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Abstract 

Testosterone supplementation is commonly used for its effects on sexual function, bone health 

and body composition, yet its effects on disease outcomes are unknown. To better understand 

this, we identified genetic determinants of testosterone levels and related sex hormone traits in 

425,097 UK Biobank study participants. Using 2,571 genome-wide significant associations, we 

demonstrate the genetic determinants of testosterone levels are substantially different 

between sexes, and that genetically higher testosterone is harmful for metabolic diseases in 

women but beneficial in men. For example, a genetically determined 1-standard deviation 

higher testosterone increases the risks of Type 2 diabetes (T2D) (OR=1.37 [1.22–1.53]) and 

polycystic ovary syndrome (OR=1.51 [1.33–1.72]) in women, but reduces T2D risk in men 

(OR=0.86 [0.76–0.98]). We also show adverse effects of higher testosterone on breast and 

endometrial cancers in women, and prostate cancer in men. Our findings provide insights into 

the disease impacts of testosterone and highlight the importance of sex-specific genetic 

analyses. 

 

 



Introduction 

The role of testosterone in disease is largely unknown, despite its strong epidemiological 

correlations with many health conditions and the widespread use of testosterone supplements. 

Previous studies have shown protective effects of testosterone on T2D and related metabolic 

traits in men, but harmful effects in women1,2. However, such phenotypic observations are 

prone to confounding due to the substantial effects of ageing and adiposity on circulating 

testosterone concentrations3.  

More than 3% of US men aged 30 years or older received a prescription for testosterone in 

2013, just prior to a US Food and Drug Administration safety communication on its possible 

cardiovascular risks4, and rates of prescribing are even higher in Canada5.  Testosterone therapy 

has established positive effects in randomised controlled trials on sexual function, lean mass, 

muscle strength and bone mineral density, and reductions in whole body and intra-abdominal 

fat6. These body composition changes should predict benefits of testosterone on T2D and 

cardio-metabolic disease. Conversely, testosterone is known to promote growth and metastasis 

of prostate cancers and observational studies have shown that testosterone replacement 

therapy might increase susceptibility to future prostate cancer7–9. However, even the largest 

trials of testosterone have too few cases of incident T2D, cardio-vascular disease (CVD) or 

prostate cancer to provide informative data on these risks10. Furthermore, experimental studies 

of testosterone therapy in men, with or without T2D, surprisingly report no or modest 

improvements in insulin sensitivity and no change in glycaemic control11,12. Similarly, in women, 

experimental evidence of testosterone administration is insufficient to confirm the apparently 

metabolically harmful associations in observational studies between testosterone and higher 

adiposity, risk of polycystic ovary syndrome (PCOS) and other CVD risk markers13,14.  

Mendelian randomisation is a genetic approach to understand the causal effects of putative risk 

factors on disease. Given alleles are both randomly assigned and fixed at conception, genetic 

risk can be used as an epidemiological exposure to reduce the effects of confounding and 

reverse causality. Previous studies have used this approach to test the role of sex hormones in 

disease, but were largely limited to cis variants in the sex-hormone binding globulin (SHBG) 

protein-coding gene. Such studies reported that SHBG-raising alleles were associated with 

lower risk of T2D, but did not test effects separately in men and women15,16. Furthermore, 

because higher SHBG reduces levels of bioavailable testosterone, separation of the apparent 

effects of testosterone from those of SHBG on disease is a major challenge. 

To identify additional genetic variants that can be used to test the effects of testosterone, large 

genome wide association studies (GWAS) are needed. Previous GWAS for sex hormone levels in 

men and women were small17–20, identifying only a handful of associated loci. This study 

substantially advances our understanding of the genetic regulation of sex hormone levels, 

increasing the number of known genetic determinants by two orders of magnitude. We use 

these genetic variants to demonstrate likely causal associations with metabolic disease and 

cancer outcomes, with many divergent effects of testosterone between men and women. 



RESULTS 

After extensive quality control (Methods), serum levels of SHBG, total testosterone and 

estradiol were available in up to 425,097 individuals with genetic data in UK Biobank (UKBB) 

(Table S1). We additionally estimated bioavailable (free/unbound) testosterone in 382,988 

individuals (Methods). Genetic association testing was performed in European ancestry 

individuals and within each sex for the four traits, using a linear mixed model to control for 

relatedness and population structure. We identified a heritable component for all traits except 

estradiol levels in women (h2g=1.6% (s.e 1%) (Table 1). As the majority (78%) of women had 

estradiol levels below the limit of detection (as expected, given most women in UKBB are post-

menopausal), analysis of this trait was limited by low sample numbers and a bias towards 

detecting age at menopause-associated loci. Therefore, assessment of estradiol levels in 

women was not considered further.  

To identify independent genetic determinants for sex hormone measures, we next performed 

distance-based clumping and approximate conditional analysis (Methods). In total, we 

identified 2,571 genome-wide significant trait-signal pairs (Tables S2-S11). These trait-signal 

pairs ranged from 22 signals for estradiol in men, to 658 for SHBG in a sex-combined analysis. 

