Projecting extreme heat-related mortality
in Europe under climate change

Submitted by
Chun Kit Ho

to the University of Exeter as a thesis for the degree of
Doctor of Philosophy in Mathematics
April 2010

This thesis is available for Library use on the understanding that it is copyright material

and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and
that no material has previously been submitted and approved for the award of a degree by

this or any other University.



Abstract

The assessment of health impacts of extreme hot weather under climate change is im-
portant for adaptation and mitigation actions. This thesis has developed techniques for
estimating changes in heat-related mortality in Europe, with a focus on extreme daily mor-
tality counts. The use of these techniques is illustrated through the projections of extreme
elderly mortalities for London, UK and Budapest, Hungary from 2010 to 2099, using tem-
perature projections from the perturbed physics ensemble of the regional climate model

HadRM3.

The present-day relationship between daily number of deaths and temperatures at each
location is modelled by Poisson generalized additive models. In order to account for pos-
sible discrepancies in climate model simulations, temperature projections from HadRM3
are calibrated by two approaches, bias correction and change factor. These are based on as-
sumptions on the relationships in location, scale and shape between observed and modelled
temperature distributions. In particular, a novel method using the Box-Cox transformation
is developed to correct the bias in the upper tails of present-day simulated temperature dis-
tributions. Finally, future mortalities are projected by driving the mortality models with

calibrated temperature projections.

Results of temperature calibration show that the two calibration approaches give sub-
stantially different estimates of future extreme temperatures. The estimates of 10-summer
temperature return level by the two approaches differ by more than 4 °C over many parts of
Europe in the period 2070 to 2099. For London and Budapest, the effect of this calibration
uncertainty on extreme temperature projections is comparable to the effect of the uncer-
tainty in climate model parameters which is estimated by the range of perturbed physics
ensemble estimates. These two sources of uncertainties, together with the uncertainty in
how the mortality-temperature relationship is modelled, contribute to large uncertainties
in extreme mortality projections. Assuming constant elderly population in the future, the
projected change in the 2-summer return level of number of daily elderly deaths in the pe-
riod 2070 to 2099 relative to the the present-day ranges from —12% to +75% for London
and from —16% to +22% for Budapest.
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