Milli-kelvin Thermodynamic and Transport Measurements of Low Dimensional Systems in High Magnetic Fields

Submitted by Martin Joseph Smith, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics, September 2009.

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

... Martin J Smith
Abstract

This thesis presents an investigation into aspects of the integer quantum Hall effect, specifically the near-dissipationless state of the longitudinal resistivity ρ_{xx} between Landau levels, and the associated broadening of the levels. Eddy currents induced by a time varying magnetic field B are considered in chapter 4. The temperature dependences of the eddy currents were measured over the range 100 mK to 1600 mK. The peak current at filling factor $\nu = 2$ was shown to saturate at $\gtrsim 800$ mK, more robust than previously observed, but was reduced by elevating the temperature to 1600 mK. The saturated regime is associated with a breakdown of the quantum Hall effect, and in this case, the most likely candidate for the saturation is an electron heating effect.

Sweep-rate dependences were characterised for a range of filling factors and temperatures, and even for the lowest sweep rates, never entered a linear regime. Induced currents $\nu = 1, 2$ and 4 all saturated at the same critical value at 100 mK, but $\nu = 4$ was shown to reduce with slower sweep rates, consistent with the prediction that the ρ_{xx} minima is not as small as for lower Landau levels. Induced current decays were measured to be similar to previous work, a fast initial decay attributed to breakdown of the QHE followed by a much longer slow decay. The eddy decay of $\nu = 1$ at low temperature, in the slow decay regime, is among the most persistent reported. It was shown that the assumptions of previous work had not evaluated the mutual inductance of the eddy current in the presence of the magnet sufficiently. By fitting a suitable function to the IV characteristic of $\nu = 1$ the shape of the induced current was modeled. The model agreed with the data, producing a similar shape and a very long time constant for the slow decay.
In chapter 5 the hysteresis in the magnetoresistance of a quantum point contact was investigated, through a simultaneous transport and magnetometry measurement. Induced currents corresponding to filling factors up to \(\nu = 8 \) were measured. Three corresponding features were measured in the magnetoresistance of a QPC, one more than previously seen. The temperature dependence was measured simultaneously, and for Landau level filling factor \(\nu = 1 \), the general shape of the curves was the same. The sweep rate \(IV \) characteristics of the the two experiments were similar. Sweeping the magnetic field \(B \) to a fixed field position and waiting, demonstrated that both phenomena decay with time, a fast decay of seconds and a slow decay taking more than 10,000 seconds. An attempt was made to affect the induced eddy current by switching the QPC gate on/off. Experiments on a fast timescale, 10 ms, resolved structure in the induced currents that has previously been attributed to the noisy breakdown of the quantum Hall effect. By performing a simultaneous measurement, individual breakdown events were seen and correlated.

After investigating the zero-resistance state in chapter 4 and chapter 5 with induced currents, exactly how the zero-resistance state varied between Landau levels was the topic of chapter 6. A method was presented for the fabrication of a novel device, to measure the magnetisation and the heat capacity of a 2DES at the same time. AuGe thin film resistors were grown in only 10 bilayers, reducing the heat capacity per unit area by approximately an order of magnitude on previous workers. The AuGe thermometers were shown to be ‘tunable’, i.e. the temperature dependence was dictated by the annealing conditions after growth, so thermometers with different gold concentrations due to growth conditions, could be tuned to have similar temperature dependences. Low temperature thermometers with small heat capacities were repeatably produced, and thermometer D5 is presented in this thesis with a sensitivity of \(S = 0.58 \).

At an elevated refrigerator temperature of nearly 300 mK, heat pulses of \(\sim 26 \) nJ were resolved on a device which had a 100% front processing success rate, but was not etched from the back. It was shown that a device to measure the broadening of the low temperature, high magnetic field 2DES density of states is possible.
Acknowledgements

There have been many people who have helped me enormously over the course of my PhD. First I would like to thank my supervisors Dr Alan Usher and Dr Charles Williams for all the help and inspiration along the way.

