THE ROLE OF SOCIAL RANK IN THE
DEVELOPMENT, PHYSIOLOGY AND
REPRODUCTIVE STRATEGIES IN SALMONIDS

Submitted by Jefferson Murua, to the University of Exeter as a thesis for
the degree of Doctor of Philosophy in Biology, November 2009.

This thesis is available for Library use on the understanding that it is
copyright material and that no quotation from the thesis may be published
without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been
identified and that no material has previously been submitted and approved
for the award of a degree by this or any other University.

................................. JEFFERSON MURUA
There are many people to whom I am deeply grateful and had the pleasure to meet and work with throughout the duration of this study. I wish to acknowledge my debt of gratitude to the following people.

Dr Rod Wilson for his excellent supervisory skills, an optimistic approach and always helpful when needed. A real pleasure to work under his guidance. Rod also contributed to this thesis by providing some of his experimental data conducted in 2001 for the Na+ uptake kinetics chapters. Prof Svante Winberg for very kindly having me twice in his lab at Uppsala University (Sweden) to carry out the brain serotonin analysis. Jan Shears for many hours of help organising tank rooms, field trips and various other DIY enterprises. Prof Charles Tyler for encouragement and useful practical solutions with experimental designs.

Many thanks to Dr. Dylan Bright (WRT), Bill Robertson, John and David Richmond (The Dart Fisheries Association, Devon) and Neil Manchester (Landcatch, Salmon Farm, Argyll, Scotland) for kindly donating the salmon to this project. Also many thanks to Jan Shears and Chris Cooper for help with sampling. I would like to thank the Environment Agency and especially Darryl Clifton-Day for the repeated provision of fish and David Koss from Sparholt College.

I would also like to acknowledge my great gratitude to Anke Lange, Eduarda Santos, Jo Rabineau, Jon Whittamore, Chris Cooper, Jenny Landin, Marta Soffker, Luanne Wilkes, Tess Scown, Charlie Hazlerigg, Noura Al-Jandal and Tobias Coe for assistance with sampling and Tobias Backstrom and Per Ove Thörnqvist for help with fish brain samples. Thanks as well to Dr Mark Viant and Dr Adam Hines for conducting the metabolomics laboratory based work and data analysis in Chapter 7.

Big general thanks for all the people in the “fish group” and biosciences department for a genuinely great and friendly atmosphere to work in.

This work was financially supported by the University of Exeter, BBSRC and West Country Rivers Trust.

Finally I would like to specially thank my wife Vicky and two daughters, Ixtaso and Izaro, for putting up with long trips abroad and many working weekends and still being supportive all the way.
ABSTRACT

Salmonids naturally organise into social hierarchies both in the wild and aquaculture. This thesis investigates how social rank influences the physiology and development of salmonids with different life strategies using Atlantic salmon (*Salmo salar*) as a model. In broad terms two types of studies were conducted. Firstly osmoregulatory traits of freshwater parr prior to smolting, maturing or remaining immature where investigated using Na\(^+\) gill uptake kinetics. Highly distinct patterns emerged, especially for Na\(^+\) uptake affinity, between future alternative phenotypes, which could potentially be used as an identification tool in otherwise visually identical fish. Examination of Na\(^+\) uptake kinetics from a social status perspective revealed that first and intermediate ranked fish, which received less aggression and had lower cortisol, were better prepared for sea water entry. In the second batch of studies brain serotonergic activity (5-HIAA/5-HT), a key regulator of agonistic behaviour in vertebrates, was examined in a range of social conditions. First, the stability of social ranks was tested by food manipulation. The most dominant fish were able to retain their high status even after being kept in nutrient poor conditions. High status was associated with a high standard metabolic rate (SMR) and low brain 5-HIAA/5-HT. Secondly, studies on hierarchies with marked bimodal size asymmetries showed that upper modal group fish (UMG) became dominant. Despite being subordinate lower modal group (LMG) individuals showed similar growth rates, serotonin turnover and cortisol to UMG fish, possibly due to high aggression and fin injury sustained by high rank fish fighting for dominance. Thirdly, the association between social dominance and developmental pathway was examined in size-matched groups of immature parr and precocious parr, with the latter obtaining higher social positions and showing higher aggression. Brain serotonin turnover revealed higher 5-HIAA/5-HT in immature parr, a phenotypic distinction that was also identified in immature salmonids in aquaculture. Plasma samples from alternative life histories (immature parr, precocious parr and smolts) were also used for a preliminary investigation of potential metabolite signatures utilising metabolomic techniques.
CONTENTS

