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Abstract

The assessment of health impacts of extreme hot weather under climate change is im-

portant for adaptation and mitigation actions. This thesis has developed techniques for

estimating changes in heat-related mortality in Europe, with a focus on extreme daily mor-

tality counts. The use of these techniques is illustrated through the projections of extreme

elderly mortalities for London, UK and Budapest, Hungary from 2010 to 2099, using tem-

perature projections from the perturbed physics ensemble of the regional climate model

HadRM3.

The present-day relationship between daily number of deaths and temperatures at each

location is modelled by Poisson generalized additive models. In order to account for pos-

sible discrepancies in climate model simulations, temperature projections from HadRM3

are calibrated by two approaches, bias correction and change factor. These are based on as-

sumptions on the relationships in location, scale and shape between observed andmodelled

temperature distributions. In particular, a novel method using the Box-Cox transformation

is developed to correct the bias in the upper tails of present-day simulated temperature dis-

tributions. Finally, future mortalities are projected by driving the mortality models with

calibrated temperature projections.

Results of temperature calibration show that the two calibration approaches give sub-

stantially different estimates of future extreme temperatures. The estimates of 10-summer

temperature return level by the two approaches differ bymore than 4 ◦C over many parts of

Europe in the period 2070 to 2099. For London and Budapest, the effect of this calibration

uncertainty on extreme temperature projections is comparable to the effect of the uncer-

tainty in climate model parameters which is estimated by the range of perturbed physics

ensemble estimates. These two sources of uncertainties, together with the uncertainty in

how the mortality-temperature relationship is modelled, contribute to large uncertainties

in extreme mortality projections. Assuming constant elderly population in the future, the

projected change in the 2-summer return level of number of daily elderly deaths in the pe-

riod 2070 to 2099 relative to the the present-day ranges from−12% to +75% for London

and from −16% to +22% for Budapest.
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CET Central England Temperature

CF-L change factor in location

CF-LS change factor in location and scale

d.f. degree(s) of freedom

ECMWF European Centre of Medium Range Forecasts

e.d.f. effective degree(s) of freedom

ERA-40 ECMWF re-analysis (from September 1957 to August 2002)

GAM Generalized Additive Model

GCM Global Climate Model

GEV generalized extreme value

GLM Generalized Linear Model

GP generalized Pareto

HadCM3 Hadley Centre coupled ocean-atmosphere model version 3

HadSM3 slab ocean configuration of HadCM3

HadRM3 Hadley Centre regional climate model version 3

IPCC Intergovernmental Panel on Climate Change
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IQR interquartile range

MME multi-model ensemble

p.d.f. probability density function

PHEWE Assessment and prevention of acute health effects of weather conditions

in Europe

PPE perturbed physics ensemble

PRUDENCE Prediction of Regional scenarios and Uncertainties for Defining

EuropeaN Climate change risks and Effects

RCM Regional Climate Model

s.d. standard deviation

SRES Special Report on Emission Scenarios

UBRE un-biased risk estimator

UKCP09 UK Climate Projections (published in 2009)

w.r.t. with respect to
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Chapter 1

Introduction

1.1 Motivation

Extreme heat causes severe impacts on public health in many places worldwide. In the

United States, about 8000 deaths from 1979 to 2003 are related to the exposure to excessive

heat (Centers for Disease Control and Prevention, 2006). This figure is more than 4 times

higher than the cumulative number of deaths caused by tropical cyclones affecting the

country from 1979 to 2006 (Blake et al., 2007). InAsia, over 5000 heatwave-related deaths

were estimated in India from 1998 to 2007 (Hales et al., 2003; Gosling et al., 2009a).

The health impacts of extreme heat are serious in Europe, as demonstrated by the catas-

trophic outcomes of the heatwaves in summer 2003. In June and early August, two heat-

waves affected western and central parts of the continent. Figures 1.1(a) and (b) show the

observed mean air temperature anomalies in June and August 2003 relative to the aver-

age in the corresponding months from 1971 to 2000 using the European gridded surface

temperature data set E-OBS (Haylock et al., 2008; see Section 3.3 for details). Observed

temperature anomalies were generally above 4 ◦C over continental Europe and exceeded

6 ◦C over parts of France and Italy. The total number of excess deaths (number of deaths

exceeding the level expected without weather effects for the corresponding period of time;

refer to Section 4.2.4 for details) during that summer was estimated to be over 35,000

(Confalonieri et al., 2007). The estimates for individual countries with large number of
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excess deaths are listed in Table 1.1. One of the worst affected countries was France. In

Paris, maximum air temperatures exceeded 35 ◦C for 9 consecutive days. The night-time

minimum air temperatures of 25.5 ◦C on 11th and 13th August were the highest recorded

since 1873 (Cohen et al., 2005). The sustained extreme heat resulted in a rapid increase in

daily number of deaths, most of which were the elderly living in retirement homes (Van-

dentorren and Empereur-Bissonnet, 2005). With inadequate preparedness by the health-

care services and the general public, the French public health system was under enormous

pressure: hospitals were overwhelmed by the influx of patients; cemeteries were unable

to handle the bodies of those deceased (Michelon et al., 2005).

(a) June 2003

−8.5 −5.5 −2.5 0.5 2.5 4.5 6.5 8.5

(b) August 2003

−8.5 −5.5 −2.5 0.5 2.5 4.5 6.5 8.5

(c) July 2006

−8.5 −5.5 −2.5 0.5 2.5 4.5 6.5 8.5

Figure 1.1: Observedmean air temperature anomalies (in ◦C) in (a) June 2003, (b) August

2003 and (c) July 2006 relative to the average in the corresponding months in 1971-2000.

Three years after, in July 2006, the western part of Europe was affected by another

major heatwave. As shown in Table 1.1, the estimated number of excess deaths exceeded

2000 in France, but is considerably lower than that during the 2003 event. Fouillet et al.

(2008) also estimates that this figure is less than one-third of the excess deaths predicted

by a statistical model developed using historical mortality and weather data. The authors

attributed the lower number of deaths to the improved awareness towards the risk of heat-

waves and effective preventative actions which were put in place after the 2003 heatwave.

However, in the Netherlands where the highest mean temperature anomalies (about 5 ◦C)

were observed during the heatwave in July 2006 [Fig. 1.1(c)], the estimated number of

excess deaths was 500 greater than that for the 2003 event. This suggests that extreme

heat still poses a major threat to human health in Europe.
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Given the evidence of an increasing trend in the observed frequency of heatwave oc-

currences (see Section 2.2.1) and the projected climate change in the future, the health

impacts of extreme heat have become a growing concern. According to the fourth assess-

ment report of the Intergovernmental Panel on Climate Change Working Group I (IPCC

AR4), global mean air temperatures are expected to rise by 1.1 ◦C to 6.4 ◦C by the end

of the century compared to 1961 to 1990 (Meehl et al., 2007). In addition, the intensity,

frequency and duration of heatwaves in Europe are likely (with a likelihood greater than

66%) to increase (Christensen et al., 2007b; Beniston et al., 2007). An assessment of the

associated potential public health risk is required for planning appropriate response ac-

tions (Füssel et al., 2006). These include adaptation actions such as long-term investment

in health care facilities and services, improvements to urban planning and building design

standards (Kovats and Jendritzky, 2006), and mitigation actions which involve attempts

to reduce greenhouse gases emission.

The assessment of future health impacts related to high temperatures, especially heat-

related mortalities, has become an active area of research in recent years. Previous pub-

lished mortality projections, for example Dessai (2002, 2003) and Gosling et al. (2007,

2009b), have adopted an approach which comprises of two components: climate mod-

elling and health impact modelling (Haines et al., 2006; Gosling et al., 2009a). Meteoro-

logical variables in future summers under different greenhouse gases emission scenarios

are projected by global or regional climate models. Health impact modelling involves

using regression methods to empirically model the relationship between mortalities and

meteorological variables based on past observations. Projections of future mortalities can

then be made from the predictions of the regression model driven by climate model pro-

jections1. As will be reviewed in Section 2.5, the techniques adopted by previous studies

differ in several aspects, including how the health impact model is specified, which climate

model is chosen and what sources of uncertainties are assessed. A common inadequacy
1The terms ‘projection’ and ‘prediction’ carry different meanings in the climate science literature, in-

cluding the IPCC AR4. Projections refer to the potential future evolution of a quantity based on certain

assumptions, for example future greenhouse gases emissions, and are therefore subject to uncertainties.

Predictions include estimates of such uncertainties, and are usually probabilistic in nature.
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for these studies is that they have adopted simplistic methods to calibrate the possible

discrepancies of climate model simulations.

Most of these studies have focused on the projected changes of the annual total heat-

relatedmortalities. However, the events that happened in France during the 2003 heatwave

demonstrate that changes in the frequency of days with very high number of deaths should

be of particular concern. This is because the public health system is under the greatest

pressure on these days, and long-term response actions should also consider projections

of future extreme heat-related mortalities (McGregor et al., 2007).

1.2 Aim, scope and strategy

The main aim of this thesis is to develop techniques to project changes in extreme heat-

related mortality in Europe under climate change. These techniques are illustrated through

mortality projections from 2010 to 2099 using the output from perturbed physics ensem-

ble of Hadley Centre regional climate model (RCM) HadRM3. The term ‘extreme heat-

related mortality’ needs to be first defined. As will be described in Section 2.4, only a

small proportion of the increased number of deaths on days with elevated temperatures

is directly attributed to acute heat illnesses such as heat stroke (Kovats and Hajat, 2008).

Therefore in this thesis, ‘heat-related mortality’ refers to the increased number of deaths

from all causes related to increased air temperatures during the summer, as in AR4 of

IPCC Working Group II (Section 8.4 in Confalonieri et al., 2007). As for the word ‘ex-

treme’, which has various meanings in the climate science literature (Beniston et al., 2007;

Stephenson, 2008), it is used in this thesis to refer to events with a low probability of oc-

currence (i.e. rare events) with a significant impact on the society. A day with ‘extreme

heat-related mortality’ is one with exceptionally large number of deaths caused by high

air temperatures in the summer. For mortality projection purposes in this thesis, summer

is defined to be the four-month period from 15th May to 15th September, longer than the

typical climatological definition (June to August). This choice is based on the observed

relationship between mortality and temperature (see Section 4.4).

In order to make progress this thesis exploits the following two characteristics of heat-
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Figure 1.2: Schematic diagram showing the approach adopted in this thesis to project

future heat-related mortality in London and Budapest. The chapters where the work of

each step is described are also shown. Note that the ‘present’ period is defined to be

1970 to 1999 for RCM temperature calibration purposes. Other definitions are used for

mortality model fitting - see Chapter 4 for details.

23



related mortality (see Section 2.4 for details). First, the elderly is the age group most

vulnerable to extreme heat. The assessment and projections of mortality in this thesis

therefore only consider this age group, defined as age 65 or above. Second, the relation-

ship between mortality and temperature is location-specific. The projections of future

heat-related mortality for the whole of Europe then require historical mortality data from

numerous locations. In view of data availability and the focus of this thesis which is the

illustration of mortality projection techniques rather than the projection results for each

individual location in Europe, mortality projections are only assessed for two cities: Lon-

don, UK and Budapest, Hungary. These two locations are chosen because of their different

climate characteristics and sensitivity of mortality to high temperatures. For other loca-

tions in Europe within the domain of HadRM3 [see Fig. 3.4(b)], the calibrated projections

of extreme temperatures from the standard version of HadRM3 will be presented. The

corresponding impacts on heat-related mortalities could then be inferred by considering

these projections together with the mortality-temperature relationships estimated for dif-

ferent European cities in other published studies, for example Keatinge et al. (2000) and

McMichael et al. (2008).

As shown schematically in Fig. 1.2, the general approach to project future heat-related

mortality for London and Budapest in this thesis is largely similar to that adopted by

previous studies mentioned in the last section. There are, however, some differences in

the techniques used, especially for the calibration of climate model projections. Statisti-

cal mortality models are first developed separately for the two cities using mortality and

weather observation data, based on careful evaluation and comparison of possible mod-

elling strategies. It will be concluded in Chapter 4 that daily mean air temperature is the

only meteorological variable to be included in the models for mortality projection pur-

poses. As a result, only the projections of air temperature from the 11 HadRM3 ensemble

members are required. Using observed daily temperatures and HadRM3 simulated daily

temperatures for the period 1970 to 1999, comprehensive calibration is performed on the

raw HadRM3 temperature projections from 2010 to 2099 where different possible meth-

ods are tested. Finally, future changes of heat-related mortality are projected by driving

the statistical mortality models with the calibrated HadRM3 temperature projections. The
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sensitivity of mortality projections to different sources of uncertainties is also analysed.

1.3 Plan of thesis

The remainder of this thesis is structured as follows. Chapter 2 provides background in-

formation on extreme hot weather in Europe, its impact of human health and climate pre-

dictions. Previous studies on heat-related mortality projections are also reviewed. Chapter

3 describes the demographic and meteorological data sets and climate models used in this

thesis. The following three chapters present the work of the three key steps in project-

ing heat-related mortalities shown in Fig. 1.2. Chapter 4 covers the specification, fitting

and evaluation of the statistical mortality models for London and Budapest. Chapter 5

describes the approaches for calibrating temperature projections from HadRM3 and ex-

amines the future changes in the extreme calibrated temperatures over Europe. Chapter

6 presents the projections of heat-related mortalities in London and Budapest based on

the calibrated temperature projections. A sensitivity analysis on uncertainties is also in-

cluded. Finally, concluding remarks with a summary of main findings and possible future

directions for research are given in Chapter 7.

25



Chapter 2

Background

2.1 Aim

This chapter briefly reviews the literature on three subject areas related to this thesis:

extreme hot weather in Europe (Section 2.2), climate predictions using climate models

(Section 2.3) and the impacts of extreme heat on human health (Section 2.4). In addition,

previous studies on the projections of future heat-related mortality are reviewed (Section

2.5).

2.2 Heatwaves in Europe

The word ‘heatwave’ generally refers to periods of exceptionally warm temperatures, but

there is no universal technical definition (Robinson, 2001). This is possibly because of

the complex nature of these events. Like other extreme weather events, the impacts of

heatwaves on the society (not only limited to human health) are determined by more than

one of their attributes. These include their intensity, frequency and temporal duration

(Stephenson, 2008). For intensity, the impacts of heatwaves do not necessarily depend

on the absolute values of temperatures (or other related meteorological variables) as the

society is able to adapt to local variations of climate to a certain extent. An example of

such adaptation is ‘acclimatization’ to be described in Section 2.4.3. For certain impacts

26



of heatwaves, the rarity of extremely high temperatures may be more relevant.

This section first reviews studies which analysed the observed trends of extreme warm

temperature events in Europe over the past century. The underlying physical processes of

European heatwaves are then described. An understanding of these processes is important

when interpreting outputs from the RCM in Chapter 5.

2.2.1 Historical trends in extreme daily temperatures

The availability of global and European daily observed temperature data has improved

over the past decade. This has allowed more comprehensive studies of long-term changes

in extreme daily temperatures (Alexander et al., 2006). Many of these studies examined

such changes by analysing the trends of a set of standard indices (e.g. Frich et al., 2002;

Klein Tank et al., 2009) which are related to different attributes of extreme temperature

events. Klein Tank and Können (2003) analysed the trends of several extreme tempera-

ture indices for 86 European observation stations from 1946 to 1999. Using the Student’s

t-test, statistically significant (at 5% level) positive linear trends were detected for the in-

dex ‘warm nights’ in more than 75% of the stations for the period 1976 to 1999. This

index is defined as the annual number of days where the minimum temperature exceeds

the 90th percentile of daily minimum temperature for the corresponding calendar day in

the reference period 1961 to 1990 [refer to the appendix in Klein Tank et al. (2009) for

the formal definition]. Moberg and Jones (2005) considered different indices on the same

temperature data set from 1901 to 1999, including the 90th percentile of daily minimum

temperature and 90th percentile of daily maximum temperature for each summer (June to

August). Statistically significant (at 5% level) positive linear trends for these indices were

detected in 70% and 36% of the stations respectively. The above-mentioned 3 indices are

related to the frequency and intensity of extremely warm temperatures. As for the dura-

tion of extremely warm temperatures, Alexander et al. (2006) calculated the trend of the

gridded ‘warm spell duration index’ globally for the period 1951 to 2003. This index is

defined as the annual count of days in a span of at least 6 days where the maximum tem-

perature exceeds the 90th percentile of daily maximum temperature for the corresponding
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calendar day in the reference period 1961 to 1990 (Klein Tank et al., 2009). Significant

increase in this index was observed over parts of eastern Europe. The results from these

studies provide some evidence that the frequency, intensity and duration of extremely

warm temperatures in Europe have increased over the past century.

The use of percentiles in these extreme indices allows comparison of results from dif-

ferent geographical locations with different climate features because it focuses on the same

part of the temperature distribution. However, a major limitation of these extreme indices

is that they only describe ‘moderately extreme’ events which on average occur several

times a year. These indices therefore do not represent changes of rarer extreme events

which cause serious impacts (Klein Tank and Können, 2003). For example, the choice of

the 90th percentile for the ‘warm nights’ index corresponds to a return period of only 36

days. This contrasts with the estimated return period of 46,000 years for the temperature

recorded in summer 2003 in Switzerland (Schär et al., 2004).

Other methods can be applied to evaluate changes in rarer extremes of observed tem-

peratures farther out in the tails of their distributions. Ferro et al. (2005) describes how

distributions of weather variables can be compared for large gridded data sets, based on

the differences in the quantiles of the distributions. This method can be used to assess the

changes in extreme temperatures by considering quantiles in the tails of their distributions

and the associated sampling uncertainties. Chapter 5 of this thesis will apply this method

to analyse the temperature simulations of HadRM3. In addition, extreme value theory can

also be used by incorporating time trends as covariates into the parameters of an appropri-

ate extreme value distribution (Chapter 4 in Klein Tank et al., 2009), such as generalized

extreme value (GEV) distribution for changes in temperature maxima and generalized

Pareto (GP) distribution for changes in temperature excesses above thresholds (Chapter 6

in Coles, 2001). This is illustrated in Coelho et al. (2007) which fitted the GP distribution

to historical gridded summer monthly temperatures in the northern hemisphere. However,

among the literature reviewed for this thesis, there were no published studies using these

two methods to examine historical changes in observed extreme daily temperatures for

station-based or gridded data sets on a continent-wide or global basis.
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2.2.2 Physical processes leading to heatwaves

Heatwaves in Europe are often related to a large-scale circulation pattern known as ‘block-

ing’ (Cassou et al., 2005; Carril et al., 2008). During blocking episodes, an anticyclone

(area of high pressure) remains quasi-stationary over continental Europe for days or even

weeks, while the normal eastward progression of low pressure systems is disrupted (Ky-

selý, 2008; Trigo et al., 2005). Rainfall within the anticyclone is suppressed by vertical

subsidence of air. Prolonged clear-sky conditions allow intense heating of the ground by

solar radiation at daytime and therefore lead to high surface temperatures (Garcia-Herrera

et al., 2005; Grazzini et al., 2003). Night-time cooling is limited by the release of heat

accumulated on the ground during the day (Black et al., 2004), keeping temperatures ele-

vated for a long period of time.

The interactions between the land and the atmosphere also contribute to the occurrence

of heatwaves. The evaporation of soil moisture near the surface cools the surrounding

air and thus offsets the rise in air temperatures. This means that heatwaves will be more

intense if this evaporative cooling diminishes because of decreased soil moisture (Clark

et al., 2006). Wetherald and Manabe (1995, 1999) proposed two (related) mechanisms

which can cause the drying of soil in themid-latitudes in the summer. First, soil moisture is

reduced in the antecedent spring due to enhanced evaporation or a deficit in precipitation.

With drier soil, evaporation of moisture in the summer is reduced, leading to a reduction

in rainfall. Second, this reduction in rainfall dries the soil in the summer, which in turn

reduces rainfall further. A positive feedback of soil drying is then developed (see also

Rowell and Jones, 2006).

A number of studies have examined the relative roles of the circulation pattern and

land-atmosphere interactions in past European heatwaves. In a study of large-scale forc-

ing factors which contribute to heatwaves in Europe, Della-Marta et al. (2007) performed

a canonical correlation analysis1 on surface temperature and precipitation data from Eu-

rope and sea level pressure and sea surface temperature data from Europe and North At-
1The canonical correlation analysis technique relates two multivariate data sets by identifying linear

combinations of variables in each data set, such that the correlation between the new variables is maximized

(Chapter 12 in Wilks, 2006).
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lantic for the period 1880 to 2005. It was found that heatwaves over western Europe are

most strongly associated with positive sea level pressure anomalies over the Scandinavian

region. Fischer et al. (2007a) attempted to quantify the effect of land-atmosphere interac-

tions on the severity of four past European heatwaves from 1976 to 2005 using simulations

on a RCM. Such interactions were found to account for 50 to 80% of the number of hot

summer days. The contributions of circulation patterns and land-atmosphere interactions

to European heatwaves are not totally independent. For the exceptional 2003 heatwave,

anticyclonic conditions dominated central Europe in spring and summer of the year (Benis-

ton and Diaz, 2004; Fink et al., 2004), leading to an early depletion in soil moisture over

the region from spring onwards (Fischer et al., 2007b). The soil moisture feedback then

exacerbated the rise of temperatures during the summer. Fischer et al. (2007b) suggests

that this increase in temperatures further amplified the pre-existing anticyclonic circula-

tion, which again led to temperature and soil moisture anomalies.

Some simulations of global climatemodels, such asGregory et al. (1997) andWetherald

and Manabe (2002), project drying summers with reduced soil moisture over continental

Europe under anthropogenic climate change. The role of soil moisture in driving extreme

temperatures is therefore expected to become more important in the future. Fischer and

Schär (2009) analysed the summer temperature projections by 11 different RCMs and de-

composed the future changes in temperature variance into interannual, intraseasonal and

seasonal components. Among the different RCMs, interannual temperature variance was

found to increase by 30 to 95% over France by the end of the 21st century relative to 1961

to 1990. Fischer and Schär (2009) suggested that this change is mainly related to the

growing importance of land-atmosphere interactions, and this increase in variance could

lead to a higher intensity of temperature extremes in the future. Nevertheless, Rowell and

Jones (2006) notes that because of uncertainties in climate model formulation and future

anthropogenic emissions (see Section 2.3.3), there are still considerable uncertainties in

the magnitude of projected summer drying caused by large-scale warming and soil mois-

ture depletion in spring. There are also uncertainties in future changes in the frequency

and strength of atmospheric blocking, as most climate models have shown limited abil-

ity in simulating these events (D’Andrea et al., 1998; Annexes 3 and 6 in Murphy et al.,
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2009).

2.3 Brief overview of climate modelling

This section gives a brief overview of how climate models are used to produce global and

regional climate projections for the future. Sources of biases and uncertainties in climate

predictions will then be discussed. The existence of biases requires the calibration of

RCM projections, while the uncertainties in climate projections contribute to the overall

uncertainties in the heat-related mortality projections.

2.3.1 Global climate models

Global climate models (GCMs) (often referred to as general circulation models) are the

most sophisticated class of climate models. The Earth’s physical climate system includes

the atmosphere, the ocean, the land (land surface and soil) and the cryosphere (ice on land

and over the seas). These models represent the large-scale flows, processes, interactions

and feedbacks within and among different components of the climate system bymathemat-

ical equations based on physical laws (McGuffie and Henderson-Sellers, 2005). In GCMs,

the atmosphere and oceans are represented by values at points on three-dimensional grids.

At each grid-point, the time-dependent mathematical equations are solved at each time

step using numerical techniques.

The current generation of GCMs generally represent the atmosphere and the ocean with

different configurations, primarily because processes within these two components of the

climate system operate at different length and time scales. The two components are then

‘coupled’ at regular intervals. The resolutions of GCMs are limited by the computing

resources available. For the 23 GCMs widely used in AR4 of IPCC (Randall et al., 2007),

the atmosphere components generally have horizontal resolutions ranging from 1◦ to 4◦

of latitude and longitude (about 120 to 500 km) and around 20 vertical levels. For the

ocean components, the horizontal resolutions generally range from 0.5◦ to 3◦ (about 60

to 350 km) and there are about 30 vertical levels. Many processes take place at a scale
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smaller than the spatial and temporal resolution of GCMs, for example convective cloud

formation. These have to be represented by the relationship between the model-resolved

variable and the spatially or temporally averaged effects of such processes (Chapter 5 in

McGuffie and Henderson-Sellers, 2005). Such a technique is known as parameterization.

Changes in the concentration of greenhouse gases (such as carbon dioxide andmethane)

and aerosols can affect the climate by altering the radiative balance of the earth-atmosphere

system. Increases in anthropogenic emissions of greenhouse gases have very likely caused

the observed widespread warming in the past few decades, despite an offset by aerosols

(Hegerl et al., 2007; Stott et al., 2010). The future concentration of these forcing agents

is therefore important in climate predictions. Many GCM simulations for climate pro-

jections, including the one used in this thesis (HadCM3, see Section 3.4), are driven by

greenhouse gases and sulphur concentration under 6 groups of emission scenarios devel-

oped by IPCC (Nakićenović and Swart, 2000). These ‘SRES scenarios’ are based on

plausible storylines of future changes in demographic, socioeconomic, technological and

environmental developments. They cover situations from a future world which uses fossil

fuel intensively, to one where alternative energy sources are dominant. However, they do

not assume any climate change mitigation policies aiming to reduce emissions. Probabil-

ities are not assigned to the different scenarios.

2.3.2 Predicting regional climate changes

Climate change impact assessments, such as temperature-relatedmortality, crop yields and

flood risk, often require climate predictions at a local or regional scale. There has been an

improvement in the horizontal resolution of GCMs in recent years (Randall et al., 2007).

However, the detailed spatial structure of climate variables, for example temperature and

precipitation, cannot yet be resolved by these models, especially around coastlines and

over regions with complex topography or land surface distribution (Christensen et al.,

2007a). Two approaches, statistical downscaling and dynamical downscaling, have been

commonly adopted to produce regional-scale projections from the output of GCMs.

Statistical downscaling involves the construction of a statistical model where the local
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surface variable of interest is projected using large-scale atmospheric variables modelled

by the GCM, such as sea-level pressure, surface and upper-level temperature and humidity

(Wilby and Wigley, 1997). This approach is often applied to project future precipitation

for a point because the high spatial and temporal variability of this variable cannot be ade-

quately represented by GCMs (Leung et al., 2003). Nevertheless, many studies also apply

this approach to downscale other variables. For example, Hayhoe et al. (2004) projected

future heat-related mortalities in California, USA, based on statistically downscaled tem-

perature projections from GCMs under different emission scenarios. Various statistical

downscaling techniques are available. Regression models can be used to establish the

linear or non-linear relationships between local surface variable and large-scale variables

for the present time. Given the projections of large-scale variables for the future from

the GCM, the local variable can be predicted using the regression model. For example,

Murphy (1999) used a multiple linear regression model to predict temperature and pre-

cipitation for 976 European stations, using surface wind velocity, vorticity, upper-level

temperature and humidity from a GCM with horizontal resolution of about 300 km as

explanatory variables. On the other hand, weather generators can produce realistic syn-

thetic sequences of a local surface variable for the future (Wilks and Wilby, 1999). The

parameters of weather generators, which describe the statistical properties of the local

variable (such as mean, variance and auto-correlation), are conditioned on the large-scale

variables from the GCM. The relative merits and limitations of different statistical down-

scaling techniques are discussed in Wilby et al. (2004). Regardless of which technique is

used, the statistical downscaling approach assumes that the relationship between the lo-

cal variable and large-scale variables from the GCM do not change with time and that the

chosen large-scale variables fully represent the climate change signal (Giorgi et al., 2001).

The temperature projections used in this thesis are based on another downscaling ap-

proach called dynamical downscaling. This approach uses a limited area model or a re-

gional climate model (RCM) nested within a GCM to generate high-resolution climate

projections over a smaller spatial (and in some applications, temporal) domain, typically

5000 km × 5000 km. The boundary conditions of the RCM, including the large-scale

atmospheric fields, sea-surface temperature, sea ice extent and thickness, are provided by
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Figure 2.1: Model orography and temperature fields of the RCM HadRM3 used in this

thesis and its driving GCM HadCM3 for Europe. Panels (a) and (b) show the elevation

from sea level (in m). Panels (c) and (d) are the simulated annual mean surface tempera-

tures (in ◦C) from 1961 to 1990.

a GCM at regular intervals. However in general, such ‘nesting’ is one-way, i.e. the results

from RCM simulations do not affect the simulations of the driving GCM (Giorgi et al.,

2001; Christensen et al., 2007b). The horizontal grid spacing of a RCM is typically 50 km

or less. Figures 2.1(a) and (b) shows the model orography fields of HadRM3 and HadCM3

for Europe. These are the RCM used in this thesis (minimum grid spacing of about 25 km)

and its driving GCMHadCM3 (grid spacing of about 300 km at the mid-latitudes) respec-

tively (see Section 3.4 for details). It is clear that HadRM3 can much better represent the

coastal regions and topography over Europe, for example Italy, the Alps and the Scandi-

navian Mountains. The higher resolution of RCMs enables certain features to be better

simulated compared to GCMs, including regional details of the climate, extreme weather

events and mesoscale weather systems, such as tropical and extratropical cyclones (Jones
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et al., 2004). This can be demonstrated by Figs 2.1(c) and (d) which show the simulated

annual mean temperatures from 1961 to 1990 by HadRM3 and HadCM3 respectively.

The former can provide more detailed spatial distribution of temperatures. Despite the in-

creased resolution, parameterization is still necessary in RCMs to represent sub-gridscale

physical processes.

Comparing the above two downscaling approaches, dynamical downscaling is more

computationally expensive, but projections using this method are from physically based

models and are in general consistent with the large-scale projections from the driving

GCM (Jacob et al., 2007; Mearns et al., 2003). These two approaches can complement

each other for certain applications. For example, UK Climate Projections (UKCP09) used

the weather generator technique to produce future sub-daily time series of temperature,

vapour pressure and sunshine duration at a 5 km × 5 km grid based on the simulations

from HadRM3 (Jones et al., 2009).

2.3.3 Limitations of climate model predictions

Predictions from global and regional climate models are subject to uncertainties and biases

from different sources.

