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Abstract

Accurate coupling between the resolved scale dynamics and sub-grid scale physics

is essential for accurate modelling of the atmosphere. Previous emphasis has been

towards the temporal aspects of this so called physics-dynamics coupling prob-

lem, with little attention towards the spatial aspects. When designing a model

for numerical weather prediction there is a choice for how to vertically arrange

the required variables, namely the Lorenz and Charney-Phillips grids, and there is

ongoing debate as to which is the optimal. The Charney-Phillips grid is considered

good for capturing the large scale dynamics and wave propagation whereas the

Lorenz grid is more suitable for conservation. However the Lorenz grid supports a

computational mode. In the first half of this thesis it is argued that the Lorenz grid

is preferred for modelling the stably stratified boundary layer. This presents the

question: which grid will produce most accurate results when coupling the large

scale dynamics to the stably stratified planetary boundary layer? The second half

of this thesis addresses this question.

The normal mode analysis approach, as used in previous work of a similar na-

ture, is employed. This is an attractive methodology since it allows one to pin

down exactly why a particular configuration performs well. In order to apply this

method a one dimensional column model is set up, where horizontally wavelike

solutions with a given wavenumber are assumed. Applying this method encounters

issues when the problem is non normal, as it will be when including boundary

layer terms. It is shown that when addressing the coupled problem the lack of

orthogonality between eigenvectors can cause mode analysis to break down. Dy-

namical modes could still be interpreted and compared using the eigenvectors but

boundary layer modes could not. It is argued that one can recover some of the

usefulness of the methodology by examining singular vectors and singular values;

these retain the appropriate physical interpretation and allow for valid comparison

due to orthogonality between singular vectors.

Despite the problems in using the desirable methodology some interesting re-

sults have been gained. It is shown that the Lorenz grid is favoured when the
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boundary layer is considered on its own; it captures the structures of the steady

states and transient singular vectors more accurately than the Charney-Phillips

grid. For the coupled boundary layer and dynamics the Charney-Phillips grid is

found to be most accurate in terms of capturing the steady state. Dispersion prop-

erties of dynamical modes in the coupled problem depend on the choice of horizon-

tal wavenumber. For smaller horizontal wavenumber there is little to distinguish

between Lorenz and Charney-Phillips grids, both the frequency and structure of

dynamical modes is captured accurately. Dynamical mode structures are found to

be harder to interpret when using larger horizontal wavenumbers; for those that

are examined the Charney-Phillips grid produces the most sensible and accurate

results. It is found that boundary layer modes in the coupled problem cannot

be concisely compared between the Lorenz and Charney-Phillips grids due to the

issues that arise with the methodology. The Lorenz grid computational mode is

found to be suppressed by the boundary layer, but only in the boundary layer

region.
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Chapter 1

Introduction and Motivation

1.1 Introduction

The atmosphere has a highly multi-scale structure. Spatially, processes such as

micro-scale turbulence can occur on scales of less than 1 metre while simultaneously

large-scale planetary motion can influence regions of up to ten thousand kilometres.

These processes develop over a considerable range of temporal scales, the smallest

scale turbulence will occur over a period of the order 1 second while the largest

scale processes may be evolving over a period of the order of weeks or even months.

There are a set of governing equations for the atmosphere which describe the

multitude of physical processes that can occur. The complex nature of the fluid

flows in the atmosphere means analytical solutions are only available for highly

idealised cases, no solution to the full governing equations is currently known.

Instead the equations must be solved numerically. The number of grid points that

can be used in a model is dictated by the amount of computing power that is

available, the length of the forecast and frequency at which forecast information is

required. An institute such as the UK Met Office produce operational numerical

weather forecasts using a global model. They are currently able to employ a global

model having a horizontal grid spacing of 25km in the mid latitudes and with 70

vertical levels reaching up to 80km high. The time step is 15 minutes. Any model

can only be said to resolve the scales which are larger than the grid spacing. A
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model with this kind of resolution will be unable to resolve many of the important

processes, such as small-scale turbulence and convection, that occur either below

its spatial resolution or evolve quicker than the time step. Processes that have

scale larger than the grid-scale are colloquially referred to as the ‘dynamics’ while

sub grid-scale processes that are unresolved are referred to as the ‘physics’. Even

though their scale is relatively small the physics include some important, influential

processes that occur in the atmosphere. Capturing boundary layer turbulence, for

example, is crucial for accurate representation of the daily weather and near surface

pollution; representing convective clouds is important as they can produce heavy

rain and lead to destructive thunderstorms. Both of these processes, and many

more, can be sub grid-scale.

1.2 Dynamics

The dynamics, or dynamical core, consists of all the resolved-scale processes that

occur in the atmosphere. This includes all the types of large-scale wave oscillations

that are possible, such as acoustic waves, gravity waves, inertial waves and Rossby

waves as well as all the types of nonlinear interactions. Any numerical model that

is used should be capable of representing the most important of these structures

accurately as they have the potential to drive the climate and weather systems

of the planet. Rossby waves are considered the most important large-scale wave

in the atmosphere [34], as they propagate and become distorted the large-scale

of their motion will generate the cyclones and anticyclones that can have such

governance on the weather. If the model cannot accurately represent the features

of the Rossby wave, for example if the speed of propagation is too slow, or the

structure mis-represented, then the model may place large-scale weather systems

incorrectly, thereby reducing the value of the forecast.

It should be noted that sometimes it is actually desirable to ignore certain

dynamics for improved accuracy and reduced computational effort. For example,

it may be argued that acoustic waves have little meteorological significance and

so a model that did not capture them could be beneficial. Fast propagation of
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acoustic waves might otherwise demand a very small time step for stability [23].

These approximations are known as filtered equation sets, probably the most well

known of which is the Boussinesq approximation.

The large-scale waves that occur in the atmosphere arise due to perturbations

acting against a restoring mechanism. Acoustic waves occur when a perturbation

to pressure occurs, this perturbation is then restored by the tendency of fluid in re-

gions of high pressure to move towards regions of low pressure. As one part of the

fluid moves to restore the perturbation so another perturbation occurs with the

same resulting restoration, subsequently the perturbation propagates away from

the source in the form of a wave. Different waves are possible due to different

restoring mechanisms, gravity waves have gravity, or stratification, as the restoring

mechanism, inertial waves are restored by rotational forces. Rossby waves occur

when a perturbation occurs in potential vorticity, restored by the law of conser-

vation of potential vorticity. Each type of wave motion can be recognised in the

measured atmospheric fields and will dominate in the field most associated to the

perturbation and restoration force. Acoustic waves would be observed as dominant

perturbations in the pressure field, gravity waves as perturbations in buoyancy, in-

ertial waves in the wind fields and Rossby waves in the potential vorticity.

1.3 Physics Parametrisation

Although the physics cannot be resolved by the grid, much is known about the

physical processes that occur at this scale. Using this knowledge mathematical

models can be constructed that represent the interaction that occurs between the

resolved and sub grid processes. Including these representations in the model will

ensure that their influence on the overall flow is considered. Since the only thing

known about the atmosphere numerically at any given time comes from the quan-

tities stored on the grid, i.e. the resolved processes, the physics needs to be repre-

sented by writing the sub grid process in terms of the large-scale flow. This process

of determining unknown quantities in terms of the known parameters is called

parametrisation. All kinds of processes need to parametrised in order to perform
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an accurate forecast, such as boundary layer turbulence, convection, clouds, land

interaction, gravity wave drag and radiation. Parametrisation in this sense refers

to the representation of processes which are otherwise not readily accounted for.