To validate these findings, we performed replication using three available datasets (Methods) - 

a previously published GWAS meta-analysis of SHBG levels in 21,791 individuals19, 9,138 

individuals with testosterone measurements from the EPIC-Norfolk study and published data 

on 2,913 individuals from the Twins UK study with nine sex hormones measured20. Whilst these 

studies were substantially smaller than UK Biobank, we found strong directional consistency 

with our results. Assessment of our SHBG-associated loci in the published meta-analysis (Figure 

ED1) demonstrated 236/278 (85%, binomial P=6.1x10-34) of the captured male SHBG signals had 

consistent direction of effect (77 with P<0.05), compared to 241/283 in women (85%, binomial 

P=4.2x10-35, 60 at P<0.05). In Twins UK, all identified genome-wide significant variants in 

aggregate were significantly associated and directionally concordant for the respective sex 

hormone traits (Table S12). Finally, in the EPIC-Norfolk study we estimated the magnitude of 

effect a genetic risk score for SHBG and testosterone had on the respective trait levels (Figure 

ED2). Men with the 5% highest genetic risk have 0.69 [0.53-0.85 95%CI] and 1.27 [1.12-1.41] 

standard deviation (equivalent to 2.55 nmol/L and 21.34 nmol/L) higher total testosterone and 

SHBG respectively than men with the 5% lowest scores; the equivalent difference in women is 

0.45 [0.26-0.64] SDs (0.28 nmol/L) and 1.29 [1.12-1.45] (35.91 nmol/L) respectively. 

To putatively map each identified variant to its effector gene, we first identified any non-

synonymous variant highly correlated (r2>0.7) with a lead index variant. This implicated one or 

more genes at 482/2571 (19%) SNP-trait pairs, highlighting 291 unique genes (Tables S2-S11). 

To identify the likely tissue(s) and cell type(s) of action for sex hormone-associated loci, we 

integrated our data with gene expression data across 53 tissues available from the GTeX 

consortium using LD score regression (Methods). In both sexes, liver was the most enriched 

tissue (Figure ED3), consistent with its established role as the site of SHBG production. Skeletal 



muscle in men and adrenal gland in women were the next strongest enriched tissues. In 

contrast to findings for other reproductive traits, we found no evidence for enrichment of gene 

expression in any brain cell type (Figure ED3). Within the three prioritised tissue types (liver, 

skeletal muscle and adrenal gland), we identified 161 unique eQTL-linked genes mapping within 

300kb to 200/2571 SNP-trait pairs (Methods, Tables S2-S11). We note that further evidence 

from experimental studies is needed to confirm our putative genes, but the current findings 

should help to guide such work. 

Distinct genetic architectures of testosterone regulation between sexes 

Despite similar heritability estimates (Table 1), the genetic component to variation in circulating 

testosterone levels was very different between sexes, as indicated by null genome-wide 

correlations between sexes (Table 1) and limited overlap of genome-wide significant signals 

between sexes (Tables S13-14). This discordance was partly due to opposing effects between 

sexes at several individual loci, rather than solely null associations in one sex. For example, of 

the 254 signals for total testosterone in women, 72 were also at least nominally associated 

(P<0.05) with total testosterone in men; however, of these, 33 (46%) showed directionally-

opposing effects between sexes (Table S7). Notably, several variants had genome-wide 

significant but directionally-opposing effects on testosterone in men and women (Table S5), 

including the missense variants: rs56196860 in FKBP4 which encodes a regulator of androgen 

receptor transactivation activity21; and rs28929474 in SERPINA1 which encodes one of a family 

of proteins which are reported to regulate steroidogenesis in testicular Leydig cells22.  

Several other signals showed sex-specific effects (Table S5). Notably, 7 of 9 X-chromosome 

signals for total testosterone in men and women combined altered levels only in men, including 

five variants located in/near genes associated with androgen insensitivity (AR), 

hypogonadotropic hypogonadism (ANOS1), failure of sex steroid 11 beta-hydroxylation 

(HPRT1), disrupted steroidogenesis (STARD8), and hypospadias (DGKK) (Table S5). Notable 

autosomal male-specific testosterone signals were located at key regulators of puberty timing 

(e.g. LIN28B-rs7759938; TACR3-rs528845403 and KISS1-rs201416723) and androgen secretion 

(NR0B2-rs182050989 or biosynthesis (SRD5A2-rs113017476) (Table S5). 

