 1. Although, only the kinematic model of the
manipulator is used in the formulation of the objective
function (8). However, manipulator controllers based on the
kinematic model have been a subject of study in several recent
works [20], [38], [69], [70]. Several industrial manipulators
[71]–[74] have also found applications of kinematic control.

Remark 2. Although the constrained optimization problem
(7) only enforce tracking the reference trajectory xr(t)
while respecting the joint constraints, the proposed
optimization-driven framework is quite general. It can
easily be extended to include other optimization objectives
by following the approaches of [26], [40], [43]. As an
example, the following optimization problem incorporates
reference trajectory tracking as well as velocity minimization
(which in effect minimize power consumption) with additional
mechanical constraints on the velocities of the joints

min
θ

eTe+ θ̇
T
θ̇ (9)

subject to:

θ− < θ < θ+,

θ̇
−
< θ̇ < θ̇

+
.

Similarly, obstacle avoidance can be incorporated as
maximization of the distance between robot and objects
present in the surrounding environment by following the
approach of [25]. However, in this paper, we will consider
the objective function defined in (7).

III. CONTROL SYSTEM DESIGN

In this section, a recurrent neural network architecture is
developed, and the BAORNN algorithm is formulated to solve
the optimization problem (7) at runtime while concurrently
moving the robotic arm along the reference trajectory. It is
followed by a theoretical analysis of the convergence of the
proposed algorithm.

A. Algorithm Formulation

Consider a m-DOF redundant robotic arm required to track
a reference trajectory. Our goal is to minimize the objective
function given in (8) while respecting the constraints given
in (7). BAORNN algorithm mimics the behavior of a beetle
to probe the joint space using its two antennae. Suppose, the
initial coordinates of the robot in joint space is θ0. At time-step
tk, if the joint-angles of manipulator is θk. The BAORNN
algorithm works by generating a random direction vector ~b ∈

5

Algorithm 1: BAORNN algorithm
Input: A m-DOF robotic arm with unknown kinematic

model attached with position and orientation
sennsors, a reference trajectory xr(t) ∈ Rn for
end-effector and an objective function
g(xr(t),θ(t)) quantifying the quality of
tracking performance. Additionally, the values
of hyper-parameters: c1 and c2 defined in (16).

Output: An optimal trajectory θr(t) in joint space.
θ0 ← Initial joint coordinates
tstop ← Last time instant in xr(t)
while t < tstop do

Generate a random direction vectors, ~b ∈ Rm in
joint space.

Calculate the location of left and right beetle
antennae, θl and θr respectively, using (10).

Project the calculated points inside the constrained
range using (11).

Move the robotic arm to both configurations and
measure the location and orientation of
end-effector, x̂(θ(t)) using pose sensor.

Calculate the value of objective function at both
locations using (12).

Calculate the new location, θnew, using (13), and
project on the constrained set.

Calculate the value of objective function at new
location using the feedback from pose sensor, as
given in (14).

Update the location of beetle in joint space using
(15).

Move the robotic arm to the new joint
configuration calculated in the previous step.
t← t+ 1

end

Rm corresponding to the direction of the beetle antenna. Based
on the generated direction vector, the algorithm calculates the
end-point of both beetle antennae and project them inside the
constrained space to respect the limit of joint motion as follow,

θL = P(θk + λk~b), θR = P(θk − λk~b), (10)

where P(.) is the projection function and project the points
to the constrained space defined by the objective function,
θL and θR denotes the projected location of left and right
beetle antennae respectively. λk is an hyper-parameter in
BAORNN algorithm and denotes the length of the beetle
antenna. Strategy for choosing an optimal value for λ are
discussed later. Although there are several ways to define
a projection function, in this paper we chose a numerically
efficient projection function which is commonly used, i.e.,
the saturation function. The saturation function is defined as
follow

P(θ) =

θ− if θ < θ−

θ if θ− < θ < θ+

θ+ if θ+ < θ

, (11)

and the function is sequentially applied to each joint angle.
The robotic arm moves the joints to both of the calculated

configuration, θL and θR, successively and calculate the value
of the objective function using the following relation

gL = g(xr(t),θL) = ||xr(t)− x̂(θL)||22
gR = g(xr(t),θR) = ||xr(t)− x̂(θR)||22, (12)

where gL and gR are the values of the objective function at
left and right beetle antenna locations, respectively. xr(t) is
the cartesian coordinate on the reference trajectory at current
time instant t and x̂(θ) is the value available from sensor,
hence both values are known and the values of gL and gR can
be evaluated.

BAORNN algorithm then uses the value of the objective
function at both antennae location to take the next step toward
a direction in which the value of the objective function is
decreasing by using the following update rule

θnew = P(θk − δk(λk)sign(gL − gR)~b) (13)

where θnew is the new updated location of the robotic arm
in the joint space, sign(gL − gR)~b ensures that the updated
location of the beetle is in the direction of the antenna with
small objective function value. δk(λk) denotes the step-size,
i.e., euclidean distance between the updated location θnew
and the current location θk. It is a function of antennae
length λ0 and there relationship will also be discussed later.
After reaching θnew, the value of objective function is again
re-evaluated

gnew = g(xr(t),θnew) = ||xr(t)− x̂(θnew)||22, (14)

the value gnew is compared to the value of objective function
at initial location θk. If the value of the objective function
is decreased than the robot remain there, otherwise it moves
back to θk

θk+1 =

{
θk, if gnew ≥ g(xr(t),θk)

θnew, if gnew < g(xr(t),θk)
(15)

After moving from θk to θk+1, the whole process is
repeated; a new random direction vector ~b is generated,
antennae location, θL and θR, are calculated using (10),
objective funtion values, gL and gR, are calculated using (12)
and the beetle location is update using (15). The algorithm is
formally presented in Algorithm 1.

