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Abstract 

Patients with type 1 and type 2 diabetes have very different treatment and care 

requirements. Overlapping phenotypes and lack of clear classification 

guidelines make it difficult for clinicians to differentiate between type 1 and type 

2 diabetes at diagnosis. The rate of glycaemic deterioration is highly variable in 

patients with type 2 diabetes but there is no single test to accurately identify 

which patients will progress rapidly to requiring insulin therapy. Incorrect 

treatment and care decisions in diabetes can have life-threatening 

consequences. 

The aim of this thesis is to develop clinical prediction models that can be 

incorporated into routine clinical practice to assist clinicians with the 

classification and care of patient diagnosed with diabetes. We addressed the 

problem first by integrating features previously associated with classification of 

type 1 and type 2 diabetes to develop a diagnostic model using logistic 

regression to identify, at diagnosis, patients with type 1 diabetes. The high 

performance achieved by this model was comparable to that of machine 

learning algorithms.  

In patients diagnosed with type 2 diabetes, we found that patients who were 

GADA positive and had genetic susceptibility to type 1 diabetes progressed 

more rapidly to requiring insulin therapy. We built upon this finding to develop a 

prognostic model integrating predictive features of glycaemic deterioration to 

predict early insulin requirement in adults diagnosed with type 2 diabetes.  

The three main findings of this thesis have the potential to change the way that 

patients with diabetes are managed in clinical practice.  
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Use of the diagnostic model developed to identify patients with type 1 diabetes 

has the potential to reduce misclassification. Classifying patients according to 

the model has the benefit of being more akin to the treatment needs of the 

patient rather than the aetiopathological definitions used in current clinical 

guidelines. The design of the model lends itself to implementing a triage-based 

approach to diabetes subtype diagnosis.  

Our second main finding alters the clinical implications of a positive GADA test 

in patients diagnosed with type 2 diabetes. For identifying patients likely to 

progress rapidly to insulin, genetic testing is only beneficial in patients who test 

positive for GADA. In clinical practice, a two-step screening process could be 

implemented - only patients who test positive for GADA in the first step would 

go on for genetic testing. 

The prognostic model can be used in clinical practice to predict a patient’s rate 

of glycaemic deterioration leading to a requirement for insulin. The availability of 

this data will enable clinical practices to more effectively manage their patient 

lists, prioritising more intensive follow up for those patients who are at high risk 

of rapid progression. Patients are likely to benefit from tailored treatment. 

Another key clinical use of the prognostic model is the identification of patients 

who would benefit most from GADA testing saving both inconvenience to the 

patient and a cost-benefit to the health service.  
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1.1 Structure 

This chapter is divided into four parts. 

First the aims and structure of this thesis are stated. We then present the 

treatment and management challenges of type 1 and type 2 diabetes that can 

occur in clinical practice and review the current evidence on clinical features 

and biomarkers associated with classification and glycaemic progression. 

Next the challenges associated with the implementation of clinical prediction 

models into clinical practice are discussed and the key methodological 

approaches to diagnostic and prognostic model development and validation are 

reviewed. Finally we introduce the datasets used in subsequent chapters of this 

thesis. 

1.2 Aims and structure of thesis 

The overall aim of this thesis is to develop clinical prediction models that can 

assist with the classification and care of patient diagnosed with diabetes in 

clinical practice.  

The thesis is divided into six chapters.  

This chapter (chapter 1) presents an overview of the treatment and 

management challenges of type 1 and type 2 diabetes that can occur in clinical 

practice and the opportunity for the development of clinical prediction models. 

In Chapter 2, we investigate whether patient clinical features and biomarkers 

can be used to differentiate between different diabetes subtypes (type 1 and 

type 2) at diagnosis by applying logistic regression modelling, and validate our 

model with an independent dataset.  
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In chapter 3, we compare the performance of five different supervised machine 

learning algorithms and logistic regression using the diabetes subtype 

classification example from chapter 2.  

In chapter 4, we examine whether common type 1 diabetes genetic variants can 

predict rapid glycaemic deterioration (time to insulin therapy from diagnosis) 

over and above GADA testing in patients clinically diagnosed with type 2 

diabetes.  

In chapter 5, we apply flexible parametric survival analysis to investigate the 

use of clinical features and biomarkers of patients clinically diagnosed with type 

2 diabetes to predict rapid glycaemic deterioration (time to insulin therapy from 

diagnosis), and validate our findings with an independent dataset. 

Chapter 6 is a discussion of the main findings, conclusions, limitations and 

future work generated by each chapter. 

1.3 Treatment and management challenges of type 1 and type 2 

diabetes 

1.3.1 Overview of diabetes  

Diabetes is a disease in which the body’s ability to regulate sugar in the blood 

(glucose) is impaired leading to excess sugar in the blood (hyperglycaemia) 

which is a cause of serious health conditions such as diabetic retinopathy, 

nephropathy and neuropathy (1). Type 1 and type 2 are the two major subtypes 

of diabetes with type 2 being more common.  

1.3.2 Type 1 diabetes 

Type 1 diabetes is characterised by beta-cell destruction leading to rapid 

development of near-absolute insulin deficiency (2-5). Patients are often first 
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diagnosed with diabetes when they present with symptoms such as thirst or 

tiredness, or in a metabolic crisis.     

This severe insulin deficiency leads to acute glucose fluctuations which need to 

be controlled by continuous glycose monitoring and physiological insulin 

replacement administered by intensive insulin regimens (multiple daily injections 

or continuous subcutaneous insulin infusion therapy using an insulin pump) (3, 

6). Patients with type 1 diabetes need insulin treatment in the early stages of 

the disease; without insulin treatment they are at risk of acids building up in the 

blood (ketoacidosis) which can be life-threatening (7).  

1.3.3 Type 2 diabetes 

In contrast, type 2 diabetes is a progressive metabolic disease (also called 

metabolic disorder). Patients with type 2 diabetes can still produce insulin 

(unlike type 1 diabetes) but their body is unable to use it effectively, the beta 

cells become exhausted leading to a gradual reduction in the capacity of the 

beta cells to make insulin (8, 9). Patients with type 2 diabetes do not develop 

the severe insulin deficiency that is seen in patients with type 1 diabetes, they 

can usually be successfully treated initially with lifestyle changes or oral agents 

for many years (10-12) or can even achieve remission by maintained weight 

loss (13). However, due to this characteristic progressive reduction, many 

patients will eventually require insulin therapy to maintain glucose control (11). 

1.3.4 Importance of diabetes subtype classification for clinical management 

Severe insulin deficiency is the fundamental difference between type 1 and type 

2 diabetes and it is this deficiency that determines treatment requirements. To 

ensure that a patient receives the correct treatment it is therefore critical to 

correctly distinguish between patients with type 1 and type 2 diabetes, at time of 
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diagnosis, based on a definition that closely aligns to their treatment 

requirement. However, correctly classifying patients is challenging (14, 15) 

because of the overlapping phenotypes of these diabetes subtypes (16, 17) and 

a lack of clear classification guidelines which tend to focus on the 

aetiopathological definitions rather than ones that relate to treatment 

requirements (2, 5, 18, 19).  

No clinical features and biomarkers provide perfect separation when used in 

isolation. Individual patients can have some features that would indicate type 1 

whilst their other features indicate type 2. Many of the tests that can assist 

classification are not routinely indicated in clinical practice and the lack of a 

single diagnostic test that can be used to classify diabetes robustly at diagnosis 

also makes classification challenging in clinical practice. There are no existing 

prediction models that can be used for classification of type 1 and type 2 

diabetes at diagnosis. All of these challenges combined contribute to the 

serious and common problem of misclassification in type 1 and type 2 diabetes 

(20-22). Incorrectly classifying patients with type 1 diabetes as type 2 can have 

life-threatening consequences; without insulin therapy, patients with type 1 

diabetes are at risk of ketoacidosis which left untreated can be fatal (7). Patients 

with type 2 diabetes incorrectly classified as type 1 will be treated un-

necessarily with insulin: as a result, patients may suffer unfounded negative 

quality of life impacts such as work restrictions and the health service treatment 

costs are un-necessarily increased.  
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1.3.5 Clinical features and biomarkers associated with classification of type 1 

and type 2 diabetes 

Clinical features 

The use of age of diagnosis and BMI jointly predominates in clinical practice for 

diabetes classification, with younger age and lower BMI historically associated 

with type 1 diabetes; both of these features have strong evidence for utility at 

diagnosis (22) and are easily obtained. However these features are becoming 

less distinctive, type 2 diabetes is occurring in young patients as obesity levels 

increase (16) and type 1 diabetes can occur in adults (17).  

Presentation of symptoms such as glycaemia, weight loss or ketosis at 

diagnosis, glucose metabolism and family history of type 1 or type 2 diabetes in 

first-degree relatives are often used in clinical practice to classify patients but 

classification based on these features has little or no evidence base (22).  

Islet-autoantibodies 

The presence of one or more islet-autoantibodies (GAD65 autoantibodies 

(GADA) (23, 24), Islet Antigen 2 (IA-2) (23, 25), Zinc transporter 8 (ZnT8) (26), 

insulin autoantibodies (IAA) (23, 27) and Islet Cell Antibodies (ICA) (27)) is a 

marker of type 1 diabetes. GADA, IA-2 and ZnT8 are the three islet-

autoantibodies most often used in clinical practice. Testing for ICA has largely 

been superseded by testing for individual autoantibodies (GADA, IA-2 and 

ZnT8).  

There are limitations associated with the use of islet-autoantibodies to classify 

diabetes subtype that mean that widespread testing would not solve 

misclassification alone. The sensitivity of the tests for these markers performed 

individually for classification is low: whilst islet-autoantibodies appear early in 
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life (27) and thus may have utility at diagnosis, islet-autoantibodies are not 

detectable at diagnosis in all patients with type 1 diabetes and longer durations 

post diagnosis are associated with higher negativity (28). The presence of 

multiple islet-autoantibodies increases the specificity of the tests (23, 27) but 

comprehensive testing is not routinely indicated in clinical practice.  

Other potential limitations are that the frequency of islet-autoantibody positivity 

may differ by ethnicity and/or sex although the evidence for these findings is 

weak as they are based on small studies (29-31) and IAA testing is only useful 

at first diagnosis since IAA is increased with exogenous insulin use (32).  

Whilst GADA is a marker of type 1 diabetes, many adult patients with type 2 

diabetes appear GADA positive (33, 34) but do not have the characteristics 

associated with type 1 diabetes. GADA is an imperfect diagnostic test: the 

likelihood of false positive result when testing in an adult population with low 

prevalence of type 1 diabetes will be high (35). This means that consideration of 

the prior probability of type 1 diabetes is important when interpreting the results 

of a single positive autoantibody result. The interpretation may be very different 

for a patient with low likelihood of type 1 diabetes based on other features such 

as their age and BMI compared to that of a patient clinically likely to have type 1 

diabetes. In the former situation, a positive results is more likely to be false 

positive result.  

Another consideration associated with the use of islet-autoantibodies for 

diagnostic purposes is the variation in specificity of the test between different 

laboratories. For example, the range of GADA specificity for the laboratories 

participating in the 2010 Diabetes Autoantibody Standardisation Programme 

was from 68% to 100% (36). This variation arises from the use of different 
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assay formats and the use of different thresholds to define a positive result. 

Thresholds are usually defined using centiles of titres observed in a non-

diabetic population with higher titres increasing the specificity of the test. The 

97.5th or 99th centile is normally used but in some cases the assay lowest 

reportable value has been used. 

The limitations and considerations discussed above, and the substantial cost 

that would be incurred in testing everyone with diabetes for islet-autoantibodies 

are reasons why routine testing is not currently recommended in clinical 

practice.  

Genetics 

There is a strong genetic component to type 1 diabetes which is measurable by 

single nucleotide polymorphism (SNP) genotyping (37). These SNPs are 

located in the Human Leukocyte Antigen (HLA) and non-HLA regions with DR3 

and DR4-DQ8 alleles in the HLA region being the highest genetic determinants 

of type 1 diabetes (38, 39). A type 1 diabetes genetic risk score (T1D GRS) 

consisting of a combination of SNPs from both regions can discriminate 

between patients with type 1 and type 2 diabetes (37, 40). Advantages of using 

genotyping are that results do not change over time and susceptible genetic 

variants are common across ethnicities (41), but it is not currently routinely 

indicated in clinical practice. There are also common genetic variants 

associated with type 2 diabetes (42, 43) but a T2D GRS has far less 

discrimination power than the T1D GRS (37). 

C-peptide 

C-peptide is a substance made in the pancreas in equal amount to insulin and 

is a measure of how much insulin is being produced in the body. C-peptide is 
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measured instead of insulin because it has a longer half-life and is not affected 

by exogenous insulin. C-peptide measurement is reliable and is widely available 

in clinical practice, more so than it has been in the past (22).  

C-peptide values measured in patients with longstanding diabetes provides a 

gold-standard test for classifying patients according to their treatment 

requirements (44). A low C-peptide value measured at any time post diagnosis 

(< 200 pmol/L (non-fasting)) confirms severe endogenous insulin deficiency (44, 

45), the key feature of type 1 diabetes. Patients with low C-peptide (< 200 

pmol/L)  will have the treatment requirements of type 1 diabetes - high glucose 

variability and lack of glycaemic response to non-insulin therapies whilst 

patients with high C-peptide (>600 pmol/L) do not have absolute insulin 

deficiency but may still require insulin for glucose management. However some 

patients with type 1 diabetes can retain significant amounts of endogenous 

insulin for 3 – 5 years (44, 46) particularly if they are obese. This means that 

there will be some overlap which limits the utility of the test at diagnosis.  

Suggested C-peptide threshold for classification of type 1 diabetes based on 

treatment requirement is < 200 pmol/L (non-fasting)) and > 600 pmol/L (non-

fasting) for type 2 diabetes (44, 47, 48). There will be uncertainty in the 

classification of patients whose C-peptide value is in the intermediate range 

(>=200 pmol/L and <=600 pmol/L). 

1.3.6 Glycaemic deterioration in patients with type 2 diabetes 

The clinical course of glycaemic deterioration is highly variable in patients with 

type 2 diabetes; some patients can be successfully treated without insulin for 

many years or decades whilst others will need insulin within months of 
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diagnosis (8, 9, 49). This variability may reflect differences in underlying 

pathophysiology which is highly heterogeneous in type 2 diabetes (50-54).  

In addition to correctly classifying patients, being able to correctly identify, at 

diagnosis, those patients with type 2 diabetes that are likely to have more rapid 

glycaemic deterioration may be helpful clinically. In clinical practice, the 

treatment and management of patients could then be personalised according to 

their individual risk. For example, patients likely to rapidly progress could be 

offered more frequent follow up, earlier treatment intensification or targeted 

treatment with interventions to delay glycaemic progression. In research, high 

risk patients could be targeted by clinical trials aimed at developing effective 

therapies to slow progression. 

1.3.7 Clinical features and biomarkers independently associated with 

glycaemic deterioration in patients diagnosed with type 2 diabetes 

A number of routinely indicated clinical features and biomarkers have been 

reported to be associated with glycaemic deterioration (Table 1) in patients with 

clinically diagnosed type 2 diabetes but some effect sizes are small and not all 

features investigated are independently associated (55). Despite differences in 

the definition of glycaemic deterioration, duration of diabetes at start of study, 

follow up times and cohorts between studies, the association findings for many 

features are consistent.  

 

 



 

18 
 

Table 1: Studies identifying clinical features and biomarkers independently associated with glycaemic deterioration 

Study Definition of glycaemic deterioration Start point Independently associated clinical features 
and biomarkers 

Dennis et al. (51) HbA1c progression over time  Newly diagnosed Age at diagnosis 

Zhou et al. (55) Time to insulin therapy Diagnosis Age at diagnosis, TRIG, HDL, BMI 

Levy et al. (56) Time to failure of dietary therapy Newly diagnosed Fasting glucose, age at diagnosis, beta cell 
function (measured by OGTT)  

Turner et al. (34) Insulin therapy within six years of 
diagnosis 

Diagnosis GADA and beta-cell function (measured using 
HOMA) 

Matthews et al. (57) Sulphonylurea failure within six years 
of diagnosis 

Newly diagnosed Age at diagnosis, beta cell function (measured 
using HOMA), fasting glucose, drug treatment  

Ringborg et al. (58) Time to insulin therapy Initiation of Oral 
Anti-Diabetic 
(OAD) treatment 
(diabetes duration 
unknown) 

Age < 65 years, type of OAD treatment, HbA1c 

 

Cook et al. (59) Time until HbA1c >= 64 mm/mol (8.0%) 
or glucose-lowering therapy intensified 
(insulin or adding a third oral agent). 

Initiation of 
metformin/ 
sulphonylurea 
combination 
therapy (median 
diabetes duration 
3.8 years) 

Age, sex, serum creatinine, smoking, HbA1c, 
diabetes duration 
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Study Definition of glycaemic deterioration Start point Independently associated clinical features 
and biomarkers 

Pani et al. (60) HbA1c >= 53 mm/mol (7%) or medical 
therapy initiation within 1 year. 

Post diagnosis 
(diabetes duration 
unknown) 

HbA1c, age, weight gain  

Waldman et al. (61) Initiation of oral hypoglycaemic agents 
(OHAs) or insulin. 

Post diagnosis 
(median diabetes 
duration 5 years)  

HDL-C, HDL-C/apolipoprotein A-I  

Donnelly et al. (49) HbA1c progression over time Diagnosis GADA, age at diagnosis, BMI, HDL, year of 
diagnosis 

Pilla et al. (62) Time to insulin initiation Post diagnosis 
(mean diabetes 
duration 5.5 years)  

Age, ethnicity, HbA1c, number of drugs, BMI, 
smoking, hypertension, chronic kidney disease, 
cardiovascular disease and family history. 
Number of complications (cardiovascular 
disease, chronic kidney disease, diabetic 
neuropathy, and diabetic retinopathy), source of 
medical care. 

Schrijnders et al. (63) Time needed to treatment 
intensification with either insulin or oral 
triple therapy 

Post diagnosis 
(mean diabetes 
duration 5.5 years) 

HbA1c, age at diagnosis.  
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Study Definition of glycaemic deterioration Start point Independently associated clinical features 
and biomarkers 

Kostev et al. (64) Insulin initiation within 6 years  First-line 
prescriptions of 
metformin or 
sulfonylureas 
(mean diabetes 
duration 1 year) 

First line drug 

In patients treated with metformin: eGFR, sex, 
source of medical care, history of stroke, 
prescription of diuretics and statins, age and 
diagnosed hyperlipidaemia 

In patients treated with sulfonylureas: high 
eGFR, diagnosed congestive heart failure and 
prescriptions of diuretics 

Gentile et al. (65) Insulin initiation within 5 years  First eGFR 

evaluation (mean 

diabetes duration 7 

years) 

Duration, HbA1c, TRIG, HDL ,age, drug 

(diabetes and lipid-lowering (statins)), 

comorbidities (retinopathy), LDL, BMI, eGFR 
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Clinical features  

Multiple studies have shown that age at diagnosis (49, 51, 55-57, 63), and BMI 

(49, 62, 65) are independently associated with faster glycaemic deterioration. 

Findings for smoking status are conflicting with an independent association 

found in some studies (59, 62) but not in others (55, 60). Findings for sex were 

also inconsistent, some found an association with glycaemic progression, (59, 

64) but another did not (58). Black and Hispanic ethnicity have been associated 

with a lower risk of insulin initiation than white ethnicity whilst a family history of 

diabetes was associated with higher risk (62). All of the above features are 

easily obtained and have utility at diagnosis.  

Biomarkers 

There is strong evidence that high baseline HbA1c (58-60, 62, 63, 65) is 

associated with increased glycaemic deterioration, HbA1c is routinely measured 

in clinical practice and has utility at diagnosis. Hypertension (systolic blood 

pressure > 140 mmHg) (62) and higher fasting glucose (56, 57) are also 

associated with faster deterioration. Triglycerides (TRIG) (55, 65), Low-Density 

Lipoprotein (LDL) (65) and High-Density Lipoprotein (HDL) (49, 55, 61, 65) are 

independently associated with deterioration. Limitations of the use of these 

lipids tests are the strong collinearity between TRIG and HDL (55), and the 

requirement for patients to fast prior to TRIG measurement.  

Islet-autoantibodies 

The presence of islet-autoantibodies (GADA (34, 49) and IA-2 (66, 67)) have 

been independently associated with rapid glycaemic deterioration in participants 

with type 2 diabetes. In addition, the presence of GADA islet-autoantibodies in 

adult patients with a clinical diagnosis of type 2 diabetes has been used to 

define Latent Autoimmune Diabetes in Adults (LADA) (24, 68-71). The common 
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view is that patients classified as LADA have a homogenous intermediate 

phenotype but there has recently been an opposing view that LADA is not in 

fact homogenous, rather LADA is likely to reflect a combination of two 

heterogeneous populations with very different phenotypes – true positives (type 

1 diabetes) and false positives (type 2 diabetes) (35).  

A limitation of the use of GADA and IA-2 for identifying patients likely to have 

more rapid glycaemic deterioration is that testing is not currently recommended 

in clinical practice so not all patients will be tested. As discussed in section 

1.3.5, the prior prevalence and specificity of the tests need to be considered 

when interpreting a positive result. 

Genetics 

It has previously been shown that genetic variants in the HLA region associated 

with type 1 diabetes may alter the risk of rapid progression to insulin in patients 

with type 2 diabetes who are GADA positive (72-74) and that high risk HLA is 

associated with low C-peptide in a type 2 diabetes cohort (74). There are no 

studies however that have specifically examined the association between T1D 

GRS, which includes HLA specific SNP’s, and rapid progression in patients with 

type 2 diabetes. Two studies found no association between glycaemic 

deterioration and gene variants associated with type 2 diabetes (55, 75). 

Other features that have been associated with glycaemic deterioration include: 

type of initial treatment (58), diabetes duration (65), drug therapy (62, 64, 65), 

diabetes complications (62, 64, 65), source of medical care (62, 64), estimated 

Glomerular Filtration Rate (eGFR) (64, 65) and serum creatinine (59) but these 

are not discussed further as they cannot be used and are not useful at 

diagnosis. Beta-cell function assessed by HOMA (34, 57) or oral glucose 
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tolerance tests (OGTT) (56) have been associated with glycaemic deterioration 

but the former test is not routinely available in clinical practice and the latter is 

now only measured for the diagnosis of gestational diabetes.  

1.3.8 Conclusion 

There is evidence that many clinical features and biomarkers are associated 

with classification of type 1 and type 2 diabetes and glycaemic progression in 

patients with type 2 diabetes. The diagnostic or prognostic accuracy of these 

clinical features and biomarkers used in isolation may be improved by the use 

of a holistic approach in which these clinical features and biomarkers are 

combined. 

The most effective approach is to combine these features in multivariable 

prediction models as is now common in many areas of clinical practice. There 

are however, currently no diagnostic or prognostic prediction models to help 

clinicians distinguish between type 1 and type 2 diabetes subtypes or to predict 

rapid progression in patients with type 2 diabetes. 

1.4 Clinical prediction model concepts, and methods used for 

development, validation and reporting 

1.4.1 Overview of clinical prediction models 

Clinical prediction models have a grounding in evidence-based medicine. They 

provide clinicians with external evidence of the probability of a particular 

outcome for an individual patient that can be taken into consideration when 

making treatment or testing choices. This outcome may be the presence or 

absence of a disease or condition (diagnostic) or the future development of a 

disease, event or complication (prognostic) (76).  
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Literature on prediction models has increased over time (77), in 2010 there 

were 101 publications listed on PubMed with the terms “prediction model” or 

“prognostic model” compared to 410 listed in 2018. In all areas of medicine, 

including diabetes, clinical prediction models have been implemented as 

websites and applications, and many incorporated into clinical guidelines (78-

87). Models associated with diabetes include a diagnostic model to identify 

monogenic forms of diabetes in patients with young-onset diabetes prognostic 

models (88) and prognostic models to predict the risk of type 2 diabetes (89-91) 

and the risk of glycaemic deterioration (49, 65). A classification tool based on 

five diabetes clusters (50) has also been developed.  A model to identify 

undiagnosed type 2 diabetes (92) has been incorporated into NICE guidance. A 

search for “Diabetes Mellitus” disease on MDCalc (93) returned 23 medical 

apps. 

However, the number of models actually implemented into clinical practice is 

very low compared to the number of models developed and published. It has 

been suggested that between 1993 and 2011, models for diabetes were being 

published at a rate of about one every three weeks (89). There are several 

plausible explanations for this low implementation rate; the inclusion of 

predictors that are not routinely indicated in clinical practice render models 

unusable and a lack of clinical credibility and evidence reduces confidence in 

the model (94). Chapter 1 has already discussed the clinical utility of various 

features with prior evidence of an association with diabetes classification and 

progression. Clinical credibility is concerned with the validity of the model 

development including adherence to model assumptions and interpretability of 

the model whilst evidence is concerned with the performance and accuracy of 

the model.  
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1.4.2 Reporting guidelines for diagnostic and prognostic studies  

There are a number of systematic reviews that have performed critical 

appraisals of the development, validation and reporting of clinical prediction 

models (95-102). The identification of shortcomings in many of the studies 

evaluated in these reviews has led to the introduction of reporting guidelines 

(103). Adherence to these guidelines is now included in the author instructions 

for most journals when submitting papers addressing development and/or 

validation of prediction models. The relevant reporting guidelines for diagnostic 

and prognostic models are Standards for the Reporting of Diagnostic Accuracy 

Studies (STARD) (104) and transparent reporting of a multivariable prediction 

model for individual prognosis or diagnosis (TRIPOD) (105-107). STARD was 

first published in 2003 and updated in 2015; its objective is to “improve the 

completeness and transparency of reporting of studies of diagnostic accuracy, 

to allow readers to assess the potential for bias in the study (internal validity) 

and to evaluate its generalisability (external validity).” (108). The TRIPOD 

statement was published in 2015 and has the reporting of model development, 

validation or updates as its focus. 

1.4.3 Statistical model concepts 

The focus of this thesis is multivariable models (multiple predictors) developed 

using clinical study data.  

Logistic regression 

In situations where the outcome of interest is binary, the most commonly 

applied statistical model is binary logistic regression (LR). The technical details 

of LR have been well documented (109-114). In brief, LR is a form of 

generalized linear model with a logit link function allowing data to be modelled 
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on the log odds scale. As this is a linear model, linearity (linear relationship 

between any continuous predictors and the logit of the outcome variable) is a 

strong assumption. There are various methods to deal with non-linearity (simple 

transformations, restricted cubic splines, fractional polynomials (77)) although, 

to reduce the risk of overfitting, dealing with non-linearity is only recommended 

for strong predictors or in predictors where non-linearity is known to be likely 

(77).  Overfitting arises from either model or parameter uncertainty and is a 

significant issue in regression modelling (77). A model that is over-fitted will 

have lower performance when it is applied to subjects outside the study data.   

Survival models 

Cox proportional hazards regression (115) is the most well-known and 

commonly applied model for time-to-event (survival) outcomes in medical 

studies where there is censored data. There are however limitations of its use 

for individual patient predictions including; 1) it requires a strong proportional 

hazards assumption of no time/predictor interaction, 2) it requires a non-

parametric estimate for the baseline hazard to obtain survival/failures 

probabilities over time for individual patients, 3) the non-parametric baseline 

hazard is a noisy step function and 4) the model is fitted very closely to the data 

so may not perform well in external data (116). An alternative model that deals 

with these limitations is a Royston-Parmar flexible parametric survival model 

(RP) (116, 117). The main feature of this model is the use of restricted cubic 

splines to flex the Weibull baseline hazard function allowing for complex 

baseline hazards (118). These models can also be extended to incorporate 

time-dependent effects (predictors whose regression coefficients vary over 

time). The parametric nature of these models make them preferable when 

individual predictions are required, however the use of these models in 
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prognostic studies is currently very limited, only 12 studies were identified in a 

systematic review covering the period 2001 to 2016 (119). Other considerations 

in survival models are the choice of endpoint, censoring, restricting follow-up 

times and dealing with competing risks (120, 121). 

1.4.4 Machine learning applications 

Logistic regression and Cox proportional hazards regression are well 

established statistical models with strong theoretical backgrounds but in recent 

years there has been an increased interest in the use of machine learning 

algorithms as an alternative for developing clinical prediction models. 

Supervised machine learning algorithms have been used to develop diagnostic 

and prognostic clinical prediction models in medical applications such as 

predicting diabetes, assessing fracture risk, fibromyalgia diagnosis, genetics 

and cancer mortality (122-127).  The advantages of using these machine 

learning algorithms over classic statistical models are their ability to process 

vast amounts of data such as medical images, biobank and electronic health 

care records, and their ability to deal with complex interactions and non-

linearity. Estimation biases resulting from mis-specified statistical models are 

avoided by the use of machine learning algorithms since they are non-

parametric (128) and they have greater modelling flexibility through the use of 

tuning parameters (129). However the main disadvantage with the use of 

machine learning is the lack of transparency which makes them difficult to 

interpret (130), limiting their clinical credibility.  

There have been many applied studies comparing the performance of machine 

learning to traditional statistical models but their findings are inconsistent (131-
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142). Many of the comparison studies have limitations that render them at high 

risk of bias (143). 

1.4.5 Key methodological approaches to diagnostic and prognostic model 

development and validation 

In an attempt to improve the methodological standard of the development and 

validation of prediction models, several studies and books have published 

frameworks (76, 144-147) or recommendations (77, 148) for best practice. This 

thesis provides a brief overview of the key methodological approaches to 

diagnostic and prognostic model development and validation. 

Missing data 

Many real world datasets used for developing prediction models will have 

missing data. The most common approach to missing data is to use a complete-

case analysis whereby all observations that have missing values for the 

variables of interest are excluded from the analysis. This approach may be 

acceptable when the amount of missing data is either low (149) or when the 

data is assumed to be missing completely at random (MCAR) (77). The main 

disadvantage with this approach is that the sample size is reduced and bias is 

introduced if the assumption of MCAR is not valid. More complex approaches 

for dealing with missing data may be required in situations where bias is likely 

(150-153). 

Effective sample size 

An effective sample size is to some extent, governed by the complexity of the 

research question (77). To avoid overfitting, the minimum training data size for 

different model types is determined by the number of events rather than the 

number of observations (149). The general rule of thumb is 10 events per 
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variable (EPV) (154) but there is much debate over the rationale for this number 

(155, 156). An alternative approach for determining the EPV in binary outcome 

models based on the number of predictors, total sample size and events 

fraction has been proposed (155). To achieve the effective sample size, data 

reduction techniques can be applied to adjust the number of predictors. 

Selection and coding of predictors  

There are various strategies for selecting predictors for inclusion in the model 

(157). Univariate screening is often used for pre-selecting predictors prior to 

multivariable modelling but is generally not recommended (158) whilst selection 

of predictors for inclusion in the model based on previous evidence and expert 

clinical knowledge, regardless of their statistical significance in the model, has 

been recommended (149). Another strategy that is often used is a significance 

criteria strategy that is based on hypothesis testing; predictors are included or 

excluded from the model using iterative stepwise selection methods. An 

approach that uses a significance criteria strategy but forces predictors with 

prior evidence or expert knowledge into the model has also been previously 

used (159). An alternative approach is to use an information criteria strategy 

that is based on selecting the best model from a set of several models using 

Akaike information criterion (AIC) or Bayesian information criterion (BIC) where 

more complex models are penalized.  

In the development of clinical prediction models, testing for non-linearity in 

continuous predictors has become standard practice. Dichotomisation or 

grouping of continuous predictors often occurs in medical research but leads to 

a loss of information (160). This practice is appropriate in some situations, for 

example to replicate use of test results in clinical practice. It is not however 

appropriate to deal with non-linearity, non-linearity is better modelled using 
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simple transformations, restricted cubic splines (77, 149) or fractional 

polynomials (77, 161). A comparison of AIC or BIC between models developed 

using linear and different non-linear functions can be used to determine the 

most appropriate relationship. 

In multivariable models there is the possibility of interactions between the 

variables, for example age may have a stronger effect for males compared to 

females or an interaction including time in survival models. Interaction terms 

can be included in the model (time-dependent effects for survival models) but 

their use can lead to overfitting and overly complex models. 

Model performance  

There are several performance measures that can be used to assess the quality 

of the model, these fall into three main aspects; overall performance (distance 

between predictions and actual outcomes), discrimination (separation of 

patients with and without the outcome) and calibration (predictions versus 

observed outcomes). A summary of common performance measures used in 

medical research is included in Table 2 (77).  
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Table 2: Summary of performance measures (adapted from Steyerberg) (76) 

Measure Advantages  Disadvantages 

Overall performance  

R2 
 

Commonly used to express amount of explained 
variation.  
Can be used to for model comparison. 
R2

D available for RP models (162). 
 

 Cannot be used to compare models from different 
populations/datasets. 
Difficult to interpret. 
Many different calculations available (e.g. Cox-
Snell and Nagelkerke’s R2). 
Can be used for survival models. 
Nagelkerke’s R2 severely penalizes false 
predictions close to 0% and 100%. 

Brier score 
 

Less severe in penalizing false predictions close to 
0% and 100% than Nagelkerke’s R2. 
 

 Interpretation of score depends of the prevalence 
but can be scaled between 0% and 100%. 
Calibration component of the Brier score can be 
tested using Spiegelhalter’s z-test. 
Cannot be calculated for survival models. 

Discrimination  

Concordance (c) 
statistic (C-index) for 
logistic regression 
 

Rank order statistic insensitive to prevalence. 
Can be visualized using ROC curve. 
Well established. 

 Related to variance of predictors (163). 
Interpretation varies by clinical area and is based 
on artificial concept. 

Harrell’s C-statistic for 
survival models 

Indicates the rank order of the proportion of all 
pairs that can be ordered. 

 Some pairs cannot be ordered. 
Cannot be used if time-dependent effects are 
used in the model (164). 
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Measure Advantages  Disadvantages 

D-statistic for survival 
models (162) 

Can be used to calculate a R2
D which is easier to 

interpret.  
 Hard to interpret. 

Interpretation is based on two created groups 
(based on the model output) and the model scale. 
Not well established. 
 
 

Calibration  

Calibration in the large 
 

Can be visualized in a calibration plot. 
Indicates if predictions are systematically too low 
or too high. 
Statistical testing of the difference in log odds 
between predictions and observed outcomes is 
possible 

 Accurate by design in apparent validation 

Calibration slope 
 

Can be visualized in a calibration plot. 
Indicates under or over fitting. 
Statistical testing of the deviation of the slope from 
1 (miscalibration) is possible. 

 Accurate by design in apparent validation 

Hosmer and Lemeshow  
 

Can be visualised. 
Goodness of fit test for logistic regression. 

 Sensitive to sample size and number of groups. 
Limited power in small samples. 
Interpretation is difficult.  
Cannot be calculated for survival models. 

Ratio of expected and 
observed number of 
events (E/O) 

Easy to calculate. 
Can be used for survival models using expected 
and observed event probabilities rather than 
number of events. 

 Ratio is affected by prevalence. 
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Assessment of overly influential observations 

All observations used to develop a model will influence the fit to some extent but 

it is possible that some observations will overly influence the model. This may 

be related to the data quality such as insufficient observations, data errors and 

extreme predictor values or it may be the case that the data may contain 

unusual observations where the relationship between the predictors and 

outcome differ from that observed in the majority of observations (149).  In 

regression models, diagnostic statistics can be used to identify influential 

observations (165, 166) however the values used to classify an observation as 

influential are subjective. Careful consideration is also needed on how to deal 

with influential observations; removing such observations is not generally 

recommended as this may artificially inflate the predictive accuracy of the model 

(149).  

Clinical usefulness  

Clinical usefulness has been defined as the improvement in classification 

derived from the use of a prediction model above some default position or rule 

that does not use the said model (77). Clinical usefulness measures fall into two 

main types; traditional methods using a set threshold selected using either an 

intuitive or optimal approach, or those that are derived using a decision-analytic 

approach (77). Measures using the former approach are often used to evaluate 

prediction modes and are well embedded in clinical use but there are no defined 

thresholds to indicate clinical usefulness (167). The latter approach involves 

incorporating the harm and benefit of a decision based on the prediction model 

into the assessment of clinical usefulness. An example of a harm is an un-

necessary operation or medication and a benefit is correct diagnosis of a 

disease. This net benefit approach has advantages over the first approach 
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including capturing the clinical consequences of the prediction model in the 

assessment (167) and the use of decision curves to consider a range of 

thresholds but quantifying the harms and benefits is a significant limitation. 

Model validation  

The purpose of model validation is to provide evidence for the performance and 

accuracy of the model. Model validation comprises of two aspects; internal and 

external validation.    

Internal validation 

Internal validation is where the model performance is assessed using the same 

dataset that was used to develop the model. Several techniques exists for 

internal validation, the difference between them being the specification of the 

samples used to both develop and validate the model (77). Apparent validation 

is a technique where the entire dataset is used to develop the model, the same 

dataset used to develop the model is then used to assess the model 

performance. The advantages of this method is that the development sample 

size is maximised and the assessment of performance is stable but the 

performance estimate will be overly optimistic. Calibration in the large and 

calibration slope validation tests are not useful when using apparent validation 

as they will be accurate by design (77).  

Another internal validation technique that is often used in medical research is 

split-sample validation. The model is developed using a random or stratified 

subset of the original dataset (classically 50 - 70%) and the model performance 

assessed using the remaining data. There are numerous issues with the use of 

this method related to variance and bias (149). With the availability of more 

efficient techniques such as bootstrapping, the use of split-sample validation is 
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not now generally recommended (77, 168). Cross-validation is an internal 

validation technique that is related to split-sample validation but has an 

advantage of using a larger subset of the original dataset for model 

development. It uses the same approach of developing the model on a random 

subset of the original dataset and evaluating the model on the remaining data 

but this process is repeated several times so that every patient in the original 

dataset is included at least once in the model assessment. To achieve stable 

results, the whole cross-validation process may have to be repeated as many 

as 50 times (77). Ten-fold cross-validation is the most common cross-validation 

method where the original data is divided into ten equal sized groups or folds; 

the first group is used to validate the model and the other nine groups are used 

to develop the model. This process is repeated ten times with a different group 

used each time for the validation, the performance estimate is an average of the 

estimates from each round of validation. Jack-knife cross validation is an 

extreme version of the ten-fold cross validation where only one patient at a time 

is left out of the development group, this method is not efficient with large 

number of patients and can underestimate model variability (77).  