Once a process has been identified as requiring a parametrisation a mathemat-

ical theory needs to be developed based on the physical properties of that type

of phenomenon. Numerical testing is then performed and can be checked by ex-

amining observations. The overall numerical model will, in general, consist of the

dynamical core plus the physics parametrisations.

1.3.1 The Atmospheric Boundary Layer

The atmospheric boundary layer is the turbulent region in the lowest part of the

troposphere. Its structure is highly distinguishable from the free atmosphere and

is defined as the region in which flow characteristics are directly influenced by

interactions with the surface of the Earth. Accurate numerical representation of

the structure and evolution of the boundary layer is important not only because

it helps describe everyday weather conditions but also because it describes the

transfer of heat, moisture and momentum from the surface to the free atmosphere.

Further it can trap pollutants, affecting air quality, it largely defines how much of

the energy in solar radiation is transmitted to the rest of the atmosphere and it has

a large influence on ocean currents through wind stress. The study of the boundary

layer has the added motivation that it inevitably requires numerical modelling of

turbulence, something notoriously difficult to achieve accurately due to range of

scales and complex motions involved.

The structure and depth of the atmospheric boundary layer is often governed by

shear driven turbulence, this is either suppressed or enhanced by the stratification

and hence evolves with a diurnal cycle. During the day the majority of the high

energy short-wave radiation from the sun passes through the atmosphere and acts

to heat the surface of the earth, in turn heating the air closest to the surface. This

warmer less dense air then travels convectively upwards to regions of higher density,

cooler air, enhancing the turbulence. This in conjunction with the turbulence
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generated by shear, existing due to surface friction acting against the wind, can

produce turbulence high above the surface, up to the order of a kilometre. As

the sun begins to set the surface cools and the air in the boundary layer becomes

stably stratified, i.e. with cool air below warm air. The stable stratification acts

to suppress the shear generated turbulence. Meanwhile however shear generated

turbulence may be increased, for example by the nocturnal jet [62] so a turbulent

region still exists. Sometimes, if the shear is small, the turbulence in the boundary

layer can be governed mainly by the surface heat flux. The overall height of the

boundary layer is generally lower at night, of the order of a few hundred metres.

The daytime boundary layer is referred to as the convective or unstably stratified

boundary layer while the nocturnal boundary layer is known as the stably stratified

boundary layer. A further neutral case can occur where the potential temperature

is constant throughout the depth of the boundary layer, this may be useful for

simplifying the model and assisting in analysis.

Frictional Damping in the Atmosphere

Turbulent exchange of momentum with the surface in the atmospheric boundary

layer has a tendency to slow the flow of air and so it is often referred to as frictional

damping. This frictional damping can produce some interesting and important

phenomena in the atmosphere. One example of an effect of frictional damping is

when a component of the near surface wind becomes directed across isobar towards

low pressure, this will occur in the majority of the boundary layer region. Flow

towards regions of low pressure results in mass flux towards the centre of cyclones

and away from the centre of anticyclones. By the principle of mass conservation

this results in ascent at the top of the boundary layer in a cyclone and descent at

the top of the boundary layer in an anticyclone. The process of ascent and descent

is known as Ekman pumping and leads to the often overcast or clear skies that

are associated with low and high pressure respectively. The rate of this ascent or

descent may be of the order of a few millimetres per second for synoptic scale flow

[34].
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A further process that can result from the boundary layer friction is cyclone

spin-down. The process of Ekman transport in the boundary layer, as described

above, is balanced by an ascent above the boundary layer. Similarly, for cyclones,

there is an outwardly radial flow above the boundary layer balancing the inwardly

radial flow in the boundary layer. As this outward flow occurs fluid with high

angular momentum is replaced by fluid with low angular momentum, causing a

spin-down of the cyclone. Typical spin-down time scales are of the order of a few

days [34].

The time scales as given by [34] are computed for barotropic cyclones, of more

interest is the effect the boundary layer can have on baroclinic cyclones. This

question is addressed in the studies of [1] and [5]. In these papers the spin down of

baroclinic cyclones is studied and attributed to either potential vorticity generation

in the boundary layer or surface stress. Spin down time scales are found to be of

a similar order to that found for barotropic cyclones.

In this thesis the influence of the boundary layer on cyclone development will not

be explicitly examined, however it will aid in the study to have an understanding

of these mechanisms and the associated time scales.

1.4 Physics-Dynamics Coupling

An important current challenge in numerical weather prediction is to obtain accu-

rate coupling between models formulated for sub grid-scale physics and the models

formulated for resolved large-scale dynamics. This is a difficult problem to over-

come not only due to the differences in spatial scale but also in the temporal-scale.

A number of authors have provided discussion for the appropriate time stepping

scheme for the coupled problem, [15, 20, 21, 22, 60, 61, 76, 79].

So far little emphasis has been placed on the spatial aspects of the physics-

dynamics coupling problem and it is here that this thesis aims to assist in addressing

this aspect of the challenge. When constructing a numerical model for weather and

climate prediction there is considerable choice for how to construct the model in

space, namely the three connected issues of vertical coordinate system, variable
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selection and variable arrangement.

Examples for the choice of vertical coordinate may include: height-based, height-

based terrain-following [13]; pressure or mass-based terrain-following [44]; isentropic-

based [35]; or Lagrangian coordinate [46, 40]. A particular coordinate system may

be beneficial due to a simplification that is afforded in the governing equations. The

variables required in order to obtain a closed calculation of the governing equations

include the three components of velocity and two thermodynamics variables. The

two thermodynamic variables can be chosen from, for example, potential tempera-

ture, temperature, pressure, density or entropy. The arrangement of the variables

divides into choice of horizontal staggering and choice of vertical staggering. For a

number of reasons it may be beneficial to store model variables at different places

in space. For example, if an equation required the product of pressure gradient and

a velocity it would be beneficial to the accuracy of that equation if the pressure

were staggered relative to (placed halfway between) the velocity, then a second

order finite difference numerical gradient would automatically be in the right place

without the need for averaging. Of course this needs to be considered in the context

of a whole system of equations where a particular staggering might be beneficial

to one part of an equation whilst damaging to another part. Examples of the

horizontal staggering include the classic Arakawa A- to E-grids [3]. Popular in

atmospheric modelling, due to good representation of the dispersion relation, and

in operational use at the Met Office [59], is the C-grid. In the vertical there are

two common choices of staggering the Lorenz [48] and Charney-Phillips [12] grids.

There is ongoing debate as to which staggering is the best option, for example

the Met Office now employ the Charney-Phillips configuration [59] whereas the

ECMWF [73, 7] use a variation of the Lorenz configuration. These issues of spatial

arrangement are inextricably connected with each other. For a particular vertical

coordinate it may be preferable to use certain thermodynamic variables and as a

result a certain grid staggering.

Considering the breadth of choice available, it is likely that some heuristic ar-

gument would be applied, based on the features that a model should be capable of
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capturing in order to make a decision. The issue with this however is that the full

equation set is highly complex and so differences between two rival configurations

may not be immediately apparent or clear cut. In order to address this question

[68] constructed 168 test cases covering three types of vertical coordinate, every

combination of two from a choice of five thermodynamic variables and a number

of different vertical staggerings, including Lorenz and Charney-Phillips. They con-

centrated on the vertical configuration since the horizontal staggering has been

well studied, e.g. [27]. The methodology that was used, which will be discussed

presently, allowed them to systematically check every combination and grade any

configuration from optimal to problematic; giving clear and concise conclusions.

