PROCESS DESIGN IN AN INFORMATION-INTENSIVE SERVICE DELIVERY SYSTEM: AN EMPIRICAL STUDY

Submitted by

FREDERIC PONSIGNON

to the University of Exeter as a thesis for the degree of

DOCTOR OF PHILOSOPHY IN MANAGEMENT

March 2010

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

... (Signature)
ABSTRACT

The objective of this thesis is to explore the design of operational processes in information-intensive service delivery systems. Empirical data is presented which builds upon existing literature within the Business Process Management (BPM) and Service Operations Management (SOM) disciplines. Adopting a theory building mode, the thesis concludes with the formulation of several research propositions which specify the design characteristics of the processes that provide the service concept to the customer.

The research addresses a number of gaps in the literature. First, there is little empirical evidence concerning the relationship between the service concept, customer inputs, and process design. Second, service classification schemes promote homogeneous thinking in the design of service systems delivering diverse service concepts. Third, the BPM literature provides generic process design principles which offer limited theoretical insights into the design requirements of operational processes. Finally, there is a need for process design research in information-intensive service organisations.

A research framework that integrates theoretical models addressing service process design is investigated using a single case study approach. Fieldwork was carried out over a sixteen-month period in a large electricity supplier in the UK. In contrast to the macro-orientation found within the literature, this study employs a more granular level of analysis to address the unique requirements of ‘service concept – processes’ pairs. This approach results in a number of important findings which, in several instances, are in contradiction to current thinking. First, the results empirically validate the theoretical relationship between service concept, customer inputs, and process design. Different service concepts lead to different process designs, and the more customised the service concept, the more the process is uniquely designed. Significant differences in the design of the individual processes that collectively provide the service concept to the customer are highlighted.

The results also provide some new insights into the design of front office – back office activities as well as into the design characteristics of processes characterised by low customer contact. In addition, the study refutes the view that generic process design principles are universally applicable irrespective of the context in which the processes operate. Finally, the research findings show that a process-based view of service systems allows for heterogeneity; that is differences in the design of service delivery processes within the same organisation.
ACKNOWLEDGEMENTS

Throughout the research I have benefited from the help and support of several people working at the University of Exeter and at the case company. I would particularly like to thank the following people.

First and foremost, I would like to thank my supervisors, Andi and Roger. They offered me the opportunity to do the PhD in the first place and provided adequate financial support throughout the research period. Both of them were always available for a chat over a cup of coffee, they were happy to listen to my view of the world, they shared their expertise, and they offered their friendship.

I would like to thank Phil Godsiff and Harry Maddern from the XSPO research group for our rich discussions about “service” and for insightful comments on the research at various stages in the project. Being part of a dynamic research group that includes talented and friendly individuals from various backgrounds was a truly rewarding experience.

I also thank Carolyne Baker for making the research possible by opening doors at the case organisation.

In addition, I would like to thank my good friends in Exeter, Sanjay, Paul, and James, who have provided a lot of entertainment and were there to keep me motivated and focused on my research in difficult times. I also thank Francine, our multi-talented assistant in the research group, for offering me accommodation and so much more in my last year in Exeter.

My love, thanks and deepest gratitude go to my Mum and Dad for encouraging me to start this journey and sustaining me throughout.

Finally, I should thank Aurélie for being there for me and for believing in me, as well as for letting me turn her flat into a PhD office for the past 6 months.
TABLE OF CONTENTS

Title page 1
Abstract 2
Acknowledgements 3
Table of contents 4
Publications 10
List of figures 11
List of tables 12

Chapter 1: INTRODUCTION 15

1.1 Introduction 15
1.2 Context and rationale for the research 15
1.2.1 The share of information-intensive services within the service economy 15
1.2.2 The process concept in operations management 17
1.2.3 Process design in the context of service operations 20
1.3 Research aims and objectives 21
1.4 Significance of the study 22
1.5 Organisation of the thesis 24
1.5.1 Chapter 2: Business Process Management literature review 25
1.5.2 Chapter 3: Service Operations Management literature review 26
1.5.3 Chapter 4: Research methodology 27
1.5.4 Chapter 5: Conceptual framework 27
1.5.5 Chapter 6, 7, and 8: Data analysis 27
1.5.6 Chapter 9: Discussion 28
1.5.7 Chapter 10: Implications and limitations 28