An experimental low temperature physics project could not happen without all the support staff. Thank you to Dave Manning and Adam Woodgate for the liquid helium and liquid nitrogen, especially the flavour that comes at short notice. The mechanical workshop guys, Steve Tuckett, Matt Wears, Pete Cann, Paul Wilkins, John Meakin and Kevyn White.

I would also like to thank Geoff Hill at Sheffield University for the enormous help he has been over the course of the project. In developing the dual cantilever-calorimeter we shared a lot of frustrations together, and saw more than our fair share of scratched tracks.

Thank you to Tony Matthews, Tristan Kershaw and especially James Gething for the handing down of refrigerators and knowledge. Thank you to all my friends who have been great fun over the last few years, there are too many of you to list. Thank you to my parents for supporting me in whatever I wanted to do.

I also need to mention Batman: the world’s greatest detective. You ask all the right questions, always have a plan, the night is never too late for you, the pressure is never too much and a deadline is never too close. You are an inspiration to me.

Finally I would like to thank the eddy currents, they may not have put a lot of energy into this project, but without their tiny contribution it would not have been possible.
Contents

1 Introduction 21

2 Background 24

2.1 Two-dimensional electron systems ... 24

2.1.1 Construction of a Two Dimensional System 24

2.1.2 Two Dimensional Density of States 28

2.1.3 Two Dimensional Electrons in a Magnetic Field 30

2.2 Oscillating Magnetic Moment - the de-Haas—van Alphen effect 34

2.3 Oscillating Heat Capacity .. 37

2.4 The form of the density of states ... 40

2.5 The Hall effect .. 45

2.6 The integer quantum hall effect ... 47

2.7 Edge States ... 48

3 Experimental Details 51

3.1 Introduction .. 51
CONTENTS

3.2 The Dilution Refrigerators ... 51

3.2.1 Oxford Instruments Refrigerator System 51

3.2.2 Cryogenic Consultants Limited dilution refrigerator 52

3.3 Vibration Damping ... 53

3.4 Magnetometry .. 54

3.5 Calorimetry ... 55

3.5.1 Adiabatic Calorimetry .. 56

3.5.2 Relaxation Calorimetry .. 58

3.5.3 AC Calorimetry .. 59

3.6 The Samples ... 60

4 Measurements of induced currents in the QHE 63

4.1 Introduction .. 63

4.2 Early measurements of induced currents 64

4.3 High current breakdown of the quantum Hall effect 65

4.3.1 Electron-heating model ... 65

4.3.2 Intra-Landau-level scattering 67

4.3.3 Inter-Landau-level scattering 67

4.4 Experiment ... 69

4.5 Temperature Dependence .. 74

4.6 Sweep rate IV curves ... 82
4.7 Decay measurements ... 88
 4.7.1 Brief Introduction ... 88
 4.7.2 Establishing a background 89
 4.7.3 Decay of filling factors $\nu = 1, 2$, and 4 90
4.8 Relating IV characteristics to induced current decays 94
 4.8.1 Energy stored in an induced current 95
 4.8.2 Discharging an eddy current 100
4.9 Conclusions .. 104

5 Hysteresis in the conductance of a QPC 106
 5.1 Introduction .. 106
 5.2 Experimental setup .. 111
 5.3 Characterising QPC AK-47 112
 5.3.1 Magnetoconductance 118
 5.4 Temperature dependence 122
 5.5 Sweep rate dependence 126
 5.6 Decay measurements .. 128
 5.7 Correlation of structure in ‘noisy’ breakdown of the QHE 129
 5.8 Affect of the gate on the induced current 132
 5.9 Conclusions .. 133
6 Dual Calorimetry/Magnetisation Measurements of 2DES

6.1 Introduction .. 135
6.2 Cantilever viability .. 136
 6.2.1 Previous measurements 136
6.2.2 Experiment details 137
6.2.3 Preliminary Cantilever data 140
6.3 Calorimetry .. 142
 6.3.1 The Dual Cantilever-Calorimeter 143
6.3.2 Heaters and tracks 146
6.3.3 Thermometry ... 149
 6.3.3.1 Temperature Dependence and Sensitivity 155
6.3.3.2 Magnetic field dependence 158
6.3.3.3 Noise .. 159
6.3.4 Processing of Device 160
6.3.5 Contacting the Calorimeter and external connection 166
6.3.6 Preliminary Calorimetry Measurements 167
6.4 Conclusions ... 169

