Sex Peptide Evolution and the Impact of Selfish Genetic Elements

Submitted by Damian Thomas Smith, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Science, July 2010.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signed: Damian Thomas Smith

...
Abstract

Sexual conflict can occur when a trait is expressed in both sexes but has different optima in each (intralocus conflict) or when a beneficial trait expressed exclusively in one sex is detrimental to the other (interlocus conflict). The *Drosophila melanogaster* accessory gland protein (Acps) “sex peptide” (SP) has been implicated in interlocus conflict as it benefits males while being costly to females.

Selfish genetic elements (SGEs) such as the endosymbiont Wolbachia and transposable elements (TEs) also influence fitness. DDT resistance is caused by a TE and is beneficial to females in the absence of DDT. Although the DDT resistance TE was present in populations before DDT use, it did not spread in populations, suggesting a hidden cost when expressed in males, making it potentially a sexually antagonistic allele.

This thesis aims to investigate the natural variation of male SP expression levels and the fitness consequences for males of this variation. I examine if Wolbachia infection influenced the expression levels or fitness consequences of SP variation. Additionally, I attempt to measure the fitness consequences of DDT resistance in males to test if intralocus conflict may potentially explain why DDT resistance did not spread before the use of DDT.

I found high levels of genetic variation in male SP expression levels, and this variation had fitness consequences for males via its effect on female refractory periods. I also found pre-copulatory costs to DDT resistance in males. However, these costs were not consistent when tested across different genetic backgrounds or when many individuals were present and incorporating larval competition, implying that additional costs and benefits to DDT resistance exist, which may explain why it did not spread before the use of DDT.
Acknowledgements

Obviously the last few years would not have been possible without the guidance of my PhD supervisors. Nina, thank you for your calm and pragmatic approach to science. Dave, thank you for the uncontrollable enthusiasm, destructive feedback and the constant reminder that there is more to learn. Thank you to Richard for the flow of ideas.

To my father, thank you for compassionate and wise support when I needed it most. To my mother, thanks for keeping me coming home whenever it was obviously the right time. To my siblings and close family, thanks for reminding me that fly sex is not considered a normal thing to be so passionate about.

A big thanks to the footy lads in biology and elsewhere for the weekly run-around.

To the fellow PhD students, both past and present, you have honestly all been irreplaceable. A particular word of thanks to Ross for being the most positive person I have ever met and an ever-present Whisky buddy. Will, Clo, Xav, Master Bodey, Emma, Lucy and Laurène, you guys are like nothing else – in the best kind of way. Thanks to Thor for scaring the shit out of me.

To my friends from school and undergrad, as much an apology as a thanks. Sorry for being so absent, but thank you for the lasting connection that I know will never be lost! To Nicky, thank you for your constant bright-eyed bond.

Finally, thank you to the scientist and friends I have met briefly along the way. Stuart Wigby (my fellow English-man-in-New-York), Tracey Chapman, Renée Firman, Frank Jiggins, Lena Wilfert, and Mariana Wolfner and her team, especially Laura Sirot.
Table of Contents

Abstract .. 2

Acknowledgements .. 3

Table of Contents .. 4

Tables and Figures ... 7

Author’s Declarations ... 9

Chapter 1 ... 10

Introduction: Sexual conflict and selfish genetic elements .. 10

Sexual conflict and selfish genetic elements ... 11

References .. 24

Chapter 2 ... 35

Variation in Sex Peptide Expression in *D. melanogaster* .. 35

Abstract ... 35

Introduction ... 36

Materials and methods .. 39

Results .. 42

Discussion .. 43

References .. 46

Chapter 3 ... 55

Sex peptide expression and female egg laying .. 55

Abstract ... 55

Introduction ... 56

Materials and methods ... 60
Results ...62
Discussion ...64
References ..69

Chapter 4 ..80
Sex peptide transfer to females ... 80
Abstract ...80
Introduction ...81
Materials and methods ...84
Results ...86
Discussion ..88
References ...92

Chapter 5 ..103
DDT resistance, epistasis and male fitness .. 103
Abstract ..103
Introduction ..104
Materials and methods ..107
Results ...111
Discussion ..116
References ...123

Chapter 6 ..131
Net fitness consequences of DDT resistance in males ... 131
Abstract ..131
Introduction ..132
Materials & methods ...134
Results ...136
Discussion ..137
References ... 140

Chapter 7... 146

General discussion: Sex peptide and DDT resistance ... 146

General Discussion ... 147

References ... 154
Tables and Figures

Chapter 2

Fig. 1. Male Acp70A (sex peptide) expression levels differ between isolines of D. melanogaster .. 53

Fig. 2. Polynomial regression between relative male Acp70A expression levels and the time take for females to remate .. 54

Chapter 3

Fig. 1 The relationship between the number of eggs laid by females after mating and sex peptide expression levels of males from different isolines. .. 76

Fig. 2 The number of eggs laid by females that mated to “high” and “low” sex peptide expression isolate males ... 77

Fig. 3 Ranked isolate sex peptide expression levels and the number of eggs laid by females after mating .. 78

Fig. 4 Female size correlates positively with the cumulative number of eggs laid by females ... 79

Chapter 4

Table 1. Effect size of mating sequence on how much sex peptide was detected in the female after mating .. 100
Table 2. Effect size of the interaction between isoline rank of sex peptide expression level and mating sequence on the amount of sex peptide found in the female. ... 101

Fig. 1 Effect of mating order and block on the amount of sex peptide in the female after mating .. 102

Chapter 5

Fig. 1 Graph of the effect of mating order and block on the amount of sex peptide in the female reproductive tract .. 128

Fig. 2 The number of matings achieved by resistant and susceptible males in the wild caught genetic background ... 129

Table 1. The difference in relative fitness between resistant and susceptible males of two different genetic backgrounds ... 130

Chapter 6

Fig. 1 Proportion of wildtype offspring produced by five resistant or susceptible males when competing against five spa males .. 144

Fig. 2 Absolute number of wildtype offspring produced by five resistant or five susceptible males when competing against five spa males and housed with five females ... 145
Author’s Declarations

My research was funded by the Biotechnology and Biological Sciences Research Council. Work for all chapters contained in this thesis were planned, executed, analysed and written under the supervision of Nina Wedell and David Hosken. Below is a list of additional contributing colleagues to whom I give my utmost thanks.

Chapter 2: The fly isolate were donated by Frank Jiggins, who kindly hosted an early PhD student and showed much support. Nicola Chamberlain, Michelle Hares and Caroline McCart gave me support with molecular techniques needed for this experiment.

Chapter 4: The ELISA technique used in this chapter was taught to me by Laura Sirot, Mariana Wolfner and colleagues.

Chapter 5: Lab support was given by Wayne Rostant, Amanda Bretman, Tom Price, Rob Griffin, Jack Hollis, Conner-Benjamin Parker, Martin Yeo and Nicole Goodey. Mutant marker flies were supplied by Tracey Chapman.

Chapter 6: Lab support was given by Wayne Rostant