Among many signals with apparent female-specific effects on testosterone were five signals 

in/near to genes encoding enzymes in the cytochrome P450 family with reported roles in 

testosterone hydroxylation (CYP3A7-rs45446698, CYP2D6-rs5751229, CYP2C8/CYP2C9-

rs11572082, CYP11B2-rs6471583 and POR-rs17853284) (Table S5). Other signals with female-

specific effects on testosterone included: reported PCOS susceptibility loci at FSHB 

(rs12294104) and THADA (rs58839393); CYP17A1 (rs11441374) encoding 17,20-lyase, the 

decisive step in androgen synthesis, and its critical cofactor CYB5A-rs17089026/rs79384925); 

and also near genes encoding luteinizing hormone subunit beta (LHB-rs78248023) and 

hormone receptors for glucocorticoids (NR3C1-rs34632394) and prolactin (PRLR-rs112694713) 

(Table S5). 



In contrast to testosterone traits, the genetic architecture of SHBG levels was highly concordant 

between men and women (rg 0.84 [0.81-0.87], P<1x10-100) (Table 1); 315 (88%) of the 359 

genome-wide significant variants in women were also at least nominally associated (P<0.05) 

with SHBG in men (Table S4).   

Genetic overlap between sex hormone traits within sexes. 

Among men, we found partially overlapping genetic determinants between the different sex 

hormone traits. This was reflected by positive genetic correlations between all four sex 

hormone measures (Table 1, rg 0.19-0.73), with the exception of a weak negative correlation 

between SHBG and bioavailable testosterone (rg -0.048 (SE 0.024), P=0.04).  These genetic 

correlations were very similar to the observed phenotypic correlations (Table S15). In contrast 

to men, among women, there was a weak negative genetic correlation between total 

testosterone and SHBG (rg= -0.06 in women; 0.73 in men), a strong negative correlation 

between bioavailable testosterone and SHBG (-0.74 in women; -0.05 in men) and a similar 

positive correlation between total and bioavailable testosterone (0.65 in women; 0.60 in men), 

again closely reflecting the observed phenotypic correlations (Table 1, Table S15).  

Cluster analysis identifies loci with primary SHBG or testosterone effects 

Testosterone levels are dependent on SHBG levels but genetic variants may allow us to 

separate distinct components of variation in sex hormone levels. To identify signals with 

primary effects on individual sex hormone traits, we performed a cluster analysis of all 525 

signals that reached genome-wide significance for one or more sex hormone measure in men, 

identifying 3 clusters (Figure 1, Table S16). The largest cluster (362 signals) was characterised 

by loci with relatively strong positive associations with SHBG; in combination, SNPs in this 

cluster also increased total testosterone, reduced bioavailable testosterone and increased 

estradiol in men (Table S17). Hence, this cluster (termed “male SHBG cluster”, Methods) 

represents a genetic instrument with primary SHBG-increasing effects, and secondary divergent 

effects on total (higher) and bioavailable testosterone (lower) that are consistent with the 

known hormone-regulatory role of SHBG. 

Among men, the second identified cluster (122 loci) was consistently associated with higher 

total and bioavailable testosterone levels in a dose-response manner.  In combination, SNPs in 

this cluster also increased estradiol levels, but had no effect on SHBG (P=0.66) (Table S17). 

Hence, this cluster (termed “male specific testosterone cluster”) represents a genetic 

instrument with primary (total and bioavailable) testosterone-increasing effects, with 

secondary estradiol-increasing effects (consistent with the physiological conversion of 

androgens to estrogens), but independent of SHBG.  

Among men, a third small cluster (14 signals) strongly increased estradiol, but not other sex 

hormone measures (Table S17). The most prominent signal in this cluster (rs781858752) was 

uniquely associated with estradiol in men (P=7.6x10-15) but not with any other sex hormone 



measure in men or women (all P>0.05), and influenced expression of IGHV3-9 and IGHV1-8 in 

the liver (Table S11).  

In addition to separating testosterone from SHBG effects, defining such clusters is an important 

step for downstream analyses to minimise the pleiotropic effects of SNPs that may have much 

stronger effects on other sex hormones. For example, the apparent strong male estradiol 

association (P=1.5x10-35) at the X-chromosome rs111386834 locus, ~200kb from KAL1, is clearly 

secondary to a stronger effect of this signal on bioavailable (P=3x10-670) and total testosterone 

(P=1.5x10-372), consistent with the known role of this gene on the hypothalamic-pituitary 

reproductive axis. 

As in men, in women, cluster analysis of all 614 signals for any of the three sex hormone 

measures in women (Figure 2) identified two main clusters, representing genetic instruments 

with i) primary SHBG effects and secondary directionally-opposing effects on total and 

bioavailable testosterone (“female SHBG cluster”, 373 signals) and ii) consistent testosterone 

effects but no aggregate effect on SHBG (“female specific testosterone cluster”, 241 signals) 

(Table S18). Hence, in both men and women, cluster analyses resulted in genetic instruments 

that allowed us to test specific testosterone-increasing effects, independent of SHBG. 