The work of [68] was for the inviscid case, i.e. one where only the dynamics

are captured in the model but without small-scale physics. The overall aim of

this thesis will be to extend the analysis to cover a particular physics-dynamics

coupled problem. This is a question of interest due to potential contradictions

between the optimal configuration found for the dynamics on its own and the

optimal configuration for the physics on its own. For example [68] found Charney-

Phillips to give the optimal configuration for the dynamics. However it is likely

that Lorenz grid is preferable for the boundary layer parametrisation e.g. [13].

This thesis will focus on the choice of the stably stratified planetary boundary

layer for the physics since this is where there is the greatest apparent conflict in

the choice of vertical staggering. The dynamical mechanisms can be represented

by modelling the inviscid Navier-Stokes equations (Euler equations). The aim is to

investigate the spatial aspects of coupling these and in particular the best choice

of vertical staggering, the Lorenz or Charney-Phillips grid.

1.4.1 Stably Stratified Planetary Boundary Layer

The choice of vertical staggering is most relevant in a problem where local vari-

ability in the vertical is strong. For a stably stratified boundary layer buoyancy

and wind speed can vary dramatically with height; for a convective boundary layer

quantities will generally be well mixed and so will not vary as dramatically in the
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vertical. The parametrisation of the stably stratified boundary layer relies on a

local quantity, known as the gradient Richardson number; it will be shown that

it is due to this quantity that a conflict in the choice of vertical staggering arises

between the stably stratified boundary layer and the dynamics.

The main aim of this thesis will be to explore the conflicts in the choice of

staggering. However, in addition to the question of staggering, there are a number

of other ongoing challenges related to the study of the stably stratified boundary

layer. One of these challenges is in setting up a suitable stable numerical scheme.

Due to the way that sub grid processes are parametrised, modelling of the stably

stratified boundary layer represents a nonlinear diffusion problem. The relative

time scales of this nonlinear diffusion, in comparison with the typical time step of

a global model, means that care is required in order to set up a properly stable

and accurate numerical scheme. A typical time step in a global model may be

around 15 minutes. The time scale of the diffusion depends on the square of the

vertical grid spacing divided by the eddy viscosity, both of which vary with height.

Typically diffusion may occur over periods ranging from a few seconds up to hours.

Explicit time stepping would only be conditionally stable, and since the time scale

of the diffusion may be quite small, the condition would be unlikely to hold for

the kinds of time steps required for global models. An implicit scheme would be

required in order to gain unconditional stability, however implicit schemes would be

quite computationally demanding. Further to this, care is required when choosing

the order for the time stepping. A second order accurate scheme will provide high

levels of accuracy if the diffusion time scale is long compared to the time step in

the model. If the time scale is short then the diffusion is not represented well and

a first order accurate scheme may be beneficial for damping noise. As outlined by

[80], the problem when it comes to designing the numerical scheme, is that diffusion

occurring at time scales much longer and much shorter than the model’s time step

can occur simultaneously in the domain. The challenge is to design a numerical

scheme that is stable, accurate and that does not require excessive computational

effort.
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In addition to the work of [80] the problem of setting up a stable and accurate

time stepping scheme for the stably stratified boundary layer was also addressed

by [38] and [29]. In both papers linear stability analysis is presented for nonlinear

diffusion equations. [38] examine several different implicit and explicit schemes and

show them to have a number of limitations, they also present novel examples of

some alternative schemes with good stability properties. In [29] two novel schemes

are presented for giving stability in the numerics. The approach employed is one

which examines the rate of change of the diffusion operator with respect to the

model variables through the time step.

This thesis does not intend to specifically address the question of numerical

stability for modelling the stably stratified boundary layer. However, in the process

of addressing the question of staggering, the numerics of the boundary layer will be

examined, including some the time scales of linear variability. Doing so will help

to build an overall understanding of the stably stratified planetary boundary layer

and provide insight into the important scales in the problem.

1.4.2 Grid Staggering

The principal focus for this thesis is the effect of different vertical staggering and

different vertical spacing for the coupled problem. It was previously noted that the

C-grid is the horizontal staggering of choice in many operational forecast models

and is as a result of its beneficial properties [3, 65]. The choice of vertical staggering

is also a topic of attention [2, 14, 27, 45, 64, 68, 69] but less so within the context

of physics-dynamics coupling. A previous investigation of differences between the

Lorenz and Charney-Phillips grid in a coupled environment can be seen in [81]. In

this paper the differences are examined for a three level minimal hurricane model

and for a particular rapid vortex intensification event. In their study they pay

particular attention to the Lorenz grid computational mode, discussed presently,

and the errors that it can introduce into the vortex structure as the intensification

matures.

Previous work on the dynamics, namely [64, 68], has shown that Charney-
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Phillips is the preferred grid for the dynamics. This is due to the optimal repre-

sentation of propagation of all kinds of waves and also due to no spurious modes

existing. The Lorenz grid is preferred for the stably stratified boundary layer

parametrisation due to the dependency on the Richardson number which can be

found without averaging on the Lorenz grid. The investigation now has to be

made into which grid is preferred when these two large and small-scale processes

are coupled.

This question exists within a wider context of choice of staggering, the “density-

moisture-potential temperature conundrum”. Optimal wave propagation requires

density staggered relative to potential temperature, optimal moisture conservation

requires moisture to be stored with density and physical parametrisations often

require moisture to be stored with potential temperature.

Computational Mode

For the dynamics only situation the Lorenz grid gives fairly good wave propa-

gation properties, although not as good as the Charney-Phillips grid. However

the main downside is that the Lorenz grid supports an additional computational

mode [33, 68, 69]. This is effectively a spurious solution to the equation, due to

a property of the numerics, and is non-physical. In the Euler equations this is

due to an averaging that is required on a thermodynamic variable in the vertical

momentum conservation equation. A wave, whose wavelength is exactly twice that

of the grid spacing, in this thermodynamic variable will be averaged to zero and

become invisible to the model, this results in that solution having non-physical

zero propagation. The presence of a computational mode can lead to a number

of problems, for example manifesting itself as unwanted baroclinic instability [4]

or giving non-physical inconsistency between discretised and continuous equations

[58].

The computational mode is known to exist in the dynamics only case but how

it behaves in a situation where the atmospheric boundary layer is coupled to the

dynamics needs to be determined. It could be hypothesised that the strong diffusion
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mechanism in the boundary layer will act to dampen the computational mode

throughout the domain. If this were the case then it would be highly beneficial for

the Lorenz grid. Further to the examination of the computational mode for the

coupled boundary layer problem it will also be interesting to attempt to quantify

how a resting state with shear and non-constant temperature gradient influences

the computational mode.

1.4.3 Grid Spacing

The question of optimal grid staggering is connected also to the question of grid

spacing. In the previous work investigating the influence of the spatial arrangement

on the dynamics a uniform vertical grid is often used to simplify the mathematics,

i.e. it can help analysis of the discretisation [68]. Using a uniform grid also helps

in finding normal mode structures and dispersion relations since each normal mode

will maintain its own scale throughout the domain. In the atmosphere using a

uniform grid may be good for capturing the large-scale homogeneous dynamics but

overall would not yield accurate simulations since computational limitations would

demand a large grid spacing. If the Met Office arranged the vertical levels of their

global model uniformly the spacing would be over a kilometre. Many of the small-

scale features in the atmosphere occur due to the interaction with the ground, i.e.

in the boundary layer. In order to capture these accurately it is beneficial to have

a finer resolution here.