Chapter 2: PROCESS MANAGEMENT LITERATURE REVIEW 29

2.1 Introduction 29
2.2 Business Process Management 30
2.2.1 The emergence of Business Process Management 30
2.2.2 Defining Business Process Management 31
2.2.3 The promises of Business Process Management 32
2.3 The business process concept 35
2.3.1 Defining the business process concept 35
2.3.2 Characteristics of a business process 37
2.4 The concept of business process architecture 38
2.4.1 Defining the business process architecture 39
2.4.2 Categorising business processes 41
2.4.3 Focus on ‘operate’ processes 42
2.5 Business process design 45
2.5.1 The role of business process design 45
2.5.2 Principles of process design 45
2.5.3 Basics of business process modelling 48
2.5.4 IDEF-0: a technique for representing process architectures 49
2.6 Summary and conclusions 51

Chapter 3: SERVICE OPERATIONS LITERATURE REVIEW 53
3.1 Introduction 53
3.2 The Unified Services Theory (UST) 54
3.2.1 Different perspectives on service 54
3.2.1.1 The outcome-based view: the IHIP model 55
3.2.1.2 The all-encompassing view: the Service Dominant Logic 56
3.2.1.3 The process view: the Unified Services Theory 57
3.2.2 The relationship between customer inputs and process design 59
3.2.3 The UST: a bridge between SOM and the management literature 61
3.3 Service design 63
3.3.1 Models of strategic service alignment 63
3.3.2 Defining the service concept 65
3.3.3 Service delivery system design 66
3.3.3.1 Defining the service delivery system 66
3.3.3.2 Service system design issues 67
3.4 Process design in the SOM literature 68
3.4.1 Empirical studies on process design 68
3.4.2 Service blueprinting 70
3.5 Insights into process design from the manufacturing literature 71
Chapter 4: RESEARCH METHODOLOGY

4.1 Introduction 89
4.2 Justification of the research philosophy 91
4.2.1 Discussion of the major research paradigms 91
4.2.2 The debate in operations management 95
4.2.3 Appropriateness of the realist paradigm 97
4.3 Justification for using a case study research design 100
4.4 Case selection and sampling 102
4.4.1 Defining the case organisation as an information-processing operation 103
4.4.2 Rationale for the selection of the case organisation 104
4.4.3 The units of analysis 105
4.4.4 Sampling logic for the embedded cases 106
4.5 Data collection process 107
4.6 Validity and reliability of the research 114
4.6.1 Construct validity and confirmability 115
4.6.2 Internal validity and credibility 115
4.6.3 External validity and transferability 116
4.6.4 Reliability and dependability 117
4.7 Ethical considerations 117
Chapter 5: CONCEPTUAL FRAMEWORK

5.1 Introduction 119
5.2 Conceptual framework 119
5.3 Operational definitions 122
5.3.1 Service concept 122
5.3.2 Customer inputs 125
5.3.3 Process design characteristics 126
5.3.3.1 Employee skills 129
5.3.3.2 Employee discretion 130
5.3.3.3 Task routineness 131
5.3.3.4 Automation 132
5.3.3.5 Front office (FO) – back office (BO) configurations 133
5.3.3.6 Location 133
5.3.3.7 Efficiency 134
5.3.3.8 Responsiveness 134

Chapter 6: DATA ANALYSIS: METHOD AND CONCEPTUAL MODEL OF THE SERVICE DELIVERY SYSTEM

6.1 Introduction 135
6.2 Data analysis method 135
6.2.1 Document and code data 138
6.2.2 Organise data 142
6.2.3 Characterisation of cases across research variables 142
6.2.4 Validating the results 144
6.3 Conceptual model of the service delivery system 144
6.3.1 Overview of the service delivery system 144
6.3.2 Case oriented process models 146
6.3.2.1 Case A: “default” service concept 146
6.3.2.2 Case B: “standard” service concept 148
6.3.2.3 Cases C and D: “flexible” and “bespoke” service concepts 150
Chapter 7: DATA ANALYSIS: SERVICE CONCEPT AND CUSTOMER INPUTS

7.1. Analysis of service concept data
 7.1.1. Methodology
 7.1.2. Overview of results
 7.1.3. Degree of complexity of the service offering
 7.1.4. Customer contact strategy
7.2. Analysis of customer inputs
 7.2.1. Methodology
 7.2.2. Overview of results
 7.2.3. Customer inputs supplied to the ‘sell service’ processes
 7.2.3.1. Type of customer inputs
 7.2.3.2. Request variability
 7.2.3.3. Arrival rate variability
 7.2.3.4. Quantity of information
 7.2.4. Customer inputs supplied to the ‘deliver service’ processes
 7.2.4.1. Type of customer inputs
 7.2.4.2. Request variability
 7.2.4.3. Arrival rate variability
 7.2.4.4. Quantity of information

Chapter 8: DATA ANALYSIS: PROCESS DESIGN CHARACTERISTICS

8.1. Methodology
8.2. Design characteristics of the ‘sell service’ processes
 8.2.1. Task routineness
 8.2.2. Automation
 8.2.3. Employee skills
 8.2.4. Employee discretion
 8.2.5. Location
 8.2.6. Front Office (FO) – Back Office (BO) configurations
 8.2.7. Efficiency
 8.2.8. Responsiveness
8
Chapter 9: DISCUSSION