The first source of uncertainty is related to climate forcing agents (emissions uncer-

tainty or scenario uncertainty). Future anthropogenic emissions of greenhouse gases and

aerosols depend on a number of socio-economic factors. This uncertainty can be ac-

counted for by driving climate models with different SRES scenarios mentioned in Section

2.3.1, as has been done in the projections of future global mean temperatures for AR4 of

IPCC (Meehl et al., 2007). For the HadRM3 temperature projections used in this thesis,

however, such an uncertainty is not considered — all the ensemble members of HadRM3

are driven by a single emission scenario (see Section 3.4). In addition to anthropogenic

emissions, there are uncertainties with natural forcing agents, including variations in so-

lar radiation and aerosols from volcanic eruptions. Since both of these factors cannot be

predicted to a useable accuracy, their effects have not been incorporated in most studies

on climate prediction uncertainties (Collins, 2007; Chapter 2 in Murphy et al., 2009).
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Figure 2.2: Smoothed (based on a 3-year moving average) time series of globally aver-

aged surface air temperature change projected by 21 GCMs driven by SRES A1B (left)

and B1 (right) scenarios (Nakićenović and Swart, 2000) for the 21st century relative to the

average from 1980 to 1999. The black dots show the annual ensemble mean values, while

the coloured lines show the results from individual GCMs. Reproduced from Fig. 10.5 of

Meehl et al. (2007).

The second source of uncertainty arises from the imperfect representation of the cli-

mate system by models (model uncertainty). Some processes in the climate models are

parameterized, where the parameters are determined by a mixture of theory, empirical fits

in observational studies and model simulations (Collins, 2007). The uncertainty due to

the choice of model parameters is known as ‘parameter uncertainty’. Additionally, there

is ‘structural uncertainty’ on the choice of grid, resolution and set of processes to be in-

cluded in the model (Murphy et al., 2007). These uncertainties lead to different projections

for climate change under an identical emission scenario. This is demonstrated in Fig. 2.2

which shows the globally averaged surface warming projected by different models used in

AR4 of IPCC (Meehl et al., 2007) for 2 SRES scenarios. For both scenarios, the spread in

the warming projected by various models is comparable to the ensemble mean warming.

For regional climate projections using a RCM nested within a GCM, any errors in the

driving GCM fields are carried over to the RCM, leading to potential systematic biases

in the RCM simulations (Noguer et al., 1998). In addition, the formulation of RCM, in-

cluding its parameters and structure, brings another tier of model uncertainty. The effects
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of this uncertainty were investigated in the EU project PRUDENCE2 where 10 RCMs for

Europe with similar resolution (about 50 km) but different formulation were driven by

the same boundary conditions provided by a single GCM (Christensen and Christensen,

2007). For example, Beniston et al. (2007) examined the projections of extreme weather

events by these models and found that across different RCMs, there is considerable varia-

tion in both the signs and magnitudes of changes in summer extreme precipitation by the

end of this century.

The third source of uncertainty arises from the internal variability of the climate sys-

tem. This refers to natural variability due to the interactions among the atmosphere, ocean

and land in the absence of anthropogenic influences. Variability on a timescale of years to

decades is particularly important for climate predictions as their effects will be superim-

posed on the long-term climate changes by human activities (Chapter 2 in Murphy et al.,

2009). El Niño-Southern Oscillation and North Atlantic Oscillation are examples of this

type of variability.

The relative contributions of the above sources of uncertainties in climate predictions

have been addressed in a number of studies. Rowell (2006) compared the uncertainties

from various sources on temperature and precipitation projections for UK and Ireland by

the end of the century, by considering results from different groups of PRUDENCE RCM

simulations. For example, the uncertainty related to emissions was estimated by forcing

the same group of RCMs with 2 different SRES scenarios, while the RCM formulation

uncertainty was estimated by forcing different RCMs with the same boundary conditions,

as described above. The projection uncertainty from the formulation of GCM was found

to be the largest in all cases. Déqué et al. (2007) considered the same PRUDENCE experi-

ments but for the whole of Europe. The uncertainty related to the choice of GCMwas also

found to be larger than the uncertainties from other sources, except for summer precipita-

tion where the uncertainty from the RCM formulation becomes comparable to the choice

of GCM. Hawkins and Sutton (2009) estimated the variation of fractional uncertainty (the

ratio of prediction uncertainty to the predicted mean change) from each source with pre-
2Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and

Effects
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diction lead time for surface decadal mean temperature projections. This was done by

considering projections from 15 GCMs used in IPCC AR4, driven by 3 different SRES

scenarios. For the British Isles, internal variability has the largest fractional uncertainty

at shorter lead times, but scenario uncertainty gradually becomes dominant as lead time

increases. Model uncertainty is comparable to scenario uncertainty by the end of the cen-

tury. The results from the above studies suggest that the relative importance of different

sources of uncertainties may vary in different situations.

2.3.4 Quantification of climate prediction uncertainties

In view of the above-mentioned uncertainties, probabilistic climate predictions are more

useful for policymakers regarding adaptation and mitigation actions compared to single

climate projections (e.g. New et al., 2007). In order to produce probabilistic predictions,

each of the above uncertainties needs to be quantified and a probability distribution for the

climate needs to be specified (Rougier, 2007). Different ensemble techniques have been

developed to help quantify different sources of uncertainties.

The uncertainty related to internal variability can be quantified using an ‘initial con-

dition ensemble’ of climate models, where each member has the same formulation and

is driven by the same emission scenario, but is initiated with slightly different conditions

(e.g. Stainforth et al., 2005).

As for model uncertainty, two ensemble techniques have been applied. The first one is

the ‘multi-model ensemble’ (MME) method which uses an ensemble of GCMs from dif-

ferent modelling centres. Probabilistic climate predictions can then be made by making

certain assumptions, such as the differences between each model in the ensemble and the

true climate are independent. The ensemble members may also be weighted according to

their abilities to simulate different climate variables in the past (Tebaldi and Knutti, 2007).

As an example of the MME method, Tebaldi et al. (2005) uses a Bayesian approach to es-

timate the probability density function of future regional temperature changes based on a

9-member GCM ensemble. The second method, ‘perturbed physics ensemble’ (PPE), is

the one considered in this thesis for temperature projections of London and Budapest. A
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PPE consists of multiple variants of a single climate model. The set of model parameters

in each variant is perturbed by expert judgement to sample a plausible range of parameter

values (Collins et al., 2006). For example, Clark et al. (2006) used a 53-member PPE of

a GCM to estimate the model uncertainties in the projections of extreme heat frequency,

intensity and duration over the Northern hemisphere under a doubled carbon dioxide con-

centration scenario. Each of these two ensemble techniques has its limitations. For the

MME method, the different models are assembled on an opportunity basis, which means

that different models within the ensemble are not designed to systematically sample the

modelling uncertainties (Tebaldi et al., 2005). On the other hand, a PPE is unable to sam-

ple the structural uncertainty as all the ensemble members belong to the same modelling

framework (Chapter 3 in Murphy et al., 2009).

Finally, scenario uncertainty is difficult to quantify, since there is no consensus on how

(and in fact whether) the relative likelihood of different future emissions scenarios can be

assessed (Meehl et al., 2007). As a result, in practice, separate probabilistic predictions

of climate change are generally produced for multiple emission scenarios (e.g. UKCP09;

Murphy et al., 2009) for users’ reference.

2.4 Hot weather and human health

Before discussing the adverse health impacts of extreme heat, this section first outlines

a simple physical model representing the heat transfer process between a human body

and the environment. This helps identify the key environmental variables causing health

impacts.

2.4.1 Human response to heat

The core temperature of the human body at rest is normally about 37 ◦C. The thermoregu-

latory system of the body maintains this temperature by keeping a balance of heat transfer

between the body and its surrounding environment. This balance can be represented by
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the equation

M −W = Cn +K +Rn + Esw + Eres (2.1)

where each of the terms represent the rate of heat production or loss via different pathways:

M is the metabolic heat production of the body, W is the mechanical work done by the

body, Cn,K andRn represent the heat loss from the body through convection, conduction

and radiation respectively, and Esw and Eres represent the heat loss by evaporation of

sweat on the skin and respiration respectively (Fanger, 1970). A schematic diagram for

this balance is shown in Fig. 2.3.

Figure 2.3: Schematic representation of the heat balance model between a human body

and the environment. Reproduced from Fig. 1 of Havenith (1999) with permission.

The efficiency for the body to lose heat in hot environments depends on a number of

environmental variables, including air temperature, humidity and wind speed. The rates

of heat loss through convection (Cn), radiation (Rn) and respiration (Eres) all decrease

with increasing air temperature. When the air temperature is above the skin temperature

(normally about 33 ◦C), heat is gained by the body through convection (Havenith, 1999).

Convective heat transfer increases withwind speed. The evaporation of sweat, which is the

mainmechanism for the body to lose heat (Koppe et al., 2004), is affected by both humidity

and wind speed. Its rate (Esw) is linearly proportional to the difference of the water vapour

pressure between the skin and the environment. It should be noted that another commonly

used humidity variable, relative humidity, is less relevant in determining the evaporation

rate. This is because relative humidity, defined as the ratio of actual vapour pressure to
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the saturated vapour pressure at the observed air temperature, is a measure dependent on

air temperature. Evaporation of sweat is still possible at 100% relative humidity if the

ambient vapour pressure is lower than the vapour pressure on the skin (Havenith, 2005).

A more quantitative discussion on how these environmental variables and clothing affect

each of the heat transfer components in (2.1) can be found in Chapter 1 of Parsons (2003).

2.4.2 Heat disorders and heat-related mortality

Under heat stress, if the thermoregulatory system cannot meet the demand to lose heat in

order to maintain the heat balance (2.1), acute heat illnesses may develop. These range

from minor heat fatigue to the most serious form, heat stroke which has a high risk of

permanent disability or even mortality as the kidney, liver and the central nervous system

fail to function properly (Chapter 10 in Parsons, 2003). In addition, pre-existing cardio-

vascular and respiratory diseases may be aggravated in hot conditions as the human body

gives priority to the thermoregulatory system. As such, among the deaths that occurred

during heatwaves, only a small proportion of cases report acute heat illness as the cause

of death, while most of the cases are attributed to cardiovascular and respiratory diseases

(Basu and Samet, 2002; Kovats and Hajat, 2008).

Several groups of people are considered to be more vulnerable to heat. The elderly is

the largest defined group at risk (World Health Organization, 2008) because of a number

of reasons. The capacity of their cardiovascular system is reduced, leading to a reduction

in the efficiency of heat transport from the body to the skin. In addition, the thermoregula-

tory system of elderly people respond to changing environments more slowly, so they are

less able to sweat (Havenith, 2005). As a result, at high temperatures, mortality has been

observed to increase with age in a number of studies (e.g. Hajat et al., 2007). Other suscep-

tible groups include people who are less fit, dehydrated, overweight, with chronic diseases

and taking medication. Details on the physiological aspects are discussed in Havenith

(2005) and Koppe et al. (2004).
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2.4.3 Adaptation to heat

Humans gradually adapt to, or acclimatize to, changes in their surrounding thermal en-

vironments in two different ways. When exposed to hot environments, ‘physiological

acclimatization’ involves adjustments in the responses of the thermoregulatory system,

such as changes in heart rate, sweat rate, sweat content and the ambient temperature at

which sweats start to be produced (Chapter 10 in Parsons, 2003). The time required for

these processes to complete is on the scale of days to weeks (Koppe et al., 2004). ‘Be-

havioral acclimatization’ includes a wide range of actions taken by individuals and the

society to adapt to the thermal environment. For example, individuals adjust their cloth-

ing and activity levels during the course of the year (Chapter 2 in Parsons, 2003), while

at the society level, buildings are designed to adapt to the local climate (e.g. Hacker et al.,

2005).
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Figure 2.4: Typical relationships between daily expected mortality and air temperature

at locations with warmer climates (solid line) and locations with cooler climates (dashed

line).

The ability of humans to adapt to different climates leads to geographical variation in

the relationships between daily expected mortality and air temperature. In subtropical and

temperate regions, such relationships can be described by U-shaped or a J-shaped curves,

similar to the ones shown in Fig. 2.4. Mortality is the lowest at a range of intermediate tem-

peratures, and increases towards the two extreme ends. The slopes and turning points of
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these curves vary geographically. In a comparison of mortality-temperature relationships

in 11 cities in eastern United States, Curriero et al. (2002) found that expected heat-related

mortality increases more rapidly with temperature in cities at higher latitudes with cooler

climates, while the temperature at whichminimummortality occurs is lower in these cities.

These suggest that the population living in cooler climates is generally less well adapted

to high temperatures. Similar patterns of mortality-temperature relationships were also

observed in Keatinge et al. (2000) which considered 7 European regions and McMichael

et al. (2008) which considered 12 cities from 5 different continents.

Mortality is observed to be higher in heatwaves occurring in the earlier part of the sea-

son (Kalkstein and Davis, 1989). This is possibly related to short-term physiological ac-

climatization, such that people can gradually cope with higher temperatures as the summer

progresses. Another possible explanation to this phenomenon is that a large part of a finite

pool of susceptible people dies in the first heatwave of the season, leading to decreased

mortality in subsequent heatwaves (Hajat et al., 2002). In a study of mortality related to

respiratory and cardiovascular diseases in 12 US cities, Braga et al. (2002) observed that

after a heat event, the number of deaths dropped below the expected level for a few days,

suggesting that such a short-term ‘harvesting’ or ‘forward displacement’ in mortality has

taken place. Grize et al. (2005), on the other hand, observed that the number of deaths in

Switzerland remained elevated after the end of the heatwave in 2003, and concluded that

‘harvesting’ cannot explain all of the increased mortality in hot spells.

2.5 Previous assessments of climate change impacts on

heat-related mortality

There have been several published studies assessing the impacts of climate change on

heat-related mortality. As mentioned in Section 1.1, while these studies have adopted a

similar general approach involving health impact modelling and climate modelling, there

are differences in certain aspects of their models and treatment of uncertainties. This

section reviews four of these studies, with a focus on such differences. Although some
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other mortality projections (e.g. Guest et al., 1999; Davis et al., 2004; Hayhoe et al., 2004

and Knowlton et al., 2007) are not included in this review for the sake of conciseness, the

four studies discussed below are representative of the various methodologies adopted in

this area of research.

Kalkstein and Greene (1997) projected the excess heat-related mortalities in 44 US

cities for two decades centred around 2020 and 2050 respectively. A ‘synoptic classifi-

cation’ scheme, which classifies days into different air mass categories using the discrim-

inant analysis technique based on past meteorological observation data (Sheridan, 2002;

Chapter 13 in Wilks, 2006), is central in this work. For each city, the air mass categories

causing increased mortalities were first identified. For days belonging to each of these

‘high risk’ air mass types, multiple regression models were then fitted to the daily ex-

cess mortality and meteorological data. The explanatory variables include measures of

temperature, humidity, wind speed, cloud cover, etc., and the choice of these variables

is different for each location. Climate projections from 3 different GCMs were used. In

order to account for the possible effect of acclimatization by the population, an ‘analogue

city’ approach was used in the projection of mortalities. For each city, based on the future

climate projected by a GCM, an ‘analogue city’ which has a similar climate at the present

is identified. An example given by Kalkstein and Greene (1997) is that if the future GCM-

projected climate for New York City is similar to the present-day climate of St. Louis (a

city located 1400 km to the southwest of New York City), St. Louis is the ‘analogue city’

for New York City. The future excess heat-related mortalities under each ‘high risk’ air

mass types at each city are projected using the mortality model developed for the corre-

sponding air mass types in its analogue city. For the above example, future mortalities

in New York City are projected using the mortality model for St. Louis. This approach

assumed that the future response to temperatures by the population in a certain city would

be the same as how the population at the corresponding ‘analogue city’ respond at the

present. The total excess heat-related mortalities for each summer totalled for all 44 cities

were projected to increase by 73 to 158% (depending on the choice of GCMs) from 1990s

to 2050s. There was no mention by Kalkstein and Greene (1997) that the possible biases

in the GCM projections had been accounted for. In addition, it is difficult to assess the
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validity of this ‘analogue city’ assumption. Given that the relationship between mortality

and weather is location-specific, the mortality projections are likely to be sensitive to the

choice of ‘analogue city’.

Donaldson et al. (2002) projected heat-related mortalities for the UK as part of a report

by the Department of Health on the health effects of climate change in the country. This

report is based on the UKCIP98 climate projections3 for the UK using a GCM. Donald-

son et al. (2002) developed a single mortality regression model using the daily heat-related

mortality in thewhole of UK and daily Central England Temperature (CET)4. Details of the

specification of the regression model were not provided. The projected changes in mean

summer temperature in the UK under 4 emission scenarios for 3 future periods (2020s,

2050s and 2080s) were added to currently observed values of CET to obtain the future

CET series (a ‘change factor’ approach; see Chapter 5 for details). Future heat-related

mortalities were then projected using the mortality model driven by the future CET series.

Assuming no change in population and no adaptation, the annual mean number of heat-

related deaths in the UK was projected to rise from 798 in the 1990s to 2793 (an increase

of 250%) in the 2050s under the ‘medium-high’ emissions scenario. For the other 3 sce-

narios, the projected number of deaths ranges from 1368 (an increase of 71%) to 3249 (an

increase of 307%). These are rather crude projections given that the mortality-temperature

relationship for the whole of UK is described by a single mortality model which considers

only the CET. It is unlikely that the local effects of extreme high temperatures of mortality

can be well captured by the model. In addition, as will be demonstrated in Chapter 5, it

is not justifiable to project future temperatures by only considering a shift in the mean of

the current temperature distribution, as was done by the authors. This is because other

properties of the temperature distribution, such as variance, can also change with time.

Heat-related mortalities in Lisbon, Portugal for 2020s, 2050s and 2080s were projected

by Dessai (2002, 2003). Daily observed mortality and maximum temperature data were
3This refers to the report of UK Climate Impacts Programme published in 1998. UK Climate Projections

UKCP09 described above are the projections for UKCIP published in 2009 (Murphy et al., 2009).
4CET is the weighted mean temperature observed in multiple sites in the UK and is representative for a

triangular area enclosed by Lancashire, London and Bristol.
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Figure 2.5: Mortality model fits for (a) Lisbon by Dessai (2002) and (b) London by

Gosling et al. (2007). In (a) the model fits shown are for two decades as labelled. In

(b) the model fit is shown by the blue line, while the red lines are the 95% bootstrap confi-

dence interval limits for model predictions. Reproduced from Fig. 4 of Dessai (2002) and

Fig. 2 of Gosling et al. (2007) respectively with permission.

used to construct the mortality model. In the model, the daily numbers of excess deaths

were first grouped into 1 ◦C intervals according to the maximum temperature observed on

the day mortality occurs. The average daily number of excess deaths for each interval was

then calculated. This became the response of the non-linear mortality model, while the

explanatory variable was the lower bound temperature value of each interval. Examples of

model fits are shown in Fig. 2.5(a). Two RCMs with horizontal resolution of about 50 km

forced by the same GCM were used in the study. Similar to Donaldson et al. (2002),

future temperature projections were obtained by considering a change factor in the mean,

but here the change factor varied from day to day based on an interpolation of the monthly

temperature anomalies projected by each RCM. The annual mean summer heat-related

mortality rate (per 100,000 population) was projected to increase from 5.4 in the period

1980 to 1998, to 16.2 and 29.5 (increases of 200% and 450%) in 2050s, for the two RCMs

respectively. Dessai (2003) considered the sensitivity of mortality projections to effects

of adaptation by repeating the projections, but assuming that the mortality-temperature

function estimated by the mortality model will shift by 1 ◦C. For example, the predicted

mortality for a day in the future with maximum temperature of 30 ◦C will be the value
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predicted by the regression model at 29 ◦C (see Section 6.2.2 for further discussion). With

this assumption, the projected mortality rates for 2050s became 7.3 and 13.4 (increases

of 35% and 148%) for the two RCMs respectively. These results suggest that both the

choice of RCMs and the incorporation of adaptation effects have significant impacts on

the mortality projections. The use of average number of deaths in temperature intervals as

the response in themortalitymodel effectively smoothed out the variance in dailymortality

counts. It is then difficult to assess the uncertainties in the daily predictions of themortality

model. In addition, with fewer mortality observations at extremely high temperatures, the

model prediction may become less precise.

The mortality projections by Gosling et al. (2007, 2009b) used the GCM HadCM3

driven by SRES A2 scenario and covered six cities: London, Budapest, Lisbon, Boston

(US), Dallas (US) and Sydney (Australia). Separate mortality models were fitted for each

city. The specification of the models were similar to the model in Dessai (2002), but

with a temperature interval width of 2 ◦C [see Fig. 2.5(b) for the model fit for London].

Gosling et al. (2009b) adopted a different method to calibrate future HadCM3 projected

maximum temperature for each location. Logistic distributions were fitted to observed

and GCM simulated temperatures for the present-day and GCM projected temperatures

for the future5. The (unknown) future observed temperatures are also assumed to follow

a logistic distribution. The location and scale parameters of the future observed tempera-

ture distribution are estimated by adding the changes in the respective parameters for the

GCM temperatures between the present-day and the future to the parameters for present-

day observed temperatures. We will revisit this calibration method in Section 5.2.4 as

the temperature calibration framework for this thesis is discussed. Using these estimated

location and scale parameters, a random observed temperature series for the future was

produced and was used to drive the mortality models. For London, the annual mean sum-

mer heat-related mortality rate per 100,000 population was projected to increase from 1.8

per 100,000 population during 1961 to 1990, to 12.5 per 100,000 population (an increase

of 590%) during 2070 to 2099, while the mortality rate for Budapest increases from 5.4
5Logistic distributions are symmetric distributions but have heavier tails compared to normal distribu-

tions. See Chapter 5 in Davison (2003).
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to 98.5 per 100,000 population (an increase of 1700%). Adopting the same approach as

in Dessai (2003), the effects of adaptation on mortality projections were assessed. In ad-

dition, the sensitivity of mortality projections to the use of projected temperatures based

on an alternative emission scenario (SRES B2) was also investigated.

Several aspects of the approach adopted in this thesis are different from the studies

reviewed above. First, temperature projections are from HadRM3 which has a finer hori-

zontal resolution (with minimum grid spacing of about 25 km). This should allow a bet-

ter representation of local variation of temperatures and the extremes. Second and most

importantly, in order to account for the biases in the RCM simulations, more transpar-

ent methods of calibrating RCM projected temperatures will be considered (Chapter 5).

Third, for the uncertainty analysis of mortality projections (Chapter 6), although scenario

uncertainty cannot be considered, this thesis will assess the sensitivity of extreme mortal-

ity projections to climate model uncertainty, using the PPE of HadRM3. Previous studies

have not addressed this uncertainty, which as discussed in Section 2.3.3, is potentially a

major source of uncertainty in climate projections.

2.6 Summary

The review of background literature in this chapter has covered various areas, including

climate and its predictions, health and previous heat-related mortality projections. Some

of the important points which are especially relevant to the work presented in the following

chapters are:

• In addition to the large-scale circulation patterns, soil moisture has an important role

in the occurrences of heatwaves in Europe;

• Uncertainties of climate predictions arise from three sources: uncertainty in future

emissions, climate model uncertainty and internal variability of climate. The per-

turbed physics ensemble method is used to estimate the climate model parameter

uncertainty;

• Regional climate models provide better spatial representation of climate features,
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but like global climate models, there will be systematic biases in their simulations.

The formulation of the regional climate model is another source of climate model

uncertainty;

• Humans adapt to different climates through changes in physiological and behavioral

responses.
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Chapter 3

Data

3.1 Aim

This chapter provides an overview of various data sets used in this thesis. These include

the demographic and meteorological station data for developing the statistical heat-related

mortality models for the two focus cities, London and Budapest (Chapter 4), the gridded

European temperature observation data set for calibrating projections from the regional

climate model HadRM3 (Chapter 5) and different simulations of HadRM3 to be consid-

ered for projecting changes in extreme daily temperatures and mortalities (Chapters 5 and

6).

3.2 Two focus cities: London and Budapest

3.2.1 Meteorological observation station data

Sub-daily meteorological station data to be used are observed at London Weather Centre

(51.521◦ N, 0.11◦ W, 43 m above sea level) in central London and Lõrinc (47.433◦ N,

19.183◦ E, 138 m above sea level) in the suburban area of Budpaest from 1991 to 2005

(UK Met Office, 2006). The measurements are made on a rooftop for London Weather

Centre and near the ground for Lõrinc (Jones and Lister, 2009). Observed variables in-
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clude air temperature (in ◦C), vapour pressure1 (in hPa) and wind speed (in m s-1). The

choice of using vapour pressure as the humidity variable is justified in Section 2.4.1. Ob-

servations are available at an hourly interval for London and at a 3-hourly interval for

Budapest. There are about 0.25% of observations missing in each data set. In this the-

sis, these missing observations are filled in by linear interpolation in time. However, if

there are four or more consecutive missing hourly observations (London) or two or more

consecutive missing 3-hourly observations (Budapest), the whole day is omitted in the

analysis. This is because the diurnal variation in weather variables may be missed out if

interpolation was done. Daily mean values of air temperature T s, vapour pressure es for

both cities are then calculated by averaging the hourly or 3-hourly values.

Time series of T s and es for the two stations are shown in Figs 3.1 and 3.2 respectively.

Only the periods where mortality data (described in Section 3.2.2) are available are shown

for easier comparison. There are no apparent trends in the temperature series. For the

London temperature series [Fig. 3.1(a)], the sharpest summer peak occurs during the 2003

heatwave, when the daily mean air temperature reached 29.3 ◦C on 10th August. The

annual cycles in daily mean vapour pressure [Figs 3.1(b) and 3.2(b)] for both stations

have strong associations with the corresponding cycles in the air temperature series.

3.2.2 Demographic data

Data of daily elderly (age 65 or above) mortality counts from all causes (denoted by Y ) for

the London government office region (Greater London) from 1993 to 2003 are obtained

from the UK Office of National Statistics, while such data for Budapest from 1992 to

2001 are obtained from the European Union’s ‘Assessment and prevention of acute health

effects of weather conditions in Europe’ (PHEWE) project (Michelozzi et al., 2007). The

time series are shown in Figs 3.1(c) and 3.2(c) respectively. At both locations, elderly

mortalities appears to have slow overall decreasing trends, and their annual cycles are

generally negatively associated with the daily mean air temperature annual cycles [Figs

3.1(a) and 3.2(a)]. The mortality annual cycles in Budapest appear to be weaker than that
1Vapour pressure is derived from measurements using dry bulb and wet bulb thermometers.

51



D
ai

ly
 m

ea
n 

ai
r 

te
m

pe
ra

tu
re

 (
 °C

)

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

0
10

20
30

(a)

D
ai

ly
 m

ea
n 

va
p.

 p
re

ss
ur

e 
(h

P
a)

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

5
10

15
20 (b)

Year

D
ai

ly
 e

ld
er

ly
 m

or
ta

lit
y 

co
un

ts

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

10
0

20
0

30
0 (c)

Figure 3.1: Time series of observed (a) daily mean air temperature T s; (b) daily mean

vapour pressure es; (c) daily elderly mortality counts in London Y from 1993 to 2003.

Observations of T s and es are made at London Weather Centre station.
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Figure 3.2: Same as Fig. 3.1 but for Budapest from 1992 to 2001. Observations T s and

es are made at Lõrinc station.
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in London, especially towards the latter part of the series, even though there is no apparent

change in the amplitude of daily mean air temperature annual cycles in Budapest through-

out the time series [Fig. 3.2(a)]. Two distinct summer mortality peaks can be observed in

London, one in 1995 and the another in 2003.

●
● ● ●

● ●
● ● ● ● ● ● ● ● ●

E
ld

er
ly

 p
op

ul
at

io
n 

('0
00

)

● ● ● ●
●

●
● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●

●

1995 2000 2005 2010 2015 2020 2025 2030

90
0

11
00

(a) London

● ● ●

● ●
●

●
●

●

●
●

● ● ●
●

●

Year

E
ld

er
ly

 p
op

ul
at

io
n 

('0
00

)

●
●

●
● ●

●
●

●
●

●
●

●

●
● ●

●
●

●
●

●

●
●

●
●

1995 2000 2005 2010 2015 2020 2025 2030

30
0

32
0

34
0

36
0 (b) Budapest

Figure 3.3: Time series of annual estimates (shown by circles) of past and future projected

elderly population (in thousands) in (a) London and (b) Budapest. Linear interpolation of

these annual estimates in time are shown by solid (past) and dashed (future) lines.

In order to take account for demographic changes when fitting the statistical mortal-

ity models, annual elderly population estimates for each location from 1992 to 2007 are

obtained (UK Office of National Statistics, 2008b; Hungarian Central Statistical Office,

2009). These are shown by filled circles in Fig. 3.3. For the periods where mortality data

are available, apart from a jump in Budapest between 2000 and 2001, the sizes of elderly

population at both locations were slowly decreasing despite the general ageing trend in

Europe (Chapter 1 in Eurostat, 2008). A possible reason is that migration of the elderly

out of the city areas dominates the population changes (Chapter 1 in UK Office of Na-
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tional Statistics, 2007). However, in more recent years, the decrease in elderly population

sizes at both locations has slowed down. For the purposes of fitting heat-related mortality

models, the annual population estimates are interpolated linearly to give daily estimates,

denoted by P and are shown by solid lines in Fig. 3.3.

The projected changes in future elderly population will be considered when projecting

the changes in heat-related mortality (Section 6.4). For London, the 2006-based subna-

tional UK population projection up to 2031 will be used (UK Office of National Statistics,

2008c). For Budapest, since no population projection data for the city are publicly avail-

able, these are derived from the 2004-based subnational population projection data for

larger regions within Hungary up to 2031 (Eurostat, 2009). The details of the derivation

are given in Appendix A. As shown by the dashed lines in Fig. 3.3, the size of elderly

population in London is projected to increase gradually in the next two decades, while for

Budapest, the elderly population size will increase before falling again in the early 2020s.

These population projections are subject to uncertainties because they are produced us-

ing assumptions on mortality rates, internal (within-country) and international migration

based on current trends (UK Office of National Statistics, 2008a).

