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Abstract

This thesis is devoted to optical properties of AharonowBajuantum rings in external

electromagnetic fields. It contains two problems.

The first problem deals with a single-electron Aharonov-4Rajuantum ring pierced by
a magnetic flux and subjected to an in-plane (lateral) etefitrid. We predict magneto-
oscillations of the ring electric dipole moment. These kstions are accompanied by
periodic changes in the selection rules for inter-levelagbtransitions in the ring allow-

ing control of polarization properties of the associatedhertz radiation.

The second problem treats a single-mode microcavity wittnabedded Aharonov-Bohm
guantum ring, which is pierced by a magnetic flux and subgetdie lateral electric field.
We show that external electric and magnetic fields providétaxhal means of control
of the emission spectrum of the system. In particular, winennhagnetic flux through
the quantum ring is equal to a half-integer number of the raigflux quantum, a small
change in the lateral electric field allows tuning of the ggdevels of the quantum ring
into resonance with the microcavity mode, providing an effitway to control the quan-
tum ring-microcavity coupling strength. Emission spectrthe system are calculated for

several combinations of the applied magnetic and elec#iiddi
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Introductory notes

Please note that throughout this thesis, when it is clean ftee context that an operator

is used, the operator symbols omitted for reading ease.

Chaptel B is based on the papers A.M. Alexeev and M. E. PotElectric dipole moment
oscillations in Aharonov—Bohm quantum rings’, Phys. Rey88:245419, Jun 2012][1]
and A.M. Alexeev and M. E. Portnoi, ‘Terahertz transitiong\dharonov-Bohm quantum

rings in an external electric field’, Phys. Status Solidi 4,309, Mar 2012/[2].

Chaptel 4 is based on the paper A.M. Alexeey, I.A. Shelyktl MnE. Portnoi, ‘Aharonov-

Bohm quantum rings in high-Q microcavities’ recently sutted to Phys. Rev. B [3].
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