7 Conclusions and Further work 171

7.1 Conclusions .. 171
7.2 Further work .. 175

Bibliography .. 177
List of Figures

2.1 A simplified heterojunction: two separate n- and p-type semiconductors with different bandgaps (a), are brought together to form a heterojunction (b), confining a 2DES at the electrostatic boundary. 25

2.2 Illustration of the ground state wavefunction of a heterojunction. 26

2.3 The density of states for a 3D and 2D system. The position of the Fermi energy is indicated for the condition that only the first subband is occupied at a finite temperature. 30

2.4 The theoretical density of states for a 2DES in a magnetic field (left), and broadened levels due to disorder and temperature, consisting of both localised and extended states (right). 32

2.5 Oscillation in the Fermi energy due to Landau level quantisation. 34

2.6 Oscillations in the Free energy due to a varying magnetic field B. 35

2.7 Oscillations in the magnetisation of a 2DES in a magnetic field, the de-Haas–van-Alphen effect. 37

2.8 Oscillations in the Fermi energy give rise to an oscillating heat capacity, calculated by Zawadzki and Lassnig [24]. There are two contributions, an intra-LL contribution, and an additional inter-LL contribution in the form of spikes. 39
LIST OF FIGURES

2.9 DOS $g(E, B)$ calculated for a 2DES in GaAs for Lorentzian broadened LLs (solid curve) and Gaussian broadened LLs (dashed curve), after Potts et al. [25]. .. 42

2.10 Hall bar geometry of a 2DES. A magnetic field B is applied perpendicular to the plane and the direction of current flow. The voltmeters indicate the longitudinal and Hall voltages. 45

2.11 Experimental data of the quantum Hall effect, characterised by deep resistance minimum in the longitudinal voltage drop, and quantised plateaux in the Hall voltage, from Cage [33]. 47

2.12 Edge channels form in a disordered potential. The energy of the edge state increases as the edge of the sample is approached. As the Fermi energy is increased, more Landau levels contribute to the conduction. In this example, the $n = 3$ level is partially full and there are states occupied in the bulk. Image after Beenakker and van Houten [40]. . . 50

3.1 Torsion balance magnetometer. A magnetic field B causes a magnetic moment m in the sample (quantum point contact AK47 pictured without wires), which results in a torque that can be measured by a differential capacitive change. The sample is not to scale. 54

3.2 Heat-pulse calorimetry: A heat pulse (a) results in a thermometer response: (b) Measured response of a AuGe thin film resistor connected to a weak thermal link and (c) Predicted response in quasi-adiabatic conditions. ... 56

3.3 Ac calorimetry method. The measured heating is at twice the frequency of the applied heater voltage. 59
4.1 Current-voltage characteristic of a GaAs/(Al,Ga)As heterostructure at $T = 1.4 \text{K}$, from Ebert et al. [54]. The top inset indicates the magnetic field position at which the breakdown was measured, and the bottom inset shows the device geometry. The solid line in the central figure is magnified by a factor of 50,000 to give the broken curve. ... 66

4.2 Quasi-elastic inter-Landau-level scattering representation, after Eaves and Sheard [59] Landau levels are sloped ($slope = eE$) due to an electric field. States in the lower LL (ℓ) acquire the same energy as the upper LL ($\ell + 1$) and can tunnel to these new states if perturbed. 69

4.3 Measurement of magnetisation through torque magnetometry and longitudinal resistivity ρ_{xx} through a transport measurement. The resistivity ρ_{xx} is characterised by deep resistance minimum at integer filling factors. Both experiments were conducted at 40 mK but are not simultaneous. ... 70

4.4 $x-$ and $y-$phase components of a lock-in amplifier for a typical magnetometry run at a sweep rate of 1.605 mT s$^{-1}$ at 300 mK. 73

4.5 $x-$ and $y-$phase components taken from figure 4.4 and magnified. Features in the $y-$phase are small compared to the $x-$phase, and likely to have arisen from capacitive coupling to the 2DES, oscillations are seen with the Fermi energy is between Landau levels. The double peak structure in the $y-$phase is predicted by Morris [64]. 74