Understanding the impact of sex hormone measures on disease outcomes 

Having identified over 2500 associations between genetic variants and sex hormone measures, 

we designed a set of Mendelian randomization (MR) analyses (Methods) to inform the causal 

effects of sex hormones on two broad categories of disease outcomes – a) Type 2 diabetes 

(T2D), insulin resistance, body composition and related metabolic disease risk factors, and b) 

hormone sensitive cancers. Given the lack of overlap between men and women in sex hormone 

associated variants (Table 1, Tables S13-14), and the possible different metabolic effects of 

these hormones between sexes, we focused analyses on sex-specific disease outcomes.  As 

exposures, we tested total and bioavailable testosterone and SHBG in both men and women, 

and also estradiol in men. For each outcome trait, we identified the largest published sex-

specific GWAS meta-analysis with publicly available data (Table S19). We then performed a 

series of MR analyses using two-sample inverse variance-weighted (IVW), Egger and weighted 

median models (Methods). We additionally modelled different genetic risk scores by i) Steiger 

filtering to exclude variants with larger effects on metabolic traits than the tested sex hormone, 

ii) cluster filtering using variants in the above defined clusters representing primary effects on 

SHBG or testosterone independent of SHBG. To further inform the role of SHBG, we additionally 

tested the 2 cis variants in SHBG as an instrument for SHBG.    

Using these genetic instruments, in men and women separately, we could infer causal positive 

effects of testosterone levels on lean body mass and number of lifetime sexual partners (Tables 

S20-S22, Figure ED4). These findings are consistent with the established positive effects of 

testosterone on these traits in randomised controlled trials6 and therefore support the validity 

of our genetic instrument analyses.  



Mendelian randomization analyses in men 

In men, we found evidence of beneficial effects of higher testosterone on metabolic traits 

(Figure 3, Figure ED4-5, Tables S20 and S23). For T2D and related traits, the evidence of a 

protective effect of testosterone was most consistent when using the cluster-specific genetic 

instrument representing a primary (total and bioavailable) testosterone-increasing effect 

independent of SHBG. Using data from 34,990 men with T2D and 150,760 male controls23, and 

67,506 non diabetic men with fasting glucose levels available24, exposure to higher 

testosterone, independent of SHBG, conferred lower T2D risk and lower fasting glucose: each 1-

SD higher testosterone level (approximately 3.7 nmol/L) was associated with a 15% lower T2D 

risk in men (total testosterone odds ratio (OR): 0.85; 95% CI: 0.77, 0.95; cluster-specific 

testosterone OR: 0.86; 95% CI 0.76,0.98). These metabolically beneficial associations were 

directionally consistent, but did not reach nominal significance (p<0.05), in all sensitivity 

analyses (Tables S20, S24; Figure ED5).  

In contrast to these apparent beneficial metabolic effects, MR analyses indicated that 

testosterone increases prostate cancer risk in men: each 1-SD higher bioavailable testosterone 

level increased prostate cancer risk by 23% (OR: 1.23; 95%CI 1.13-1.33), with consistent findings 

across all testosterone genetic instruments (unfiltered, Steiger-filtered and cluster-filtered) 

(Figure 4, Table S25, Figure ED6). 

We found no compelling evidence for an effect of estradiol in men on any metabolic or body 

composition trait, however, confidence intervals were wide (Tables S20, S23 and S25).  

Mendelian randomization analyses in women.  

Despite evidence for a positive effect of total testosterone on lean body mass in women as well 

as men, testosterone was associated with several adverse metabolic outcomes in women 

(Table S21).  

We found consistent evidence supporting a causal effect of testosterone on higher PCOS risk in 

women. These effects were most evident with bioavailable testosterone, with positive findings 

across all MR models and all instruments (unfiltered, Steiger-filtered and cluster-filtered) 

(Figure ED7-8, Table S21). These effects equated to an odds ratio of 1.51 (95%CI 1.33-1.72) per 

1-SD higher bioavailable testosterone. 

MR analyses also showed a causal effect of bioavailable testosterone on higher T2D risk and 

higher fasting insulin in women (using unfiltered and Steiger-filtered instruments) (Table S21, 

Figures ED4 and ED9). Risk of T2D was increased by 37% (OR: 1.37; 95% CI 1.22, 1.53) per 1-SD 

higher bioavailable testosterone. We also found evidence for protective effects of SHBG on T2D 

across all MR models using Steiger-filtered and cluster-filtered instruments, and apparent 

protective effects of SHBG on fasting insulin levels, and central fat measures, android and 

visceral, but not total body fat, (consistently across unfiltered, Steiger-filtered and cluster-

filtered instruments) (Tables S21 and S26, Figures ED4 and ED9). These effects equated to an 



odds ratio for T2D of 0.65 (95%CI: 0.58-0.72) per 1-SD (approximately 30.3 nmol/L) higher 

SHBG. The lack of association with the testosterone-specific cluster (representing higher 

testosterone independent of SHBG) on T2D or fasting insulin (Table S21), indicates that the 

above associations with bioavailable testosterone and SHBG in women might be driven by 

direct effects of SHBG, however, we did not have a genetic instrument that was specific to 

SHBG.  