3.3 European gridded temperature observations E-OBS

The observed daily mean screen-level air temperatures from the European daily gridded

land surface observational data set E-OBS Version 2.0 (denoted by T o; Haylock et al.,

2008) produced by the EU-FP6 project ENSEMBLES (van der Linden and Mitchell,

2009), are used in the evaluation and calibration of RCM temperature projections. This

data set covers the period from 1950 to 2008. As an example, the observed mean air tem-

perature on 1 August 1995 is shown in Fig. 3.4(a). The main advantage of using this data

set is that its observations can be directly compared to the output from HadRM3 because

it is available in a grid identical to that used in HadRM3 - with a rotated north pole at

39.25◦ N, 162◦ W and a spatial resolution of 0.22◦ × 0.22◦, i.e. about 25 km on the equa-

tor of the rotated grid2. In addition, to be consistent with the RCM output, the gridded
2The use of a rotated grid in RCMs allows a more uniform horizontal resolution in the model domain.
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daily temperatures represent grid box averages rather than point observations.

(a) To

0 10 14 18 22 26 30 40

(b) Ta

0 10 14 18 22 26 30 40

Figure 3.4: Mean air temperature (in ◦C) on 1 August 1995 from (a) E-OBS data set (T o)

and (b) simulations of HadRM3 forced by ERA-40 (T a). Values of T a for grid boxes over

waters are also displayed here to show the entire spatial domain of HadRM3.

Gridded daily mean temperatures for the E-OBS data set were produced by first inter-

polating the daily mean temperatures observed from about 1200 stations across Europe

to a 0.1◦ master grid using the kriging method (Chapter 3 in Cressie, 1993), then averag-

ing to give grid box averages on the 0.22◦ grid with about 18,000 boxes. Details on the

density of the observation stations and interpolation methods are described in Klok and

Klein Tank (2009) and Haylock et al. (2008) respectively. Hofstra et al. (2009) shows

that over areas with fewer observation stations, for example Spain, Turkey, Sweden and

western Russia, temperature observations are over-smoothed in the interpolating process,

resulting in an under-estimation of the grid box average daily values, especially for the

extremes. This should be noted when extreme T o and HadRM3 simulations over such

regions are compared in Chapter 5.

3.4 Regional climate model HadRM3

The RCM used in this thesis, HadRM3, has a spatial domain covering UK and Europe

[see Fig. 3.4(b)], with 170 grid boxes on the zonal direction and 190 grid boxes on the

meridional direction. As mentioned in Section 3.3, the minimum grid box length is about

25 km. With this spatial resolution, the area of Greater London is resolved into more than
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one grid box [Fig. 3.5(a)]. This RCM is nested within the Hadley Centre coupled ocean-

atmosphere GCM HadCM3 (Gordon et al., 2000), which has a horizontal resolution of

2.5◦× 3.75◦ (about 300 km at the mid-latitudes) with 19 vertical levels for the atmosphere

and 1.25◦× 1.25◦ with 20 vertical levels for the ocean. Refer to Fig. 2.1 for an illustration

of the different resolutions between HadRM3 and HadCM3. HadRM3 is based on an

improved version of the atmospheric component of HadCM3 (Jones et al., 2004; Pope

et al., 2006). As it does not have an interactive ocean component, sea surface temperatures

and sea ice extent are prescribed from HadCM3. Details of the nesting technique and

model formulation of HadRM3 are described in Jones et al. (1995) and Buonomo et al.

(2007) respectively. It should be noted that HadRM3 does not include any influences of

the urban surfaces and built environment on the climate (Annex 7 in Murphy et al., 2009),

therefore the ‘urban heat island’ effect (Wilby, 2007) cannot be represented.
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Figure 3.5: Maps illustrating the spatial resolution of HadRM3 over (a) UK and (b) Hun-

gary. The grey dotted lines are boundaries of the grid boxes. The thin black lines are the

boundaries of Greater London and Budapest, with the dots within showing the locations

of London Weather Centre and Lõrinc.

3.4.1 Description of model simulations

In the main simulation, the parameter settings of HadRM3 are consistent with the standard

version of HadCM3 described in Gordon et al. (2000). HadRM3 is driven at the bound-

57



aries of the domain by 6-hourly values of surface atmospheric pressure, wind, temperature

and humidity from the output of HadCM3. Future greenhouse gases concentration from

the IPCC SRES A1B scenario is used to drive HadCM3. This scenario assumes a world

with rapid economic growth, with population peaking by 2050 and with a balanced use be-

tween fossil and non-fossil energy sources (Nakićenović and Swart, 2000). This HadRM3

simulation runs on a twelve 30-day months calendar from 1950 to 2099. To match the def-

inition of summer (15th May to 15th September) on the Julian calendar stated in Section

1.2, summer for T g is defined to be the 135th to 254th day of each model year. Daily

mean air temperatures from this simulation, which are denoted by T g, will be used in the

calibration of extreme temperature projections over Europe.

In the second simulation, HadRM3 is driven at the boundaries by the ERA-40 re-

analysis from the European Centre for Medium-RangeWeather Forecasts (ECMWF) (Up-

pala et al., 2005). This simulation runs from December 1957 to November 2001. If the

re-analysis data are considered to be ‘perfect’ boundary forcings, a comparison of simu-

lated daily mean temperatures from this run, denoted by T a, with the E-OBS observations

T o, can help identify the model biases related to the RCM formulation. The T a output

on 1 August 1995 is shown in Fig. 3.4(b) as an example. Compared to T o on the same

day [Fig. 3.4(a)], while the lower temperatures in elevated areas are well simulated by the

RCM, T a is about 2 to 3 ◦C lower over UK and Scandinavia. A detailed comparison of

the T o, T a and T g distributions will be presented in Chapter 5.

3.4.2 Perturbed physics ensemble

In the assessment of the effects of climate model uncertainties on extreme temperature and

mortality projections (Sections 5.4.3, 5.5.3 and 6.4.1), an 11-member perturbed physics

ensemble (PPE) of HadRM3 simulations of T g will be used. The same ensemble has been

used to downscale GCM outputs for UK Climate Projections (UKCP09; Murphy et al.,

2009). The first member is the ‘standard’ HadRM3 simulation described above. For each

of the other 10 variants, atmosphere, sea-ice and land surface parameters in the driving

HadCM3model are perturbed from the standard value, while some options within their pa-
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rameterisation schemes are switched on or off. The HadRM3 PPE member is then driven

at the boundaries by the output of the corresponding HadCM3 simulation. The parame-

ter settings of each HadRM3 member are also consistent with that of the corresponding

HadCM3 simulations (Chapter 3 in Murphy et al., 2009). The choices of parameter per-

turbation for these 10 members are based on results of previous experiments with larger

PPEs (e.g.Murphy et al., 2004; Collins et al., 2006), with the aim of simulating physically

plausible climate variability while spanning a wide range of possible parameter values.

As a reference, the values of climate sensitivity (equilibrium change in global mean tem-

perature for doubled CO2 concentration) of the slab models (HadSM3)3 which have the

same parameter perturbations as the 10 HadCM3 variants range from 2.58 K to 7.11 K

(see Fig. 3.6). The same historical and future greenhouse gases concentration (SRES A1B

scenario) used in the standard simulation is also used drive the simulations of the PPE

variants. It is important the note that the known climate model uncertainties are not fully

sampled in this PPE, including structural errors in the drivingmodel HadCM3which could

be remedied by using an alternative climatemodel and uncertainties from the carbon cycle,

sulphur cycle and ocean transport processes (Chapter 5 in Murphy et al., 2009).

The boxplots shown in Fig. 3.6 can be used to visually compare the distributions of

summer T g simulated by the ensemble members for the grid boxes covering London and

Budapest. For London, while the different widths of the boxes indicate differences in the

scale of T g distributions among the ensemble members, all of the members simulate pos-

itively skewed T g distributions, as shown by the large number of T g values lying outside

1.5 times the interquartile range (IQR) from the upper quartile. However, comparing with

the boxplot of T o for the same period, this skewness is not seen for the distribution of T o.

For Budapest, the T g distributions for all of the ensemble members are more symmetric,

but the range of the median of simulated T g values is greater compared to London. In

Chapter 5, the calibration of future temperature projections by the PPE will be based on

the comparison of T o and each ensemble member of T g.
3HadSM3 has a simpler configuration of the ocean compared to HadCM3.
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Figure 3.6: Boxplots of summer T o and T g (in ◦C) simulated by HadRM3 perturbed

physics ensemble members from 1970 to 1999 for the grid boxes covering the (a) London

and (b) Budapest observation stations (see Fig. 3.5). Each ensemble member is labelled

by its model name. HadRM3Q0 is the standard version while the others are the ensemble

variants. Values of the climate sensitivity of the corresponding slab models are also shown

(see text for explanation). The lower and upper boundaries of the boxes represent the lower

and upper quartiles of the T o and T g distributions respectively. The vertical lines within

the boxes show the median. Values lying outside 1.5 times the interquartile range (IQR)

from the lower and upper quartiles are shown by dots.

3.5 Summary

This chapter has provided background information on the data sets used in this thesis.

Some of the limitations of the data sets are highlighted, for example the ability for ex-

treme temperatures to be represented in the E-OBS gridded observations and the range of

uncertainties represented by the HadRM3 ensemble. These should be taken into account

when interpreting the results presented in the following chapters.
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Chapter 4

Statistical modelling of heat-related

mortality

4.1 Aim

This chapter presents the specification, fitting and evaluation of the statistical mortality

models which will be driven by HadRM3 output for projecting future heat-related mor-

talities in London and Budapest. It starts with a brief review on the modelling strategies

adopted by previous research and a discussion on how the models for London and Bu-

dapest should be specified. A number of criteria for evaluating the models are then pro-

posed. This is followed by a description of the candidate models which are fitted to the

data sets described in Chapter 3. The models are then compared according to the proposed

criteria, in particular their performance in predicting extreme daily mortality counts. Such

comparison will be used to inform choices about mortality models.

4.2 Modelling strategies

There is extensive literature on the subject of heat-related mortality modelling as the use

of such models is not limited to climate change impact assessment. In epidemiological

studies, regression models are generally fitted to mortality data and meteorological obser-
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vations over a long period of time (typically over 5 years) at different locations, in order to

study how the mortalities of different age or socio-economic groups and mortalities from

different causes vary with environmental variables (e.g. Anderson and Bell, 2009; Gou-

veia et al., 2003; Hajat et al., 2007; Ishigami et al., 2008). In heatwave episode analyses

(e.g. Fouillet et al., 2008; Grize et al., 2005; Tan et al., 2007), similar models are used

to retrospectively estimate the ‘excess’ number of deaths in a specific heatwave and to

study the daily changes of mortality during the event in detail. Statistical mortality mod-

els are also employed as a part of operational heat-health warning systems in more than

20 cities worldwide (Sheridan and Kalkstein, 2004; Nogueira and Paixão, 2008). Warn-

ings are issued if the number of deaths predicted by the model on a certain day exceeds a

pre-determined threshold.

In previous published research, heat-related mortality models for the above purposes

have adopted various modelling approaches. The approaches mainly differ in their choices

of environmental covariates (explanatory variables) and how the systematic dependence

of the response on these variables are modelled. Before these two areas are discussed, a

general framework of heat-related mortality models is first described.

4.2.1 Model framework

When modelling heat-related mortalities, the response variable is usually the observed

daily number of deaths at a specific location Yi, where the subscript i is used to denote

the observation on each day. As this is count data, the use of normal distributions is not

appropriate. A generalized linear model (GLM; Nelder and Wedderburn, 1972), which

allows the response to have non-normal distribution, is therefore commonly used.

Suppose there is a set of p covariates Xi = {Xi1, Xi2, · · · , Xip}. The random com-

ponent of a mortality GLM generally assumes Yi|Xi to have a Poisson distribution. This

distribution is a member of the exponential family with a mean rate of µi:

Yi|Xi ∼ Poisson(µi), (4.1)

where µi = E(Yi) = var(Yi), i.e. the expectation (population mean) and variance of Yi

are equal. This Poisson distribution assumption is used since for the range ofXi observed,
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mortality can be considered as a rare event given the small number of people who die

on each day out of the total population. The mean mortality rate then depends on the

covariates through a linear predictor ηi which is the systematic component of the model:

ηi = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip = Xiβ (4.2)

where βj (j = {1, 2, · · · , p}) are unknown parameters to be estimated. The random and

systematic components of the GLM are related by a link function, which is a non-linear

transformation of the linear predictor:

ηi = g(µi) = Xiβ.

For a Poisson response, a log link function g(µi) = log(µi) is the natural canonical choice

(Nelder and Wedderburn, 1972).

Another type of statistical model commonly used for modelling heat-related mortality

is the generalized additive model (GAM; Hastie and Tibshirani, 1990). It has the same

random component as a GLM, but the systematic component involves a sum of unknown

smooth functions of covariates:

ηi = g(µi) = Xiβ +

p∑
k=1

fk(Xik) (4.3)

where the first term of the right hand side includes any strictly parametric model com-

ponent, and f represents non-parametric smooth functions of covariates. It can be seen

by comparing (4.2) and (4.3) that the main difference between GLMs and GAMs is that

the latter allow a more flexible (non-parametric) specification for the dependence of the

response on the explanatory covariates.

Further details onGLMs andGAMs, including the estimation of parameters and smooth-

ing functions, are described in Appendix B. We now turn our attention to how the system-

atic components of mortality models are specified.

4.2.2 Choice of environmental covariates

Theories of heat exchange between the human body and the environment described in

Section 2.4.1 can help provide a sound physical basis for choosing the explanatory envi-

ronmental covariates in mortality models. Since air temperature, humidity and wind speed

63



are three variables that directly affect such heat exchange, they are possible covariates to

be considered.

For air temperature, somemortalitymodelling studies (e.g. Fouillet et al., 2007; Gosling

et al., 2007) choose daily maximum or minimum air temperature as a covariate, but daily

mean air temperature is a more common choice (e.g. Ballester et al., 1997; Kunst et al.,

1993). Hajat et al. (2002) argues that using the daily mean value is more appropriate

because it better represents the thermal exposure experienced by humans throughout the

day and night.

The inclusion of humidity is less common, possibly because continuous and reliable

measurements of humidity are less readily available compared to air temperature. For

studies which include humidity, relative humidity is often chosen as the covariate, for

example in Armstrong (2006), Braga et al. (2001), Donaldson et al. (2003) and Kovats

et al. (2004). However, as discussed in Section 2.4.1, another humidity variable, observed

vapour pressure, is the more relevant variable in determining the effects of humidity on

human heat stress, and will be used in one of the models to be fitted in Section 4.4. A

number of studies included other daily measured meteorological variables, such as wind

speed (Kunst et al., 1993) and barometric pressure (O’Neill et al., 2003). There is no

consensus, however, on whether these variables have statistically significant effects on

daily mortality.

Measured variables of ambient air pollution, such as concentration of fine particles,

ozone, sulphur dioxide and nitrogen oxide, are also considered as potential confounders

in some heat-related mortality models, for example in Baccini et al. (2008), Hajat et al.

(2007) and Vaneckova et al. (2008). The concentration of certain air pollutants (e.g. fine

particles and ozone) tends to be higher during extended periods of hot weather (Anderson

et al., 2002). The interaction between air pollution and weather variables should therefore

be considered in mortality models (Roberts, 2004). However, air pollution variables will

64



not be included in the models for this thesis due to data availability issues1 and because

there are also no long-term projections of regional air pollution concentration available.

A number of mortality models choose daily values of biometeorological indices as a co-

variate instead of air temperatures. Examples include Davis et al. (2003) and O’Neill et al.

(2003) which use ‘apparent temperature’, Smoyer-Tomic and Rainham (2001) which uses

‘humidex’ and Laschewski and Jendritzky (2002) which uses ‘perceived temperature’.

Developed from physical models of heat exchange between the human body and its sur-

rounding environment, these indices combine various meteorological variables, including

air temperature, humidity, wind speed, solar radiation, etc., to provide measures of human

sensation (Chapters 8 and 10 in Parsons, 2003; Steadman, 1979a,b, 1984). It is hoped

that these indices can better represent the combined effect of meteorological variables on

human health. However, without evaluating against a model which only includes air tem-

perature as a covariate, it is unclear whether using such indices gives more explanatory

power.

The possible delayed or lagged effects of environmental variables on mortality are

commonly considered in the model by including these variables measured on the day

when mortality occurs and also on a number of preceding days, or more simply by us-

ing an multiple-day average value of the variable concerned as a covariate in the model

(e.g. Baccini et al., 2008). Schwartz (2000) introduced the use of parametric ‘distributed

lag models’ to study how the impact of exposure to air pollution on daily mortality (re-

sponse) varies with time. This was extended to non-parametric GAMs by Zanobetti et al.

(2000). ‘Distributed lagmodels’ were applied to model heat-relatedmortality by a number

of studies, such as in Armstrong (2006), Braga et al. (2001) and Hajat et al. (2005).
1Measurements of air pollution concentration in London from the UK National Air Quality archive

(http://www.airquality.co.uk/data_and_statistics.php) for the period under investigation con-

tain a rather large proportion (about 4%) of missing values. A large number of days will have to be omitted

if they are used.
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4.2.3 Measurement locations of environmental covariates

Ideally, the environmental variables in a mortality model should be representative of the

conditions to which the population is exposed. In practice, however, the modeller has to

use the available routine observations from meteorological stations, which may be situ-

ated away from where most of the population reside (Basu and Samet, 2002). In addition,

temperatures in the urban areas of the city are typically higher than that in the rural ar-

eas, especially at night (Wilby, 2003). The storage of heat by buildings, reduced wind

speed caused by urban structures and anthropogenic heat production by human activi-

ties contribute to this ‘urban heat island’ effect (Oke, 1987). If there is a large variation of

temperatures across a city, the relationship between mortality and environmental variables

estimated by the model will be sensitive to the location of chosen meteorological stations

(de’Donato et al., 2008).

This issue needs to be considered in this study because the statistical mortality model

will be driven by the output from HadRM3 which represents averages over a grid box,

while the meteorological stations data (T s
i and esi ) described in Section 3.2.1 are point ob-

servations within the cities of London and Budapest. Considering the sizes of the areas

from which mortality data are recorded (Fig. 3.5), it may be more appropriate to use grid-

ded E-OBS data T o
i as they may better represent the overall temperatures experienced by

the London and Budapest populations. On the other hand, as described in Section 3.3, ex-

treme T o
i may be underestimated because of oversmoothing of station observations. If T o

i

is used in the mortality model, there could be bias in the estimated relationship between

mortality and extreme temperatures. Therefore, T s
i and T o

i should be compared before

deciding which of these variables is used.

Figure 4.1 shows the scatter plots of summer daily T s
i against T o

i for the grid box cov-

ering the meteorological stations in London and Budapest (refer to Fig. 3.5) from 1991

to 2005. For both locations, T s and T o are strongly correlated with Pearson product-

moment correlation coefficients of ρ = 0.949 and ρ = 0.985 for London and Budapest

respectively. Consider the linear models

T s
i = β0 + β1T

o
i + ϵi, (4.4)
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Figure 4.1: Scatter plots of summer T s
i against T o

i (in ◦C) for the grid box covering the

meteorological stations in (a) London and (b) Budapest from 1991 to 2005. The solid

line shows the linear model fit (4.4) for the data, while the dashed line is the line of equal

values.

Location β̂0 (◦C) β̂1 R2

London 0.93 (0.12) 0.997 (0.008) 0.90

Budapest -0.70 (0.08) 1.024 (0.004) 0.97

Table 4.1: Parameter estimates and R-squared statistics (proportion of variation ex-

plained) of model (4.4) for London and Budapest. Standard errors are given in paren-

theses. All the parameter estimates are significantly different from zero at the 5% level.

where β0 and β1 are the model parameters and ϵ represents Normal error with zero mean

and constant variance. For London, a fitted positive intercept of β̂0 = 0.93 ◦C (standard

error 0.12 ◦C) together with a slope β̂1 close to unity (Table 4.1) indicate that station mean

temperatures T s
i are on average about 0.9 ◦C higher than the gridded mean temperatures

T o
i , as shown by the solid line in Fig. 4.1(a). This can possibly be explained by the loca-

tion where T s is measured. As the London Weather Centre station is situated in a built-up

area in central London, temperatures observed at the station are likely higher than its sur-

rounding areas, and are therefore systematically higher than T o
i . Jones and Lister (2009)

estimated the magnitude of urban heat island (the difference between urban and rural tem-

peratures) for monthly mean temperatures at London Weather Centre to be 1.8 ◦C in the

period 1981 to 2006. For Budapest, where the station is located in the suburban areas,
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there are little systematic differences between T s
i and T o

i as the fitted line in Fig. 4.1(b) is

close to the diagonal.

The difference between extreme T s
i and T o

i can be examined using the return level plots

in Fig. 4.2. A return level refers to the quantile expected to be exceeded with a probability

which is expressed in terms of the return period. The return curves are estimated by fitting

generalized Pareto (GP) distributions to excesses of T s
i and T o

i above thresholds, which

are chosen to be the respective sample 0.95 quantiles. Details on the GP distribution and

return level plots are explained in Section 5.3.3 of Chapter 5 where such plots are used

more extensively, and also in Appendix C. Comparing the return curves for T s
i and T o

i in

London [Fig. 4.2(a)], the difference between extreme values of T s
i and T o

i appears to be

larger (about 2 ◦C) than the difference predicted by the linear model. However, consider-

ing the sampling uncertainties indicated by the 90% confidence intervals (dashed lines),

there is no strong evidence of significant underestimation of extreme T o
i . For Budapest

[Fig. 4.2(b)], there are little differences between high values of T s
i and T o

i . In Section

4.5, mortality models with T o
i and T s

i will be compared to confirm whether T o
i is a more

suitable temperature covariate.
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Figure 4.2: Return level plots of summer T s
i and T o

i for (a) London and (b) Budapest.

The return curves for T s
i and T o

i , estimated by GP distribution fits, are shown by red and

blue solid lines respectively. The corresponding 90% confidence intervals are shown by

dashed lines. The empirical estimates of return levels for T s
i and T o

i are shown by grey

dots and triangles respectively.
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4.2.4 Modelling the functional dependence on covariates

At extratropical locations, the mortality annual cycles appear to be negatively associated

with the air temperature annual cycles (see for example Figs 3.1 and 3.2). However, most

modelling studies do not explain the mortality annual cycles solely by changes in air tem-

perature because part of the mortality seasonality is believed to be related to other factors,

such as seasonal changes in lifestyle, diet, stress and blood pressure (Donaldson et al.,

2002; Huynen et al., 2001). A number of methods have been used to control for this mor-

tality seasonality. Curriero et al. (2002), Gouveia et al. (2003), Kan et al. (2007), Kovats

et al. (2004) and O’Neill et al. (2003) included a smoothing function of time estimated

by smoothing splines with different degrees of freedom (normally 6 to 12 per year) in

their mortality models. This method is commonly used in observational studies where

only the relationship between mortality and environmental variables is of interest. The

mortality seasonality which is modelled by this method does not have a fixed annual cy-

cle for different years. This is an appropriate strategy for this study because as noted in

Section 3.2.2, the amplitudes of mortality annual cycles in Budapest appear to decrease

with time. However, when a smoothing function is used, the choice of degrees of freedom

(or flexibility) affects how much mortality variation is left to be explained by changes

in air temperature and other potential environmental covariates (or other variables). In a

simulation study, Peng et al. (2006) demonstrated how the biases in the estimates of the

dependence of mortality on environmental covariates vary with the degree of smoothing

on the mortality time series.

Smoothing on the mortality time series can be performed as a first step in order to esti-

mate the ‘baseline mortality’ on each day. The ‘excess mortality’, which is the difference

between the observed mortality count and the estimate of the baseline mortality on that

day, then becomes the response variable of the models. Examples of this strategy include

calculating running means of various lengths (Dessai, 2002; Gosling et al., 2007; Sheridan

and Kalkstein, 2004) and using average mortality in the same period in preceding years

(Johnson et al., 2005). The baseline mortality estimated by these methods may be easily

affected by fluctuations in mortality, such as a peak caused by an epidemic which persists
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at a timescale comparable to the length of the moving average window chosen. Other

methods for calculating ‘excess mortality’ are reviewed in Gosling et al. (2009a).

There is considerable variation in approaches to model relationships between the intra-

seasonal response and environmental covariates. As described in Section 2.4.3, the de-

pendency of daily mortality on air temperature in subtropical and temperate regions can

usually be described by a U-shaped or a J-shaped curve (Basu and Samet, 2002; Curriero

et al., 2002), where mortality increases towards the two extreme ends of temperature.

Some modelling studies specify a parametric function to model this dependence. For ex-

ample, Kunst et al. (1993) identified the air temperature at which minimum daily mortality

was observed. The data set was then divided into two groups accordingly. Two separate

linear functions were fitted to model the mortality-temperature relationships, one for the

higher temperature range and one for the lower temperature range. Saez et al. (1995) also

fitted separate linear functions for the two temperature ranges, but divided the data set into

‘summer’ and ‘winter’ according to the day of year. Laaidi et al. (2006) fitted a fourth-

order polynomial for the whole temperature range. A possible problem of fitting a high

order polynomial is the collinearity between the covariates which might lead to unreliable

estimates of model parameters (Chapter 16 in Draper and Smith, 1998). In addition, as

such parametric models are non-local fits, the mortality observations at the intermediate

range of temperatures can affect the model fit at extreme temperatures which is more of

interest. On the other hand, Kan et al. (2007) and Pauli and Rizzi (2008) modelled re-

lationships between the response and each environmental covariate as non-linear smooth

functions using smoothing splines. This again requires subjective specification of degrees

of freedom of the function. Some observational studies (e.g. Curriero et al., 2002; Patten-

den et al., 2003) first used a fully non-parametric GAM on their data sets to present the

results graphically. A semi-parametric model, where the dependency of mortality on air

temperature is modelled in a parametric form, while the dependency on other covariates

is modelled by non-parametric smooth functions, was then fitted to the data again. This

strategy provides quantitative estimates of changes in predicted mortality per unit change

in air temperature.
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4.3 Model evaluation methodologies

Model evaluation is an essential part of statistical modelling. The modeller should not

only check whether the model is adequate, i.e. fits existing and out-of-sample data well,

but also whether it is well-specified, i.e. is based on valid assumptions. Among the mor-

tality modelling studies we have reviewed so far, some presented the evaluation work

on model adequacy. For example, Dessai (2002), Gosling et al. (2007) and Laaidi et al.

(2006) reported the R-squared or adjusted R-squared statistics for each model they fitted.

These statistics provide basic indications of the goodness-of-fit of their models. Gosling

et al. (2007) also performed split-sample validation where the model is only fitted to half

of the data set and is then used to predict the response for the remaining half of the sample.

The predictions are compared with the actual daily observations in terms of the correla-

tion coefficient. For evaluation of model specification (validity of model assumptions), it

is not routine practice to present such work, especially in observational epidemiological

studies where the description of modelling results only involves model parameters and

their uncertainties. It is then difficult for the reader to judge whether the models proposed

in such studies are both adequate and well-specified. To remedy this problem, this sec-

tion proposes a list of procedures to evaluate the adequacy and specification of mortality

models. These procedures will be used systematically when comparing the models in the

following section.

4.3.1 Model adequacy

The choice of model adequacy measures should be made according to how the statistical

model is to be used. In this study, the prediction of extreme heat-related mortalities is the

main area of concern. Apart from the accuracy in predicting daily changes in mortality,

the ability of the models in predicting the upper tail of the mortality distribution is also

important. Here are the measures that are used to assess model adequacy covering both

aspects:

(a) Un-biased risk estimator (UBRE; Wahba, 1990)
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The goodness of fit of different mortality GAMs can be compared using UBRE:

UBRE =
1

no

D(β̂) +
2np

no

where D(β̂) is the deviance of the fitted model, a measure related to the log-likelihood

of the model (see Appendix B for details), np is the number of degrees of freedom in the

model and no is the number of observations. This is a measure which focuses on daily

predictions of mortality. A model with a lower UBRE score is preferred.

(b) Overdispersion statistic

The following statistic can be used to compare the adequacy of the systematic components

of different models in explaining the mortality dispersion:

ϕ̂ =
D(β̂)

nr

where nr is the model’s residual degrees of freedom. This statistic is an estimator for the

scale parameter ϕ of the exponential family distribution (see Appendix B). For a Poisson

GAM, a better model should have this statistic closer to 1.

(c) Mean residual life plot (Chapter 4 in Coles, 2001) for observed and predicted ex-

treme mortality counts

The ability for a model to predict extreme heat-related mortalities can be assessed by com-

paring the upper tails of the distributions of observed and predicted daily mortality counts.

The use of peak-over-threshold models from the classical extreme value theory to model

such tails is not applicable for a Poisson distribution, the assumed distribution for mor-

tality counts (Chapter 3 in Embrechts et al., 1997). Here the behaviour of the upper tail

of mortality distribution is described by considering the quantity mean excess above a

threshold u, E(Y −u|Y > u). This quantity represents the mean of the mortality excesses

above u and can be estimated empirically using the sample mean. The change in the mean

excesses of observed mortality y with different thresholds can be shown by a plot of locus

of the points (
u,

1

nu

nu∑
k=1

(y(k) − u)

)
where nu is the number of observations above u and

{
y(1), y(2), · · · , y(nu)

}
represent the

observations which exceed u. To examine the differences between the upper tails of the
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observed and predicted daily mortality distributions, this plot can be compared with a

similar plot for the mean excesses of model predicted mortality counts E(µ̂ − u|µ̂ > u)

which can also be estimated using the sample mean.

4.3.2 Model specification

The use of a Poisson GAM assumes the response conditional on the covariates Yi|Xi to

be independent and follow a Poisson distribution (4.1) with mean equal to the variance.

The validity of these assumptions are assessed by considering the overdispersion statistic

described in Section 4.3.1 and by examining the residual diagnostics and the coverage of

prediction intervals.

(a) Residual diagnostics

If a model is well-specified, the deviance residuals ϵd (refer to Appendix B for details) are

expected to be normally distributedwith zeromean and variance of unity under sufficiently

large samples, i.e. ϵd ∼ N(0, 1). A number of residual diagnostic plots can therefore be

used to assess the model specification. Firstly, a plot of deviance residuals against the

model predicted values on the linear predictor scale should show an even scatter above

and below zero with no obvious structure. This ensures that the response is independent.