The choice of hyper-parameter λk and δk(λk), where k is
the sample index, effects the convergence performance of our
proposed algorithm. By empirical observations and analyzing
the experimental results, we found that the following relations
can provide a reasonable convergence rate which desirable
dynamic response from the robot

λk = c1
√
g(xr(t),θk) (16)

δk(λk) = c2λk (17)

where c1 and c2 are constants and the factor
√
g(θi) control

the step-size i.e. Euclidean distance between θi+1 and θi in
joint space. Such a choice of step-size ensures large step-size
when the end-effector is far from the goal position and make

6

Random
Generator

~b

θk+1θk
z−1

Delay
Block

m neurons
(Projection)

m neurons
(Projection)

g(.)

g(.)

Eq. (13)

m neurons
(Projection)

g(.)

1st layer 2nd layer

θk + λk
~b

θ
k
−
λ
k
~b

θL

θR

g(θL)

g(θR)
η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η+

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

η−

+

+

+

−

Fig. 2: The topology of the recurrent neural network of the
proposed BAORNN algorithm. The diagram illustrates the
working of the algorithm formulated in Section III-A.

them extremely small when reached near the goal. The small
step-size near goal position reduces the overshooting of the
robotic arm near the goal position. For c1 and c2, we found that
following heuristics provide a good starting point for further
tuning there values

c1 ∝ Ts, c2 ∈ [1, 3]

where Ts is the sampling time of the control loop running the
proposed algorithm and the robotic arm.

The BAORNN algorithm presented above can be formulated
as a recurrent neural network, as shown in Fig. 2. The RNN
has a two-layered architecture with 3m neurons. The RNN
has a temporal feedback connection between the output of
the second layer to the input of the first layer. The block
”Random” represents a normally distributed random vector
generator and provide direction vector ~b for the BAORNN
algorithm. The neurons shown as small circle represent the
projection operator P , while the neurons shown as curved
rectangular boxes (in cyan) represent the objective function
and the output values of those neurons are calculated by using
the sensor data coming from the actual robotic arm. It must be
noted that the g(.) blocks in layer one is evaluated sequentially
based on sensor data from the robotic arm because we are
running the algorithm on a real robotic arm at runtime.

By parsing the graph of RNN and counting the number of
numeric operations and mathematical function evaluations, it
can be seen that the algorithm have a complexity O(m), i.e.,
the computational complexity is just a linear function of the
number of joints. The algorithm involves elementary floating
point operations, which can be executed very fast on embedded
processors since most of them have dedicated hardware units
for floating point operations.

B. Theoritical Analysis

Now we will theoretically analyze the proposed BAORNN
algorithm and prove its stability and asymptotical convergence
to an optimum solution. The detailed analysis on stability and
convergence of BAO algorithm can be found in [68], and here
we lay down the sketch of the proof.

Definition 1. For the tracking control of a robotic arm,
starting from an arbitrary initial joint configuration θ0, the
joint space trajectory θr(t) generate by BAORNN algorithm
is said to be stable if

g(xr(t),θk+1) ≤ g(xr(t),θk), ∀ k ≥ 0, (18)

i.e., objective function is a monotonically decreasing function
of the time. θr(tk) is written as θk for simplicity of notation.

Lemma 1. For the tracking control of a redundant joint
robotic arm, starting from an initial joint configuration θ0
and end-effector coordinates x̂(θ0), the joint space trajectory
θr(t) generated by BAORNN algorithm is stable.

Proof. See Lemma 1 of [68] for details. The general sketch
of the proof goes like this: starting from an initial joint
configuration (θr(t0)) = θ0 at t = t0, the BAORNN
algorithm updates the location of beetle using (15). The update
rule only changes the location in joint space if

g(xr(t),θnew) < g(xr(t),θ0)

i.e., there is a decrease in the value of objective function at
the new location. If on the contrary, the value of objective
function further increases as compared to previous time step,
i.e., g(xr(t),θnew) > g(xr(t),θ0), the robotic arm moves the
joint back to the configuration of previous time step, i.e., θ1 =
θ0. Therefore, the robot configuration at end of each timestep,
θ0, θ1, θ2, ..., θk, where tk = tstop, always results in either
decrease or the same objective function value. Which shows
the BAORNN algorithm produces a monotonically decreasing
series for the values of objective function and thus stable.

Definition 2. For the tracking control of a robotic arm,
starting from an arbitrary initial joint configuration θ0, the
end-effector trajectory x̂(θ(t)) in Cartesian space is said to
be convergent to the reference trajectory xr(t) if it satisfies

x̂(θ(t))→ xr(t), as t→∞. (19)

Lemma 2. For the tracking control of a redundant joint
robotic arm, starting from an initial joint configuration
θ0 and end-effector coordinates x̂(θ0), the joint space
trajectory θr(t) generated by BAORNN algorithm converges
the cartesian trajectory end-effector x̂(θr(t)) to the reference
trajectory xr(t).