4.6 Phase diagram of the breakdown current in the QHE with temperature after Rigal et al. [66] ... 75

4.7 Induced eddy currents at $\nu = 1, 2, 3, 4$ changed shape and amplitude with temperature. As temperature increases the integral of the total current decreased, but for $\nu = 2$ the amplitude is approximately constant. ... 77
4.8 Eddy current amplitude vs temperature converted from figure 4.7. Additionally data from a high T sweep at 1.6 K is included, the only remnant eddy current was $\nu = 2$. $\nu = 1, 2$ and perhaps 4, saturate at low T due to a breakdown effect, the strongest candidate is electron heating. ... 78

4.9 Disorder broadened LLs, showing the position of the Fermi energy at integer ν. When a magnetic field is swept, electrons accumulate in, or deplete from, different regions within the 2DES, resulting in regions with quasi-Fermi energies. After Usher and Elliott [69]. 81

4.10 Sweep rate IV curves for $\nu = 1, 2, 4$ and 6 at various temperatures are non-linear. Sweep rates have been converted to an EMF and magnetic moments to a current. At higher EMFs the breakdown of the QHE is evident, the current does not exceed a maximum value. .. 84

4.11 Calculated potential profile across a 20 μm Hall bar, as in equation (4.6) after Balaban et al. [73]. 86

4.12 Establishing the ‘zero’ of the decay for $\nu = 1$ by mapping the background with an up and down sweep (black), and sweeping out after ~ 10 hours. The current decayed by less than 10% in this time, with most of the dissipation happening in the first 20 s due to breakdown of the zero resistance state. 90

4.13 Induced eddy current decay for filling factor $\nu = 1$. Of the dissipated current, most is lost in the initial part of the decay, followed by an extremely persistent slow decay. 92

4.14 Induced eddy current decay for filling factor $\nu = 2$. A significant portion of the current is dissipated in the initial part of the decay, followed by a persistent slow decay of hours. The step in the 300 mK curve is due to ice cracking on the cryostat, causing a mechanical knock. 93
4.15 Induced eddy current decay for filling factor $\nu = 4$. Most of the current is dissipated in the initial part of the decay, followed by a slower decay of several hours. 94

4.16 Simplified schematic of the magnet with inductance L_m coupling to the eddy current with an inductance L_e. 96

4.17 Calculating dissipation from a sweep rate IV curve for an induced current. Starting at an arbitrary current, a resistance is calculated, and I is dissipated through the resistance R_1 in a time interval dt. A new current is then used calculate a new resistance R_2, and the process is repeated. 101

4.18 Sweep rate curve for induces current $\nu = 1$ at 800mK, with fitted function. 103

4.19 Decay of $\nu = 1$ at 800 mK. The blue curve is computed from the sweep rate IV curve, and follows the trend of the data. 104

5.1 The first experimental realisation of quantised conductance in zero magnetic field. The constriction is tunable; the width decreases, pinching off conducting channels, as the gate voltage is made more negative. (a) Quantum point contact resistance as a function of gate voltage at 0.6 K. The inset shows the split gate electrodes deposited remotely from the 2DES. (b) Quantum point contact conductance as a function of gate voltage obtained from the data in (a), after an adjustment for a series lead resistance. The conductance shows plateaus at multiples of $e^2/\pi\hbar$. Images taken from Van Wees et al. [79]. 107
yvST O3 3v2URtS

9-l zagnetoconductance measurements on a quantum point contact at
as w e e pr a t eo f
17 \mu T s^{-1} and a temperature of 30 mK, taken from
Pioro-Ladrière et al. [81]. (a) The conductance \(G_{QPC} \) as a function
of magnetic field \(B \), with a hysteretic feature at 3.6 T, corresponding to
filling factor \(\nu = 2 \) (in the 2DES leads). The inset shows an electron
micrograph of the device, the scale bar is 300 nm. The quantum
dot in the upper gate plays no role in this experiment. (b) (left)
An enlargement of the hysteretic feature at \(\nu = 2 \) and (right) the
hysteretic feature at \(\nu = 1 \).