Bootstrap validation is much the preferred internal validation technique having 

many advantages over the other techniques such as dealing with model 

uncertainty and estimate stability. In bootstrap validation, samples are drawn 

with replacement from the original dataset. For each bootstrapped sample, a 

model is developed and then evaluated in both the same bootstrapped sample 

(apparent validation) and the original dataset (test validation). The difference 

between the two sets of results indicates the amount of optimism which can be 

used to derive optimism adjusted performance estimates.   
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External validation 

External validation is considered the best quality validation technique in a 

suggested hierarchy of various validation techniques (149). External validation 

involves evaluating the model using a separate dataset from the dataset used to 

develop the model, in which the patients are different in some respect from the 

patients used to develop the model. The nature of the external validation can be 

temporal (model validated on new patients recruited to the study), geographic 

(model validated on patients from another study centre) or fully independent 

(model validation undertaken by independent researchers) (77). 

1.4.6 Conclusion 

Clinical prediction models are a valuable commodity in clinical practice. Many 

different diagnostic and prognostic models have been developed in all areas of 

medicine using both traditional statistical methods and machine learning but the 

number actually implemented into clinical use is comparatively low. The lack of 

clinical uptake can be due to the inclusion of predictors that are not routinely 

indicated in clinical practice but also a lack of clinical credibility and evidence. 

Reporting guidelines have been introduced to address the lack of clinical 

credibility and evidence in the development and validation of clinical prediction 

models. Several studies and books have published frameworks and 

recommendations for best methodological approaches to model development 

and validation, Frank Harrell and Ewout Steyerberg being key leaders in this 

field.  
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1.5 Data overview 

This section provides an overview of the different datasets used in the 

subsequent chapters of this thesis. All of the datasets were obtained from 

existing diabetes studies that recruited adults with a clinical diagnosis of either 

type 1 or type 2 diabetes.  

1.5.1 Datasets  

Diabetes Alliance for Research in England (DARE)  

DARE (2007 - 2017) was a cross-sectional study designed to explore the 

causes and complications of diabetes (169). Patients with any type of diabetes 

were recruited from primary and secondary care in eight diabetes research 

regions across England. Clinical measurements and blood were collected at 

recruitment and ongoing biochemical data collected from pathology 

laboratories. Within the dataset, data were accessible for approx. 6,000 Exeter-

recruited participants.  

Predicting Response to Incretin Based Agents in type 2 Diabetes (PRIBA)  

PRIBA (2011 – 2013) was a prospective study of 957 adult participants with a 

clinical diagnosis of type 2 diabetes starting DPP4 inhibitors or GLP-1 receptor 

agonist treatment as part of their normal care. Patients were recruited from 

primary or secondary care in South West England. The primary analysis was 

the relationship between insulin secretion (measured by blood C-peptide or 

Urinary C-peptide Creatinine Ratio (UCPCR)) and glycaemic response 

(measured by HbA1c) (170). Clinical measurements and blood were taken at the 

initial visit and follow up clinical measurements and blood collected at three and 

six months. 
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MRC PROspective Cohort MRC ABPI STratification and Extreme Response 

Mechanism in Diabetes (PROMASTER) 

PROMASTER (2013 – 2015) was an observational study of 820 adult 

participants with clinically diagnosed type 2 diabetes starting second or third line 

glucose lowering treatment (Sulphonylurea, DPP-4 inhibitors, GLP-1R agonists, 

SGLT2 inhibitors, Glitazone or insulin) as part of their normal care (171). 

Patients were recruited from primary or secondary in South West England, 

Tayside, Oxford, Glasgow, London and Newcastle. The primary outcome of the 

study was a comparison of two groups of participants; those who showed a 

good response to the treatment and those who had a poor treatment response. 

Clinical measures, fasting blood and urine samples were taken at first visit and 

repeated at second visit approx. six months after starting the new treatment to 

measure response. 

MRC Retrospective Cohort MRC ABPI STratification and Extreme Response 

Mechanism in Diabetes (RetroMASTER) 

RetroMASTER (2013 – 2015) is an observational study of 562 participants with 

clinically diagnosed type 2 diabetes that were being treated with a second or 

third line glucose lowering treatment (Sulphonylurea, DPP-4 inhibitors, GLP-1R 

agonists, SGLT2 inhibitors, Glitazone or insulin) as part of their normal care for 

at least four months (172). Participants were grouped according to their rate of 

diabetes progression (rapid or slow progression to insulin therapy (<7, >7 years 

respectively)). Participants were recruited from primary and secondary care in 

Exeter, Oxford and Dundee. The primary outcome of the study was to compare 

the clinical characteristic of the two groups of participants. Fasting blood, urine 

samples and standard biomarkers were collected, along with medical and 

prescribing history. 



 

39 
 

MRC Crossover 

Crossover (2013 -2015) was an intervention study of 143 adult participants 

clinically diagnosed with type 2 diabetes and treated with sulphonylurea tablets 

as their normal care (173). Patients were recruited in Exeter and Tayside. The 

primary outcome of the study was to understand individual variation in altered 

glycaemic response to two different treatments. The study had a cross-over 

model where patients were randomised to be treated for periods of four weeks 

with Gliclazide (DPP-IV thera) or Sitagliptin (sulphonylurea) in a crossover 

fashion. Clinical measurements were collected and a mixed-meal test was 

performed at baseline and at each study drug visits. Fasting blood was 

collected at each cross-over. 

Genetics of Diabetes Audit and Research Tayside Study (GoDarts) 

GoDarts is an observational case-control study comprising of patients with a 

clinical diagnosis of type 2 diabetes recruited from primary and secondary care 

in the Tayside area of Scotland since 1998. The primary aim of GoDarts is to 

provide a database which can be used to investigate the genetics, 

complications and treatment of type 2 diabetes (174). Cross-sectional baseline 

data, including a blood sample and clinical and lifestyle factors, collected in the 

study is linked to individual electronic medical records which includes laboratory 

data, prescription history and hospital admissions making GoDarts a 

longitudinal cohort (175). Data is available on approx. 10,000 participants.  

Young Diabetes in Oxford (YDX)  

YDX is a cross-sectional study of participants diagnosed with diabetes (of any 

type) up to the age of 45 years. Participants were recruited from primary and 

secondary care in Oxfordshire. One of the aims of the study was to identify 

clinical features that could be used to pre-select patients at high risk of Maturity-
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Onset Diabetes of the Young (MODY) for genetic testing. Data was accessible 

for 1,200 participants screened between 2005 and 2017. 

Hoorn Diabetes Care System (DCS) 

DCS is a prospective cohort study representing the data of over 12,000 

participants clinically diagnosed with type 2 diabetes in West-Friesland, 

Netherlands since 1998 (176). The longitudinal dataset contains baseline 

clinical measurements and annual follow-up visit data. Additional health data, 

including prescription history and cause-specific mortality, is collected using 

electronic medical record linkage. 

A Diabetes Outcome Progression Trial (ADOPT) 

ADOPT (2000 – 2006) was an intention to treat randomised drug efficacy trial in 

adult patients who had been recently diagnosed with type 2 diabetes (177-179). 

Patients were recruited in 488 centres in the US, Canada and Europe, a total of 

4,360 participants underwent randomisation (179). The study was designed to 

compare glycaemic control (long-term blood glucose) of participants treated 

with alternative therapies (thiazolidinedione (rosiglitazone), metformin and 

sulfonylurea (glibenclamide)). The primary outcome was time to monotherapy 

failure defined by confirmed level of fasting plasma glucose of more than 180 

mg/dl (10.0 mmol/l) (177). Baseline data collected included biomarkers such as 

lipids and GADA (179).  

1.5.2 Data preparation 

Each dataset was supplied individually by the study and imported into Stata/SE 

15.1 (StataCorp, College Station, TX) except for the ADOPT data which was 

accessed through the Clinical Trial Data Transparency Portal under approval 

from GSK (Proposal 930).  
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In DARE, additional data including C-peptide, HbA1c and islet-autoantibodies 

was obtained from electronic patient medical records where available. Islet-

autoantibody testing and genotyping were requested and performed for those 

DARE participants where these data were missing but whose blood serum had 

been stored. 

Some participants had been recruited to more than one of the studies included 

in this thesis. Duplicate participant observations were removed where the 

analysis was performed on a merged dataset, DARE data took precedence 

when this occurred.  

Potential data errors or inconsistencies identified in the Exeter-based datasets 

were checked against paper or electronic study records and amended 

accordingly. 
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Abstract 

Objective 

To develop and validate multivariable clinical diagnostic models to assist 

distinguishing between type 1 and type 2 diabetes in adults aged 18 to 50. 

Research design and methods 

Multivariable logistic regression analysis was used to develop classification 

models integrating five pre-specified predictor variables, including clinical 

features (age of diagnosis, BMI) and clinical biomarkers (GADA and Islet 

Antigen 2 islet-autoantibodies, Type 1 Diabetes Genetic Risk Score), to identify 

type 1 diabetes with rapid insulin requirement using data from existing cohorts. 

The study population consisted of 1,352 (model development) and 582 (external 

validation) participants diagnosed with diabetes between the age of 18 and 50 

years of white European origin, recruited from primary and secondary care in 

the United Kingdom. 

Type 1 diabetes was defined by rapid insulin requirement (within 3 years of 

diagnosis) and severe endogenous insulin deficiency (C-peptide <200pmol/L). 

Type 2 diabetes was defined by either a lack of rapid insulin requirement or, 

where insulin treated within 3 years, retained endogenous insulin secretion (C-

peptide >600pmol/L at ≥5 years diabetes duration). Model performance was 

assessed using area under the receiver operating characteristic curve (ROC 

AUC), and internal and external validation. 

Results 

Type 1 diabetes was present in 13% of participants in the development cohort. 

All five predictor variables were discriminative and independent predictors of 
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type 1 diabetes (p<0.001 for all) with individual ROC AUC ranging from 0.82 to 

0.85. Model performance was high: ROC AUC range 0.90 [95%CI 0.88, 0.93] 

(clinical features only) to 0.97 [0.96, 0.98] (all predictors) with low prediction 

error. Results were consistent in external validation (clinical features and GADA 

ROC AUC 0.93 [0.90, 0.96]). 

Conclusions 

Clinical diagnostic models integrating clinical features with biomarkers have 

high accuracy for identifying type 1 diabetes with rapid insulin requirement, and 

could assist clinicians and researchers in accurately identifying patients with 

type 1 diabetes.  
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Making the correct diagnosis of type 1 and type 2 diabetes is crucial for 

appropriate management, with guidelines for these conditions recommending 

very different glucose-lowering treatment and education (1-3). These 

differences are predominantly driven by the rapid development of severe 

endogenous insulin deficiency in type 1 diabetes (1). This means that patients 

with type 1 diabetes need rapid insulin treatment and are at risk of life-

threatening ketoacidosis without insulin treatment. They develop a requirement 

for physiological insulin replacement (e.g. multiple injections, carbohydrate 

counting and pumps) due to the very high glycaemic variability associated with 

severe insulin deficiency (4, 5) and have poor glycaemic response to most 

adjuvant glucose-lowering therapies (6). In contrast, patients with type 2 

diabetes continue to make substantial endogenous insulin even many decades 

after diagnosis (7). Glycaemia is therefore usually managed initially with lifestyle 

change or oral agents (4, 8) and, if insulin treatment is needed, a combination of 

simple insulin regimens and adjuvant non-insulin therapies (4, 5, 8, 9).  

Correctly distinguishing between diabetes subtypes at diagnosis is often difficult 

and misclassification therefore common (10-12). Current guidelines focus on 

aetiopathological definitions without giving clear criteria for clinical use (1, 13). 

In clinical practice, clinical features are predominantly used to determine 

diabetes subtype but only age at diagnosis and BMI have evidence for utility at 

diabetes onset, whereas other features used by clinicians such as symptoms at 

diagnosis, weight loss or ketosis do not have an evidence base (14). Increasing 

obesity rates mean that many patients with type 1 diabetes will be obese and 

type 2 diabetes is occurring in the young (15). Type 1 diabetes has been 

recently shown to occur at similar rates in those aged above and below 30 (16). 

Therefore simple cut-offs based on age at diagnosis and BMI are unlikely to 
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accurately diagnose diabetes type for many patients (1, 10). Similarly, there is 

no single diagnostic test that can be used to classify diabetes robustly at 

diagnosis. While measurement of islet-autoantibodies can assist classification, 

many patients with type 1 diabetes are islet-autoantibody negative and many 

patients with the clinical phenotype of type 2 diabetes, without rapid insulin 

requirement, are islet-autoantibody-positive (17). A type 1 genetic risk score has 

been recently shown to assist diagnosis of diabetes type but this provides 

imperfect discrimination in isolation (18).  

In order to classify diabetes a suitable “gold standard” is necessary.  As the key 

factor driving differences in treatment decisions between the two subtypes is the 

lack of endogenous insulin secretion, direct measurement of endogenous 

insulin secretion  in longstanding insulin-treated diabetes (>3-5 years), using C-

peptide, provides a robust classification that closely relates to treatment 

requirements (19); patients with severe endogenous insulin deficiency (low C-

peptide) have the high glucose variability, absolute insulin requirement, and lack 

of response to non-insulin glucose-lowering therapies that are characteristic of 

type 1 diabetes, regardless of their clinical characteristics and clinician’s 

diagnosis (7, 11, 19-23). However, this test may have limited utility at diagnosis, 

as patients with recent onset type 1 diabetes may have retained endogenous 

insulin secretion (21, 24). 

Clinical prediction models offer a way of combining multiple patient features and 

biomarkers to improve accuracy of diagnosis or prognosis. In diabetes, 

diagnostic models combining clinical features are available to predict the risk of 

prevalent or incident type 2 diabetes (25) and there is a model to identify 

monogenic forms of diabetes in patients with young-onset diabetes (26). 

However there are no statistical prediction models to help distinguish type 1 and 
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type 2 diabetes at diagnosis. We therefore aimed to develop and validate 

multivariable clinical diagnostic models that combine clinical features and 

biomarkers to identify type 1 diabetes (defined by rapid insulin requirement and 

severe endogenous insulin deficiency) in patients aged between 18 and 50 

years at diabetes diagnosis.  

Methods 

We used logistic regression to model the relationship between each of clinical 

features and biomarkers, and type 1 diabetes defined by rapid insulin 

requirement and severe endogenous insulin deficiency (see below). We 

assessed the performance of the models using both internal validation and 

external validation. 

Study population – development cohort 

To maximise the sample size and to create a development cohort reflecting the 

general population prevalence of type 1 diabetes, participants were identified 

from four Exeter, UK-based cohorts (27-30) and combined into a single dataset. 

Combining the four Exeter cohorts was considered appropriate given that the 

assessment of both their clinical features and laboratory measurements were 

consistent across them. 

These cohorts comprised of participants with clinically diagnosed diabetes 

recruited from primary and secondary care. Summaries of the cohorts including 

recruitment and data collection methods, and the number of type 1 diabetes in 

each cohort are shown in Supplementary Table 1.  

Participants were eligible for the study (model development or validation) if they 

had a clinical diagnosis of type 1 or type 2 diabetes between the ages of 18 and 

50 years. Participants with known secondary or monogenic diabetes (31), or a 
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known disorder of the exocrine pancreas (32), were excluded. All participants 

included in this study were of white European origin. 

Study population - external validation cohort 

Participants meeting the study inclusion criteria were identified in the Young 

Diabetes in Oxford (YDX) study (33). YDX is a cross-sectional study of 

participants diagnosed with diabetes (of any type) up to the age of 45 years, 

recruited from primary and secondary care in the Thames Valley region, UK. 

Participants with known secondary, pancreatic or monogenic diabetes were 

excluded. 

Model outcome: type 1 and type 2 diabetes definition 

Type of diabetes was defined by the presence or absence of rapid insulin 

requirement and severe endogenous insulin deficiency after a diagnosis of 

diabetes, as follows:  

Type 1 diabetes: Insulin treatment within <= 3 years of diabetes diagnosis and 

severe insulin deficiency (non–fasting C-peptide < 200pmol/L) (21).  

Type 2 diabetes: Either 1) no insulin requirement for 3 years from diabetes 

diagnosis or 2) where insulin was started within 3 years of diagnosis, substantial 

retained endogenous insulin secretion (C-peptide >600pmol/L ) at >=5 years 

diabetes duration. 

Cohort participants not meeting the above criteria or with insufficient information 

were excluded from analysis, as type of diabetes and rapid insulin requirement 

could not be robustly defined.   
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Model predictors 

Five pre-specified predictor variables were assessed, based on prior evidence 

and availability: age at diagnosis (14), BMI (14), GADA and IA-2 islet-

autoantibodies (17, 34), and a Type 1 diabetes Genetic Risk Score (T1D GRS) 

(18).  

Assessment of clinical features 

At study recruitment visit, clinical history including time to insulin and age at 

diagnosis were self-reported by participants in an interview with a research 

nurse. Height and weight were measured for calculation of BMI. 

Laboratory Measurement 

C-peptide 

In the development cohort, C-peptide was measured on stored EDTA taken at 

study visits (non-fasting random (35), fasting, or at 90 minutes in a post-mixed-

meal tolerance test (majority 87% non-fasting)). With specific additional 

consent, C-peptide was also measured on post-recruitment non-fasting EDTA 

samples collected as part of routine clinical care. Fasting C-peptide values were 

multiplied by 2.5 to non-fasting equivalent (21). The median C-peptide value 

was used where more than one eligible C-peptide value was available (62% of 

participants requiring this measure for outcome definition). C-peptide was 

measured using an electrochemiluminescence immunoassay on a Roche 

Diagnostics E170 analyser (Roche, Mannheim, Germany) by the Academic 

Department of Blood Sciences at the Royal Devon and Exeter Hospital. In the 

external validation cohort, C-peptide measurement was performed in the 

Biochemistry Laboratory of the Oxford University Hospitals NHS Trust using a 
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chemiluminescence immunoassay on an ADVIA Centaur analyser (Siemens 

Healthcare Diagnostics Ltd). 

Islet-autoantibodies 

In the development cohort, GADA and IA-2 were measured on EDTA taken at 

recruitment or obtained from local laboratory records. Both islet-autoantibodies 

were measured using the RSR Ltd ELISA assays (RSR Ltd, Cardiff, UK) on the 

Dynex DS2 ELISA Robot (Dynex Technologics, Worthing, UK) by the Academic 

Department of Blood Sciences at the Royal Devon and Exeter Hospital. The 

department participates in the International Autoantibody Standardization 

Programme. The cut-off for positivity for GADA was ≥11 units/ml and IA-2 was 

≥15 units/ml, based on the 97.5th centile of 1,559 controls without diabetes 

(34).  

In the external validation cohort, GADA was measured by a radioimmunoassay 

using 35S-labeled full-length GAD65 by the Department of Clinical Science, 

University of Bristol, Bristol, U.K. Results were expressed in World Health 

Organization (WHO) units per millilitre derived from a standard curve calibrated 

from international reference material (National Institute for Biological Standards 

and Control code 97/550). The cut-off for positivity for GADA was 13 WHO 

Units/mL initially, using a local assay (samples measured n=218, DASP2010 

sensitivity 88% at 93% specificity) and changed to 33 DK Units/mL later in the 

study (standard assay, DASP2010 sensitivity 80%, specificity 97%). 

Type 1 Diabetes Genetic Risk Score (T1D GRS) 

The T1D GRS was calculated on the development cohort as previously 

described (18). In brief, T1D GRS consists of 30 common type 1 diabetes 

genetic variants (single nucleotide polymorphisms (SNPs)) from HLA and non-
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HLA loci; each variant is weighted by its effect size on type 1 diabetes risk from 

previously published literature, with weights for DR3/DR4-DQ8 assigned based 

on imputed haplotypes (Supplementary Table 2). All SNPs had an INFO > 0.8. 

The combined score represents an individual’s genetic susceptibility to type 1 

diabetes. T1D GRS calculation was not performed if genotyping results were 

missing for either of the two alleles with the greatest weighting (DR3/DR4-DQ8 

or HLA_DRB1_15) or if more than two of any other SNPs were missing. For 

ease of clinical interpretation the score is presented in this article as the score 

and centile position of the distribution in the Wellcome Trust Case Control 

Consortium type 1 diabetes population (36).  

Missing data 

Models were developed using complete case analysis. The percentage of 

participants in the development data meeting our inclusion criteria but excluded 

due to missing data was 10% (Supplementary Table 2). The missing data for 

the majority of these participants was related to the model outcome, 11 

participants were excluded due to missing BMI. These missing data were never 

collected (not by design). The nature of the missing data (missing data 

mechanism) was not investigated for these data due to the low amount of 

missing data (BMI), the sample size was considered sufficient to give unbiased 

estimates using complete-case analysis and the missing outcome data is highly 

unlikely to depend on the values of the predicted variables.  

Missing data for the remaining predictor variables (GADA, IA-2 and T1D GRS) 

were never collected (by design). These missing data were handled by use of a 

staged model development sequence which was considered a suitable method 

of analysis in this situation and makes best use of the available data. To assess 
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the appropriateness of this approach, we first looked at the missing data 

patterns to describe the missing data. 70% of the participants had complete 

data and only 4% had missing data for all three predictor variables. The missing 

data mechanism for these variables was investigated by regressing a binary 

missing variable on the other variables. If no variables predict whether a given 

variable is missing, then it is plausible that the data is missing completely at 

random (MCAR) and a complete cases analysis is appropriate. If the data is not 

MCAR, then the complete case may not be a random sample and may produce 

biased estimates. Postive IA-2 was a significant predictor of missing GADA and 

vice versa, GADA was also a significant predictor of missing T1D GRS. 

Although these results suggest that the data may not be MCAR, there is no 

reason to assume that the missing values are distributed significantly differently 

from the non-missing values i.e. the data appears to be missing at random and 

multiple imputation was not considered. 

Statistical analysis 

Model development 

We used logistic regression analysis to develop the models.  

Clustering of data by cohort origin was not adjusted for in the models since 

cohort origin was inherently associated with type of diabetes (Supplementary 

Table 1).  

Age at diagnosis, BMI and T1D GRS were modelled as continuous variables 

and transformations used to ensure linearity on the logit scale (37) 

(Supplementary Figures 1A and 1B). GADA and IA-2 were both dichotomized 

into negative or positive based on the cut-off for positivity in line with how the 

results are reported clinically (2). Sample sizes were checked using both 
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minimal Events Per Variable (EPV) criteria (>=10) (38) and square root of the 

mean squared prediction error (rMPSE) (39) and were considered sufficient for 

reliable diagnostic modelling. 

Models were built and validated in four stages, this staged development 

sequence was selected in order of clinical availability of the predictors and, as 

some participants had missing diagnostic test data, to maximise the sample 

size at each stage: 1) model including only clinical features (age at diagnosis 

and BMI); 2) Addition of GADA to the linear predictor from model 1; 3) Addition 

of both GADA and IA-2 to the linear predictor from model 1; 4) Addition of T1D 

GRS to model 3 linear predictor.  

Evaluation of model performance: Internal validation 

Three internal validation techniques were used to assess the discrimination and 

calibration performance of the models: 1) directly using the data used to 

develop the model (apparent validation, ROC AUC); 2) Jack-knife cross-

validation; 3) Bootstrapping (with replacement method) (37). 

Evaluation of model performance: External validation 

Performances of model 1 (clinical features) and model 2 (clinical features + 

GADA), were evaluated in the YDX study cohort. We were unable to externally 

evaluate models 3 and 4 as IA-2 autoantibodies and T1D GRS were not 

available in the YDX study. 

Model comparisons 

Four nested replica models were built on the subset of participants with 

complete data on all predictor variables (n = 943). The predictive information of 

each additional predictor on the model performance was assessed using the 
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Unitless Index of Adequacy (37), log likelihood ratio test (37), Net 

Reclassification Improvement and Integrated Discrimination Improvement (40). 

Sensitivity analysis 

Model development of all 4 models was repeated on 943 participants with 

complete data. To assess performance of biomarker models in those difficult to 

classify on clinical features alone model AUC ROC was repeated for each 

model in participants with intermediate age of diagnosis (range 25-35 years 

(inclusive)) and BMI (range 25-35 kg/m2 (inclusive)). 

All statistical analyses were performed using STATA version 15, STATA Corp, 

Texas, USA (unless otherwise stated). 

Results 

1,352 (type 1 diabetes n = 179) participants met analysis inclusion criteria for 

the clinical features model with 943 participants having all predictor variables 

measured. A flow diagram describing the flow of participants through the study 

is shown in Supplementary Figure 2. The majority of participants (n = 904 

(67%)) were identified from DARE which is an unselected cohort enriched for 

type 1 diabetes due to some secondary care recruitment (type 1 diabetes 

prevalence 19.6%). The inclusion of 448 participants from the other three 

Exeter cohorts, which are type 2 diabetes focused, resulted in an overall cohort 

prevalence of type 1 diabetes very similar to that in published population 

cohorts (41) meaning that model probabilities are more likely to be relevant to 

the general population than those obtained using DARE alone. 

Only 37 (2.7% of the cohort) had an undefinable outcome due to intermediate 

C-peptide levels (200-600pmol/L when insulin-treated within 3 years of 
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diagnosis). The remaining exclusions were due to either missing data or short 

duration of diabetes. The characteristics and type 1 diabetes outcome 

prevalence of the included participants were similar in all four development 

samples (Supplementary Table 3). There were no clinically relevant differences 

in the characteristics of the participants who were excluded from the fourth 

model development stage (n = 409) (Supplementary Table 4). Islet-

autoantibodies and C-peptide were measured at median 13 years and 16 years 

post-diagnosis respectively.  

Clinical features or biomarkers in isolation overlap substantially between 

diabetes types (Figure 1).Participants with type 1 diabetes and rapid insulin 

requirement were diagnosed younger compared to the participants with type 2 

diabetes (median 27 vs 44 years, p < 0.001) and had a lower BMI (median 26 vs 

34 kg/m2, p < 0.001). Positive autoantibodies (GADA, IA-2 or both) were more 

common in the participants with type 1 diabetes (71% of participants with type 1 

diabetes vs 5% of participants with type 2 diabetes, p < 0.001). Patients with 

type 1 diabetes had a higher T1D GRS (median 0.27 vs 0.23 (equivalent to 40th 

and 4th centile of the Wellcome Trust Case Control Consortium population with 

type 1 diabetes (36), p < 0.001). These features overlapped substantially 

between participants meeting criteria for type 1 and type 2 diabetes (Figure 1 (A 

– D)) with AUC ROC for these features in isolation: 0.82 (age at diagnosis), 

0.83 (BMI), 0.83 (islet-autoantibodies) and 0.85 (T1D GRS). 
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Figure 1: Density plots for (A) age at diagnosis, (B) BMI and (D) T1D GRS. Stacked bar chart 
(C) showing percentages of participants (total n = 943 (stage 4 model development sample)) by 
actual type 1 diabetes outcome and GADA/IA-2 status. Dashed line shows the distribution for 
type 2 diabetes (T2D) (n = 815), solid line shows the distribution for type 1 diabetes (T1D) (n = 
128) of participants included in the stage 4 model development.   

 
 

Combining clinical features using a diagnostic model improves model 

discrimination 

In model 1, age at diagnosis and BMI were both significant independent 

predictors of type 1 diabetes, with the odds of having type 1 diabetes increasing 

with younger age at diagnosis and lower BMI. Combined, these features 

provided excellent discrimination (ROC AUC=0.904, perfect test = 1) (Figure 

2a), with low probabilities capturing the majority of participants with type 2 

diabetes and type 1 diabetes being very unlikely (Figure 2b; sensitivity, 

specificity, and positive and negative predictive values at various probability cut-

offs are reported in Table 1). In successive models adding in GADA (model 2 

(figures 2c and 2d)), then IA-2 (model 3 (figures 2e and 2f)) and then T1D GRS 

(model 4 (figures 2g and 2h)), the addition of each predictor to the previous 
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model resulted in significant improvements in discrimination (Supplementary 

Table 5) and model fit (Supplementary Tables 6 and 7). In sensitivity analysis, 

results were similar when restricting all models to only the 943 participants with 

complete data on all predictor variables (Supplementary Table 8). 
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Figure 2: Development sample validation results. Plots are the results from the validation of the 

models. First row (a and b): clinical features logistic regression model (n = 1,315). Second row 

(c and d): clinical features + GADA logistic regression model (n = 1,036). Third row (e and f): 

clinical features + GADA + IA-2 logistic regression model (n = 1,025). Fourth row (g and h): 

clinical features + GADA + IA-2 + T1D GRS logistic regression model (n =943). Plots (a), (c), 

(e), & (g) are ROC curves showing discrimination ability of the models. Plots (b), (d), (f) & (h) 

are boxplots of fitted model probabilities grouped by actual diabetes outcome. 
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Table 1: Model performance at different cut-offs for classifying type 1 diabetes for all four 
logistic regression models (development cohort). Positive and negative predictive values 
assume prevalence for type 1 diabetes: Model 1 = 13%, Model 2 = 14%, Model 3 = 13%, Model 
4 = 14% 
* Youden’s Index - best trade-off between sensitivity and specificity (sensitivity+specificity – 1). 

Model 1: Clinical features (n = 1,352) 

 Probability (%) cut-off  

 10 30 50 70 90 12 * 

Sensitivity/specificity (%) 85/79 64/95 49/98 35/99 15/100 83/83 

Accuracy (%) 80 90 91 90 89 83 

PPV (%) 38 64 79 83 90 42 

NPV (%) 97 95 93 91 89 97 

 

Model 2: Clinical features + GADA (n = 1,036) 

 Probability (%) cut-off  

 10 30 50 70 90 16 * 

Sensitivity/specificity (%) 90/88 80/96 66/97 52/99 31/100 86/92 

Accuracy (%) 89 94 93 92 90 92 

PPV (%) 55 75 80 85 92 64 

NPV (%) 98 97 95 93 90 98 

 

Model 3: Clinical features + GADA + IA-2 (n = 1,025) 

 Probability (%) cut-off  

 10 30 50 70 90 12 *  

Sensitivity/specificity (%) 91/91 80/96 69/98 57/99 37/100 90/92 

Accuracy (%) 91 94 94 93 92 92 

PPV (%) 59 75 81 85 92 62 

NPV (%) 99 97 96 94 92 98 

 

Model 4: Clinical features + GADA + IA-2 + T1D GRS  (n = 943) 

 Probability (%) cut-off  

 10 30 50 70 90 14 * 

Sensitivity/specificity (%) 92/90 84/96 74/98 63/99 41/100 91/93 

Accuracy (%) 90 95 94 94 92 93 

PPV (%) 59 78 83 88 93 67 

NPV (%) 99 98 96 94 92 99 
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In further sensitivity analysis restricting analysis to those most difficult to classify 

on clinical features alone due to both intermediate BMI (range 25-35 kg/m2 

(inclusive)) and age of diagnosis (range 25-35 years (inclusive)), model 

performance remained high for models incorporating biomarker measurement 

(clinical features + islet-autoantibodies AUC ROC 0.89, clinical features + islet-

autoantibodies + T1D GRS AUC ROC 0.95) (Supplementary Table 9). This 

compares to AUC ROC of 0.72 for GADA and IA-2 measurement alone, and 

0.89 for T1D GRS measurement alone in this sub population (n = 71). 

Internal validation suggests robust model performance 

Results of the internal validation bootstrap (Supplementary Table 5) indicate 

good model discrimination, with very similar model performance in bootstrapped 

samples (near identical ROC AUC for all models (max decrease = 0.0018)), 

high calibration indicating the predicted probabilities closely fit the observed 

probabilities (calibration slope range 0.98 - 1.00 (0.9 – 1.1 is indicative of good 

calibration)), and very low levels of optimism suggesting little error due to 

overfitting.   

Model performance remains high in an external validation cohort with 

different characteristics 

582 participants in the YDX study met criteria for external validation 

(Supplementary Figure 3). Compared to the participants in the Exeter model 

development cohort, the participants in the YDX study were younger at 

diagnosis (consistent with the narrower age range in YDX (18-45y) (median 37 

years vs 43 years, p < 0.001)), had a lower BMI (median 31 kg/m2 vs 33 kg/m2, 

p < 0.001), had a higher percentage of GADA (20% versus 12%, p < 0.001) and 
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a higher prevalence of type 1 diabetes by study definition (22% vs 14%, p < 

0.001) (see Supplementary Table 10 for participant characteristics). 

There was a small decrease in performance of the model 1 (clinical features) 

and model 2 (clinical features and GADA) when they were applied to the 

external validation samples but both still showed high levels of discrimination 

despite differences in the two cohorts (ROC AUC = 0.865 and 0.930 for models 

1 (Figures 3a, 3b and 3c) and 2 (Figures 3d, 3e and 3f) respectively 

(Supplementary Table 11). Both models slightly over estimated type 1 diabetes 

prevalence but there was no evidence of miscalibration (Figures 3b and 3e, 

Supplementary Table 11). Sensitivity and specificity in the validation cohort are 

shown in Supplementary Table 12. 
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Figure 3: External validation results. Plots on the first row (a, b, c) are the results from the external validation of the clinical features logistic regression model applied 

to participants in the YDX study (n = 582). The second row of plots (d, e, f) are the results from the external validation of the clinical features + GADA logistic 

regression model applied to participants in the YDX study (n = 549). Plots (a) & (d) are ROC curves showing discrimination ability of the models, dashed line 

represents the reference line. Plots (b) & (e) are calibration plots. Plots (c) & (f) are boxplots of fitted model probabilities grouped by actual diabetes outcome. 
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Participants with high model probability type 1 diabetes but type 2 

diabetes outcome have the characteristics of type 1 diabetes but took > 3 

years to commence insulin therapy. 

Supplementary Table 13 shows the characteristics of 12 participants in the 

external validation cohort with >80% model type 1 diabetes probability, but an 

actual model outcome of type 2 diabetes. These participants had the clinical 

characteristics associated with type 1 diabetes with GADA positivity and low C-

peptide in the majority of cases (median C-peptide 120 pmol/L). However the 

time to insulin was > 3 years in GADA positive cases, suggesting slow onset 

autoimmune diabetes. In contrast, the 6 participants who had a low model type 

1 diabetes probability (< 16%) but an actual model outcome of type 1 diabetes 

(Supplementary Table 14) had features associated with type 2 diabetes. 

Online calculator 

The four models have been incorporated into an online calculator (beta version 

available at https://www.diabetesgenes.org/t1dt2d-prediction-model/). An 

additional four models with different combinations of the five predictor variables 

were also developed for the online calculator, to allow every combination of 

clinical features plus the other biomarkers as optional. As expected, ROC AUC 

and prediction error results for these four additional models were intermediate 

between the basic clinical features model and the full model with all features 

(Supplementary Table 15). 

Supplementary Tables 16 - 23 inclusive show the β coefficients and odds ratios 

for all models. The regression equations for the online calculator are shown in 

Supplementary Table 24.    
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Conclusions 

We have developed, evaluated and validated clinical diagnostic models 

combining age at diagnosis, BMI, GADA, IA-2, and T1D GRS to provide 

estimates of a patient’s risk of having type 1 diabetes requiring rapid insulin 

therapy from diagnosis. These models show high performance, and could 

potentially assist classification of diabetes in clinical practice and provide a tool 

for evidence based classification in research cohorts. 

Model performance was optimised in the model combining all five predictors 

(ROC AUC 0.97). However, all models performed well with ROC AUC > 0.9 and 

low cross-validated prediction errors in development. The results of the external 

validation provide additional confidence in model performance. This was 

undertaken in a distinct dataset with different type 1 diabetes prevalence and 

biochemical assays.  

This is the first study developing clinical diagnostic models for classification of 

type 1 and 2 diabetes. Key strengths of this study include our systematic 

approach to model development including robust internal and external validation 

(42). Our staged approach to model development means that we have 

maximised the information gained from each predictor. Our model is 

parsimonious, we have used only five predictors previously shown to be 

associated with type 1 diabetes. This, in combination with large datasets, mean 

we have a high number of events per variable and very low risk of overfitting, a 

common problem with diagnostic models of this nature. Our use of 

predominantly population-based cohorts recruited largely from a primary care 

setting (for model development) means our results are likely to reflect true 

associations in patients seen in clinical practice. The overall prevalence of study 
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defined type 1 diabetes of 13% in our development dataset is close to the 11% 

reported type 1 diabetes prevalence at diagnosis in a UK population aged 20-50 

(41). 

A limitation of our study is the cross-sectional nature of our cohorts meaning 

that age at diagnosis and time to insulin were self-reported at a single visit.  

Insulin commencement was also based on clinical decision-making rather than 

a trial protocol. BMI and antibodies were measured at median 13 years after 

diagnosis. BMI, and GADA and IA-2 antibodies change modestly over time in 

adult onset diabetes, with previous research suggesting an approximately 18% 

lower combined GADA and IA-2 prevalence after 13.5 years diabetes duration 

in this age group (43), and BMI having higher discrimination for diabetes 

classification when measured at diagnosis (44). The potential impact on the 

results of BMI and islet-autoantibodies having been measured some years post 

diagnosis is that the predictions may be under-estimated. The lack of 

information at diagnosis also meant we were unable to assess whether other 

features available at diagnosis may assist classification, such as presentation 

glycaemia, ketosis, or weight loss. A prospective study to validate these 

models, and assess whether other features may assist classification is therefore 

ongoing (https://clinicaltrials.gov/ct2/show/NCT03737799). 

A further limitation is that this model has been developed and tested in a white 

European population with young onset diabetes, extension of this work to non-

white populations and older age groups is therefore a priority for future 

research.  

These models have the potential to help robustly classify diabetes in research 

cohorts, and may have particular utility where genetic but not antibody data is 



 

79 
 

available, a common situation in many biobanks. They may also assist clinical 

decision making, with the important caveats that this evidence can only be 

applied to patients aged 18-50, of white ethnicity, and that these models are 

intended to act as a decision aid in conjunction with other information which a 

clinician may use to inform treatment decisions (for example severity of 

hyperglycaemia): they do not replace expert clinical opinion. A web-based 

calculator and smartphone app could be used to display the estimate of the 

patient’s probability of having type 1 diabetes based on the predictor variable 

values entered. The models can be used with age of diagnosis and BMI as a 

minimum; users will then have a choice to add results of GADA, IA-2 and T1D 

GRS in any combination. This could therefore be used by clinicians as a triage-

based approach to diabetes subtype diagnosis. For example, probabilities 

calculated on clinical features could be used as the basis for antibody testing, or 

the additional value likely to be gained from antibody or genetic testing could be 

assessed by inputting dummy results into the model. We propose providing the 

continuous probability outcome of the models rather than giving a threshold. 

This is because the decision made on whether to commence insulin for a given 

probability of type 1 diabetes will vary enormously due to other factors. For 

example temporary insulin treatment may be appropriate regardless of likely 

classification where hyperglycaemia is severe, and in some circumstances it 

may be appropriate to trial oral therapy even where type 1 diabetes has a high 

probability, for example where a person’s occupation would be affected by 

insulin treatment and they can be carefully monitored for glycaemic 

deterioration.  