Proof. See Theorem 1 of [68] for details. The general sketch
of the proof goes like this: suppose at time instant tk,
probability that the the joint configuration calculated by
BAORNN θk does not lie in an optimal direction is given
by pk, where 0 < pk < 1 by the definition of probability. The
probability that θk+1 also does not lie in an optimal direction
is same as the probability that none of the previous points lies
in the optimal direction, i.e., given by the product of those
probabilities

pk+1 = p0p1p2...pk

the probability that θk+1 is actually an optimal solution is

Pk+1 = 1− pk+1 = 1− p0p1p2...pk

7

where Pk+1 is the probability of θk+1 being an optimal
solution at time instant tk. Since all the values of
p0, p1, p2, ..., pk lies in the range [0, 1], and product of values
in range [0, 1] diminishes as the elements of product increase,
therefore,

lim
k→∞

Pk+1 = lim
k→∞

(1− p0p1p2...pk)

= 1− lim
k→∞

p0p1p2...pk = 1

Therefore as k →∞, the joint configuration θk calculated by
BAORNN converges to the optimal joint configuration.

IV. SIMULATION RESULTS & DISCUSSION

In this section, simulation methodology and results for
position tracking control are presented. KUKA LBR IIWA-14
robotic arm is used as the testbench. The IIWA-14 robotic
arm has 7-DOF, i.e., m = 7, and all joints are revolute. The
robotic arm is shown in Fig. 3. Table 3b shows mechanical
information about IIWA-14.

A. Simulation Methodology

We used the model of IIWA-14 robot provided by MATLAB
Robotic System Toolbox [75]. The model provides an excellent
representation of the real-world IIWA-14 robotic arm and
therefore act as a desirable simulation testbed to test the
performance of the proposed algorithm in realistic scenarios.
A visual representation of the model is shown in Fig. 3.

For testing the performance of position tracking control,
we used two reference trajectory by following the method
of [29]. The first reference trajectory is a rectangular path,
and the second is a circular one. Following time-varying
system of equation defines the rectangular trajectory used in
the simulations.

xrect
r (t) =

t0−t
t0
~a+ t

t0
~b when 0 ≤ t ≤ t0

t1−t
t1−t0

~b+ t−t0
t1−t0~c when t0 < t ≤ t1

t2−t
t2−t1~c+

t−t1
t2−t1

~d when t1 < t ≤ t2
t3−t
t3−t2

~d+ t−t2
t3−t2~a when t2 < t ≤ t3.

(20)

where xrect
r (t) ∈ R3 represent the rectangular trajectory,

~a, ~b, ~c and ~d denotes the vertices of the rectangular
trajectory such that xrect

r (0) = ~a, xrect
r (t0) = ~b, xrect

r (t1) =
~c, xrect

r (t2) = ~d, and xrect
r (t3) = ~a. The rectangular

trajectory spans total time duration [0, t3]. For actual trajectory
generation, we used the following values: ~a = [−0.5 0.5 0.6]T ,
~b = [0.5 0.5 0.6], ~c = [0.5 0.5 0.3], ~d = [−0.5 0.5 0.3],
and the total time duration is [0, 30]. These values represent a
rectangular path in x− z plane.

For generating the circular reference trajectory, we used the
following parametric equation

xcircle
r (t) = ~c+ r cos(2πt/T)~a+ r sin(2πt/T)~b. (21)

where ~c represents the center of the circle, ~a and ~b represents
two perpendicular unit vectors defining the plane of the
circle in 3D space. T denotes the total time duration in
which robotic arm traces the complete circular trajectory. For

1.5

1.0

0.5

0.0

−0.5
0.5

0.0

−0.5 −0.5
0.0

0.5

x(m
)

y(m
)

z
(m

)

Link-1

Link-2

Link-3
Link-4

Link-5
Link-6

Link-7

End-effector

(a)

Link Motion range
(degrees) Length

Home
position†

Link-1 ±170 0.1575 [0.0 0.0 0.1575]T

Link-2 ±120 0.2025 [0.0 0.0 0.3600]T

Link-3 ±170 0.2045 [0.0 0.0 0.5645]T

Link-4 ±120 0.2155 [0.0 0.0 0.7800]T

Link-5 ±170 0.1845 [0.0 0.0 0.9645]T

Link-6 ±120 0.2155 [0.0 0.0 1.1800]T

Link-7 ±170 0.0810 [0.0 0.0 1.2610]T

end-effector fixed 0.0450 [0.0 0.0 1.3060]T

† Link position when all joint angles are zero.

(b)

Fig. 3: KUKA LBR IIWA-14 robotic arm with 7-DOF revolute
joints. (a) shows the 3D model of the robotic arm in its home
configuration. (b) DH-parameters of manipulator.

actual trajectory generation, we used the following values:
~a = [0.0 0.5 0.5], ~b = [1 0 0], and ~c = [0 1 0]. These
values represent a circlular path in x− z plane at y = 0.5.

Note that the above mentioned two trajectories are chosen,
because they encompass a large variety of motion required by
the manipulator, i.e., straight lines and circular arcs. However,
without the loss of generality, the proposed algorithm works
for an arbitrarily chosen trajectory, as long as it does not
violate the mechanical joint-limits of the manipulator.