5.3 A schematic illustration (not to scale) of the induced current in the
2DES, leads have a Hall voltage which perturbs the potential near the
QPC. The radial Hall fields results in a positive charge build up near
the gates. The barrier appears shorter to the ballistic electrons and
therefore the device has a corresponding dip in magnetoconductance.

5.4 Stycast rotor with QPC sample AK47 mounted before being fitted in
the magnetometer frame. Insulated copper wires connect to the gold
pads on the QPC with silver paint contacts, and are fixed to the edge
of the rotor with superglue.

5.5 Experimental set-up for measurement of voltage drop along QPC us-
ing the primary lock-in as a constant current source. The second
lock-in is used to measure the small voltage drop across a 10 k\(\Omega \) resis-
tor, and hence the QPC current, it is removed for the simultaneous
experiments.
5.6 (top) QPC resistance measured at 50 mK with a 10 nA excitation current, and (bottom) The corresponding conductance trace. The conductance can be reduced to below $2e^2/h$ where all conduction is due to tunneling. The sensitivity of the lock-in was set to resolve any steps present, and therefore limits the scale. Only one discrete step in the conductance is seen, at ~ -0.12 V, which corresponds to the number density underneath the gate becoming zero, and the constriction becoming the only remaining current path. The expected steps are smeared, but the gate can still be ‘pinched-off’.

5.7 SEM image of AK47. The lithographed width is measured to be 509.4 nm.

5.8 Sweeping gate voltage at various fixed magnetic fields corresponding to filling factors. As gate voltage is decreased edge state conducting channels are pinched off and back-scattered at the interface resulting in a resistance plateau. Steps are unexpectedly preceded by an apparent resonance in resistance, strongest for even filling factor transitions.

5.9 Cartoon depicting conducting edge channels (red lines) in the 2DES leads. At a fixed magnetic field, corresponding to $\nu = 8$, the number density under the gate is reduced by application of a negative bias voltage. When the number density at the same field corresponds to $\nu = 6$ there are three edge states left and the remaining state in the leads is strongly back-scattered but can possibly still pass through the gate. As soon as n_s is reduced another conducting channel will be pinched off under the gate.

5.10 Dual measurement of magnetisation and magnetoresistance.

5.11 Magnetoconductance of the quantum point contact, obtained from figure 5.10, where $\sigma_0 = 2e^2/h$.

15
5.12 Qualitative illustration of the reduction of back-scattering by a magnetic field, responsible for the positive magnetoconductance in the low-field regime in figure 5.11. The electron trajectories approach the constriction without a barrier in a weak magnetic field (left) and a strong magnetic field (right). Image after H. van Houten et al. in ref [40]. .. 121

5.13 Observation of elevating the temperature on the shape and size of the induced current and the hysteretic magnetoresistance with a changing magnetic field at a sweep rate of 62 mT s\(^{-1}\). Features at \(\nu = 1\) are suppressed as temperature is increased, both experiments follow a similar trend. .. 123

5.14 Temperature dependences of induced eddy currents at \(\nu = 1\) (top) and \(\nu = 2\) (bottom), with corresponding hysteretic magnetoresistances. \(\nu = 1\) shows a very similar trend for both experiments, but the QPC intercepts the zero at a lower temperature. At \(\nu = 2\) the QPC data suffered from noise, possibly due to trapping charges under or near the gates in the QPCs recent history, however it is clear the magnetisation shows no temperature dependence. .. 125

5.15 Sweep rate dependences of \(\nu = 2\) (top), \(\nu = 4\) (bottom) at 100 mK measured simultaneously. It was not possible to reduce the sweep rate enough to leave the saturated regime for \(\nu = 2\) due to experimental constraints. The eddy current size is varied and the magnetoresistance was found to mirror the size of the induced current. 127

5.16 Simultaneous measurement of an induced current decay, and the decay of the magnetoresistance for \(\nu = 2\) at 300 mK. 128
5.17 $\nu = 2$ at 100 mK is observed to have a noise structure similar to that seen in Elliott et al. [76]. The noise is attributed to the breakdown of the QHE; three individual breakdown events are correlated in the simultaneous measurements, magnetisation (black, top) and magnetoresistance (red, bottom). 130