We found evidence that testosterone increased the risk of estrogen receptor (ER)+ but not ER- 

breast cancer, with consistent findings across all MR models and instruments (Figure ED6, Table 

S27). Furthermore, testosterone increased the risk of endometrial cancer but reduced the risk 

of ovarian cancer, again with consistent findings across sensitivity models (Figure ED6, Table 

S27). There was also evidence for a protective effect of SHBG on risk of endometrial cancer in 

women, which was consistent across all models, but a risk-increasing effect of SHBG on ER- 

breast cancer.  

cis variants in the SHBG gene provide a confirmatory test of higher circulating SHBG levels, 

independent of potential confounding by adiposity and insulin resistance, but including effects 

of reciprocally lower bioavailable testosterone. Results using two cis variants were generally 

consistent with our main analyses (Table S24), with consistent associations with the low 

frequency missense SHBG variant on PCOS and T2D in women, and directionally-consistent but 

smaller effects of the common non-coding variant.  



Discussion 

We identify >2500 genetic variant sex-hormone associations and provide insights into the 

genetic architecture of sex hormone regulation and its relevance to disease. We see limited 

overlap between the genetic variants identified in men and women for all sex hormone traits 

except SHBG, and even overlapping signals often showed divergent effects. Cluster analyses 

across all identified variants distinguished, in each sex, groups of variants with testosterone-

increasing effects either dependent or independent of SHBG. These clusters helped inform 

genetic causal inference analyses by showing primary metabolic effects of testosterone that 

were beneficial in men (lower fasting glucose and lower T2D risk) but harmful in women (higher 

PCOS risk). In contrast, associations that are seen only with bioavailable testosterone and SHBG 

(e.g. T2D in women) could be driven by effects of SHBG, directly or in combination with 

testosterone. 

Testosterone Trials in men, the largest RCTs of testosterone administration to date, found clear 

benefits of testosterone on sexual function and body composition in men, but insufficient data 

on disease outcomes due to sparse numbers of such outcomes even in the largest trials. While 

RCT evidence remains the gold standard, genetic instrumental variable analyses provide a more 

robust evidence base than phenotypic observational study designs, as they are less prone to 

confounding and reverse causality. For example, while adverse effects of testosterone on 

prostate cancer risk might be expected, given the established role of testosterone-reducing 

agents in the treatment of prostate cancer, the evidence from observational studies is 

remarkably diverse: out of 45 papers, 18 reported positive associations between testosterone 

and prostate cancer, 17 reported negative associations and 10 reported no association8. 

Furthermore, in a recent analysis of 20 prospective studies, low bioavailable testosterone 

predicted lower risk of low-grade prostate cancers but higher risk of high-grade cancers9. 

Therefore, our findings advance our understanding of the risks and benefits of this widely used 

therapy in men.  

Our findings that higher testosterone increases the risk of PCOS in women is important in 

demonstrating the aetiological role of testosterone in this common disorder, rather than simply 

being a consequence of upstream defects in ovarian dysfunction and insulin signalling. 

Androgen-blocking agents are widely used to treat symptoms of hyperandrogenism in women 

with PCOS, but evidence is lacking for the role of androgens in the aetiology and prevention of 

this condition25. Similarly, experimental evidence of the effects of testosterone administration 

in women arises from several RCTs, albeit using substantially lower doses than in men and 

often topical routes of administration, which substantiate the positive effects of testosterone 

on the primary outcome, sexual function. However, even in combination, these RCTs include 

insufficient disease events to inform about its potential effects on cardio-metabolic traits and 

cancer risks26.  

Our findings positively link testosterone to number of sexual partners and lean body mass in 

men and women, which provide reassurance about the validity of our approach. However, 



some limitations need to be acknowledged. While we could distinguish a cluster-specific 

genetic instrument for testosterone that was independent of SHBG, the effects of this, and our 

other testosterone instruments, might be mediated at least in part by downstream conversion 

of testosterone to estradiol. This has been hypothesized to explain the observed phenotypic 

associations between testosterone and higher risk of ER-positive breast cancer. However, 

regardless of downstream mechanisms, our findings provide evidence to inform the 

consequences of real-world differences in testosterone on health outcomes. Similarly, while 

our SHBG-related clusters in men and women were not independent of testosterone, and 

therefore cannot inform the debate about SHBG-specific metabolic effects, they reflect the 

actual downstream biological effects of SHBG on (higher) total testosterone and (lower) 

bioavailable testosterone. A second limitation, common to all MR analyses, is that genetic 

instruments represent lifelong exposures to the risk factor, and so may have different effects to 

short-medium term pharmacological interventions even if they achieve the same difference in 

circulating concentrations. A third limitation is that the discovery of genetic variants was 

performed in a single large study that is known to be enriched for healthier and older 

individuals, potentially influencing (likely underestimating) the effect size of associated variants. 