B. Trajectory Tracking Results

For the rectangular trajectory tracking problem, the results
are shown in Fig. 4. c1 = 1 and c2 = 3 were used as
the values of hyperparameters in (16). During simulations,
the initial configuration of the joints is assumed to be home
configuration, i.e., all joint angles are zero. Fig. 4a shows
the motion of the links in the robotic arm while tracking
the reference trajectory (shown in blue). It shows the motion

8

@ @

Initial Configuration: θ0

Reference Trajectory: xr(t)

x(m)y(m)

z
(m

)

−0.6
−0.4

−0.2
0.0

0.2
0.4

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Link-1

Link-2

Link-3

Link-4

Link-5

Link-6

Link-7

Link-8

(a)

@ @

@

@

x̂x(t)

x̂y(t)
x̂z(t)

Time (t), sec.

C
ar

te
si

an
C

o
o
rd

in
at

es
x̂
(t
),

m

0 5 10 15 20 25 30
−0.6

−0.2

0.2

0.6

1.0

1.4

(b)

@ @

@

@

Time (t), sec.

Jo
in

t
C

o
o
rd

in
at

es
θ
(t
),

ra
d
.

0 5 10 15 20 25 30
−2.0

−1.0

0.0

1.0

2.0

θ1
θ2
θ3
θ4
θ5
θ6
θ7

(c)

@ @

@

@

ex(t)
ey(t)
ez(t)

Time (t), sec.

T
ra

ck
in

g
er

ro
r
e
(t
),

m

Tracking error converges

to zero very quickly.

0 5 10 15 20 25 30
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

24 26 28 30
−0.1

0.0

0.1

(d)

@ @

@

@

Time (t), sec.

O
b
je

ct
iv

e
fu

n
ct

io
n
g
(x

r
,θ

)

Objective function

converges to zero.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

24 25 26 27 28 29 30
0.0

1.0

2.0
×10−3

(e)
t = 1 t = 5 t = 9 t = 13 t = 18 t = 22 t = 26 t = 30

(f)

Fig. 4: Simulation results for rectangular trajectory tracking using the BAORNN algorithm. (a) Motion of the links of robotic
arm while tracking the reference trajectory. (b) Profile of cartesian coordinates of the end-effector trajectory. (c) Profile of
joint space trajectory of the robotic arm. (d) Profile of the position tracking error. (e) Convergence of the value of objective
function, as defined in (7). (f) Simulation model of the LBE IIWA-14 robot while tracking the reference trajectory.

of the robotic arm starting from the initial configuration;
therefore, the initial portion of the motion lies outside
the reference trajectory. Once the end-effector reaches the
reference trajectory, its remaining motion closely matches
the reference signal. Fig. 4b shows the cartesian position
coordinates of the end-effector while tracing the rectangular
trajectory. Fig. 4c shows the motion of the joints of the robotic
arm. Since all the joints are revolute, therefore it shows the
rotation of each joint in radians. It is worth pointing out
that the trajectories in cartesian space and joint space, as
shown in Fig. 4b and 4c respectively shows a bit of unsmooth
behaviour. Such behavior is characteristic for metaheuristic
algorithms because of the stochastic nature; however, the
resultant gain because of reduced computational cost is much
greater. Fig. 4d shows the position tracking error. It can be
seen that the tracking error quickly converges to a very small
value. At t = 0, the tracking error shows a large value,
≈ [0.5 − 0.5 0.7]T ; this happened because the robotic arm
starts its motion from home configuration, which is very far
from the rectangular trajectory. However, as time progresses,
the end-effector finally converges to the reference trajectory,
and the tracking error diminishes. This also proves that the
proposed algorithm does not suffer from PEA problem; once
the tracking error diminishes, it never becomes large again,
except for some small ripples caused by the stochastic nature
of the algorithm. Similarly, Fig. 4e shows the evolution of the
value of objective function, defined in (7), with time. Similar

to the tracking error, the objective function shows a very large
value in the beginning, i.e., g(θ0) ≈ 1.6. However, as time
progresses, the objective function value converges in the range
[0 2× 10−3] and remain inside this interval.

The tracking results for the circular trajectory are shown in
Fig. 5. Similar to the case of rectangular trajectory, c1 = 1
and c2 = 3 were used as the values of hyperparameters in
(16). Fig. 5a shows the motion of the links in the robotic
arm while. Similar to the case of rectangular trajectory, the
initial portion of the robotic arm motion is also shown.
The end-effector trajectory finally converges to the circular
trajectory. Fig. 5b shows the cartesian position coordinates
of the end-effector and Fig. 5c shows joint space motion of
the robotic arm joints. The position tracking error shown in
Fig. 5d displays the same trend, i.e., the error is large at the
beginning but diminishes with time. It again proves that the
proposed algorithm does not suffer from PEA problem. The
objective function profile shown in Fig. 5e also exhibit the
decaying trend. Similarity in the simulation results for the
circular and rectangular trajectory confirms the stability, and
convergence performance of the BAORNN algorithm. Fig. 5f
shows the images of the simulation models of the robotic
arm while tracking the reference trajectory. These simulation
results prove the stability and converge of the BAORNN
algorithm. Fig. 4f shows the images of the simulation models
of the robotic arm while tracking the reference trajectory.

