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Given the difficulty of testing evolutionary and ecological theory in situ, in vitro 

model systems are attractive alternatives1. But can we appraise whether an 

experimental result is particular to the in vitro model, and, if so, characterize the 

systems likely to behave differently and understand why? We examine these issues 

employing as a case history the relationship between phenotypic diversity and 

resource input in the T7-Escherichia coli co-evolving system.  We establish a 

mathematical model of this interaction, framed as one instance of a super-class of 

host-parasite co-evolutionary models, and show that it captures experimental 

results. By tuning this model we then ask how diversity as a function of resource 

input could behave for alternative co-evolving partners (e.g. E. coli with lambda 

phage). In contrast to populations lacking phage, variation in diversity with 

differences in resources is always found for co-evolving populations, supporting the 

geographic mosaic theory of coevolution2.  The form of this variation is not, 

however, universal. Details of infectivity are pivotal: in T7-E. coli with a modified 

gene-for gene interaction, diversity is low at high resource input, whereas for 

matching-allele interactions, maximal diversity is found at high resource input. A 

combination of in vitro systems and appropriately configured mathematical models 

is an effective means to isolate results particular to the in vitro system, characterize 

systems likely to behave differently and to understand the biology underpinning 

those alternatives. 
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We start by considering a mathematical model tailored to the specific biology of the 

bacterium Escherichia coli and its bacteriophage T7/T3 (for brevity, we refer to T7, we 

might equally be modeling T3, Ref. 3) but framed in such a way that alternative co-

evolving systems might also be analysed.  The model tracks evolution in initially isogenic 

populations of co-occurring clonally reproducing bacteria (B0) and phage (P0) in the 

chemostat. Mutation occurs with a small but prescribed probability and the fitness of 

mutant bacteria and phage depend on every component of the system (formally, a 

genotype-by-genotype-by-environment interaction alias selection mosaic2,4). 

Although host and parasites, including bacteria and bacteriophage5, are often 

thought to interact along a continuum from gene-for-gene to matching alleles6,7 (see Fig 

1a-b), neither of these models matches the known biology of the E. coli-T7 interaction as 

T7 phage have higher adsorption rates to wild-type E. coli than to contemporary hosts8-10. 

Thus, in our initial model, we suppose that the binding probabilities between bacteria and 

phage are graded (see Ref. 11; Fig 1c).   

The graded infection mechanism is understandable when the details of the biology 

are known. Relative resistance to these phage can be conferred through mutations that 

truncate lipopolysaccharides (LPS) found within the outer membrane, thus preventing 

adsorption of the phage10,12. These truncations can be shallow or deep10,13.  Relative 

resistance is also conditioned by pleoitropic interactions between LPS and outer 

membrane proteins (OMPs) and is dependent on mutations in both (Supplementary 

information 6.3). For simplicity, we assume in wild-type bacteria (B0) two character 

states at two loci, L and O. To capture the pleiotropy, we assume that mutations at these 

loci regulate the biosynthesis of LPS polymers such that the length of the LPS O-antigen 
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correlates with the phenotype l = 4 - (2 x L + O), yielding four phenotypes B0(L=0,O=0) 

with l = 4, B1(0,1) with l = 3, B2(1,0) with l = 2 and B3(1,1) with l = 1. We term the 

graded mechanism (Fig 1c) a modified gene-for-gene interaction due to its resemblance to 

gene-for-gene interactions (Fig 1a). 

Assumptions about pleiotropy determine the form of the mutational matrix, Mb, 

between the four bacterial types.  We have considered numerous matrices and find that 

results are strikingly insensitive (Supplementary information 6.3). Mutations in wild-type 

phage (P0) occur on one locus with four possible alleles giving rise to one of three types 

denoted Pi (i from 1 to 3).  