Finally, the MR approach depends on some key assumptions which we attempted to assess 

using a range of sensitivity analyses. Associations across these sensitivity analyses were 

generally directionally consistent, but did not always reach p<0.05. We note that our findings 

do not preclude an additional bi-directional effect of disease status on testosterone or suggest 

that other factors are not important causal determinants of the tested outcomes. 

Our study highlights three important methodological considerations. First, in light of the 

substantial overlap between genetic determinants of testosterone and SHBG within each sex, 

our cluster-based analyses allowed us to identify subsets of variants that alter testosterone 

independent of SHBG. This effectively removes potential direct biological effects of SHBG and 

its confounding effects on adiposity and insulin resistance27. Second, we used Steiger filtering of 

our genetic instruments, to exclude variants with stronger effects on metabolic traits compared 

to their effects on sex hormones. This approach helped reduce the possibility of reverse 

causality, an issue that is increasingly important in large-scale GWAS28. 

Finally, our findings show the importance of sex-specific analyses, both in the discovery of 

genetic variants for sex hormone traits and in the analyses of downstream traits.  The 

apparently sex-divergent effects of testosterone on T2D were obfuscated by sex-combined 

data. Available large-scale sex-specific data on T2D was invaluable for our study - unfortunately 

similar sex-specific data for cardiovascular disease are not yet available, which will be critically 

important to understand the wider cardio-metabolic impact of testosterone. Hence, while the 

findings relating to adverse metabolic effects of testosterone in women may inform clinical 

practice, it is premature to infer wider beneficial metabolic effects in men.  

In conclusion, our findings provide unique insights into the disease impacts of testosterone and 

highlight the importance of sex-specific analyses of disease risk. 
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Tables and Figures 

Table 1. Heritability of and genetic correlations between sex hormone traits included in the 

genome-wide association analyses. 



Figure 1 | Cluster analysis of male identified sex hormone signals. All Z-score effects are aligned 

to the male total testosterone increasing allele. 



Figure 2 | Cluster analysis of female identified sex hormone signals. All Z-score effects are 

aligned to the female bioavailable testosterone increasing allele. 

 



 

Figure 3. Plots showing the odds of T2D and PCOS per unit higher testosterone and SHBG 

using genetic instruments in Mendelian Randomization analyses. Unit measurements for the 

individually transformed exposure traits can be found in Table S1. Specific testosterone refers 

to a total testosterone score which has no aggregate effect on SHBG. 

 

 



 

Figure 4. Plot showing the odds of cancer per unit higher testosterone and SHBG using genetic 

instruments in Mendelian Randomization analyses. Unit measurements for the individually 

transformed exposure traits can be found in Table S1. Specific testosterone refers to a total 

testosterone score which has no aggregate effect on SHBG. 

 

 

BCAC breast = breast cancer; BCAC ER- = Breast cancer, ER negative subtype; BCAC ER+ = Breast 

cancer, ER positive subtype 

 

 

 

 



Online Methods 

Phenotype preparation in UK Biobank 

Discovery analyses were performed in the full UK Biobank study which has been described 

extensively elsewhere29. All UK Biobank participants provided written informed consent, the 

study was approved by the National Research Ethics Service Committee North West–Haydock 

and all study procedures were performed in accordance with the World Medical Association 

Declaration of Helsinki ethical principles for medical research. At baseline a panel of 34 

biomarkers were measured across the full ~500,000 study participants. We selected three sex 

hormone traits - SHBG, testosterone and estradiol - and additionally calculated a measure of 

bioavailable testosterone using the Vermeulen equation30,31. Individual trait transformations 

and exclusion criteria are detailed in Supplementary Table S1. 

Genetic discovery analysis 

We used genetic data from the “v3” release of UK Biobank29, containing the full set of HRC and 

1000G imputed variants. In addition to the quality control metrics performed centrally by UK 

Biobank, we defined a subset of “white European” ancestry samples using a K-means clustering 

approach applied to the first four principal components calculated from genome-wide SNP 

genotypes.  Individuals clustered into this group who self-identified by questionnaire as being 

of an ancestry other than white European were excluded. After application of QC criteria, a 

maximum of 425,097 UK Biobank participants were available for analysis with genotype and 

phenotype data. Association testing was performed using a linear mixed models implemented 

in BOLT-LMM32 to account for cryptic population structure and relatedness. Only autosomal 

genetic variants which were common (MAF>1%), passed QC in all 106 batches and were 

present on both genotyping arrays were included in the genetic relationship matrix (GRM). 

Across each of the four sex hormone traits we performed GWAS discovery analyses both within 

and across sexes, with the exception of estradiol where analyses were performed only in men. 

To help improve reproducibility of results, analyses were conducted independently at two sites 

and compared for consistency, with any discrepancies investigated. A decision on which dataset 

to use for each discovery GWAS was made based on strength of association of the previously 

reported SHBG gene locus variants19. 