9

@ @

Initial Configuration: θ0

Reference

Trajectory:

xr(t
)

x(m)y(m)

z
(m

)

−0.4
−0.2

0.0
0.2

0.4
0.6

0.8

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Link-1

Link-2

Link-3

Link-4

Link-5

Link-6

Link-7

Link-8

(a)

@ @

@

@

x̂x(t)

x̂y(t)

x̂z(t)

Time (t), sec.

C
ar

te
si

an
C

o
o
rd

in
at

es
x̂
(t
),

m

0 5 10 15 20 25 30 35 40
−0.4

−0.2

−0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b)

@ @

@

@

Time (t), sec.

Jo
in

t
C

o
o
rd

in
at

es
θ
(t
),

ra
d
.

0 5 10 15 20 25 30 35 40
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

θ1
θ2
θ3
θ4
θ5
θ6
θ7

(c)

@ @

@

@

ex(t)
ey(t)
ez(t)

Time (t), sec.

T
ra

ck
in

g
er

ro
r
e
(t
),

m

Tracking error converges

to zero very quickly.

0 5 10 15 20 25 30 35 40
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

32 34 36 38 40
−0.1

0.0

0.1

(d)

@ @

@

@

Time (t), sec.

O
b
je

ct
iv

e
fu

n
ct

io
n
g
(x

r
,θ

)

Objective function

converges to zero.

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

32 34 36 38 40
0.0

1.0

2.0
×10−3

(e)
t = 1 t = 7 t = 12 t = 18 t = 23 t = 29 t = 34 t = 40

(f)

Fig. 5: Simulation results for circular trajectory tracking using the BAORNN algorithm. (a) Motion of the links of robotic arm
while tracking the reference trajectory. (b) Profile of cartesian coordinates of the end-effector trajectory. (c) Profile of joint
space trajectory of the robotic arm. (d) Profile of the position tracking error. (e) Convergence of the value of objective function,
as defined in (7). (f) Simulation model of the LBE IIWA-14 robot while tracking the reference trajectory.

V. CONCLUSION

In this paper, we have addressed the problem of redundancy
resolution and kinematic tracking control for redundant
robotic manipulator working in an industrial environment. The
proposed algorithm solves these problems in a model-free
strategy which does not require the estimation of the kinematic
model or the Jacobian of the robotic manipulator. The
proposed BAORNN uses a RNN architecture based on BAO
algorithm to solve the redundancy resolution problem and
achieve kinematic tracking control in runtime. The proposed
algorithm only rely on the values from the position and
orientation sensor attached to the end-effector of the robot
and does not require any knowledge about the mechanical
parameters or physical construction of the robot, making the
proposed algorithm resilient to the model-uncertainties and
PEA as compared to the traditional algorithm. The proposed
algorithm is also computationally efficient because it does not
require pseudo-inverse of the Jacobian matrix. The stability
and convergence of the proposed algorithm are theoretically
proven. Simulations on a 7-DOF industrial robotic arm also
prove the performance of the proposed algorithm.

VI. FUTURE WORK

A potential future research direction will include reducing
the motion of the manipulator by computing the end-effector
pose using the manipulator’s model instead of moving the
manipulator’s joints. In the current version of the BAORNN

algorithm, the manipulator has to move to each location, and
the value of end-effector coordinates is feedback through the
pose sensor. Additionally, current work only considers the
tracking control as the objective of the industrial manipulator;
however, an actual industrial manipulator needs to fulfill
several additional objectives, e.g., obstacle avoidance. Future
work will study the effect of including secondary objectives.
Experimental verification of the proposed algorithm is also
under consideration for the future work.

REFERENCES

[1] X.-S. Yang, Nature-inspired metaheuristic algorithms. Luniver press,
2010.

[2] J. A. Parejo, A. Ruiz-Cortés, S. Lozano, and P. Fernandez,
“Metaheuristic optimization frameworks: a survey and benchmarking,”
Soft Computing, vol. 16, no. 3, pp. 527–561, 2012.

[3] I. Fister Jr, X.-S. Yang, I. Fister, J. Brest, and D. Fister, “A brief
review of nature-inspired algorithms for optimization,” arXiv preprint
arXiv:1307.4186, 2013.

[4] J. Krause, J. Cordeiro, R. S. Parpinelli, and H. S. Lopes, “A survey of
swarm algorithms applied to discrete optimization problems,” in Swarm
Intelligence and Bio-Inspired Computation, pp. 169–191, Elsevier, 2013.

[5] M. Dorigo and G. Di Caro, “Ant colony optimization: a new
meta-heuristic,” in Proceedings of the 1999 congress on evolutionary
computation-CEC99 (Cat. No. 99TH8406), vol. 2, pp. 1470–1477, IEEE,
1999.

[6] S. Nakrani and C. Tovey, “On honey bees and dynamic server allocation
in internet hosting centers,” Adaptive Behavior, vol. 12, no. 3-4,
pp. 223–240, 2004.

[7] X.-S. Yang, “Firefly algorithms for multimodal optimization,” in
International symposium on stochastic algorithms, pp. 169–178,
Springer, 2009.

10

[8] X.-S. Yang and S. Deb, “Engineering optimisation by cuckoo search,”
arXiv preprint arXiv:1005.2908, 2010.