In order to achieve a grid with varying resolution some analytical function of

spacing or height is derived, this can then be adapted depending on where the most

model levels are required. An example of such is a geometric stretching. It should

be noted that the most accurate results are likely to be found when variation of

spacing is smooth and when all levels, staggered and un-staggered, vary together,

i.e. not so that one level is positioned half-way between another [39].

The thesis will include discussion of the grid spacing, the effect of a smooth

variation of the spacing against placing staggered levels halfway between unstag-

gered levels and how damaging the use of a uniform grid is for boundary layer
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structures.

1.5 Governing Equations

The governing equations that are used to model the coupled boundary layer-

dynamics are the Reynolds averaged Navier-Stokes equations. Equations for con-

servation of each of the three components of momentum, along with an equation

for conservation of potential temperature and density are required. Through the

nonlinear advection and viscosity terms the full Navier-Stokes equations include

all the mechanisms for boundary layer flow. However it would not be sensible to

model numerically in this way due to the small-scales involved, it would effectively

require a direct numerical simulation.

Instead of trying to employ direct numerical simulation the Reynolds averaging

is used, which reduces the model variables into a mean part plus fluctuations around

that mean part. By considering these two parts of the system separately allows for

the model to be somewhat simplified. Both parts of the system evolve temporally

but the mean state will evolve considerably slower than the fluctuations. Over a

sufficient temporal period the fluctuation part can be neglected since the mean

of any fluctuation is approximately zero. Of course the approximation is only

valid while the mean part of the system remains approximately constant, if too

long a time period is considered the mean part would change. By assuming this

correct temporal period has occurred allows one to reduce the model to its mean

state. Due to the nonlinear interactions in the equations there will be terms which

involve products of fluctuating terms, which will not be zero over the averaging

period. Indeed without these nonlinear interactions it would not be possible to

properly model turbulence, an inherently nonlinear process.

The terms that are obtained as a result of the Reynolds averaging are turbulent

fluxes of that parameter, for each equation there will be three fluxes, representing

turbulent flux in three dimensions. The turbulent fluxes describe how the quantity

measured by that equation will be transported by turbulent eddies. This transport

will be sub grid-scale and thus unknown in terms of the mean part variables so
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requires a parametrisation. The advantage of using Reynolds averaging over mod-

elling the Navier-Stokes equations in their natural form is that terms have been

gained which can be written in terms of the mean flow through a closure, rather

than needing to capture all relevant scales.

Generally assumptions can be made for the situation in order to minimise the

number of sub grid processes that need to be parametrised. In the stably stratified

boundary layer for example, it can be assumed that the vertical gradient of vertical

turbulent flux will dominate the horizontal gradient of turbulent flux. This is due

to the relative vertical and horizontal scales, in the stable boundary layer the depth

will be shallow and so eddies will have larger horizontal scale than vertical scale,

resulting in larger vertical gradients. It can also be assumed that transport by the

turbulent eddies will dominate transport by molecular viscosity. A further assump-

tion often made in the boundary layer is that the turbulent vertical transport of

momentum and heat will dominate the transport by the mean vertical wind so that

no equation for conservation of vertical momentum is required.

Two distinct equation sets will be considered: one for modelling the bound-

ary layer on its own and one for coupling the dynamics to the boundary layer.

Both equation sets can be derived using the Reynolds averaging technique. When

studying the boundary layer on its own a number of filtering techniques will be

used so that dynamical mechanisms are not captured, allowing for the study of the

boundary layer mechanism on its own. This enables not just an examination of

optimal grid configuration for the boundary layer but also to establish the most

appropriate methodology for analysis. In addition to the complete nonlinear be-

haviour, the fully coupled system of equations can be thought of as supporting

four distinct mechanisms: Rossby waves, inertio-gravity waves, acoustic waves and

boundary layer diffusion, the former three being dynamical processes. It may also

be hypothesised that further behaviour resulting from the coupling may be present.

For the boundary layer only case the dynamical waves are filtered out by ignor-

ing latitude dependence in Coriolis, having no horizontal dependence, no vertical

wind and being in the Boussinesq framework. The equation set for the boundary
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layer then represents a 1D column of the model. When examining the coupled

problem a 1D column model can still be used whilst allowing for all the dynamical

mechanisms by assuming disturbances with certain horizontal wavenumber.

The equations are discretised and solved numerically on a grid. A second order

accurate finite differencing is used for numerical derivatives. It has been previously

noted [45] that inaccuracies that occur due to choosing a particular vertical stagger-

ing may be overcome by choosing higher order finite difference schemes. However,

considering their additional expense, moving to higher order schemes may not al-

ways improve model performance due to the relatively low order of continuity of the

atmosphere [32]. Indeed many operational models employ second order schemes so

the question of how the staggering options perform for second order is still relevant.

In addition a higher order scheme will not alleviate computational mode problems.

1.6 Methodolgy

In order to examine the choice of vertical configuration for the coupled boundary

layer dynamics problem an appropriate methodology will be required.

A popular method for comparing competing numerical configurations, and seen

in a number of studies e.g. [2, 81], relies on examination of model output after

equivalent simulations. For example in this case the full Reynolds averaged equa-

tions would be coded up and run with a given set of initial conditions for two

competing vertical configurations. Runs would be performed at operational reso-

lution and then after a given duration be compared with the output from a high

resolution version of the run. Alternatively a realistic situation could be considered

and compared to observations. Although these provide useful testing methodolo-

gies they can be somewhat ambiguous and would not necessarily provide much

insight into exactly why a particular vertical configuration performed well. A more

systematic methodology involves expanding the system into its steady and linear

time dependent (transient) parts and considering the two separately. This allows

for techniques such as modal analysis to be employed to examine the different waves

and scales supported by the system. Examining the behaviour of different linear
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structures can provide clear and concise insight into how different configurations

can be expected to perform for a given problem.

1.6.1 Linearisation

In linearisation all of the model variables are written as a sum of the steady state

part plus a transient part. The transient part represents a small amplitude per-

turbation away from the steady state. All terms in the equations are expanded

in this way and the resulting formulation is split to create equations containing

only steady parts and equations containing only first order transients. Transient

terms are relatively small in comparison to the steady terms and so expanded terms

which include products of two or more transient variables can be neglected. The

steady state equations and the transient equations are then examined individually

with the appropriate technique. Reducing the system in this way should allow one

to pinpoint exactly where a certain vertical configuration performs well and derive

from those results the implications for the overall model.

The steady state part of the system is independent of time and will have overall

structure similar to that seen when examining the structure of the atmosphere.

Generating the steady state can be done with a method such as false time-stepping

or the Newton method.

The time dependent transient part of the system represents the linear evolution

of the system and has wavelike solutions. When a system of equations is solved

discretely there will be a set of wavelike structures that can be supported; any

transient linear evolution can projected onto the set. This set of waves are referred

to as the normal modes of the solution [66, 67, 68, 64]. With the appropriate

technique for the situation each mode in the set can be examined independently.