Genotyping chip, age at baseline and 10 genetically derived principal components were 

included as covariates in all models, in addition to specific covariates used for individual traits 

detailed in Supplementary Table S1. For SHBG we included body mass index as a covariate 

which was previously demonstrated to increase statistical power by reducing trait variance. To 

avoid any effects which may be attributed to collider bias33, we compared BMI adjusted 

estimates to BMI unadjusted estimates across all identified genome-wide significant SHBG 

signals. We discarded from further consideration any loci which changed effect direction 

between models and/or had large changes in effect estimate and statistical significance. For 



downstream analyses, genetic loci from the BMI adjusted analyses were used with 

corresponding effect estimates from the BMI unadjusted analyses. 

Replication was performed using three independent datasets. Firstly, a previously published 

CHARGE consortium meta-analysis of SHBG (age and BMI adjusted) in 21,791 individuals (9,390 

women, 12,401 men)19. Given these data used HapMap 2 imputation, we found proxy HapMap 

2 variants with a minimum r2>0.5 to align (Supplementary Table S28). Secondly, a previously 

published GWAS of 2,913 individuals from the Twins UK resource20 with measured 

dehydroepiandrosterone (DHEAS), total testosterone, follicle stimulating hormone (FSH), 

luteinizing hormone (LH), estradiol, progesterone, prolactin and SHBG and calculated free 

androgen index. Finally, replication of the genetic scores was attempted with measurements of 

total testosterone (5,334 men and 3,804 women) and of SHBG (5,694 men and 5,476 women) 

from the EPIC Norfolk study34. Here, regression models were conducted on ventiles of the 

score, and were controlled for 10 genetic principal components, and additionally menopausal 

status in women (Figure ED2). Given the relatively small sizes of these replication studies, we 

used these data to validate genetic instruments in aggregate rather than as individual loci 

(Supplementary Table S28). 

Signal selection and genetic instrument generation 

We defined statistically independent signals (described as lead or index variants) using 1Mb 

distanced-based clumping across all imputed variants with P<5x10-8, an imputation quality 

score > 0.5 and MAF > 0.1%. Although several studies have suggested other p-value thresholds 

for genome-wide significance more stringent (e.g P<6x10-9) than the currently accepted 

community standard (P<5x10-8), as our primary focus of this paper was the production of 

genetic risk scores (rather than focus on individual genetic variants), we felt the more liberal 

threshold was acceptable to help maximise variance explained. We note that multiple trait 

correction would likely be over-conservative given the correlation structure between traits. 

Genome-wide significant lead variants that shared any correlation with each other due to long 

range linkage disequilibrium (r2>0.05) were excluded from further consideration. These loci 

were additionally augmented using approximate conditional analyses implemented in GCTA35. 

Here, secondary signals were only considered if they were a) uncorrelated (r2<0.05) with a 

previously identified index variant b) genome-wide significant pre and post conditional analysis, 

c) had an effect estimate which did not change by more than 10% between models. 

For downstream analyses we produced genetic instruments using two approaches. Firstly, we 

considered only SNPs that were genome-wide significant (and defined using clumping method 

above) for a given trait and sex to derive 7 genetic instruments: 

1) “SHBG-Men” (N=357) - Individually genome-wide significant SNPs for SHBG in men, 

discovered using BMI adjusted analysis but using weights from a BMI unadjusted 

analysis 



2) “SHBG-Women” (N=359) - As above, but in women. 

3) “Total T-Men” (N=231) - Individually genome-wide significant SNPs for total 

testosterone in men, weighted by individual SNP beta estimate for total testosterone 

4) “Total T-Women” (N=254) - As above, but in women. 

5) “Bioavailable T - Men” (N=125) - Individually genome-wide significant SNPs for 

bioavailable testosterone in men, weighted by individual SNP beta estimate for 

bioavailable testosterone 

6) “Bioavailable T - Women” (N=180) - As above, but in women 

7) “Estradiol-Men” (N=22) - Individually genome-wide significant SNPs for estradiol in men, 

weighted by individual SNP beta estimates for estradiol 

Secondly, given the genetic overlap between traits, we observed that some signals were shared 

between sex hormone traits but appeared to have much stronger effects in one versus others. 

To help derive additional genetic risk scores that reflected this, we took all genome-wide 

significant signals within each sex but across traits, and performed ward-based hierachical 

clustering36 on individual variant Z-scores. We used the observed clusters from these analyses 

to produce give additional genetic instruments (Supplementary Table S16): 

8) A “Male SHBG cluster” (N=362), formed from SNPs with dominant effects on SHBG in 

men. Each SNP in this genetic instrument is weighted by its effect from the BMI 

unadjusted SHBG analysis. 

9) A “Male testosterone cluster” (N=122), formed from SNPs with dominant effects on 

both total and bioavailable testosterone in men. Each SNP in this genetic instrument is 

weighted by its effect on total testosterone. 