In conclusion clinical diagnostic models integrating clinical features with 

biomarkers have high accuracy for identifying type 1 diabetes with rapid insulin 
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requirement in white participants aged 18 to 50 at diabetes diagnosis, and may 

assist clinicians in identifying patients with type 1 diabetes in clinical practice.  
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Supplementary material  

Supplementary Table 1: Cohort recruitment and data collection methods summary. *Included in the clinical features model stage 1 development.    

 DARE  PRIBA  MRC Pro/RetroMaster  MRC crossover 

Included participants* 904  368  72  8  

Type 1/Type 2 diabetes n (%) 177 (19.6%)/727 (80.4%) 2 (0.5%)/366 (99.5%) 0 (0.0%)/72 (100%) 0 (0.0%)/8 (100%) 

Data collection period 2007 to 2017 2011 to 2013 2013 to 2015 2013 to 2015 

Study design Cross-sectional Longitudinal Cross-sectional Interventional Crossover 

Setting Primary and secondary 
care in eight diabetes 
research regions, 
England and retinal 
screening clinics. 

Primary and secondary 
care in South West 
England 

Primary and secondary care 
sites  South West England, 
Tayside, Oxford, Glasgow, 
KCL and Newcastle, U.K. 

Exeter and Tayside,U.K. 

Inclusion criteria Clinical diagnosis of 
diabetes (any type). 

Clinical diagnosis of 
type 2 diabetes. 
Clinician determined 
requirement for DPP-IV 
inhibitor or GLP-1 
analogue (HbA1c 
>7.5%) 

 

Clinical diagnosis of type 2 
diabetes non-insulin treated 
within 6 months of diagnosis. 
Participants were selected on 
the basis of rapid or slow 
progression to insulin therapy 
(<7, >7 years).  Age 18-90 
inclusive.  

Clinical diagnosis of type 2 
diabetes, currently treated 
with sulphonylurea tablets 
and no change in treatment 
in previous 3 months, Last 
HbA1c (within previous 12 
months) ≥42 and ≤75 
mmol/mol (6-9%).  
Age 19-79 inclusive. 

Data collection Clinical measurements 
and blood sample 
collected at visit. 
Ongoing biochemical 
data collected from 
pathology laboratories. 

Clinical measurements 
and blood taken at 
initial visit. Follow up 
clinical measurements 
and blood collected at 
three and six months. 

Clinical measures and fasting 
blood sample taken at visit. 

MMT at baseline & MMT on 
each study drug visits. Three 
fasting blood collected at 
crossovers. 
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Supplementary Table 2: Type 1 diabetes SNPs included in the genetic risk score with weights. 
Effect allele is the risk increasing allele on the positive strand.  

SNP Gene 
Odds 
Ratio 

Weight 
 

Effect Allele 

rs2187668, 
rs7454108 

DR3/DR4 48.18 3.87  

 
DR3/DR3 21.12 3.05  

DR4/DR4 21.98 3.09  

DR4/X 7.03 1.95  

DR3/X 4.53 1.51  

rs1264813 HLA_A_24 1.54 0.43  T 

rs2395029 HLA_B_5701 2.50 0.92  T 

rs3129889 HLA_DRB1_15 14.88 2.70  A 

rs2476601 PTPN22 1.96 0.67  A 

rs689 INS 1.75 0.56  T 

rs12722495 IL2RA 1.58 0.46  T 

rs2292239 ERBB3 1.35 0.30  T 

rs10509540 C10orf59 1.33  0.29  T 

rs4948088 COBL 1.30 0.26  C 

rs7202877   1.28 0.25  G 

rs12708716 CLEC16A 1.23 0.21  A 

rs3087243 CTLA4 1.22 0.20  G 

rs1893217 PTPN2 1.20 0.18  G 

rs11594656 IL2RA 1.19 0.17  T 

rs3024505 IL10 1.19  0.17  G 

rs9388489 C6orf173 1.17  0.16  G 

rs1465788   1.16 0.15  C 

rs1990760 IFIH1 1.16 0.15  T 

rs3825932 CTSH 1.16 0.15  C 

rs425105   1.16 0.15  T 

rs763361 CD226 1.16 0.15  T 

rs4788084 IL27 1.16 0.15  C 

rs17574546   1.14 0.13  C 

rs11755527 BACH2 1.13 0.12  G 

rs3788013 UBASH3A 1.13 0.12  A 

rs2069762 IL2 1.12 0.11  A 

rs2281808   1.11 0.10  C 

rs5753037   1.10 0.10  T 
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Supplementary Figure 1: Relationship between age at diagnosis (A) and BMI (B) and response modelled using restricted cubic splines (k = 3, 4 and 5) and a 

simple log transformation. Age at diagnosis and BMI did not predict linearly, the graphs of fitted splines and log transformation suggested that a simple log 

transformation was sufficient to induce linearity in both variables. 

A B 
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Supplementary Figure 2: Flow diagram of participants through the model development stages. 
T1D: type 1 diabetes, T2D: type 2 diabetes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unable to assign outcome excluded participants (n = 342) 

Diabetes duration <=36 months and not insulin 
treated: 223 

Diabetes duration at C-peptide measurement <5 
years, insulin treated <=36 months and C-peptide 
>200 pmol/L: 82   

Diabetes duration at C-peptide measurement >=5 
years, insulin treated <=36 months and C-peptide 
>=200 pmol/L and <=600 pmol/L: 37 

  

Participants from Exeter studies meeting eligibility criteria (clinical diagnosis 
of T1D or T2D and age between 18 and 50 years) (n = 1,892) 

 

Participants selected for model development (n = 1,352, T1D = 179) 
DARE: 904 
PRIBA: 368 
MRC MASTERMIND: 80 

 

 

Excluded - GADA not tested: 316 

Model development stage 2 (n = 1,036, T1D = 140) 

Excluded - IA-2 not tested: 11 

Missing data excluded participants (n = 198) 

 Time to insulin or duration not available: 103 

Insulin treated <=36 months and C-peptide not 
measured: 84 

 BMI not available: 11 

 

Excluded - T1D GRS not tested: 82 

Model development stage 4 (n = 943, T1D = 128) 

Model development stage 3 (n = 1,025, T1D = 131) 
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Supplementary Table 3: Characteristics of the Exeter, U.K. study participants included at each model development stage. Model 1 – Clinical features (Age at 
diagnosis & BMI), Model 2 – Clinical features + GADA, Model 3 - Clinical features + GADA + IA-2, Model 4 - Clinical features + GADA + IA-2 + T1D GRS. Median 
(IQR) or % or *Geometric mean [95% CI] for transformed variables. †Measured at recruitment (median 13 years post diagnosis). Minimum and maximum values for 
each continuous predictor variable used in the models 

 

 Model 1 
development 

n = 1,352  

Model 2 development 
n = 1,036 

Model 3 development 
n = 1,025 

Model 4 development 
n = 943 

Characteristic     

Sex (% Male)  59% 59% 59% 59% 

Age at diagnosis (years)* 40 [39, 41] 40 [39, 40] 40 [39, 40] 40 [39, 40] 

Age at diagnosis (years) min, 
max 

18, 50 18, 50 18, 50 18, 50 

BMI (kg/m2)*† 33 [32, 33] 33 [32, 33] 33 [32, 33] 33 [32, 33] 

BMI (kg/m2)*† min, max 17.5, 70.2  17.5, 70.2 17.5, 70.2 17.5, 70.2 

Duration of diabetes (years)  13 (8, 20) 13 (8, 20) 13 (8, 20) 13 (8, 20) 

Type 1 diabetes  13% 14% 13% 14% 

HbA1c (%)†  8.2 (7.1, 9.6) 8.3 (7.3, 9.8) 8.3 (7.3, 9.8) 8.2 (7.2, 9.7) 

HbA1c (mmol/mol)† 66 (54, 81) 67 (56, 84) 67 (56, 84) 66 (55, 83) 

GADA positive (%)  - 12% 12% 12% 

IA-2 positive (%) - - 4% 4% 

T1D GRS - - - 0.24 (0.22, 0.26) 

T1D GRS centile - - - 5.8 (1.2, 23.7) 

T1D GRS min, max - - - 0.12, 0.32 
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Supplementary Table 4: Comparison of characteristics for participants included in the model 4 development and participants included 
in model 1 development but excluded from model 4. Median (IQR) or % or *Geometric mean [95% CI] for transformed variables. 
†Measured at recruitment (median 13 years post diagnosis). 

 

 Model 4 development 
n = 943  

Model 4 development exclusions 
n = 409 

p value for comparison 

Characteristic    

Sex (% Male)  59% 60% >0.1 

Age at diagnosis (years)* 40 [39, 40] 41 [40, 42 ] 0.04 

BMI (kg/m2)*† 33 [32, 33] 33 [32, 33] > 0.1 

Duration of diabetes (years)  13 (8, 20) 13 (7, 20) > 0.1 

Type 1 diabetes  14% 12% > 0.1 

HbA1c (%)†  8.2 (7.2, 9.7) 8.0 (6.9, 9.3) 0.009 

HbA1c (mmol/mol)† 66 (55, 83) 64 (52, 78) 0.009 
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Supplementary Table 5: Model performance results for the internal validation performed at each development stage. * P value for Brier score is Spiegelhalter’s z-
test used to evaluate the calibration component of the Brier score, significant p-values indicate poor calibration. †Result reported as raw cross-validation estimate of 
prediction error with misclassification cost function (cut-off 0.5). cv.glm function in R version 3.3.3.  
Performance parameter Development sample validation Internal validation (bootstrap 500) Optimism 

Apparent (SD) test (SD) 

Clinical features model (n = 1,352) 

ROC [95% CI] 0.90 [0.88, 0.93] 0.9056 (0.013) 0.9038 (0.0005) 0.0018 
Calibration-in-the-large  0 0.0000 (0.000) 0.0003 (0.1072) -0.0003 
Calibration slope (bL) 1 1.0000 (0.000) 0.9977 (0.0678) 0.0023 
Brier Score 0.07 (p = 0.50) - - - 
Hosmer-Lemeshow p =  0.95 - - - 
Jack-knife cross validation† 0.09 - - - 

Clinical features + GADA model (n = 1,036) 

ROC [95% CI] 0.96 [0.95, 0.97] 0.9595 (0.0070) 0.9586 (0.0010) 0.0009 
Calibration-in-the-large  0 0.0000 (0.0000) -0.0019 (0.1472) 0.0019 
Calibration slope (bL) 1 1.0000 (0.0000) 0.9850 (0.0787) 0.015 
Brier Score  0.05 (p = 0.35) - - - 
Hosmer-Lemeshow p = 0.39 - - - 
Jack-knife cross validation† 0.07 - - - 

Clinical features + GADA + IA-2 model (n = 1,025) 

ROC [95% CI] 0.96 [0.95, 0.98] 0.9622 (0.007) 0.9633 (0.0015) 0.0011 
Calibration-in-the-large  0 0.0000 (0.000) 0.0055 (0.1567) -0.0055 
Calibration slope (bL) 1 1.0000 (0.000) 0.9780 (0.0707) 0.022 
Brier Score 0.04 (p = 0.31) - - - 
Hosmer-Lemeshow p = 0.14 - - - 
Jack-knife cross validation † 0.06 - - - 

Clinical features + GADA + IA-2 + T1D GRS model (n = 943) 

ROC [95% CI] 0.97 [0.96, 0.98] 0.9718 (0.0060) 0.9710 (0.0006) 0.0008 
Calibration-in-the-large  0 0.0000 (0.0000) 0.0084 (0.1675) -0.0084 
Calibration slope (bL) 1 1.0000 (0.0000) 0.9880 (0.0810) 0.0124 
Brier Score 0.04 (p = 0.35) - - - 
Hosmer-Lemeshow p = 0.84 - - - 
Jack-knife cross validation † 0.06 - - - 
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Supplementary Table 6: Unitless index of adequacy is the proportion of log likelihood explained by each model 
stage with reference to the end model containing all predictors. Based on replica models developed using stage 4 
development sample (n = 943). 

 

Model LR 2   Adequacy 

Clinical features 324.7 (df 2) 0.67 
Clinical features + GADA 418.7 (df 3) 0.87 
Clinical features + GADA + IA-2 447.6 (df 5) 0.93 
Clinical features + GADA + IA-2 + T1D GRS 481.8 (df 6) 1.00 

 
 
Supplementary Table 7: Model fit comparisons of nested models developed using stage 4 development sample (n = 943). Null hypothesis for Likelihood Ratio test: 
Additional predictor(s) has no predictive information. Net Reclassification Improvement (NRI) calculated using 50% classification cut-off. IDI = Integrated 
Discrimination Improvement 
 

Model comparison Likelihood Ratio test NRI IDI 

Adding GADA to Clinical features model LR 2 (1) = 94.02 p <0.001 0.12, p = 0.01 0.13, p < 0.001 

Adding IA-2 to Clinical features + GADA model LR 2 (2) = 28.82 p < 0.001 0.14, p = 0.004 0.15, p < 0.001  

Adding T1D GRS to Clinical features + GADA + IA-2 model LR 2 (3) = 34.20 p < 0.001 0.06, p = 0.04 0.06, p < 0.001 

 
 

Supplementary Table 8: Model performance comparison with replica models developed using stage 4 development sample (n = 943).  
 

Model Clinical features Clinical features + GADA Clinical features + GADA + IA-2 
 ROC AUC ROC AUC ROC AUC 

Development sample 1 (n = 1,352)  0.90 [0.88, 0.93] - - 
Development sample 2 (n = 1,036) - 0.96 [0.95, 0.97] - 
Development sample 3 (n = 1,025) - - 0.96 [0.95, 0.98] 
Development sample 4 (n = 943) 0.91 [0.89, 0.94] 0.96 [0.94, 0.97] 0.96 [0.95, 0.98] 
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Supplementary Table 9: ROC AUC calculated including only patients aged 25-35 years 
(inclusive) at diagnosis and with BMI 25-35 kg/m2 (inclusive). 

Model ROC AUC [95% CI] n 

Clinical Features 0.72 [0.61, 0.83] 104 
Clinical Features + GADA 0.89 [0.80, 0.98] 78 
Clinical Features + GADA + IA2 0.89 [0.80, 0.98] 77 
Clinical Features + GADA + IA2 + T1D GRS 0.95 [0.90, 1.00] 71 
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Supplementary Figure 3: Flow diagram of participants through the model external validation 
stages. T1D: type 1 diabetes, T2D: type 2 diabetes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unable to assign outcome excluded participants  
(n = 187) 

Diabetes duration <=36 months and not 
insulin treated: 91 

Insulin treated <=36 months and missing  
C-peptide: 72   

Insulin treated <=36 months and C-peptide 
>=200 pmol/L and <=600 pmol/L: 24 

  

Participants from Young Diabetes in Oxford study studies meeting eligibility criteria (clinical 
diagnosis of T1D or T2D and age between 18 and 50 years) (n =856) 

 

Participants selected for clinical features model external validation (n = 582, T1D = 134) 
 

Missing data excluded participants (n = 87) 

 Missing C-peptide: 9 

 Treatment not known: 18 

Time to insulin or duration not available: 50 

 BMI not available: 10 

 

Excluded - GADA not tested: 33 

Participants selected for clinical features + GADA model external validation  
(n = 549, T1D = 122) 
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Supplementary Table 10: Baseline characteristics comparison of the development and validation data sets for: Model 1 – Clinical features (Age at diagnosis & BMI) 
and Model 2 – Clinical features + GADA. *Measured at recruitment (median 13 years and 14 years post diagnosis in development data sets and validation data 
sets). Kruskal-Wallis used for comparison testing continuous variables, chi-square for categorical variables. 

 Model 1 development 
n = 1,352  

Model 1 validation 
n = 582  

comparison p 
value 

Model 2 development 
n = 1,036  

Model 2 validation 
n = 549 

comparison p 
value 

Characteristic  

Sex (% Male)  59% 61% >0.1 59% 61% > 0.1 

Age at diagnosis (years) 43 (36, 48) 37 (30, 41) <0.001 43 (36, 48) 37 (30, 41) < 0.001 

BMI (kg/m2)* 33 (28, 38) 31 (27, 36) <0.001  33 (28, 38) 31 (27, 36) < 0.001 

Duration of diabetes (years)* 13 (8, 20) 14 (8, 23) 0.03 13 (8, 20) 13 (8, 23) > 0.1 

Type 1 diabetes 13% 23% <0.001 14% 22% < 0.001 

HbA1c (%)* 8.2 (7.1, 9.6) 8.1 (7.2, 9.3) >0.1 8.3 (7.3, 9.8) 8.1 (7.2, 9.4) 0.08 

HbA1c (mmol/mol)* 66 (54, 81) 65 (55, 78) >0.1 67 (56, 84) 65 (55, 79) 0.08 

GADA (% positive)  - - - 12% 20% < 0.001 
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Supplementary Table 11: Model performance results for the external validation of the clinical 
features and clinical features+ GADA models. * P value for Brier score is Spiegelhalter’s z-test 
used to evaluate the calibration component of the Brier score, significant p-values indicate poor 
calibration. 

Performance parameter External validation  

Clinical features model (n = 582) 

ROC [95% CI] 0.86 [0.83, 0.90] 
Expected/Observed 1.06 

Calibration-in-the-large (𝑎|𝑏𝐿=1) -0.14 
Calibration slope (bL) 0.85 
Overall misclassification -0.14 p = 0.05  
Brier Score* 0.11 (p = 0.14) 

Clinical features + GADA model (n = 549) 

ROC [95% CI] 0.93 [0.90, 0.96] 
Expected/Observed 1.08 

Calibration-in-the-large (𝑎|𝑏𝐿=1) -0.23 

Calibration slope (bL) 0.90 
Overall misclassification -0.10 p > 0.1  
Brier Score* 0.08 (p = 0.29) 
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Supplementary Table 12: Classification table comparing the development and validation samples at different cut-offs for probability of type 1 diabetes using the 
clinical features and clinical features + GADA logistic regression models. 
PPV and NPV assume prevalence for type 1 diabetes: Clinical features model – 13% (development) and 23% (validation), Clinical features + GADA model - 14% 
(development) and 22% (validation).  

 

Clinical features Development (n = 1,352) Validation (n = 582) 

 Probability cut-off  Probability cut-off  

 10 30 50 70 90 10 30 50 70 90 

Sensitivity/specificity (%) 85/79 64/95 49/98 35/99 15/100 91/62 73/85 59/93 45/96 13/99 
Accuracy (%) 80 90 91 90 89 69 82 85 84 79 
Positive predictive value (PPV) (%) 38 64 79 83 90 42 59 71 77 77 
Negative predictive value (NPV) (%) 97 95 93 91 89 96 91 88 85 79 

 

Clinical features + GADA Development (n = 1,036) Validation (n = 549) 

 Probability cut-off  Probability cut-off  

 10 30 50 70 90 10 30 50 70 90 

Sensitivity/specificity (%) 90/88 80/96 66/97 52/99 31/100 97/75 86/89 75/93 55/96 42/97 
Accuracy (%) 89 94 93 92 90 80 88 88 87 85 
Positive predictive value (PPV) (%) 55 75 80 85 92 53 69 73 80 81 
Negative predictive value (NPV) (%) 98 97 95 93 90 99 96 93 88 85 
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Supplementary table 13: Characteristics of participants with probability of Type 1 diabetes > 80% but with type 2 diabetes actual outcome *Non fasting equivalent, 
measured > 5 years post diagnosis (unless < 200 pmol/L prior to 5 years). † C-peptide measured at single screening visit. ‡Clinical features + GADA model applied to 
participants in the YDX study. 

Age at diagnosis 
(years) 

BMI 
(kg/m2) 

GADA 
positive 

C-Peptide 
(pmol/L)* 

Insulin Treated Time to insulin 
(months) 

Duration at screening 
(years)† 

Actual diabetes 
outcome 

Probability of type 
1 diabetes‡ (%) 

18 26 0 775 1 Immediate 15 Type 2 diabetes 80 
21 23 0 868 1 Immediate 10 Type 2 diabetes 82 
27 29 1 - 0 - 3 Type 2 diabetes 88 
38 22 1 550 1 48 10 Type 2 diabetes 88 
36 22 1 175 1 72 12 Type 2 diabetes 89 
23 32 1 25 1 48 29 Type 2 diabetes 90 
30 25 1 25 1 36 30 Type 2 diabetes 91 
29 25 1 225 1 48 12 Type 2 diabetes 93 
23 28 1 50 1 120 28 Type 2 diabetes 95 
33 21 1 65 1 96 47 Type 2 diabetes 95 
34 20 1 25 1 120 22 Type 2 diabetes 96 
23 22 1 - 0 - 3 Type 2 diabetes 99 
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Supplementary table 14: Characteristics of participants with probability of Type 1 diabetes < 16% (Youden’s Index cut-off) but with type 1 diabetes actual outcome 
*Non-fasting equivalent, measured > 5 years post diagnosis (unless < 200 pmol/L prior to 5 years). † C-peptide measured at single screening visit. ‡Clinical features 
+ GADA model applied to participants in the YDX study. 

Age at diagnosis 
(years) 

BMI 
(kg/m2) 

GADA 
positive 

C-Peptide 
(pmol/L)* 

Insulin Treated Time to insulin 
(months) 

Duration at screening 
(years)† 

Actual diabetes 
outcome 

Probability of type 1 
diabetes (%)‡ 

41 40 0 50 1 12 41 Type 1 diabetes 0.6 
40 34 0 198 1 12 34 Type 1 diabetes 1.8 
43 31 0 125 1 3 1 Type 1 diabetes 2.1 
39 33 0 25 1 24 17 Type 1 diabetes 2.5 
38 25 0 68 1 Immediate 19 Type 1 diabetes 12.7 
39 40 1 50 1 Immediate 16 Type 1 diabetes 14.9 

 
 

 

Supplementary table 15: Model performance results for the four additional models in the online calculator. * Result reported as raw cross-validation estimate of 
prediction error with misclassification cost function (cut-off 0.5). cv.glm function in R version 3.3.3 

 

Model ROC [95% CI] Jack-knife cross validation * 

Clinical features + IA-2 0.93 [0.90, 0.95] 0.07 
Clinical features + T1D GRS 0.93 [0.90, 0.95] 0.08 
Clinical features + IA-2 + T1D GRS  0.95 [0.93, 0.97] 0.06 
Clinical features + GADA + T1D GRS 0.97 [0.96, 0.98] 0.07 
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Supplementary Table 16: Clinical features logistic regression model (model 1). * Log 
transformed. Linear Predictor mean -2.96, sd 1.98  

Included β (SE) Odds Ratio [95% CI] p value 

Constant (intercept) 37.94 (2.67) - - 
Age at diagnosis (years) * -5.09 (0.41) 0.006 [0.003, 0.014] <0.001 
BMI (kg/m2) * -6.34 (0. 60) 0.002 [0.001, 0.005] <0.001 

 

 

 

Supplementary Table 17: Clinical features + GADA logistic regression model (model 2). 
Linear Predictor mean -3.37, sd 2.53 

Included β (SE) Odds Ratio [95% CI] p value 

Constant (intercept) -0.98 (0.19) - - 
Model 1 linear predictor  0.94 (0.08) 2.57 (2.18, 3.03) < 0.001 
GADA positive 3.11 (0.32) 22.50 (12.13, 41.76) < 0.001 
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Supplementary Table 18: Clinical features + GADA + IA-2 logistic regression model (model 3).  
Linear Predictor mean -3.55, sd 2.58 

 

Included β (SE) Odds Ratio [95% CI] p value 

Constant (intercept) -1.28 (0.21) -  
Model 1 linear predictor  0.92 (0.09) 2.50 [2.10, 2.98] < 0.001 
Antibody status - GADA positive only 3.08 (0.35) 21.81 [11.06, 43.02] < 0.001 
Antibody status - IA-2 positive only 3.49 (0.78) 32.93 [7.11, 152.64] < 0.001 
Antibody status - GADA & IA-2 both positive 4.35 (0.75) 77.53 [17.74, 338.84] < 0.001 

 
 
 

Supplementary Table 19: Clinical features + GADA + IA-2 + T1D GRS logistic regression model (model 4). T1D GRS standardized using mean 0.2356997, sd 
0.0363499. Linear Predictor mean -3.74, sd 2.89. 

Included β (SE) Odds Ratio [95% CI] p value 

Constant (intercept) -0.67 (0.24) - - 
Model 3 linear predictor  0.88 (0.08) 2.40 [2.06, 2.80] < 0.001 
T1D GRS (per 1 SD change) 1.08 (0.21) 2.93 [1.96, 4.39] < 0.001 

 

 

Supplementary Table 20: Clinical features + IA-2 logistic regression model. Linear Predictor mean -3.17, SD 2.28 

Included β (SE) Odds Ratio [95% CI] p value 

Constant (intercept) -0.36 (0.17) - - 
Model 1 linear predictor  0.99 (0.08) 2.70 [2.30, 3.16] < 0.001 
IA-2 positive 3.19 (0.55) 24.39 [8.27, 71.92] < 0.001 
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Supplementary Table 21: Clinical features + T1D GRS logistic regression model. T1D GRS standardized using mean 0.2360879, sd 
0.0358468. Linear Predictor mean -3.180108, sd 2.401089. 
 

Included β (SE) Odds Ratio [95% CI] p value 
Constant (intercept) -0.65 (0.18) - - 
Model 1 linear predictor  0.87 (0.07) 2.39 [2.09, 2.74] < 0.001 
T1D GRS (per 1 SD change) 1.22 (0.15) 3.38 [2.51, 4.54] < 0.001 

 
 

Supplementary Table 22: Clinical features + IA-2 + T1D GRS logistic regression model. T1D GRS standardized using 
mean 0.235673, sd 0.0363399. Linear Predictor mean -3.537275, sd 2.79395. 

Included β (SE) Odds Ratio [95% CI] p value 

Constant (intercept) -1.12 (0.23) - - 
Model 1 linear predictor  0.87 (0.09) 2.40 [2.02, 2.84] < 0.001 
T1D GRS (per 1 SD change) 1.36 (0.20) 3.89 [2.64, 5.74] < 0.001 
IA-2 positive 2.95 (0.65) 19.17 [5.33, 68.81] < 0.001 

 
 

Supplementary Table 23: Clinical features + GADA + T1D GRS logistic regression model. T1D GRS standardized using mean 

0.2359649, sd 0.0363407. Linear Predictor mean - 3.596086, sd 2.868552. 

Included β (SE) Odds Ratio [95% CI] p value 

Constant (intercept) -1.50 (0.24) - - 
Model 1 linear predictor  0.85 (0.09) 2.33 [1.97, 2.76] < 0.001 
T1D GRS (per 1 SD change) 1.12 (0.20) 3.05 [2.09, 4.46] < 0.001 
GADA positive 2.63 (0.34) 13.89 [7.17, 26.90] < 0.001 
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Supplementary Table 24: *To convert to probability use exp(lp)/(1+exp(lp)). †Dummy variable: negative = 0, positive = 1 ‡Dummy variables: false = 0, true = 1, 
AntiStatus1 = GADA positive only, AntiStatus2 = IA-2 positive only, AntiStatus3 = Both GADA and IA-2 positive. 

Model  Linear predictor (lp) regression equation* 

Clinical features 37.94 + (-5.09 * log(age)) + (-6.34 * log(BMI)) 
Clinical features + GADA† 34.8057844720 + (-4.801441792 * log (Age)) + (-5.980577792 * log(BMI)) + 

(2.937107976 * GADA†) 
Clinical features + GADA + IA-2 33.49649577 + (-4.665598345 * Log(Age)) + (-5.81137397 * Log(BMI)) + (3.082366 * 

AntiStatus1‡) + (3.494462 * AntiStatus2‡) + (4.350717 * AntiStatus3‡) 
Clinical features + GADA + IA-2 + 
T1D GRS 

21.57649882 + (-4.086215772 * Log(Age)) + (-5.096252172 * Log(BMI)) + (2.702010666 
* AntiStatus1‡) + (3.063255174 * AntiStatus2‡) + (3.813850704 * AntiStatus3‡) + 
(30.11052 * T1D GRS) 

Clinical features + IA-2 37.26905033 + (3.194096 * IA-2† ) + (-5.047657308 * Log(Age)) + (-6.287258808 * 
Log(BMI)) 

Clinical features + T1D GRS 24.46138054 + (-4.443506884 * Log(Age)) + ( -5.534741384 *Log(BMI)) + (33.93968 * 
T1D GRS) 

Clinical features + IA-2 + T1D GRS  23.2151829 +(2.953142 * IA-2†) + (-4.446784844 *Log(Age))+(-5.538824344 * Log(BMI)) 
+ (37.40205 * T1D GRS) 

Clinical features + GADA + T1D GRS 23.20924904 + (2.63093 * GADA†) + (-4.303557843 * Log(Age)) + (-5.360423718  
*Log(BMI)) + (31.22606 * T1D GRS) 
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Abstract  

Objective 

There is much interest in the use of prognostic and diagnostic prediction models 

in all areas of clinical medicine. The use of machine learning to improve 

prognostic and diagnostic accuracy in this area has been increasing at the 

expense of classic statistical models. Previous studies have compared 

performance between these two approaches but their findings are inconsistent 

and many have limitations. We aimed to compare the discrimination and 

calibration of six models built using logistic regression and optimised machine 

learning algorithms in a clinical setting, where the number of potential predictors 

is often limited, and externally validate the models. 

Research design and methods 

We trained models using logistic regression and five commonly used machine 

learning algorithms to classify diabetes (type 1 versus type 2) based on three 

pre-specified predictor variables (Age, BMI and GADA islet-autoantibodies) 

using a UK cohort of adult participants (aged 18–50 years) with clinically 

diagnosed diabetes recruited from primary and secondary care (n = 1,036). 

Discrimination performance (ROC AUC and AUPRC) and calibration of each 

approach was compared in a separate external test dataset (n = 549).  

Results 

Average performance obtained in model training was similar in all models (ROC 

AUC >= 0.94). In external validation, decreases in performance were observed 

in all models. Calibration tests showed that all models overstated predicted risk 

and most had evidence of miscalibration. 
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Conclusions  

Logistic regression performed as well as optimised machine algorithms to 

classify patients with type 1 and type 2 diabetes. This study highlights the utility 

of comparing traditional regression modelling to machine learning, particularly 

when using a small number of well understood, strong predictor variables. 
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There is much interest in the use of prognostic and diagnostic prediction models 

in all areas of clinical medicine including cancers (1, 2), cardiovascular disease 

(3, 4) and diabetes (5, 6). These models are increasingly being used as web-

calculators (7-9) and medical apps for smartphones (10-12), and many have 

been incorporated into clinical guidelines (13-22). 

There are many different approaches that can be used for developing these 

models. Classic statistical models such as logistic regression are commonly 

applied but there is increasing interest in the application of machine learning to 

improve prognostic and diagnostic accuracy in clinical research (23-26) with 

many examples of their use (27-33). Machine learning (ML) is a data science 

field dealing with algorithms in which computers (the machines) adapt and learn 

from experience (data), these algorithms have the ability to process the vast 

amounts of data, complex interactions and non-linearity. Supervised Learning is 

the most widely employed category of machine learning. In Supervised 

Learning, the machine predicts the value of an outcome (either binary or 

continuous) trained on a set of predictor variables.  

There are many applied studies comparing the performance of classic models 

to different machine learning algorithms (34-45) but their findings are 

inconsistent. Many such comparison studies have limitations; not all use non-

default parameter settings (hyperparameter tuning) or have validated 

performance on external data (46). Discrimination, as measured by area under 

the receiver operating characteristic curve, is almost always provided but 

studies have rarely assessed whether risk predictions are reliable (calibration) 

(46).  
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We aimed to use a methodological approach to explore and compare 

performance of machine learning and a classic statistical modelling approach 

using an example of a diabetes classification model. Classification of diabetes 

offers an interesting case study as it is an area where there is considerable 

misclassification in clinical practice. Type 1 diabetes and type 2 diabetes can be 

hard to distinguish between, particularly in adults aged between 18 and 50.  

Methods 

We focus on the capacity of each machine learning algorithm in a specific 

context using real data as the basis for our comparisons. An alternative method 

of comparing machine learning algorithms is to use simulation. Whilst simulation 

studies are interesting, the choice of model used to generate the simulation 

data can introduce bias. Our use of real data avoids this potential bias. In 

addition, our use of a real data allows us to test the algorithms in an external 

dataset with different data collection methods, simulated data is unable to 

capture such differences. In summary, our decision to use real data ensures 

that we are comparing the performance of the algorithms in a setting 

representative of clinical practice. 

Sample size was checked using events per variable. For machine algorithms it 

has been suggested that over ten times as many events per variable is required 

to achieve stable results compared to traditional statistical modelling. For three 

predictors, this means that 300 events are required. 

We selected a classic model and five supervised machine learning algorithms 

that 1) were appropriate for classification problems and 2) had been used 

previously in medical applications: Logistic Regression, Gradient Boosting 

Machine, Support Vector Machine (with Radial Basis Function Kernel), K-
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Nearest Neighbours, Neural Network and Random Forest machine learning 

algorithms. We trained models using each algorithm, incorporating 

hyperparameter tuning, and compared the performance of the optimised models 

on a separate external test dataset. 

Study population – training 

Participants with clinically diagnosed diabetes were identified from Exeter, UK-

based cohorts (47-50). Summaries of the cohorts including recruitment and data 

collection methods are shown in Supplementary Table 1. Only participants that 

had a clinical diagnosis of type 1 or type 2 diabetes between the ages of 18 and 

50 years were eligible.  

Study population – external test dataset 

Participants were identified from the Young Diabetes in Oxford (YDX) study 

(51).  Participants were recruited in the Thames Valley region, UK, and 

diagnosed with diabetes up to the age of 45 years. The same eligibility criteria 

were applied to this cohort. 

All participants included in this study (training and test datasets) were of white 

European origin.  

Model outcome (dependent variable): type 1 and type 2 diabetes definition 

We used a binary outcome with values type 1 or type 2 diabetes. Type 1 

diabetes was defined as having insulin treatment within <= 3 years of diabetes 

diagnosis and severe insulin deficiency (non–fasting C peptide < 200pmol/L). 

Type 2 diabetes was defined as either 1) no insulin requirement for 3 years from 

diabetes diagnosis or 2) where insulin was started within 3 years of diagnosis, 

substantial retained endogenous insulin secretion (C-peptide >600pmol/L ) at 
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>=5 years diabetes duration. Participants not meeting the above criteria or with 

insufficient information were excluded from analysis, as type of diabetes and 

rapid insulin requirement could not be robustly defined (n = 342).   

Predictor variables 

We used three pre-specified predictor variables, age at diagnosis, BMI and 

GADA islet-autoantibodies. All three predictor variables have evidence for utility 

at diabetes diagnosis (52-54). Age at diagnosis was self-reported by the 

participant. Height and weight was measured at study recruitment by a research 

nurse to calculate BMI. Age at diagnosis and BMI were modelled as continuous 

variables and were standardised (55). GADA islet-autoantibodies were 

dichotomized into negative or positive based on clinically defined cut-offs, in 

accordance with clinical guidelines (56). 

We removed all observations with missing predictor values (complete-case 

analysis). 

Statistical analysis 

Model training 

All models were trained using the entire training dataset.  We evaluated six 

classification algorithms; Logistic Regression (LR), Support Vector Machine 

(SVM), Gradient Boosting Machine (GBM), Neural Network (NN), K-Nearest 

Neighbours (KNN) and Random Forest (RF). For SVM we used the Radial 

Basis Function kernel parameter (55) and for NN we used the most commonly 

used single-hidden-layer neural network (55) trained using Quasi-Newton back 

propagation (BFGS) (57) optimisation method. There are no clear guidelines 

regarding either the choice of algorithms or the advantages and disadvantages 
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of each in specific clinical settings. A brief summary of each algorithm is shown 

in Table 1. 
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Table 1: Algorithm description and references  

Algorithm Description References 

Logistic Regression A classic statistical algorithm for binary 
outcomes that uses maximum likelihood 
estimation. It is fully parametric but has a 
number of assumptions that need to be 
satisfied such as weak collinearity between 
the variables. There are no model 
parameters to be set. Coefficients are 
adjusted to allow for dependence between 
the characteristics. Is useful for inference, 
estimation, interpretation and prediction. 

(55, 58-60) 

Support Vector 
Machine 

An artificial intelligence based method. It is 
a quadratic optimisation problem involving 
minimising penalties and maximizing margin 
width, the two classes are separated by 
constructing nonlinear decision boundaries 
(hyperplanes) using kernel trick that 
maximise the margin between them. It is 
non-parametric and requires penalty and 
kernel function parameters to be set.  

(55, 61, 62) 

Gradient Boosting 
Machine 

An ensemble learning technique similar to 
random forest in the sense they average a 
large number of decision trees to make 
prediction. The difference between the two 
is the application of gradient boosting. In 
gradient boosting, the decision trees are 
trained sequentially with the weights of each 
successive model adjusted based on 
reducing the errors of the previous model. 
After few steps of the algorithm, the new 
decision trees are able to handle hard to fit 
data. Finally, the predicted class is 
determined from the average estimated 
class probability (or majority vote of 
predicted class) calculated over the 
ensemble of trees.  

(55, 63, 64) 

Neural Network An artificial intelligence based method using 
an adaptive and non-sequential approach to 
learning that mimics a biological neural 
network. It is a non-parametric technique, it 
uses all the predictor variables resulting in 
complex models.  

(55, 65-68) 

K-Nearest 
Neighbours 

A model-free method; it is a type of 
instance-based learning or lazy learning in 
which there is no training phase, instead the 
algorithm memorises the training data. 
Based on the principle that observations 
located close together in n-dimensional 
space will have the same outcome, the 
classification process involves a search the 
entire dataset for the k training points 
closest in Euclidean distance (k-
neighbours), the predicted class is 
determined based on a majority vote of the 
actual class among these k-neighbours. 

(55, 66, 69, 70) 
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Algorithm Description References 
Random Forest A popular artificial intelligence based 

algorithm that grows a large ensemble of 
classification trees on bootstrapped 
samples using a random selection of the 
predictor variables and performs bagging for 
class selection; after all the trees have been 
grown, the predicted class is determined 
from the average estimated class probability 
(or majority vote of predicted class) 
calculated over the ensemble of trees.  