Comparing the structure, frequency and growth or decay rate of each mode allows

one to derive the implications for how the transient behaviour will be represented

discretely. Studying normal modes allows for a highly systematic approach for the

comparison of different vertical configurations. For this kind of approach to be

most successful requires a suitably posed set of equations and this will need to be
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taken into consideration in this thesis. It should be noted that this methodology

does not allow for examination of the model’s full nonlinear response, nevertheless

the linear wavelike response is important. Large-scale atmospheric flow is in hy-

drostatic and geostrophic balance; accurate representation of the structure of the

acoustic and inertio-gravity waves, that propagate as the flow adjusts towards bal-

ance after a perturbation, is considered essential. Further, accurate representation

of the frequency and structure of the energetically dominant Rossby waves is also

considered essential.

In idealised cases the steady and transient parts of the system may be found

analytically, then solutions from different configurations can be compared with the

analytical solution. For more complicated systems this is not currently possible

and the techniques for finding the steady and transient parts of the system need to

be performed for a high resolution grid as well. When candidate configurations are

compared at high resolution there should be indistinguishable difference between

the configurations, otherwise differences at low resolution cannot be properly quan-

tified.

1.6.2 Dispersion Relation

The dispersion relation for a set of linearised equations describes frequency against

wavenumber for all the resolved waves. It is a very useful relationship to obtain

since when it is compared with an analytical or a high resolution truth solution it

will describe which waves will propagate most accurately. Comparing scales in this

way can lead to some very clear insight when comparing different configurations.

Figure 1.1 and Figure 1.2 demonstrate how studying the dispersion relation can be

highly informative as to why a particular staggering works well. Figure 1.1 describes

the error between the dispersion relation for the A- to D-grids and the analytical

dispersion relation for the f -plane linearised shallow water equations. The plots

are for Rossby radius of deformation chosen to be 10,954m and with horizontal

grid spacing of 10,000m. The C-grid can be seen to give a good representation

of the dispersion relation in comparison to the other grids, across the majority of
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normalised horizontal wave numbers. This demonstrates why it is a popular choice

of staggering in atmospheric modelling. Similarly the B-grid, which is also quite

popular, can be seen to give a good representation of the propagation of the largest

scale waves. In situations where the Rossby radius of deformation is reduced in

comparison to the grid spacing the B-grid is considered more accurate e.g. [37].

For a complete study for this kind of problem see e.g. [26].
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Figure 1.1: Dispersion error for the Arakawa A- to D-grids for the f -plane linearised
shallow water equations.

Repeating exactly the work of [68] Figure 1.2 shows the dispersion relation for

the discrete normal modes of the dynamics only Euler equations with isothermal

reference state. The Charney-Phillips grid can be seen to capture the frequency

of small-scale Rossby modes more accurately than the Lorenz grid. Note that the

computational mode is not shown on the plot since it has zero frequency. The

methodology used by [68] is that which will be employed here.
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Figure 1.2: Dispersion relation for the discrete normal modes for the dynamics
only isothermal equations, from top to bottom the branches represent acoustic,
inertio-gravity and Rossby modes.

Frequency rates are important for neutral modes, i.e. modes that do not grow

or decay in amplitude. For non neutral modes the rate of growth or decay is also

important. For a simple enough reference state the large-scale Rossby, inertio-

gravity and acoustic dynamical modes are neutral modes; important information

is the speed at which the waves will propagate, given by the dispersion relation.

For the modes which represent the influence of the boundary layer diffusion there

will be decay and the usefulness of a vertical configuration needs to be determined

also from the rate of that decay. If a configuration fails to damp particular modes

fast enough then it could cause problems for the model as that mode will continue

to exist incorrectly in the solution; the problem could then be exacerbated if the

structure of that mode was also captured inaccurately.

An ideal vertical configuration for the coupled boundary layer and dynamics

model would capture the decay rate of boundary layer modes most accurately, rep-

resent the frequencies of the neutral dynamical modes most accurately, capture all

mode structure most accurately, have no computational mode and place all model

variables at levels most suited to meeting any conservation properties. Unfortu-

nately no such configuration is currently known. The question now is how the best
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configurations for some of these things, Lorenz and Charney-Phillips, can perform

when all the features are combined.

For sufficiently simple situations, such as the f -plane shallow water equations

and the isothermal resting state Euler equations, properties such as dispersion

relation can be obtained analytically. Further to this it is also possible to derive

analytical descriptions of the discrete versions. For the more complicated situation

of the coupled dynamics-boundary layer, information about the mode frequency,

damping and structure needs to be obtained numerically and for this a method

such as eigendecomposition is required.

1.6.3 Eigendecomposition

Firstly the entire linearised transient equation set can be written in matrix form,

ẋ = Ax. (1.1)

The vector x contains all the transient model parameters, the matrix A contains the

coefficients of the transient parameters, including steady state variables. Seeking

horizontally wavelike temporal solutions of the form x ∝ exp(ikx+ ily+λt) allows

(1.1) to be written in eigenvalue form,

λx = Ax. (1.2)

Eigenvectors x represent the complex mode structures and complex eigenvalues λ =

µ−iω represent the frequency ω and/or growth or decay rate µ of the corresponding

mode. The decomposition A = XΛX−1 is used to find the solutions. Eigenvectors

are the columns of X and eigenvalues are the diagonal elements of Λ. The imaginary

part of the eigenvalue represents the frequency of the corresponding mode; if k is

positive then positive imaginary part denotes eastward propagation and negative

imaginary part denotes westward propagation. If the real part is positive the

corresponding mode will grow, if negative it will decay. Neutral dynamical modes

will have purely imaginary corresponding eigenvalue. Boundary layer modes have

35



real part dominating imaginary part, representing the fact that the diffusion of

those structures dominates their frequency. Note that in the presence of a complex

reference state they will not necessarily be purely real due to the propagation

induced by shear and stratification.

Normal Matrices

When the operator, or system of equations, is normal the matrix A in which it is

expressed will also be normal. A normal matrix has the property AA? = A?A,

where A? is the conjugate transpose of A. When this is the case the eigenvec-

tors form an orthogonal basis and represent the physical attributes of the system

through normal modes. In many fluid dynamical applications, particularly those

that give rise to turbulence, the operator is non normal. When the matrix is far

from normal its eigenvectors may be far from orthogonal, meaning it becomes dif-

ficult to obtain any physical interpretation of the system using eigenvalues and

eigenvectors. If this is the case it may not necessarily be wise to examine eigenval-

ues and eigenvectors [71]. Since this implies solutions will be non normal when the

matrix is far from normal it makes no sense to even describe the transient solutions

as “normal modes”, instead they are referred to as eigenmodes.

In order to recover the systematic methodology, that makes the eigendecompo-

sition so popular, other decompositions that return a normal basis may be useful.

1.6.4 Singular Value Decomposition (SVD)

Perhaps the most promising decomposition for recovering some of the systematic

methodology afforded by examining normal modes is the Singular Value Decompo-

sition (SVD). Rather than decompose the matrix into eigenvectors and eigenvalues

it decomposes into input (right) singular vectors, output (left) singular vectors and

singular values, the decomposition is given by A = UΣV∗. Despite the structure of

A the decomposition always returns singular vectors forming an orthonormal basis,

with corresponding real and positive singular values. It is effectively a generalisa-

tion of the eigendecomposition that is more suitable for non-normal or non-square

36



operators. Although a generalisation of the eigendecomposition, the two are never-

theless related and there are two important links to note. Firstly when the matrix

A is normal, Hermitian and sign-definite the eigendecomposition is equivalent to

the SVD, that is to say that input singular vectors are identical to the output

singular vectors and are equal to the eigenvectors and that singular values are

equal to eigenvalues. For a Hermitian matrix A = A?; if A is positive definite

then z?Az > 0 for any non-zero complex vectors z, if A is negative definite then

z?Az < 0. A sign-definite matrix is Hermitian and a Hermitian matrix is normal.