[9] X.-S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature
inspired cooperative strategies for optimization (NICSO 2010),
pp. 65–74, Springer, 2010.

[10] X. Jiang and S. Li, “Bas: beetle antennae search algorithm for
optimization problems,” arXiv preprint arXiv:1710.10724, 2017.

[11] L. Johannsmeier and S. Haddadin, “A hierarchical human-robot
interaction-planning framework for task allocation in collaborative
industrial assembly processes,” IEEE Robotics and Automation Letters,
vol. 2, no. 1, pp. 41–48, 2016.

[12] Y. M. Zhao, Y. Lin, F. Xi, and S. Guo, “Calibration-based
iterative learning control for path tracking of industrial robots,” IEEE
Transactions on Industrial Electronics, vol. 62, no. 5, pp. 2921–2929,
2014.

[13] M. Tarokh and X. Zhang, “Real-time motion tracking of robot
manipulators using adaptive genetic algorithms,” Journal of Intelligent
& Robotic Systems, vol. 74, no. 3-4, pp. 697–708, 2014.

[14] Z. Zhang, A. Beck, and N. Magnenat-Thalmann, “Human-like behavior
generation based on head-arms model for robot tracking external targets
and body parts,” IEEE transactions on cybernetics, vol. 45, no. 8,
pp. 1390–1400, 2014.

[15] C. Yang, Y. Jiang, Z. Li, W. He, and C.-Y. Su, “Neural control
of bimanual robots with guaranteed global stability and motion
precision,” IEEE Transactions on Industrial Informatics, vol. 13, no. 3,
pp. 1162–1171, 2016.

[16] K. Tchoń, A. Ratajczak, and I. Góral, “Lagrangian jacobian inverse for
nonholonomic robotic systems,” Nonlinear Dynamics, vol. 82, no. 4,
pp. 1923–1932, 2015.

[17] Y.-J. Liu and S. Tong, “Adaptive nn tracking control of uncertain
nonlinear discrete-time systems with nonaffine dead-zone input,” IEEE
Transactions on Cybernetics, vol. 45, no. 3, pp. 497–505, 2014.

[18] G. Hu, N. Gans, N. Fitz-Coy, and W. Dixon, “Adaptive
homography-based visual servo tracking control via a quaternion
formulation,” IEEE Transactions on Control Systems Technology,
vol. 18, no. 1, pp. 128–135, 2009.

[19] H. M. La, T. H. Dinh, N. H. Pham, Q. P. Ha, and A. Q. Pham,
“Automated robotic monitoring and inspection of steel structures and
bridges,” Robotica, vol. 37, no. 5, pp. 947–967, 2019.

[20] D. Chen, Y. Zhang, and S. Li, “Tracking control of robot manipulators
with unknown models: A jacobian-matrix-adaption method,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3044–3053,
2017.

[21] L. Jin, S. Li, X. Luo, Y. Li, and B. Qin, “Neural dynamics for
cooperative control of redundant robot manipulators,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 9, pp. 3812–3821, 2018.

[22] G. Tevatia and S. Schaal, “Inverse kinematics for humanoid robots,”
in Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat.
No. 00CH37065), vol. 1, pp. 294–299, IEEE, 2000.

[23] A. Goldenberg, B. Benhabib, and R. Fenton, “A complete generalized
solution to the inverse kinematics of robots,” IEEE Journal on Robotics
and Automation, vol. 1, no. 1, pp. 14–20, 1985.

[24] A. M. Zanchettin, L. Bascetta, and P. Rocco, “Achieving humanlike
motion: Resolving redundancy for anthropomorphic industrial
manipulators,” IEEE Robotics & Automation Magazine, vol. 20,
no. 4, pp. 131–138, 2013.

[25] D. Guo and Y. Zhang, “Acceleration-level inequality-based man
scheme for obstacle avoidance of redundant robot manipulators,” IEEE
Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6903–6914,
2014.

[26] F. Basile, F. Caccavale, P. Chiacchio, J. Coppola, and C. Curatella,
“Task-oriented motion planning for multi-arm robotic systems,” Robotics
and Computer-Integrated Manufacturing, vol. 28, no. 5, pp. 569–582,
2012.

[27] H. M. La, R. Lim, and W. Sheng, “Multirobot cooperative learning for
predator avoidance,” IEEE Trans. on Control Syst. Technology, vol. 23,
no. 1, pp. 52–63, 2014.

[28] A. H. Khan, S. Li, and X. Luo, “Obstacle avoidance and tracking control
of redundant robotic manipulator: An rnn based metaheuristic approach,”
IEEE Transactions on Industrial Informatics, pp. 1–1, 2019. Early
Access.

[29] S. Li, S. Chen, B. Liu, Y. Li, and Y. Liang, “Decentralized kinematic
control of a class of collaborative redundant manipulators via recurrent
neural networks,” Neurocomputing, vol. 91, pp. 1–10, 2012.

[30] N. C. N. Doan, P. Y. Tao, and W. Lin, “Optimal redundancy
resolution for robotic arc welding using modified particle swarm

optimization,” in 2016 IEEE International Conference on Advanced
Intelligent Mechatronics (AIM), pp. 554–559, IEEE, 2016.