5.18 Induced eddy current at $\nu = 4$ at 300 mK, and a sweep rate of $21 \mu T s^{-1}$, for two different states: the gate OFF and the gate ON (sample divided into two). ... 132

6.1 Cantilever T621 to scale. The GaAs cantilever is etched to thickness of 10 μm. .. 138

6.2 Mounting arrangement for cantilever T621 in the mixing chamber of 3He/4He dilution refrigerator. The back of the cantilever is covered with a thin layer of gold; this and the phosphor-bronze pillar form a capacitor. .. 139

6.3 Magnetisation data for cantilever T621 at 75 mK, at a magnetic field sweep rate of 3.33 mT s$^{-1}$. Features correspond to Landau level filling factors, and probably arise from capacitive coupling to the 2DES as they are non-reversing. Hysteresis is seen at $\nu = 1$ and $\nu = 2$, attributed to induced eddy currents. 141

6.4 The Exeter cantilever-calorimeter. The device has two identical cantilevers (only one is shown to have wires for clarity), except that one has a 2DES mesa, and the other has the 2DES removed. All tracks on the cantilever are 50 μm wide, except heaters on the 2DES (62.5 μm wide), and 5 nm to 50 nm thick. Tracks outside the dotted red region are gold contact leads \sim 200 nm thick. 144
6.5 The Exeter cantilever-calorimeter. An enlarged version of the 2DES cantilever from figure 6.4. Heater tracks on the mesa are 62.5 \(\mu \text{m} \) wide, all other tracks are 50 \(\mu \text{m} \). The guard heater and thermometer create an artificial thermal isolation for the 2DES in a heat capacity measurement. ... 145

6.6 Example of dirt on the surface causing a break in a thick gold track. 148

6.7 Thin films of gold for various thicknesses as a function of temperature. 148

6.8 Dependence of room temperature resistivity on annealing temperature, taken from Fortune et al. [94] ... 151

6.9 Fractal crystallization process as a AuGe film is annealed at 120 °C at \(\sim 10 \text{ min} \) intervals in (a)-(g), then (h) an additional 10 min at 135 °C. Light contrast is Ge, dark contrast Au. Taken from Zhang et al. [97]. 152

6.10 Room temperature resistivity dependence for various anneal temperatures, for resistors of 5 layers and 10 layers. 154

6.11 A log-log plot of the temperature dependence of thermometers B3 and B4, Au:Ge 11.1 Å : 43 Å bilayers after different 30 minute anneals. 155

6.12 Temperature dependence of thermometer D5. 156

6.13 Magnetic field dependence of resistance of thin film thermometer D5. 158

6.14 Zero magnetic field AuGe thin film thermometer D5 noise characteristic, with no driving current. ... 160

6.15 Orientation of calorimeter and test thermometers in the evaporator. Room temperature resistances are shown to illustrate the deposition gradient of the thermometers. 163
6.16 Repair of thin gold tracks. The top image is a magnified version of the bottom. Hot gold damaged the photoresist during evaporation and shorted some tracks. The top image shows a FIB repair, a small trench of material is removed to insulate the tracks (red arrow). Repair carried out by Geoff Hill. 165

6.17 Corner of heater tracks on a cantilever. The etch has gone through the stop and damaged the cantilever. 166

6.18 Calorimeter A4182, contacted with silver paint contacts. 167

6.19 The experimental setup for the preliminary calorimeter experiment. 168

6.20 Response of thermometer on thinned calorimeter A4182 to constant thermometer heating at 270 mK. 169
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Layer profile of δ- doped heterojunction, sample AK47.</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>Layer profile of modulation doped heterojunction, sample T621.</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Layer profile of modulation doped heterojunction, sample A3970.</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Critical current densities calculated for different assumptions in the current distribution.</td>
<td>87</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of energy storage for eddy current at $\nu = 4$, for a saturating current of 0.29 mA at base temperature.</td>
<td>99</td>
</tr>
</tbody>
</table>