Secondly the SVD of any matrix A is equal to the eigendecomposition of AA∗ and

A∗A.

Singular vectors were first used in meteorology by [49], where they were used

as a tool for calculating how the error in a model initialisation grows throughout

the forecast. For the last two decades or so, as computing resources have become

sufficient for calculating the decomposition, the use of singular vectors and singular

values has been seen in a large number of weather and climate model analysis

applications from ensemble initialisation e.g. [52] and error growth estimation e.g.

[53] to non-normal stability analysis e.g. [57].

From the various applications it can be seen that the singular vectors and

singular values can play an important role in describing the behaviour of A. For

example the largest singular value has a corresponding singular vector that would

be perturbed the most when multiplied by the matrix of coefficients A [43]. This

provides us with some mathematical basis upon which the method can be used to

compare different configurations when a non-normal matrix is obtained.

An important consideration when applying the SVD is the norm in which to

work, also discussed in [43]. Unlike the eigenvalues the singular values will be

sensitive to the norm. It can be shown that a system which conserves energy, such

as the isothermal resting state dynamics only case, will be normal and Hermitian

when written in the energy norm. Since it is understood that the SVD is equivalent

to the eigendecomposition when the system is normal, Hermitian and sign-definite

it would make most sense to work in the energy norm when calculating singular
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values and singular vectors. Although the system will dissipate energy through the

boundary layer diffusion, working in the energy norm will still likely give the closest

match between the two decompositions. If the total energy in the system can be

given by the matrix multiplication E = xTEx then working in the energy norm

transforms x so that E ≡ I. If working in the energy norm, singular vectors should

provide the structures which when multiplied by A give the greatest perturbation in

terms of energy and therefore those that are likely to be of most physical relevance.

Despite singular values being positive and real, the decomposition would still

be valid for a situation of purely neutral modes. Rather than the largest singular

values corresponding to the singular vector that would undergo the largest growth

or decay it would correspond to the singular vector that would undergo the fastest

oscillation. From another prospective one could just as well construct the problem

so that eigenvalues were all real so that the eigenvalue with largest real part cor-

responded to the eigenvector undergoing the fastest oscillation. In the case where

some neutral and some decaying modes are present the ability of the singular values

to describe the physical behaviour needs to be determined. They will likely pick the

most dominant from either case since they are incapable of distinguishing between

real and imaginary part. In most situations the behaviour should be recoverable

from the singular vectors.

It will require careful numerical testing to be sure of the extent to which sin-

gular values and vectors can be used to understand the properties of A in the

coupled boundary layer dynamics case. It is clear that under the right conditions

the eigendecomposition will produce results with well understood physical inter-

pretation. It is less clear however, under what conditions the SVD will be able to

produce results from which a clear physical interpretation, and thus comparison of

grid configurations, is possible.

1.6.5 Discrete and Continuous Spectra

A further issue to consider when seeking wavelike solutions for fluid flow problems

which exhibit non-trivial reference state and complex viscous terms is the form of
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the spectrum. The spectrum here represents the range of scales supported by the

continuous equations, or the possible wavelengths of the wavelike solutions. Certain

problems, such as that considered by [68], clearly have discrete spectra; solutions

are shown to be sinusoidal so only waves with certain wavelengths can exist whilst

satisfying the boundary conditions on the bounded domain. It has been shown

that for certain boundary layer type flows that have an unbounded domain, such

as in the viscous Orr-Sommerfeld equation, the spectrum consists of both discrete

and continuous parts. Due to the way the boundary conditions are implemented it

is possible for solutions with any given wavelength to exist, meaning a continuous

set of solutions. Further to the boundary layer flow in an unbounded domain it is

also possible to have inviscid flow in a bounded domain that exhibits continuous

spectrum [19, and references therein]. In the case of an unbounded domain with

a boundary layer flow, solutions with any given wavenumber may exist while still

meeting the boundary condition at infinity. If solutions of any wavelength may

exist it will result in a part of the spectrum with a continuous part to it. Unlike

the bounded domain, resting isothermal reference state case, in which the boundary

conditions demand a discrete spectrum.

The type of flow considered for the purpose of this thesis will be a boundary layer

flow but with boundary conditions imposed on a finite domain; in this situation it

is not clear whether a discrete only spectrum should be expected. It may be that

the damping mechanism in the boundary layer can absorb dynamical waves of any

length, which could result in a continuous part in the spectrum of solutions.

When only a discrete spectrum of solutions exists it is clear which solutions will

be supported when the equations are discretised. When a continuous spectrum

of solutions exists the discretisation of the equations will result in some discrete

sampling of the continuous spectrum. In this case it is not clear that different

configurations, for example when using the Lorenz or Charney-Phillips grid, will

sample the continuous spectrum in the same way. If they do not sample the contin-

uous spectrum in an equivalent manner then it would not be possible to compare

discrete modes since they would all be different.
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If solutions may take any wavelength and the spectrum thus contains a contin-

uous part then it is possible to numerically search for it, for example by generating

repeat solutions with increasing resolution. This would not be sufficient to prove

that solutions can only take certain wavelengths and that only a discrete part of

the spectrum exists. Use of the methodology of comparing low and high resolution

eigenvectors will require solutions sampled from a discrete solution; this will need

to be examined as part of the study.

1.7 Thesis Outline

The aim of this thesis is to investigate the spatial aspects of coupling the atmo-

spheric boundary layer and large-scale dynamics. Questions of particular interest

are:

• Does either the Lorenz grid or Charney-Phillips grid offer an overall superior

configuration for accurately capturing the types of processes that can occur?

• What differences occur as a result of different ways of stretching the grid?

• How does the computational mode behave in the presence of the boundary

layer mechanism?

Answering these questions in a satisfactory manner will require a methodology

that allows for a systematic study of the transient behaviour in the system. The

classic approach is normal mode analysis. However this is only suitable for the

examination of normal systems, i.e. those whose eigenvectors of the linearised

system are orthogonal. Two further points can be added in the questions that

need to be addressed:

• Just how useful is the normal mode methodology?

• If normal mode analysis is found to be unusable then how viable is other

possible methodology, i.e. singular values?
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The project is divided into tackling the boundary layer on its own, from which a

number of non trivial questions are raised, and tackling the fully coupled problem.

As a result the thesis is divided into two distinct parts with chapters therein.

Part I will cover the boundary layer only problem. Chapter 2 will discuss the

model used for describing the boundary layer, including the parametrisation of

boundary layer turbulence. Adjustments are required to the usual form of the

boundary layer equations in order to suit the methodology; this is also discussed

here. Chapter 2 will also outline the fundamental differences between the types

of staggering, the possible stretching of the grid spacing and the various options

available for averaging the variables. The solutions of the equations are then dealt

with in Chapter 3 and Chapter 4. Firstly the steady state solutions are examined

in Chapter 3. Here the ability of each configuration to accurately capture the

steady state structure of the solution is discussed. Chapter 4 looks at the transient

part of the calculation. This includes a detailed examination of the ability of each

configuration to capture the physical structure that the system supports and of the

ability of the methodology to assist in the comparison. In the final chapter of Part

I some conclusions for the boundary layer only case are discussed.