The core of the E. coli –T7 model is a 4 by 4 matrix, Φ, that defines the relative 

infectivities of each phage strain to each bacterial type: 

Φ =

P0 P1 P2 P3

1 λ λ2 λ3 B0

0 λv λ2v λ3v B1

0 0 λ2v 2 λ3v 2 B2

0 0 0 λ3v 3 B3

    [1] 

where ν<2 represents the change in adsorption rate due to the loss of a single sugar from 

bacterial LPS complex whereas λ<1 is the corresponding change of adsorption rate due to 

alterations in the structure of phage tail-fibre protein (Supplementary Information 2.3.1) 

We also incorporate two well-established trade-offs: increasing the range of 

resistance to phage leads to a decrease in growth rate14-16 and increase in the number of 

hosts a phage can infect comes at a reproductive cost through a combination of trade-offs 

with adsorption rate and burst size14,17. 

To predict bacterial densities we then write: 
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dS
dt

= D(S0 − S) − cμ(S)BT ,

dB
dt

= Mb (μ(S) ⋅ B) − (ΦP) ⋅ B − DB,

dP
dt

= M p (β ⋅ (ΦT B) ⋅ P) − DP

       [2] 

where B denotes the vector of four bacterial densities while P denotes the vector of four 

phage densities. The first equation of [2] describes the rate of change of resource 

concentration in the chemostat S with D the dilution rate and S0 representing resource 

concentration in the input vessel. The consumption of resources is modeled through 

Michaelis-Menten bacterial growth function μ and resource conversion rate c while 

phage production is represented by a vector of burst sizes β (latent period was not 

explicitly modeled). The information regarding bacterial and phage mutations is 

embedded within 4x4 matrices Mb  and M p  respectively while ΦT  represents the 

transpose of the adsorption matrix Φ  (for further description of the model see 

Supplementary Information 2). 

We fine-tune the model by employing experimentally observed mean rank 

ordering of bacterial types, obtained as follows.  We coevolved populations of E. coli and 

phage in chemostats and then evaluated the phenotypic diversity of the phage-resistant 

hosts and phage density. We screened T7-resistant hosts as B1, B2 and B3 based on 

resistance or sensitivity to a series of reference bacteriophage (Table 1).  From the 

experimental data we estimated v to be 0.636 and λ to be 0.94, within the bounds of prior 

expectations.  

The model predicts important differences between different environments (Fig 2c, 

Fig 3a).  First, with resource input around 10μg/ml of glucose, the experimental results 
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should be more variable than under high resource input. Thus we predict that the same 

bacteria should be found at more similar frequencies in high resource replicates; this is 

seen (all data: Wilcoxon test P=0.0015; day 17 data: P=0.03). Similarly, the model 

correctly predicts a higher degree of variation between resource levels than within 

(Wilcoxon test P=0.003).  

The model also predicts (Fig 3b) higher phage densities in the higher resource 

input experiment (Fig 4), which is observed (Wilcoxon test, P=0.0003; controlling for 

bacterial type, P=0.02). At low resource input, phage type P2 is predicted to be in greatest 

abundance, followed by P3 with other types present at much lower levels (Fig 4c). Given 

that both P2 and P3   have highest adsorption rate on B1, the model predicts type B1 would 

have higher rates of infection than its competitors.  This prediction qualitatively agrees 

with our experimental findings although, given the rarity of B1 we could not establish 

significance (Fig 3b). By contrast, at high resource input the phage type P3 is predicted to 

be most abundant (Fig 4c). As this type has higher adsorption rates on B2 than B3, the 

model predicts that B2 bacteria would be most infected, again in agreement with 

observation (Wilcoxon test, P=0.008; Fig 3b). 

 Given the concordance between theory and observation described above, we 

conclude that our deterministic mathematical model is fit for purpose. Next we consider 

the expected outcome were the matrix Φ specific to alternative host-parasite interactions 

anywhere along the continuum from gene-for-gene to matching alleles5,7,14,18-20. 

Importantly, in all instances of matching allele models, the system is predicted to behave 

differently from the modified gene-for-gene model presented here, with high diversity at 

high resource input (for discussion see Supplementary Information 6.1; a specific 
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example is shown in Fig 2b and Supplementary Fig 8). The interaction between lambda 

and E. coli is a form of lock and key mechanism18 with phage evolving progressively 

towards increased affinity for the host receptor19, hence this is an instance of a matching 

allele-like interaction (Fig 1b).  Permitting weak infectivity to non-matching types does 

not alter the conclusion that diversity should be high at high resource input (see 

Supplementary Information 6.1). Certain gene-for-gene type matrices, a class considered 

common in many host-parasite interactions6,14, can also give this result (Fig 2a). However 

there are other matrices that might be deemed gene-for-gene that give the alternative 

result (see Supplementary Information 6.2). 