Secondly, the square root of the standardized deviance residuals against the model pre-

dicted values should be plotted (scale-location plot). If some structure is apparent from

the plot, the constant variance approximation will be invalid. Thirdly, a normal quantile-

quantile plot where the standardized deviance residuals are sorted and plotted against the

standard normal distribution quantiles should be checked. For a well-specified model, a

near straight line relationship should be observed in this plot.

(b) Confidence intervals and prediction intervals

In a regression model, the uncertainty in the predicted mean value of the response µ̂,

given a set of explanatory variables, is associated with the uncertainty in the estimated

model parameters. Confidence intervals of the predictedmean response can be constructed

to represent such uncertainty. For example, in a mortality model, the meaning of 95%

confidence intervals of predicted mean mortality, [c1, c2], where Pr(c1 ≤ µ ≤ c2) = 0.95,
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is that we can be 95% confident that these intervals will contain the true value of mortality

µ. For GAMs in this thesis which are fitted by the ‘mgcv’ package in R (Chapter 5 in

Wood, 2006; R Development Core Team, 2009), the confidence intervals are estimated by

bootstrapping methods (see Chapter 4.8 in Wood, 2006).

For practical uses of mortality models, the uncertainty in an individual predicted value

of the response is more of interest. In addition to the model parameter uncertainty, an

additional uncertainty arises from the variability of the assumed distribution of the re-

sponse in the random component of the model. These uncertainties can be represented by

constructing prediction intervals. For a Poisson GAM, 95% prediction intervals of each

individual prediction, [q1, q2], where Pr(q1 ≤ y+ ≤ q2) = 0.95, are given by

q1 = Q0.025,µ̂ − (µ̂− c1)

q2 = Q0.975,µ̂ − (c2 − µ̂).

In the above,Qλ,µ is the (100×λ)th percentile of a Poisson distribution with the mean rate

parameter µ. If the distributional assumption on the response is justified, given a set of

explanatory variables, we can be 95% confident that a new individual observation y+ will

lie within the interval. The coverage of the prediction intervals on the existing data sample

can be another diagnostic to assess the mortality model specification. For a well-specified

model with a large enough data sample size, there should be about 2.5% of observations

lying below the lower bound of the 95% prediction intervals (y < q1) and about 2.5%

lying above the upper bound of these intervals (y > q2).

4.4 Model description

Based on the modelling strategies discussed in Section 4.2, a number of candidate statisti-

cal mortality models for London and Budapest are tested. By comparing the seven models

described below, the following questions will be answered.

1. Does including humidity or using a biometeorological index improvemortalitymodel

predictions?
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2. Is a model which specifies a non-parametric mortality-temperature relationship bet-

ter than the model where such a relationship is specified to be parametric?

3. How do models using station observed temperatures T o differ from models using

gridded observed temperatures T s?

For the random components of the following mortality GAMs, the daily elderly mor-

tality counts in each city Yi given the explanatory variables Xi are assumed to follow a

Poisson distribution (4.1):

Yi|Xi ∼ Poisson(µi).

The systematic component of all the models include an offset logPi to account for the

changes in elderly population. To account for non-demographic and non-weather related

variations in mortality, a smooth function with a predictor ri is included. This variable

represents time in years on a scale of [0, 11] for London and [0, 10] for Budapest, for

example in the London series, for 1st January 1993 (the 1st day of the series), r1 = 0.0; for

1st January 1997 (the 1462th day of the series), r1462 = 4.0. The smoothing functions are

estimated by penalized cubic regression splines using the ‘mgcv’ package in R (Chapter 5

in Wood, 2006). Since only heat-related mortality is our concern in this study, the models

are only fitted to data in the summer, defined as a four-month period from 15th May to 15th

September each year. This choice is a compromise between having more observations in

the analysis and avoiding days with low air temperatures which might affect the model

fits.

• Model BL: This model estimates the baseline mortality by using only an offset for

population plus a smooth function of ri.

logµi = logPi + f1(ri)

The basis dimension (denoted by m; see Appendix B for details) of f1, which can

be considered as its upper limit of the degrees of freedom (d.f.), is chosen to be

m = 44 for London and m = 40 for Budapest (same for the other models below).

This represents a maximum of 1 d.f. for each month to ensure that weather-related

variations of mortality are not captured.
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• Model TS: In this model, the effect of daily mean temperature recorded at meteo-

rological stations is represented by a smooth function of T s
i .

logµi = logPi + f1(ri) + f2(T
s
i ) (4.5)

To allow enough flexibility in the function representing the mortality-temperature

relationship (f2), the basis dimension is chosen such that the effective (actual) de-

grees of freedom (e.d.f.) is much lower than the ‘upper limit’ imposed (Section 4.1

in Wood, 2006; see also Appendix B). By trial and error, the basis dimension for f2

is chosen to bem = 10.

• Model TSH: As in model TS, but a smooth function of daily mean vapour pressure

esi is added to investigate the humidity effect on mortality.

logµi = logPi + f1(ri) + f2(T
s
i ) + f3(e

s
i )

By the same approach used to determine m for f2, the basis dimension for f3 is

chosen to bem = 8.

• Model TAP: Instead of air temperature, this model uses the daily mean value of

‘shade apparent temperature’ (Steadman, 1984), denoted by T ap
i , as a covariate.

For each location, sub-daily T ap values are first calculated using T ap = −2.7 +

1.04T s+0.2es−0.65vs, where vs is the wind speed in m s-1. The daily mean T ap
i is

then obtained by averaging the sub-daily values. This model investigates whether

it is better to use a biometeorological index as the environmental covariate.

logµi = logPi + f1(ri) + f4(T
ap
i )

The basis dimension for f4 is chosen to bem = 10.

• Model PTS: This model specifies the effects of air temperature on mortality in a

parametric form with a second order polynomial of T s
i .

logµi = logPi + f1(ri) + β1T
s
i + β2(T

s
i )

2
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• Model TO: As in model TS, but gridded observed temperatures T o
i are used as the

covariate instead.

logµi = logPi + f1(ri) + f5(T
o
i )

The basis dimension for f5 is also chosen to bem = 10.

• Model PTO: As in model PTS, but T o
i is used as the covariate.

logµi = logPi + f1(ri) + β3T
o
i + β4(T

o
i )

2

The above models consider only the effects of weather observed on the same day when

mortality occurs. The appropriateness of this choice will be evaluated by examining the

plots of autocorrelation function of the deviance residuals.

For the sake of brevity, some other tested models are not presented. These include

the ones similar to model TS but use daily maximum or minimum air temperatures as

covariates. Using the evaluation criteria for model adequacy described in Section 4.3.1,

such models do not have better predictive performance compared to model TS. In addi-

tion, models which specifies the relationship between mortalities and temperatures in a

parametric form using different orders of polynomials were tested. It was found that the

model with a second order polynomial (model PTS) is better specified than the others.

4.5 Model evaluation and comparison

This section first describes the fit of model TS which uses station air temperature as the

only environmental covariate, examines its residual diagnostics and compares it with the

‘baseline’ model BL. The questions listed in the last section are then addressed.

4.5.1 Model with air temperature effect

The time series of observed and predicted elderlymortality counts bymodel TS for London

and Budapest are shown in Figs 4.3(a) and (c) respectively. Only the last three summers

of the series are shown here for easier inspection. Compared to the baseline mortalities
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predicted by model BL for the same period shown in Figs 4.3(b) and (d), model TS cap-

tures temperature-related spikes in mortality, most notably the one in London during the

heatwave in August 2003 when the daily mean air temperature remained above 25 ◦C for

two consecutive days. The 95% confidence intervals for the mean response and the 95%

prediction intervals for individual observations, which are estimated as described in Sec-

tion 4.3.2, are also shown in Fig. 4.3 to indicate the uncertainties of the predictions. The

width of confidence intervals, which depend on the uncertainties of the model parameters,

are much narrower than the prediction intervals, which also incorporate the uncertainties

due to the inherent daily variability within the assumed response distribution. This shows

that even if the model parameter uncertainty is low, there will be an intrinsic limit to the

predictability of daily mortality simply because it is assumed to be a Poisson process.

The exponential transformed estimated smoothing function of station air temperature

in model TS for both locations, exp(f̂2(T s
i )), are shown in Figs 4.4(a) and (b). Applying

the exponential function on both sides of the model formula (4.5), it can be seen that

exp(f̂2(T s
i )) represents the relative factor change in the proportion of elderly population

dying, µi/Pi, as a result of the change in T s
i for fixed ri. This quantity is commonly known

as ‘relative risk’ in epidemiology (Chapter 5 in Clayton and Hills, 1998). For example,

Fig. 4.4(a) shows that elderly mortality risk in London estimated by model TS is about

70% higher at T s
i = 30 ◦C compared to T s

i = 17 ◦C. For both locations, the dependency of

daily elderly mortality on daily mean air temperature is non-linear, with the mortality risk

increasing more rapidly as T s
i rises above 22 ◦C in London and above 25 ◦C in Budapest.

The steeper curve for London suggests that elderly mortality in London is more sensitive

to high air temperatures compared to Budapest.

The three plots on the top row of Fig. 4.5 are the residual diagnostics of model TS

for London. The normal quantile-quantile plot [Fig. 4.5(a)] of deviance residuals shows

roughly a straight line. No obvious structure can be observed in the plot of deviance

residuals against the fitted value [Fig. 4.5(b)] and in the scale-location plot [Fig. 4.5(c)].

However, a number of outliers, which are large deviance residuals, can be observed in

all three plots. These residuals, marked in red, relate to the data observed from 7th to

10th August during the 2003 heatwave. Since these observations are possibly influential
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Figure 4.3: Time series of observed (grey) and predicted mortality counts (black) by

models TS and BL for summers 2001 to 2003 in London (a, b) and summers 1999 to

2001 in Budapest (c, d). The 95% confidence intervals of the mean response and 95%

prediction intervals of a new individual observation are indicated by red and blue dashed

lines respectively.
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(d) Budapest: TO

Figure 4.4: Exponential transformed estimated smoothing function of daily mean station

T s
i (in ◦C) and gridded T o

i (in ◦C) air temperature in models TS (exp(f̂2(T s
i )); a and b)

and TO (exp(f̂5(T o
i )); c and d) respectively for London and Budapest. The dashed lines

are pointwise 2 standard error bands above and below the the estimate of each smoothing

function. The densities of T s
i and T o

i observations are displayed by the rug plots at the

bottom of each plot. The effective degrees of freedom (e.d.f.) of the estimated smoothing

functions are shown on the y-axis.

to the model fit, the model will be fitted without them to observe any differences. The

results will be discussed in Section 4.5.3. As for the residual diagnostics of model TS for

Budapest (the bottom row in Fig. 4.5), no obvious violation of the model assumptions is

apparent.

Comparing the evaluation statistics of models BL and TS (Table 4.2), the overdisper-

sion statistic for model TS is smaller compared to model BL for both locations, as the

inclusion of the air temperature effect in model TS increases the variance in the predicted

mortality. This statistic is reasonably close to 1 for model TS, suggesting that there is no
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Figure 4.5: Residual diagnostic plots for model TS for London (top row) and Budapest

(bottom row). The three panels on each row are: normal quantile-quantile plot of deviance

residuals (a, d); deviance residuals against the fitted value on the linear predictor scale (b,

e); square root of standardized deviance residuals against the fitted value on the linear pre-

dictor scale (c, f). The residuals for London from 7th to 10th August 2003 are highlighted

in red.

large overdispersion relative to the assumed Poisson model. As for the 95% prediction

interval coverage statistics, one should expect 2.5% of the observations lying below the

lower bound (y < q1) and 2.5% above (y > q2) the upper bound of the intervals, i.e. about

34 observations on each side for London and 31 observations on each side for Budapest.

For model BL, the numbers of y > q2 are 40 and 39 for London and Budapest respec-

tively. These indicate that the 95% prediction interval coverage for model BL is slightly

too narrow because it does not take any effects of weather into account. However, the

coverage for model TS appears slightly too wide, where only a total of about 4% and 3%

of observations locate outside the interval for London and Budapest respectively.
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(a) London

Model UBRE Overdispersion Prediction interval

ϕ̂ y < q1 y > q2

BL 0.507 1.667 38 (2.8%) 40 (2.9%)

TS 0.200 1.172 26 (1.9%) 29 (2.1%)

TSH 0.178 1.146 23 (1.8%) 24 (1.8%)

TAP 0.224 1.197 25 (1.9%) 29 (2.1%)

PTS 0.215 1.190 28 (2.1%) 29 (2.1%)

TO 0.183 1.162 24 (1.8%) 27 (2.0%)

PTO 0.210 1.191 24 (1.8%) 28 (2.1%)

(b) Budapest

Model UBRE Overdispersion Prediction interval

ϕ̂ y < q1 y > q2

BL 0.336 1.284 29 (2.3%) 39 (3.1%)

TS 0.149 1.121 19 (1.5%) 22 (1.8%)

TSH 0.143 1.114 18 (1.4%) 20 (1.6%)

TAP 0.162 1.134 21 (1.7%) 20 (1.6%)

PTS 0.147 1.120 19 (1.5%) 22 (1.8%)

TO 0.139 1.110 18 (1.4%) 20 (1.6%)

PTO 0.138 1.111 18 (1.4%) 22 (1.8%)

Table 4.2: Model evaluation statistics as described in Section 4.3 for the mortality models

listed in Section 4.4. The meaning of symbols and acronyms are as follows. UBRE:

un-biased risk estimator; ϕ̂: overdispersion statistic; y < q1 and y > q2: number and

percentage of observations lying below and above the 95% prediction interval bounds of

predicted elderly mortality counts.

4.5.2 The effect of humidity

The fits for the model with daily mean vapour pressure as a covariate (TSH) suggest that

in addition to air temperature, there is a small additional effect of humidity in determining

82



elderly mortality at both locations. This is shown by the increasing relative risk with esi in

Fig. 4.6. The estimated smoothing functions of air temperature for this model are similar

to that for model TS (not shown). For both locations, the mortality risk increases by not

more than 10% as the vapour pressure reaches the highest present-day observed value,

while the mortality risk increases more rapidly with air temperatures (see Fig. 4.4). The

effects of air temperatures on mortality therefore dominate. For both cities, there are little

differences between the time series of predicted elderly mortality counts by models TSH

and TS (not shown), but the model evaluation statistics (Table 4.2) provide some evidence

suggesting that TSH is a slightly better model. The UBRE score for model TSH is slightly

lower than that of model TS at each location and is the lowest among the models which

include T s as a covariate.
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(b) Budapest: TSH

Figure 4.6: As in Fig. 4.4, but for the exponential transformed estimated smoothing func-

tions of daily mean vapour pressure (esi in hPa) in model TSH, exp(f̂3(esi )).

In terms of the model evaluation statistics, there is little evidence supporting the use

of a model with daily mean apparent temperature as the covariate (TAP) over a model

with daily mean air temperature (TS). For both locations, model TAP has higher UBRE

scores (which mean worse fits) compared to both models TS and TSH. A comparison of

time series plots for elderly mortality observed and predicted by models TAP and TS (not

shown) reveals that the former model underestimates some of the mortality peaks.

As described in Section 4.2.2, a number of previous studies on the relationship between

mortality and weather use daily apparent temperature as the covariate in their models, as

this index has been considered to be a better indicator of the overall heat stress on humans
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compared to air temperature. However, the results here suggest that using a model with

this index could lead to worse predictive performance. In a study of mortality and meteo-

rological data time series in three European cities, Hajat et al. (2006) also concluded that

daily apparent temperature is a worse predictor of mortality compared to daily mean air

temperature for London and Milan (Italy), but a better predictor for Budapest. The cal-

culation of apparent temperature based on daily mean, rather than hourly air temperature,

was cited as a possible reason for this result. There is no such problem in this study where

the daily mean apparent temperature is computed based on hourly or 3-hourly measure-

ments of air temperature, humidity and wind speed (see Section 4.4). In addition to model

TAP, another model which includes an alternative biometeorological index, net effective

temperature (Lee, 1980), was fitted to the London and Budapest data. The predictive

performance of such a model was also found to be no better than model TS (results not

shown). Biometeorological indices are therefore not chosen as covariates for the model

used in Chapter 6 to project future heat-related mortalities in London and Budapest. Nev-

ertheless, the above results do not mean that all biometeorological indices are necessarily

worse predictors of mortality, nor these results necessarily apply to other cities.

For daily mean vapour pressure, the fits of model TSH indicate that this variable has

a small effect in determining elderly mortality. Such a model slightly improves mortality

predictions in terms of the UBRE scores. However, considering that the humidity effect

is much smaller than the temperature effect, practically a model with only air tempera-

ture as the meteorological covariate should be adequate for projecting future mortalities.

The daily mean vapour pressure is therefore not considered in the model for heat-related

mortality projections.

4.5.3 Specification of the dependence of mortality on air temperature

For London, the fits of model TS (which specifies the dependence of mortality on temper-

ature by a non-parametric smooth function) and PTS (which specifies such dependence

by a second order polynomial) are noticeably different. The thick solid lines in Figs 4.7(a)

and (b) show the predicted elderly mortality counts in London for the two models, as a
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function of air temperature, while keeping the values of other covariates in the model fixed

at their mean. Mortality predicted by model TS increases more rapidly compared to model

PTS for T s
i above 24 ◦C. As a test to investigate how these model fits are affected by the

observations during the heatwave in 2003, both models are re-fitted with the year 2003

[black dots in Figs 4.7(a) and (b)] being omitted. The results are shown by the thick dashed

lines. After removing the data for this year, models TS and PTS have similar predictions

for the range of present-day observed air temperatures. Comparing the model predictions

for each model indicated by thick solid and dashed lines on each panel, it appears that

fully non-parametric model TS is less robust to the summer 2003 outliers. In contrast,

comparing Figs 4.7(c) and (d), the mortality predictions for Budapest by the two models

are similar.

The difference between the model fits of TS and PTS for London due to these outliers

can explain their different overdispersion statistics (Table 4.2). As model TS predicts a

higher number of elderly deaths at high air temperatures, the overdispersion of mortal-

ity captured by the model is greater than that captured by the model PTS, therefore the

overdispersion statistic of model TS is closer to 1. The UBRE score of model TS is also

lower, indicating that it has a better fit. For Budapest where the model fits by the models

TS and PTS are similar, the overdispersion statistics and UBRE scores of the two models

are similar.

We now focus on the predictions of the upper tails of the mortality distributions, using

the mean residual life plots introduced in Section 4.3.1. The mean residual life plots of

observed mortalities for London and Budapest are shown in Figs 4.8(a) and (d) respec-

tively. The shapes of the upper tail of mortality distributions are related to the gradient of

the solid lines, with a more negative slope indicating that the tail drops off more quickly.

For London [Figs 4.8(a)], the mean excess mortality decreases with lower thresholds, but

increases above u = 140, suggesting that the mortality distribution has a heavy upper tail.

This feature is absent for the plot without the data from 2003, as shown by the blue line.

The heavy upper tail of the mortality distribution is therefore related to the large number

of deaths during the 2003 heatwave. Comparing this with the mean residual life plots of

mortalities predicted by models TS and PTS [Figs 4.8(b) and (c)], it appears that the upper
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Figure 4.7: Predicted elderly mortality µ̂i (thick solid lines) by models TS and PTS as a

function of daily mean station air temperature T s
i (in ◦C) in London (a, b) and Budapest

(c, d), with the values of population Pi and the time variable ri in the models being kept

fixed at their mean values. Observations are overlaid by grey dots, with those from 2003

in London being highlighted in black. The 95% prediction intervals are shown by thin

solid lines. On panels (a) and (b), the thick dashed line represents the predictions for the

same models fitted to all but 2003 summers. The thin dashed lines are the corresponding

95% prediction intervals.

tail of mortality is better predicted by model TS, albeit with large sampling uncertainties

indicated by the 95% confidence intervals. For Budapest, the upper tails of the mortality

distribution predicted by models TS and PTS [Figs 4.8(e) and (f)] have similar shapes and

drop off more quickly compared to observed mortality distribution.
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Figure 4.8: Mean residual life plots for observed (a, d) and predictedmortalities bymodels

TS (b, e) and PTS (c, f) for London and Budapest. The 95% confidence intervals are

indicated by dashed lines. The plot for observed mortality in London without the data in

2003 is superimposed on panel (a) by the blue line.

We now consider whether the fully non-parametric model or the model with parametric

mortality-temperature relationship is more suitable for the projection of future mortalities

later in this thesis. For Budapest, since the fits and the evaluation statistics of models

TS and PTS are very similar, both models are equally suitable. For London, the choice

is less obvious. Even though the evaluation statistics suggest that model TS fits the data

better than model PTS, other factors need to be considered, for example how the different

model sensitivities to outliers will affect the predictions. Under climate change, temper-

atures which are considered extremely high at the present day (say, those above the 99th

percentile) are expected to become more common, and temperatures beyond the currently

observed range are likely to occur in the future. When predicting future heat-related mor-

talities, an extrapolation of the estimated mortality-temperature relationship will be re-

quired. For model TS, where this relationship is represented in a non-parametric way, the
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extrapolation depends on the shape of the estimated smoothing function at the extreme

end of the range of observed temperature values. This is where the smoothing function

can be heavily affected by outliers because of the lack of observations. As shown in Figs

4.7(a) and (b), at a mean air temperature of 35 ◦C (about 5 ◦C higher than the maximum

value of mean air temperature observed in the sample), the number of daily elderly deaths

in London predicted by model TS fitted with and without the data in 2003 differ by about

180, and their 95% prediction intervals do not overlap. In contrast, the corresponding

difference for PTS is only about 70. Although in general, a model which is more robust

to outliers is preferred, it is entirely possible that heat-related mortality increases more

rapidly at extreme high air temperatures as predicted by model TS.

It is also important to note that even for model TS, where a non-parametric mortality-

temperature relationship is specified, the high number of deaths occurred during the 2003

heatwave is still not well predicted, as shown by the large residuals in Figs 4.5(a) to (c).

There are a number of possible reasons for the anomalously high mortalities recorded

during this event. Firstly, the effect of a day with extremely high temperature on mortality

may persist for a longer period of time. However, the plot of autocorrelation function of

deviance residuals [Fig. 4.9(a)] shows that the autocorrelation is close to zero up to lags of

40 days. This lack of autocorrelation does not support the existence of persistent effect of

extreme heat on mortality. Secondly, part of the elevated mortality during the event might

be attributed to increased concentration of air pollution. Stedman (2004) estimates that 21

to 38% of excess mortality in the UK during the first two weeks of August 2003 are related

to the increased concentration of ambient ozone and particulate matters. As explained

in Section 4.2.2, such an effect is not considered in this study. Thirdly, sustained high

temperatures during the heatwave might cause the number of deaths to be significantly

higher than that predicted by mortality models as the heat stress on humans could not be

relieved for a long period of time. Hajat et al. (2006) compares the observed summer

mortality in London from 1976 to 2003 and the mortality predicted by a model which

specifies the mortality-temperature relationship to be a linear function above temperatures

of 20.5 ◦C. It was found that the observed mortalities during periods when daily mean

temperatures are above the 99th percentile for 2 or more consecutive days are 5.5% above
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that predicted by the model. Here in this study, since the time series of mortality data is

relatively short, it is not possible to confirm whether there is such a ‘heatwave effect’ or

to reliably model such an effect.
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(b) Budapest: TS

Figure 4.9: Autocorrelation function of deviance residuals of model TS for (a) London

and (b) Budapest up to lag of 40 days. The dashed lines are 95% confidence intervals for

zero autocorrelation.

Since the mortality predictions by model TS during the 2003 heatwave are more ac-

curate than those of model PTS, the model used to project future heat-related mortalities

will specify the mortality-temperature relationship with a non-parametric smoothing func-

tion. However, mortality projections using the model which specifies such a relationship

with a second order polynomial will also be attempted as part of the sensitivity analysis

in Chapter 6.

4.5.4 The use of gridded observed temperature as a covariate

There are minor differences in the estimated smoothing functions using station observed

air temperatures (T s
i ) in mortality models and that using gridded observed air temperatures

(T o
i ) in the models. The estimated smoothing functions of T o

i in model TO for London

and Budapest are shown in Figs 4.4(c) and (d) respectively. The shapes of the smoothing

functions for each location are similar to the corresponding model TS [Figs 4.4(a) and

(b)]. Compared to model TS, the estimated mortality-temperature curve of model TO
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for London is shifted slightly to the left. This is consistent with the observation made in

Section 4.2.3 that values of T o
i are about 0.9 ◦C systematically lower than T s

i .

The model evaluation statistics suggest that the use of gridded T o
i gives a slightly better

model fit. For both locations, model TO has lower UBRE scores than model TS. Model

PTO, the ‘parametric’ counterpart of model TO, also has lower UBRE scores than model

PTS for both locations. The improved goodness of fit of models using T o
i provides some

evidence that gridded observed temperatures better represent the general thermal condi-

tions experienced by the population compared to the temperatures recorded at a single

station. As a result, models with T o
i as the temperature covariate, i.e. models TO and

PTO, are chosen to project future mortalities.

In Sections 4.5.2 and 4.5.3, the discussion on the inclusion of humidity, prediction of

the upper tails of mortality distributions and the sensitivity of models to outliers are based

on mortality models using T s
i . It should be noted that all the conclusions are also valid

for the corresponding models using T o
i because of the similarities between the fits of the

models using the two variables.

4.6 Summary

In this chapter, the strategies of modelling the present-day heat-related mortality for Lon-

don and Budapest have been discussed. Based on the comparison of the fits of a number of

candidate models and the evaluation of their adequacy and specification, a Poisson GAM

with gridded observed daily mean air temperature as the only meteorological covariate

(model TO) is chosen as the main model for the projections of future heat-related mortal-

ities in Chapter 6. In this model, the relationship between elderly mortality and tempera-

tures is specified using a non-parametric smooth function. While this model is slightly less

robust to outliers compared to the model which specifies the mortality-temperature rela-

tionship as a second order polynomial (model PTO), this model predicts the mean extreme

excess mortality slightly better for London.
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Chapter 5

Regional climate model temperature

calibration

5.1 Aim

As discussed in Chapter 2, simulations of climate models contain discrepancies. When

projecting future mortalities, the mortality models developed in the last chapter are not

to be directly driven by the raw uncalibrated daily mean air temperature projections from

HadRM3. This chapter describes the work on the calibration of HadRM3 summer temper-

ature projections from 2010 to 2099. It starts with a discussion of two generic approaches

for calibrating climate model variables, ‘bias correction’ and ‘change factor’. The effects

of using these two approaches on the temperature projections of the HadRM3 perturbed

physics ensemble, especially the extremes, are then compared for London and Budapest.

At the end of this chapter, the calibrated temperatures of the standard version of HadRM3

for Europe are presented, in order to highlight the different results obtained by the two

calibration approaches and to give an indication of how mortality risk will change in other

European locations.
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5.2 General approaches for calibration

Although this thesis focuses on the extreme HadRM3 summer temperature projections,

this section first considers the more general case of calibrating the entire distribution of

a climate variable simulated by climate models, not only limited to surface air temper-

atures. The application of the calibration methodologies discussed below on HadRM3

temperature projections will be described in Section 5.3.

5.2.1 Overview of approaches

The calibration of climate model projections involves four random variables (Fig. 5.1).

For the present-day, we have both the actual (station or gridded) observations O and cli-

mate model simulations G. For the future, we have the model simulations of the climate

variable, denoted byG′. The aim of the calibration exercise is to estimate the unknown fu-

ture observed variable of interest, denoted byO′. This can be achieved by two distribution

mapping approaches, ‘bias correction’ and ‘change factor’. For the purpose of calibration,

the sequences ofO andG in a specified ‘present-day’ time period and the sequences ofO′

and G′ in a specified ‘future’ time period are each assumed to be independent and identi-

cally distributed. This assumption is appropriate for sufficiently short time periods where

the trends in individual variables are sufficiently small. The cumulative distribution func-

tions (c.d.f.) of these four variables are denoted by FO, FG, FO′ and FG′ . In addition,

whenO′ obtained using the bias correction approach and the change factor approach need

to be distinguished, the symbols O′
b and O′

c will be used respectively.

The bias correction approach is based on the difference between the distributions of O

and G, i.e. the bias in the present-day climate model simulations. This approach assumes

that there exists a constant transfer function B such that the random variable G can be

transformed to have the same distribution as the random variable O:

B(G)
d
= O

⇔ B ◦ F−1
G = F−1

O

⇔ B = F−1
O ◦ FG
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Figure 5.1: Schematic diagrams showing two approaches to calibrate projections of cli-

mate variables from climatemodels, bias correction (solid lines) and change factor (dashed

lines).

where d
= indicates equality in distribution, and F−1

O and F−1
G denote the inverse of FO and

the inverse of FG respectively. IfB is assumed to stay constant in the future, which means

that model biases do not change with time, future model projections G′ can then also be

transformed to have the same distribution as O′:

Ô′
b = B(G′) = (F−1

O ◦ FG)(G
′).

On the other hand, the change factor approach is based on the difference between the

distributions of G and G′, i.e. the change in the distribution of the modelled variable with

time. This approach assumes that there exists a different transfer function C such that G

can be transformed to have the same distribution as G′:

C(G)
d
= G′

⇔ C ◦ F−1
G = F−1

G′

⇔ C = F−1
G′ ◦ FG.

By definition, C is an identity function if there are no future changes in the distribution

of the climate model variable, i.e.G′ d
= G. Assuming that the present-day observations O

can be transformed by C such that they have the same distribution as O′,

Ô′
c = C(O) = (F−1

G′ ◦ FG)(O).
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Figure 5.2: Illustration of distribution mapping by (a) bias correction and (b) change

factor. The thick solid curves show three cumulative distribution functions (c.d.f.) FO,

FG and FG′ as labelled, while the thick dashed curve is the unknown c.d.f.FO′ estimated

by the two calibration methods. Examples of how values from the distributions of G′ and

O are mapped are shown by arrows.