Part II of the thesis examines the fully coupled problem. Chapter 6 discusses

the equation set required to model the full problem, so is in essence an extension

of the ideas set out in Chapter 2. Chapters 7 and 8 contain the main results of the

thesis, namely the answers to the questions that were posed in this introduction.

Firstly a discussion is given of the dynamics only case so that the results can

be extended to include a stretched grid and to test the methodology that was

introduced for the boundary layer only case. A steady state which is based on

the full coupled equations is generated and compared for the two types of grid

staggering. Various cases are constructed to demonstrate the differences between

the vertical configurations and understand physically the influence of the boundary

layer on the dynamical structures and vice-versa. Chapter 9 draws together the

results and offers some conclusions and motivation for further work investigating

the spatial aspects of the physics-dynamics coupling problem.
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Part I

Vertical Discretisations for the

Stably Stratified Planetary

Boundary Layer
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In this first part of the thesis the simpler case where the dynamics are ignored so

that system solves the boundary layer alone is studied. It is already well understood

that Charney-Phillips is preferable when solving the dynamics without the bound-

ary layer. Here an investigation is presented into whether the Lorenz grid performs

better than Charney-Phillips when only the boundary layer is solved. It will be

argued that the form of the boundary layer equations suggests that the Lorenz

grid should be preferred, this also needs to be tested numerically to confirm. The

methodology, as outlined in the introduction, will be constructed in order to test

whether the Lorenz grid is indeed the favoured configuration. The equations are

linearised into steady and transient parts. Once the equations are suitably posed

for finding the steady state profiles the two two different configurations, Lorenz and

Charney-Phillips, are compared. Once results are established for the steady state

part of the equations the transient part will also be examined. It is in this area

of the comparison that the methodology needs to be carefully tested and exam-

ined. With a suitable methodology the ability of the Lorenz and Charney-Phillips

configurations to capture the linear time evolution can be compared.

Part I is arranged as follows. Chapter 2 describes the model that will be used,

Chapter 3 describes the steady state and how it is obtained and Chapter 4 discusses

the transient part of the solution. Some concluding remarks are offered in Chapter

5.
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Chapter 2

The Boundary Layer Model

This chapter aims to outline the model that will be used to examine the bound-

ary layer. Firstly showing how the Navier-Stokes equations are adapted into a

form suitable to modelling the boundary layer structure and then discussing the

discretisation techniques that will be used.

A useful approximation for modelling the Navier-Stokes equations is the Reynolds

Averaging technique. The idea behind the approximation is to consider the contin-

uous equations as a their mean part plus fluctuations around the mean part. The

equations can then be time-averaged, for a sufficient length of time the average of

the fluctuating part is just equal to the mean part. The result of the averaging is

that only the mean part and the products of two fluctuating terms remain. These

products of fluctuating variables are called the Reynolds stresses; these are func-

tions of fluctuating velocity and represent the effect of turbulent transport within

the flow. These Reynolds stresses need to be approximated by a turbulence model,

also known as a closure. The beauty of the approximation is that with the right

closure these Reynolds stresses give a good representation of the characteristics

of a boundary layer type flow. Rather than modelling all the small-scale viscous

interactions in the full Navier-Stokes equations, a much more viable simulation,

where turbulence is calculated from the resolved mean flow is obtained.

In order to be able to computationally model the boundary layer the continuous

equations are solved discretely on a grid. A typical operational numerical weather
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prediction model will have a vertical grid spacing increasing with height. The

smallest spacing, between the ground and lowest model level, may be around 10m.

The turbulent processes in the boundary layer can be sub-grid, in that the scale of

motion may be smaller than the spacing between the points on the discrete grid.

Without the Reynolds averaging and closure the sub-grid scale motion would not

captured; with the closure the sub-grid scales are approximated based on the large-

scale mean features that are stored on the grid. This chapter goes on to demonstrate

the type of closure that is commonly used for boundary layer modelling, from which

it can be seen why the Lorenz grid is expected to be the preferred configuration.

Beyond the derivation of the equations the idea of using subsidence to generate

a steady state is introduced, the set of test cases that will be used are listed and

the types of grid spacing that will be required are introduced and discussed.

2.1 Governing Equations

The fully compressible 3D Navier-Stokes equations of fluid motion, in a rotating

frame and in Cartesian coordinates, are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

ρ

∂p

∂x
+∇. (ν∇u) , (2.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂p

∂y
+∇. (ν∇v) , (2.2)
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∂t
+ u
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∂x
+ v

∂w

∂y
+ w

∂w
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= −1

ρ

∂p

∂z
+∇. (ν∇w)− g, (2.3)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
= ∇. (ν∇θ) , (2.4)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+ ρ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= 0. (2.5)

Equations (2.1) to (2.4) represent the evolution of the horizontal (u, v) and vertical

(w) components of momentum and potential temperature. Potential temperature

θ is related to the other variables through the viscosity, as will become clear. Equa-

tion (2.5) represents the mass continuity equation. ρ is density and p is pressure.

The coordinate system is aligned such that x represents the zonal direction, y the
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meridional direction and z the vertical direction. ν is viscosity, g = 9.80616ms−2

is gravity and f = 1.031× 10−4s−1 is the Coriolis parameter.

2.1.1 Reynolds Averaging

When modelling turbulence it is not necessarily feasible or useful to try to model

all the scales supported within the flow. A common approach to modelling the

turbulence in the atmospheric boundary layer is by using the Reynolds averaged

Navier-Stokes equations. This filtering technique used in order to obtain an ‘aver-

age’ picture of the state of the flow along with a turbulent unknown part. Many

of the authors that have written on the boundary layer equations tend also to

work within an incompressible Boussinesq framework for the boundary layer, e.g.

[28, 34, 62]. It is generally sufficient to restrict attention to incompressible flow

since variation in density is relatively small across the lowest portion of the atmo-

sphere. When deriving for an incompressible flow the Reynolds averaged equations

can be found by writing all model variables as their mean plus fluctuating parts,

i.e. u = u+ u′. Terms can then be time-averaged to gain an insight to the overall

flow property. To use the technique it is assumed that for a certain period of time

the fluctuating parts average to the mean flow i.e. u+ u′ = u, the time must be

long enough so that fluctuations average to the mean flow but not so long that the

mean flow itself could be evolving. The property of the averaging is thus u′=0 and

thus that u ≡ u. Note however that products of fluctuating variables do not go to

zero, indeed these are required for modelling turbulence.