(55, 71, 72) 

 

 

All models were trained using 5 repeats of 10-fold cross validation resampling 

method. We applied Synthetic Minority Over-Sampling Technique (SMOTE) 

inside of cross-validation to deal with imbalanced data (73). While real-world 

data medical applications are likely to be unbalanced, the use of sampling 

methods such as SMOTE can improve model prediction performance. We used 

a grid search to tune the model parameters (hyperparameter tuning) (74), i.e. 

optimize the performance of the machine learning algorithm. The 

hyperparameter metrics applied in the grid searches are shown in 

Supplementary Table 2. Optimal models were selected using the maximum 

mean area under the receiver operating characteristic curve (ROC AUC) 

calculated in the cross-validation.  

Model performance measures  

We used ROC AUC (75) and precision recall curve (AUPRC) as the summary 

metrics to evaluate model discrimination. The ROC AUC quantifies the 

probability that the risk scores from a randomly selected pair of individuals with 

and without this condition are correctly ordered. AUPRC is a more sensitive 

performance metric when dealing with strongly imbalanced data (unequal 

percentage in each class); it evaluates the performance of the model in regard 

of only one class and does not take into the account the ability of the model to 
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identify the second class (76-78). For both measures, a value of 1 indicates a 

perfect test. 

We assessed calibration visually using calibration plots and statistically using 

calibration tests (calibration slope). 

External testing 

For each optimal model developed in the training dataset, external performance 

was evaluated in the YDX study cohort and compared to the internal (cross-

validation resampling) performance. Calibration was investigated using 

calibration curves. We also checked for correlation in the predictions from each 

model.  

Variable Importance 

We assessed and compared the predictor variable importance (VI) in the 

optimal models (79). The VI model-specific metrics were scaled to derive values 

proportional to the most important predictor having value 100. VI metrics were 

not available for the SVM or KNN models.  

Software 

All analysis was performed using R software (version 3.5.2). Model training, 

internal evaluation and variable importance were performed using the Caret R 

package (79-83). VI model specific metrics were obtained using the Caret 

VarImp function.  

Code 

In Appendix 2 we share the code to allow reproduction of similar comparisons of 

machine learning algorithms with any number of predictor variables. 
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Results   

1,036 participants in the Exeter cohort met inclusion criteria and were included 

in the training dataset, of whom 140 (14%) were classified as having type 1 

diabetes. 549 participants (type 1 diabetes n = 122 (22%)) in the YDX cohort 

met criteria and were included in the external validation test dataset. Compared 

to the participants in the Exeter cohort, the participants in the YDX cohort were 

younger at diagnosis (consistent with the narrower age range in YDX (18-45y) 

(median 37 years vs 43 years, p < 0.001)), had a lower BMI (median 31 kg/m2 

vs 33 kg/m2, p < 0.001), had a higher percentage of GADA (20% versus 12%, p 

< 0.001) and a higher prevalence of type 1 diabetes by study definition (22% vs 

14%, p < 0.001) (Supplementary Table 3 for participant characteristics). 

The average (mean) performance ROC AUC for the optimal models obtained in 

the resampling was high in all six models (ROC AUC >= 0.94) (Table 2 

(resampling ROC AUC column)) with no difference in performance between 

models. Supplementary Table 2 includes the final model tuning parameters 

selected for the optimal models in the cross validation resampling. 
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Table 2: ROC AUC [95% CI] and AUPRC performance comparison of the six optimal models applied to the resampling and test datasets. 

 

Model Resampling ROC AUC Test ROC AUC Test AUPRC 

Gradient Boosting Machine 0.96 [0.92, 1.00] 0.93 [0.90, 0.95] 0.88 
Logistic regression 0.96 [0.90, 1.00] 0.93 [0.90, 0.96] 0.76 
Support Vector Machine  0.96 [0.91, 1.00] 0.93 [0.90, 0.96] 0.75 
Neural Network 0.96 [0.90, 1.00] 0.93 [0.90, 0.96] 0.84 
Random Forest 0.94 [0.89, 0.99] 0.91 [0.89, 0.94] 0.87 
K-Nearest Neighbours 0.95 [0.89, 1.00] 0.92 [0.89, 0.95]  0.88 

 
 

Table 3: Calibration test results on test dataset. 

Model Calibration slope  
(bL) 

Calibration-in-the-large  

(𝑎|𝑏𝐿=1) 

Overall misclassification 

Gradient Boosting Machine 1.328 -0.738 0.328, p = 0.003   
Logistic regression 0.808 -0.784 -0.192, p = 0.008 
Support Vector Machine  0.776 -0.845 -0.224, p = 0.001   
Neural Network 0.886 -0.746 -0.114, p = 0.138 
Random Forest 0.359 -0.783 -0.641, p < 0.001 
K-Nearest Neighbours 0.586 -0.260 -0.414, p < 0.001 
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There was a decrease in the ROC AUC of all models when they were applied to 

the external test dataset (Table 2 (test ROC AUC column)) but all still showed 

high levels of performance (ROC AUC >= 0.90, Figure 1). When model 

performance on the external test dataset was assessed using AUPRC, there 

was a clear difference in performance of LR and SVM, and the other models 

(Supplementary Figure 1 and Table 2 (test AUPRC column)). Model predictions 

were highly correlated across models (Supplementary Table 4).   

Figure 1: ROC AUC plots obtained using external validation dataset for six prediction models 
Legend:  
Solid lines: black = Support Vector Machine, dark grey = Logistic Regression, light grey = 
Random Forest 
Dotted lines: black = Neural Network, dark grey = K-Nearest Neighbours, light grey = Gradient 
Boosting Machine 
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In the calibration tests performed on the external test dataset, all models over-

estimated type 1 diabetes prevalence (Figure 2 and Table 3 (calibration in the 

large values < 0 indicate over-estimating risk)) and there was evidence of 

miscalibration (significant overall misclassification p values indicate 

miscalibration) in all models (often due to an underestimation of type 1) except 

for NN.  
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Figure 2: Calibration plots obtained using external validation dataset for prediction models: A: Logistic Regression B: Support Vector Machine C: Random Forest D: 
Gradient Boosting Machine E: K-Nearest Neighbours F: Neural Network. 
Legend: Dashed line = reference line, Solid black line = loess smoother, 95% CI on observed data 
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Although performance was similar, variable importance differed by model in the 

training dataset (Supplementary Figure 2). Relative to other predictors, Age at 

diagnosis was more important in the LR, GBM and RF models than the neural 

network model, BMI was very important only in the GBM. GADA had similar 

high importance in all the four models assessed.  

Conclusions 

We found similar performance when applying logistic regression and five 

optimised machine learning algorithms to classify type 1 and type 2 diabetes, in 

both training and test datasets. Performance was high for all models. In 

calibration tests, all models overstated predicted risk and most had evidence of 

miscalibration. The choice of algorithm in this study made very little difference to 

the discrimination performance of the models.  

Strengths of our study include the use of a systematic approach to model 

comparison dealing with limitations from previous studies (46, 84) including: 1) 

use of different datasets to train and test models, 2) use of default tuning 

parameters (35, 41) and 3) calibration (23). We have used the same dataset to 

train all our models; since model performance will differ between settings, use 

of the same dataset is crucial for valid model comparisons. The choice of tuning 

parameters will affect the performance of the model (74), we have optimised our 

models by applying hyperparameter tuning using a recognised grid search 

approach. We have increased the validity of our results by using an external 

test dataset. 

We have compared several machine learning algorithms that have been 

selected for their suitability to our setting. The use of only three predictor 

variables means that we have a very low risk of overfitting. The use of only 
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three predictors may also be considered as a limitation of our study since these 

machine learning algorithms are designed to deal with larger datasets and more 

variables. Working with a few meaningful predictors is common in clinical 

settings and knowing the performance of machine learning models using low 

numbers of predictors is important. It is possible with more variables, machine 

learning approaches may prove more discriminative. However, we have 

achieved excellent performance using just these three predictors. Another 

limitation of our study is that we judge the model only on its performance. In real 

practice we would want to consider ease of implementation and interpretation 

when selecting the ‘best’ model. 

For machine learning algorithms it has been suggested that over ten times as 

many events per variable is required to achieve stable results compared to 

traditional statistical modelling (85). Although we did not have the sufficient 

number of events per variable to meet this criteria (140 actual events compared 

to 300 suggested), the results of the external validation suggest stability was 

achieved.  

The performance ranking of the models differed when ordering by each of the 

two discrimination performance measures (ROC AUC and AUPRC), it is 

therefore important that the performance measure being reported is the most 

appropriate for the individual clinical setting. In our study, ROC AUC is 

appropriate as we place equal weight on each type of misclassification error. In 

this setting LR, SVM and NN are the best models.  If accuracy of estimated 

probability were an importance factor NN would come at the best approach. If 

wrongly identifying type 1 diabetes for type 2 diabetes was important then KNN 

and GBM with the highest AUPRC would be the best models. Overall the notion 
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of best model is context dependent but in this study the models perform 

similarly. 

The observed decrease in ROC AUC when assessed in the external test data 

highlights the importance of external validation to test the transportability of 

models. Indeed, all of the algorithms underperformed in the test set. The 

models fit on the training data set might be over-fitted and their performance 

could be overestimated despite a rigorous internal validation. Other reasons 

might be that the test dataset used different GADA and C-peptide assays, and 

the different populations – this may diminish performance and does not 

necessarily mean over-fitting. 

The performance of LR on both training and test datasets shows that classic 

algorithms can perform as well as more advanced algorithms even when 

disadvantaged by assuming linearity in the predictors. LR models are relatively 

easy to use and understand compared to machine learning algorithms where 

usage is limited by the difficultly of interpreting the model, often referred to as a 

“black boxes”. LR models also have a strong theoretical background which lead 

to the possibility of using well defined statistical tests to explore the statistical 

significant of the variables. There is an increasing number of studies 

demonstrating that LR can perform as well if not better, in a large number of 

settings (46). However we could not find a study that compared machine 

learning algorithms with optimised hyperparameters versus LR on an external 

dataset as we have done in this study which shows again that LR performs as 

well as more complex approaches. 

We have shown through this study that machine learning performs similarly, 

however some differences subsist. However as previously described (86), each 
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database is unique and there is no ‘free lunch’, i.e. if an algorithm performs well 

on a certain class of problems then it necessarily pays for that with degraded 

performance on the set of other problems (46, 84). It is thus important to test 

different algorithms benchmarked against logistic regression to identify if one 

algorithm outperforms the other; if performance is similar then the simplest and 

most interpretable model can be used.  

In a diabetes classification setting with three strongly predictive variables, a 

classic logistic regression algorithm performed as well as more advanced 

machine algorithms. This study highlights the utility of comparing traditional 

regression modelling to machine learning, particularly when using a small 

number of well understood, strong predictor variables. Furthermore, this article 

highlights once again the need to perform external validation when selecting 

models as we demonstrate that all algorithms can underperform on external 

data. 
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Supplementary material 
 
Supplementary Table 1: Cohort recruitment and data collection methods summary (training dataset).   

 

 DARE  PRIBA  MRC Pro/RetroMaster  MRC crossover 

Included participants 614 353 61 8 
Data collection period 2007 to 2017 2011 to 2013 2013 to 2015 2013 to 2015 
Study design Cross-sectional Longitudinal Cross-sectional Interventional Crossover 
Setting Primary and secondary 

care in eight diabetes 
research regions, 
England and retinal 
screening clinics. 

Primary and secondary 
care in South West 
England 

Primary and secondary 
care sites  South West 
England, Tayside, 
Oxford, Glasgow, KCL 
and Newcastle, U.K. 

Exeter and Tayside,U.K. 

Inclusion criteria Clinical diagnosis of 
diabetes (any type). 

Clinical diagnosis of 
type 2 diabetes. 
Clinician determined 
requirement for DPP-
IV inhibitor or GLP-1 
analogue (HbA1C 
>7.5%) 
 

Clinical diagnosis of 
type 2 diabetes non-
insulin treated within 6 
months of diagnosis. 
Participants were 
selected on the basis of 
rapid or slow 
progression to insulin 
therapy (<7, >7 years).  
Age 18-90 inclusive.  

Clinical diagnosis of type 2 
diabetes, currently treated with 
sulphonylurea tablets and no 
change in treatment in 
previous 3 months, Last 
HbA1c (within previous 12 
months) ≥42 and ≤75 
mmol/mol (6-9%).  
Age 19-79 inclusive. 

Data collection Clinical measurements 
and blood sample 
collected at visit. 
Ongoing biochemical 
data collected from 
pathology laboratories. 

Clinical measurements 
and blood taken at 
initial visit. Follow up 
clinical measurements 
and blood collected at 
three and six months. 

Clinical measures and 
fasting blood sample 
taken at visit. 

MMT at baseline & MMT on 
each study drug visits. Three 
fasting blood collected at 
crossovers. 
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Supplementary Table 2: Model training details including the R training method used and grid search parameters applied in hyperparameter tuning, and model 
parameters for the optimal model selected using largest ROC AUC value. There are no model parameters for logistic regression. Hyperparameter tuning was not 
used for Random Forest due to the low number of predictor variables. Descriptions for search parameters are available in reference. Seed choice was set to 7 in 
model training. 

 

Model R train method Grid Search parameter values Final values used for 
the optimal model  

Logistic Regression glm N/A N/A 

Gradient Boosting machine gbm (180) n.trees = (50,100,150,500,2000) 
interaction.depth = (1, 3, 6, 9, 10) 
shrinkage = (from 0.0005 to 0.1 by 
0.001) 
n.minobsinnode = (5,10,15,20) 

n.trees = 50,  
interaction.depth = 3  
shrinkage = 0.0515  
n.minobsinnode = 20 

Support Vector Machine 
(with Radial Basis Function 
Kernel) 

svmRadial (181) sigma = (0.01, 0.1, 1, 10, 100) 
C = (from 0.1 to 1 by 0.05) 

sigma = 0.01 
C = 0.7 

K-Nearest Neighbours knn (182) k = (from 1 to 100 by 1) k = 99 

Neural Network nnet (182) size = (from 1 to 10 by 1)                       
decay = (0.5, 0.1, 0.01, 0.001, 
0.0001, 0.00001, 0.000001, 
0.0000001) 

size = 7 
decay = 0.5 

Random Forest rf (183) Not applied mtry = 2 
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Supplementary Table 3: Characteristics of the Exeter, U.K. study participants included in the model training and Young Diabetes in Oxford participants included in 
the model external testing. Median (IQR) or %. *Measured at recruitment (median 13 years post diagnosis). Minimum and maximum values for each continuous 
predictor variable used in the models. 
 

Characteristic Training dataset 
n = 1,036 

External validation 
dataset n = 549 

comparison  
p value 

Sex (% Male)  59% 61% > 0.1 
Age at diagnosis (years) 40 [39, 40] 37 [30, 41] < 0.001 
Age at diagnosis (years) min, max 18, 50 18, 49 NA 
BMI (kg/m2)* 33 [32, 33] 31 [27, 36] < 0.001 
BMI (kg/m2)* min, max 17.5, 70.2 15.3, 87.7 NA 
Duration of diabetes (years)  13 (8, 20) 13 (8, 23) > 0.1 
Type 1 diabetes  14% 22% < 0.001 
HbA1c (%)*  8.3 (7.3, 9.8) 8.1 (7.2, 9.4) 0.08 
HbA1c (mmol/mol)* 67 (56, 84) 65 (55, 79) 0.08 
GADA positive (%)  12% 20% < 0.001 
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Supplementary Figure 1: Precision-Recall curves derived from test dataset. 
Legend: 
Solid lines: black = Support Vector Machine, dark grey = Logistic Regression, light grey = 
Random Forest 
Dotted lines: black = Neural Network, dark grey = K-Nearest Neighbours, light grey = Gradient 
Boosting Machine 
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Supplementary Table 4: Correlation coefficient matrix of model predictions obtained from external test validation data 

 

 
Gradient 
Boosting Machine 

Support Vector 
Machine  

K-Nearest 
Neighbours  

Neural Network  Random Forest  Logistic 
Regression  

Gradient Boosting 
Machine 

1.00 
     

Support Vector Machine  0.97 1.00 
    

K-Nearest Neighbours  0.94 0.96 1.00 
   

Neural Network  0.97 0.99 0.97 1.00 
  

Random Forest  0.94 0.93 0.90 0.93 1.00 
 

Logistic Regression  0.96 1.00 0.97 1.00 0.92 1.00 
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Supplementary Figure 2: Scaled variable importance by model   
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Abstract 

Objective 

Progression to insulin therapy in clinically diagnosed type 2 diabetes is highly 

variable. The presence of GADA is associated with faster progression, but its 

predictive value is limited. We aimed to determine if a Type 1 Diabetes Genetic 

Risk Score (T1D GRS) could predict rapid progression to insulin treatment over 

and above GADA testing.  

Research Design and Methods 

We examined the relationship between T1D GRS, GADA (negative or positive) 

and rapid insulin requirement (within 5 years) using Kaplan-Meier survival 

analysis and Cox regression in 8,608 participants with clinical type 2 diabetes 

(onset >35 years, treated without insulin for ≥6 months). T1D GRS was 

analysed both continuously (as standardized scores) and categorized based on 

previously reported centiles of a type 1 diabetes population (<5th (low), 5th-50th 

(medium), >50th (high)).  

Results 

In GADA positive participants (3.3%), those with higher T1D GRS progressed to 

insulin more quickly:  Probability of insulin requirement at five years [95% CI]: 

47.9% [35.0%, 62.78%] (high T1D GRS) vs 27.6% [20.5%, 36.5%] (medium 

T1D GRS) vs 17.6% [11.2%, 27.2%] (low T1D GRS), p=0.001. In contrast T1D 

GRS did not predict rapid insulin requirement in GADA negative participants 

(p=0.4). In Cox regression analysis with adjustment for age of diagnosis, BMI 

and cohort, T1D GRS was independently associated with time to insulin only in 

the presence of GADA: hazard ratio per SD increase 1.48 [1.15, 1.90], p=0.002.  
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Conclusions 

A Type 1 Diabetes Genetic Risk Score alters the clinical implications of a 

positive GADA test in patients with clinical type 2 diabetes, and is independent 

of and additive to clinical features.  
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Type 2 diabetes is a progressive disease due to a gradual reduction in the 

capacity of the pancreatic islet cells (beta cells) to produce insulin (1). The 

clinical course of this progression is highly variable with some patients 

progressing very rapidly to requiring insulin treatment, whilst others can be 

successfully treated with lifestyle changes or oral agents for many years (1; 2). 

Being able to identify patients likely to rapidly progress may have clinical utility 

in prioritization monitoring and treatment escalation, and in choice of therapy.  

It has previously been shown that many patients with clinical features of type 2 

diabetes have positive GADA and that the presence of this autoantibody is 

associated with faster progression to insulin (3; 4). This is often termed Latent 

Autoimmune Diabetes in Adults (LADA) (5; 6). However the predictive value of 

GADA testing is limited in a clinical type 2 diabetes population, with many 

GADA positive patients not requiring insulin treatment for many years (4; 7). 

Previous research has suggested that genetic variants in the Human Leukocyte 

Antigen (HLA) region associated with type 1 diabetes are associated with more 

rapid progression to insulin in patients with clinically defined type 2 diabetes and 

positive GADA (8).  

We have recently developed a Type 1 Diabetes Genetic Risk Score (T1D GRS), 

which provides an inexpensive £56 in our local clinical laboratory, £16 where 

DNA has been previously extracted), integrated assessment of a person’s 

genetic susceptibility to type 1 diabetes (9). The score is composed of 30 type 1 

diabetes risk variants weighted for effect size, and aids discrimination of type 1 

diabetes from type 2 diabetes. The T1D GRS has advantages over HLA typing 

alone, as it includes more genetic information, is cheaper than conventional 

HLA typing, and represents a continuous scale of likelihood of type 1 diabetes 

susceptibility. In young-onset adults (diagnosed between 20-40 years) it can 
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predict insulin dependence and is independent of and additive to islet-

autoantibodies and clinical features (9).  It is not known if the T1D GRS will 

improve the prediction of insulin requirement by GADA in clinically defined type 

2 diabetes. 

We aimed to determine if the T1D GRS could predict rapid progression to 

insulin (within 5 years of diagnosis) over and above GADA testing in patients 

with a clinical diagnosis of type 2 diabetes treated without insulin at diagnosis.  

Methods 

We examined the relationship between GADA, T1D GRS and progression to 

insulin therapy using survival analysis in 8,608 participants with clinical type 2 

diabetes initially treated without insulin therapy. 

Study population  

Included participants had a clinical diagnosis of type 2 diabetes after the age of 

35 years, and were treated without insulin for the first 6 months from diagnosis 

and were of white European origin. 

To achieve a sufficient number of GADA positive participants, participants were 

identified in the following cohorts: Genetics of Diabetes Audit and Research 

Tayside Study (GoDARTS) (10), Hoorn Diabetes Care System (DCS) (11), 

Diabetes Alliance for Research in England (DARE) (12), Predicting Response to 

Incretin Based Agents in Type 2 Diabetes (PRIBA) (13), and MRC 

MASTERMIND Progressors (14) and combined into a single dataset. These 

cohorts were studies of participants with a clinical diagnosis of type 2 diabetes 

recruited from primary and secondary care, and are population based with the 

exception of PRIBA and MRC MASTERMIND Progressor which account for 
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<10% of participants. Summaries of the cohort recruitment and data collection 

methods are shown in Supplementary Table 1, a flow diagram of sample 

selection is shown in Supplementary Figure 1. 

Participants known to have had GADA testing performed either in clinical 

practice or prior to diagnosis (through review of electronic laboratory records) 

were excluded due to the risk of the result influencing the clinician’s treatment 

decision. 

In the GoDarts cohort, participants diagnosed with diabetes before 1st January 

1994 were excluded; due to insufficient prescribing information we were unable 

to define time to insulin prior to this date. In the DARE cohort, only the 

participants recruited in the Exeter Centre with saved serum were included. 

Assessment of diabetes progression (time to insulin)  

For GoDarts and DCS cohorts, time to insulin was defined from electronic 

prescription records. For Exeter Cohorts (DARE, PRIBA and MRC 

MASTERMIND Progressors), insulin treatment, date of commencing insulin and 

date of diagnosis were self-reported at a single visit.   

Laboratory Measurement  

The Academic Department of Blood Sciences at the Royal Devon and Exeter 

Hospital measured GADA for all five cohorts at a median diabetes duration of 

6.1 years, using the same assay from biobanked samples stored at -80C. 

GADA was performed using the RSR Limited ELISA assay (RSR Ltd, Cardiff, 

UK) on the Dynex DS2 ELISA Robot (Dynex Technologics, Worthing, UK). The 

cut-off for positivity was ≥11 units/ml, based on the 97.5th centile of 1,500 

controls without diabetes (15). The lowest reportable value (lowest calibrant) 



 

144 
 

was 5.0 units/ml. The laboratory participates in the International Autoantibody 

Standardization Programme. 

The HbA1c value at latest follow up (closest available result, median 10.6 years 

diabetes duration) was obtained from electronic healthcare records or 

measured on a research sample by the Academic Department of Blood 

Sciences at the Royal Devon and Exeter Hospital. 

Assessment of T1D GRS 

The development of the T1D GRS has been described previously (9).  In brief, 

T1D GRS consists of 30 common type 1 diabetes genetic variants (single 

nucleotide polymorphisms (SNPs)) from HLA and non-HLA loci; each variant is 

weighted by their effect size on type 1 diabetes risk from previously published 

literature, with weights for DR3/DR4-DQ8 assigned based on imputed 

haplotypes. The combined score represents an individual’s genetic 

susceptibility to type 1 diabetes. Variants used to derive the score are shown in 

Supplementary Table 2. For ease of clinical interpretation the score is 

presented in this article as the centile position of the distribution in the 

Wellcome Trust Case Control Consortium type 1 diabetes population (16).  

In the Exeter cohorts, genotyping was performed using the KASP genotyping 

assay by LGC Genomics (Hoddesdon, UK) as previously described (9). 

Genotyping in the GoDarts cohort was performed using custom genotyping 

arrays (including Immunochip, Cardio-Metabochip (Metabochip) and Human 

Exome array) from Illumina as previously described (17). Genotyping in the 

DCS cohort was performed with Illumina’s HumanCoreExome Array and 

imputed using IMPUTE2 (18) into the 1000 Genomes March 2012 reference 

panel. All SNPs had an INFO > 0.8. 
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T1D GRS calculation was not performed if genotyping results were missing for 

either of the two alleles with the greatest weighting (DR3/DR4-DQ8 or 

HLA_DRB1_15) or if more than two of any other SNPs were missing.  

Statistical analysis 

We assessed the relationship between time to insulin treatment and each of 

GADA and T1D GRS using survival analysis. For this analysis, T1D GRS was 

categorized based on centiles of a type 1 diabetes population (Wellcome Trust 

Case Control Consortium (16)): <5th centile (< 0.234 (low)), 5th-50th centile (>= 

0.234 & <= 0.280 (medium)), >50th centile (> 0.280 (high)) as previously 

reported (9; 19). GADA was dichotomized into negative or positive based on the 

cut-off for positivity. Participants were then classified into six risk groups from 

these categories 1) GADA negative, low T1D GRS  2) GADA negative, medium 

T1D GRS  3) GADA negative, high T1D GRS  4) GADA positive, low T1D GRS  

5) GADA positive, medium T1D GRS  6) GADA positive, high T1D GRS.  

Time to insulin data was censored at five years (or the latest available time 

point not on insulin, if earlier). Survival distributions for time to insulin, stratified 

by risk groups, were estimated using the Kaplan-Meier product limit estimator 

(20). The proportional hazard assumption was checked visually and failed. 

Differences in time to insulin between risk groups were therefore compared 

using the Wilcoxon (Breslow) test. Positive predicted values were obtained from 

the product limit estimator which makes allowances for censored observations. 

To assess whether clinical characteristics were different across risk groups we 

performed Wilcoxon test for trend (21) on the continuous variables and Pearson 

chi-squared test for categorical variables.  
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To assess whether GADA, T1D GRS (as a continuous covariate), age of 

diagnosis and BMI (closest available to diagnosis, median 3 years diabetes 

duration) are independent predictors of rapid progression to insulin we 

performed multivariate Cox proportional hazards regression analysis (22). 

When T1D GRS was used as a continuous covariate, the proportional hazard 

assumption was satisfied. T1D GRS and GADA were added in as separate 

variables and as an interaction term. The log-linearity assumption was checked 

by examining Martingale-based residual plots and was considered valid. Study 

of origin was included as a strata variable to control for effects of cohort 

differences. 

As a 10 SNP T1D GRS combining the 10 alleles with the greatest weightings 

ordered by published odds ratios (Supplementary Table 3) has also been 

proposed for clinical practice, we repeated survival analysis using T1D GRS 

defined by this 10 SNP score using the same centile cut-offs for categorization 

(9). We also estimated survival distributions for risk groups based on imputed 

HLA DR3/DR4 genotypes, individually and grouped by number of copies of at 

risk alleles.  

Median follow-up time was calculated using the reverse Kaplan-Meier method 

(23). All analysis was performed in Stata/SE 15.1 (StataCorp, College Station, 

TX).  

Results 

We identified 8,608 participants with a clinical diagnosis of type 2 diabetes 

meeting all of our inclusion criteria, Table 1 shows the characteristics for these 

participants. 79.9% (n = 6,879) had been followed for at least five years; median 

follow up time, calculated as the median time to censoring (insulin treatment or 
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latest follow up), was 10.5 [95% CI 10.3, 10.6] years. 7.8% (n = 533) of those 

participants with over five years follow up had progressed to insulin <= 5 years. 

3.3% (n = 280) of participants were GADA positive (measured at a median 6.1 

years diabetes duration). The distribution of participants by low, medium and 

high TID GRS category was 53.2% (n = 4,580), 40.7% (n = 3,504) and 6.1% (n 

= 524) respectively.  

Table 1: Participant characteristics. Median (IQR) or % (n = 8 608). *Closest to diagnosis 
(median 3 years diabetes duration). †Percentage of participants observed for at least five years. 
‡At latest follow up. §Centile of participants with type 1 diabetes from the Wellcome Trust Case 
Control Consortium. 
 

Characteristic  Value 

Sex (% Male)   56.4% 

Age at diagnosis (years)  60 (52, 68) 

BMI (kg/m2)*  30.4 (27.2, 34.7) 

Duration of diabetes (years) at latest follow up   10.6 (6.0, 14.3) 

Duration of diabetes (years) at GADA  6.1 (3.3, 10.0) 

Insulin treated within 5 years (%)†  7.8% 

HbA1c (%)‡  7.0 (6.4, 8.0) 

HbA1c (mmol/mol)‡  53 (46, 64) 

GADA positive (%)   3.3% 

T1D GRS centile§  4.2 (0.6, 16.1) 

 

 

Characteristics of the participants stratified by the individual cohorts are shown 

in Supplementary Table 4. Statistically significant differences in GADA 

prevalence, diabetes duration and HbA1c between cohorts were evident and 

survival distributions differed between studies. These cohort differences were 

adjusted for by including study of origin as a strata variable in the Cox 

proportional hazards regression analysis. Year of diagnosis for the participants 

ranged over a fairly long period (from 1967 to 2015) over which management 

and treatment practices are likely to have changed. Supplementary Figure 2 

shows a reasonable distribution between 1994 and 2015 but with a long tail 

back to 1967. 
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High T1D GRS is associated with markedly higher rates of rapid insulin 

requirement in participants with positive GADA, but is not associated in 

those who are GADA negative 

T1D GRS was strongly predictive of rapid insulin requirement in participants 

with positive GADA (Figure 1). In GADA positive participants, those with higher 

T1D GRS progressed to insulin more quickly (p=0.001): probability of requiring 

insulin at five years post diagnosis (positive predictive value) [95% CI]: 47.9% 

[35.0%, 62.78%] (high T1D GRS) vs 27.6% [20.5%, 36.5%] (medium T1D GRS) 

vs 17.6% [11.2%, 27.2%] (low T1D GRS).   

T1D GRS was not associated with rapid insulin requirement in GADA negative 

participants. For the GADA negative participants, the probability of requiring 

insulin at five years post diagnosis was similar across all risk groups (p=0.4): 

7.4% [5.3%, 10.3%] (high T1D GRS) vs 7.3% [6.5%, 8.3%] (medium T1D GRS) 

vs 6.7% [5.9%, 7.5%] (low T1D GRS). 
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Figure 1: Kaplan-Meier plot of probability of requiring insulin therapy during 5-year follow-up by 
risk group of T1D GRS. Solid lines represent GADA positive groups, dashed lines represent 
GADA negative groups. Blue = low T1D GRS (<5th centile of a type 1 diabetes population (< 
0.234)), orange = medium T1D GRS (5th-50th centile of a type 1 diabetes population (>= 0.234 
& <= 0.280)), red =high T1D GRS (>50th centile of a type 1 diabetes population (> 0.280)). 

 

 

Differences in T1D GRS were associated with higher HbA1c in GADA 

positive participants but no differences in other clinical features  

The characteristics of the GADA positive and negative participants split by T1D 

GRS category are shown in Table 2. In GADA positive participants, HbA1c 

increased (p = 0.04) and BMI decreased (p = 0.01) with higher T1D GRS 

category. In GADA negative participants, clinical characteristics were similar 

across all categories of T1D GRS.   

When comparing the characteristics of GADA positive and negative participants 

(Table 2), GADA positive participants had a higher T1D GRS (median 0.251 vs 

0.231, p < 0.001) and a lower BMI (median 28.73 vs 30.48, p < 0.001) but 

similar age of diagnosis (median 59 vs 60 years, p = 0.052). 
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Table 2: Participant characteristics by risk group. Median (IQR) or %. p values given for continuous variables are Wilcoxon-type test for trend, for categorical 
variables Pearson chi-squared. *Closest to diagnosis (median 3 years diabetes duration). †At latest follow up. ‡Centile of participants with type 1 diabetes from the 
Wellcome Trust Case Control Consortium.  
 

 <5th T1D GRS centile for 
type 1 diabetes‡ (low) 

5th–50th T1D GRS centile for 
type 1 diabetes ‡ (medium) 

>50th T1D GRS centile for 
type 1 diabetes ‡ (high) 

p-value 

GADA negative     

n (% of GADA negative) 4,484 (54%) 3,369 (40%) 475 (6%)  

Sex (% Male) 56.2% 57.0% 56.2% >0.1 

Age at diagnosis (years) 60 (52, 68) 60 (52, 68) 60 (51, 68) >0.1 

BMI (kg/m2)* 30.5 (27.3, 34.9) 30.4 (27.1, 34.6) 30.7 (27.4, 34.3) >0.1 

Duration of diabetes (years) at latest follow up  10.6 (6.1, 14.4) 10.5 (5.8, 14.1) 10.6 (6.0, 14.4) >0.1 

Duration of diabetes (years) at GADA 6.3 (3.3, 10.0) 6.0 (3.3, 10.0) 6.3 (3.6, 10.2) >0.1 

HbA1c (%)† 7.0 (6.4, 8.0) 7.0 (6.4, 8.0) 6.9 (6.4, 8.0) >0.1 

HbA1c (mmol/mol) † 53 (46, 64) 53 (46, 64) 52 (46, 64) >0.1 

Insulin treated within 5 years (%) 
(where observed ≥ five years)  

 
6.7% 

 
7.4% 

 
8.1% 

>0.1 

GADA (units/mL) 4.9 (4.9, 5.0) 4.9 (4.9, 5.0) 4.9 (4.9, 5.0) >0.1 
     

GADA positive 

n (% of GADA positive) 96 (34%) 135 (48%) 49 (18%)  
Sex (% Male) 51.0% 57.0% 49.0% >0.1 

Age at diagnosis (years)   61 (50, 69)  59 (51, 67) 54 (49, 63) 0.06 

BMI (kg/m2)* 29.6 (26.7, 34.1) 28.7 (25.6, 32.5) 27.7 (25.4, 30.4) 0.01 

Duration of diabetes (years) at latest follow up 11.1 (9.0., 13.8) 10.4 (6.7, 14.9) 11.8 (9.1, 15.0) >0.1 

Duration of diabetes (years) at GADA 5.2 (3.1, 9.5) 5.6 (3.0, 10.1) 8.9 (4.9, 11.1) 0.01 

HbA1c (%)† 7.3 (6.6, 9.1) 7.8 (6.7, 9.0) 8.1 (7.1, 9.1) 0.04 

HbA1c (mmol/mol) † 56 (49, 76) 62 (50, 75) 66 (55, 77) 0.04 

Insulin treated within 5 years (%) 

(where observed ≥ five years) 
18.4% 27.8% 40.5% 0.03 

GADA (units/mL) 77.6 (24.3, 1191.9) 111.4 (28.8, 1354.9) 175.9 (38.6, 1218.2) >0.1 
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T1D GRS and GADA are predictors of rapid insulin requirement and are 

independent of age and BMI  

Table 3 shows the Cox proportional hazards regression model for time to insulin 

(censored at 5 years) controlled for effects of cohort differences. As expected, 

the presence of GADA was a significant predictor of time to insulin (Hazard 

Ratio (HR) 3.43 [2.50, 4.71], p <0.001). T1D GRS was independently 

associated with time to insulin, but only in the presence of GADA (HR per 1 

standard deviation (SD) increase in T1D GRS 1.48 [1.15, 1.90], p = 0.002). 

These associations were independent of age at diagnosis and BMI. 

Table 3: Hazard ratios from Cox proportional regression model (adjusted for cohort) for time to 
insulin censored at 5 years (30 SNP T1D GRS).* Closest to diagnosis 
 

Variable Hazard Ratio 

 [95% CI] 

p value 

   

GADA negative  1  

GADA positive 3.43 [2.50, 4.71] <0.001 

GADA negative:T1D GRS (per 1 SD increase in T1D GRS) 1.02 [0.94, 1.12] >0.1 

GADA positive:T1D GRS (per 1 SD increase in T1D GRS) 1.48 [1.15, 1.90] 0.002 

Age at diagnosis (per 1 year) 0.97 [0.96, 0.97] <0.001 

BMI (per kg/m2 unit)* 1.00 [0.98, 1.01] >0.1 
   

 

 

A 10 SNP T1D GRS, and HLA type alone are predictive of future insulin 

requirement 

The association between the 10 SNP T1D GRS and rapid insulin requirement 

was consistent with our findings using the full 30 SNP T1D GRS. The 10 SNP 

T1D GRS was associated with rapid insulin requirement in the GADA positive 

risk groups (p < 0.001) but was not associated in the GADA negative groups 

(p=0.4) (Supplementary Figure 3). In Cox proportional hazards regression 

model (Supplementary Table 5), the 10 SNP T1D GRS was independently 

associated with future insulin treatment in GADA positive participants (HR per 1 
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SD increase in T1D GRS 1.34 [1.05, 1.71], p = 0.02). Kaplan-Meier plots for 

HLA DR3/DR4 genotype risk groups, individually and grouped by number of at 

risk alleles, are shown in Supplementary Figures 4 and 5.  

Conclusions 

In this large study of participants with a clinical diagnosis of type 2 diabetes, we 

have found that type 1 genetic susceptibility alters the clinical implications of a 

positive GADA when predicting rapid time to insulin. GADA positive participants 

with high T1D GRS were more likely to require insulin within 5 years of 

diagnosis, with 48% progressing to insulin in this time in contrast to only 18% in 

participants with low T1D GRS. The T1D GRS was independent of and additive 

to participant’s age of diagnosis and BMI. However, T1D GRS was not 

associated with rapid insulin requirement in participants who were GADA 

negative. 

To our knowledge this is the first study to assess the association between an 

integrated assessment of type 1 genetic risk and GADA in patients with type 2 

diabetes or LADA. A key strength of this study is use of large, predominantly 

population-based, cohorts of participants diagnosed with type 2 diabetes and to 

date, is the largest cohort with measured GADA in a western population. This 

means our results are likely to reflect true associations in patients seen in 

clinical practice. An additional key strength is the use of a single laboratory and 

assay for measuring GADA across cohorts, with a very robustly defined 

threshold for positive GADA based on a large predominantly adult control 

population. We have demonstrated that our results are independent of and 

additive to participants’ clinical features. 
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A limitation of our study is that time to insulin has been self-reported in the 

Exeter cohorts at a single visit, in contrast to other cohorts where electronic 

healthcare records were available. Insulin commencement was also based on 

clinical decision making rather than a trial protocol. Both these aspects may 

introduce imprecision but since both clinicians and participants were unaware of 

results, systematic bias would be unlikely. An additional limitation of cross-

sectional study design is that GADA was measured at a median 6.1 years 

diabetes duration, which could result in a lower prevalence than if measurement 

was undertaken at diagnosis. However, in adult populations the difference is 

likely to be small, with GADA positivity being stable over the first 6 years in 

UKPDS study participants (adult onset type 2 diabetes) (24) and a modest 

reduction in prevalence (72% to 63%) observed after 8 years in adult onset type 

1 diabetes (25). The results of this study can only be applied to white European 

populations and we do not have measurement of other islet-autoantibodies in 

this cohort - the interaction between genetic risk and other islet-autoantibodies 

would be an area of interest for future research (26). 