More generally, we can show that as resource input increases from low to high, 

we observe two classes of outcome: a monotonic form as predicted for matching allele-

like interactions (e.g. with lambda phage) in which diversity of bacteria is highest under 

high resource input and the inverted U–shaped form exemplified by T7 in which diversity 

is maximal at intermediate resource input. The extent to which diversity is below the 

maximum is dependent on the precise form of Φ and β.  All models predict that diversity 

of coevolving hosts and parasites should vary with differences in resource input (e.g. Fig 

2a-c).  This contrasts with evolution in the absence of phage where there is no change in 

bacterial diversity with resource input.  As different environments likely provide different 

resource inputs, creating a selection mosaic, co-evolution of phage and bacteria could 

drive between-environment differences in diversity, as conceived by the geographic 

mosaic theory of coevolution2.  The passage to a position of stasis at high resource input 

and the low diversity seen in the T7 case are not particular to assumptions about the 

number of alleles. So long as the matrix Φ is square and invertible, the number of alleles 
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has no effect on the available spectrum of diversity properties resulting from the 

mathematical model (see Supplementary Information 3). 

Why is diversity in our study maximal at intermediate resource input? For phage 

to persist after lysis they need to be able to re-infect bacteria.  At very low nutrient levels 

(S0<1) bacterial density is so low that re-infection is unlikely, so phage cannot persist.  

Consequently the fastest growing bacteria alone are found.  As resource supply increases 

(10>S0>1) bacterial density increases, leading to a zone where intrinsic bacterial growth 

advantage favours B0 and B1, while greater resistance to phage favours B2 and B3.  With 

phage not dominating the system, this balance potentially enables all four bacterial types 

to be maintained and for the outcome to be sensitive to S0.  For S0>10 bacterial growth 

and density are both high, but B0 and B1 are both killed by phage.  With bacteria acting 

essentially as machines converting glucose to phage, these two relatively sensitive types 

can no longer persist.  The resultant diversity is then a balance between differences in 

growth rate and differences in phage resistance of B2 and B3.   Increasing bacterial growth 

rates are kept in check by increasing death rates, so bacterial density changes little.  By 

contrast, in some alternative models, such as matching alleles, we do not necessarily see 

the removal of B0 and B1 because the ancestral types are not sensitive, hence diversity 

remains high. Given the above explanation, it is perhaps not surprising in retrospect that 

what is found for T7- E. coli interactions need not be true for other biologically viable 

modes of host-parasite coevolution. These results show how appropriately framed 

mathematical models aligned with experimental analysis can obviate the need to presume 

typicality of one model within a class. 
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METHODS SUMMARY 

The Models. The model is based on systems of ordinary differential equations that 

generate a dissipative dynamical system with a GxGxE structure2. The model was 

parameterized with data on E. coli and T7 (Supplementary Information 5). Long-term 

diversity was computed using a standard Newton-continuation algorithm and applied to 

the model in steady-state form.   

The Experiment. Thirty ml communities were inoculated with isogenic strains of E. coli 

and of T7 in chemostats. High resource (1000μg/ml of glucose) and low resource 

(10μg/ml glucose) communities were established. Samples of the phage populations and 

T7-resistant hosts were isolated after 150 bacterial generations of the experiment. T7-

resistant colonies were isolated by taking 10 μL from each community, plating it with 50 

μL of the ancestral strain of T7 on agar plates and incubating the combined sample at 

37°C overnight. Each colony was streaked on an agar plate to remove any residual T7 

present in the cells and then grown overnight in the same medium as used in the pertinent 

community.  T7-resistant colonies were screened using a series of phage that target the 

lipopolysaccharide core (LPS) and specific outer membrane proteins (OMPs) (Table 1). 