The mapping by the transfer functions B and C is illustrated in Fig. 5.2. For bias cor-

rection [Fig. 5.2(a)], given a value G′
r from the distribution of G′, the probability p =

Pr(G ≤ G′
r) is first obtained by FG(G

′
r). The bias-corrected value O′

b is then estimated

by F−1
O (p) such that p = Pr(O ≤ O′

b). For change factor [Fig. 5.2(b)], given a value Or

from the distribution ofO, FG(Or) gives the probability p = Pr(G ≤ Or). The calibrated

value O′
c is then estimated by Ô′

c = F−1
G′ (p).

In practice where FO, FG and FG′ need to be estimated, the form of B and C can be

specified in a number of ways. A straightforward option is to estimate FO, FG and FG′ by

the corresponding empirical distribution functions (e.g. Ines andHansen, 2006). However,

there are two problems with this empirical quantile mapping method. The small number

of observations at the tails of the O, G, G′ distributions may cause the calibration to be

less precise. In addition, it is not possible to perform out-of-sample calibration due to the

change of support inO,G andG′. Both approaches can only map values in the domain of

FG, therefore for example, values ofG′ greater than the maximum value within the sample

ofG cannot be bias-corrected. Another possible choice is to fit theoretical distributions to
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O,G,G′ and then to perform the calibration based on the theoretical quantiles. For exam-

ple, in the calibration of monthly GCM temperature output for the UK, Vidal and Wade

(2008) fitted normal distributions to observed temperatures and GCM simulated present-

day temperatures. The biases of GCM temperatures for the future are then corrected by

mapping the quantiles of the fitted distributions. However, this method is not desirable

if the actual distributions of observed or model variables deviate significantly from the

assumed theoretical distributions.

This thesis considers a different approach to specify the transfer functions, by assuming

certain relationships between the properties (location, scale and shape) of the distributions

involved. Ferro et al. (2005) has used similar ideas to interpret model simulations of

climate change.

5.2.2 Transfer functions for bias correction

For the bias correction approach, the transfer function B is specified by assuming rela-

tionships between O and G, i.e. the distributions of the observed and modelled climate

variable in the present-day. The following three methods are considered.

(a) Bias correction in location (BC-L)

Assume that the distributions of O and G have different location, but have the same scale

and shape, i.e. the RCM simulations have biases in the location only:

FO(O) = F (O − αO) (5.1)

FG(G) = F (G− αG) (5.2)

where αO and αG are the location parameters ofO andG respectively. The above expres-

sions mean that (O−αO) and (G−αG) belong to the same distribution whose c.d.f. is F .

The transfer function is then derived as follows:

Ô′
b = B(G′) = (F−1

O ◦ FG)(G
′)

= F−1
O [F (G′ − αG)]

= αO + F−1 [F (G′ − αG)]

= αO + (G′ − αG), (5.3)
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where the equality between the first and the second lines uses (5.2), and the equality be-

tween the second and the third lines uses (5.1).

(b) Bias correction in location and scale (BC-LS)

Assume that the distributions ofO andG to have different location and scale, but the same

shape:

FO(O) = F

(
O − αO

βO

)
FG(G) = F

(
G− αG

βG

) (5.4)

where βO and βG are the scale parameters of O and G respectively. Here the biases in

the location are assumed to be additive and the biases in the scale are multiplicative. The

corresponding transfer function can be derived in a similar manner as in case (a):

Ô′
b = B(G′) = (F−1

O ◦ FG)(G
′)

= F−1
O

[
F

(
G′ − αG

βG

)]
= αO + βOF

−1

[
F

(
G′ − αG

βG

)]
= αO +

βO

βG

(G′ − αG). (5.5)

This location and scale correction method was adopted by Leith (2007) to calibrate GCM

projections of temperature, humidity and sea-level pressure, which are then used to statis-

tically downscale (see Section 2.3.2) rainfall projections for multiple sites in the UK.

(c) Bias correction in location and scale for Box-Cox transformed variables (BC-

LSB)

Assume that the location, scale and shape of the distributions of O and G are different.

Their different shapes are accounted for using the Box-Cox transformations AO and AG

which are applied on O and G respectively:

Õ = AO(O) =


OλO − 1

λO

for λO ̸= 0

log(O) for λO = 0

(5.6)

G̃ = AG(G) =


GλG − 1

λG

for λG ̸= 0

log(G) for λG = 0,

(5.7)
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where (̃.) is used to indicate Box-Cox transformed variables. The transformation is only

applicable when all values in the distribution are positive. The Box-Cox transformation

attempts to modify a distribution such that it becomes close to a normal distribution, with

suitable choices of transformation parameters λO and λG. For λ < 1, larger values in a

sample are decreased more compared to the smaller values, making a positively skewed

distribution closer to being symmetrical. For the reverse case, λ > 1 causes larger values

in the sample to increase more compared to smaller values, therefore a negatively skewed

distribution is made more symmetric (Chapter 3 in Wilks, 2006). Eastoe and Tawn (2009)

applied the Box-Cox transformation to preprocess the non-stationarity in surface ozone

data before modelling their extremes.

Assuming Õ ∼ N(αÕ, β
2
Õ
) and G̃ ∼ N(αG̃, β

2
G̃
), i.e. the transformed variables Õ and

G̃ follow normal distributions with mean αÕ and αG̃ and variance β2
Õ
and β2

G̃
respectively,

then Õ and G̃ can be assumed to be different in location and scale only:

FÕ(Õ) = Φ

(
Õ − αÕ

βÕ

)

FG̃(G̃) = Φ

(
G̃− αG̃

βG̃

)
,

where FÕ and FG̃ are the c.d.f. of Õ and G̃ respectively, and Φ is the c.d.f. of the standard

normal distribution N(0, 1). A correction similar to that in case (b) can then be applied

on G̃ with the transfer function

ˆ̃O′ = B(G̃′) = αÕ +
βÕ

βG̃

(G̃′ − αG̃), (5.8)

where Õ′ can be back-transformed to O′ by the inverse of Box-Cox transformation AO

(5.6).

As a result, if the shapes of both O and G are assumed not to change in the future,

such that G̃′ = AG(G
′) and Õ′ = AO(O

′) also follow normal distributions, the biases of

climate model projections for the future G′ can be corrected by

Ô′
b = (A−1

O ◦B ◦ AG)(G
′) (5.9)
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with B as specified in (5.8). For example, in the case where λO, λG ̸= 0,

Ô′
b =

{
1 + λO

[
αÕ +

βÕ

βG̃

(
GλG − 1

λG

− αG̃

)]} 1
λO

.

5.2.3 Transfer functions for change factor

For the following two methods under the change factor approach, the transfer function C

is specified by assuming relationships betweenG andG′, i.e. the distributions of the mod-

elled climate variable in the present-day and in the future. The derivation of the transfer

functions is similar to that shown in methods (a) and (b) of the bias correction approach

in Section 5.2.2 and is therefore omitted below.

(a) Change factor in location (CF-L)

Assume that the distributions of G and G′ are only different in their locations,

FG(G) = F (G− αG)

FG′(G′) = F (G′ − αG′)

where αG′ is the location parameter of G′. The transfer function is given by

Ô′
c = C(O) = αG′ + (O − αG). (5.10)

This technique is widely adopted in climate change impact studies, including the mortality

projections performed by Donaldson et al. (2002) and Dessai (2003), which are reviewed

in Section 2.5. In these projections, the model projected changes in mean temperatures are

added to the sequence of present-day observed temperatures to obtain the future projected

temperature sequence.

(b) Change factor in location and scale (CF-LS)

Assume that between the distributions of G and G′, there is an additive change in the

location and a multiplicative change in the scale:

FG(G) = F

(
G− αG

βG

)
FG′(G′) = F

(
G′ − αG′

βG′

) (5.11)

98



where βG′ is the scale parameter of G′. The corresponding transfer function is

Ô′
c = C(O) = αG′ +

βG′

βG

(O − αG). (5.12)

A similar change factor in location and scale method is applied by UKCP09 to calibrate

climate variables from HadRM3, which are then used to drive weather generators (see

Section 2.3.2) to obtain regional climate projections (Jones et al., 2009).

A third change factor method analogous to method (c) of the bias correction approach

could be attempted to account for changes between the shapes of the G and G′ distribu-

tions, however such a case is not presented here. This is because the use of such technique

needs to assume that the distributions of O and G have the same shape. As will be shown

in Section 5.6, this assumption is considered not valid for the calibration of HadRM3 tem-

peratures.

5.2.4 Comparison of approaches

The main features of the two calibration approaches presented above are compared in

Table 5.1, but this comparison does not give a clear indication as to which approach is

more reliable. Importantly, the distribution of calibrated temperatures produced by bias

correction and change factor, O′
b and O′

c, can be different even when the assumptions

involved in the specification of corresponding transfer functions are satisfied. Consider,

for example, the bias correction in location and scale (BC-LS) (5.5) and change factor in

location and scale (CF-LS) (5.12). The population mean of O′
b and O′

c are not necessarily

identical:

E(O′
b) = αO +

βO

βG

(αG′ − αG)

E(O′
c) = αG′ +

βG′

βG

(αO − αG) (5.13)

E(O′
b)− E(O′

c) = αO − αG′ +
1

βG

[βO (αG′ − αG)− βG′ (αO − αG)] , (5.14)

while the population variance is the same:

var(O′
b) = var(O′

c) =
β2
Oβ

2
G′

β2
G

. (5.15)
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This means that different results will be obtained from the two approaches even if the

shapes are the same between O and G (5.4) and between G and G′ (5.11).

Bias correction Change factor

B(G′) = (F−1
O ◦ FG)(G

′) C(O) = (F−1
G′ ◦ FG)(O)

• based on relationships between O and

G

• no assumptions on relationship be-

tween G and G′

• assumed to be independent on time

• performance can be evaluated by bias

correction of G

• based on relationships between G and

G′

• depends on time implicitly by differ-

ences between G and G′

• performance cannot be evaluated since

the change factor is identity for no

change in time

Table 5.1: Comparison of the two model calibration approaches.

Many previous climate change impact studies adopt one particular calibration method

under either the bias correction approach or the change factor approach to calibrate future

climate variables from model output. In Sections 5.4 to 5.6, calibration using all five

methods under the two calibration approaches will be performed, such that the impacts

of the choice of methods can be compared. The reliability of different methods will be

assessed by examining the validity of the distributional assumptions involved. In addition,

the performance of different methods of the bias correction approach can also be evaluated

by applying them on G, the model simulated climate variable for the present-day period.

Finally, it should be noted that there have been other proposed climatemodel calibration

methods. One example is given in the mortality projections by Gosling et al. (2009b)

discussed in Section 2.5. In their calibration of GCM projected temperatures, the location

and scale parameters ofO,G andG′ were first estimated by fitting logistic distributions to
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the data1. Time series of O′ to drive the mortality model is produced by random sampling

of a logistic distribution with αO′ = αO + (αG′ − αG) and βO′ = βO + (βG′ − βG).

The rationale behind the approach is somewhat similar to the change factor approach.

However, the change factor in scale proposed in this section is multiplicative instead of

additive, and it can be observed from (5.13) that the population mean of O′
c also depends

on the scale parameters βG and βG′ .

5.3 Calibration of HadRM3 temperatures

As mentioned in the previous section, this thesis attempts to calibrate the entire distribu-

tion of HadRM3 projected summer temperatures for each of its grid boxes using different

approaches. The extremes of temperatures calibrated by different methods are then esti-

mated and compared. For London and Budapest, temperature projections for each of the

11 HadRM3 PPEmembers are calibrated individually, while for other European locations,

only the standard version of HadRM3 is considered. This section describes how the ideas

discussed in the previous section are applied to perform the temperature calibration.

The variables involved in this calibration include the present-day E-OBS gridded daily

mean air temperatures (T o), HadRM3 simulated temperatures for the same period (T g),

future HadRM3 projected temperatures (denoted by T g′) and calibrated temperatures (de-

noted by T o′). These correspond to O, G, G′ and O′ respectively in the discussion of the

previous section. For notational convenience, the latter set of symbols will be used to rep-

resent the temperature variables for the rest of this chapter. For the purpose of temperature

calibration and estimation of extremes, the ‘present-day’ is defined to be the 30-year pe-

riod from 1970 to 1999. As recommended by the World Meteorological Organization, it

is common to define the ‘present climate’ using sample statistics of weather observations

over 30 years (World Meteorological Organization, 1989; Räisänen and Ruokolainen,

2008). For the future, three 30-year future periods (time-slices) are considered: 2010 to
1A different set of symbols are used in Gosling et al. (2009b) to represent the temperature variables and

location and scale parameters, but symbols consistent with that used in Section 5.2 are used here to allow

easier comparison between different calibration approaches.
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2039, 2040 to 2069 and 2070 to 2099. The observed and HadRM3 simulated temperatures

in each period are each assumed to be independent and identically distributed.

5.3.1 Estimation of parameters

For the threemethods under the bias correction approach, HadRM3 projected temperatures

from 2010 to 2099 are calibrated using (5.3), (5.5) and (5.9) respectively. HadRM3 sim-

ulated temperatures for the present-day (1970 to 1999) are also calibrated by replacingG′

withG in these formulae. For BC-L and BC-LS, the location and scale parameters, i.e.αO,

αG, βO and βG, are estimated by the sample mean and standard deviation respectively. It

should be noted that alternative choices are available to estimate these parameters, such as

the sample median and sample interquartile range. However, the results to be presented

in Sections 5.4 to 5.6 are found to be generally insensitive to this choice. As for BC-LSB,

constants γO and γG are first added to sample values of O and G in (5.6) and (5.7) before

the calibration. This is to ensure that all the values in both samples are positive, such that

Box-Cox transformation is valid. Take O as an example, (5.6) becomes

Õ =


(O + γO)

λO − 1

λO

for λO ̸= 0

log(O + γO) for λO = 0.

Here γO is given by

γO =

0 if all Oi > 0

−min(Oi) otherwise,

where min(Oi) is the minimum value in the sample of O. G̃ is defined by adding the

constant γG in a similar manner. The parameters λO, αÕ, βÕ, λG, αG̃ and βG̃ are then

estimated by maximum likelihood (Box and Cox, 1964).

For the two methods under the change factor approach, the parameters αG and βG in

(5.10) and (5.12) are estimated by the mean and standard deviation of the sample of G,

while αG′ and βG′ for each of the three 30-year time-slices are estimated by the mean and

standard deviation of the corresponding time-slices ofG′. The calibrated temperatures O′

for the three time-slices are then calculated using (5.10) and (5.12).
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5.3.2 Comparison of temperature distributions

In order to assess the validity of distributional assumptions of different calibration meth-

ods, the distributions of O, G and G′ need to be compared. For individual grid boxes

(e.g. London and Budapest), pairwise comparison of different distributions is done by in-

specting the sample quantile-quantile plots. For gridded data sets withmany variables, this

procedure is not practical, and so spatial maps of selected sample quantiles are compared.

In this thesis the sample quantiles of temperature distributions are estimated as follows

(definition 7 in Hyndman and Fan, 1996), using O as an example. Let {O1, O2, · · · , On}

be samples from the distribution of O, O(1) ≤ · · · ≤ O(n) be the order statistics, and Op

be the p quantile of O such that FO(Op) = p = Pr(O ≤ Op). Then Op is estimated by

the weighted average of consecutive order statistics

Ôp = (1− ω)O(⌊np+(1−p)⌋) + ωO(⌊np+(1−p)⌋+1),

where ⌊.⌋ represents the integer part, and the weight ω is given by

ω = np+ (1− p)− ⌊np+ (1− p)⌋.

Other quantile estimators are available (e.g. Hyndman and Fan, 1996), but given the large

sample sizes of temperature distributions (daily data from 30 summers) considered in this

thesis, the results should be insensitive to the choice of estimators.

In addition, two quantities proposed by Ferro et al. (2005), ‘location-adjusted quantile

difference’ and ‘location and scale-adjusted quantile difference’, are considered. Take

BC-L and BC-LS as examples. For BC-L, if the assumptions (5.1) and (5.2) hold, i.e.G

and O are only different in location, the location-adjusted quantile difference,

Gp − [αG + (Op − αO)] , (5.16)

is expected to be zero for all p ∈ (0, 1). On the other hand, if the assumption (5.4) of

BC-LS holds, i.e.G and O are only different in location and scale, the location and scale-

adjusted quantile difference,

Gp −
[
αG + βG

(
Op − αO

βO

)]
, (5.17)
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is expected to be zero for all p ∈ (0, 1). In (5.16) and (5.17),Gp andOp are estimated using

sample quantiles, while the location and scale parameters are estimated by the sample

mean and standard deviation, as described in Section 5.3.1. Plots of these two quantities

against p andmaps of these quantities for selected p are then used to validate the calibration

assumptions. The assumptions of the change factor approach can be validated similarly.

The sampling uncertainties of quantile differences are estimated using a bootstrap re-

sampling approach. Following Ferro et al. (2005), a block resampling technique is applied

to account for serial dependence within each summer. With this technique, blocks of tem-

perature values from each summer are resampled with replacement. Pointwise confidence

intervals of quantile differences are then constructed from a large number (999 for this

thesis) of resamples. Details on this approach are described in Chapter 8 of Davison and

Hinkley (1997).

5.3.3 Estimation of return levels of extreme temperatures

The magnitudes of temperature extremes calibrated by different approaches are reported

in terms of the estimated return levels. A return level refers to the quantile expected to

be exceeded with a probability (1 − p), which is expressed in terms of the return period

1/(1 − p). For example, for a summer with a length of 120 days, the temperature return

level with a return period of 2 summers, or the ‘2-summer return level’, is the tempera-

ture level expected to be exceeded, on average, once every 240 summer days. ‘Moderate’

extreme return level, such as the level with return period of 1 summer, can be estimated

using the sample quantile. For the estimation of rarer extremes with longer return periods

(e.g. 5 or 10 summers), fitting a parametric model is more appropriate (Folland and An-

derson, 2002). In this case, return levels are estimated by fitting generalized Pareto (GP)

distribution to temperature excesses above a threshold. Consider again, O as an example.

Let VO = O − uO be the excesses of O above a sufficiently high threshold uO, then the

GP distribution is given by

Pr (VO ≤ vO|VO > 0) = 1−
(
1 +

ξOvO
σ̃O

)− 1
ξO

,
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where σ̃O and ξO are scale and shape parameters respectively, and vO > 0 and (1 +

ξOvO/σ̃O) > 0. In this thesis, a constant threshold of sample 0.95 quantile of O is used

for uO. Then for a given return period rm (in days), the temperature return level Tm are

estimated by

T̂m =

uO +
ˆ̃σO

ξ̂O

[
(0.05rm)

ξ̂O − 1
]

for ξ̂O ̸= 0

uO + ˆ̃σO log(0.05rm) for ξ̂O = 0,

where ˆ̃σO and ξ̂O are estimates of σ̃O and ξO respectively. Other temperature variables

are treated similarly. Details of the GP distribution and the estimation of return levels are

given in Appendix C.

5.4 Calibration results for London

In this and the following section, the calibration for the standard version of HadRM3 is

first presented. This is followed by results involving the other members of the perturbed

physics ensemble.

5.4.1 Comparison of temperature distributions

The quantile-quantile plot of G against O, shown by the grey dots in Fig. 5.3(a), can be

used to evaluate the bias of the present-day HadRM3 simulated temperatures. This plot

follows roughly a straight line close to the line of equal values up to around O = 23 ◦C,

above which a curvature appears. This indicates that compared to observations, the dis-

tribution of modelled temperatures has a heavier tail at high temperatures. This feature is

also apparent when comparing the boxplots ofO andG [the first two boxes in Fig. 3.6(a)].

The quantile difference plot [Fig. 5.3(b)] shows that the bias of G is negative (cold) and

small (about 0.5 ◦C) at the intermediate range of temperatures, but a positive (warm) bias

of more than 3 ◦C can be observed for the hot extreme. This can be seen more clearly

in Fig. 5.3(c) where the sample quantile difference is plotted against the return period.

As will be discussed in Section 5.4.2, this bias continues to increase for rarer extremes,

i.e. with longer return periods. Both the location-adjusted quantile difference and location
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 Ĝ

p
−

Ô
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Figure 5.3: (a) Quantile-quantile plot (grey dots) of G of HadRM3 standard version

againstO for London. The dashed lines indicate equal values ofG andO. The mapping of

G′ values (or G for bias correction of the present-day values) onto O′ values by the three

bias correction methods are shown by coloured lines: orange for BC-L (5.3), blue for BC-

LS (5.5), red for BC-LSB (5.9). (b) Sample quantile difference between G and O against

probability for London. The 90% pointwise bootstrap confidence intervals are indicated

by the grey shaded bands. The location-adjusted sample quantile difference (5.16) and

location and scale-adjusted sample quantile difference (5.17) are superimposed by orange

and blue lines respectively. The corresponding confidence intervals are not shown for

clarity. (c) As in panel (b), but with the probability expressed in terms of return periods,

so that the extreme quantile differences can be more easily observed.

and scale-adjusted quantile difference, shown by orange and blue lines respectively, are

similar in magnitude to the quantile difference. These suggest that the warm bias of G at
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the tail cannot be explained by its bias in location and scale alone and is likely to be re-

lated to the difference between the shapes of G and O. The discussion of possible causes

of such a difference is postponed to Section 5.6.1 when G and O are compared for the

whole HadRM3 domain.
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 Ĝ

′ p
−

Ĝ
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Ô
p 

(°
C

)

(c)

Figure 5.4: (a) Quantile-quantile plot ofG′ (2040 to 2069) againstG for London. (b) and

(c) Sample quantile difference between G′ and G (2040 to 2069) against probability and

return period for London. Refer to the caption of Fig. 5.3 for further explanation of these

plots.

The change factor method is based on the relationship between HadRM3 temperatures

for the present-day period and the specific future time-slice (G and G′). For the sake of

brevity, only the quantile-quantile plot and quantile difference plot involving G′ for the

2040 to 2069 time-slice are shown in Fig. 5.4. The plots involving the other two time-

slices display similar features. The quantile-quantile plot [Fig. 5.4(a)] follows a straight

line roughly parallel to the line of equal values, apart from some minor departure at the hot
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extreme. This suggests that the distributions of G and G′ are mainly different in location.

The is confirmed by Figs 5.4(b) and (c) which show that the estimated quantile difference

(Ĝ′
p−Ĝp) is around 2.5 ◦C across all values of p, i.e. a warming of about 2.5 ◦Cofmodelled

temperatures between the two time-slices. Both the location-adjusted quantile difference

and location and scale-adjusted quantile difference are close to zero for most values of p.

5.4.2 Extreme temperatures for standard HadRM3 simulation

The return level plots in Fig. 5.5 show the effects of various calibration methods on ex-

treme temperatures. The return curves are based on GP distribution fits to excesses of

different temperature variables above thresholds for different time periods, as described in

Section 5.3.3. For the evaluation of the model fits, the empirical return level estimates are

overlaid by the grey symbols. For certain variables, for exampleG andG′ for the 2070 to

2099 time-slice in Fig. 5.5(f), the model fitted return curves (black solid and dashed lines)

have some departure from the empirical estimates. Choosing a threshold higher than the

0.95 sample quantile appears to produce better fits in such cases. Such results are not pre-

sented here so that the results shown in Fig. 5.5 are consistent with that to be presented in

Section 5.6. Nevertheless, when referring to temperature extremes, the discussion below

focuses on the estimated 10-summer return level, which is not very sensitive to the choice

of threshold.

For the present-day, the 10-summer return level of HadRM3 temperatures (G) has a

warm bias of about 6 ◦C compared to observations (O) [Fig. 5.5(f)]. Since there are little

differences in location and scale between O and G, as shown by the estimates of sample

mean and standard deviation in Table 5.2, such bias is not much reduced after applying

BC-L or BC-LS [Figs 5.5(a) and (b)]. The BC-LSB method, however, gives considerable

improvement [Fig. 5.5(c)]. The bias of the 10-summer level is reduced to less than 2 ◦C.

Themapping ofG values ontoO′ values by BC-LSB is shown by the red line in Fig. 5.3(a).

This is closer to the relationship between the sample quantiles of O and G compared to

the mapping by BC-L and BC-LS which are shown by orange and blue lines respectively,

even though some discrepancy is still apparent at the hot extreme. This suggests that it is
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Figure 5.5: Return level plots of different temperature variables for various time-slices

(as labelled) for London. Panels (b) through (f) show the results using different calibration

methods. On each panel the return curve for O is superimposed in blue. The empirical

estimates of return levels are shown by grey symbols for the evaluation of GP distribution

fits.
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Variable Time period Mean (◦C) s.d. (◦C) 10-summer level (◦C)

(a) No calibration

O 1970-1999 15.9 3.01 25.3 [25.0,25.8]

G 1970-1999 15.6 3.35 31.1 [29.6,33.8]

G′ 2010-2039 17.2 3.70 34.7 [33.5,36.9]

G′ 2040-2069 18.5 3.54 33.4 [32.4,35.2]

G′ 2070-2099 19.6 4.03 36.8 [35.7,38.7]

(b) BC-LS

O′
b 1970-1999 15.9 3.01 29.9 [28.5,32.3]

O′
b 2010-2039 17.4 3.33 33.1 [32.0,35.1]

O′
b 2040-2069 18.5 3.18 32.0 [31.0,33.6]

O′
b 2070-2099 19.6 3.63 35.0 [34.0,36.7]

(c) BC-LSB

O′
b 1970-1999 15.9 3.01 27.0 [26.2,28.6]

O′
b 2010-2039 17.4 3.08 28.9 [28.3,30.0]

O′
b 2040-2069 18.4 2.84 28.3 [27.8,29.2]

O′
b 2070-2099 19.3 3.06 30.0 [29.5,30.9]

(d) CF-LS

O′
c 2010-2039 17.6 3.33 27.9 [27.5,28.5]

O′
c 2040-2069 18.8 3.18 28.7 [28.3,29.3]

O′
c 2070-2099 20.0 3.63 31.3 [30.9,32.0]

Table 5.2: Sample mean, standard deviation (s.d.) and estimated 10-summer return level

(from GP distribution fit) of summer temperatures for London (a) with no calibration and

(b), (c) and (d) calibrated using three different methods. The numbers in square brackets

show the 90% confidence intervals of 10-summer return level, which are estimated by the

delta method as described in Chapter 4 in Coles (2001).
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more suitable to apply bias correction in location and scale on transformed temperatures

because the Box-Cox transformation caters for the different shapes between O and G to

a certain extent. Therefore, among the three bias correction methods, only the results

obtained by BC-LSB are considered to be appropriate.

If no calibration is applied, the 10-summer return level projected by HadRM3 will be

36.8 ◦C in the period 2070 to 2099, an increase of 11.5 ◦C relative toO in the period 1970 to

1999 (Table 5.2). The corresponding projected increase in the mean summer temperature

between the two periods is only 3.7 ◦C. After applying BC-LSB, however, the 10-summer

level in 2070 to 2099 is 30.0 ◦C, which is only a 4.7 ◦C higher than that of O. Such a

large discrepancy has important implications on heat-related mortality projections. For

example, using mortality model TS developed for London in Chapter 4, if the daily mean

temperature was 36.8 ◦C on a day in mid-summer 2003, the predicted number of elderly

deaths would be 481 (95% confidence interval: [359,602]). In contrast, if the daily mean

temperature was 30.0 ◦C, the predicted number of deaths would be 247 (95% confidence

interval: [217,278]), which is almost 50% lower.

For the change factor approach, the difference between the estimated extreme return

levels of temperatures calibrated by the twomethods (CF-L and CF-LS) is around 1 to 2 ◦C

[compare Figs 5.5(d) and (e)]. Since the transfer function of the change factor approach

is identity for no change in time, the reliability of the two methods cannot be compared

by applying them on G as has been done for the bias correction approach. In this case,

the quantile difference plots [Figs 5.4(b) and (c)] are useful diagnostics as they can be

used to assess the validity of the assumptions. On these plots, the location and scale-

adjusted quantile difference is slightly closer to zero than the location-adjusted quantile

difference for most values of p, therefore the assumptions of CF-LS (5.11) are considered

more plausible.

The 10-summer level of temperatures calibrated by CF-LS is 31.3 ◦C in 2070 to 2099

[Table 5.2(d)], 6.0 ◦C higher than that ofO. Comparing the results of BC-LSB and CF-LS

methods in Table 5.2(c) and (d), the differences in the estimated 10-summer levels for the

three future periods range from 0.4 to 1.3 ◦C. These are not significant considering the

sampling uncertainties indicated by the 90% confidence intervals.
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5.4.3 Extreme temperatures for ensemble members

Temperature projections from each of the other 10 members of the PPE are calibrated in-

dividually in the same way as the standard member. Quantile-quantile plots and quantile

difference plots involving these members are not shown here for conciseness. However,

as the boxplot ofO andG for all PPEmembers [Fig. 3.6(a)] shows, the simulated tempera-

tures of all PPEmembers have heavier tails at high temperatures compared to observations.

These differences cannot be reasonably explained by the differences in the location and

scale between O and G. As such, BC-LSB is preferred among the three bias correction

methods. Meanwhile, the changes in the distribution of projected temperatures for all PPE

members of HadRM3with time mainly involve changes in location and scale (not shown).

The assumptions of the CF-LS method are therefore satisfied.
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25
30

35
40

●

●

●

●

1970−1999
2010−2039
2040−2069
2070−2099

Figure 5.6: Estimates of 10-summer return level of uncalibrated HadRM3 temperature

projections (G andG′), projections calibrated by BC-LSB (Ô′
b) and projections calibrated

by CF-LS (Ô′
c) in London for each member of PPE. The symbols in each box represent the

mean of the return level estimates of the PPEmembers for each 30-year period as labelled.

The black horizontal lines within each box show the return level estimates of each PPE

member, with the estimate for the standard run shown in red. The blue solid line represents

the 10-summer return level estimates forO in 1970 to 1999, and the dashed lines represent

its 90% confidence interval.