Our findings are consistent with previous research in a population of 

participants diagnosed with diabetes between the ages of 20 to 40 years, where 

the same T1D GRS was predictive of insulin dependent diabetes (9), and other 

work which has shown this risk score to be additive to islet-autoantibodies in 

predicting future type 1 diabetes (27). It is also consistent with previous 

research showing patients defined as LADA who have HLA type associated 

with type 1 diabetes susceptibility, have more rapid progression to insulin (8), 

and with research showing a combination of positive islet cell autoantibodies 

and high risk HLA is associated with low C-peptide in a cohort diagnosed as 

type 2 diabetes in contrast to either of these features alone (28). While the 
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relationship between integrated genetic risk of type 1 diabetes and progression 

of type 2 diabetes or LADA has not been previously assessed, it has previously 

been shown that a type 2 diabetes genetic risk score covering 61 established 

type 2 diabetes risk variants is not associated with time to insulin (17) and that a 

69 SNP type 2 diabetes genetic risk score has very limited utility in 

discriminating patients with type 1 from type 2 diabetes (9).  

The prevalence of positive GADA in our cohorts was lower than in much of the 

previous literature, with previous multicentre studies reporting widely varying 

prevalence of positive GADA in type 2 diabetes populations ranging from 4% to 

14% (29; 30). In addition to diabetes duration, differences in the prevalence of 

GADA positivity between our and other studies may be explained by our use of 

an assay with higher specificity than used in many other studies (29-33), our 

lack of an upper age limit (with lower GADA prevalence seen at older ages (4; 

33; 34)), and our use of predominantly population cohorts not selected from 

secondary care where treatment with insulin is more frequent. We have used a 

robustly defined high specificity (97.5%) threshold to define positive GADA in 

line with current clinical laboratory practice, using a large control population. 

Detectable GADA are commonly found in healthy adult non-diabetic populations 

and therefore a threshold based on a control population is recommended to 

robustly define GADA positivity (31-33).  An additional potential reason for low 

autoantibody prevalence is that we have excluded a small number of cohort 

participants who had GADA tested in clinical practice, which may have 

influenced treatment choice. However only 47 participants were excluded of 

whom only 13 were GADA positive, so the effect on overall prevalence is small. 

Our findings have clear implications for clinical practice. The T1D GRS 

represents a novel clinical test that can be used to enhance the prognostic 
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value of GADA testing. For predicting future insulin requirement in patients with 

apparent type 2 diabetes who are GADA positive, T1D GRS may be clinically 

useful and can be used as an additional test in the screening process. However, 

in patients with type 2 diabetes who are GADA negative, there is no benefit 

gained from genetic testing. This is unsurprising as the prevalence of underlying 

autoimmunity in patients with a clinical phenotype of type 2 diabetes who are 

GADA negative is likely to be extremely low, therefore most GADA negative 

participants with high T1D GRS will have non-autoimmune diabetes.  The use 

of this two-step testing approach may facilitate a precision medicine approach 

to patients with apparent type 2 diabetes; patients who are likely to progress 

rapidly are identified for targeted management which may include increased 

monitoring, early therapy intensification and/or interventions aimed at slowing 

progression (35; 36). 

The costs of analysing the T1D GRS are relatively modest and may fall further 

as genetic testing is rapidly becoming less expensive (37). This may allow 

introduction of the T1D GRS into clinical practice. While the test cost could 

potentially be reduced further by using 10 SNPs or imputing HLA type alone, 

the majority of test costs are attributable to DNA extraction, sample handling 

and test interpretation, with cost for genotyping additional SNPs as low as 8 

pence per SNP. Savings would therefore be modest and, while this study does 

not have sufficient statistical power to directly compare different risk scores in 

islet-autoantibody-positive participants, this may come at a cost of reduced test 

accuracy. The use of a risk score approach has an additional advantage over 

using HLA alone, as it provides genetic information expressed as a simple to 

use continuous variable. 
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While using the T1D GRS in a two stage approach may have clinical utility, 

approaches that go beyond single tests and thresholds to integrate multiple 

clinical features and biomarkers are likely to have the greatest use for clinical 

practice. The T1D GRS is additive to other predictive features such as age of 

diagnosis and BMI, and dichotomizing the test to use thresholds will lose 

predictive value. While the negative predictive value of a low T1D GRS in 

participants with GADA is high (<5th centile 92%), positive predictive values are 

modest, with the majority of high T1D GRS participants not requiring insulin by 

5 years. Therefore approaches that combine different predictive features on a 

continuous basis, using prediction models (clinical calculators), may have the 

greatest utility in accurately predicting future insulin requirement in this group, 

and are an important area for future research (38). Additional areas for future 

research include the association between T1D GRS and progression where 

multiple islet-autoantibodies have been tested, and assessment in a prospective 

setting where islet-autoantibodies have been measured at diabetes diagnosis.  

In conclusion, a Type 1 Diabetes Genetic Risk Score alters the clinical 

implications of a positive GADA test in patients with clinical type 2 diabetes, and 

is independent of and additive to clinical features. This therefore represents a 

novel test for identifying patients with rapid progression in this population. 
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Supplementary Material 

Supplementary Table 1: Cohort recruitment and data collection methods summary  

 
 GoDarts  DCS  DARE  PRIBA  MRC Progressor  

Included 
participants 
 

3963 1942 1917 574 212 

Data collection 
period 

From 1998  From 1998 2007 to 2017 2011 to 2013 2013 to 2015 
 

Study design Longitudinal Longitudinal Cross-sectional Longitudinal Cross-sectional 

Setting Primary and 
secondary care  in 
Tayside, Scotland 

Primary and secondary 
care in West-Friesland, 
Netherlands 

Primary and secondary 
care in eight diabetes 
research regions, 
England and retinal 
screening clinics. 
 

Primary and secondary 
care in South West 
England 

Primary and secondary care in 
Exeter, Dundee and Oxford, 
England 

Inclusion criteria Clinical diagnosis of 
type 2 diabetes. 

Clinical diagnosis of type 
2 diabetes. 

Clinical diagnosis of 
diabetes (any type). 

Clinical diagnosis of 
type 2 diabetes. 
Clinician determined 
requirement for DPP-IV 
inhibitor or GLP-1 
analogue (HbA1C 
>7.5%) 
 

Clinical diagnosis of type 2 
diabetes non-insulin treated 
within 6 months of diagnosis. 
Participants were selected on 
the basis of rapid or slow 
progression to insulin therapy 
(<7, >7 years).  Age 18-90 
inclusive.  
 

Data collection Clinical measurements 
and blood collected at 
initial visit. Follow up 
clinical data constantly 
updated using 
electronic medical 
record linkage. 

Clinical measurements 
collected at initial visit, 
and repeated annually. 
Blood collected at one of 
the annual visits. 
Additional health data 
collected using electronic 
medical record linkage. 

Clinical measurements 
and blood sample 
collected at visit. 
Ongoing biochemical 
data collected from 
pathology laboratories. 

Clinical measurements 
and blood taken at 
initial visit. Follow up 
clinical measurements 
and blood collected at 
three and six months. 

Clinical measures and fasting 
blood sample taken at visit. 
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Supplementary Figure 1: Participant flow diagram * identified through search of electronic laboratory records. 

 

 

 

 

 

 

 

 

 

 

 

Missing data/excluded participants (n = 1334) 

 Non-white European ethnicity: 97 

 Time to insulin or duration not available: 467 

GADA not available: 53 

 Failed genotyping: 670 

 Clinical GADA testing*: 47  

Insulin treated (n = 1816) Non-insulin treated (n = 6792) 

Exeter DARE eligible 
participants (n = 2964) 

 

DCS eligible participants 
(n = 2010) 

 

GoDarts eligible 
participants (n = 3994) 

 

PRIBA eligible participants  
(n = 718) 

 

MRC Progressor eligible 
participants (n = 256) 

 

Complete case (n = 8608) 

GoDarts 3963 

DCS: 1942 

DARE: 1917 

PRIBA: 574 

MRC Progressor: 212 
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Supplementary Table 2: Type 1 diabetes SNPs included in the genetic risk score with weights. 
Effect allele is the risk increasing allele on the positive strand. 

SNP Gene 
Odds 
Ratio 

Weight 
 Effect 

Allele 

rs2187668, 
rs7454108 

DR3/DR4 48.18 3.87  

 
DR3/DR3 21.12 3.05  

DR4/DR4 21.98 3.09  

DR4/X 7.03 1.95  

DR3/X 4.53 1.51  

rs1264813 HLA_A_24 1.54 0.43  T 

rs2395029 HLA_B_5701 2.5 0.92  T 

rs3129889 HLA_DRB1_15 14.88 2.70  A 

rs2476601 PTPN22 1.96 0.67  A 

rs689 INS 1.75 0.56  T 

rs12722495 IL2RA 1.58 0.46  T 

rs2292239 ERBB3 1.35 0.30  T 

rs10509540 C10orf59 1.33  0.29  T 

rs4948088 COBL 1.3 0.26  C 

rs7202877   1.28 0.25  G 

rs12708716 CLEC16A 1.23 0.21  A 

rs3087243 CTLA4 1.22 0.20  G 

rs1893217 PTPN2 1.2 0.18  G 

rs11594656 IL2RA 1.19 0.17  T 

rs3024505 IL10 1.19  0.17  G 

rs9388489 C6orf173 1.17  0.16  G 

rs1465788   1.16 0.15  C 

rs1990760 IFIH1 1.16 0.15  T 

rs3825932 CTSH 1.16 0.15  C 

rs425105   1.16 0.15  T 

rs763361 CD226 1.16 0.15  T 

rs4788084 IL27 1.16 0.15  C 

rs17574546   1.14 0.13  C 

rs11755527 BACH2 1.13 0.12  G 

rs3788013 UBASH3A 1.13 0.12  A 

rs2069762 IL2 1.12 0.11  A 

rs2281808   1.11 0.10  C 

rs5753037   1.1 0.10  T 
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Supplementary Table 3: Type 1 diabetes SNPs included in the 10 SNP T1D GRS 
 

SNP Gene 
Odds 
Ratio 

Weight 
 Effect 

Allele 

rs2187668, 
rs7454108 

DR3/DR4 48.18 3.87  

 
DR3/DR3 21.12 3.05  

DR4/DR4 21.98 3.09  

DR4/X 7.03 1.95  

DR3/X 4.53 1.51  

rs1264813 HLA_A_24 1.54 0.43  T 

rs2395029 HLA_B_5701 2.5 0.92  T 

rs3129889 HLA_DRB1_15 14.88 2.70  A 

rs2476601 PTPN22 1.96 0.67  A 

rs689 INS 1.75 0.56  T 

rs12722495 IL2RA 1.58 0.46  T 

rs2292239 ERBB3 1.35 0.30  T 

rs10509540 C10orf59 1.33  0.29  T 
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Supplementary Table 4: Participant characteristics stratified by cohort. Median (IQR) or % 
Kruskal-Wallis used for comparison testing continuous variables, chi-square for categorical variables 
Exeter cohorts are shown combined due to low numbers in PRIBA and MRC Progressor 
* Closest to diagnosis 
† At latest follow up  
‡ Percentage of participants observed for at least five years 
§ Centile of participants with type 1 diabetes from the Wellcome trust case control consortium. 
 

 DCS Hoorn  
(n = 1 942) 

GoDarts 
 (n = 3 963) 

Exeter studies 
(n= 2 702 ) 

p-value 

Sex (% Male) 54.6% 54.8% 60.2% <0.001 
Age at diagnosis (years) 60 (53, 67) 61 (54, 68)  59 (50, 67) <0.001 
BMI (kg/m2)* 29.5 (26.8, 33.2) 30.4 (27.2, 34.6) 31.1 (27.5, 35.7) <0.001 
Duration of diabetes (years) † 7.1 (4.3, 11.0) 12.8 (10.3, 15.7) 7.0 (3.0, 12.3) <0.001 
Duration of diabetes (years) at GADA  8.2 (5.3, 12.2) 5.1 (2.7, 8.0) 7.0 (3.0, 12.0) <0.001 
Insulin treated within 5 years (%)‡ 5.8 7.4 10.2 <0.001 
HbA1c (%)† 6.5 (6.1, 7.1) 7.2 (6.5, 8.2) 7.3 (6.6, 8.4) <0.001 
HbA1c (mmol/mol) † 48 (43, 54) 55 (48, 66) 56 (49, 68) <0.001 
GADA Positive (%) 2.2% 3.9% 3.1% <0.001 
GADA (units/mL) 2.6 (2.0, 3.7) 5.0 (5.0, 5.0) 4.9 (4.9, 4.9) <0.001 
T1D GRS centile§ 4.7 (0.9, 16.1) 3.9 (0.5, 15.9) 4.2 (0.7, 16.3) <0.001 
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Supplementary Figure 2: Histogram of year of diabetes diagnosis. 
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Supplementary Figure 3: Kaplan-Meier plot of probability of requiring insulin therapy by risk group using 10 SNP T1D GRS. Solid lines represent GADA positive 

groups, dashed lines represent GADA negative groups. Blue = low T1D GRS centile, orange = medium T1D GRS centile, red = high T1D GRS centile. 
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Supplementary Table 5: Hazard ratios from Cox proportional regression model for time to insulin censored at 5 years (10 SNP T1D GRS) * Closest to diagnosis 
 

Variable Hazard Ratio [95% CI] p value 

GADA Negative  1  

GADA Positive 3.70 [2.74, 4.99] <0.001 

GADA Negative:10 SNP T1D GRS (per 1 SD change in T1D GRS) 1.04 [0.96, 1.14] >0.1 

GADA Positive:10 SNP T1D GRS (per 1 SD change in T1D GRS) 1.34 [1.05, 1.71] 0.02 

Age at diagnosis (per 1 year) 0.97 [0.96, 0.98] <0.001 

BMI (per kg/m2 unit) 1.00 [0.98, 1.01] >0.1 
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Supplementary Figure 4: Kaplan-Meier plot of probability of requiring insulin therapy by risk group using HLA DR3/DR4 alleles. Solid lines represent GADA positive 

groups, dashed lines represent GADA negative groups. Blue = No DR3/DR4 copies, orange = one DR3/DR4 copy, red = two DR3/DR4 copies. 
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Supplementary Figure 5: Kaplan-Meier plot of probability of requiring insulin therapy by risk group using HLA DR3/DR4 alleles.  
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Abstract 

Objective 

The rate of glycaemic deterioration in patients with clinically diagnosed type 2 

diabetes is highly variable. We aimed to develop and validate a multivariable 

prognostic model to predict rapid glycaemic progression leading to a 

requirement for insulin therapy within five years in adult patients diagnosed with 

type 2 diabetes.  

Research Design and Methods  

We examined the relationship between seven potential prognostic factors; Age 

at diagnosis, BMI, Sex, HbA1c, HDL, GAD65 autoantibodies (GADA) and a Type 

1 Diabetes Genetic Risk Score, and time to insulin therapy using survival 

analysis in 3,232 participants with clinical type 2 diabetes (onset >=35 years, 

treated without insulin from diagnosis). Separate models were developed 

without knowledge of GADA status, and in GADA positive and negative 

participants. External validation was performed in observational (Diabetes Care 

System (DCS) n = 1,241) and (for glycaemic progression on monotherapy) trial 

(ADOPT, n = 3,487) datasets. 

Results 

Area under the receiving operator curve (ROC AUC) for insulin requirement at 5 

years ranged from 0.74 (95% CI [0.71, 0.77]) (model without GADA) to 0.80 

[0.71, 0.88] (GADA positive model). Results were consistent in external 

validation (model without GADA ROC AUC 0.80 [0.75, 0.85], ADOPT 0.70 

[0.67, 0.73]). 70% of participants had <10% probability of insulin requirement at 

5 years in a model without biomarker measurement. 
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Conclusions 

Prediction models integrating clinical features with biomarkers may assist 

clinicians in identifying patients with high risk of progression and those who may 

benefit most from GADA testing. 
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The rate of glycaemic deterioration leading to a requirement for insulin therapy 

in patients with clinically diagnosed type 2 diabetes is highly variable (1); in 

many patients, glycaemia can be successfully managed with lifestyle changes 

or oral agents for many years whilst others require insulin therapy soon after 

diagnosis (2; 3). This heterogeneity may reflect differences in underlying 

pathophysiology (4-9).  

Being able to identify which patients will rapidly progress (or conversely remain 

stable over many years) may have utility in clinical practice and research. In 

clinical practice this could facilitate prioritised monitoring and treatment 

escalation for those likely to progress rapidly, and may allow targeting of 

therapies with specific effects on glycaemic deterioration (10), however this 

approach would need to be low cost and therefore based on routinely measured 

features or inexpensive biomarkers. In research, those patients likely to rapidly 

progress could be targeted to maximise cost effectiveness of trials of 

interventions aimed at slowing diabetes progression. 

A number of clinical and genetic factors have been found to be associated with 

the rate of glycaemic deterioration leading to a requirement for insulin therapy in 

patients with clinically diagnosed type 2 diabetes (1; 4; 5; 11-18). Whilst the 

definition of failure varies between studies (initiation of pharmacologic 

treatment, requirement for second or third line treatment, or requirement for 

insulin), the association between younger age at diagnosis and rapid 

progression has been a consistent finding and is strongly associated with 

disease progression (1). Additional clinical features reported to be associated 

with future progression of type 2 diabetes include, HbA1c or fasting glucose, 

HDL, Triacylglyceride, alanine transaminase, sex, beta-cell function 

(Homeostatic Model Assessment (HOMA)), LDL, serum creatinine, smoking 
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and ethnicity (1; 4; 5; 11-18). However, in a recent large study of progression to 

insulin therapy, only age at diagnosis, HDL, Triacylglyceride and BMI were 

independent predictors (11). 

The presence of GAD65 autoantibodies (GADA) or (less commonly) other islet-

autoantibodies is strongly associated with rapid progression to insulin, however 

many autoantibody-positive patients do not have early insulin requirement (13; 

19; 20). A Type 1 Diabetes Genetic Risk Score (T1D GRS) has been shown to 

be associated with faster progression to insulin but only in participants who are 

GADA positive (20). No association was found with type 2 diabetes generic risk 

(11; 21).  

Rather than relying on single features in isolation, the most effective approach 

to predicting type 2 diabetes progression is likely to be through combining 

different features, as is now common for outcome prediction in many areas of 

clinical practice. There are however, no prognostic models that combine clinical 

features and biomarkers to predict progression in individuals with a clinical 

diagnosis of type 2 diabetes. 

We aimed to develop and validate a prognostic model to predict early insulin 

requirement in adult patients newly diagnosed with type 2 diabetes. 

Methods 

We used data from existing prospective studies to develop and validate a 

multivariable prognostic model to predict progression to insulin therapy, from 

diagnosis, in adult patients with clinical type 2 diabetes. 
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Study population  

Participants were eligible for the study (model development or validation) if they 

had a clinical diagnosis of type 2 diabetes after the age of 35 years, and were 

treated without insulin from diagnosis.  

Participants known to have had GADA testing performed either in clinical 

practice or prior to diagnosis (through a review of electronic laboratory records) 

were excluded due to the risk of the result influencing the clinician’s treatment 

decision to commence insulin (n=107).   

Development cohort 

For model development, participants were identified in the Genetics of Diabetes 

Audit and Research Tayside Study (GoDARTS) (22). GoDarts is a population 

cohort comprising of longitudinal clinical data (measured at recruitment and 

from electronic medical record linkage) of participants with a clinical diagnosis 

of type 2 diabetes recruited from primary and secondary care in Tayside, 

Scotland, UK.  Participants diagnosed with diabetes before 1st January 1994 

were excluded from our study; due to insufficient prescribing information we 

were unable to define time to insulin prior to this date. 

External validation cohort 

For external validation, participants meeting our study inclusion criteria were 

identified in the Hoorn Diabetes Care System (DCS) (23). DCS is a longitudinal 

study of participants diagnosed with type 2 diabetes recruited from primary and 

secondary care in West-Friesland, Netherlands, clinical data is collected at 

recruitment and at annual visits.  
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Assessment of the performance of the model in predicting shorter term 

glycaemic progression (monotherapy failure) was undertaken in 3,487 

participants in the Diabetes Outcome Progression Trial (ADOPT) (10; 24; 25), 

ADOPT is an intention to treat randomised drug efficacy trial in participants 

aged 30-75 years with recently diagnosed (< 3 years) type 2 diabetes. 

Participants were eligible for ADOPT if they had been previously managed with 

diet/exercise only and had fasting plasma glucose ranging from 126 to 240 

mg/dl (7–13 mmol/l) at screening and from 126 to 180 mg/dl (7–10 mmol/l) at 

randomisation (10).  

All participants included in this study were of white-European origin. 

Model outcome measure: Time to insulin therapy 

The primary outcome was time to insulin therapy, defined as the number of 

months between diabetes diagnosis and commencement of continuous insulin 

therapy obtained from electronic prescription records.  

In ADOPT, the primary outcome was time to monotherapy failure which was 

defined according to the study primary outcome as a confirmed level of fasting 

plasma glucose of more than 180 mg/dl (10.0 mmol/l) (10). Time to insulin could 

not be assessed in this cohort. 

Prognostic factors 

Study prognostic factors were selected based on reported independent 

associations with glycaemic progression of diabetes in previous literature (1; 11) 

and availability in study cohorts. We examined seven potential prognostic 

factors; Age at diagnosis, BMI, Sex, HbA1c, HDL, GADA and a T1D GRS. While 

Triglycerides have previously been reported to be independently associated 
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with more rapid progression in the GoDARTS cohort (11) it was not included in 

our study due to limited data availability in the GoDarts participants (25% 

Triglycerides missing), high collinearity with HDL, and the need for patients to 

fast prior to measurement which limits clinical utility. To maximise potential 

utility, and account for potential different interactions between clinical features 

and progression in autoimmune and non-autoimmune diabetes, models were 

developed for routinely available predictors without knowledge of GADA status, 

and separate models then developed for both GADA positive and negative 

participants, with and without examination of T1D GRS respectively.  

BMI 

Height and weight measurements were collected at recruitment visit and used 

to calculate BMI. 

Laboratory Measurement  

HbA1c and HDL 

HbA1c values were included in the model development if collected within +/- 6 

months of reported diagnosis date. The closest available value was used for 

analysis with values prior to diagnosis excluded if in the non-diabetic range 

(<6.5% (48 mmol/mol)). HDL values were included where the sample was 

collected within 12 months of diagnosis (before or after diagnosis), with the 

closest available value used for study analysis. 

In the GoDarts cohort, HbA1c and HDL were collected from electronic medical 

record linkage as previously described (22) (or recruitment visit where this was 

conducted < 6 months from diagnosis).  
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In the DCS cohort, HbA1c and HDL were measured at a recruitment visit and 

were repeated annually as previously described (23). Measurement of HbA1c 

and HDL was conducted using fasting blood. HbA1c was based on the 

turbidimetric inhibition immunoassay for haemolysed whole EDTA blood (Cobas 

c501, Roche Diagnostics, Mannheim, Germany) and is expressed in 

mmol/mmol according to the International Federation of Clinical Chemistry and 

Laboratory Medicine (IFCC) as well as percentage according to the Diabetes 

Control and Complications Trial (DCCT)/ National Glycohemoglobin 

Standardization (23). HDL was determined enzymatically (Cobas c501, Roche 

Diagnostics) (23). 

Measurement of HbA1c and HDL in ADOPT has been described previously (25). 

Type 1 Diabetes Genetic Risk Score (T1D GRS) 

The development of the T1D GRS has been described previously (26). In brief, 

T1D GRS consists of 30 common type 1 diabetes genetic variants (single 

nucleotide polymorphisms (SNPs)) from HLA and non-HLA loci; each variant is 

weighted by their effect size on type 1 diabetes risk from previously published 

literature, with weights for DR3/DR4-DQ8 assigned based on imputed 

haplotypes. The combined score represents an individual’s genetic 

susceptibility to type 1 diabetes. Variants used to derive the score are shown in 

Supplementary Table 1. For ease of clinical interpretation the score is 

presented in this article as the centile position of the distribution in the 

Wellcome Trust Case Control Consortium type 1 diabetes population (27).  

Genotyping in the GoDarts cohort was performed using custom genotyping 

arrays (including Immunochip, Cardio-Metabochip (Metabochip) and Human 

Exome array) from Illumina as previously described (11). Genotyping in the 
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DCS cohort was performed with Illumina’s HumanCoreExome Array and 

imputed using IMPUTE2 (28) into the 1000 Genomes March 2012 reference 

panel. All SNPs had an INFO > 0.8. 

T1D GRS calculation was not performed if genotyping results were missing for 

either of the two alleles with the greatest weighting (DR3/DR4-DQ8 or 

HLA_DRB1_15) or if more than two of any other SNPs were missing.  

GADA 

GADA was measured for GoDarts and DCS by the Academic Department of 

Blood Sciences at the Royal Devon and Exeter Hospital using the RSR Limited 

ELISA assay (RSR Ltd, Cardiff, UK) on the Dynex DS2 ELISA Robot (Dynex 

Technologics, Worthing, UK). Sample collection for GADA measurement was a 

median diabetes duration of 4.5 years (GoDarts) and 7.2 years (DCS). The cut-

off for positivity was ≥11 units/ml, based on the 97.5th centile of 1,559 controls 

without diabetes (29). The lowest reportable value (lowest calibrant) was 5.0 

units/ml. The laboratory participates in the International Autoantibody 

Standardisation Programme. 

Missing data 

This study is a complete case analysis. To assess the appropriateness of this 

approach to deal with missing data, we first looked at the missing data patterns 

to describe the missing data (Supplementary Table 2). The percentage of 

participants in the development data meeting our inclusion criteria with missing 

data for the study prognostic factors was 18%.  

The missing data mechanism was then investigated using the predictors of 

missingness method. This method compares the characteristics of the 
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participants with missing data to those of participants without missing data and 

can be used to assess the plausibility of the data being missing completely at 

random (MCAR). This involves using logistic models each with a binary 

outcome of missing data relating to the variable of interest (1 = missing data, 0 

= not missing), with the remaining prognostic factors treated as predictor 

variables. Significant predictor variables suggest that the data is not MCAR. 

None of the predictor variables was significant suggesting that the data was 

MCAR and therefore a complete case analysis was considered appropriate. 

Statistical analysis 

Model development 

We applied a Royston-Parmar flexible parametric survival model (RP) (30-32) 

programmed in Stata (stpm2) (33). RP models have advantages over Cox 

models; they can be used when the proportional hazards assumption is not met, 

can predict survival/failures probabilities over time for individual participants, 

and have smoothed survival and cumulative hazards functions. We followed the 

approaches of Royston and Lambert for developing and reporting our RP model 

(34). Median follow-up time was calculated using the reverse Kaplan-Meier 

method (35).  All analysis was performed in Stata/SE 15.1 (StataCorp, College 

Station, TX). 

Continuous prognostic factors 

Each continuous predictor was first modelled (univariate, Cox model) as linear, 

log-transformed and transformed using orthogonalised restricted cubic splines 

(3 knots) (36). Nonlinearity between each factor and the outcome was then 

assessed both visually using plots and statistically using Bayes information 
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criteria (BIC). Each continuous predictor was mean centred in the modelling to 

produce a meaningful baseline survival function. T1D GRS was normalised. 

Time-dependent covariates 

Proportional hazards for each prognostic factor (non-transformed) was checked 

visually using plots of scaled Schoenfeld residuals against time. 

Scale and baseline complexity 

Scale and baseline complexity were selected by inspecting the Akaike 

information criterion (AIC) and BIC statistics of a simple multivariable 

preliminary model consisting of all prognostic factors (categorised continuous 

(non-transformed) predictors) with varying scale (log cumulative hazard 

(hazard), log cumulative odds (odds), standard normal deviate (probit) (normal) 

and value of theta using the Aranda-Ordaz family of link functions (theta)) and 

degrees of freedom (1 to 5) (34).  

Selection of prognostic factors 

We first built a RP model including all prognostic factors without any 

transformations. We then investigated the inclusion of transformed and time 

dependent effects to improve the model fit assessed using AIC and BIC. 

Interactions between continuous variables were not assessed in the model. The 

goodness of fit of the continuous covariates included in the final model was 

assessed visually using plots of smoothed martingale residuals. 

Evaluation of model performance: Internal validation 

Bootstrapping with replacement (1,000 repetitions) was used to estimate 

optimism adjusted explained variation on the natural scale of the model (R2
D) 

(37; 38) and area under the receiver operating characteristic curve (ROC AUC) 
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at five years. ROC AUC was calculated using the failure probability at five years 

and a five-year censored outcome (participants with < 5 year duration and non-

insulin treated were excluded).  

The available range of discrimination was assessed visually by plotting failure 

probabilities against time at specified centiles of the distribution of the 

prognostic index. 

Evaluation of model performance: External validation 

The model was fitted to both external datasets. The quality of the model 

predictions were evaluated using ROC AUC at five years calculated using same 

method as previously described. Calibration was assessed visually using a 

calibration plots at five years. 

GADA models   

A separate model applicable to participants with a clinical diagnosis of type 2 

diabetes who are known to be GADA positive and a model for those known to 

be GADA negative were developed and validated using the same methods as 

previously described. T1D GRS was used as a potential predictor in the GADA 

positive model only. 

Results 

For the development cohort, we identified 3,232 participants with a clinical 

diagnosis of type 2 diabetes meeting all of our inclusion criteria. A flow diagram 

describing the flow of participants through the study is shown in Supplementary 

Figure 1. Table 1 shows the characteristics for these participants. 97% (n = 

3,147) had been followed for at least five years; median follow up time, 

calculated as the median time to censoring (insulin treatment or latest follow 
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up), was 11.8 (95% CI [11.6, 11.9]) years. 8.8% (n =278) of those participants 

with over five years follow up had progressed to insulin within 5 years. 
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Table 1: Participant characteristics for No GADA model cohorts. 
Median (IQR) or % 
*At first visit 
†Percentage of patients observed for at least five years 
‡ measured < 6 months post diagnosis 
§ Closest to diagnosis (within 12 months pre or post diagnosis) 
|| Not followed post failure   
 

 GoDarts development 
 (n = 3,232) 

DCS Validation 
(n = 1,241) 

ADOPT validation 
(n = 3,487) 

Sex (% Male) 54.6% 54.0% 59.1% 
Age at diagnosis (years) 62 (54, 69)  61 (54, 67)  58 (51, 65) 
BMI (kg/m2)* 30.4 (27.2, 34.7) 29.5 (26.8, 33.2) 31.0 (27.8, 35.3) 
Duration of diabetes (years) at latest follow up 12.3 (9.9, 14.9) 6.3 (4.0, 10.2) Not Available||  
Insulin treated within 5 years (%)† 8.8% 8.0% Not Applicable 
Monotherapy failure by 4 years Not Applicable Not Applicable 15.1% 
HbA1c (%)‡ 7.6 (6.6, 9.5) 6.6 (6.1, 7.5) 7.2 (6.7, 7.8) 
HbA1c (mmol/mol) ‡  60 (49, 80) 48.6 (43.2, 58.5) 55.2 (49.7, 61.7) 
HDL (mmol/L) §  1.2 (1.0, 1.4) 1.15 (0.99, 1.36) 1.2 (1.0, 1.4) 
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In univariate analysis, increased risk of progressing to insulin therapy was 

associated with younger age at diagnosis, lower HDL, higher HbA1c and being 

female; there was a U-shaped association with BMI, with risk lowest in those 

with a BMI of 30 ((Figure 1, Supplementary Figure 2 and Supplementary Table 

3).   

Figure 1: Best fit univariate association between continuous variables and progression to 
insulin therapy assessed using relative to mean centred hazard obtained from Cox models with 
95% confidence intervals. Horizontal line at hazard ratio = 1. Assumes relative effect is the 
same throughout the follow-up period (n = 3,232). 

 

Supplementary Table 4 shows the univariate R2
D and C-statistic for each of the 

best fit clinical features and biomarkers. 

Covariate effects varied over time (time dependent) 

The effect of HDL, BMI and HbA1c varied over time, invalidating the assumption 

that each covariate is independent of time. Supplementary Figure 3 shows the 

effect of HDL and HbA1C reducing over the first five years and BMI increasing 

over the same period. For HbA1c (considered in isolation) this means that, for 
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example, at diagnosis, the risk of rapid insulin requirement (hazard ratio) is 

much higher in patients with a high HbA1c compared to those patients with a 

lower HbA1c but after five years, the difference in risk between patients with 

higher and lower HbA1c measured at diagnosis is much less. These time 

dependent effects can be modelled using spline functions with the knot location 

specified at five years but have the disadvantage of creating a more complex 

model with an increased number of degrees of freedom (model parameters). 

When the model fit (AIC and BIC) was assessed with the inclusion of HDL, BMI 

and HbA1c as time dependent variables, only the inclusion of HbA1c significantly 

improved the model fit. Since HDL and BMI were weaker predictors and did not 

improve the model fit when used as time dependent effects, we decided to 

include only HbA1c as a time dependent effect. A limitation with the use of spline 

functions for dealing with time dependent covariates is that the individual model 

parameters for the time dependent splines are almost impossible to interpret 

(34). Essentially the time dependent splines represent the situation shown in the 

Supplementary Figure 3. 

Combining clinical features and biomarkers in a prognostic model 

improves model performance 

Age at diagnosis (linear), HDL (log-transformed), sex (male), BMI (3-knot 

spline) and HbA1c (log-transformed) as a time varying covariate were 

statistically significant predictors of time to insulin therapy and were included in 

the final model (Supplementary Table 5). HDL, BMI and HbA1c were time-

dependent effects (Supplementary Figure 3) but only HbA1c was included as a 

time varying covariate since using time varying covariates for HDL and BMI did 

not significantly improve the model fit. The parameter estimates for the full 

model are shown in Supplementary Table 6. 
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ROC AUC of the predicted probabilities for discriminating those who are insulin 

treated by five years was 0.74 [0.71, 0.77]. The explained variation (R2
D) of the 

final model was modest (19% [16%, 23%]). Supplementary Table 7 shows the 

impact of each covariate in the model on R2
D. HbA1c was the most important 

covariate in the model accounting for most of the explained variation (on its own 

R2
D = 12%), BMI and sex added the least.  

Internal validation results suggest robust model performance  

The distribution of the model predicted probabilities for requiring insulin by 5 

years was skewed and in most cases fairly low (median (range) 5.3% (0.3 - 

62.75)) (Supplementary Figure 4). 

The model showed reasonable discrimination for requirement of insulin by 5 

years, with those in the highest deciles of predicted probability having the 

highest risk (18% predicted to require insulin for the 90th centile compared with 

1.6% in the lowest decile), (Supplementary Figure 5). The model calibration was 

good (Supplementary Figure 6). 

Results of the bootstrap internal validation showed low levels of optimism 

(Supplementary Table 8). 

Similar model performance in external validation cohort 

1,241 participants in the DCS study and 3,487 in ADOPT met criteria for 

external validation (Supplementary Figures 7 & 8). Table 1 shows the 

characteristics for the DCS and ADOPT participants included in the external 

validation. 

The ROC AUC at 5 years for the DCS external validation cohort was 0.80 [0.75, 

0.85]. The model calibrated reasonably well in the DCS cohort (Figure 2 (A)), 



 

190 
 

although probabilities were slightly underestimated overall (5.7% expected to be 

insulin treated within 5 years v 6.5% observed), with the model fitting less well 

at the extremes.  

To deal with a shorter follow up duration in ADOPT (four year treatment period 

(10)), we evaluated the model using the ADOPT external validation cohort at 

four years. ROC AUC at four years was 0.70 [0.67, 0.73]. Consistent with the 

different outcome assessed (monotherapy failure as opposed to insulin 

requirement) the expected probabilities were lower than the observed outcome 

(expected/observed = 0.27), we therefore recalibrated the model using a 

baseline hazard (intercept) update (Figure 2 (B)). 
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Figure 2A: DCS external validation calibration plot of expected versus observed failure probabilities at t = 5 years.  
Figure 2B: Re-calibrated ADOPT validation calibration plot of expected versus observed failure probabilities at t = 4 years.    
Dashed grey line is reference line where observed = expected probabilities. Black filled circles are risk groups using deciles of expected probabilities, vertical grey 
solid lines are 95% CIs. Grey solid line is lowess smoother. 
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A GADA positive model showed good performance in internal validation 

We identified 131 participants who were GADA positive in the development data 

meeting all of our inclusion criteria (Supplementary Table 9). The final model 

consisted of age at diagnosis (log-transformed and TVC), BMI (log-

transformed), HbA1c (log-transformed) and sex (Supplementary Table 10). The 

parameter estimates for the full model are shown in Supplementary Table 11.   

ROC AUC at five years was 0.80 [0.71, 0.88]. R2
D was reasonable (33% [18%, 

46%]). HbA1c was the most important factor in the model (on its own R2
D = 16%) 

(Supplementary Table 12). Internal validation suggested low levels of optimism 

(Supplementary Table 13). 

Due to small sample size (n = 28 and n = 138 GADA positive participants 

meeting inclusion criteria in DCS and ADOPT respectively, of whom only 9 and 

18 met the study glycaemic failure definition), external validation could not be 

performed.  

A GADA negative model has similar discrimination performance to the 

main model 

We identified 3,101 participants who were GADA negative in the development 

data meeting all of our inclusion criteria (Supplementary Table 14). The final 

model consisted of age at diagnosis (linear), HbA1c (log-transformed and TVC), 

HDL (log-transformed) and sex (Supplementary Table 15). The parameter 

estimates for the full model are shown in Supplementary Table 16. ROC AUC at 

five years was 0.73 [0.69, 0.76]. R2
D was modest (22% [18%, 26%]) with HbA1c 

again the strongest predictor (R2
D 14%). Internal validation showed low levels of 

optimism (Supplementary Table 17). 
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We identified 1,213 participants who were GADA negative in the DCS external 

validation cohort satisfying our inclusion criteria (Supplementary Table 14). The 

calibration plot at five years (Supplementary Figure 9) shows that the range of 

probabilities is again narrow. The model showed reasonable calibration but 

underestimated in the higher risk groups. There was a slight increase in ROC 

AUC at 5 years (ROC AUC 0.76 [0.70, 0.82]) when compared to the internal 

validation results.  

We also identified 3,208 participants in the ADOPT data (Supplementary Table 

14). ROC AUC at four years was 0.71 [0.68, 0.74]. After adjusting the model to 

reflect the difference in outcome incidence (baseline hazard (intercept) update), 

the results of the calibration (Supplementary Figure 10) were very similar to the 

results of the ADOPT external validation of the main model.  