The bacteriophage screen determined whether changes in the resistance cells had affected 

LPS and/or OMPs.  We determined the abundance of phage on different bacterial types 

present in the communities by adding 30μL of chloroform to 1000μL of a sample taken 

from each community and vortexing the mixture to kill any bacteria that were present. 

One hundred μL of each sample of the phage population were plated on a lawn of each 

bacterial isolate to determine the abundance of phage on each of the three host 
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phenotypes. Phage were plated on bacterial isolates from the same chemostat from which 

they originated. "Efficiency of plating" was our measure of phage abundance. 

 
Full Methods and any associated references are available in the online version of the full 

paper at www.nature.com/nature 

Received xxx; accepted xxx. 
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Table 1| Bacterial phenotypic diversity: (a) bacteriophage screen used to determine 

where mutations likely occurred in the T7-resistant bacteria; (b) bacteriophage screen 

used to designate host phenotypes. S = sensitive, R = resistant. 

 

a  

Bacteriophage Mutation 

T4 LPS 

T2 ompF or LPS 

Tu1a ompF 

 

b 

 Phage 

 

 

T7 WT T4 T2 Tu1a 

B0 WT S S S S 

B1 R S S R 

B2 R R S S 

 

Bacteria 

B3 R R R R 
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Figure 1| Infection mechanisms between bacteria (B) and phage (P).  The thickness of 

the lines represents infectivity levels: (a) gene-for-gene with intrinsic cost of virulence6; 

(b) matching alleles; (c) modified gene-for-gene where infectivity is always highest on 

the ancestral host. 

 

Figure 2| Bacterial diversity at steady state as a function of resource input as 

provided by the mathematical model for different infection mechanisms: (a) a gene-

for-gene model with costs of infection and virulence (infection matrix Φ motivated by 

Agrawal and Lively6 with parameter k = 1/2 and burst sizes β0= 304, β1=153, β2=153, 

β3=72); (b) matching alleles6, as found in lambda-E. coli using four equal burst sizes of 

304 and (c) modified gene-for-gene. All other parameter values are given in 

Supplementary Information, Table 1, bacterial densities are denoted Bi with i taking 

values from 0 to 3 and B0 denoting wild type. We computed these curves taking S0 from 

the minimal value required to support phage up to 1000 μg/ml. 

 

Figure 3| Experimentally derived bacterial diversity and phage abundance as a 

function of resource input. (a) Diversity of bacterial phenotypes, and (b) the abundance 

of phage on each bacterial type (± S.E.) from day 17 of the experiment. 
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Figure 4| Phage diversity at steady state as a function of resource input for different 

infection mechanisms: (a) a gene-for-gene model with costs of infection and virulence 

(infection matrix Φ motivated by Agrawal and Lively6 with parameter k = 1/2 and burst 

sizes β 0= 304, β 1=153, β 2=153, β 3=72); (b) matching alleles6, as found in lambda-E. 

coli using four equal burst sizes of 304 and (c) modified gene-for-gene. Phage densities 

are denoted by Pi where i takes values from 0 to 3 and P3 denotes the phage type that can 

infect all bacterial types. We computed these curves taking S0 from the minimal value 

required to support phage up to 1000 μg/ml (See Supplementary Information, Table 1 for 

parameter values.). 
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METHODS 

The Models 

The model is based on systems of ordinary differential equations that each generate a 

dissipative dynamical system with a GxGxE structure2. The model was parameterized 

with data on E. coli and T7 (Supplementary Information 5) and we concluded that there 

exists a globally attractive state of equilibrium densities that can be approached in an 

oscillatory manner. Thus, one can summarise long-term diversity by plotting resource 

input S0 versus the equilibrium densities of bacterial and phage types computed using a 

standard Newton-continuation algorithm implemented in MATLAB and applied to the 

model in steady-state form.   