The estimated 10-summer return levels of calibrated temperatures using BC-LSB and
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CF-LS for the PPE members are shown in Fig. 5.6. The 10-summer levels of uncalibrated

temperatures (G for present-day and G′ for the three future periods) are also shown. The

length of each box shows the spread of 10-summer level estimates among the 11 PPE

members in the specified 30-year period, while estimates of individual PPE members are

marked by horizontal lines within each box. The mean of the 11 estimates (‘ensemble

mean’) are shown by different symbols for each period. The ensemble mean bias in the

10-summer level of G is about 6 ◦C compared to O. After being calibrated by BC-LSB,

this bias is reduced to about 1 ◦C. For the future, the ensemble mean 10-summer level of

Ô′
b using BC-LSB in the period 2070 to 2099 is 3.7 ◦C higher relative to O. However, the

estimates of increase among the PPE members range from 0.8 to 7.9 ◦C. This reflects that

there are considerable uncertainties, which arise from the uncertainty in climate model

parameters, in the projections of future changes in extreme temperatures calibrated using

this technique. In contrast, the ensemble spread for the 10-summer level of Ô′
c using

CF-LS is smaller. For the period 2070 to 2099, this ranges from 5.1 to 8.2 ◦C (with an

ensemble mean of 6.7 ◦C) higher than the 10-summer level of O. This spread is smaller

than the spread of G′ for the same period. It appears that the climate model uncertainty in

extreme temperature projections can be reduced by applying the change factor calibration

approach.

5.5 Calibration results for Budapest

We now consider the calibration of HadRM3 temperatures for Budapest. This is of interest

not only because Budapest is the other focus city of this thesis, but also because in terms

of the distributional properties, the nature of HadRM3 temperature biases is different be-

tween Budapest and London.

5.5.1 Comparison of temperature distributions

The quantile-quantile plot of G against O for Budapest [Fig. 5.7(a)] follows roughly a

straight line which is steeper than the line of equal values. This suggests that the variance
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(scale) of the distribution of G is larger than that of O, and thus explains the increas-

ing quantile difference with p [Fig. 5.7(b)] which is more than 7 ◦C at high temperatures

[Fig. 5.7(c)]. The location and scale-adjusted quantile difference is less than 0.5 ◦C for all

p except at the low temperature extreme. The bias in the distribution of G can therefore

be well explained by biases in both location and scale.
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Ô
p 

(°
C

)

(b)

0 1 2 3 4

−
2

0
2

4
6

8

Return period = 1 (1 − p) (summers)

Q
ua

nt
ile

 d
iff

er
en

ce
 Ĝ
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Figure 5.7: As in Fig. 5.3 but for Budapest.

As for the distributions of G′ (for the time-slice 2040 to 2069) and G for Budapest,

the quantile-quantile plot in Fig. 5.8(a) does not indicate differences between their shapes.

From Figs 5.8(b) and (c), the warming of modelled temperatures between the two periods

is about 3 to 4 ◦C. Similar to London, the location-adjusted quantile difference is reason-

ably close to zero for all p, suggesting that the two distributions are mainly different in

location. However, as the location and scale-adjusted quantile difference is even closer to

zero, G and G′ may have a small difference in their scale.
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Figure 5.8: As in Fig. 5.4 but for Budapest.

5.5.2 Extreme temperatures for standard HadRM3 simulation

The simulated temperatures of HadRM3 have warm biases of about 8 ◦C at the extreme

compared to observations [Fig. 5.9(f)]. Such biases are removed after correcting the biases

in both the location and scale of G using BC-LS [Fig. 5.9(b)]. In addition, comparing the

blue and red lines in Fig. 5.7(a), which show the mapping of G′ values onto O′ values for

the calibrationwithout (BC-LS) andwith Box-Cox transformation (BC-LSB) respectively,

the former is slightly closer to the relationship between the sample quantiles of O and G.

These two pieces of evidence suggest that the use of BC-LSB is not necessary in this case.

As in the case of London, calibration using bias correction considerably lowers the

future projected changes in extreme temperatures by HadRM3. From Table 5.3, the model

projected (G′) 10-summer level in the period 2070 to 2099 is 14.0 ◦C higher compared to

the observed (O) 10-summer level in the period 1970 to 1999. In contrast, the 10-summer
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Figure 5.9: As in Fig. 5.5 but for Budapest.

level of bias-corrected temperatures Ô′
b using BC-LS in the 2070 to 2099 period is only

5.0 ◦C higher than that of O.

The two change factor methods give similar results for future changes in extreme tem-
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Variable Time period Mean (◦C) s.d. (◦C) 10-summer level (◦C)

(a) No calibration

O 1970-1999 19.8 3.52 28.9 [28.6,29.3]

G 1970-1999 22.3 5.45 36.7 [36.2,37.4]

G′ 2010-2039 24.4 5.81 39.9 [39.5,40.9]

G′ 2040-2069 26.1 5.80 40.6 [40.1,41.2]

G′ 2070-2099 28.0 6.30 42.9 [42.5,43.6]

(b) BC-LS

O′
b 1970-1999 19.8 3.52 29.0 [28.7,29.4]

O′
b 2010-2039 21.2 3.75 31.2 [30.9,31.7]

O′
b 2040-2069 22.3 3.75 31.6 [31.3,32.0]

O′
b 2070-2099 23.4 4.07 33.1 [32.8,33.5]

(c) BC-LSB

O′
b 1970-1999 19.8 3.52 28.1 [27.9,28.5]

O′
b 2010-2039 21.1 3.59 29.8 [29.5,30.2]

O′
b 2040-2069 22.1 3.47 30.1 [29.9,30.3]

O′
b 2070-2099 23.2 3.68 31.2 [31.0,31.5]

(d) CF-LS

O′
c 2010-2039 21.7 3.75 31.4 [31.1,31.8]

O′
c 2040-2069 23.4 3.75 33.1 [32.5,33.5]

O′
c 2070-2099 25.0 4.07 35.5 [35.2,36.0]

Table 5.3: Same as Table 5.2 but for Budapest.

peratures [Figs 5.9(d) and (e)]. Comparing the location-adjusted quantile difference and

location and scale-quantile difference in Fig. 5.8(b), the latter is closer to zero for most

values of p. Therefore, the CF-LS method is preferred.

From Table 5.3, the mean of calibrated temperatures using CF-LS (Ô′
c) are 0.5 to 1.6 ◦C

higher than that using BC-LS (Ô′
b). These are consistent with the estimated difference

between E(O′
b) and E(O′

c) using (5.14) (calculations not shown). In addition, the standard
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deviation of Ô′
b and Ô′

c are the same, which is another result expected from (5.15). The

difference between the mean of Ô′
b and Ô′

c can, at least partly, explain the 0.2 to 2.4 ◦C

difference in their 10-summer return levels.

5.5.3 Extreme temperatures for ensemble members

For the other 10 members of the PPE, there is little difference between the shapes of O

and G and between the shapes of G and G′ (not shown). BC-LS and CF-LS are therefore

the most suitable methods under each calibration approach. All members of the PPE have

large warm biases in the present-day simulations of 10-summer return levels, ranging from

7.7 ◦C to 11.3 ◦C (Fig. 5.10). These are well corrected by the BC-LS method, with the

magnitudes of biases of Ô′
b for the present-day being less than 2 ◦C for all PPE members.

Compared to London, the ensemble spread in projected future warming in the extremes

calibrated by the bias correction approach is slightly smaller. The 10-summer level of Ô′
b

in the period 2070 to 2099 is 1.0 to 6.0 ◦C (ensemble mean: 3.6 ◦C) higher than O in the

present-day. The corresponding estimates using the CF-LS are generally higher, ranging

from 4.6 to 8.3 ◦C (ensemble mean: 6.3 ◦C).
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30
35

40
45

●

●

●

●

1970−1999
2010−2039
2040−2069
2070−2099

Figure 5.10: Similar to Fig. 5.6 but for Budapest. Here the estimated 10-summer levels

of uncalibrated HadRM3 temperature projections (G and G′), projections calibrated by

BC-LS (Ô′
b) and projections calibrated by CF-LS (Ô′

c) are shown.
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5.6 Spatially extended calibration over Europe

In this section, we consider the temperature calibration for the whole HadRM3 domain

over Europe. Although the results to be presented in this section are not used to project

mortalities for London and Budapest in Chapter 6, these are included in this thesis for

two reasons. First, as mentioned in Section 1.2, such results can give an indication of

how the risks of heat-related mortality will change over Europe. Second, as we will see

later, the results further demonstrate the importance of the choice of calibration approach

in mortality projections.

5.6.1 Comparison of present-day observed and simulated tempera-

tures

We first compare the spatial maps of three summary statistics for location, scale and shape

of O and G. Figures 5.11(a) and (b) show the sample mean of O and G respectively.

The main spatial patterns of observed mean temperatures are generally well simulated by

HadRM3, including the north-south gradient and the lower temperatures over elevated

terrain (e.g. the Alps). However, the RCM has a warm bias of around 2 to 4 ◦C over Italy

and southern Europe, and has a small cold bias over parts of Scandinavia [Fig. 5.11(c)].

The variance of the two distributions are compared by the standard deviation [Figs 5.11(d)

and (e)]. HadRM3 overestimates the present-day variance over most parts of continental

Europe, especially in the south where the standard deviation ofG is more than 50% greater

than that ofO [Fig. 5.11(f)]. The shapes ofO andG are compared by their sample moment

skewness [Figs 5.11(g) and (h)]. The observed temperatures are positively skewed (longer

tail at the high temperature end) over northern France, the Netherlands and Germany, but

are negatively skewed (shorter tail at the high temperature end) in Spain, Italy and over

eastern Europe [Fig. 5.11(g)]. The map of sample skewness of modelled temperatures

[Fig. 5.11(h)] shows the same general spatial patterns, except for the negative skewness

over eastern Europe. However, the modelled temperatures are more positively skewed

compared to observations in England and near the northern coast of France and Spain
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(a) Mean O
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−9 −7 −5 −3 −1 1 3 5 7 9 11 21

(d) s.d. O
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(e) s.d. G

1 2 3 4 5 6 7 8

(f): (e)/(d)
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(g) Moment skewness O
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(h) Moment skewness G
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(i): (h) − (g)
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Figure 5.11: Maps showing the following sample estimates of O and G for the present-

day: (a) and (b) mean (in ◦C); (d) and (e) standard deviation (in ◦C); (g) and (h) moment

skewness. The difference in the sample mean [(b) − (a); in ◦C], the ratio of standard

deviation (e)/(d) and the difference in moment skewness [(h) − (g)] are shown in panels

(c), (f) and (i) respectively. On these and the other maps in this chapter, the (spatial)

locations of London and Budapest are marked by ‘+’ for reference.
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[Fig. 5.11(i)].

The magnitude of bias ofG for the present-day increases towards the hot extreme. This

can be seen by comparing the maps showing the extreme quantile differences [Figs 5.12(a)

and (b)] with the map showing the bias in the sample mean [Fig. 5.11(c)]. The warm bias

for the 0.99 quantile (corresponding to a return period of approximately 1 summer) is

greater than 5 ◦C over many parts of continental Europe, and the bias for the 10-summer

return level [Fig. 5.12(e)] even exceeds 7 ◦C. A warm bias at the hot extreme also appears

over northern France and southern England.

(a) G0.95 − O0.95

−9 −7 −5 −3 −1 1 3 5 7 9 11 21

(b) G0.99 − O0.99

−9 −7 −5 −3 −1 1 3 5 7 9 11 21

(c) 10−summer level O

−2 18 22 26 30 34 38 48

(d) 10−summer level G

−2 18 22 26 30 34 38 48

(e): (d) − (c)

−9 −7 −5 −3 −1 1 3 5 7 9 11 21

Figure 5.12: Maps comparing extreme G and O. (a) and (b): differences in sample 0.95

and 0.99 quantile respectively between G and O (in ◦C). The 10-summer return level (in
◦C) estimated by GP distribution fits for O and G are shown in (c) and (d) respectively.

Their difference [(d)− (c) in ◦C] is shown in (e).

After adjusting the difference in location betweenG andO, the 0.99 quantile difference

is still generally greater than 3 ◦C over central Europe [Fig. 5.13(a)], while the location and

scale-adjusted quantile difference is less than 1 ◦C [Fig. 5.13(b)]. A similar pattern is also
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observed for the location and scale-adjusted 0.95 quantile difference (not shown). These

suggest that in this region, the biases in the extreme can be explained by the model biases

in both the location and scale of the temperature distributions. However, the location

and scale-adjusted 0.99 quantile difference remains greater than 1 ◦C in northern France,

southern England and the northeastern part of Europe. These are the regions where G

is more positively skewed compared to O as discussed earlier. The model biases at the

extreme for these regions are therefore likely to be related to differences between the

shapes of the G and O distributions.

(a) Location−adjusted G0.99 − O0.99

−9 −7 −5 −3 −1 1 3 5 7 9 11 21

(b) Location and scale−adjusted G0.99 − O0.99

−9 −7 −5 −3 −1 1 3 5 7 9 11 21

Figure 5.13: (a) Location-adjusted (5.16) and (b) location and scale-adjusted 0.99 quantile

difference (5.17) (in ◦C) between G and O.

5.6.2 Causes of HadRM3 biases for extreme temperatures

The causes of the model biases in simulating present-day temperatures are explored by

considering the present-day simulations of HadRM3 forced by ERA-40 re-analysis at the

boundaries (T a; see Section 3.4.1). The sample mean, standard deviation, 0.99 quan-

tile and moment skewness of T a and O are compared in Fig. 5.14. The spatial patterns

shown on these maps are generally consistent with the comparison of these sample statis-

tics between G and O in Figs 5.11(c), (f), (i) and 5.12(b). HadRM3 driven by ERA-40

re-analysis overestimates the mean and standard deviation of temperatures over central

and southern Europe [Figs 5.14(a) and (b)]. The bias in the 0.99 quantile is greater in

magnitude compared to the mean [Fig. 5.14(c)]. However, the magnitudes of biases in
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these three statistics for this model run are generally smaller than that for HadRM3 forced

by HadCM3. Similar to G, the distribution of T a is more positively skewed compared to

that of O, especially in the northern coastal regions of Spain and France [Fig. 5.14(d)]. If

the boundary forcing provided by re-analysis data is assumed to be ‘perfect’, the above

results suggest that the HadRM3 biases in temperature simulations are related, at least

partly, to the RCM formulation.

(a): Mean of Ta − Mean of O

−9 −7 −5 −3 −1 1 3 5 7 9 11 21

(b): s.d. of Ta s.d. of O

0 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.3

(c): T0.99
a − O0.99

−9 −7 −5 −3 −1 1 3 5 7 9 11 21

(d): Skewness of Ta − Skewness of O

−1.6 −0.7 −0.3 0.1 0.5 0.9

Figure 5.14: (a) Difference in sample mean (in ◦C), (b) ratio of standard deviation, (c)

difference in sample 0.99 quantile (in ◦C) and (d) difference between moment skewness

between T a and O.

The problem of increasing model summer temperature biases at high temperatures has

been observed in other RCMs. Christensen et al. (2008) compared monthly mean tem-

peratures simulated from 13 different RCMs forced by ERA-40 re-analysis data with E-

OBS observed monthly mean temperatures. Model biases were found to increase non-

linearly with increasing observed temperatures for the majority of the RCMs. Such a

relationship was found to be described by a second-order polynomial fit. As part of the
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PRUDENCE project, Kjellström et al. (2007) compared summer (June to August) daily

maximum temperatures simulated by 10 RCMs forced by the same boundary conditions

with station observations. The biases at different temperature quantiles were examined. It

was also found that the magnitudes of warm biases increase with temperatures at the hot

extreme. Among the RCMs under consideration, the magnitude of bias was the greatest

in HadRM3H, which is a similar RCM to the one used in this thesis but with a horizon-

tal resolution of 50 km. Moberg and Jones (2004) found that large biases at the extreme

for summer temperatures in the Hadley Centre RCM were associated with excessive soil

drying in the model, especially over regions south of 45◦ N. Since drier soil limits evapora-

tive cooling, the modelled temperatures increase too rapidly. The problem is made worse

when a positive feedback of soil drying (refer to Section 2.2.2) develops in the model.

Anders and Rockel (2009) suggested that excessive soil drying over southeastern Europe

in RCMs is related to an inaccurate representation of soil type distribution in the model.

5.6.3 Comparison ofHadRM3 temperatures in different time periods

The future changes in mean temperatures projected by HadRM3 are shown in Fig. 5.15.

Relative to the simulated mean temperatures for the present-day G, the increase in mean

temperatures is rather uniform over the model domain. Mean temperatures are projected

to increase by about 2 ◦C in most parts of Europe in the period 2010 to 2039 [Fig. 5.15(d)].

Towards the end of the century, the increase in mean temperatures is projected to be

larger in southern and eastern Europe (about 6 ◦C) and smaller elsewhere (about 4 ◦C)

[Fig. 5.15(f)].

There is a small increase in the projected temperature variance for the future. For the

first two future 30-year periods, the change in standard deviation of G′ relative to G is

less than 10% over most parts of Europe [Figs 5.16(d) and (e)]. By the period 2070 to

2099, the standard deviation of G′ is around 20% greater than that of G generally over

continental Europe and over the UK [Fig. 5.16(f)].

The comparison of sample moment skewness ofG′ with that ofG is shown in Fig. 5.17.

Unlike the changes in mean and variance which are rather spatially uniform, the distribu-
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(a) Mean G′ (2010−39)
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(b) Mean G′ (2040−69)
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(c) Mean G′ (2070−99)
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(d): Mean G′ (2010−39) − Mean G
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(e): Mean G′ (2040−69) − Mean G
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(f): Mean G′ (2070−99) − Mean G
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Figure 5.15: The sample mean of G′ in the periods (a) 2010 to 2039, (b) 2040 to 2069

and (c) 2070 to 2099 (in ◦C). The differences between the sample mean ofG′ for the three

periods and that of G (in ◦C) are shown in panels (d) through (f).

tion of HadRM3 temperatures is projected to become more positively skewed only in the

northern part of Europe in the future. This is particularly the case over southern parts of

Norway and Sweden, Denmark, the Netherlands, northern Germany, the UK and western

Russia. The effects of changing skewness are clearly demonstrated by the maps showing

the changes in the sample 0.99 quantile of HadRM3 temperatures (Fig. 5.18). The areas

with the greatest increase in the 0.99 quantile are where the temperature distribution is

projected to become more positively skewed. For example, by the period 2070 to 2099,

the 0.99 quantile of modelled temperatures is projected to increase by about 8 ◦C (rela-

tive to G) in Germany [Fig. 5.18(c)], where the increase in the mean is only about 4 ◦C

[Fig. 5.15(f)]. Themap of location and scale-adjusted 0.99 quantile difference (not shown)

suggests that this larger increase in the 0.99 quantile in these regions cannot be explained

only by changes in location and scale of modelled temperature distributions.
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(b) s.d. G′ (2040−69)
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(e): s.d. G′ (2040−69) s.d. G
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(f): s.d. G′ (2070−99) s.d. G
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Figure 5.16: As in Fig. 5.15 but for standard deviation (in ◦C). Panels (d) to (f) show the

ratios of standard deviation between G′ and G.

(a): Skewness G′(2010−39) − Skewness G
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(b): Skewness G′(2040−69) − Skewness G
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(c): Skewness G′(2070−99) − Skewness G

−1.6 −0.7 −0.3 0.1 0.5 0.9

Figure 5.17: The differences between the sample moment skewness ofG′ for (a) 2010 to

2039, (b) 2040 to 2069 and (c) 2070 to 2099 and that of G.

5.6.4 Extreme temperatures calibrated by bias correction

The three bias correction methods, BC-L, BC-LS and BC-LSB, are used to calibrate

HadRM3 temperatures. Estimates of location and scale parameters of BC-L and BC-LS
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(a): G′0.99 (2010−39) − G0.99
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(b): G′0.99 (2040−69) − G0.99
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(c): G′0.99 (2070−99) − G0.99
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Figure 5.18: As in Fig. 5.17 but for differences in sample 0.99 quantile (in ◦C).
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Figure 5.19: Maximum likelihood estimates of Box-Cox power transformation parame-

ters λO and λG.

are the sample mean and standard deviation of O and G, which have already been shown

in Section 5.6.1. The maximum likelihood estimates of power transformation parame-

ters λO and λG for the BC-LSB method are shown in Figs 5.19(a) and (b) respectively.

The spatial patterns shown on these maps associate closely with the maps showing the

sample moment skewness of O and G [Figs 5.11(g) and (h)]. Areas with estimates of

λ < 1 correspond to positive skewness, while areas with estimates of λ > 1 correspond

to negative skewness. This is an expected result because as discussed in Section 5.2.2, to

make a distribution to become more symmetric, values of λ < 1 are required for a pos-

itively skewed distribution, while values of λ > 1 are required for a negatively skewed

distribution. These transformations allow the biases in the shape of G to be corrected.

As in Sections 5.4 and 5.5, the results to be presented here focus on the 10-summer
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temperature return levels. Maps of extreme return levels for other return periods, say 5

years and 20 years, have similar spatial patterns. The biases in the 10-summer level of

present-day HadRM3 temperatures calibrated by different bias correction methods (Ô′
b)

are shown in Fig. 5.20. Compared to the bias in the 10-summer level of uncalibrated

temperatures in Fig. 5.12(e), BC-L can only reduce the warm bias slightly, with more than

5 ◦C of warm bias remaining over parts of central Europe, France and southeastern UK

[Fig. 5.20(a)]. The use of BC-LS gives some improvement as the bias in the 10-summer

level over central Europe is reduced to less than 1 ◦C [Fig. 5.20(b)]. However, a warm bias

of about 4 ◦C still exists over southeastern UK and the northern coast of France and Spain.

These are the regions where the distribution of G is more positively skewed compared to

O [Fig. 5.11(i)]. Meanwhile, BC-LS appears to have over-corrected the bias over parts

of Italy and southern Europe, where Ô′
b has a negative bias of around 2 ◦C. In terms of

the bias of Ô′
b for the present-day, BC-LSB gives the best results. After this method is

applied, the bias near the northern coast of France and Spain is reduced to less than 1 ◦C,

and the warm bias in southeastern UK is reduced to about 2 ◦C. These results suggest that

BC-LSB is able to correct the difference in shapes between the distributions of O and G.

Since large biases remain after calibrating present-day HadRM3 temperatures using the

BC-L method, only the maps for future temperatures calibrated by the other two methods

(BC-LS and BC-LSB) are presented below.

(a) 10−summer level Ob′ (BC−L; 1970−99) − O

−9 −7 −5 −3 −1 1 3 5 7 9 11 21

(b) 10−summer level Ob′ (BC−LS; 1970−99) − O

−9 −7 −5 −3 −1 1 3 5 7 9 11 21

(c) 10−summer level Ob′ (BC−LSB; 1970−99) − O

−9 −7 −5 −3 −1 1 3 5 7 9 11 21

Figure 5.20: The difference (in ◦C) between the estimated 10-summer level of O′
b cal-

ibrated by (a) BC-L, (b) BC-LS and (c) BC-LSB for the present-day and the estimated

10-summer level of O.
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(a) 10−summer level G′ (2010−39) − O
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(b) 10−summer level G′ (2040−69) − O
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(c) 10−summer level G′ (2070−99) − O
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Figure 5.21: The difference between the estimated 10-summer level of uncalibrated tem-

peraturesG′ for (a) 2010 to 2039; (b) 2040 to 2069 and (c) 2070 to 2099 and the estimated

10-summer level of O.

Figure 5.21 shows the future changes in 10-summer temperature return levels, if no

calibration is performed. The largest increase in the 10-summer level occurs in France and

central Europe. For example, in the period 2040 to 2069, the 10-summer level in these

regions is about 10 ◦C higher than the observed level at the present-day [Fig. 5.21(b)]. A

very different spatial pattern can be seen for temperatures calibrated by BC-LS shown in

Figs 5.22(a) to (c). The largest increase in 10-summer level (which is about 6 ◦C in the

period 2040 to 2069 compared to the present-day) occurs over northern Europe instead,

including southern Scandinavia, northern Germany, the UK andwestern Russia. These are

also the regions where the distribution of HadRM3 temperatures is projected to become

more positively skewed (Fig. 5.17). In contrast, the projected rise in 10-summer return

level over southern Europe is much reduced after the calibration.

Comparing Figs 5.22(a) to (c) and Figs 5.22(d) to (f), the main difference between the

results for BC-LSB and BC-LS is that BC-LSB further lowers the estimated increase in 10-

summer level over regions with a large difference in skewness between O and G, such as

the UK and northern France. In the UK for example, the 10-summer level for temperatures

in the period 2070 to 2099 calibrated by BC-LSB is about 4 to 6 ◦C higher than the present-

day observed level [Fig. 5.22(f)]. The corresponding increase for temperatures calibrated

by BC-LS is about 10 ◦C [Fig. 5.22(c)]. Nevertheless, after applying BC-LSB, the largest

increase in the 10-summer level still occurs over northern Europe.
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(a) 10−summer level Ob′ (BC−LS; 2010−39) − O
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(b) 10−summer level Ob′ (BC−LS; 2040−69) − O

−9 −7 −5 −3 −1 1 3 5 7 9 11 21

(c) 10−summer level Ob′ (BC−LS; 2070−99) − O
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(d) 10−summer level Ob′ (BC−LSB; 2010−39) − O
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(e) 10−summer level Ob′ (BC−LSB; 2040−69) − O
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(f) 10−summer level Ob′ (BC−LSB; 2070−99) − O
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(g) 10−summer level Oc′ (CF−LS; 2010−39) − O
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(h) 10−summer level Oc′ (CF−LS; 2040−69) − O
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(i) 10−summer level Oc′ (CF−LS; 2070−99) − O
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Figure 5.22: The difference (in ◦C) between the estimated 10-summer level of O′ cali-

brated by BC-LS (a to c), BC-LSB (d to f) and CF-LS (g to i) for three periods (2010 to

2039; 2040 to 2069 and 2070 to 2099) and the estimated 10-summer level of O.

5.6.5 Extreme temperatures calibrated by change factor

It has been shown in Section 5.6.3 that the variance ofG′ is slightly greater than that ofG

towards the end of the century, therefore the assumptions of CF-LS method are considered

to be more plausible than that of CF-L. The changes in 10-summer levels of temperatures

calibrated by CF-LS relative to the observed present-day level are shown in Figs 5.22(g)
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to (i), while the results for CF-L are omitted. Similar to the changes in model projected

mean temperatures [Figs 5.15(d) to (f)], the increase in 10-summer level is rather spatially

uniform, which is about 6 ◦C over continental Europe in the period 2070 to 2099. The

increases over Scandinavia and Scotland are slightly less than that in other places.

5.6.6 Uncertainties of calibrated extreme temperatures

So far we have validated the assumptions for different temperature calibration methods by

studying maps of sample statistics and calibrating the present-day model simulated tem-

peratures G (for the bias correction approach only). Based on this work, BC-LSB and

CF-LS are considered to be the most appropriate methods for calibrating HadRM3 tem-

peratures over Europe2. However, these two methods give substantially different results

on future changes in extreme temperatures, particularly the spatial patterns of projected

warming of high temperature return levels. For example, Fig. 5.23(a) shows the difference

between the 10-summer level calibrated by BC-LSB and that calibrated by CF-LS for the

period 2070 to 2099. The 10-summer level of Ô′
b is generally about 4 to 6 ◦C lower than

that of Ô′
c over southern Europe, but is about 2 to 4 ◦C higher over Scandinavia and parts of

UK and Germany. Such differences are possibly caused by a number of factors. First, the

sample mean of Ô′
b is about 2 ◦C lower than that of Ô′

c over southern Europe [Fig. 5.23(b)],

while there is little difference in their standard deviation [Fig. 5.23(c)]. Second, the 10-

summer level of present-day temperatures calibrated by BC-LSB has a negative bias of

about 2 ◦C compared to observations [Fig. 5.20(c)]. This might be carried over to future

calibrated temperatures. These two factors could explain the difference between the 10-

summer levels of Ô′
b and Ô′

c in southern Europe. As for the difference in the north, it is

likely to be related to the change in skewness of modelled temperatures in the future over

the region, as discussed in Section 5.6.3. Since the calibration by CF-LS does not incor-

porate changes in shapes between G and G′, the extremes of temperatures calibrated by

this method are lower than that using BC-LSB.
2There might be different conclusions for individual locations, depending on the properties of observed

and modelled temperature distributions. For example, in Section 5.5, BC-LS has been considered adequate

for calibrating temperatures in Budapest.
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(a) 10−summer level Ob′ (BC−LSB) − Oc′ (CF−LS)

−9 −7 −5 −3 −1 1 3 5 7 9 11 21

(b) Mean Ob′ (BC−LSB) − Mean Oc′ (CF−LS)

−9 −7 −5 −3 −1 1 3 5 7 9 11 21

(c) s.d. Ob′ (BC−LSB) s.d. Oc′ (CF−LS)

0 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.3

Figure 5.23: (a) Difference in the 10-summer level (in ◦C), (b) difference in the sample

mean (in ◦C) and (c) ratio of the standard deviation between Ô′
b calibrated by BC-LSB

and Ô′
c calibrated by CF-LS for the period 2070 to 2099.

As shown in Section 5.2.4, the mean ofO′
b and the mean ofO′

c could be different even if

the distributional assumptions for both calibration approaches are satisfied. It is therefore

not unreasonable to expect extreme temperatures calibrated by the two approaches to be

different. This calibration uncertainty is an additional source of uncertainty of climate

model projections.

Another source of uncertainty which has been considered in this chapter is the uncer-

tainty associated with physical parameters of the RCM (see Section 2.3.3). For London

and Budapest, this uncertainty has been assessed by considering the calibrated projections

from 11 PPE members of HadRM3. In order to compare the relative contribution of un-

certainty from the use of different PPE members with the uncertainty from the choice of

different calibration approaches, the estimated 10-summer levels of Ô′
c for the 11 PPE

members are plotted against the corresponding estimates for Ô′
b for the period 2070 to

2099 in Fig. 5.24. The vertical distance of each data point from the line of equal val-

ues (dashed line) represents the uncertainty of the choice of calibration method, while the

spread of data points on each axis represents the uncertainty of climate model parameters.