The majority of participants who have low model probabilities may be 

unlikely to benefit from GADA testing 

Figure 3 shows the probability of a positive GADA test (3A) and how much 

difference a GADA positive result makes to a patients probability of progressing 

to insulin within five years (3B). Participants with higher model probability have 

far higher likelihood of testing GADA positive (3A), and have higher rates of 

rapid insulin requirement if they test positive for GADA (3B). In contrast the vast 

majority of participants who have low model probability have a low likelihood of 

a positive GADA test, and low likelihood of rapid progression even if they test 

positive, for example 70% of participants have model probability ≤10%, this 

group had only a 3% GADA positive rate in the development dataset and only 

17% of the GADA positive participants rapidly progressed to insulin within five 

years. 
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Figure 3A: Percentage of GADA positive participants by model probability of five year insulin requirement without GADA testing (no GADA measurement model). 
Development (GoDarts) cohort n = 3232.  
Figure 3B: Proportion of GADA positive participant progressing to insulin within five years (95% CI) in the GoDarts and DCS cohorts (n = 151), by risk of five year 
insulin requirement without GADA testing (no GADA measurement model). 
Error bars denote 95% CI 
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Conclusions 

We have developed, evaluated and externally validated prognostic models 

combining clinical features and biomarkers to provide estimates of a patient’s 

risk of progression to insulin therapy within five years of diagnosis.  

All models had a ROC AUC > 0.7 and performed similarly in external cohorts 

providing confidence in the validity of the models. The performance of our 

models is similar to those of other existing prognostic models routinely used in 

clinical practice for example in cardiovascular disease and mortality prediction 

(39; 40). The initial poor calibration of the models in ADOPT is expected due to 

the use of a different outcome (moderate glycaemia on monotherapy, in 

contrast to insulin treatment used for model development), however this was 

addressed by a simple recalibration of the model. Models were highly predictive 

of a participant being GADA positive, with those who had low model probability 

having very low rates of GADA positivity, and GADA positive participants in this 

group only low probability of 5 year insulin requirement. 

To our knowledge, this is the first study to develop a prognostic model for 

progression to insulin therapy in adult participants with type 2 diabetes. A key 

strength of this study is our use of a population cohort (GoDarts) for model 

development, this means that our results are likely to be a true representation of 

patients seen in primary care. Additional key strengths are the availability of 

clinical features at diagnosis, our systematic approach to model development 

(34) and our use of separate cohorts for external validation. We have used both 

unambiguous definitions of the prognostic factors and reproducible 

measurements which means our models are usable in clinical practice (41). We 

built separate GADA models rather than simply using GADA as a covariate due 



 

196 
 

to the presence of statistically significant interactions between GADA and each 

of BMI, T1D GRS and HDL, inclusions of these interactions would have resulted 

in a highly complex model. 

Limitations of this study include that insulin commencement was based on 

clinical decision making rather than a trial protocol (1), we have however 

addressed this by externally validating the models in ADOPT using a trial 

glucose threshold.  In addition the models have been developed on a white 

European population, validating these models in other ethnicities is therefore an 

important area of future work. An additional limitation of our study is that GADA 

was measured at a median 4.9 years diabetes duration, which could result in a 

lower prevalence than if measurement was undertaken at diagnosis. However, 

in adult populations the error is likely to be small, with GADA positivity being 

stable over the first six years in UKPDS study participants (42). In addition we 

did not have sufficient external data to externally validate the GADA positive 

model. Lastly we were not able to use the most recently published Type 1 

Diabetes Genetic Risk Score (which has modestly improved performance), due 

to unavailability of all the relevant SNPs in our cohorts (43). 

We have previously shown that the T1D GRS is independently associated with 

rapid progression to insulin in patients diagnosed with type 2 diabetes who were 

GADA positive, using a larger cohort of 8,608 participants (20). In this study, 

T1D GRS was not statistical significant in the GADA positive model when 

adjusted for the other clinical features and biomarkers. This may reflect a 

smaller cohort, more advanced modelling to optimize use of other features, and 

the inclusion of additional predictive features including HbA1c.  
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Our models have the potential to facilitate the management of patients 

diagnosed with type 2 diabetes by allowing identification of individuals who have 

a high probability of rapid glycaemic progression and may benefit from more 

intensive treatment or monitoring. A potential related role is in assisting targeted 

GADA testing to the minority of patients who have higher risk of islet antibody 

positivity, and in whom a positive antibody will be associated with high rates of 

progression. While we have focused on five year insulin requirement our use of 

the flexible parametric survival models means that survival probabilities can be 

calculated for any time point. We envisage that the model will be implemented 

as a dynamic web-based tool similar to that used in a cancer survival model 

(44) and may potentially be used at diagnosis alongside recently published 

prediction models for diabetes classification (45). 

In conclusion, prediction models integrating clinical features with biomarkers 

may assist clinicians in identifying patients with high risk of progression and 

those who may benefit most from GADA testing. 
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Supplementary material 
 
 
Supplementary Table 1: Type 1 diabetes SNPs included in the genetic risk score with weights. 
Effect allele is the risk increasing allele on the positive strand. 

 

SNP Gene 
Odds 
Ratio 

Weight 
 

Effect Allele 

rs2187668, 
rs7454108 

DR3/DR4 48.18 3.87  

 

DR3/DR3 21.12 3.05  

DR4/DR4 21.98 3.09  

DR4/X 7.03 1.95  

DR3/X 4.53 1.51  

rs1264813 HLA_A_24 1.54 0.43  T 

rs2395029 HLA_B_5701 2.5 0.92  T 

rs3129889 HLA_DRB1_15 14.88 2.70  A 

rs2476601 PTPN22 1.96 0.67  A 

rs689 INS 1.75 0.56  T 

rs12722495 IL2RA 1.58 0.46  T 

rs2292239 ERBB3 1.35 0.30  T 

rs10509540 C10orf59 1.33  0.29  T 

rs4948088 COBL 1.3 0.26  C 

rs7202877   1.28 0.25  G 

rs12708716 CLEC16A 1.23 0.21  A 

rs3087243 CTLA4 1.22 0.20  G 

rs1893217 PTPN2 1.2 0.18  G 

rs11594656 IL2RA 1.19 0.17  T 

rs3024505 IL10 1.19  0.17  G 

rs9388489 C6orf173 1.17  0.16  G 

rs1465788   1.16 0.15  C 

rs1990760 IFIH1 1.16 0.15  T 

rs3825932 CTSH 1.16 0.15  C 

rs425105   1.16 0.15  T 

rs763361 CD226 1.16 0.15  T 

rs4788084 IL27 1.16 0.15  C 

rs17574546   1.14 0.13  C 

rs11755527 BACH2 1.13 0.12  G 

rs3788013 UBASH3A 1.13 0.12  A 

rs2069762 IL2 1.12 0.11  A 

rs2281808   1.11 0.10  C 

rs5753037   1.1 0.10  T 
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Supplementary Table 2: Missing data pattern (n = 4,001). 1 means complete. Table only 

includes predictor variables that had missing data. 
 

Percent missing  HDL HbA1c 

82% 1 1 

6% 0 0 

6% 1 0 

5% 0 1 
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Supplementary Figure 1: Participant flow diagram (GoDarts development cohort) * identified through search of electronic laboratory records. 

 

 

 

Missing data/excluded patients (n = 876) 

 Clinical GADA testing*: 107  

 HbA1c or HDL not measured: 769 

 

Insulin treated (n = 825) Non-insulin treated (n = 2,407) 

GoDarts eligible patients (n = 4,108) 
 

Complete case (n = 3,232) 

GADA positive n = 131 

GADA negative n = 3,101 
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Supplementary Figure 2: Univariate association between continuous variables in Model 1 and 
insulin treated outcome assessed using relative to mean centred hazard obtained from Cox 
models with 95% confidence intervals. Black solid lines are linear model, black dashed lines are 
3 knot models, dash-dot lines are log transformed. Horizontal line at hazard ratio = 1. Assumes 
relative effect is the same throughout the follow-up period (n = 3232). 
 

 
 

Supplementary Table 3: Selection of functional forms for continuous prognostic factors. 
Obtained from Cox models. N=2407 used in calculating BIC. 
 

 Linear Log-transformed 3-knot spline 
 AIC BIC AIC BIC AIC BIC 

Age at Diagnosis 12387.72 12393.51 12390.97 12396.75 12391.94 12415.09 
BMI 12495.06 12500.84 12495.84 12501.62 12477.11 12500.26 
HbA1c 12324.11 12329.89 12310.86 12316.64 12302.48 12325.63 
HDL 12473.46 12479.25 12464.39 12470.17 12455.04 12478.19 

 

 

Supplementary Table 4: Performance of univariate associations with progression to insulin 
therapy using simple Cox model. 
 

Prognostic factor Adjusted R2
D

 [95% CI] C-statistic [95% CI] 

Age at diagnosis (linear) 0.08 [0.05, 0.11] 0.61 [0.59, 0.63] 
BMI (3-knot spline) 0.01 [0.00, 0.02] 0.54 [0.51, 0.56] 
HbA1c (log-transformed) 0.12 [0.09, 0.16] 0.66 [0.64, 0.67] 
HDL (log-transformed) 0.03 [0.01, 0.04] 0.57 [0.54, 0.59] 
Sex (Male) 0.003 [0.00, 0.01] 0.52 [0.50, 0.54] 
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Supplementary Table 5: Hazard Ratios of the four covariates in the RP model (normal scale 
with 3 d.f.) for time to insulin. 
 * Centered variables. † Log-transformed. ‡Derived spline variables for BMI. Full model including 
derived spline variables for the baseline normal cumulative hazard, derived spline variables for 
the time-dependent effect of HbA1c and intercept is shown in separate table.  
 

Variable Hazard Ratio  [95% CI] P value 

HbA1c (mmol/mol)*† 2.66 [2.31, 3.06] <0.001 
Age at diagnosis (years)* 0.98 [0.97, 0.98] <0.001 
Sex (male) 0.87 [0.78, 0.95] 0.004 
HDL (mmol/mol)* † 0.74 [0.62, 0.89] 0.001 
BMI_1*‡ 0.95 [0.91, 1.00] 0.056 
BMI_2*‡ 0.93 [0.89, 0.97] 0.001 
BMI_3*‡ 1.09 [1.04, 1.14] <0.001 
BMI_4*‡ 0.98 [0.94, 1.02] 0.349 

 
 
 
 
Supplementary Figure 3: Univariate analysis smoothed Schoenfeld residuals against time 
plots. Dashed reference lines at 1 (null effect) and estimated value of HR. Trends in the running 
line smoother indicate non-proportional hazards.  
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Supplementary Table 6: Model coefficients for the RP model (normal scale with 3 d.f.) for 
model replication purpose. 
 * Centered variables. † Log-transformed. ‡Derived spline variables for BMI. §Derived spline 
variables for the baseline normal cumulative hazard. ||Derived spline variables for the time-
dependent effect of Hba1c. HbA1c is centered on 66 mmol/mol (8.2%), BMI on 31 kg/m2, Age is 
centered on 61 years and HDL on 1.2 mml/mol. BMI knots at knots 16.20, 27.20, 30.40, 34.70, 
66.20. 
 

Variable Beta coefficient [95% CI] P value 

HbA1c (mmol/mol)*† 0.9770372 [0.8365849, 1.11749] <0.001 
Age at diagnosis (years)* -0.0218331 [-0.0267874, -0.0168788] <0.001 
Sex (male) -0.1438583 [-0. 2413587, -0.0463578] 0.004 
HDL (mmol/mol)* † -0.3005002 [-0.4800388, -0.1209615] 0.001 
BMI_1*‡ -0.046877 [-0.0950246, 0.0012707] 0.056 
BMI_2*‡ -0.0745811 [-0.1189969, -0.0301652] 0.001 
BMI_3*‡ 0.0829741 [0.0393008, 0.1266475] <0.001 
BMI_4*‡ -0.0214095 [-0.0662199, 0.023401] 0.349 
rcs1§  0.46694 [0.4379549, 0.4959251] < 0.001 
rcs2§ -0.1295396 [-0.1515924, -0.1074868] < 0.001 
rcs3§ -0.0278038 [-0.045251, -0.0103567] 0.002 
rcsHbA1c1|| -0.0820199 [-0.154833, -0.0068254] 0.032 
rcsHbA1c2|| 0.0623191 [0.0097391, 0.1148992] 0.020 
Intercept -0.9035062 [-1.003537, -0.8034755]  

 
 
 
 
Supplementary Table 7: Effects of removing variables on explained variation (R2

D). The effect 
of removing one covariate singularly is shown in the second and third columns. The effect of 
removing covariates cumulatively in descending order of importance is shown in the fourth and 
fifth columns. The effect of removing covariates cumulatively in ascending order of importance 
is shown in the sixth and seventh columns. 
 

Variable removed Single Cumulative (greatest first) Cumulative (least first) 

 R2
D R2

D R2
D order 

Full model 0.19 0.19 0.19  
HbA1c 0.09 0.09   
Age at diagnosis 0.15 0.04 0.12 4 
HDL 0.19 0.00 0.18 3 
BMI 0.19 0.00 0.18 2 
Sex (male) 0.19 - 0.19 1 
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Supplementary Figure 4: Distribution of predicted failure probabilities of all patients in 
development data at 5 years 

 

 
 
 
 
 
Supplementary Figure 5: Failure probabilities (first five years from diagnosis) at the 10th, 20th 
…90th deciles of the prognostic index (linear predictor). 10th centile (low risk) is the lowermost 
dashed line, 90th centile (high risk) is the uppermost solid line. The bold solid line represents 
50th centile. 
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Supplementary Figure 6: GoDarts internal validation calibration plot plot of expected versus 
observed failure probabilities at t = 5 years.  
Dashed grey line is reference line where observed = expected probabilities. Black filled circles 
are risk groups using deciles of expected probabilities, vertical grey solid lines are 95% CIs. 
Grey solid line is lowess smoother.   

 

 
 
Supplementary Table 8 Model performance results for the internal validation 
 

Performance parameter Internal validation (1,000 bootstrap) 

Apparent (SD) Test (SD) Optimism 

Explained variation (R2
D) (1) 0.199 (0.021) 0.191 (0.009) 0.008 

ROC AUC (5 yr) 0.741 (0.016) 0.736 (0.002) 0.005 
 
 



 

209 
 

Supplementary Figure 7: Participant flow diagram (DCS external validation cohort) * identified through search of electronic laboratory records. 

 

 

 

 

 

  

Missing data/excluded patients (n = 761) 

 Clinical GADA testing*: 0 

 HbA1c, BMI or HDL not measured: 761 

Insulin treated (n = 1,072) Non-insulin treated (n = 169) 

DCS eligible patients (n = 2,002) 
 

Complete case (n = 1,241) 

GADA positive n = 28 

GADA negative n = 1,213 

 



 

210 
 

Supplementary Figure 8: Patient flow diagram (ADOPT external validation cohort). * Failures in five years. 

 

 

 

 
Missing data/excluded patients (n = 144) 

 HbA1c, BMI or HDL not measured: 144 

 Monotherapy failure* (n = 525) No monotherapy failure* (n = 2,962) 

ADOPT eligible patients (n = 3,619) 
 

Complete case (n = 3,487) 

GADA positive n = 138 

GADA negative n = 3,208 

GADA missing n = 146 
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Supplementary Table 9: Patient characteristics for GADA positive development cohorts. 
Median (IQR) or % 
* At first visit 
†Percentage of patients observed for at least five years 
‡ measured < 6 months post diagnosis 
§ Closest to diagnosis (within 12 months pre or post diagnosis) 
|| Centile of participants with type 1 diabetes from the Wellcome Trust Case Control Consortium.  

 

 GoDarts Development 
 (n = 131) 

Sex (% Male) 48.9% 
Age at diagnosis (years) 62 (56, 70)  
BMI (kg/m2)* 28.7 (25.7, 32.7) 
Duration of diabetes (years) at latest follow up 12.5 (10.2, 14.9) 
Failure within 5 years (%)† 30.2% 
HbA1c (%)‡ 8.6 (6.9, 10.8) 
HbA1c (mmol/mol) ‡  71.0 (52.0, 95.0) 
HDL (mmol/L) §  1.2 (1.0, 1.5) 
Duration of diabetes (years) at GADA 4.9 (2.1, 6.9) 
T1D GRS|| 6.8 (1.1, 37.5) 

 

 

Supplementary Table 10: Hazard Ratios of the four covariates in the GADA positive model 
(hazard scale with 1 d.f.) for time to insulin. * Centered variables. † Log-transformed. Full model 
including derived spline variables for the baseline normal cumulative hazard, derived spline 
variables for the time-dependent effect of HbA1c and intercept for model replication purpose is 
shown in separate table.  
 

Variable Hazard Ratio  [95% CI] P value 

HbA1c (mmol/mol)*† 3.55 [1.68, 7.47] 0.001 
Age at diagnosis (years)* † 0.07 [0.02, 0.32] 0.001 
Sex (male) 0.58 [0.34, 0.96] 0.036 
BMI* † 0.06 [0.02, 0.22] <0.001 
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Supplementary Table 11: Model coefficients for the GADA positive model (hazard scale with 1 
d.f.) for model replication purpose. 
 * Centered variables. † Log-transformed. §Derived spline variables for the baseline hazard 
cumulative hazard. ||Derived spline variables for the time-dependent effect of age at diagnosis. 
HbA1c is centered on 75 mmol/mol, Age at diagnosis is centered on 61 years, BMI is centered 
on 29 kg/m2.  
 

Variable Beta coefficient [95% CI] P value 

HbA1c (mmol/mol)*† 1.266847 [0.5230154, 2.010679]  0.001 
Age at diagnosis (years)* † -2.605545 [-4.086671, -1.124419] 0.001 
Sex (male) -0.5520431 [-1.066946, -0.0371403] 0.036 
BMI (kg/m2) *† -2.859483 [-4.181024,  -1.507469] < 0.001 
rcs1§ 1.028493 [0.8105269, 1.246459] < 0.001 
rcsAge1|| -1.521259 [-2.796028, -0.2464909] 0.019 
rcsAge2|| 0.153941 [-0.5701638, 0.8780459] 0.677 
Intercept -0.9048484 [-1.257163, -0.5525342]  

 

 
Supplementary Table 12: Effects of removing variables on explained variation (R2

D) on the 
GADA positive model. The effect of removing one covariate singularly is shown in the second 
and third columns. The effect of removing covariates cumulatively in descending order of 
importance is shown in the fourth and fifth columns. The effect of removing covariates 
cumulatively in ascending order of importance is shown in the sixth and seventh columns. 
 

Variable removed Single Cumulative (greatest first) Cumulative (least first) 

 R2
D R2

D R2
D order 

Full model 0.326 0.326 0.326  
HbA1c 0.249 0.249  4 
BMI 0.203 0.059 0.161 3 
Age at diagnosis 0.229 0.006 0.232 2 
Sex (male) 0.273 - 0.273 1 

 
 
 
Supplementary Table 13: Model performance results for the internal validation 
(GADA positive model) 
 

Performance parameter Internal validation (1,000 bootstrap) 

Apparent (SD) Test (SD) Optimism 

Explained variation (R2
D) (1) 0.355 (0.099) 0.328 (0.035) 0.027 

ROC AUC (5 yr) 0.809 (0.040) 0.792 (0.013) 0.017 
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Supplementary Table 14: Patient characteristics for GADA negative cohorts. Median (IQR) or % 
* At first visit 
†Percentage of patients observed for at least five years 
‡ measured < 6 months post diagnosis 
§ Closest to diagnosis (within 12 months pre or post diagnosis)  
|| Not followed post failure. 

 

 GoDarts Development 
 (n = 3,101) 

DCS Validation 
(n = 1,213) 

ADOPT Validation 
(n = 3,208) 

Sex (% Male) 54.8% 54.3% 59.2% 
Age at diagnosis (years) 62 (54, 69)  61 (54, 67)  58 (51, 65)  
BMI (kg/m2)* 30.5 (27.2, 34.8)  29.5 (26.8, 33.2) 31.0 (27.8, 35.3) 
Duration of diabetes (years) at latest follow up 12.3 (9.9, 15.0) 6.3 (4.0, 10.2) Not Available|| 
Insulin treated within 5 years (%)† 7.9% 7.1% 14.9% 
HbA1c (%)‡ 7.6 (6.6, 9.4) 6.6 (6.1, 7.5)  7.2 (6.7, 7.8) 
HbA1c (mmol/mol) ‡  60.0 (49.0, 79.0) 48.6 (43.2, 58.5) 55.2 (49.7, 61.7) 
HDL (mmol/L) §  1.15 (0.99, 1.36) 1.15 (0.99, 1.36) 1.2 (1.0, 1.4) 
Duration of diabetes (years) at GADA 4.5 (2.4, 7.0) 7.2 (4.7, 11.4) 1.0 (0.0, 1.0) 
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Supplementary Table 15: Hazard Ratios of the four covariates in the GADA negative model 
(odds scale with 2 d.f.) for time to insulin. * Centered variables. † Log-transformed. Full model 
including derived spline variables for the baseline odds cumulative hazard and intercept for 
model replication purpose is shown in separate table.  
 

Variable Hazard Ratio  [95% CI] P value 

HbA1c (mmol/mol)*† 5.52 [4.26, 7.15] <0.001 
Age at diagnosis (years)*  0.96 [0.95, 0.97] <0.001 
Sex (male) 0.77 [0.65, 0.92] 0.004 
HDL (mmol/L) * †§ 0.53 [0.38, 0.73] <0.001 

 

 
 
Supplementary Table 16: Model coefficients for the RP GADA negative model (odds scale with 
2 d.f.) for model replication purpose. 
 * Centered variables. † Log-transformed. ‡Closest to diagnosis. §Derived spline variables for the 
baseline normal cumulative hazard. ||Derived spline variables for the time-dependent effect of 
HbA1c. HbA1c is centered on 66 mmol/mol (8.2%), Age centered on 61 years and HDL on 1.2 
mml/mol.  

 

Variable Beta coefficient [95% CI] P value 

HbA1c (mmol/mol)*† 1.707518 [1.448497, 1.966538]  <0.001 
Age at diagnosis (years)*  -0.0395409 [-0.048312, -0.0307698] <0.001 
Sex (male) -0.2552507 [-0.4289788, -0.0815225] 0.004 
HDL (mmol/L)  *†‡ -0.6422273 [-0.9718084, -0.3126463] < 0.001 
rcs1§ 0.9315873 [0.8557963, 1.007378] < 0.001 
rcs2§ -0.1583448 [-0.2177518, -0.0989377] < 0.001 
rcsHbA1c

|| -0.3280567 [-0.5007058, -0.1554076] < 0.001 
rcsHbA1c

|| 0.0955222 [-0.0272555, 0.2182999] 0.127 
Intercept -1.580503 [-1.711754, -1.449251]  

 
 
Supplementary Table 17: Model performance results for the internal validation (GADA 

negative model) 

 

Performance parameter Internal validation (1,000 bootstrap) 

Apparent (SD) Test (SD) Optimism 

Explained variation (R2
D) (1) 0.219 (0.025) 0.215 (0.015) 0.004 

ROC AUC (5 yr) 0.725 (0.017) 0.724 (0.001) 0.001 
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Supplementary Figure 9: DCS external validation (GADA negative model) calibration plot of 
expected versus observed failure probabilities at t = 5 years. Dashed grey line is reference line 
where observed = expected probabilities. Black filled cricles are risk groups using deciles of 
expected probabilities, vertical grey solid lines are 95% CIs. Grey solid line is lowess smoother.   
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Supplementary Figure 10: ADOPT external validation (GADA negative model) calibration plot 
of expected versus observed failure probabilities at t = 4 years. Dashed grey line is reference 
line where observed = expected probabilities. Black filled cricles are risk groups using deciles of 
expected probabilities, vertical grey solid lines are 95% CIs. Grey solid line is lowess smoother.  
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Discussion 
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The work presented in this thesis has investigated the development of clinical 

prediction models to assist with the classification and care of patients diagnosed 

with diabetes in clinical practice.  

The first two studies of this thesis investigate the development and validation of 

a diagnostic model for identifying type 1 diabetes requiring rapid insulin therapy 

in young adults. We first developed a multivariable diagnostic model combining 

five clinical features and biomarkers (age of diagnosis, BMI, GADA and IA-2 

islet-autoantibodies, T1D GRS) using logistic regression. Performance was 

assessed using both internal and external validation; the results indicated that 

the model had high discrimination and calibration ability. In the next study, we 

used the same dataset to assess if machine learning would have superior 

performance over logistic regression in this setting. We built comparative 

models using five commonly used supervised machine learning algorithms 

(Gradient Boosting Machine, Support Vector Machine, K-Nearest Neighbours, 

Neural Network and Random Forest) and compared their performance to that of 

logistic regression. In this setting, there was no performance gain in using 

machine learning.  

The remaining studies investigated glycaemic deterioration in patients 

diagnosed with type 2 diabetes. We first discovered that a genetic risk score 

(T1D GRS) can be used to identify patients with rapid glycaemic deterioration 

requiring insulin treatment over and above GADA testing. We went on to 

develop and externally validate a multivariable prognostic model built using 

Royston-Parmar flexible parametric survival analysis (RP) to identify patients 

with a high risk of rapid progression. Performance of the model was modest 

with baseline HbA1c explaining most of the variation.  
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The remainder of this chapter gives an overview of the main findings of this 

thesis and discusses the work’s conclusions, implications, limitations and 

potential areas for further research. 
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Discussion of chapter 2: Development and validation of multivariable 

clinical diagnostic models to identify type 1 diabetes requiring rapid 

insulin therapy in adults aged 18 to 50 

Misclassification of diabetes subtype is common particularly in young adult 

patients where, due to increasing rates of obesity, discriminating between type 

1 and young-onset type 2 diabetes can be challenging. Current guidance on 

diabetes classification at diagnosis focuses on aetiopathological definitions 

rather than the patient’s treatment requirements, with no clear criteria for use in 

clinical practice. There is no single diagnostic test that can robustly classify 

diabetes at diagnosis and no clinical prediction models are available to assist 

clinical decision making.   

In this study we developed and validated a diagnostic model to classify type 1 

diabetes at diagnosis using a robust definition based on the requirement for 

rapid insulin therapy. 

Conclusions 

A diagnostic model combining clinical features and biomarkers has a higher 

accuracy for identifying type 1 diabetes with rapid insulin requirement than 

using single features in isolation. 

Implication of findings 

This study delivers a diagnostic model that has the potential to be used in 

clinical practice to assist clinicians to accurately identify patients with type 1 

diabetes requiring rapid insulin therapy and to help reduce diabetes 

misclassification.  
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The development of multiple models with different combinations of the five 

predictors means that the model still retains utility in situations where 

autoantibody and/or genetic testing is either not indicated or not available; the 

model can be still be used in at least one form. For example, genetic but not 

autoantibody data is available in many biobanks but in clinical care, genetic 

testing is not yet routinely performed. This development approach allows a 

staged approach to classification of diabetes; the clinical features-only model 

can be used to identify patients with diagnostic uncertainty who may benefit 

most from additional testing without incurring any financial cost.  

In addition to aiding clinical decision-making, the model could facilitate a triage-

based approach to diabetes subtype diagnosis; probabilities derived on clinical 

features alone could be used as criteria for requesting autoantibody or genetic 

testing. It could also be used as a tool for evidence-based classification in 

diabetes research where it could be incorporated into the participant selection 

process. 

The model is presented in a website (beta version available at 

https://www.diabetesgenes.org/t1dt2d-prediction-model/) (Figure 1) which 

provides predictions based on user input predictor values (R code provided in 

Appendix 1). 
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Figure 1: Classification model web calculator
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Subsequent work 

There have not to our knowledge been any other published studies proposing a 

diagnostic model for classifying type 1 and type 2 diabetes at diagnosis. A 

recent study examining the frequency of type 1 diabetes has however 

highlighted the need for improved diabetes classification in older adults (1). 

A clustering algorithm comprising of five diabetes subgroups has recently been 

published; one cluster being defined by the presence of GADA positivity only 

regardless of other features (severe autoimmune diabetes (SAID) cluster), and 

the other four based on GADA negativity and differences in age at diagnosis, 

BMI, HbA1c and HOMA 2 (type 2-like clusters) (2) but did not show that the 

clusters could be used to inform treatment decisions (3). Whilst this cluster 

model has limitations, it does identify a future direction for diabetes prediction 

models where the focus shifts from classification of diabetes to predicting other 

aspects of the disease such as complications and treatment responses.  

A new improved T1D GRS has been published subsequent to our study (T1D 

GRS2) (4). The new T1D GRS2 includes 67 SNP’s compared to 30 in T1D GRS 

and has greater performance. An area of future work would be to update the 

model with the new T1D GRS2.  

We followed up this study in Chapter 3 to compare the performance of machine 

learning algorithms to that of logistic regression. 

Limitations 

The limitations of this work are predominantly related to the use of existing 

cross-sectional data to build the models: ideally we would have carried out a 

new study allowing us to use predictors measured at diagnosis and follow-up 
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data to assess development of severe insulin deficiency and insulin 

requirement. 

The use of existing data meant that we were limited to modelling only the 

features that were available in the datasets. The cross-sectional nature of the 

data meant that predictors that present at diagnosis such as presentation 

glycaemia, ketosis, or weight loss were not available in the datasets. It also 

meant that predictor variables were for most participants measured some years 

post diagnosis; since BMI and islet-autoantibodies change over time in adult 

onset diabetes (5), the model predictions are likely to be under-estimated.  Data 

such as date of diagnosis and time to insulin were self-reported by the patient 

rather than obtained from patient medical records which may have introduced 

error when assigning the outcome.  

There are two limitations connected to the use of C-peptide as our gold 

standard outcome. Firstly, an issue with stored samples for participants in the 

DARE cohort prior to February 2010 (when immediate freezing of aliquoted 

samples was introduced) restricted the availability of C-peptide data in DARE 

participants before this date: sample degradation and poor sample collection 

can cause falsely low values (6). Secondly, we did not consider renal 

impairment in the participants, which may cause falsely high values (7).  

Both GADA and IA-2 titres (concentrations) were dichotomised for use as 

predictors in the model. We did not use them as continuous predictors because 

the rounding of titres lower or above the levels of assay detection causes peaks 

at either end in the continuous distribution and because titre values are not 

normally available in clinical practice; results are normally reported simply as 

either positive or negative. 
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The datasets used to develop the model predominantly consisted of white-

European participants, which meant that we did not have sufficient data to 

include ethnicity as a predictor in the model. The model does not therefore 

reflect differences in prevalence in certain ethnic subgroups (8) and restricts the 

use of the model to a white-European population. Another limitation related to 

the use of the model is that is unsuitable for extrapolation beyond the ages of 

18 and 50 years. 

Finally, we were unable to externally validate all combinations of the model as 

IA-2 islet-autoantibodies and T1D GRS were not available in the external 

dataset. 

Future research 

The main direction of future research is to implement the model into clinical 

practice. This will involve additional validation and expanding the use of the 

model into other ethnicities and age groups.  

Important areas of future research are updating the existing predictor 

coefficients using data measured at diagnosis and assessing the performance 

of the model with the inclusion of additional features available only at diagnosis. 

This data will be available in the Getting the Right Classification and Treatment 

From Diagnosis in Adults With Diabetes (StartRight) study (9). StartRight is a 

new prospective observational study of newly diagnosed adult participants 

designed to assess the relationship of clinical features and biomarkers to 

diabetes subtype.  

There is an opportunity to perform prospective external validations using the 

StartRight study (9) and United Kingdom prospective diabetes study (UKPDS) 

(10). UK Biobank is a valuable new source of data for future validation or 
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updating of the model. UK Biobank is a long-term national project to build a 

detailed resource for health researchers consisting of data and stored samples 

on more than 500,000 UK volunteers aged 40-69 years when recruited (11). It 

now contains GP medical records and there are plans to include C-peptide 

measurement.  

An assessment of the clinical usefulness of the model would be an interesting 

addition to this study and would be useful for implementing the model into 

clinical use. Follow up research could include a health economic and 

implementation study (12) to evaluate the impact of the model in clinical use. 

For example, a study to evaluate differences in classification or outcomes could 

involve comparing decisions made using the model predictions versus clinician 

based decisions. 
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Discussion of chapter 3: Logistic regression has similar performance to 

optimised machine learning algorithms in a clinical setting: application to 

the classification of type 1 and type 2 diabetes in young adults 

The previous chapter suggested that a diagnostic model to classify type 1 

diabetes at diagnosis built using logistic regression achieved good performance. 

In this study we compared the discrimination and calibration performance of five 

machine learning algorithms to logistic regression using our diabetes 

classification model from the previous chapter as an example. 

Conclusions 

Optimised machine algorithms performed no better than logistic regression to 

classify type 1 and type 2 diabetes in young adults.  

Implication of findings 

A recent systematic review study found no evidence of superior performance of 

machine learning over logistic regression and concluded that improvements in 

methodology and reporting of comparison studies are needed (13).  In our study 

we demonstrated the application of a methodological approach and provided 

our code to allow our approach to be replicated in future comparison studies 

(Appendix 2). 

This study demonstrates the utility of comparing machine learning to traditional 

regression modelling when developing and selecting clinical prediction models, 

and re-iterates the need to validate models on external data. In our diabetes 

setting, we provided confidence that machine learning would not have yielded 

better performance than that achieved using logistic regression. 
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Subsequent work 

There are no studies that have published a performance comparison of a 

diabetes classification model. 

Limitations 

An essential aspect of this model comparison study was the external validation, 

which we would ideally have carried out using with all five predictors.  It is a 

severe limitation that the lack of IA-2 and T1D GRS in the external dataset 

meant that the only external validation that we were able to perform involved 

using just three of the predictor variables: Age at diagnosis, BMI and GADA. 

This is a very small number of predictors for machine learning algorithms even 

in medicine (between 5 and 20 predictors is more relevant). Machine learning is 

generally associated with processing large numbers of predictors but in 

medicine, with the possible exception of image data, a few meaningful 

predictors is more common. It is possible that a comparison of a model 

comprising of more variables and the use of a larger sample size might have 

given enough power to the machine learning for it to outperform logistic 

regression. 

Furthermore, logistic regression may have been slightly disadvantaged in our 

comparison by not considering non-linearity. 

Future research 

The methodological approach that we have applied to our study could be used 

as a framework for independent researchers to externally validate other studies 

that have performed similar comparisons. In particular, it would be interesting to 
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use our framework to examine other comparison studies identified as having a 

risk of bias in the recent systematic review (13). 

Future research to address the main limitations of this study could include 

adding more predictors and an assessment of a more flexible logistic regression 

model with splines or fractional polynomials. A logistic regression model with 

interactions would also be of interest especially if the number of predictors were 

increased. The effect of the use of SMOTE for class imbalance on risk 

estimates is an important issue that could also be addressed in future research.   
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Discussion of chapter 4: A Type 1 Diabetes Genetic Risk Score can 

identify patients with GAD65 autoantibody positive type 2 diabetes that 

rapidly progress to insulin therapy 

The rate of glycaemic progression in patients with clinically diagnosed type 2 

diabetes is highly variable. There may be clinical utility in identifying patients 

who are most likely to rapidly progress to requiring insulin therapy, enabling 

clinicians to prioritise high risk patients for more frequent monitoring and 

treatment escalation.  

GADA has been associated with rapid glycaemic deterioration, but the 

predictive value of this test is limited in patients with type 2 diabetes. Previous 

research has suggested that type 1 diabetes genetic variants in the HLA region 

are associated with rapid progression to insulin therapy in patients with clinically 

diagnosed type 2 diabetes who are positive GADA (14). 

We used survival analysis to investigate if a diagnostic test for type 1 diabetes 

genetic variants (T1D GRS) could identify rapid progression to insulin therapy in 

adult patients with a clinical diagnosis of type 2 diabetes over and above GADA 

testing. 

Conclusions 

We found that participants who were GADA positive and had a high T1D GRS 

progressed to insulin therapy more rapidly than the other GADA positive 

participants. There was no difference in the rate of progression by T1D GRS in 

participants who were GADA negative.  

Our finding that GADA is associated with time to insulin in patients clinically 

diagnosed with type 2 diabetes is consistent with previous studies (15, 16); 
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what we add to previous knowledge is our finding that T1D GRS is 

independently associated with time to insulin in this population, but only in the 

presence of GADA.  

Implication of findings 

T1D GRS alters the clinical implications of a positive GADA test when predicting 

time to insulin requirement in patients with a clinical diagnosis of type 2 

diabetes. There is no prognostic value in genetic testing for patients who are 

GADA negative; genetic testing should be indicated in clinical practice only for 

patients who are GADA positive to more accurately assess their risk of requiring 

rapid insulin therapy. The use of this two-step testing approach may facilitate a 

precision medicine approach to treating patients diagnosed with type 2 

diabetes. Our findings could also be applied to participant selection for future 

type 2 diabetes clinical trials investigating immune intervention or other 

interventions to slow progression. 

Whilst original reports of the T1D GRS focused on aiding discrimination 

between type 1 and type 2 diabetes (17) it has also been used in subsequent 

studies for other applications such as discriminating monogenic and type 1 

diabetes (18) and predicting progression of islet-autoimmunity (19). The use of 

T1D GRS in our study adds another novel practical application of its use to the 

literature: to assist identification of patients diagnosed with type 2 diabetes who 

will require early insulin therapy over and above GADA testing. 

Our results support the findings of a recent study that suggested the presence 

of GADA in patients clinically diagnosed with type 2 diabetes is indicative of two 

heterogeneous populations with very different phenotypes (20). The first 

subtype is an autoimmune late onset type 1 diabetes: patients have a genetic 
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susceptibility to type 1 diabetes and require rapid insulin therapy. The second is 

a non-autoimmune diabetes: the GADA result is a false positive which will be 

common with islet-autoantibody testing in low prior prevalence populations (type 

2 diabetes not requiring initial insulin).  

The presence of genetic susceptibility to type 1 diabetes may increase the 

likelihood that a patient who is GADA positive has true underlying type 1 

diabetes, rather than being a false positive result. 

Subsequent work 

Although this study has been cited by studies relating to the use of genetics in 

diabetes (21, 22), there have not to our knowledge been any other published 

studies investigating the use of GADA and T1D GRS to identify patients 

diagnosed with type 2 diabetes requiring early insulin therapy. 

We followed up this study by using GADA and T1D GRS in the development of 

a multivariable prognostic model to predict rapid insulin requirement in adult 

patients diagnosed with type 2 diabetes requiring early insulin therapy (chapter 

5).  

