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Abstract

This thesis is devoted to optical properties of Aharonov-Bohm quantum rings in external

electromagnetic fields. It contains two problems.

The first problem deals with a single-electron Aharonov-Bohm quantum ring pierced by

a magnetic flux and subjected to an in-plane (lateral) electric field. We predict magneto-

oscillations of the ring electric dipole moment. These oscillations are accompanied by

periodic changes in the selection rules for inter-level optical transitions in the ring allow-

ing control of polarization properties of the associated terahertz radiation.

The second problem treats a single-mode microcavity with anembedded Aharonov-Bohm

quantum ring, which is pierced by a magnetic flux and subjected to a lateral electric field.

We show that external electric and magnetic fields provide additional means of control

of the emission spectrum of the system. In particular, when the magnetic flux through

the quantum ring is equal to a half-integer number of the magnetic flux quantum, a small

change in the lateral electric field allows tuning of the energy levels of the quantum ring

into resonance with the microcavity mode, providing an efficient way to control the quan-

tum ring-microcavity coupling strength. Emission spectraof the system are calculated for

several combinations of the applied magnetic and electric fields.
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