For London [Fig. 5.24(a)], the mean difference between the 10-summer temperature level

estimates for each PPE member using the two calibration approaches is about 3 ◦C, while

the ranges of estimates for BC-LSB and CF-LS are about 7 ◦C and 3 ◦C respectively. For

Budapest [Fig. 5.24(b)], the mean difference between the estimates using the two calibra-
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tion approaches is around 3 ◦C, and the ranges of estimates for BC-LS and CF-LS are about

4 ◦C and 5 ◦C respectively. These comparison suggest that calibration uncertainty and cli-

mate model parameter uncertainty are comparable. Their effects on mortality projections

will be examined in Chapter 6. Although temperature projections from the PPE for the

rest of Europe are outside the scope of this thesis, one should be aware of this uncertainty

of climate model parameters when interpreting the extreme calibrated temperatures from

different methods.
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Figure 5.24: Scatter plot of estimated 10-summer levels of 11 PPE members for (a) Ô′
c

(in ◦C) calibrated by CF-LS against Ô′
b (in ◦C) calibrated by BC-LSB in London and (b)

Ô′
c (in ◦C) calibrated by CF-LS against Ô′

b (in ◦C) calibrated by BC-LS in Budapest for

the period 2070 to 2099.

5.6.7 Limitations of calibration methods

We finally consider the limitations of the calibration methods adopted in this chapter. Pos-

sible future work to address these limitations will be discussed in Chapter 7. First, all the

methods discussed in this chapter are designed to calibrate the entire temperature distri-

bution. Changes in extreme temperatures are estimated after the calibration. While these

methods might be able to calibrate the discrepancies between the tails of modelled and ob-

served temperatures in some cases, there is still room for improvement. For example, even

though BC-LSB considerably reduces the bias ofG at the extreme compared to other bias
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correction methods, the mapping of modelled temperature values onto observed temper-

ature values by BC-LSB for London as shown by the red line in Fig. 5.3(a) still indicates

discrepancies between the calibration and the actual relationship for the sample quantiles

of O andG. It will be worth exploring alternative calibration techniques which specialize

on the extremes of the distributions.

Second, an important assumption in the bias correction approach is that through the use

of a constant transfer function, the bias of the model does not change with time. It is not

possible to validate this assumption.

Third, a ‘time-slice’ approach is adopted in this calibration exercise. The set of param-

eters for the calibration, such as sample mean and standard deviation, are calculated from

temperature samples in 30-year periods. We have assumed that the observed andmodelled

daily temperatures in each time-slice are independent and identically distributed. With the

presence of annual cycles and possible long-term trends in the location, scale and shape

of temperatures, the validity of this assumption can be questionable.

5.7 Summary

This chapter has considered two generic approaches to calibrate HadRM3 temperature pro-

jections. For each approach, a number of methods have been assessed. These are based on

assumed relationships of properties between the distributions of observed and modelled

temperatures. In particular, a novel method involving the Box-Cox transformation has

been used to correct the bias in the shape of the distribution of modelled temperatures.

This method has considerably reduced the bias in the present-day extreme temperatures in

London simulated by HadRM3. For the future, the two calibration approaches give sub-

stantially different estimates of extreme temperatures at certain locations, but they are sig-

nificantly lower than the estimates projected by HadRM3without calibration. For London

and Budapest, temperature projections from the perturbed physics ensemble of HadRM3

have been calibrated. The spread of extreme calibrated temperatures among the ensemble

members is comparable to the difference of extreme temperatures calibrated by the two

approaches.
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Chapter 6

Extreme heat-related mortality

projections

6.1 Aim

This chapter presents the projection of extreme heat-related mortalities in London and

Budapest using the mortality models developed in Chapter 4, driven by the calibrated

HadRM3 projected temperatures presented in Chapter 5. The uncertainties of mortality

projections are assessed by considering the sensitivity of projections to the choice of mor-

tality model, the different temperature projections from HadRM3 ensemble members and

the choice of temperature calibration methods.

6.2 Projection methodologies

This section describes how the data and results from previous chapters are used to project

future heat-related mortalities in London and Budapest. We first revisit the systematic

components of the two statistical models developed separately for the two locations in

Chapter 4:

Model TO: logµi = logPi + f1(ri) + f5(T
o
i );

Model PTO: logµi = logPi + f1(ri) + β3T
o
i + β4(T

o
i )

2,
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where µi is the mean elderly mortality rate, Pi is the daily elderly population estimate,

ri represents time, and T o
i are daily mean temperatures (refer to Section 4.4 for details).

In both models, the first offset term on the right hand side represents changes in elderly

population, while the second term captures the variation in daily elderly mortality not

related to temperatures, including its annual cycles and long-term trend. The dependence

of daily elderly number of deaths on gridded daily mean air temperature is represented by

the third term on the right hand side of model TO as a non-parametric smooth function,

and by the third and fourth terms on the right hand side of model PTO as a second order

polynomial. With estimated f1, f5, β3, β4, future population and calibrated temperature

projections from HadRM3, future summer daily elderly mortalities for these two cities

can be estimated. As in the calibration of future RCM temperature projections in Chapter

5, daily elderly number of deaths are projected for three 30-year periods: 2010 to 2039,

2040 to 2069 and 2070 to 2099. The extreme elderly mortalities for each period are then

assessed.

6.2.1 Assumptions on population and mortality annual cycles

As noted in Section 4.4, the mortality models in this thesis are specified in a different way

compared to the models in previous mortality projections reviewed in Section 2.5. The

response of the models in previous studies is typically the daily excess (elderly) mortality.

This is calculated by subtracting the baselinemortality from the observedmortality counts,

such that the variations in population and non-temperature related mortality are removed

prior to model fitting (refer to Section 4.2.4 for details). On the other hand, the response

of models TO and PTO is the total elderly mortality counts. Two explanatory variables,

elderly population estimates (Pi) and time (ri), are used in the models to represent baseline

variations. This different specification gives projections in the unit of number of deaths

per day which are easier to be interpreted.

In themortality projections to be presented in Section 6.3, elderly population is assumed

to be unchanged from the estimates on 15th July 2003 for London and on 15th July 2001 for

Budapest, i.e. mid-summer in the last year of the observed mortality time series for each
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location. These projections then reflect the impacts of climate change on changes in future

mortalities. The additional effects of demographic changes on mortalities are assessed as

part of the sensitivity analyses to be described in Section 6.2.2. In addition, the mortality

annual cycles in the future are assumed to be identical to that in 2003 for London and in

2001 for Budapest. For example, let T̂ o′

j,k be the calibrated temperature for London on day

j in the future which is also the kth day in the summer of that year. The corresponding

number of elderly deaths by model TO µ̂j,k is calculated using

µ̂j,k = exp[logP3848 + f̂1(r3785+k) + f̂5(T̂
o′

j,k)],

whereP3848 is the interpolated elderly population size in London on 15th July 2003, r3785+k

is the time in years from the start date of the observed mortality time series (1st January

1993)1, and f̂1 and f̂5 are the estimated smooth functions of model TO for London.

6.2.2 Sensitivity analyses

Uncertainties in mortality projections arise from uncertainties in climate projections, un-

certainties inmodelling present-day dailymortalities and uncertainties in the future changes

of population characteristics. These are shown schematically in Fig. 6.1. Below briefly

discusses each of these sources of uncertainties and describes how the sensitivity of mor-

tality projections to these uncertainties is assessed.

115th July 2003 is on the 3848th day of the London population time series, and the start date of 2003

summer (15th May) is on the 3786th day of this series. Refer also to Section 4.4.
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(a) Climate projections uncertainty

As discussed in Section 2.3.3, uncertainties in future emissions of greenhouse gases (sce-

nario uncertainty), representation of the climate system using climate models (climate

model uncertainty) and natural climate variability contribute to the overall uncertainties

in climate projections. Since the HadRM3 simulations used in this thesis are driven by

a single emission scenario (SRES A1B; refer to Section 3.4), the effects of scenario un-

certainty on mortality projections are not considered here. For climate model uncertainty,

the 11-member PPE of HadRM3 is used to evaluate the uncertainty related to the choice

of RCM parameters (parameter uncertainty). This is done by first projecting future mor-

talities based on calibrated temperature projections from each PPE member. The range of

extreme mortalities projected for the 11 members then represents the impacts of parameter

uncertainty on extreme mortality projections. As for the uncertainty arising from natural

climate variability, this is not considered in this sensitivity analysis as the PPE of HadRM3

is not designed to systematically sample this uncertainty.

In addition, the results from Chapter 5 suggest that the choice of RCM temperature cal-

ibration method contributes a further source of uncertainty to the projections of extreme

temperatures. In order to study the impact of this uncertainty on mortality projections,

extreme mortalities projected using bias-corrected HadRM3 temperatures (BC-LSB for

London; BC-LS for Budapest) are compared with projections using temperatures cali-

brated by the change factor approach (CF-LS for both locations).

(b) Mortality modelling uncertainty

The second category of uncertainty is related to the predictions and specification of the

mortality model. The uncertainty in model predictions associated with model parameters

can be estimated by constructing confidence intervals of the predicted mean response,

as discussed in Section 4.3.1. As for model specification, there are uncertainties in the

choices of covariates and functional dependence of mortality on the covariates (see Sec-

tion 4.2). Specifically for the mortality models in this thesis, there are uncertainties in the

choice of the degree of smoothing in the non-parametric function representing the mortal-

ity annual cycles, i.e. f1 in models TO and PTO (see Section 4.4), and how the relationship

between daily mortality and temperature is modelled. It has been shown in Section 4.5.3
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that modelling the mortality-temperature relationship with a non-parametric smooth func-

tion (model TO) and modelling such a relationship with a second order polynomial (model

PTO) give different predictions for the upper tail of the mortality distribution for London.

The sensitivity of extrememortality projections to this particular specification of mortality

model is assessed.

(c) Population uncertainty

A further category of uncertainty is related to future changes in population (demographic

change uncertainty) and its response to extreme heat (adaptation uncertainty). The future

number of heat-related deaths will obviously depend on the size of the susceptible group of

population, in this case the number of elderly people. With an ageing population generally

over Europe (Chapter 1 in Eurostat, 2008), this is a particularly important factor to con-

sider. Gosling et al. (2009a) suggests the possible use of SRES global population growth

scenario (Nakićenović and Swart, 2000) to evaluate the impacts of demographic changes

on future heat-related mortalities. This is not considered here because these global projec-

tions cannot reflect any regional population changes, for example regional differences in

fertility and mortality rates and migration. Instead, this thesis uses the annual elderly pop-

ulation projection data for London and Budapest up to the year 2031 described in Section

3.2.2. Despite covering a relatively short period of time, these projections have incor-

porated the above-mentioned regional changes and are therefore considered to be more

precise. For this sensitivity analysis, the projected daily elderly population from 2010 to

2030 are obtained by linearly interpolating the annual elderly population projections. Mor-

talities are projected for this 21-year period with the daily elderly population projections

as Pi in the mortality model. These are then compared with the projections which keep Pi

at the mid-2003 level (as described in Section 6.2.1). However, it should be noted that,

being projections based on current demographic trends, the population projections used

here are themselves subject to uncertainties. This is especially the case for Budapest where

the population projection is derived from projections for a larger geographical region (see

Appendix A).

Adaptation uncertainty refers to uncertainties in how the population and the society

will acclimatize to future climates in the long-term, as discussed in Section 2.4.3. Carson

140



et al. (2006) estimated the relationships between weekly number of deaths and tempera-

tures in London for four 11-year periods from 1900 to 1996. The mortality-temperature

gradient for heat-related deaths was found to decrease over the century. This gives some

empirical evidence of changing mortality-temperature relationship over time in the past.

If the population and the society are able to adapt to warmer temperatures in the future,

the modelled mortality-temperature relationship based on present observations may over-

estimate future heat-related mortalities. However, adaptation is difficult to be modelled

because this depends not only on human physiology, but also on other factors such as the

changes in the provision of medical care services and the wealth of the society (Ebi, 2008;

McGregor et al., 2007).

As discussed in Section 2.5, two different approaches have been adopted by previ-

ous mortality projections to assess the effects of adaptation. One of them is the ‘analogue

city’ approach adopted by Kalkstein and Greene (1997). This approach projects the future

heat-related mortality at one city using the present-day mortality-temperature relationship

of an analogue city. Since the future climate of the analogue city is similar to the present

climate of the city of interest, it is assumed that the mortality-temperature relationship in

the city of interest will change to the present-day observed relationship for the analogue

city. Another approach, adopted by Dessai (2002, 2003) and Gosling et al. (2007, 2009b),

considers simple adjustments to the modelled present-day mortality-temperature function.

The mortality-temperature function is assumed to translate with time to represent adapta-

tion. Consider our model TO as an example, if the daily mean temperature on a future day

is T o′
i , the estimated number of deaths will be

µ̂i = exp
[
f̂5

(
T̂ o′

i − c(ri)
)
+ other non-temperature related terms

]
,

where c depends on time ri. This is shown schematically in Fig. 6.2. If a day with ex-

tremely high temperature at the present repeats in the future, fewer number of deaths will

be projected compared to the expected number at the present. The choice of c was arbi-

trary. Dessai (2003) assumed a 1 ◦C translation for every 30 years, while Gosling et al.

(2009b) examined the sensitivity of mortality projections in the period 2070 to 2099 to
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translations of 2 ◦C and 4 ◦C relative to the late 20th century2. As noted by Gosling

et al. (2009b), there is no evidence suggesting how the mortality-temperature function

will change in the long-term. It is also uncertain whether a simple translation of this

function is a reasonable assumption. Therefore, rather than making crude assumptions

regarding adaptation, the effects of this uncertainty are not assessed in this thesis. All the

mortality projections to be presented in this chapter are adaptation independent, i.e. the

mortality-temperature function is assumed to be stationary.

Daily temperature
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Figure 6.2: Schematic representation of possible future changes in the summer mortality-

temperature relationship under a warming situation. The relationships for the present-day

and a certain time in the future are shown by thick solid and dashed curves respectively.

The hatched box indicates the increase in number of heat-related deaths. Adapted from

Fig. 2 of McMichael et al. (2006).

The four sensitivity analyses to be carried out in this thesis are shown in the bottom

row of Fig. 6.1. In order to make a more systematic comparison, Section 6.3 first presents

the results for the mortality projections using

• mortality model TO;

• temperatures projected by the standard run of HadRM3 which are calibrated using the

bias correction approach (BC-LSB for London; BC-LS for Budapest) and

• constant elderly population from mid-summer 2003.
2Gosling et al. (2007) assessed mortality projections for 6 different cities. The mortality and temperature

data which are used to fit the mortality models cover different time periods in the late 20th century.
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Then in Section 6.4, these results are comparedwithmortality projections using alternative

choices of mortality model, temperature calibration approach, HadRM3 PPE projections

and population projection data. Two important points regarding these sensitivity analyses

need to be noted. First, these analyses do not constitute a complete assessment of uncer-

tainties in mortalities because some sources of uncertainties are explicitly excluded, such

as scenario uncertainty and adaptation uncertainty. Even for climate model uncertainty

which is considered in these analyses, the HadRM3 PPE can only represent the uncer-

tainty in the RCM parameters, but not uncertainties in the structural choices of the model

(see Section 2.3.4). Second, different sources of uncertainties are not necessarily inde-

pendent. For example, future emission of greenhouse gases is related to future changes in

population (O’Neill, 2004).

6.2.3 Estimation of return levels of extreme mortality counts

As mentioned in Section 4.3.1, the use of GP distribution is not applicable on modelling

extreme mortality counts. The extreme mortalities for the present-day (1993 to 2003 for

London; 1992 to 2001 for Budapest) and each of the three 30-year future periods are

therefore estimated using the sample quantiles of observed and projected mortality counts

in each period. Unlike the assessment of extreme calibrated temperatures in Chapter 5

which focuses on the 10-summer return level, the discussion here focuses on 2-summer

mortality return level, i.e. the highest number of daily elderly deaths expected to occur

every other year on average. This is because with fewer data values at the tail of the

distribution of projected mortality, the estimation of rarer extreme number of deaths using

sample quantiles may be less precise.

6.3 Projections of future extreme summer mortalities

6.3.1 Projections for London

Table 6.1 shows the estimated mean and 2-summer return levels of projected number of

daily elderly deaths in London, using mortality model TO and HadRM3 projected tem-
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peratures calibrated by BC-LSB. The estimates for present-day (1993 to 2003) observed

mortality are also shown for comparison. Although the mean of calibrated daily tempera-

tures in the three future periods are all higher than the mean of present-day observed daily

temperatures, the mean of projected number of deaths in the future are lower. This can be

explained by the decreasing trends of both the elderly population and the number of deaths

throughout the present-day period [refer to Figs 3.1(c) and 3.3(a)]. Since future mortalities

are projected with the assumption of constant population frommid-summer 2003 (near the

lowest level in the time series), the mean of projected number of daily deaths in the future

can be lower than that at the present. With a projected increase of mean temperatures, the

mean number of daily deaths is projected to increase slightly.

Time period Mean 2-summer return level

Temperature (◦C) No. of deaths Temperature (◦C) No. of deaths

1993-2003 16.6 121 25.0 170

2010-2039 17.4 114 27.3 193 [178,208]

2040-2069 18.4 116 26.3 175 [165,185]

2070-2099 19.3 120 28.5 218 [196,240]

Table 6.1: The projected mean and 2-summer return level of temperature (T̂ o′) and num-

ber of elderly deaths (µ̂) in London, using mortality model TO, temperature projections

from the standard run of HadRM3 calibrated by BC-LSB and assuming future elderly

population to be constant at the mid-summer 2003 level. The 95% confidence intervals of

number of deaths predicted by model TO are given in square brackets (see Section 4.2 for

how these are estimated). The observed mean and 2-summer levels of temperature (T o)

and number of deaths (Y ) in the period 1993 to 2003 are also shown.

While the increase in the 2-summer temperature level is similar in magnitude to the

increase of mean temperatures, the 2-summermortality return level is projected to increase

more rapidly than the increase in the mean daily number of deaths. The estimated 2-

summer level in the period 2070 to 2099 is about 28% higher than that at the present. The

more rapid increase in future extreme mortalities is related to the non-linear relationship

between daily number of deaths and temperatures for this city [refer to Fig. 4.4(c)].
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6.3.2 Projections for Budapest

Due to the decreasing trends of population size and observed number of deaths [refer to

Figs 3.2(c) and 3.3(b)], the projected mean and 2-summer return levels of mortality in

Budapest are also lower than that in the present-day period (1992 to 2001), as shown in

Table 6.2. The projected increase in mean and 2-summer return levels of temperatures

calibrated by BC-LS are similar in magnitudes - about 3 ◦C from the present to the period

2070 to 2099. The mean number of daily elderly deaths is projected to increase by about

8% between the periods 2010 to 2039 and 2070 to 2099, while the 2-summer mortality

level is projected to increase by about 12%.

Time period Mean 2-summer return level

Temperature (◦C) No. of deaths Temperature (◦C) No. of deaths

1992-2001 20.5 51 28.9 77

2010-2039 21.2 48 30.4 65 [60,70]

2040-2069 22.3 50 31.1 68 [62,74]

2070-2099 23.4 52 32.1 73 [66,80]

Table 6.2: Same as Table 6.1 but for Budapest. The mortality projections are based on

mortality model TO and temperature projections from the standard run of HadRM3 cal-

ibrated by BC-LS, assuming future elderly population to be constant at the mid-summer

2001 level. The observed mean and 2-summer level of T o and Y are for the period 1992

to 2001.

6.4 Sensitivity analyses

6.4.1 Climate projections uncertainty

Here we first consider the climate model uncertainty and then the calibration uncertainty.

As discussed in Sections 5.4.3 and 5.5.3, there is considerable spread among the future

changes in extreme temperatures projected by different members of the PPE. This leads to
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large differences in projected extreme mortalities. Consider, for example, mortality pro-

jections for London in the period 2070 to 2099 usingmodel TO andHadRM3 temperatures

calibrated by BC-LSB. The range of 2-summer temperature return level estimates among

the PPE members is 5.9 ◦C [Fig. 6.3(a)]. The corresponding 2-summer mortality level es-

timates range from 162 to 289 (ensemble mean: 205) [Fig. 6.4(a)]. To put this large spread

into context, the 2-summer mortality level for 2 of the 11 PPE members are higher than

the maximum daily number of deaths observed during the 2003 heatwave (233), which is

shown by the blue dashed line in Fig. 6.4(a). These 2 members project that this high daily

number of deaths will occur at least every other year on average in the period 2070 to

2099. Meanwhile, there are 2 PPE members which project the 2-summer mortality level

to be lower than the present-day 2-summer level, which is shown by the blue solid line in

Fig. 6.4(a).

2−
su

m
m

er
 te

m
pe

ra
tu

re
 le

ve
l (

°C
)

BC−LSB CF−LS

24
26

28
30

32
34

●

●

●

2010−2039
2040−2069
2070−2099

(a)

BC−LS CF−LS

28
30

32
34

36
38

40

●

●

●

2010−2039
2040−2069
2070−2099

(b)

Figure 6.3: Estimates of 2-summer return levels of calibrated HadRM3 temperature pro-

jections for (a) London and (b) Budapest for each member of PPE, using different calibra-

tion methods as labelled. The symbols in each box represent the mean of the return levels

of the PPE members for each future 30-year period as labelled. The black horizontal lines

within each box show the return level estimates of each PPE member, with the estimate

for the standard run shown in red.

In comparison, the range of 2-summer mortality levels among the PPE members is

smaller for Budapest using model TO and temperatures calibrated by BC-LS [Fig. 6.4(b)].

This can be explained partly by the narrower range in the 2-summer temperature levels
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[Fig. 6.3(b)]. In addition, the expected number of deaths predicted by model TO increases

less rapidly with extreme temperatures in Budapest compared to London [compare Figs

4.4(c) and (d)]. The 2-summer mortality level for Budapest is therefore less sensitive to

different extreme temperature projections by the PPE members.
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Figure 6.4: Estimates of 2-summer mortality return level in (a) London and (b) Budapest

by HadRM3 PPE members using different combinations of mortality model and temper-

ature calibration method as labelled. The blue solid line represents the 2-summer return

level estimate for observed mortality in 1993 to 2003 for London and in 1992 to 2001

for Budapest. The blue dashed line indicates the maximum daily number of deaths in the

period. Refer to the caption of Fig. 6.3 for explanation of other symbols.

Comparing the length of the first three boxes on each panel of Fig. 6.3, it can be seen

that for both locations, the ensemble spread of 2-summer temperature levels increases

with time. This suggests increasing climate model uncertainties in extreme temperature

147



projections. As a result, the associated uncertainty in extreme mortality also increases

with time. For example, the range of 2-summer mortality level estimates for London

using model TO and BC-LSB increases from 44 in the period 2010 to 2039 to 127 in the

period 2070 to 2099 [Fig. 6.4(a)].

(a) London

Time period Model TO Model TO Model PTO Model PTO

BC-LSB CF-LS BC-LSB CF-LS

2010-2039 164 174 150 155

2040-2069 183 215 161 178

2070-2099 205 261 174 206

(b) Budapest

Time period Model TO Model TO Model PTO Model PTO

BC-LS CF-LS BC-LS CF-LS

2010-2039 62 65 62 64

2040-2069 68 73 67 73

2070-2099 71 81 71 82

Table 6.3: Ensemble mean of 2-summer mortality return level estimates using different

combinations of mortality models and temperature calibration methods for (a) London and

(b) Budapest.

The calibration uncertainty is assessed by comparing the 2-summer mortality level pro-

jected bymodel TO using temperatures calibrated by bias correction (BC-LSB for London;

BC-LS for Budapest) and that using temperatures calibrated by change factor (CF-LS). For

both locations, the ensemble mean 2-summer mortality level estimates using temperatures

calibrated by CF-LS are higher than that using temperatures calibrated by bias correction

(Table 6.3). In the period 2070 to 2099 for example, the estimated ensemble mean 2-

summer level of number of deaths in London using CF-LS is 27% greater than that using

BC-LSB. Among the 11 PPE members, 10 of them project that the highest daily number

of deaths in the 2003 heatwave will occur at least every other year on average [Fig. 6.4(a);
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c.f. only 2 members for BC-LSB]. For the same period in Budapest, the ensemble mean

2-summer mortality level using CF-LS is 14% greater than that using BC-LS. These dif-

ferences are due to the higher ensemble mean 2-summer level of temperatures calibrated

by CF-LS (Fig. 6.3).
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Figure 6.5: Scatter plot of estimated 2-summer mortality level projected by model TO

for 11 PPE members in the period 2070 to 2099 using (a) T o′ calibrated by CF-LS against

that using T o′ calibrated by BC-LSB for London and (b) T o′ calibrated by CF-LS against

that using T o′ calibrated by BC-LS for Budapest.

The relative impacts of climate model uncertainty and calibration uncertainty on ex-

treme mortality projections can be compared using Fig. 6.5. Similar to the scatter plots

shown in Section 5.6.6, Fig. 6.5 plots the estimated 2-summer mortality level in the pe-

riod 2070 to 2099 for the 11 PPE members using bias-corrected temperatures against that

using temperatures calibrated by change factor. For London [Fig. 6.5(a)], the mean dif-

ference between the 2-summer mortality level estimates for each PPE member using the

two calibration approaches (vertical distance of each data point from the dashed line of

equal values) is around 55. Excluding the outlier on the far right, the range of 2-summer

mortality level estimates among the 11 members for each calibration approach (range of

values on each axis) is about 70. For Budapest [Fig. 6.5(b)], the mean difference between

the estimates for each PPE member using the two calibration approaches and the range of

estimates among the PPE members are both about 10. This comparison suggest that cli-

mate model uncertainty and calibration uncertainty have comparable effects on extreme
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mortality projections in this time period. Plots for other time periods (not shown) also

support this conclusion.

6.4.2 Mortality modelling uncertainty

Themortality model which specifies themortality-temperature relationship as a second or-

der polynomial (model PTO) gives lower estimates of extreme mortality in London than

the model which specifies such a relationship as a non-parametric smooth function (model

TO). Using temperatures calibrated by BC-LSB, the ensemble mean 2-summer mortality

level for model PTO is 9 to 15% lower than that for model TO [Table 6.3(a)]. The differ-

ence between the ensemble mean 2-summer mortality level for the two mortality models

using temperatures calibrated by CF-LS is larger (11 to 21%). This is because the dif-

ference between the predicted number of deaths of the two mortality models increases

with temperature [refer to Figs 4.7(a) and (b) for a comparison between the predictions of

two similar models, TS and PTS3], and ensemble mean 2-summer levels of temperatures

calibrated by CF-LS are higher than that calibrated by BC-LSB (Fig. 6.3). Figure 6.6(a)

compares the 2-summer mortality levels in London projected by the two mortality models

in the period 2070 to 2099 for the 11 PPE members. The mean difference between the

estimates for each PPE member using the two mortality models is about 30, which is less

than the range of ensemble estimates projected by model TO. This suggests that climate

model uncertainty has a greater effect on the 2-summer mortality return level projections

than the mortality model uncertainty. However, it is possible that the mortality model un-

certainty will become more important for even rarer extremes of daily mortality counts as

the difference between the predictions by the two mortality models further increases with

temperature.

In contrast, for Budapest, there is little difference between the ensemblemean 2-summer

mortality level projected by the two mortality models [Table 6.3(b)]. This is also true for

individual PPE members. An example is given in Fig. 6.6(b) which shows that in the pe-
3The only difference is that models TS and PTS use station observed temperatures T s, while models TO

ad PTO use gridded observed temperatures T o. Refer to Section 4.4 for details.
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Figure 6.6: Scatter plot of estimated 2-summer mortality level for 11 PPE members in the

period 2070 to 2099 projected by model TO against that projected by model PTO for (a)

London (using temperatures calibrated by BC-LSB) and (b) Budapest (using temperatures

calibrated by BC-LS).

riod 2070 to 2099, the 2-summer mortality level estimates for each PPE member using

model TO agree well with the corresponding estimates using model PTO. This is because

there are little differences between predictions by the two models at extreme temperatures

[refer to Figs 4.7(c) and (d)].

6.4.3 Population uncertainty

The mortality projection results discussed so far have assumed the future elderly popu-

lation to be constant. Table 6.4 shows how the mortality projections differ when elderly

population projection data are used. The results shown are based on mortality projections

using model TO and bias-corrected HadRM3 temperatures for the time period 2010 to

2030, because population projections for both locations are only available up to the year

2031. For London where the elderly population size is projected to increase steadily [re-

fer to Fig. 3.3(a)], the ensemble mean of mean number of deaths is about 7% higher than

the present-day mean number of deaths, while the ensemble mean 2-summer mortality

level is about 15% higher than the present-day 2-summer level (refer to Table 6.1). In

comparison, for projections for the same time period using the constant population as-
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sumption, the ensemble mean of mean and 2-summer level are about 7% and 4% lower

than the present-day respectively. These suggest that relative to warming in temperatures,

the changes in elderly population size have a possibly greater effect on changes in future

elderly mortalities in this period. However it is not possible to say whether this will re-

main true later in the century, given the uncertainty in the future population trend and more

importantly, the increasing uncertainties in mortality projections related to uncertainties

in climate projections.

Location (a) assumes constant population (b) uses projected population

Mean 2-summer return level Mean 2-summer return level

London 113 164 130 195

Budapest 48 62 52 68

Table 6.4: Ensemblemean of mean and 2-summer return level of number of elderly deaths

in the period 2010 to 2030 using model TO and bias-corrected temperatures (BC-LSB for

London; BC-LS for Budapest), with (a) elderly population assumed to be constant from

mid-2003 in London and from mid-2001 in Budapest and (b) projected elderly population

for each location.

Compared to London, the elderly population in Budapest is projected to increase at a

slower rate [refer to Fig. 3.3(b)]. Using these population projections, the ensemble mean

2-summer mortality level in the period 2010 to 2030 is projected to be 12% lower than the

present-day 2-summer level. This means that despite the projected increase in population

and extreme temperatures in Budapest, the extreme daily number of elderly deaths in this

period is projected to remain below the level observed in the 1990s.

6.5 Summary

This chapter has used mortality models and calibrated HadRM3 temperatures from previ-

ous chapters to project the future changes in extreme mortalities in London and Budapest.