Limitations 

The main limitation of this study is our reliance on using initiation of insulin 

therapy based on a clinical decision rather than trial protocol to define the 

endpoint. This is problematic because there is likely to be variation in the 

decision to initiate insulin therapy between both clinician and patient which may 

have introduced inertia bias. Clinicians were unaware of the patients T1D GRS 

and immunology test results at the date of treatment decision so systematic 

bias is unlikely. Actual clinical requirement for insulin was not known and we 
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were unable to distinguish between relative or absolute requirement for insulin 

as C-peptide was not routinely measured in this cohort.  

In the Cox proportional hazards regression analysis, we discovered a 

statistically significant association between year of diagnosis and time to insulin 

consistent with previous studies (23) reflecting changes in prescribing patterns 

over time, specifically an increasing delay of insulin therapy initiation (24). Our 

results were not adjusted for year of diagnosis but this finding may be an 

important consideration in future work. 

There were several limitations relating to the use of Exeter-based cohorts. 

Firstly, the use of self-reported time to insulin in the Exeter based cohorts may 

have introduced imprecision. Our use of complete-case analysis meant that we 

excluded a large number of DARE participants because GADA was missing; 

GADA testing was only performed in the study for participants who were 

younger at diagnosis and stored serum was not available for all participants 

meaning that we could not perform additional GADA testing for all participants 

where GADA was missing. Most of the 3,542 participants excluded from our 

analysis were from the DARE cohort, there were statistically significant 

differences in the clinical features of these excluded participants but they were 

not considered clinically relevant. 

To achieve sufficient numbers, we had to combine several cohorts from 

different studies - ideally we would have used a single cohort. There were two 

limitations related to the use of a combined dataset; statistically significant 

differences in GADA prevalence, diabetes duration and HbA1c between cohorts 

were evident and survival distributions differed between studies. We dealt with 
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these limitations by including study of origin as a strata variable in the Cox 

proportional hazards regression analysis. 

Another limitation is the measurement of GADA post diagnosis. This limitation 

has been discussed earlier in this discussion in relation to chapter 2 and is not 

repeated here. In addition to GADA, IA-2 has previously been associated with 

time to insulin in patients diagnosed with type 2 diabetes (25) but we were 

unable to assess the interaction between IA-2 (or any other islet-autoantibody) 

and T1D GRS in our study as this data was not available. 

In our Cox proportional hazards regression analysis, the relationship between 

the continuous covariates and progression to insulin was assumed to be linear. 

This may be an invalid assumption and should be considered in any future 

research. 

The implications of our findings are not generalisable to patients who are of 

non-white European ethnicity or are younger than 35 years at diagnosis. 

Future research 

There is an opportunity for this study to be repeated in a new prospective study 

in which GADA is measured at diabetes diagnosis and initiation of insulin is 

based on a trial protocol. Our study could be extended in this new prospective 

setting to investigate the use of other islet-autoantibodies such as IA-2 and 

ZnT8. The findings from a study using IA-2 would be of particular interest for 

LADA diagnosis which is currently based on GADA only.  

A follow up study to assess whether prior likelihood of autoimmune diabetes 

alters the association between clinical features and biomarkers, and 

progression to insulin therapy would be of interest. This could be achieved by 
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performing survival analysis for different age and BMI subgroups. It would also 

be of clinical interest to examine if the interaction between GADA and T1D GRS 

was consistent at different ages. Our primary outcome was short term 

progression to insulin therapy (5 years), a secondary outcome that could be 

investigated in future research is long term progression to insulin in those 

participants who did not require insulin therapy by five years. Future research 

could be based on the new improved T1D GRS2 (4) which was published 

subsequent to our study and incorporating different centiles for GADA positivity. 

An important area for future research would be to apply our findings to the 

development of a prognostic model to predict rapid insulin requirement in 

individual patients diagnosed with type 2 diabetes. The use of a prediction 

model combining multiple predictors including GADA and T1D GRS is likely to 

have the greatest utility. 
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Discussion of chapter 5: Predicting early insulin requirement in adults 

diagnosed with type 2 diabetes: development and external validation of a 

multivariable survival model. 

Chapter 4 identified genetic susceptibility to type 1 diabetes, measured using 

T1D GRS, alters the implications of a positive GADA result in patients 

diagnosed with type 2 diabetes and could be used to identify patients at high 

risk of rapid progression to insulin therapy.  

A previous Diabetes UK-funded Diabetes Remission Clinical Trial (DiRECT) 

study found other clinical features and biomarkers in addition to GADA and T1D 

GRS that were independently associated with progression to insulin in patients 

diagnosed with type 2 diabetes (23). We combine our findings from chapter 4 

and findings from the DiRECT study to develop and validate a multivariable 

prognostic model to predict rapid insulin requirement from diagnosis in 

individual adult participants diagnosed with type 2 diabetes. 

Conclusions 

The rate of glycaemic deterioration from first diagnosis defined by requirement 

for insulin therapy is generally slow and fairly constant in the majority of patients 

diagnosed with type 2 diabetes. Prognostic models integrating clinical features 

and biomarkers have the potential to identify those patients at high risk of rapid 

progression to insulin. High HbA1c measured at diagnosis is the strongest 

predictor of rapid progression.  

Implication of findings 

Identifying patients at high risk of rapid progression to insulin has utility in both 

clinical practice and research. In clinical practice, individual predictions of a 
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patient’s progression to insulin can be used to optimise their treatment and set 

monitoring priorities. In research, patients likely to rapidly progress could be 

targeted to maximise the cost effectiveness of clinical trials of interventions 

aimed at slowing diabetes progression. 

Use of the model as a triage-based tool for identifying of patients who would 

benefit most from GADA testing or those patients who are more likely to be 

GADA positive has significant clinical interest. Firstly, there is a financial benefit 

in testing only a minority of patients who will benefit most from additional 

testing. Currently one of the reasons why GADA testing is not indicated 

routinely for patients with type 2 diabetes is that it would be too expensive to 

test everyone given the huge incidence of this disease. Secondly, altering the 

number of GADA tests performed by only testing those patients who are more 

likely to be GADA positive (increasing the prior likelihood) will have the benefit 

of increasing the positive predicted value of the test. 

Subsequent work 

There have not to our knowledge been any other published studies proposing a 

prognostic model for identifying early insulin requirement in adults diagnosed 

with type 2 diabetes.   

Limitations 

The measuring of GADA post diagnosis in the GoDarts and DCS cohorts may 

have resulted in some false negatives since GADA levels decrease over time 

(26). This would have no impact on our main model but may have caused 

estimation bias in our GADA models due to the classification of participants by 

their GADA status (negative or positive).  
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The development of separate GADA models has an advantage in terms of 

clinical utility but resulted in a small numbers of participants available to build 

the GADA positive model (n = 131) and wide confidence intervals in the model 

estimates. In addition, we were unable to perform external validation of the 

GADA positive model for the same reason. We were unable to use DARE 

Exeter-based cohort to increase our sample size as HbA1c measured at 

diagnosis was not available for the majority of participants. 

In contrast to our findings in chapter 4, T1D GRS was not statistical significant 

in the GADA model when adjusted for the other clinical features and 

biomarkers, this may have been a power issue in this small dataset or it could 

be that the combined features are capturing a prior likelihood effect (identifying 

the GADA false positives) much better than T1D GRS in our previous study. 

Much larger studies would be needed to increase the number of GADA positive 

participants to allow the T1D GRS to be re-assessed and external validation of 

the model to be performed. It would be useful to investigate the effect of the 

new T1D GRS2 (4).  

The use of separate GADA models dealt with the presence of statistically 

significant interactions between GADA and each of BMI, T1D GRS and HDL. 

Future work could investigate interactions between the continuous predictor 

variables and assess the impact of including any required interaction terms on 

model performance, the practicality of implementing a potentially complex 

model would also need to be assessed. 

The predictor variables included in the models are based on features and 

biomarkers which are routinely measured or inexpensive to measure in the U.K. 

The models may have a different utility outside the U.K. where clinical practice 
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and availability of the tests are likely to vary. The findings of this study can only 

be applied to participants of white- European ethnicity. 

The main limitation of our study is that insulin initiation was based on clinical 

decision making rather than a trial protocol. There is uncontrollable extraneous 

variability in both the time of diagnosis and the length of time before insulin 

initiation and therefore neither the start nor the endpoint of the survival period is 

fixed in relation to any underlying progress of the disease. Many patients with 

type 2 diabetes are diagnosed whilst in the early stages of the disease by 

routine testing; otherwise, because hyperglycaemia develops gradually, a 

patient may go undiagnosed for many years before experiencing classic 

diabetes symptoms.  

In clinical practice, clinical inertia may affect insulin initiation decisions (27, 28); 

decisions to initiate insulin therapy may also be influenced by factors other than 

high HbA1c (29). In patient-centred care approaches, there will inevitably be 

between patient variations in the decision to start insulin with many patients 

having a strong preference to avoid insulin initiation (30, 31). There may be also 

be between clinician/practice variability in the prescribing patterns (32) and/or 

compliance to the HbA1c level guidelines at which insulin is initiated (31, 33). 

We did not have HbA1c measured at time of insulin initiation so we were unable 

to check if insulin was initiated according to guidelines. 

We assessed the performance of the model in ADOPT clinical trial data (34); 

this dataset had the advantage of an outcome event defined using a trial 

protocol but the disadvantage of being based on a different diabetes outcome 

(monotherapy failure). Ideally we would have developed and validated the 
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model using a prospective trial where biomarkers could be measured at time of 

diagnosis and insulin initiation.  

Drug therapy prior to insulin initiation was not available in the datasets so we 

were unable to adjust for the adequacy of glycaemic control in different 

therapies (32, 35-39). Number of visits and inadequate monitoring (40) may 

have affected time to insulin initiation but we did not have the data to check this.  

At a population level, glycaemic control is improving over time (41) with the time 

to insulin initiation increasing (24). This may be explained by the introduction of 

newer oral agents over time (24). All of these will have an impact on the 

predictions when using time to insulin initiation as the outcome. Our finding that 

earlier year of diagnosis was associated with higher rates of glycaemic 

deterioration was consistent with previous studies (16, 23). Year of diagnosis 

was not adjusted for in our model since its practical implementation would have 

been difficult. Our failure to adjust for calendar year of diagnosis in the model 

may have resulted in over-estimated predictions. This limitation should be 

considered when implementing the model for clinical use, possibly by applying 

periodic adjustments.   

We decided to use RP to develop our model as it is a preferred approach in 

situations where individual predictions are required and there is a need to 

incorporate the time-dependent effects (42, 43). We encountered limitations in 

the usability of the model arising from the inclusion of time-dependent effects; 

the beta-coefficients are difficult to interpret and publishing the model is more 

complex.  

Data was not available for other islet-autoantibodies in our development dataset 

(GoDarts) so we were restricted to using GADA. It would be interesting to 
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incorporate IA-2 and/or ZnT8 into the models as this is likely to increase 

performance but their inclusion would likely involve re-designing the model.  

674 patients in our development cohort died before they had progressed to 

insulin therapy; we did not investigate the impact or adjust for competing risks in 

our model which means that the model coefficients may be over-stated. A 

competing risks analysis would be an interesting area for future research. 

Future research 

The Innovative Medicines Initiative Diabetes Research on Patient Stratification 

(DiRECT) study (44) may be a potentially valuable resource for future research 

aimed at either updating or validating the model although its usefulness is 

limited by a relatively short follow up time. DiRECT is a large study collecting 

biomarkers associated with glycaemic deterioration in participants recently 

diagnosed with type 2 diabetes. Participants are recruited close to diagnosis 

and followed-up for between 18 and 36 months, clinical features and 

biomarkers are collected at baseline and repeated at two follow up visits. A 

further area of research would be to use DiRECT or similar studies to assess 

whether the addition of further genetic, metabolomic or proteomic data improves 

the model performance over and above the simple clinical features and clinical 

biomarkers currently used. 

A study comparing the performance and clinical utility of our model to identify 

patients with rapid progression to insulin to that of the type 2 diabetes 

subgroups derived by Ahlqvist et al in the recently published cluster analysis (2) 

would be interesting future research.  

Another area of future research would involve using the risk predictions from 

our model together with health economic modelling methodologies to 
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investigate whether targeted interventions can be a cost-effective approach for 

managing type 2 diabetes outcomes. Related future research could include 

process evaluation of the model using clinician focus groups or questionnaires 

and performing decision curve analysis to describe the clinical effects of the 

model.  

There is the option in future research to address this research question as a 

binary regression problem – the event outcome being insulin initiation by five 

years. It would be interesting to compare both the performance of the two 

approaches and their respective clinical uptake. 
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Final remarks 

This thesis demonstrates that routinely measured clinical features and 

biomarkers can be used in multivariable prediction models to aid clinical 

decisions regarding the classification and care of adult patients diagnosed with 

diabetes.  

The importance and challenges of both correctly classifying patients with 

diabetes according to their treatment requirements at diagnosis and identifying 

patients with type 2 diabetes who are likely to rapidly progress to insulin have 

been highlighted in this thesis: clinical prediction models to identify patients 

likely to develop diabetes (45) or to identify MODY (46) have been published 

but there are currently no published clinical prediction models that address 

these two challenges. 

For classification of type 1 and type 2 diabetes, the studies in this thesis identify 

five diagnostic predictors that can be used at diagnosis, in varying 

combinations, to accurately predict a patient’s individual risk of type 1 diabetes 

requiring early insulin therapy. The studies in this thesis also identify clinical 

features and biomarkers that can be combined to predict risk of rapid glycaemic 

deterioration, from diagnosis, in patients with type 2 diabetes.  

This thesis is concerned with the application of statistics to develop valid clinical 

prediction models that can be used in clinical practice. Methodologically, the 

systematic approach applied to the model development and validation 

undertaken in this thesis has been statistically robust and has followed 

methodological literature and published guidelines on how to perform prediction 

research (47). An important focus of this thesis is the clinical utility of these 

models; only features that are routinely indicated in clinical practice have been 
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implemented in the models. Future work is now required to make these models 

ready for implementation into clinical practice. 

The models developed in this thesis could be used to implement a personalised 

approach to managing patients with diabetes in clinical practice: evidence-

based predictions obtained from the models can be used to inform treatment 

decisions in conjunction with clinical expertise. In addition, predictions could be 

used to implement triage-based protocols for additional islet-autoantibody of 

genetic testing or referrals for prioritised monitoring. 
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Appendix 1:  

R Code for creating diabetes 

classification model shiny app 
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############################################################# 

## Create classification model shiny app   

## Original author - Anita Lynam - g26482@hotmail.co.uk - January 2019 

############################################################# 

#Load libraries 

library(shiny) 

library(shinyjs) 

# Define UI for application that returns a probability 

ui <- fluidPage( 

useShinyjs(), 

titlePanel("Type 1/Type 2 diabetes classification model BETA Version"), 

h4("This model is designed to differentiate type 1 from type 2 diabetes. If a 
diagnosis of monogenic diabetes is being considered please use the ", 
tags$a(href="https://www.diabetesgenes.org/mody-probability-calculator/", 
target="_blank", "MODY calculator")), 

h4("Please enter the age and BMI, other biomarkers are optional"), 
div(id="form", 

# Sidebar layout with a input and output definitions 

sidebarLayout( 

sidebarPanel( 

#Numeric input control for Age 

textInput(inputId = "age", label = "Enter age at diagnosis (yrs) (min 18, max 
50)", placeholder = "min is 18, max is 50" 
 ), 
h5(tags$strong("Enter BMI OR enter height and weight in boxes below, then 
press 'Use Height and Weight'")), 

# Set BMI using text box 

numericInput(inputId = "BMI",value = NULL,label = tags$div(HTML(paste("Enter 
BMI (kg/m",tags$sup(2),") (min 17.5, max 70)",sep =""))), min = 17.5, max = 70, 
step = 0.5),  

#inputs to calculate BMI if required 

#height 

textInput(inputId ="Height", label ="Height (cm)"), 

#weight 

textInput(inputId ="Weight", label = "Weight (kg)"), 

#allows the user to select BMI input type 

actionButton("runBMIInputs", "Use Height and Weight"),  
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h5(""), 

selectInput("Ethnicity", "Ethnicity: Model is currently only available for white-
ethnicities", choices = c("White-European")), 

radioButtons("GADA", "Select GADA status:", c("Positive" = "1", "Negative" = 
"0","Not tested" = ""), selected = ""),  

# Selector for choosing IA2 

radioButtons("IA2", "Select IA-2 status:", c("Positive" = "1", "Negative" = "0", 
"Not tested" = ""), selected = ""), 

#Numeric input control for T1D GRS 

textInput(inputId = "GRS",value = "", label = "Enter T1D GRS centile of type 1 
diabetes population*", placeholder = "Enter centile between 0 and 1" ), width = 
5), 

# Outputs 

#the first condition panel is for model 1 

mainPanel( 

h4(textOutput("txt1")), 

h4(textOutput("txt4")), 

h4(HTML(paste(textOutput("txt5"),textOutput("txt7")))), 

h4(textOutput("txt2")), 

h4(textOutput("txt3")), 

h4(textOutput("txt6")), 

actionButton("resetAll", "Reset all"), 

tags$br(), 

tabsetPanel( 

tabPanel("Model predictions", 

conditionalPanel(condition =  "(input.GADA == '') && (input.IA2 == '') && 
(input.GRS =='')" ,textOutput("mod1Prob"),                    

tags$head(tags$style("#mod1Prob{color: black; font-size: 20p" 

) 

) 

), 

conditionalPanel( 

condition =  "(input.GADA != '') && (input.IA2 == '') && (input.GRS =='')" , 

textOutput("mod2Prob"), 

tags$head(tags$style("#mod2Prob{color: black; font-size: 20px;}" 
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) 

) 

), 

conditionalPanel(condition =  "(input.GADA != '') && (input.IA2 != '') && 
(input.GRS =='')" , 

textOutput("mod3Prob"), 

tags$head(tags$style("#mod3Prob{color: black;font-size: 20px;}" 

) 

) 

), 

conditionalPanel(condition =  "(input.GADA != '') && (input.IA2 != '') && 
(input.GRS !='')" , 

textOutput("mod4Prob"), 

tags$head(tags$style("#mod4Prob{color: black; font-size: 20px;}" 

) 

) 

), 

conditionalPanel(condition =  "(input.GADA == '') && (input.IA2 != '') && 
(input.GRS=='')", 

textOutput("mod5Prob"), 

tags$head(tags$style("#mod5Prob{color: black; font-size: 20px;}" 

) 

) 

), 

conditionalPanel( condition =  "(input.GADA == '') && (input.IA2 == '') && 
(input.GRS !='')", 

textOutput("mod8Prob"), 

tags$head(tags$style("#mod8Prob{color: black; font-size: 20px;}" 

) 

) 

), 

conditionalPanel(condition =  "(input.GADA == '') && (input.IA2 != '') && 
(input.GRS !='')", 

textOutput("mod6Prob"), 

tags$head(tags$style("#mod6Prob{color: black;font-size: 20px;}" 
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) 

) 

), 

conditionalPanel(condition =  "(input.GADA != '') && (input.IA2 == '') && 
(input.GRS !='')", 

textOutput("mod7Prob"), 

tags$head(tags$style("#mod7Prob{color: black; font-size: 20px; }" 

) 

) 

) 

), 

tabPanel("Model information", paste("This model is designed to assist 
classification of diabetes in patients diagnosed aged 18 to 50. It was developed 
in a white UK population and therefore predictions may not be applicable to 
other populations. Type 1/type 2 diabetes is defined using a gold standard 
based on measured endogenous insulin secretion (C-peptide) and early insulin 
requirement (see diabetes definition tab). The development of the model is 
described in XXXX")), 

tabPanel("Diabetes definition", h5(" For model development diabetes type was 
defined as follows:",tags$br(), "Type 1 - Insulin requirement with 3 years of 
diagnosis and severe endogenous insulin deficiency (non-fasting C-peptide 
<200pmol/L)", tags$br(), "Type 2 - Absence of insulin requirement within 3 
years of diagnosis, or (where early insulin treatment) substantial retained 
endogenous insulin secretion after 5 years diabetes duration (non-fasting C-
peptide >600pmol/L)")) 

), 

width = 7 

) 

) 

), 

h5("*Type 1 Diabetes Genetic Risk Score (30 SNP), Oram RA, Patel K, Hill A, 
Shields B, McDonald TJ, Jones A, Hattersley AT, Weedon MN: A Type 1 
diabetes genetic risk score can aid discrimination between Type 1 and Type 2 
diabetes in young adults. Diabetes care 2016;39:337-344") 

) 

# Define server function  

server <- function(input, output, session) { 

output$txt1 = renderText({ 

paste("You have selected: ") 
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}) 

output$txt2 = renderText({ 

if(input$GADA =="1") { 

paste("GADA: Positive") 

} else if (input$GADA =="0") { 

paste("GADA: Negative") 

}  

}) 

output$txt3 = renderText({ 

if(input$IA2 =="1") { 

paste("IA-2: Positive") 

} else if (input$IA2 =="0") { 

paste("IA-2: Negative") 

} 

}) 

output$txt4 = renderText({ 

if (!(is.null(input$age)||input$age =='')){ 

paste("Age at diagnosis: ", input$age)} 

}) 

output$txt5 = renderText({ 

if(!(is.null(input$BMI)||input$BMI =='' ||is.na(input$BMI))){ 

paste("BMI: ", round(input$BMI,1)) } 

}) 

observeEvent(input$resetAll, { 

reset("form") 

output$txt7 = renderText({ 

paste("") 

}) 

}) 

output$txt6 = renderText({ 

if(input$GRS !=""){ 

paste("T1D GRS centile: ", as.numeric(input$GRS)) 

} 
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}) 

#bmi calculation 

observeEvent(input$runBMIInputs,{ 

updateNumericInput(session, "BMI", value = 
paste(round(as.numeric(input$Weight)/((as.numeric(input$Height)/100)^2),1))) 

output$txt7 = renderText({ 

paste("(based on height",input$Height," (cms) and weight ", input$Weight, " (kg) 
inputs)") 

}) 

}) 

observeEvent(input$BMI,if(!(is.null(input$Height)||input$Height 
==''||is.na(input$Height)) & !(is.null(input$Weight)||input$Weight 
==''||is.na(input$Weight)) & (round(input$BMI)) != 
round(as.numeric(input$Weight)/((as.numeric(input$Height)/100)^2))){ 
output$txt7 = renderText({ 

paste("") 

})} 

) 

model1pred = function (){37.9391 + (-5.085444 *log(as.numeric(input$age))) + 
(-6.342471 * log(input$BMI)) 

} 

output$mod1Prob = renderText({ 

if (is.null(input$age)||input$age =='' ) { paste ("Please enter age between 18 and 
50 (inclusive)") 

} 

else if ((as.numeric(input$age)<18 || as.numeric(input$age)>50)){ paste("Please 
enter valid age, minimum age is 18, maximum is 50") 

} 

else if (is.null(input$BMI)||input$BMI ==''||is.na(input$BMI) ) { paste ("Please 
enter valid BMI OR use the height and weight inputs") 

} 

else if (input$BMI <17.5 || input$BMI >70) { paste ("Please enter valid BMI 
value, minimum BMI is 17.5, maximum is 70") 

} 

else {if (round((exp(model1pred())/(1+exp(model1pred())))*100)>99){ 

paste("The probability of type 1 diabetes based on your selected inputs is > 
99%") 
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}  

else if(round((exp(model1pred())/(1+exp(model1pred())))*100)<1) 

{ 

paste("The probability of type 1 diabetes based on your selected inputs is < 
1%") 

}  

else { 

paste("The probability of type 1 diabetes based on your selected inputs is",            
round((exp(model1pred())/(1+exp(model1pred())))*100), "%") 

}  

} 

}) 

model2pred = function () { -0.9833514 + (0.9433088*model1pred()) + ( 
3.113623*as.numeric(input$GADA)) 

}  

output$mod2Prob = renderText({if (is.null(input$age)||input$age =='' ) { paste 
("Please enter age between 18 and 50 (inclusive)") 

} 

else if ((as.numeric(input$age)<18 || as.numeric(input$age)>50)){ paste("Please 
enter valid age, minimum age is 18, maximum is 50") 

} 

else if (is.null(input$BMI)||input$BMI ==''||is.na(input$BMI) ) { paste ("Please 
enter valid BMI OR use the height and weight inputs") 

} 

else if (input$BMI <17.5 || input$BMI >70) { paste ("Please enter valid BMI 
value, minimum BMI is 17.5, maximum is 70") 

} 

else {if (round((exp(model2pred())/(1+exp(model2pred())))*100)>99) 
{paste("The probability of type 1 diabetes based on your selected inputs is > 
99%") 

} else if(round((exp(model2pred())/(1+exp(model2pred())))*100)<1){paste("The 
probability of type 1 diabetes based on your selected inputs is < 1%") 

}  

else {paste("The probability of type 1 diabetes based on your selected inputs 
is",            round((exp(model2pred())/(1+exp(model2pred())))*100), "%") 

}  

} 
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}) 

AntiStatus1 = function () { 

if (input$GADA == 1 && input$IA2 ==0 ){ 

1 

}  

else { 

0 

} 

} 

AntiStatus2 = function (){ 

if (input$GADA == 0 && input$IA2 ==1 ){ 

1 

}  

else { 

0 

} 

} 

AntiStatus3 = function (){ 

if (input$GADA == 1 && input$IA2 ==1 ){ 

1 

}  

else {0 

} 

}  

model3pred = function (){ -1.280086  + (0.9166205*model1pred()) + (3.082366 
* AntiStatus1()) + (3.494462* AntiStatus2()) + (4.350717 * AntiStatus3()) 

} 

output$mod3Prob = renderText({ if (is.null(input$age)||input$age =='' )  

{paste ("Please enter age between 18 and 50 (inclusive)") 

} 

else if ((as.numeric(input$age)<18 || as.numeric(input$age)>50)){ paste("Please 
enter valid age, minimum age is 18, maximum is 50") 

} 
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else if (is.null(input$BMI)||input$BMI =='' ||is.na(input$BMI)) { paste ("Please 
enter valid BMI OR use the height and weight inputs") 

} 

else if (input$BMI <17.5 || input$BMI >70) { paste ("Please enter valid BMI 
value, minimum BMI is 17.5, maximum is 70") 

} 

else {if (round((exp(model3pred())/(1+exp(model3pred())))*100)>99){ 
paste("The probability of type 1 diabetes based on your selected inputs is > 
99%") 

}  

else if(round((exp(model3pred())/(1+exp(model3pred())))*100)<1){paste("The 
probability of type 1 diabetes based on your selected inputs is < 1%") 

}  

else {paste("The probability of type 1 diabetes based on your selected inputs 
is",            round((exp(model3pred())/(1+exp(model3pred())))*100), "%") 

}  

} 

}) 

model4pred = function (){-7.7859  + (0.8766028*model3pred()) + (30.11052 * 
(((qnorm(as.numeric(input$GRS) ))*0.025569)+0.278778)) 

} 

output$mod4Prob = renderText({if (is.null(input$age)||input$age =='' ) { paste 
("Please enter age between 18 and 50 (inclusive)") 

} 

else if ((as.numeric(input$age)<18 || as.numeric(input$age)>50)){ paste("Please 
enter valid age, minimum age is 18, maximum is 50") 

} 

else if (is.null(input$BMI)||input$BMI ==''||is.na(input$BMI) ) { paste ("Please 
enter valid BMI OR use the height and weight inputs") 

} 

else if (input$BMI <17.5 || input$BMI >70) { paste ("Please enter valid BMI 
value, minimum BMI is 17.5, maximum is 70") 

} 

else {if (round((exp(model4pred())/(1+exp(model4pred())))*100)>99){paste("The 
probability of type 1 diabetes based on your selected inputs is > 99%") 

}  

else if(round((exp(model4pred())/(1+exp(model4pred())))*100)<1){ paste("The 
probability of type 1 diabetes based on your selected inputs is < 1%") 
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}  

else {paste("The probability of type 1 diabetes based on your selected inputs 
is",            round((exp(model4pred())/(1+exp(model4pred())))*100), "%") 

}  

}  

}) 

model5pred = function (){ -0.3553344 + (3.194096*as.numeric(input$IA2)) + 
(0.9916812*model1pred()) 

}  

output$mod5Prob = renderText({if (is.null(input$age)||input$age =='' ) { paste 
("Please enter age between 18 and 50 (inclusive)") 

} 

else if ((as.numeric(input$age)<18 || as.numeric(input$age)>50)){ paste("Please 
enter valid age, minimum age is 18, maximum is 50") 

} 

else if (is.null(input$BMI)||input$BMI ==''||is.na(input$BMI)) { paste ("Please 
enter valid BMI OR use the height and weight inputs") 

}     

else if (input$BMI <17.5 || input$BMI >70) { paste ("Please enter valid BMI 
value, minimum BMI is 17.5, maximum is 70") 

} 

else {if (round((exp(model5pred())/(1+exp(model5pred())))*100)>99){paste("The 
probability of type 1 diabetes based on your selected inputs is > 99%") 

}  

else if(round((exp(model5pred())/(1+exp(model51pred())))*100)<1){paste("The 
probability of type 1 diabetes based on your selected inputs is < 1%") 

}  

else {paste("The probability of type 1 diabetes based on your selected inputs 
is",           round((exp(model5pred())/(1+exp(model5pred())))*100), "%") 

}  

}  

}) 

model6pred = function () {-9.9304 + ( 2.953142*as.numeric(input$IA2)) + 
(0.8736316*model1pred())+(37.40205*(((qnorm(as.numeric(input$GRS) 
))*0.025569)+0.278778)) 

}  
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output$mod6Prob = renderText({if (is.null(input$age)||input$age =='' ) { paste 
("Please enter age between 18 and 50 (inclusive)") 

} 

else if ((as.numeric(input$age)<18 || as.numeric(input$age)>50)){ paste("Please 
enter valid age, minimum age is 18, maximum is 50") 

} 

else if (is.null(input$BMI)||input$BMI =='' ||is.na(input$BMI)) { paste ("Please 
enter valid BMI OR use the height and weight inputs") 

} 

else if (input$BMI <17.5 || input$BMI >70) { paste ("Please enter valid BMI 
value, minimum BMI is 17.5, maximum is 70") 

} 

else {if (round((exp(model6pred())/(1+exp(model6pred())))*100)>99){paste("The 
probability of type 1 diabetes based on your selected inputs is > 99%") 

}  

else if(round((exp(model6pred())/(1+exp(model6pred())))*100)<1){paste("The 
probability of type 1 diabetes based on your selected inputs is < 1%") 

}  

else {paste("The probability of type 1 diabetes based on your selected inputs 
is", 

            round((exp(model6pred())/(1+exp(model6pred())))*100), "%") 

}  

} 

}) 

model7pred = function (){-8.868744 + (2.63093*as.numeric(input$GADA)) + 
(0.8454927*model1pred())+(31.22606*(((qnorm(as.numeric(input$GRS) 
))*0.025569)+0.278778)) 

}  

output$mod7Prob = renderText({if (is.null(input$age)||input$age =='' ) { paste 
("Please enter age between 18 and 50 (inclusive)") 

} 

else if ((as.numeric(input$age)<18 || as.numeric(input$age)>50)){ paste("Please 
enter valid age, minimum age is 18, maximum is 50") 

} 

else if (is.null(input$BMI)||input$BMI ==''||is.na(input$BMI)) { paste ("Please 
enter valid BMI OR use the height and weight inputs") 

} 
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else if (input$BMI <17.5 || input$BMI >70) { paste ("Please enter valid BMI 
value, minimum BMI is 17.5, maximum is 70") 

} 

else {if (round((exp(model7pred())/(1+exp(model7pred())))*100)>99){ 
paste("The probability of type 1 diabetes based on your selected inputs is > 
99%") 

}  

else if(round((exp(model7pred())/(1+exp(model7pred())))*100)<1){paste("The 
probability of type 1 diabetes based on your selected inputs is < 1%") 

}  

else {paste("The probability of type 1 diabetes based on your selected inputs 
is", 

            round((exp(model7pred())/(1+exp(model7pred())))*100), "%") 

}  

}  

}) 

model8pred = function () { -8.659769 + 
(0.8729876*model1pred())+(33.93968*(((qnorm(as.numeric(input$GRS) 
))*0.025569)+0.278778)) 

}  

output$mod8Prob = renderText({if (is.null(input$age)||input$age =='' ) { paste 
("Please enter age between 18 and 50 (inclusive)") 

} 

else if ((as.numeric(input$age)<18 || as.numeric(input$age)>50)){ paste("Please 
enter valid age, minimum age is 18, maximum is 50") 

}     

else if (is.null(input$BMI)||input$BMI =='' ||is.na(input$BMI)) { paste ("Please 
enter valid BMI OR use the height and weight inputs") 

}     

else if (input$BMI <17.5 || input$BMI >70) { paste ("Please enter valid BMI 
value, minimum BMI is 17.5, maximum is 70") 

} 

else {if (round((exp(model8pred())/(1+exp(model8pred())))*100)>99){paste("The 
probability of type 1 diabetes based on your selected inputs is > 99%") 

}  

else if(round((exp(model8pred())/(1+exp(model8pred())))*100)<1){paste("The 
probability of type 1 diabetes based on your selected inputs is < 1%") 

}  
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else {paste("The probability of type 1 diabetes based on your selected inputs 
is", round((exp(model8pred())/(1+exp(model8pred())))*100), "%") 

}  

}   

}) 

} 

# Create the Shiny app object 

shinyApp(ui = ui, server = server) 
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Appendix 2:  

R Code for machine learning 

and logistic regression 

comparison 
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############################################################# 

## Create combined machine learning comparison  

## original author - ferratlauric@gmail.com - September 2018 

## adapted by Anita Lynam - g26482@hotmail.co.uk - July 2019 

############################################################# 

# useful web links 

# https://www.r-project.org/conferences/useR-
2013/Tutorials/kuhn/user_caret_2up.pdf 

# https://medium.com/all-things-ai/in-depth-parameter-tuning-for-gradient-
boosting-3363992e9bae 

# https://stackoverflow.com/questions/15613332/using-caret-package-to-find-
optimal-parameters-of-gbm 

# https://topepo.github.io/caret/available-models.html 

# 
https://astro.temple.edu/~msobel/courses_files/StochasticBoosting(gradient).pdf 

# https://topepo.github.io/caret/random-hyperparameter-search.html 

# https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf 

# https://topepo.github.io/caret/variable-importance.html  

# https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf 

# https://topepo.github.io/caret/variable-importance.html 

# https://www.rdocumentation.org/packages/caret/versions/6.0-81/topics/varImp 

# https://www.rdocumentation.org/packages/caret/versions/6.0-81/topics/train 

###############################################################
#### 

# install libraries 

install.packages("recipes") 

install.packages("caret") 

install.packages("DMwR") 

install.packages("kernlab") 

install.packages("randomForest") 

install.packages("pROC") 

install.packages("gbm") 

install.packages("gbm") 

install.packages("purrr") 

install.packages("PRROC") 
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install_github("ddsjoberg/dca") 

install.packages("corrplot") 

install.packages("plyr") 

install.packages("dplyr") 

install.packages("Rcpp") 

install.packages("rlang") 

install.packages("readstata13") 

 

#Load libraries 

library(recipes) 

library(caret) 

library(knitr) 

library(kernlab) 

library(DMwR) 

library(randomForest) 

library(pROC)  

library(ggplot2) 

library(readstata13) 

library(rpart) 

library(rpart.plot) 

library(gbm) 

library(gridExtra) 

library(plyr) 

library(dplyr) # for data manipulation 

library(purrr) # for functional programming (map) 

library(PRROC) # for Precision-Recall curve calculations 

library(dca) 

library(corrplot) 

library(Rcpp) 

library(rlang) 

##############################  

# 1 - Source file  

############################## 
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setwd("Your file path here") 

#name the data files 

dataFile1 <- "Your stata test data file.dta" 

dataFile2 <- "Your stata validation.dta" 

#load Stata datasets 

dataset_test <- read.dta13(dataFile1) 

dataset_val <-  read.dta13(dataFile2) 

#create a datset containing a subset of variables to include in the model 

myvars <- c("Your outcome variable","Your covariate 1","Your covariate 
2","Your covariate 3")   

dataset_test <- dataset_test[myvars] 

############################## 

# 2 - Set up the model training  

############################## 

#set seed for reproductivity 

seedchoice <- 7  

# model formulas 

# Add as many covariates as required 

formula.model4 <- formula("Your outcome variable ~ Your covariate 1 + Your 
covariate 2 + Your covariate3 + ....") 

# Data need to be put in a good shape to be used in the caret framework: 

# factorise string data and mumeric data which need to be factorised 

# no missing data (always possible to impute when it is not the case) 

#identify factor variables and view the levels 

is.fact2 <- sapply(dataset_test, is.factor) 

factors2.df <- dataset_test[, is.fact2] 

lapply(factors2.df, levels) 

is.fact3 <- sapply(dataset_val, is.factor) 

factors3.df <- dataset_val[, is.fact3] 

lapply(factors3.df, levels) 

#amend class to factor for training and validation datasets 

Yourcovariate3 <- myvars[4] 

Youroutcomevariable <- myvars[1] 

dataset_test[,Yourcovariate3] <- as.factor(dataset_test[,Yourcovariate3]) 
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dataset_test[,Youroutcomevariable] <- 
as.factor(dataset_test[,Youroutcomevariable]) 

dataset_val[,Yourcovariate3] <- as.factor(dataset_val[,Yourcovariate3]) 

dataset_val[,Youroutcomevariable] <- 
as.factor(dataset_val[,Youroutcomevariable]) 

#rename the levels of the facor variable. This is required to run the training 
models for each of the five imputed datasets 

feature6.names <- names(dataset_test) 

for (f in feature6.names)  { 

  if (class(dataset_test[[f]]) == "factor")  { 

    levels6 <- unique(c(dataset_test[[f]])) 

    dataset_test[[f]] <- factor(dataset_test[[f]], 

                                labels = make.names(levels6)) 

        } 

} 

feature7.names <- names(dataset_val) 

for (f in feature7.names)  { 

  if (class(dataset_val[[f]]) == "factor")  { 

    levels7 <- unique(c(dataset_val[[f]])) 

    dataset_val[[f]] <- factor(dataset_val[[f]], 

                               labels = make.names(levels7)) 

        } 

} 

#create standardised variables for the continuous variables 

Yourcovariate1 <- myvars[2] 

Yourcovariate2 <- myvars[3] 

Std_Yourcovariate1 <- paste0("Std_",Yourcovariate1) 

Std_Yourcovariate2 <- paste0("Std_",Yourcovariate2) 

 

dataset_test[,Std_Yourcovariate1] <- (dataset_test[,Yourcovariate1] - 
mean(dataset_test[,Yourcovariate1]))/sd(dataset_test[,Yourcovariate1])   

dataset_test[,Std_Yourcovariate2] <- (dataset_test[,Yourcovariate2] - 
mean(dataset_test[,Yourcovariate2]))/sd(dataset_test[,Yourcovariate2]) 

dataset_val[,Std_Yourcovariate1] <- (dataset_val[,Yourcovariate1] - 
mean(dataset_val[,Yourcovariate1]))/sd(dataset_val[,Yourcovariate1]) 
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dataset_val[,Std_Yourcovariate2] <- (dataset_val[,Yourcovariate2] - 
mean(dataset_val[,Yourcovariate2]))/sd(dataset_val[,Yourcovariate2]) 

# prepare training scheme  

#routines, fits each model and calculates a resampling based performance 
measure. 