Title page 1
Declaration 1
Acknowledgements 2
Abstract 3
Contents 4
List of Tables 6
List of Figures 6
Abbreviations 7
1. General Introduction 8
 1.1. The salmonid life cycle 8
 1.2. Social hierarchies in salmonid fish 11
 1.3. Social rank, physiological correlates and reproductive strategies 15
 1.3.1. Brain serotonergic activity in social fish 16
 1.3.2. Fish hierarchies and cortisol 21
 1.3.3. Social ranks, developmental pathways and osmoregulation 24
 1.3.4. Social position and standard metabolic rate 30
 1.3.5. Specific growth rate and size asymmetries in salmonid fish 33
2. Social status stability and physiological correlates in young Atlantic salmon with alternative feeding environments 41
 2.1. Abstract 41
 2.2 Introduction and aims 42
 2.3. Methods 45
 2.4. Results 51
 2.5. Discussion 54
3. Differential sodium uptake kinetics in freshwater juvenile Atlantic salmon with alternative life histories. 61
 3.1 Abstract 61
 3.2. Introduction and aims 62
 3.3. Methods 67
 3.4. Results 74
 3.5. Discussion 76
4. Sodium uptake kinetics in smolt and immature parr Atlantic salmon living in social hierarchies
 4.1. Abstract
 4.2. Introduction and aims
 4.3. Methods
 4.4. Results
 4.5. Discussion

5. Serotonergic activity in juvenile Atlantic salmon social hierarchies with alternative life histories and size asymmetries
 5.1. Abstract
 5.2. Introduction and aims
 5.3. Methods
 5.4. Results
 5.5. Discussion

6. Social rank and brain serotonergic activity in immature and precocious Atlantic salmon parr
 6.1. Abstract
 6.2. Introduction and aims
 6.3. Methods
 6.4. Results
 6.5. Discussion

7. A preliminary study into the metabolomic signatures of juvenile Atlantic salmon with alternative life histories
 7.1. Abstract
 7.2. Introduction and aims
 7.3. Methods
 7.4. Results
 7.5. Discussion

8. General discussion

9. Bibliography
LIST OF TABLES

Table 1.1. Behaviours of socially interacting salmonids 12
Table 3.1. SGR and osmoregulation variables in 24 h seawater challenge 86
Table 5.1. Brain 5-HT, 5-HIAA and 5-HIAA/5-HT in UMG and LMG fish 134
Table 7.1. Putative metabolites identified in metabolomics study 165

LIST OF FIGURES

Figure 1.1. Physiological consequences of low social status in fish 16
Figure 1.2. General model of seawater adapted cell in teleosts 26
Figure 1.3. General model of freshwater adapted cell in teleosts 27
Figure 2.1. Body mass of D+, D-, S+, and S- in high-low food rations 58
Figure 2.2. SMR of D+, D-, S+, and S- held in high and low food rations 59
Figure 2.3 Brain 5-HIAA/5-HT of D+, D-, S+, and S- in high and low food rations 60
Figure 3.1. Michaelis-Menten equation diagram
Figure 3.2. Na\(^+\) unidirectional influx for \(K_m\) in immature parr and pre-smolts 84
Figure 3.3. Na\(^+\) fluxes for immature parr and pre-smolt Atlantic salmon 85
Figure 4.1. Social rank and initial size in Na\(^+\) uptake kinetic salmon 103
Figure 4.2. SGR in social ranks of Na\(^+\) uptake kinetics fish 104
Figure 4.3. Na\(^+\) uptake kinetics for \(K_m\) and \(J_{\text{max}}\) with social ranks 105
Figure 4.4. Social rank and plasma cortisol in Na\(^+\) kinetics fish 106
Figure 5.1. Length-frequency distribution on UMG and LMG stock fish 130
Figure 5.2. SGR of UMG and LMG Atlantic salmon 131
Figure 5.3. Brain 5-HIAA/5-HT in UMG and LMG fish of different social rank 132
Figure 5.4. Fin erosion, % attacks given and received in UMG and LMG fish 133
Figure 6.1. SGR, \(K\) and \(I_C\) of immature and precocious parr 152
Figure 6.2. Relationship of brain 5-HIAA/5-HT and social ranks in parr 153
Figure 6.3. Brain 5-HIAA/5-HT in laboratory immature and precocious parr 154
Figure 6.4. Brain 5-HIAA/5-HT in immature and precocious parr in aquaculture 155
Figure 7.1. PCA of NMR metabolomics of fish with alternative phenotypes 164
ABBREVIATIONS

ACTH Adenocorticotrophic hormone
CNS Central nervous system
CRF Corticotrophin releasing factor
DA Dopamine
DOPAC 3,4-dihydroxyphenylacetic acid
E Epinephrine
5-HIAA 5-hydroxyindoleacetic acid
HPA Hypothalamus-pituitary-adrenal (axis)
HPI Hypothalamus-pituitary-interrenal (axis)
HR High responders
5-HT 5-hydroxytryptamine, serotonin
5-HTP 5-hydroxytryptophan
LMG Lower modal group
LR Low responders
L-DOPA 3,4-dihydroxyphenylalanin
MAO Monoamine oxidase
MRC Mitochondria rich cell
Na⁺,K⁺-ATPase Sodium, potassium ATPase
NE Norepinephrine
PNA Peanut agglutinin binding
SMR Standard metabolic rate
TRP Tryptophan
UMG Upper modal group