If elderly population sizes are assumed to be unchanged, the estimated change in the 2-
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summer return level of number of elderly deaths relative to the present-day ranges from

−12% to +75% for London in the period 2070 to 2099, across different HadRM3 per-

turbed physics ensemble members and different choices of mortality model and temper-

ature calibration method. The corresponding change for Budapest ranges from −16% to

+22%. Uncertainties in climate model parameters and the choice of temperature calibra-

tion method have comparable effects on the uncertainties in extreme mortalities at both

locations. The choice of mortality model has a smaller contribution to the uncertainties

in extreme mortalities for London, while for Budapest, extreme mortality projections are

not sensitive to the choice of mortality model.
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Chapter 7

Conclusions and future work

7.1 Summary of main findings

This thesis has developed techniques for the projection of extreme heat-related elderly

mortalities in London and Budapest from 2010 to 2099, using temperature projections

from the perturbed physics ensemble (PPE) of the regional climatemodel (RCM)HadRM3.

The general approach adopted here to project future mortalities is similar to that used pre-

viously: A statistical mortality model is developed to model the present-day relationship

between daily mortality counts and observed weather variables. Future projections of rele-

vant weather variables from climate models are calibrated to account for any discrepancies

in model simulations. Future mortalities are then projected by driving the mortality model

with calibrated climate model projections.

Despite the similarity in the general approach, this thesis is different from previous

studies in several aspects. The primary focus is on the projection of future extreme daily

heat-related mortality counts instead of the total number of heat-related deaths. For the

climate model which provides future climate projections, this thesis has used the RCM

HadRM3 with horizontal grid spacing of about 25 km, which is a finer resolution com-

pared to the models used previously (e.g. 50 km in Dessai, 2002, 2003). Projections from

the PPE of HadRM3 are also used to evaluate how mortality projections are affected by

climate model uncertainty, a source of uncertainty not considered in previous studies.
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This thesis has also investigated mortality modelling and temperature calibration method-

ologies. These are described below as the main findings at each stage of the mortality

projection work are summarized.

Poisson generalized additive models have been used to model the present-day relation-

ship between daily number of elderly deaths and weather observations. Changes in el-

derly population and non-weather related annual cycles in mortalities are modelled using

an offset term and a non-parametric smooth function respectively. A number of candidate

models have been considered. These models have different choices of environmental co-

variates, for example using combinations of temperature and humidity and using a biome-

teorological index. The functional dependence of daily mortality counts on the covariates

is also specified in different ways. Model evaluation in previous studies was limited. In

this thesis, a number of criteria have been used to evaluate the adequacy and specification

of these candidate models. In particular, the mean residual mortality plots have assessed

the ability of the models to predict the upper tails of present-day mortality distributions.

Considering these criteria, since the inclusion of humidity or a biometeorological index

does not greatly improve model predictions, gridded observed daily mean air temperature

has been chosen to be the only weather variable in the model for mortality projections. For

London, between the model which specifies the mortality-temperature relationship using

a non-parametric smooth function and the model which specifies such a relationship using

a second order polynomial, there are large differences in the predicted mortality counts at

extremely high temperatures. The former model predicts the upper tail of the mortality

distribution better, but it is less robust to outliers which are related to the large daily number

of deaths observed during the heatwave in 2003. On the other hand, the predictions for

Budapest by the two models are similar.

The calibration of HadRM3 temperature projections is a major focus of this thesis. Pre-

vious mortality projections and other climate change impact studies typically adopted sim-

plistic untested calibration methods. This thesis has considered two different approaches,

bias correction and change factor, to calibrate the entire distribution of HadRM3 projected

temperatures. For the bias correction approach, based on assumptions on the relationships

in the location, scale and shape between the distributions of present-day observed temper-
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atures and HadRM3 simulated temperatures, the transfer functions of three methods have

been developed. In particular, a novel method has been proposed to correct the bias in

the shape of the distribution of simulated temperatures. This involves first applying the

Box-Cox transformation on these temperature distributions, then correcting the biases in

the location and scale of the transformed distributions. The calibration of present-day

HadRM3 simulated temperatures over Europe has revealed that this method gives the best

result in correcting the biases in the upper tail of HadRM3 temperatures, compared to the

other two methods which assumed no biases in shapes. Two change factor methods have

also been considered. Their transfer functions have been developed based on assumptions

on the relationships in the location and scale between the distributions of present-day and

future HadRM3 temperatures.

The impacts of using different calibration approaches on extreme temperature projec-

tions have been investigated for Europe. The preferred methods for each approach, bias

correction in location and scale of Box-Cox transformed temperatures and change factor

in location and scale, give substantially different results. There is considerable difference

in the spatial distribution of warming of extreme temperatures calibrated by the two ap-

proaches. In terms of the projected 10-summer temperature return level, the differences

between the two approaches are greater than 4 ◦C over many parts of Europe in the pe-

riod 2070 to 2099. Nevertheless, the 10-summer levels of temperatures calibrated by both

methods are much lower (by more than 10 ◦C in certain places) than that without cali-

bration. In addition, projections from the 11-member PPE of HadRM3 for London and

Budapest have been calibrated. The results have suggested that uncertainty in climate

model parameters and the uncertainty in the choice of calibration approach have compa-

rable effects on extreme temperature projections.

Finally, using the mortality models and calibrated temperature projections, future mor-

talities have been projected for London and Budapest. These are followed by an assess-

ment of changes in extreme daily mortality counts. Mortality projections are subject to

uncertainties in mortality modelling, climate projections and the population affected by

extreme heat. The uncertainty analyses in this thesis have focused on the sensitivity of ex-

trememortality projections to the choice of mortality model (parametric or non-parametric
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specification of mortality-temperature relationship), climate model parameter uncertainty

(calibrated projections from the PPE) and the choice of temperature calibration approach

(bias correction or change factor). While these do not constitute a complete uncertainty

assessment, these three sources of uncertainties have not been considered by previous

mortality projections.

Incorporating the above-mentioned uncertainties, the possible range of future changes

in extreme mortalities is large. If the elderly population size is assumed to remain constant

in the future, the projected change in the 2-summer return level of number of daily elderly

deaths for London ranges from −12% to +75% in the period 2070 to 2099 relative to the

the present-day. The corresponding projected change for Budapest ranges from −16% to

+22%. Similar to extreme temperatures, uncertainties due to the choice of climate model

parameters and the choice of temperature calibration method have comparable effects on

the overall uncertainties in extreme mortality projections. The effect of the choice of

mortality model has been found to be relatively less important.

7.2 Wider applications

Apart from human health, extreme heat has wide-ranging potential impacts on the soci-

ety. Examples include reduced crop yield (Easterling et al., 2007), damage on transport

infrastructure such as roads and rail tracks (McGregor et al., 2007) and power outages

due to increased electricity demand for cooling (Miller et al., 2008). While this thesis has

focused on the projection of extreme heat-related mortalities, many of the results obtained

and techniques developed can be applied to the impact assessment of extreme heat and

even other climate extremes.

The relationship between other climate change impacts and weather variables can be

modelled in a similar way as how heat-related mortalities have been modelled in Chapter

4. The model evaluation procedure used in this thesis, especially the assessment of model

predictions at extreme temperatures, can also be adopted when modelling such impacts.

With suitable impact models, extreme calibrated temperatures in Europe presented in
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Chapter 5 can give useful indications of how other impacts of extreme heat will change in

the future. In addition, the general calibration framework can be applied to climate model

projections of other climate variables, for example rainfall. However, modifications might

have to be made based on the characteristics of the distributions of the observed and model

simulated climate variable of interest.

7.3 Future research directions

The assessment of heat-related health impacts of climate change covers multiple areas

of statistical work, including regression analysis of the relationship between weather and

health and the calibration of climate model projections. While this thesis has made im-

provements over previous mortality projections, there are certainly many aspects where

further progress can be made in future research.

For the modelling of heat-related mortalities, the number of deaths observed during the

2003 heatwave in London has been found to be considerably higher than that predicted

by mortality models used in this thesis. Recent research in epidemiology (e.g. Hajat et al.,

2006) suggests a possible ‘heatwave effect’ where the number of deaths increases further

in continuous periods of hot weather. It is worthwhile to consider how this effect can

be incorporated into the heat-related mortality models, for example through the use of

random effects mixed models (Chapter 6 in Wood, 2006).

As for the calibration of climate model projections, the techniques adopted in this thesis

have been applied on the entire distribution of model projected temperatures. Given the

importance of projecting the extremes of climate variables in impact studies, it would be

interesting to develop alternative techniques which focus on the calibration of the tails

of distributions of projected climate variables. Calibration involving multiple variables

can also be considered. For example, it has been suggested that the bias in HadRM3

extreme temperatures in London is related to excessive soil drying in the model. Future

work can attempt to incorporate the observed and modelled soil moisture variable in the

calibration of temperature projections. Furthermore, model projected temperatures have

been calibrated for individual time-slices. Improvements to the calibration procedure can
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be explored such that the non-stationarity in the climate variable, e.g. long-term trends and

annual cycles, can be accounted for.

Finally, the uncertainties of mortality projections have been assessed by analysing the

sensitivity of projections to individual sources of uncertainties. A major area of current

climate research has been to develop probabilistic projections of climate change based

on model ensembles (e.g. PPE used in this thesis) constrained by observations, such that

the combined effects of different sources of uncertainties can be quantified (Collins, 2007

and references therein; Murphy et al., 2009). Future research on mortality projections

and other climate change impacts can consider how such ideas can be applied to assess

uncertainties systematically.
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Appendix A

Population projections

In the projection of future heat-related mortalities in London and Budapest, two sets of

elderly population projection data are used (UK Office of National Statistics, 2008c; Eu-

rostat, 2009). Themethodologies used and the assumptions involved, such as the projected

rates of mortality, regional and international migration, can be found in UK Office of Na-

tional Statistics (2008a). Projections of elderly population of London are included as part

of the 2006-based subnational UK population projection, and are therefore directly used

in this study. The projected elderly population in Budapest, however, is derived from

the 2004-based European Union regional population projection data up to 2031 (Eurostat,

2009), obtained from the Statistical Office of the European Communities, Eurostat. This

appendix outlines the derivation methods.

The seven statistical regions of Hungary defined in the Eurostat data are shown in Fig.

A.1. The city Budapest in located within the Kõzép-Magyarország region. The estimated

elderly population sizes for Budapest and the Kõzép-Magyarország region from 1992 to

2007 (Hungarian Central Statistical Office, 2009) are shown by solid lines in Fig. A.2.

The changes in elderly population sizes at the two locations had different signs: a decrease

of about 0.5% per year in Budapest (except between 2000 and 2001) but an increase of

about 0.6% per year in the Kõzép-Magyarország region. This means that the proportion of

elderly population living in Budapest decreased steadily, as shown in Fig. A.3. A possible

reason for this phenomenon is the migration of population out of the city area.
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Figure A.1: Map showing the seven statistical regions of Hungary and the location of

Budapest. Source: Hungarian Central Statistical Office, available at http://portal.

ksh.hu/portal/page?_pageid=38,566887&_dad=portal&_schema=PORTAL.
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Figure A.2: Observed and projected elderly population sizes in Budapest (dots) and the

Kõzép-Magyarország region of Hungary (triangles). The estimated population sizes from

1992 to 2007 are shown in solid lines. The projected sizes from 2007 to 2031 are shown

in dashed lines.

According to the European Union projections, the elderly population size in the Kõzép-

Magyarország region will increase gradually before levelling off at around 2020 (dashed

line with triangles in Fig. A.2). In deriving the elderly population projection of Budapest

from the projection of the Kõzép-Magyarország region, the approximately linear decreas-

ing trend in the proportion of elderly population living within Budapest is assumed to

continue, as shown by the dashed line in Fig. A.3. As a result, the Budapest elderly pop-

161



● ●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

Year

P
ro

po
rt

io
n

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1995 2000 2005 2010 2015 2020 2025 2030

0.
55

0.
65

0.
75

Figure A.3: Proportion of Budapest elderly population living in the Kõzép-Magyarország

region of Hungary. The observed proportion from 1992 to 2007 are shown in solid line.

The extrapolated proportion from 2007 to 2031 is shown in dashed line.

ulation size is projected to increase at a slower rate in the 2010s, then to fall afterwards

(dashed line with circles in Fig. A.2).
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Appendix B

Generalized linear models and

generalized additive models

This appendix supplements Section 4.2.1 by providing further details on the estimation

and evaluation of statistical mortality models. All of the mortality models considered in

Section 4.4 are generalized additive models (GAMs). However, generalized linear models

(GLMs), another type of models commonly used in modelling the relationship between

mortality and weather, are first described because of the similarities between the two fam-

ilies.

B.1 Exponential family distribution

The random components of generalized linear models (GLMs) and generalized additive

models (GAMs) assume the response variable to have a distribution from the exponential

family, for example Poisson, Binomial, Gamma and Normal. Suppose there are n ob-

servations {y1, y2, · · · , yn} of the response variable Yi. The probability density function

(p.d.f.) of the exponential family can be written as

h (yi; θi, ϕ) = exp
(
yiθi − b(θi)

a(ϕ)
+ c(yi, ϕ)

)
(B.1)

where a(.), b(.) and c(.) are known functions that define the type of distribution, and θi

and ϕ represent the canonical parameter and dispersion parameter respectively. It can be
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shown that the population mean and variance of the response variable Y are given by

E(Yi) = b′(θi) (B.2)

var(Yi) = b′′(θi)a(ϕ). (B.3)

where b′ and b′′ represent the first and second derivative respectively.

In the case of a Poisson distribution (the usually assumed distribution for dailymortality

counts) with a mean rate parameter µ whose p.d.f. is given by

h(yi) =
µyi
i exp(−µi)

yi!
. (B.4)

It can be shown by taking logs of (B.4) that for a Poisson distribution θi = log(µi), ϕ = 1,

a = 1, b(θi) = exp(θi) and c(yi, ϕ) = − log(yi!) in (B.1). Substituting into (B.2) and

(B.3), E(Yi) = var(Yi) = µi, i.e. the mean equals the variance.

B.2 Generalized linear models

As described in Section 4.2.1, the systematic component of a GLM has the structure

ηi = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip = Xiβ (B.5)

where ηi is known as the linear predictor,Xi = {Xi1, Xi2, · · · , Xip} is a set of p covariates,

and β = {β1, β2, · · · , βp} are unknown parameters to be estimated. The random and

systematic components of the GLM are linked by a link function g(µi):

g(µi) = ηi (B.6)

where µi = E(Yi). For a Poisson response, a log link function g(µi) = log(µi) is com-

monly used.

Rewriting ai(ϕ) = ϕ/ωi, where ωi are a set of known constants (often assumed to be
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unity), the log-likelihood of β is given by

l (β) =
n∑

i=1

log [fθi (yi)]

=
n∑

i=1

yiθi − bi (θi)

ai (ϕ)
+ ci (ϕ, yi)

=
n∑

i=1

ωi [yiθi − bi (θi)]

ϕ
+ ci (ϕ, yi) . (B.7)

It can be seen from (B.2), (B.3) and (B.6) how θi is linked to the model parameters β. By

maximizing (B.7), β can be estimated. This is done using the iteratively re-weighted least

squares (Nelder andWedderburn, 1972). Under large sample approximation, the vector of

predicted model parameter β̂ ∼ N
(
β,
(
XTWX

)−1
)
, i.e. normally distributed with mean

β and variance
(
XTWX

)−1, whereW is a weighting matrix. This can be used to construct

confidence intervals of β̂ and µ̂.

A measure of the goodness of fit of the model is the quantity deviance. It is analogous

to the residual sum of squares in normal linear models, and is defined as

D
(
β̂
)

= 2
[
l
(
β̂max

)
− l
(
β̂
)]

ϕ

=
n∑

i=1

2ωi

[
yi

(
θ̃i − θ̂i

)
− b

(
θ̃i

)
+ b
(
θ̂i

)]
=

n∑
i=1

di

where l
(
β̂max

)
is the likelihood of the saturated model (p = n) which has the same

number of parameters as the number of observations. It is thus the highest possible value

of likelihood given the data. θ̂i and θ̃i denote the maximum likelihood estimates of the

canonical parameters for the model of interest and the saturated model, respectively. On

the last line the contribution of deviance by the ith observation is denoted by di.

As in normal linear models, the examination of residuals is an important part of the

model checking procedure. However, the use of raw residuals is not appropriate because

their variance is generally not constant. Deviance residuals, ϵdi (Pierce and Schafer, 1986),

defined as below, are used instead:

ϵ̂di = sign (yi − µ̂i)
√
di
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where µ̂i is the model predicted mean response. For a well-specified model, under suffi-

ciently large samples, ϵd ∼ N(0, 1).

B.3 Generalized additive models

Generalized additive models (GAMs) can be considered as an extension of the GLM

framework. They have the structure

g(µi) = Xiβ +

p∑
k=1

fk(Xik) (B.8)

where the first term of the right hand side is a linear parametric model component, and

fj (j = 1, 2, · · · , k) represents non-parametric smooth functions of covariates. The com-

bined effects of multiple explanatory variables (interaction) can be included by adding

functions of multiple covariates [e.g. f(X1, X2)].

In order to estimate the model, each smooth function fj is specified as a linear combi-

nation of basis functions bjk such that

fj(Xj) =

q∑
k=1

β∗
jkbjk(Xj)

where β∗
jk are the coefficients of the smoothing functions. In this way, (B.8) can then be

written as g(µi) = Xiβ, same as (B.5).

A number of possible functional bases, such as polynomial or cubic splines, can be

chosen according to the application (e.g. some bases cannot be used to smooth w.r.t. more

than one covariate) and computational efficiency. Cubic regression splines are used in

fitting the GAMs in Section 4.4. These are knot-based splines where the knots are spread

evenly across the range the covariate values. For each smoothing function, a basis dimen-

sion is specified. This can be considered as the upper limit of the degrees of freedom (d.f.)

of the smoothing function, but the actual (effective) d.f. are controlled by penalization of

over-smoothing described below. Details of different types of smoothing basis functions

can be found in Chapter 4.1 of Wood (2006).

For GAMs, the parameters are not estimated by maximizing the log-likelihood (B.7)

because this will result in over-fitting by having over-wiggly smoothing functions. In-
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stead a penalty term
∑

j λj

∫ [
f

′′
j (x)

]2
dx is added to the log likelihood, where λj repre-

sents smoothing parameters to be estimated as described below. Each penalty term can be

written in terms of the quadratic form in terms of β (Chapter 4.2 in Wood, 2006):∫ [
f

′′
(x)
]2

dx = βTSβ,

where the matrix S contains known coefficients. Therefore the penalized log-likelihood

lp(β) to be maximized is defined as

lp(β) = l(β)− 1

2

∑
j

λjβ
TSjβ

which represents a trade off between the goodness of fit (first term on the right hand side)

and model smoothness (second term on the right hand side). The maximum likelihood

estimates of the parameters are obtained by iteration to convergence by a process known

as penalized iteratively re-weighted least squares.

A number of approaches can be used to estimate the smoothing parameters λj (see

Chapter 4 in Wahba, 1990). For the case of Poisson response where the scale parameter is

known, this is done by minimizing the un-biased risk estimator (UBRE), a deviance-based

measure:

UBRE =
1

no

D(β̂) +
2np

no

where np is the number of degrees of freedom in the model, and no is the number of

observations. The UBRE score is also a measure that can be used to assess relatively

the predictive power of models. A model with a lower UBRE score is preferred. As in

GLMs, model checking for GAMs also involve the examination of deviance residuals as

described in the last section.
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Appendix C

Generalized Pareto distribution

In Chapters 4 and 5, Generalized Pareto (GP) distributions are fitted to excesses of ob-

served and HadRM3 temperatures over thresholds in order to estimate the probabilities

of extreme temperature occurrences. This appendix provides a brief overview of this dis-

tribution. Further details can be found in Coles (2001) and Beirlant et al. (2004). In the

following discussion, consider a summer daily mean air temperature variable denoted by

T .

Let {T1, T2, · · · , Tn, · · · , Tny} be the daily sequence of T over a period of y years

with the length of summer defined to be n days. Let also Mn be the annual maximum of

summer daily mean temperature, e.g.Mn = max{T1, T2, · · · , Tn}. The daily temperature

series values are assumed to be independent and indentically distributed. If there exists

sequences of constants {an} and {bn} such that, as n → ∞,

Pr

(
Mn − bn

an
≤ z

)
→ G(z),

then G takes the following form of generalized extreme value (GEV) distribution

G(z) = exp

{
−
[
1 + ξ

(
z − µ

σ

)]− 1
ξ

}
(C.1)

with location parameter µ, scale parameter σ > 0 and shape parameter ξ. See Kharin et al.

(2007) for an example of how changes in the annual extremes of model projected climate

variables are estimated using the GEV distribution.
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Now consider a randomvariableV = T−u to represent excesses ofT above a threshold

u. In the asymptotic limit of a large u,

Pr (V ≤ v|V > 0) = H(v) = 1−
(
1 +

ξv

σ̃

)− 1
ξ

, (C.2)

where v > 0 and (1 + ξv/σ̃) > 0. This is known as the generalized Pareto distribution.

Here the scale parameter σ̃ depends on the threshold and is related toσ in the corresponding

GEV distribution (C.1) by σ̃ = σ + ξ(u − µ), while the shape parameter ξ is the same

as that in the GEV distribution. If ξ < 0 the distribution of excesses has a upper limit

of u − σ̃/ξ, whereas if ξ > 0 it has infinite upper limit. For ξ = 0, the GP distribution

becomes the exponential distribution:

H(v) = 1− exp
(
− v

σ̃

)
. (C.3)

The choice of threshold u involves a bias-variance tradeoff. With a lower threshold,

more excesses can be used to estimate themodel so that the variance of parameter estimates

is reduced. However, a sufficiently high threshold is needed to ensure that the asymptotic

basis of the model is satisfied. This selection of threshold is subjective and can be aided by

diagnostics such as the ‘mean residual life plots’ and plots showing the stability of model

parameters across different thresholds (Chapter 4 in Coles, 2001). Since this procedure is

not practical for this thesis where the GP distribution needs to be fitted to large gridded

data sets with many variables, we use a constant threshold u = T̂0.95, the sample 0.95

quantile.

The parameters of the GP distribution can be estimated by maximum likelihood. For

this thesis this is done using the ‘evd’ package in R. From (C.2) and (C.3), the exceedance

probability of T exceeding the level Tm for Tm > u is given by

Pr (T > Tm) =
1

rm
=

ζ
[
1 + ξ

(
Tm−u

σ̃

)]− 1
ξ for ξ ̸= 0

ζ exp
(
−Tm−u

σ̃

)
for ξ = 0,

(C.4)

where ζ = Pr(T > u) which can be estimated by the observed proportion of threshold

exceedances in the sample (ζ = 0.05 for the choice u = T̂0.95). As Tm is the level which is

exceeded on average every rm days, Tm is known as the return level with a return period
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of rm days. Using (C.4), the return levels for different return periods can be estimated by

the estimated GP distribution parameters:

T̂m =

u+
ˆ̃σ

ξ̂

[
(rmζ̂)

ξ̂ − 1
]

for ξ̂ ̸= 0

u+ ˆ̃σ log(rmζ̂) for ξ̂ = 0.

For example, with n days of observations in each summer, the 10-summer return level is

found by setting rm = 10n. A return level plot of T̂m against rm (typically on a logarith-

mic scale to emphasize the extremes) can be used to evaluate the model fit. The empirical

estimates of return levels can be added to the plot as a diagnosis of the model fit. For grid-

ded data sets, spatial maps of return levels estimated by the GP distribution fit and spatial

maps of sample quantiles with the same exceedance probability have been compared, but

such comparisons are not shown in Chapter 5 for the sake of brevity.
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Giorgi, F., Hagemann, S., Lenderink, G., Rockel, B., Sanchez, E., Schär, C., Senevi-

ratne, S. I., Somot, S., van Ulden, A., and van den Hurk, B. (2007). An inter-comparison

of regional climate models for Europe: model performance in present-day climate. Cli-

matic Change, 81(Suppl. 1):31–52, doi:10.1007/s10584-006-9213-4.

Johnson, H., Kovats, R. S., McGregor, G., Stedman, J., Gibbs, M., Walton, H., Cook,

L., and Black, E. (2005). The impact of the 2003 heat wave on mortality and hospital

admissions in England. Health Statistics Quarterly, 25:6–11.

Jones, P. D., Kilsby, C. G., Harpham, C., Glenis, V., and Burton, A. (2009). UK Cli-

mate Projections science report: Projections of future daily climate for the UK from the

Weather Generator. University of Newcastle, UK.

Jones, P. D. and Lister, D. H. (2009). The urban heat island in Central London and

urban-related warming trends in Central London since 1900. Weather, 64(12):323–327,

doi:10.1002/wea.432.

Jones, R. G., Murphy, J. M., and Noguer, M. (1995). Simulation of climate change over

Europe using a nested regional-climate model. I: Assessment of control climate, in-

cluding sensitivity to location of lateral boundaries. Quarterly Journal of the Royal

Meteorological Society, 121(526):1413–1449, doi:10.1002/qj.49712152610.

Jones, R. G., Noguer, M., Hassell, D. C., Hudson, D., Wilson, S. S., Jenkins, G. J., and

Mitchell, J. F. B. (2004). Generating high resolution climate change scenarios using

PRECIS. Met Office Hadley Centre, Exeter, UK.

183



Kalkstein, L. S. and Davis, R. E. (1989). Weather and human mortality: an evaluation of

demographic and interregional responses in the United States. Annals of the Association

of American Geographers, 79(1):44–64, doi:10.1111/j.1467-8306.1989.tb00249.x.

Kalkstein, L. S. and Greene, J. S. (1997). An evaluation of climate/mortality relationships

in large U.S. cities and the possible impacts of a climate change. Environmental Health

Perspectives, 105(1):84–93.

Kan, H., London, S. J., Chen, H., Song, G., Chen, G., Jiang, L., Zhao, N., Zhang, Y., and

Chen, B. (2007). Diurnal temperature range and daily mortality in Shanghai, China.

Environmental Research, 103(3):424–431, doi:10.1016/j.envres.2006.11.009.

Keatinge, W. R., Donaldson, G. C., Cordioli, E. A., Martinelli, M., Kunst, A. E., Mack-

enbach, J. P., Nayha, S., and Vuori, I. (2000). Heat related mortality in warm and cold

regions of Europe: observational study. British Medical Journal, 321(7262):670–673.

Kharin, V. V., Zwiers, F. W., Zhang, X., and Hegerl, G. C. (2007). Changes in temperature

and precipitation extremes in the IPCC ensemble of global coupled model simulations.

Journal of Climate, 20(8):1419–1444, doi:10.1175/JCLI4066.1.

Kjellström, E., Barring, L., Jacob, D., Jones, R., Lenderink, G., and Schär, C. (2007).

Modelling daily temperature extremes: recent climate and future changes over Europe.

Climatic Change, 81(Suppl. 1):249–265, doi:10.1007/s10584-006-9220-5.
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sen, L., Janssen, P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, J., Morcrette, J. J.,

Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasil-

jevic, D., Viterbo, P., and Woollen, J. (2005). The ERA-40 re-analysis. Quarterly Jour-

nal of the Royal Meteorological Society, 131(612):2961–3012, doi:10.1256/qj.04.176.

van der Linden, P. and Mitchell, J. F. B. (2009). ENSEMBLES: Climate Change and its

Impacts: Summary of research and results from the ENSEMBLES project. Met Office

Hadley Centre, Exeter, UK.

Vandentorren, S. and Empereur-Bissonnet, P. (2005). Health impacts of the 2003 heat-

wave in France. In Kirch, W., Menne, B., and Bertollini, R., editors, Extreme weather

events and public health response, chapter 8, pages 81–87. Springer.

Vaneckova, P., Beggs, P. J., de Dear, R. J., and McCracken, K. W. J. (2008).

Effect of temperature on mortality during the six warmer months in Sydney,

Australia, between 1993 and 2004. Environmental Research, 108(3):361–369,

doi:10.1016/j.envres.2008.07.015.

Vidal, J.-P. and Wade, S. (2008). A framework for developing high-resolution multi-

model climate projections: 21st century scenarios for the UK. International Journal of

Climatology, 28(7):843–858, doi:10.1002/joc.1593.

Wahba, G. (1990). Spline Models for Observational Data. Society for Industrial and

Applied Mathematics.

Wetherald, R. T. and Manabe, S. (1995). The mechanisms of summer dryness in-

duced by global warming. Journal of Climate, 8(12):3096–3108, doi:10.1175/1520-

0442(1995)008<3096:TMOSDI>2.0.CO;2.

Wetherald, R. T. andManabe, S. (1999). Detectability of summer dryness caused by green-

house warming. Climatic Change, 43(3):495–511, doi:10.1023/A:1005499220385.

194



Wetherald, R. T. and Manabe, S. (2002). Simulation of hydrologic changes asso-

ciated with global warming. Journal of Geophysical Research, 107(D19):4379,

doi:10.1029/2001JD001195.

Wilby, R. L. (2003). Past and projected trends in London’s urban heat island. Weather,

58(7):251–260, doi:10.1256/wea.183.02.

Wilby, R. L. (2007). A review of climate change impacts on the built environment. Built

Environment, 33(1):31–45, doi:10.2148/benv.33.1.31.

Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P., and Mearns, L. O. (2004).

Guidelines for Use of Climate Scenarios Developed from Statistical DownscalingMeth-

ods. Guidance notes from IPCC Task Group on Scenarios for Climate Impact Assess-

ment.

Wilby, R. L. and Wigley, T. M. L. (1997). Downscaling general circulation model output:

a review of methods and limitations. Progress in Physical Geography, 21(4):530–548,

doi:10.1177/030913339702100403.

Wilks, D. S. (2006). Statistical methods in the atmospheric sciences, volume 91 of Inter-

national Geophysical Series. Academic Press, 2nd edition.

Wilks, D. S. and Wilby, R. L. (1999). The weather generation game: a review

of stochastic weather models. Progress in Physical Geography, 23(3):329–357,

doi:10.1177/030913339902300302.

Wood, S. N. (2006). Generalized additive models: An introduction with R. Chapman &

Hall & CRC.

World Health Organization (2008). Heat-health Action Plans: Guidance. World Health

Organization Regional Office for Europe.

World Meteorological Organization (1989). Calculation of monthly and annual 30-year

standard normals. Climate Data and Monitoring WCDMP-No. 10, WMO-TD No. 341.

Geneva.

195



Zanobetti, A., Wand, M. P., Schwartz, J., and Ryan, L. M. (2000). Generalized

additive distributed lag models: quantifying mortality displacement. Biostatistics,

1(3):279–292.

196