[31] L. Jin, S. Li, H. M. La, and X. Luo, “Manipulability optimization
of redundant manipulators using dynamic neural networks,” IEEE
Transactions on Industrial Electronics, vol. 64, no. 6, pp. 4710–4720,
2017.

[32] C. Yang, H. Wu, Z. Li, W. He, N. Wang, and C.-Y. Su, “Mind control
of a robotic arm with visual fusion technology,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 9, pp. 3822–3830, 2017.

[33] W. He, H. Huang, and S. S. Ge, “Adaptive neural network control
of a robotic manipulator with time-varying output constraints,” IEEE
transactions on cybernetics, vol. 47, no. 10, pp. 3136–3147, 2017.

[34] B. Liao and W. Liu, “Pseudoinverse-type bi-criteria minimization
scheme for redundancy resolution of robot manipulators,” Robotica,
vol. 33, no. 10, pp. 2100–2113, 2015.

[35] L. Jin and Y. Zhang, “Discrete-time zhang neural network of o
(τ3) pattern for time-varying matrix pseudoinversion with application
to manipulator motion generation,” Neurocomputing, vol. 142,
pp. 165–173, 2014.

[36] A. Liegeois, “Automatic supervisory control of the configuration and
behaviour of multibody mechanisms,” IEEE Transactions on systems,
man and cybernetics, vol. 7, no. 12, pp. 868–871, 1977.

[37] C. A. Klein and C.-H. Huang, “Review of pseudoinverse control for
use with kinematically redundant manipulators,” IEEE Transactions on
Systems, Man, and Cybernetics, no. 2, pp. 245–250, 1983.

[38] Y. Zhang, S. Li, J. Zou, and A. H. Khan, “A passivity-based approach
for kinematic control of redundant manipulators with constraints,” IEEE
Transactions on Industrial Informatics, 2019. Early Access.

[39] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles, pp. 396–404, Springer, 1986.

[40] Y. Zhang, S. S. Ge, and T. H. Lee, “A unified
quadratic-programming-based dynamical system approach to joint
torque optimization of physically constrained redundant manipulators,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 34, no. 5, pp. 2126–2132, 2004.

[41] H. Wang and S. Kang, “Adaptive neural command filtered tracking
control for flexible robotic manipulator with input dead-zone,” IEEE
Access, vol. 7, pp. 22675–22683, 2019.

[42] D. Guo and Y. Zhang, “Acceleration-level inequality-based man scheme
for obstacle avoidance of redundant robot manipulators,” IEEE Trans.
on Ind. Electron., vol. 61, no. 12, pp. 6903–6914, 2014.

[43] H. Ding and S. K. Tso, “A fully neural-network-based planning scheme
for torque minimization of redundant manipulators,” IEEE Transactions
on Industrial Electronics, vol. 46, no. 1, pp. 199–206, 1999.

[44] S. Li, H. Wang, and M. U. Rafique, “A novel recurrent neural network for
manipulator control with improved noise tolerance,” IEEE transactions
on neural networks and learning systems, vol. 29, no. 5, pp. 1908–1918,
2017.

[45] L. Xiao, S. Li, F.-J. Lin, Z. Tan, and A. H. Khan, “Zeroing neural
dynamics for control design: comprehensive analysis on stability,
robustness, and convergence speed,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 5, pp. 2605–2616, 2018.

[46] S.-H. Cha, T. Lasky, and S. Velinsky, “Kinematic redundancy resolution
for serial-parallel manipulators via local optimization including joint
constraints,” Mechanics based design of structures and machines,
vol. 34, no. 2, pp. 213–239, 2006.

[47] S. Tejomurtula and S. Kak, “Inverse kinematics in robotics using neural
networks,” Information Sciences, vol. 116, no. 2-4, pp. 147–164, 1999.

[48] A.-V. Duka, “Neural network based inverse kinematics solution for
trajectory tracking of a robotic arm,” Procedia Technology, vol. 12,
pp. 20–27, 2014.

[49] D. Pham, M. Castellani, and A. Fahmy, “Learning the inverse kinematics
of a robot manipulator using the bees algorithm,” in 2008 6th IEEE
International Conference on Industrial Informatics, pp. 493–498, IEEE,
2008.

[50] B. Luo, D. Liu, T. Huang, and D. Wang, “Model-free optimal tracking
control via critic-only q-learning,” IEEE transactions on neural networks
and learning systems, vol. 27, no. 10, pp. 2134–2144, 2016.

[51] T. R. Wanasinghe, G. K. Mann, and R. G. Gosine, “A jacobian
free approach for multi-robot relative localization,” in 2014 IEEE
27th Canadian Conference on Electrical and Computer Engineering
(CCECE), pp. 1–6, IEEE, 2014.

[52] J. Na, X. Ren, and D. Zheng, “Adaptive control for nonlinear
pure-feedback systems with high-order sliding mode observer,” IEEE
transactions on neural networks and learning systems, vol. 24, no. 3,
pp. 370–382, 2013.

11

[53] W. He, Z. Yin, and C. Sun, “Adaptive neural network control of a marine
vessel with constraints using the asymmetric barrier lyapunov function,”
IEEE Transactions on Cybernetics, vol. 47, no. 7, pp. 1641–1651, 2016.