9.1. Introduction 206
9.2. Summary of findings 206
9.2.1. The relationship between service concept, customer inputs, and process design characteristics 206
9.2.2. Differences in the design characteristics of interrelated ‘sell service’ and ‘deliver service’ processes 208
9.3. Discussion 210
9.3.1. Aligning service concept and customer inputs with process design 210
9.3.2. Process design characteristics 213
9.3.2.1. Design characteristics of the ‘sell service’ processes 213
9.3.2.2. Design characteristics of the ‘deliver service’ processes 220
9.3.3. Principles of business process design 225

Chapter 10: IMPLICATIONS AND LIMITATIONS 229

10.1. Introduction 229
10.2. Implications of the findings for theory 229
10.2.1. Empirical support for the theoretical relationship of service design elements 229
10.2.2. Differences in the design of the individual ‘operate’ processes that collectively provide the service concept to the customer 231
10.2.3. New insights into front office – back office configurations 232
10.2.4. New insights into the design characteristics of low-contact processes 233
10.2.5. Benefits from a process-based view of the service delivery system 235
10.2.6. Refuting generic principles of business process design 236
10.3. Implications of the findings for practice 238
10.4. Limitations of the research 240
10.5. Further research 242

REFERENCES 245

APPENDICES
Appendix 4A Case selection 259
Appendix 4B Case study protocol 262
Appendix 4C List of employees interviewed 267
Appendix 4D List of documents collected 268
Appendix 7A Coding items for the service concept variables 270
Appendix 7B Coding items for the customer input variables 276
Appendix 8A Coding items for the process design variables (‘sell service’) 283
Appendix 8B Coding items for the process design variables (‘deliver service’) 296
Appendix 8C Calculation details for flexible contracts 307
Appendix 8D Flowcharts of ‘deliver service’ processes 310

PUBLICATIONS
Publication 1 Service delivery systems: a business process perspective 316
Publication 2 Towards a Set of Principles for Process Design in Information-Intensive Service Delivery Systems 330
LIST OF FIGURES

Figure 1.1: The input-output transformation model 15
Figure 1.2: Overview of research process 25
Figure 2.1: A business process in a functional organisation 33
Figure 2.2: The development of process perspectives 35
Figure 2.3: An integrated model of BPM 38
Figure 2.4: Typical levels in a hierarchical process architecture 40
Figure 2.5: A process classification framework 41
Figure 2.6: ‘Operate’ processes in the architecture 43
Figure 2.7: Classification of process modelling techniques 49
Figure 3.1: A service process based on the UST 59
Figure 3.2: The service strategy triad 63
Figure 3.3: The product-process matrix: matching product and process types 73
Figure 3.4: The service process matrix 81
Figure 4.1: The research onion 90
Figure 4.2: Positioning service concepts on the customisation continuum 107
Figure 4.3: Data collection framework 108
Figure 4.4: Information that should be collected about the process 109
Figure 4.5: Tracing the evidence: going forward and backwards 115
Figure 5.1: Conceptual framework 120
Figure 5.2: A process-based view of the service delivery system 121
Figure 5.3: Detailed view of the research framework 122
Figure 5.4: Theoretical model of the process rigidity-fluidity construct 129
Figure 6.1: The process of data analysis in this thesis 137
Figure 6.2: The operation of a diagram in IDEF-0 139
Figure 6.3: Conceptual model of the service delivery system 145
Figure 6.4: Case A – ‘Sell service’ process (A1) 147
Figure 6.5: Case A – ‘Deliver service’ process (A2) 148
Figure 6.6: Case B – ‘Sell service’ process (A1) 149
Figure 6.7: Case B – ‘Deliver service’ process (A2) 150
Figure 6.8: Cases C and D - ‘Sell service’ process (A1) 151
Figure 6.9: Cases C and D - ‘Deliver service’ process (A2) 152
Figure 6.10: Cases C and D - ‘Produce bills manually’ sub-process (A23) 153
Figure 7.1: Degree of customisation of selected service concepts 155
Figure 8.1: Case A - Conceptual model of the ‘sell service’ process 176
Figure 8.2: Case B - Conceptual model of the ‘sell service’ process 176
Figure 8.3: Case C - Conceptual model of the ‘sell service’ process 176
Figure 8.4: Case D - Conceptual model of the ‘sell service’ process 177
Figure 8.5: Case A - Conceptual model of the ‘deliver service’ process 192
Figure 8.6: Case B - Conceptual model of the ‘deliver service’ process 193
Figure 8.7: Case C - Conceptual model of the ‘deliver service’ process 193
Figure 8.8: Case D - Conceptual model of the ‘deliver service’ process 193
Figure 9.1: Data analysis results 207
Figure 10.1: Process design characteristics in an information-intensive service delivery system 230