10) A “Male estradiol cluster” (N=14), formed from SNPs with dominant effects on estradiol 

in men. 

11) A “Female SHBG cluster” (N=373), formed from SNPs with dominant effects on SHBG in 

women. Each SNP in this genetic instrument is weighted by its effect from the BMI 

unadjusted SHBG analysis. 

12) A “Female testosterone cluster” (N=241), formed from SNPs with dominant effects on 

both total and bioavailable testosterone in women. Each SNP in this genetic instrument 

is weighted by its effect on total testosterone. 

Gene prioritization 

We used the SMR software package37 to systematically map associated genetic variants to 

genes via expression effects (eQTLs). For all analyses we included expression data from liver, in 

addition to skeletal muscle in men and adrenal gland in women. All expression data was 

generated by the GTEx consortium (v7), made available from the SMR website resource section 

(https://cnsgenomics.com/software/smr/#DataResource). Only genes passing multiple test 

correction and exhibiting no statistically significant evidence of coincidental eQTL overlap 

(assessed by the SMR HEIDI metric) were considered. The same data was additionally used to 

perform global tissue enrichment using LDSC-SEG38. 

https://cnsgenomics.com/software/smr/#DataResource


Mendelian randomization analyses 

For outcome traits, we limited analyses to traits that i) were previously reported as associated 

with circulating sex hormone levels, ii) have sex specific associations with sex hormones, and iii) 

where sex-specific GWAS data was available in large non-UK Biobank studies (see 

Supplementary Table S19). Given the potential for bias in MR studies when a large proportion 

of genetic variants are discovered in the same sample as the outcome is measured, we used 

non UK Biobank GWAS data as the primary outcome data. This resulted in us considering as an 

outcome six diseases: type 2 diabetes, PCOS, prostate cancer, breast cancer, ovarian cancer and 

endometrial cancer; two glycaemic traits: fasting insulin as a measure of insulin resistance and 

fasting glucose; and four main measures of body composition: BMI, waist hip ratio adjusted for 

BMI, and, using DEXA measures, total body fat and total lean mass. Where we observed 

positive associations for total fat or lean mass, we tested 6 more specific measures of body 

composition; android fat, gynoid fat, android lean mass, gynoid lean mass, subcutaneous and 

visceral fat from DEXA data.  

Each of the 12 genetic instruments described above was used as an exposure instrumental 

variable in our subsequent Mendelian Randomization analyses. Where a signal was not present 

in the outcome GWAS, we identified a 1000 Genomes or HapMap proxy with r2>0.5 within 

250kb either side of the signal and their relevant weight was included in our genetic instrument 

(Supplementary Table S28).  

In each MR test we assessed a number of widely used methods -  inverse variance weighted 

(IVW), weighted median, and MR-Egger39,40.  Mendelian randomisation relies on some key 

assumptions. These assumptions include 1) that alleles are randomly assigned among people; 

and 2) that alleles that influence exposure do not influence the outcome via any other pathway 

other than through the exposure. The use of the most robust models available (linear mixed 

models), as implemented in BOLT-LMM, to ensure alleles are not stratified within the UK 

Biobank provides reassurances that the first assumption holds. To address the second 

assumption, we performed several additional analyses. We used two additional MR methods 

(MR-Egger and Median MR) both of which are more robust to pleiotropy – directionally 

consistent results strengthened our causal inference. We used the MR-Egger intercept, with a p 

value of p<0.05, to provide evidence that pleiotropy could be affecting the MR results. 

Furthermore, we implemented an approach known as “Steiger filtering”. In this test, we 

excluded variants with larger effects on outcome traits or traits known to be closely associated 

to outcome traits compared to their effects on the sex hormone exposure trait41. Given the 

strong association between SHBG and adiposity and insulin resistance, and the large discovery 

sample size, it was possible that many variants could be associated with sex hormone levels via 

an outcome trait, rather than having direct effects on sex hormones, so invalidating the MR 

assumptions. We excluded between 2 and 40 % of variants (depending on the sex hormone) 

trait if they had larger effects (based on an absolute standardized beta) on any one of 11 

metabolic traits available in the UK Biobank (fasting glucose, T2D, coronary artery disease, HDL-



C, LDL-C, triglycerides, total-cholesterol, diastolic and systolic blood pressure, BMI and Waist 

hip ratio adjusted for BMI). A full table of which variants were excluded and why is given in 

Supplementary Table S29). 

Secondly, we considered only cis variants at the SHBG gene locus (Supplementary Table S24). 

Here we used two variants in low linkage disequilibrium as more specific but less powerful 

genetic instruments. Variants in cis with a gene likely represent the most specific test of the 

causal role of a circulating protein encoded by that gene. One of these variants (rs1799941) is 

common and has been used in several previous MR studies of SHBG16,19, whilst the other 

(rs6258) is rare (~1% MAF) and alters SHBG’s binding affinity for testosterone. 
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