[54] C. Yang, Y. Jiang, J. Na, Z. Li, L. Cheng, and C.-Y. Su, “Finite-time
convergence adaptive fuzzy control for dual-arm robot with unknown
kinematics and dynamics,” IEEE Transactions on Fuzzy Systems, vol. 27,
no. 3, pp. 574–588, 2018.

[55] J. Na, B. Jing, Y. Huang, G. Gao, and C. Zhang, “Unknown system
dynamics estimator for motion control of nonlinear robotic systems,”
IEEE Transactions on Industrial Electronics, 2019.

[56] H. Wang, Y. Zou, P. X. Liu, and X. Liu, “Robust fuzzy adaptive
funnel control of nonlinear systems with dynamic uncertainties,”
Neurocomputing, vol. 314, pp. 299–309, 2018.

[57] C. Yang, Y. Jiang, W. He, J. Na, Z. Li, and B. Xu, “Adaptive parameter
estimation and control design for robot manipulators with finite-time
convergence,” IEEE Transactions on Industrial Electronics, vol. 65,
no. 10, pp. 8112–8123, 2018.

[58] J. Na, M. N. Mahyuddin, G. Herrmann, X. Ren, and P. Barber,
“Robust adaptive finite-time parameter estimation and control for robotic
systems,” International Journal of Robust and Nonlinear Control,
vol. 25, no. 16, pp. 3045–3071, 2015.

[59] C. Blum, A. Roli, and M. Sampels, Hybrid metaheuristics: an emerging
approach to optimization, vol. 114. Springer, 2008.

[60] Z. Ren, P. Li, J. Fang, H. Li, and Q. Chen, “Sba: an efficient
algorithm for address assignment in zigbee networks,” Wireless personal
communications, vol. 71, no. 1, pp. 719–734, 2013.

[61] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM computing surveys
(CSUR), vol. 35, no. 3, pp. 268–308, 2003.

[62] J. Fang, L. Zhang, and H. Li, “Two-dimensional pattern-coupled sparse
bayesian learning via generalized approximate message passing,” IEEE
Transactions on Image Processing, vol. 25, no. 6, pp. 2920–2930, 2016.

[63] J. Fang and H. Li, “Distributed estimation of gauss-markov random fields
with one-bit quantized data,” IEEE Signal Processing Letters, vol. 17,
no. 5, pp. 449–452, 2010.

[64] J. Fang, Y. Shen, F. Li, H. Li, and Z. Chen, “Support knowledge-aided
sparse bayesian learning for compressed sensing,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3786–3790, IEEE, 2015.

[65] Z. Zhu, Z. Zhang, W. Man, X. Tong, J. Qiu, and F. Li, “A new beetle
antennae search algorithm for multi-objective energy management in
microgrid,” in 2018 13th IEEE Conference on Industrial Electronics
and Applications (ICIEA), pp. 1599–1603, IEEE, 2018.

[66] Q. Wu, X. Shen, Y. Jin, Z. Chen, S. Li, A. H. Khan, and D. Chen,
“Intelligent beetle antennae search for uav sensing and avoidance of
obstacles,” Sensors, vol. 19, no. 8, p. 1758, 2019.

[67] S. Dereli and R. Köker, “A meta-heuristic proposal for inverse
kinematics solution of 7-dof serial robotic manipulator: quantum
behaved particle swarm algorithm,” Artificial Intelligence Review,
pp. 1–16, 2019.

[68] Y. Zhang, S. Li, and B. Xu, “Convergence analysis of beetle antennae
search algorithm and its applications,” arXiv preprint arXiv:1904.02397,
2019.

[69] H. Zhang, H. Jin, Z. Liu, Y. Liu, Y. Zhu, and J. Zhao, “Real-time
kinematic control for redundant manipulators in a time-varying
environment: Multiple-dynamic obstacle avoidance and fast tracking of
a moving object,” IEEE Trans. on Ind. Informatics, 2019.

[70] P. Qi, C. Liu, A. Ataka, H.-K. Lam, and K. Althoefer, “Kinematic control
of continuum manipulators using a fuzzy-model-based approach,” IEEE
Trans. on Ind. Electron., vol. 63, no. 8, pp. 5022–5035, 2016.

[71] G. Wu, “Kinematic analysis and optimal design of a wall-mounted
four-limb parallel schönflies-motion robot for pick-and-place
operations,” Journ. of Intelligent & Robotic Syst., vol. 85, no. 3-4,
pp. 663–677, 2017.

[72] A. Menon, R. Prakash, and L. Behera, “Adaptive critic based optimal
kinematic control for a robot manipulator,” in 2019 Intl. Conf. on Robot.
and Autom. (ICRA), pp. 1316–1322, IEEE, 2019.

[73] O. Hock and J. Sedo, “Inverse kinematics using transposition method
for robotic arm,” in 2018 ELEKTRO, pp. 1–5, IEEE, 2018.

[74] I. Al-Naimi, A. Taeim, and N. Alajdah, “Fully-automated
parallel-kinematic robot for multitask ind. operations,” in 2018
15th Intl. Multi-Conf. on Syst., Signals & Devices, pp. 390–395, IEEE,
2018.

[75] P. I. Corke et al., “A robotics toolbox for matlab,” IEEE Robotics &
Automation Magazine, vol. 3, no. 1, pp. 24–32, 1996.