LIST OF TABLES

Table 1.1: The service industry as a percentage of GDP around the world 15
Table 1.2: Share of service-related articles in OM journals 16
Table 2.1: The traditional versus the process enterprise 33
Table 2.2: Business process characteristics 37
Table 2.3: Ten popular best practices in business process design 46
Table 3.1: An overview of service classification schemes 79
Table 3.2: Design characteristics of different delivery systems 83
Table 4.1: Assumptions associated with research paradigms 92
Table 4.2: Implications of deduction and induction for research 94
Table 4.3: Research methods in Operations Management 96
Table 4.4: Scientific paradigms: implications for research 98
Table 4.5: Assessing the reliability and validity of case study research 100
Table 4.6: Initial assessment of the number of customers processed 112
Table 5.1: Definition of the dimensions of the service concept variable 123
Table 5.2: Definition of the dimensions of the customer input variable 126
Table 5.3: Process design: issues and characteristics 127
Table 5.4: Design characteristics of rigid and fluid processes 128
Table 5.5: Definition of the dimensions of the rigidity-fluidity construct 129
Table 6.1: IDEF-0 Methodology 139
Table 6.2: The service concept coding category 141
Table 6.3: The customer inputs coding category
Table 6.4: The process design characteristics coding category
Table 7.1: Discrete pieces of code for the service concept variables
Table 7.2: Template for the analysis of service concept data
Table 7.3: Service concept - Summary of results
Table 7.4: Results of data analysis - Degree of complexity
Table 7.5: Degree of complexity – ‘COMPL’ coding items
Table 7.6: List of options available per service concept
Table 7.7: Results of data analysis - Customer contact strategy
Table 7.8: Customer Contact Strategy - ‘CONTSTRAT’ coding item
Table 7.9: Discrete pieces of code for the customer input variable
Table 7.10: Template for the analysis of customer inputs data
Table 7.11: Results of analysis – Customer inputs (‘sell’ processes)
Table 7.12: Results of analysis – Customer inputs (‘deliver’ processes)
Table 7.13: Type of inputs – ‘TYPINP’ coding items
Table 7.14: Request variability – ‘VARINP’ coding items
Table 7.15: Results of analysis - Arrival rate variability
Table 7.16: Results of analysis - Quantity of information
Table 7.17: Quantity of information – ‘INFQUANT’ coding items
Table 7.18: Number of sites and site profiles
Table 7.19: Results of analysis - Arrival rate variability
Table 7.20: Results of analysis - Quantity of information
Table 8.1: Coding items for process design variables (‘sell’ processes)
Table 8.2: Coding items for process design variables (‘deliver’ processes)
Table 8.3: Template for the analysis of process design data
Table 8.4: Results of data analysis - Task routineness
Table 8.5: Task routineness – ‘ROUT’ coding items
Table 8.6: Results of data analysis – Automation
Table 8.7: Automation – ‘AUTO’ coding items
Table 8.8: Results of data analysis - Employee skills
Table 8.9: Skills – ‘SKI’ coding items
Table 8.10: Results of data analysis - Employee discretion
Table 8.11: Employee discretion – ‘DISC’ coding items
Table 8.12: Location – ‘LOC’ coding items
Table 8.13: Results of data analysis - FO-BO configuration
Table 8.14: FO-BO configurations – ‘FOBO’ coding items 188
Table 8.15: Results of data analysis - Efficiency 189
Table 8.16: Efficiency – ‘COST’ coding items 190
Table 8.17: Results of data analysis – Responsiveness 190
Table 8.18: Responsiveness – ‘RESP’ coding items 191
Table 8.19: Degree of rigidity-fluidity - ‘Sell service’ processes 192
Table 8.20: Results of data analysis - Task routineness 194
Table 8.21: Task routineness – ‘ROUT’ coding items 196
Table 8.22: Results of data analysis – Automation 196
Table 8.23: Automation – ‘AUTO’ coding items 198
Table 8.24: Results of data analysis - Employee skills 198
Table 8.25: Skills – ‘SKI’ coding items 199
Table 8.26: Results of data analysis - Employee discretion 200
Table 8.27: Employee discretion – ‘DISC’ coding items 201
Table 8.28: Results of data analysis - Efficiency 203
Table 8.29: Efficiency – ‘COST’ coding items 203
Table 8.30: Results of data analysis - Responsiveness 204
Table 8.31: Degree of rigidity-fluidity - ‘Deliver service’ processes 205
Table 9.1: Definition of four principles of business process design 226