# The traincontrol function controls the computational nuances of the train 
function 

# repeatedcv (repeated cross validation) method is a resampling method 
Control that creates multiple versions of the folds and aggregates the results 

# number is the k number of folds for the repeatedcv 

# repeats is the number of complete sets of folds to compute 

# The summmary funcion is a function to compute performance metrics across 
resamples.  

# twoClassSummary computes sensitivity, specificity and the area under the 
ROC curve 

# sampling is the type of additional sampling that is conducted after resampling  

# (usually to resolve class imbalances).  

# SMOTE (Chawla et. al. 2002) is a well-known algorithm to fight unbalanced 
classification problem.  

# The general idea of this method is to artificially generate new examples of the 
minority class using  

# the nearest neighbors of these cases. Furthermore, the majority class 
examples are also under-sampled,  

# leading to a more balanced dataset. 

#for use in default and grid search optimised models 

control <- trainControl(method = "repeatedcv", number = 10, repeats = 
5,classProbs = TRUE,summaryFunction = twoClassSummary, sampling = 
"smote", savePredictions = TRUE) 

#for use in random search optimised models 

control_Rand_Search <- trainControl(method = "repeatedcv", number = 10, 
repeats = 5,classProbs = TRUE,summaryFunction = twoClassSummary, 
sampling = "smote", savePredictions = TRUE, search = "random") 

############################## 

# 3 - Train the models  

############################## 

# The train function sets up a grid of tuning parameters for a number of 
classification and regression  

# ROC  used to select the optimal model using the largest value. 
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# train the Gradient bootstrap Machine model (Stochastic Gradient Boosting) 

# utils::browseVignettes("gbm") 

# verbose is an argument of the gmb package, indicating whether or not to print 
out progress and  

# performance indicators 

#build all the Gbm (Stochastic gradient boosting model) models 

#tuning parameters: n.trees (number of  iterations), interaction depth 
(complexity), shrinkage (learning rate), n.minobsinnode (min number of training 
det damples in a node to commence splitting) 

#learning rate shrinks the contribution of each tree by learning_rate 

getModelInfo()$gbm$parameters 

#Shrinkage: the smaller the number, the better the predictive value, the more 
trees required, and the more computational cost. 

#the smaller the shrinkage, the more trees you should have 

# Fetch max Value for interaction.depth  

floor(sqrt(NCOL(dataset_test))) 

#set up the grid 

gbmGrid <-  expand.grid(interaction.depth = c(1, 3, 6, 9, 10), 

                        n.trees = c(10, 50,100,150,500),  

                        shrinkage = seq(from = 0.01, to = 0.1, by = 0.01), 

                        n.minobsinnode = c(5,10,15,20))  

#tune the hyper-parameters using  Grid Search 

set.seed(seedchoice) 

modelGbm_CC_GADA_Lr <- train(formula.model4, data = dataset_test, method 
= "gbm", trControl = control, verbose = FALSE,metric = 
'ROC',tuneGrid=gbmGrid) 

#random search independently draws from a uniform density from the same 
configuration space as would be spanned by a regular grid, 

#we do not use random hyperparameter search for gbm models as it may be 
inefficients  

# train the SVM model 

# Support Vector Machines with Radial Basis Function Kernel (SVM classifier 
using a non-linear kernel) 

#RBF is a reasonable first choice, it can handle nonlinear relationships 

#C is the penalty parameter of the error term. It controls the trade off between 
smooth decision boundary (small c) and classifying the training points correctly. 
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#larger values of C focus attention more on (correctly classified) points near the 
decision boundary (wiggly boundary), while smaller values involve data further 
away (wider margins). 

#sigma the radius/spread/decision boundary of the kernel 

#When gamma is low, the 'curve' of the decision boundary is very low and thus 
the decision region is very broad.  

#When gamma is high, the 'curve' of the decision boundary is high, which 
creates islands of decision-boundaries around data points. 

#using training dataset and default parameters 

getModelInfo()$svmRadial$parameters 

svmGrid <-  expand.grid(sigma = c(0.01, 0.1, 1, 10, 100), 

                        C = seq(from = 0.1, to = 1, by = 0.05))  

#using training dataset and tune the hyper-parameters using Caret Grid Search 

set.seed(seedchoice) 

modelSvm_CC_GADA_Lr <- train(formula.model4, data = dataset_test, method 
= "svmRadial", trControl = control, verbose = TRUE,metric = 
'ROC',tuneGrid=svmGrid) 

# train the Random forest model 

#parameter mtry is the number of variables available for splitting at each tree 
node 

#The default is the square root of the number of predictor variables (rounded 
down) 

#as we are only using three variables we do not optimise the parameters 

#For mtry refer to 
http://code.env.duke.edu/projects/mget/export/HEAD/MGET/Trunk/PythonPack
age/dist/TracOnlineDocumentation/Documentation/ArcGISReference/RandomF
orestModel.FitToArcGISTable.html 

#using training dataset and default parameters 

set.seed(seedchoice) 

modelRf_CC_GADA <- train(formula.model4, data = dataset_test, method = 'rf', 
trControl = control,metric = 'ROC') 

# train a logistic regression model 

#using training dataset 

#there are no tuning parameters for glm method within caret 

set.seed(seedchoice) 

modelLG_CC_GADA <- train(formula.model4, data = dataset_test, method = 
"glm", family = "binomial", trControl = control,metric = 'ROC') 

# train neural network 
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getModelInfo()$nnet$parameters 

#size parameter is the number of units in hidden layer (nnet fit a single hidden 
layer neural network)  

#decay parameter is the regularization parameter to avoid over-fitting 

nnetGrid <-  expand.grid(size = seq(from = 1, to = 10, by = 1), decay = c(0.5, 
0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001)) 

#tune the hyper-parameters using Caret Grid Search 

set.seed(seedchoice) 

modelnnet_CC_GADA_Lr <- train(formula.model4, data = dataset_test, method 
= "nnet", trControl = control,metric = 'ROC', tuneGrid = nnetGrid) 

# train a k-nearest-neighbours 

#based on euclidean distance 

getModelInfo()$knn$parameters 

#k parameter is the number of neighbours.  

knnGrid <-  expand.grid(k = seq(from = 1, to = 100, by = 1)) 

#tune the hyper-parameters using Caret Grid Search 

set.seed(seedchoice) 

modelknn_CC_GADA_Lr <- train(formula.model4, data = dataset_test, method 
= "knn", trControl = control,metric = 'ROC', tuneGrid = knnGrid) 

# view the final models 

summary(modelknn_CC_GADA_Lr) 

summary(modelnnet_CC_GADA_Lr)  

summary(modelLG_CC_GADA) 

summary(modelRf_CC_GADA) 

summary(modelSvm_CC_GADA_Lr) 

summary(modelGbm_CC_GADA_Lr) 

# collect resamples 

#compare the models for the CC existing GADA model (hyperparameter grid 
search) for comparison 

#no grid search for RF or LG models 

results_grid_CC_GADA <- resamples(list(LogisticRegression = 
modelLG_CC_GADA, StochasticGradientBoosting = 
modelGbm_CC_GADA_Lr, SupportVectorMachine = modelSvm_CC_GADA_Lr, 
NeuralNetwork = modelnnet_CC_GADA_Lr,RandomForest = 
modelRf_CC_GADA,               KNearestNeighbours = 
modelknn_CC_GADA_Lr)) 

summary(results_grid_CC_GADA) 
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#check character string for the performance measure used to sort or computing 
the between-model correlations 

results_grid_CC_GADA$metrics 

#visualizing resampling results across models 

xyplot(results_grid_CC_GADA, what = "BlandAltman") 

# boxplots of results and save as pdf 

pdf("Your file name.pdf") 

bwplot(results_grid_CC_GADA) 

dev.off() 

# dot plots of results (includes 95% CI) 

# average performance value (with two-sided confidence limits) for each model 

pdf("Your file name.pdf") 

dotplot(results_grid_CC_GADA) 

dev.off() 

#trellis scatterplot of results 

pdf("Your file name.pdf") 

splom(results_grid_CC_GADA) 

dev.off() 

#test for a difference in the average resampled area under the ROC curve 

diffs <- diff(results_grid_CC_GADA, metric = "ROC") 

summary(diffs) 

#calculate the 95% CI for the resampling ROC AUC 

test  <- results_grid_CC_GADA$values 

 

m <- mean(test$`RandomForest~ROC`) 

s <- sd(test$`RandomForest~ROC`) 

l <- length(test$`RandomForest~ROC`) 

m+c(-1.96,1.96)*s/sqrt(length(l)) 

 

m <- mean(test$`LogisticRegression~ROC`) 

s <- sd(test$`LogisticRegression~ROC`) 

l <- length(test$`LogisticRegression~ROC`) 

m + (c(-1.96,1.96)*(s/sqrt(length(l)))) 
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m <- mean(test$`StochasticGradientBoosting~ROC`) 

s <- sd(test$`StochasticGradientBoosting~ROC`) 

l <- length(test$`StochasticGradientBoosting~ROC`) 

m + (c(-1.96,1.96)*(s/sqrt(length(l)))) 

 

m <- mean(test$`SupportVectorMachine~ROC`) 

s <- sd(test$`SupportVectorMachine~ROC`) 

l <- length(test$`SupportVectorMachine~ROC`) 

m + (c(-1.96,1.96)*(s/sqrt(length(l)))) 

 

m <- mean(test$`NeuralNetwork~ROC`) 

s <- sd(test$`NeuralNetwork~ROC`) 

l <- length(test$`NeuralNetwork~ROC`) 

m + (c(-1.96,1.96)*(s/sqrt(length(l)))) 

 

m <- mean(test$`KNearestNeighbours~ROC`) 

s <- sd(test$`KNearestNeighbours~ROC`) 

l <- length(test$`KNearestNeighbours~ROC`) 

m + (c(-1.96,1.96)*(s/sqrt(length(l)))) 

################################# 

# 4 - Perform external validation  

################################# 

#for the Gbm grid search model (validation) 

probsTestGbmGridVal <- predict(modelGbm_CC_GADA_Lr, 
newdata=dataset_val, type = "prob") 

dataset_val <- data.frame(dataset_val,probsTestGbmGridVal$X2) 

predTestGbmGridVal <- log(as.numeric(probsTestGbmGridVal$X2)/(1-
as.numeric(probsTestGbmGridVal$X2))) 

#then create a roc object and calculate the ROC on the validation dataset 

roc_objTestGbmGridval <- roc(dataset_val[,Youroutcomevariable], 
predTestGbmGridVal) 

AUC_objTestGbmGridval <- auc(roc_objTestGbmGridval) 

AUC_objTestGbmGridval 
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ci.auc(roc_objTestGbmGridval) 

#for the Svm grid search model (validation) 

probsTestSvmGridVal <- predict(modelSvm_CC_GADA_Lr, 
newdata=dataset_val, type = "prob") 

dataset_val <- data.frame(dataset_val,probsTestSvmGridVal$X2) 

predTestSvmGridVal <- log(as.numeric(probsTestSvmGridVal$X2)/(1-
as.numeric(probsTestSvmGridVal$X2))) 

#then create a roc object and calculate the ROC on the validation dataset 

roc_objTestSvmGridval <- roc(dataset_val[,Youroutcomevariable], 
predTestSvmGridVal) 

AUC_objTestSvmGridval <- auc(roc_objTestSvmGridval) 

AUC_objTestSvmGridval 

ci.auc(roc_objTestSvmGridval) 

#for the knn grid search model (validation) 

probsTestknnGridVal <- predict(modelknn_CC_GADA_Lr, 
newdata=dataset_val, type = "prob") 

dataset_val <- data.frame(dataset_val,probsTestknnGridVal$X2) 

probsTestknnGridVal$X2[probsTestknnGridVal$X2 == 1] <- 0.999999 

probsTestknnGridVal$X2[probsTestknnGridVal$X2 == 0] <- 0.000001 

predTestknnGridVal <- log(as.numeric(probsTestknnGridVal$X2)/(1-
as.numeric(probsTestknnGridVal$X2))) 

#then create a roc object and calculate the ROC on the validation dataset 

roc_objTestknnGridval <- roc(dataset_val[,Youroutcomevariable], 
predTestknnGridVal) 

AUC_objTestknnGridval <- auc(roc_objTestknnGridval) 

AUC_objTestknnGridval 

ci.auc(roc_objTestknnGridval) 

#for the nnet grid search model (validation) 

probsTestnnetGridVal <- predict(modelnnet_CC_GADA_Lr, 
newdata=dataset_val, type = "prob") 

dataset_val <- data.frame(dataset_val,probsTestnnetGridVal$X2) 

predTestnnetGridVal <- log(as.numeric(probsTestnnetGridVal$X2)/(1-
as.numeric(probsTestnnetGridVal$X2))) 

#then create a roc object and calculate the ROC on the validation dataset 

roc_objTestnnetGridval <- roc(dataset_val[,Youroutcomevariable], 
predTestnnetGridVal) 
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AUC_objTestnnetGridval <- auc(roc_objTestnnetGridval) 

AUC_objTestnnetGridval 

ci.auc(roc_objTestnnetGridval) 

#for the RF model (validation) 

probsTestRfVal <- predict(modelRf_CC_GADA, newdata=dataset_val, type = 
"prob") 

dataset_val <- data.frame(dataset_val,probsTestRfVal$X2) 

probsTestRfVal$X2[probsTestRfVal$X2 == 1] <- 0.999999 

probsTestRfVal$X2[probsTestRfVal$X2 == 0] <- 0.000001 

predTestRfVal <- log(as.numeric(probsTestRfVal$X2)/(1-
as.numeric(probsTestRfVal$X2))) 

#then create a roc object and calculate the ROC on the validation dataset 

roc_objTestRfval <- roc(dataset_val[,Youroutcomevariable], predTestRfVal) 

AUC_objTestRfval <- auc(roc_objTestRfval) 

AUC_objTestRfval 

ci.auc(roc_objTestRfval) 

#for the logistic regression model (validation) 

probsTestlgVal <- predict(modelLG_CC_GADA, newdata=dataset_val, type = 
"prob") 

dataset_val <- data.frame(dataset_val,probsTestlgVal$X2) 

predTestLGVal <- log(as.numeric(probsTestlgVal$X2)/(1-
as.numeric(probsTestlgVal$X2))) 

#then create a roc object and calculate the ROC on the validation dataset 

roc_objTestLGval <- roc(dataset_val[,Youroutcomevariable], predTestLGVal) 

AUC_objTestLGval <- auc(roc_objTestLGval) 

AUC_objTestLGval 

ci.auc(roc_objTestLGval) 

#plot the roc curves 

plot(roc_objTestRfval, col = "gray85",main = "",add=FALSE) 

plot(roc_objTestLGval, col = "gray45", add = TRUE) 

plot(roc_objTestSvmGridval, co = "black", add = TRUE) 

plot(roc_objTestGbmGridval, col = "gray85",  lty = 3, add = TRUE) 

plot(roc_objTestnnetGridval, col = "black",lty = 3, add = TRUE) 

plot(roc_objTestknnGridval, col = "gray45", lty = 3, add = TRUE) 
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model=c('LG','GBM','SVM','RF','Nnet','Knn') 

AUC <- c(AUC_objTestLGval, AUC_objTestGbmGridval, 
AUC_objTestSvmGridval, AUC_objTestRfval, AUC_objTestnnetGridval, 
AUC_objTestknnGridval) 

ValResults <- data.frame(model, AUC) 

#use prediction-recall curve to validate the models 

#calculate the AUPRC for the validation dataset 

prRFVal <- pr.curve(1-
dataset_val$probsTestRfVal.X2,dataset_val$probsTestRfVal.X2, curve = 
TRUE) 

prLGVal <-  pr.curve(1-
dataset_val$probsTestlgVal.X2,dataset_val$probsTestlgVal.X2, curve = TRUE)  

prSVMVal <- pr.curve(1-
dataset_val$probsTestSvmGridVal.X2,dataset_val$probsTestSvmGridVal.X2, 
curve = TRUE)  

prGBMVal <- pr.curve(1-
dataset_val$probsTestGbmGridVal.X2,dataset_val$probsTestGbmGridVal.X2, 
curve = TRUE)  

prNNVal <- pr.curve(1-
dataset_val$probsTestnnetGridVal.X2,dataset_val$probsTestnnetGridVal.X2, 
curve = TRUE) 

prKNNVal <- pr.curve(1-
dataset_val$probsTestknnGridVal.X2,dataset_val$probsTestknnGridVal.X2, 
curve = TRUE) 

#return the AUPRC 

prRFVal 

prLGVal 

prSVMVal 

prGBMVal 

prNNVal 

prKNNVal 

# plot PR curve for the test curve in red, without legend 

plot(prRFVal, color = "gray85",auc.main=FALSE, main = "")  

plot( prLGVal, color = "gray45", add = TRUE) 

plot( prSVMVal, color = "black", add = TRUE) 

plot( prGBMVal, color = "gray85", lty = 3, add = TRUE) 

plot( prNNVal, color = "black", lty = 3, add = TRUE) 

plot( prKNNVal, color = "gray45", lty = 3,add = TRUE) 
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#plot the calibration plots with loess smoother  

#for logistic regression 

#create 10 risk groups 

dataset_val %>% mutate(quintile=ntile(dataset_val$probsTestlgVal.X2,10)) -> 
dataset_val_10 

Youroutcomevariable_num <- paste(Youroutcomevariable,"num") 

dataset_val_10[as.numeric(dataset_val_10[,Youroutcomevariable])== 
1,Youroutcomevariable_num] <- 0 

dataset_val_10[as.numeric(dataset_val_10[,Youroutcomevariable])== 
2,Youroutcomevariable_num] <- 1 

#average the observed and expected probabilities of patients in each risk group  

obs <- aggregate(as.numeric(dataset_val_10[,Youroutcomevariable_num]), 
list(dataset_val_10$quintile),mean) 

exptd <- aggregate(dataset_val_10$probsTestlgVal.X2, 
list(dataset_val_10$quintile),mean) 

obsn <- aggregate(as.formula(paste0(Youroutcomevariable ,"~ quintile")), 
dataset_val_10, length) 

#CIs for scatter points 

lci <- obs - (1.96*(((obs*(1-obs))/obsn[,Youroutcomevariable])^.5)) 

lci[lci<0]<- 0 

uci <- obs + (1.96*(((obs*(1-obs))/obsn[,Youroutcomevariable])^.5)) 

uci[uci>1]<- 1 

LR_Cali_Plot = data.frame(exptd$x,obs$x, uci$x, lci$x) 

ggplot(LR_Cali_Plot, aes(x= exptd$x, y=obs$x)) + 

   geom_point(size = 2) +  

   geom_smooth(method=loess, se=FALSE, col = "black", lwd = 1) + 

  geom_abline(slope=1, intercept=0, lty=2 ) + 

 scale_x_continuous(name = "Expected", breaks = c(0.0, 
0.2,0.4,0.6,0.8,1.0),limits = c(0,1)) + 

scale_y_continuous(name = "Observed", breaks = c(0.0, 
0.2,0.4,0.6,0.8,1.0),limits = c(0,1)) + 

   geom_errorbar(aes(ymin=lci$x, ymax=uci$x), width=0.02) + 

   theme_bw() 

#for SVM 

#create 10 risk groups 
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dataset_val %>% 
mutate(quintile=ntile(dataset_val$probsTestSvmGridVal.X2,10)) -> 
dataset_val_10_SVM 

dataset_val_10_SVM[as.numeric(dataset_val_10_SVM[,Youroutcomevariable])
== 1,Youroutcomevariable_num] <- 0 

dataset_val_10_SVM[as.numeric(dataset_val_10_SVM[,Youroutcomevariable])
== 2,Youroutcomevariable_num] <- 1 

#average the observed and expected probabilities of patients in each risk group  

obs_SVM <-
aggregate(as.numeric(dataset_val_10_SVM[,Youroutcomevariable_num]), 
list(dataset_val_10_SVM$quintile),mean) 

exptd_SVM <- aggregate(dataset_val_10_SVM$probsTestSvmGridVal.X2, 
list(dataset_val_10_SVM$quintile),mean) 

obsn_SVM <- aggregate(as.formula(paste0(Youroutcomevariable ,"~ quintile")), 
dataset_val_10_SVM, length) 

#CIs for scatter points 

lci_SVM <- obs_SVM- (1.96*(((obs_SVM*(1-
obs_SVM))/obsn_SVM[,Youroutcomevariable])^.5)) 

lci_SVM[lci_SVM<0]<- 0 

uci_SVM <- obs_SVM + (1.96*(((obs_SVM*(1-
obs_SVM))/obsn_SVM[,Youroutcomevariable])^.5)) 

uci_SVM[uci_SVM>1]<- 1 

SVM_Cali_Plot <- data.frame(exptd_SVM$x,obs_SVM$x, uci_SVM$x, 
lci_SVM$x) 

ggplot(SVM_Cali_Plot, aes(x= exptd_SVM$x, y=obs_SVM$x)) + 

   geom_point(size = 2) +  

   geom_smooth(method=loess, se=FALSE, col = "black", lwd = 1) + 

   geom_abline(slope=1, intercept=0, lty=2 ) + 

scale_x_continuous(name = "Expected", breaks = c(0.0, 
0.2,0.4,0.6,0.8,1.0),limits = c(0,1)) + 

scale_y_continuous(name = "Observed", breaks = c(0.0, 
0.2,0.4,0.6,0.8,1.0),limits = c(0,1)) + 

   geom_errorbar(aes(ymin=lci_SVM$x, ymax=uci_SVM$x), width=0.02) + 

   theme_bw() 

#for Random Forest     

#create 10 risk groups 

dataset_val %>% mutate(quintile=ntile(dataset_val$probsTestRfVal.X2,10)) -> 
dataset_val_10_RF 
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dataset_val_10_RF[as.numeric(dataset_val_10_RF[,Youroutcomevariable])== 
1,Youroutcomevariable_num] <- 0 

dataset_val_10_RF[as.numeric(dataset_val_10_RF[,Youroutcomevariable])== 
2,Youroutcomevariable_num] <- 1 

#average the observed and expected probabilities of patients in each risk group  

obs_RF <- 
aggregate(as.numeric(dataset_val_10_RF[,Youroutcomevariable_num]), 
list(dataset_val_10_RF$quintile),mean) 

exptd_RF <- aggregate(dataset_val_10_RF$probsTestRfVal.X2, 
list(dataset_val_10_RF$quintile),mean) 

obsn_RF <- aggregate(as.formula(paste0(Youroutcomevariable ,"~ quintile")), 
dataset_val_10_RF, length) 

#CIs for scatter points 

lci_RF <- obs_RF- (1.96*(((obs_RF*(1-
obs_RF))/obsn_RF[,Youroutcomevariable])^.5)) 

lci_RF[lci_RF<0]<- 0 

uci_RF = obs_RF + (1.96*(((obs_RF*(1-
obs_RF))/obsn_RF[,Youroutcomevariable])^.5)) 

uci_RF[uci_RF>1]<- 1 

RF_Cali_Plot <- data.frame(exptd_RF$x,obs_RF$x, uci_RF$x, lci_RF$x) 

ggplot(RF_Cali_Plot, aes(x= exptd_RF$x, y=obs_RF$x)) + 

   geom_point(size = 2) +  

   geom_smooth(method=loess, se=FALSE, col = "black", lwd = 1) + 

   geom_abline(slope=1, intercept=0, lty=2 ) + 

scale_x_continuous(name = "Expected", breaks = c(0.0, 
0.2,0.4,0.6,0.8,1.0),limits = c(0,1)) + 

scale_y_continuous(name = "Observed", breaks = c(0.0, 
0.2,0.4,0.6,0.8,1.0),limits = c(0,1)) + 

   geom_errorbar(aes(ymin=lci_RF$x, ymax=uci_RF$x), width=0.02) + 

   theme_bw() 

#for GBM    

#create 10 risk groups 

dataset_val %>% 
mutate(quintile=ntile(dataset_val$probsTestGbmGridVal.X2,10)) -> 
dataset_val_10_GBM 

dataset_val_10_GBM[as.numeric(dataset_val_10_GBM[,Youroutcomevariable])
== 1,Youroutcomevariable_num] <- 0 
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dataset_val_10_GBM[as.numeric(dataset_val_10_GBM[,Youroutcomevariable])
== 2,Youroutcomevariable_num] <- 1 

#average the observed and expected probabilities of patients in each risk group  

obs_GBM <- 
aggregate(as.numeric(dataset_val_10_GBM[,Youroutcomevariable_num]), 
list(dataset_val_10_GBM$quintile),mean) 

exptd_GBM <- aggregate(dataset_val_10_GBM$probsTestGbmGridVal.X2, 
list(dataset_val_10_GBM$quintile),mean) 

obsn_GBM <- aggregate(as.formula(paste0(Youroutcomevariable ,"~ quintile")), 
dataset_val_10_GBM, length) 

#CIs for scatter points 

lci_GBM <- obs_GBM- (1.96*(((obs_GBM*(1-
obs_GBM))/obsn_GBM[,Youroutcomevariable])^.5)) 

lci_GBM[lci_GBM<0]<- 0 

uci_GBM <- obs_GBM + (1.96*(((obs_GBM*(1-
obs_GBM))/obsn_GBM[,Youroutcomevariable])^.5)) 

uci_GBM[uci_GBM>1]<-1 

GBM_Cali_Plot = data.frame(exptd_GBM$x,obs_GBM$x, uci_GBM$x, 
lci_GBM$x) 

ggplot(GBM_Cali_Plot, aes(x= exptd_GBM$x, y=obs_GBM$x)) + 

   geom_point(size = 2) +  

   geom_smooth(method=loess, se=FALSE, col = "black", lwd = 1) + 

   geom_abline(slope=1, intercept=0, lty=2 ) + 

scale_x_continuous(name = "Expected", breaks = c(0.0, 
0.2,0.4,0.6,0.8,1.0),limits = c(0,1)) + 

scale_y_continuous(name = "Observed", breaks = c(0.0, 
0.2,0.4,0.6,0.8,1.0),limits = c(0,1)) + 

   geom_errorbar(aes(ymin=lci_GBM$x, ymax=uci_GBM$x), width=0.02) + 

   theme_bw() 

#for KNN   

#create 10 risk groups 

dataset_val %>% 
mutate(quintile=ntile(dataset_val$probsTestknnGridVal.X2,10)) -> 
dataset_val_10_KNN 

dataset_val_10_KNN[as.numeric(dataset_val_10_KNN[,Youroutcomevariable])
== 1,Youroutcomevariable_num] <- 0 

dataset_val_10_KNN[as.numeric(dataset_val_10_KNN[,Youroutcomevariable])
== 2,Youroutcomevariable_num] <- 1 
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#average the observed and expected probabilities of patients in each risk group  

obs_KNN <- 
aggregate(as.numeric(dataset_val_10_KNN[,Youroutcomevariable_num]), 
list(dataset_val_10_KNN$quintile),mean) 

exptd_KNN <- aggregate(dataset_val_10_KNN$probsTestknnGridVal.X2, 
list(dataset_val_10_KNN$quintile),mean) 

obsn_KNN <- aggregate(as.formula(paste0(Youroutcomevariable ,"~ quintile")), 
dataset_val_10_KNN, length) 

#CIs for scatter points 

lci_KNN <- obs_KNN- (1.96*(((obs_KNN*(1-
obs_KNN))/obsn_KNN[,Youroutcomevariable])^.5)) 

lci_KNN[lci_KNN<0]<- 0 

uci_KNN = obs_KNN + (1.96*(((obs_KNN*(1-
obs_KNN))/obsn_KNN[,Youroutcomevariable])^.5)) 

uci_KNN[uci_KNN>1]<- 1 

KNN_Cali_Plot <- data.frame(exptd_KNN$x,obs_KNN$x, uci_KNN$x, 
lci_KNN$x) 

ggplot(KNN_Cali_Plot, aes(x= exptd_KNN$x, y=obs_KNN$x)) + 

   geom_point(size = 2) +  

   geom_smooth(method=loess, se=FALSE, col = "black", lwd = 1) + 

   geom_abline(slope=1, intercept=0, lty=2 ) + 

scale_x_continuous(name = "Expected", breaks = c(0.0, 
0.2,0.4,0.6,0.8,1.0),limits = c(0,1)) + 

scale_y_continuous(name = "Observed", breaks = c(0.0, 
0.2,0.4,0.6,0.8,1.0),limits = c(0,1)) + 

   geom_errorbar(aes(ymin=lci_KNN$x, ymax=uci_KNN$x), width=0.02) + 

   theme_bw() 

#for NN   

#create 10 risk groups 

dataset_val %>% 
mutate(quintile=ntile(dataset_val$probsTestnnetGridVal.X2,10)) -> 
dataset_val_10_NN 

dataset_val_10_NN[as.numeric(dataset_val_10_NN[,Youroutcomevariable])== 
1,Youroutcomevariable_num] <- 0 

dataset_val_10_NN[as.numeric(dataset_val_10_NN[,Youroutcomevariable])== 
2,Youroutcomevariable_num] <- 1 

#average the observed and expected probabilities of patients in each risk group  
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obs_NN <- 
aggregate(as.numeric(dataset_val_10_NN[,Youroutcomevariable_num]), 
list(dataset_val_10_NN$quintile),mean) 

exptd_NN <- aggregate(dataset_val_10_NN$probsTestnnetGridVal.X2, 
list(dataset_val_10_NN$quintile),mean) 

obsn_NN <- aggregate(as.formula(paste0(Youroutcomevariable ,"~ quintile")), 
dataset_val_10_NN, length) 

#CIs for scatter points 

lci_NN <- obs_NN- (1.96*(((obs_NN*(1-
obs_NN))/obsn_NN[,Youroutcomevariable])^.5)) 

lci_NN[lci_NN<0]<- 0 

uci_NN <- obs_NN + (1.96*(((obs_NN*(1-
obs_NN))/obsn_NN[,Youroutcomevariable])^.5)) 

uci_NN[uci_NN>1]<- 1 

NN_Cali_Plot <- data.frame(exptd_NN$x,obs_NN$x, uci_NN$x, lci_NN$x) 

ggplot(NN_Cali_Plot, aes(x= exptd_NN$x, y=obs_NN$x)) + 

   geom_point(size = 2) +  

   geom_smooth(method=loess, se=FALSE, col = "black", lwd = 1) + 

   geom_abline(slope=1, intercept=0, lty=2 ) + 

scale_x_continuous(name = "Expected", breaks = c(0.0, 
0.2,0.4,0.6,0.8,1.0),limits = c(0,1)) + 

scale_y_continuous(name = "Observed", breaks = c(0.0, 
0.2,0.4,0.6,0.8,1.0),limits = c(0,1)) + 

   geom_errorbar(aes(ymin=lci_NN$x, ymax=uci_NN$x), width=0.02) + 

   theme_bw() 

#calcluate Calibration slope for each model 

glm(formula(paste0(Youroutcomevariable," ~ predTestGbmGridVal")), 
family=binomial, data=dataset_val) 

glm(formula(paste0(Youroutcomevariable," ~ predTestSvmGridVal")), 
family=binomial, data=dataset_val) 

glm(formula(paste0(Youroutcomevariable," ~ predTestknnGridVal")), 
family=binomial, data=dataset_val) 

glm(formula(paste0(Youroutcomevariable," ~ predTestnnetGridVal")), 
family=binomial, data=dataset_val) 

glm(formula(paste0(Youroutcomevariable," ~ predTestRfVal")), family=binomial, 
data=dataset_val) 

glm(formula(paste0(Youroutcomevariable," ~ predTestLGVal")), 
family=binomial, data=dataset_val) 
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#calcluate Calibration in the large for each model 

#predicted risks are understated if _b[_cons] > 0 or overstated if _b[_cons] < 0 

glm(formula(paste0(Youroutcomevariable," ~  offset(predTestGbmGridVal)")), 
family=binomial, data=dataset_val) 

glm(formula(paste0(Youroutcomevariable," ~  offset(predTestSvmGridVal)")), 
family=binomial, data=dataset_val) 

glm(formula(paste0(Youroutcomevariable," ~  offset(predTestknnGridVal)")), 
family=binomial, data=dataset_val) 

glm(formula(paste0(Youroutcomevariable," ~  offset(predTestnnetGridVal)")), 
family=binomial, data=dataset_val) 

glm(formula(paste0(Youroutcomevariable," ~  offset(predTestRfVal)")), 
family=binomial, data=dataset_val) 

glm(formula(paste0(Youroutcomevariable," ~  offset(predTestLGVal)")), 
family=binomial, data=dataset_val) 

#calcluate overall misCalibration for each model 

#the slope coefficient beta of the linear predictors reflects the deviations from 
the ideal slope of 1.  

#If p is significant then there is deviation from zero 

mc1 <- glm(formula(paste0(Youroutcomevariable," ~  predTestGbmGridVal+ 
offset(predTestGbmGridVal)")), family=binomial, data=dataset_val) 

mc2 <- glm(formula(paste0(Youroutcomevariable," ~  predTestSvmGridVal + 
offset(predTestSvmGridVal)")), family=binomial, data=dataset_val) 

mc3 <- glm(formula(paste0(Youroutcomevariable," ~  predTestknnGridVal + 
offset(predTestknnGridVal)")), family=binomial, data=dataset_val) 

mc4 <- glm(formula(paste0(Youroutcomevariable," ~  predTestnnetGridVal + 
offset(predTestnnetGridVal)")), family=binomial, data=dataset_val) 

mc5 <- glm(formula(paste0(Youroutcomevariable," ~  predTestRfVal + 
offset(predTestRfVal)")), family=binomial, data=dataset_val) 

mc6 <- glm(formula(paste0(Youroutcomevariable," ~  predTestLGVal + 
offset(predTestLGVal)")), family=binomial, data=dataset_val) 

summary(mc1) 

summary(mc2) 

summary(mc3) 

summary(mc4) 

summary(mc5) 

summary(mc6) 

#correlation matrix of predictions - validation dataset 
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predMatrixVal <- data.frame(dataset_val$probsTestGbmGridVal.X2 
,dataset_val$probsTestSvmGridVal.X2, dataset_val$probsTestknnGridVal.X2 , 
dataset_val$probsTestnnetGridVal.X2 ,dataset_val$probsTestRfVal.X2, 
dataset_val$probsTestlgVal.X2) 

names(predMatrixVal)[1] <-"GBM" 

names(predMatrixVal)[2] <-"SVM" 

names(predMatrixVal)[3] <-"KNN" 

names(predMatrixVal)[4] <-"NN" 

names(predMatrixVal)[5] <-"RF" 

names(predMatrixVal)[6] <-"LR" 

MVal <- cor(predMatrixVal) 

corrplot(MVal, method="number",tl.cex = 1) 

#create a variable importance dataframe 

# Svm and KNN do not have built-in variable importance score 

Model <- c('Logistic Regression','Stochastic Gradient Boosting', 'Neural 
Network', 'Random Forest') 

# calculate the variable importance scores 

# varImp function provides the variable importance 

LGImp <- varImp(modelLG_CC_GADA, scale = FALSE) 

LGImp 

gmbImp <- varImp(modelGbm_CC_GADA_Lr, scale = FALSE) 

gmbImp 

nnetImp <- varImp(modelnnet_CC_GADA_Lr, scale = FALSE) 

nnetImp 

rfImp <- varImp(modelRf_CC_GADA, scale = FALSE) 

rfImp 

#manually divide each variable importance scores by max to scale 

Yourcovariate1 <- c(insert your variance importance scores here) 

Yourcovariate2 <- c(insert your variance importance scores here) 

Yourcovariate3 <- c(insert your variance importance scores here) 

#build the DF with the scaled variable importance scores 

varImpDF = data.frame(Model,Yourcovariate1,Yourcovariate2,Yourcovariate3) 

#build the plots of the variable importance ranks 

plotVarImp1 <- ggplot(data = varImpDF, aes(x = Model, y = 
varImpDF$Yourcovariate1))+geom_bar(stat="identity",width=0.06)+ 
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coord_flip()+ ylab("Scaled variable importance score")+  xlab("") + ggtitle("Your 
covariate 1") + scale_y_continuous(expand = c(0, 0)) +theme(axis.text.y = 
element_blank(),axis.ticks.y = element_blank() ) 

plotVarImp2 <- ggplot(data = varImpDF, aes(x = Model, y = 
varImpDF$Yourcovariate2))+geom_bar(stat="identity",width=0.06)+ 
coord_flip()+ ylab("Scaled variable importance score")+ xlab("") + ggtitle("Your 
covariate 2") + scale_y_continuous(expand = c(0, 0)) +theme(axis.text.y = 
element_blank(),axis.ticks.y = element_blank() ) 

plotVarImp3 <- ggplot(data = varImpDF, aes(x = Model, y = 
varImpDF$Yourcovariate3))+geom_bar(stat="identity",width=0.06)+ 
coord_flip()+ ylab("Scaled variable importance score")+  xlab("") + ggtitle("Your 
covariate 3") + scale_y_continuous(expand = c(0, 0)) +theme(axis.text.y = 
element_blank(),axis.ticks.y = element_blank() ) 

#plot the charts on one row 

par(mfrow<-c(1,3)) 

plot(plotVarImp1)  

plot(plotVarImp2)  

plot(plotVarImp3) 

grid.arrange(plotVarImp1, plotVarImp2, plotVarImp3,ncol = 3) 

################################# 

# 5 - save the objects for future use 

################################# 

save(dataset_test,dataset_val,ValResults,control,modelLG_CC_GADA,modelRf
_CC_GADA, modelSvm_CC_GADA_Lr, modelGbm_CC_GADA_Lr, 
modelnnet_CC_GADA_Lr,modelknn_CC_GADA_Lr, varImpDF, 
results_grid_CC_GADA,gmbImp, rfImp, nnetImp,dataset_val_10, file = "Your 
Machine Learning Objects.RData") 

 

 

 

 