The Experiment 

Thirty ml communities were inoculated with isogenic strains of E. coli and of T7 in 

chemostats. Two types of communities were established by manipulating the input of 

limiting nutrients for the bacteria: high resource (1000μg/ml of glucose; three 

communities) and low resource (10μg/ml glucose; two communities). Samples of the 

phage populations and T7-resistant hosts were isolated after the initial invasion of the 

resistant mutants and after the host and parasitoid coevolved for over 150 bacterial 

generations of the experiment (initial sample, high resource = 19, low resource = 11; final 

sample, high = 11, low = 12 bacterial colonies across all chemostats). Please see Ref 21 

for average population sizes.  
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Phenotypic diversity of resistant hosts 

T7-resistant colonies were isolated by taking 10 μL from each community, plating it with 

50 μL of the ancestral strain of T7 (titer of approximately 1x108) on agar plates and 

incubating the combined sample at 37°C overnight. Note that measuring the phenotypic 

diversity of the resistant hosts guarantees that selection has occurred, and thus any phage 

that can attack the hosts must be host-range mutants. Each colony was then streaked on 

an agar plate to remove any residual T7 present in the cells and grown overnight in the 

same type of liquid medium as used in the original experiment (i.e. either high or low 

resources). Freezer stocks of each culture were then stored in glycerol at -80C for future 

use. 

 

T7-resistant colonies were then screened using a series of phage that target the 

lipopolysaccharide core (LPS) and specific outer membrane proteins OMPs (Table 1). 

The presence of LPS is involved in maintenance of cell integrity and impermeability 

whereas OMPs are involved in uptake of nutrients into the cell and outer membrane 

stability. The subscripts of the four types (B0-B3) refer to the number of LPS-targeting 

reference phages to which the bacterial type is resistant (see Table 1b) and also orders the 

types according to their growth kinetics with B0 having the highest and B3 the lowest 

growth rate (see Supplementary Information). 

 

Each bacterial isolate was grown overnight in the appropriate medium (high or low 

resource) and then streaked across twenty μL of each reference phage that had been dried 

on an agar plate to assess resistance. In combination, these screens allowed us to 
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determine bacterial phenotypes in the high and low resource communities. The 

proportions of each phenotype at the start and end of the experiment were then averaged 

over time. 

Abundance of phage on different bacterial phenotypes 

We determined the abundance of phage on different bacterial types present in the 

communities by adding 30μL of chloroform to 1000μL of a sample taken from each 

community and vortexing the mixture to kill any bacteria that were present. One hundred 

μL of each sample of the phage population were plated on a lawn of each bacterial isolate 

to determine the abundance of phage on each of the three host phenotypes (B1, B2 and 

B3). Phage were also plated on ancestral bacteria (B0). The number of phage plaques was 

consistently higher on B0. Phage were plated on bacterial isolates from the same 

chemostat from which they originated (5-7 isolates per chemostat) and we used the 

"efficiency of plating" (EOP; the number of plaques on each host) as a measure of phage 

abundance. 

Data Analysis 

We examined the prediction that there should be higher repeatability in experimental 

outcome at high resource input, for each of three bacterial types (B1, B2, B3) by 

considering the modulus of the difference in the frequency of each type in each replicate 

experiment in a given resource level.  In all replicates at high resource input there is no 

difference in the frequency of the each bacterial type.  At low input the mean difference 

in frequency between replicate experiments is 0.21 +/- 0.08 (SEM) significantly greater 

than seen at high resource input (all data: Wilcoxon test p=0.0015; day 17 data: P=0.03)..   

 



  

 18

We asked whether there is more variation between levels than within, by considering the 

modular difference in frequency of the same bacterial type between resource input levels 

and ask whether it is greater than the differences observed within resource levels, as 

predicted by the model: within resource level mean modular difference = 0.1 +/-0.03 

(SEM) which is lower than the mean modular differences of frequencies observed at day 

17 between the same bacterial types at difference resource levels (mean modular 

difference in bacterial frequency between resource levels = 0.37 +/-0.13: Wilcoxon test 

P=0.003).  

 

21. Forde, S.E., Thompson, J.N. & Bohannan, B.J. Gene flow reverses an adaptive 

cline in a coevolving host-parasitoid interaction. Am Nat 169, 794-801 (2007). 
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