In part II of this thesis the non-Boussinesq fully compressible equations will

be required. This will allow for acoustic waves to be supported by the system,

a desirable feature for testing methodology and for physical interpretation of the

system. Since acoustic waves propagate very quickly they will always stand out

in the spectrum. When obtaining the Reynolds averaged Navier-Stokes equations

for a fully compressible flow it is not sufficient to write all model variables just

as mean plus fluctuating part as this leads to terms describing fluxes of densities,

preventing one from performing the necessary cancelling of terms. Instead all terms
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excluding density and pressure are written as mass weighted averages, density and

pressure can remain as un-weighted mean plus fluctuating part. The zonal velocity

for example is now written u = ũ+ u′′, with the new mass weighted property, i.e,

ũ =
ρu

ρ
. (2.6)

The most important difference to note is that when the quantity u is averaged the

u′′ terms do not equal zero. Instead the mass weighted version will, giving that

ρu′′ = 0 . (2.7)

The technique for obtaining the equation set, as described also by [63], is shown

here for the zonal momentum equation (2.1) and the equation for conservation of

mass (2.5). First of all, terms in (2.5) are combined by the product rule then

expanded into mean and fluctuating parts and the mass weighted counterparts,

∂

∂t
(ρ+ ρ′) +

∂

∂x
(ρ+ ρ′) (ũ+ u′′) +

∂

∂y
(ρ+ ρ′) (ṽ + v′′) +

∂

∂z
(ρ+ ρ′) (w̃ + w′′) = 0.

(2.8)

Now the terms are multiplied out with the averaging applied,

∂

∂t

(
ρ+ ρ′

)
+

∂

∂x

(
ρũ+ ρ′ũ+ ρu′′ + ρ′u′′

)
+

∂

∂y

(
ρṽ + ρ′ṽ + ρv′′ + ρ′v′′

)
+

∂

∂z

(
ρw̃ + ρ′w̃ + ρw′′ + ρ′w′′

)
= 0. (2.9)

Terms such as ρ′ũ equal zero since ρ′ = 0 by definition of the time-averaging. Terms

such as ρu′′+ ρ′u′′ can be rewritten as
(
ρ+ ρ′

)
u′′ = ρu′′ which is zero by definition

of the mass weighted time-averaging (2.7). The equation for the conservation of

“weighted” mass is now obtained,

∂ρ

∂t
+
∂ρũ

∂x
+
∂ρṽ

∂y
+
∂ρw̃

∂z
= 0. (2.10)

Note that this shows the general form of the derivation, however the process is
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shortened if equation (2.5) is written in flux form, then applying equation (2.6)

leads directly to equation (2.10).

Now a similar process is required for the conservation of zonal momentum. As

suggested above and following [63] it simplifies the derivation once the momentum

equations are written in conservative form,

∂ρu

∂t
+

∂

∂x

(
ρu2
)

+
∂

∂y
(ρuv) +

∂

∂z
(ρuw)− fρv = −∂p

∂x
+ Tx (2.11)

where Tx = ∇. (µ∇u) and µ = ρν, this is the viscosity term. A good approximation

for the boundary layer, as will be considered here, is the high Reynolds approxi-

mation, which says that the transfer of momentum and heat as well as any other

quantities will be dominated by turbulent transport over molecular viscosity. This

is due to the large scales involved with the vertical turbulent flux which may be

of the order of 100m compared with a few centimetres for the molecular viscosity.

Due to the complexity in deriving Tx for the fully compressible case it is excluded

here, refer to [63] if requiring the full derivation.

As for the mass conservation equation each term is written as mean plus fluc-

tuating or mass weighted equivalents,

∂

∂t
(ρ+ ρ′) (ũ+ u′′) +

∂

∂x
(ρ+ ρ′) (ũ+ u′′) (ũ+ u′′) +

∂

∂y
(ρ+ ρ′) (ũ+ u′′) (ṽ + v′′)

+
∂

∂z
(ρ+ ρ′) (ũ+ u′′) (w̃ + w′′)− f (ρ+ ρ′) (ṽ + v′′) = −∂ (p+ p′)

∂x
.

(2.12)

Equation (2.12) is now time-averaged and expanded,

∂

∂t

(
ρũ+ ρ′ũ+ ρu′′ + ρ′u′′

)
+

∂

∂x

(
ρũũ+ 2ρũu′′ + ρu′′u′′ + ρ′ũũ+ 2ρ′ũu′′ + ρ′u′′u′′

)
+
∂

∂y

(
ρũṽ + ρũv′′ + ρṽu′′ + ρu′′v′′ + ρ′ũṽ + ρ′ũv′′ + ρ′ṽu′′ + ρ′u′′v′′

)
+
∂

∂z

(
ρũw̃ + ρũw′′ + ρṽw′′ + ρu′′w′′ + ρ′ũw̃ + ρ′ũw′′ + ρ′w̃u′′ + ρ′u′′w′′

)
−f (ρṽ + ρ′ṽ + ρv′′ + ρ′v′′

)
= −∂

(
p+ p′

)
∂x

.

(2.13)
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Again, terms linear in fluctuations are immediately zero by definition of the time-

averaging, again combining terms allows use of the property of the weighted aver-

aging, i.e. ρũu′′ + ρ′ũu′′ = ũρu′′ = 0. Rewriting with the removal of all the terms

that cancel gives,

∂

∂t
(ρũ) +

∂

∂x
(ρũũ) +

∂

∂y
(ρũṽ) +

∂

∂z
(ρũw̃)− fρṽ +

∂p

∂x

= − ∂

∂x

(
ρu′′u′′

)− ∂

∂y

(
ρu′′v′′

)− ∂

∂z

(
ρu′′w′′

)
. (2.14)

Note that derivatives expand as, for example,

∂

∂y
(ρũṽ) = ρũ

∂ṽ

∂y
+ ρṽ

∂ũ

∂y
+ ũṽ

∂ρ

∂y
,

= ρṽ
∂ũ

∂y
+ ũ

∂

∂y
(ρṽ) . (2.15)

Applying expansion (2.15) to all of the spatial derivatives on the left hand side of

(2.14) and then for the derivatives in the other equivalent momentum equations

the cancelling becomes clear. Every term that appears in the conservation of mass

equation also appears in every conservation of momentum equation, terms like e.g.

∂
∂y

(ρṽ). Since the sum of the terms in the mass conservation equation is zero the

conservation of momentum equations reduce to,

∂ũ

∂t
+ ũ

∂ũ

∂x
+ ṽ

∂ũ

∂y
+ w̃

∂ũ

∂z
− fṽ +

1

ρ

∂p

∂x

=
1

ρ

[
− ∂

∂x

(
ρu′′u′′

)− ∂

∂y

(
ρu′′v′′

)− ∂

∂z

(
ρu′′w′′

)]
,

(2.16)

∂ṽ

∂t
+ ũ

∂ṽ

∂x
+ ṽ

∂ṽ

∂y
+ w̃

∂ṽ

∂z
+ fũ+

1

ρ

∂p

∂y

=
1

ρ

[
− ∂

∂x

(
ρv′′u′′

)− ∂

∂y

(
ρv′′v′′

)− ∂

∂z

(
ρv′′w′′

)]
,

(2.17)

∂w̃

∂t
+ ũ

∂w̃

∂x
+ ṽ

∂w̃

∂y
+ w̃

∂w̃

∂z
+

1

ρ

∂p

∂z
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=
1

ρ

[
− ∂

∂x

(
ρw′′u′′

)− ∂

∂y

(
ρw′′v′′

)− ∂

∂z

(
ρw′′w′′

)]− g,
(2.18)

∂θ̃

∂t
+ ũ

∂θ̃

∂x
+ ṽ

∂θ̃

∂y
+ w̃

∂θ̃

∂z
=

1

ρ

[
− ∂

∂x

(
ρθ′′u′′

)− ∂

∂y

(
ρθ′′v′′

)− ∂

∂z

(
ρθ′′w′′

)]
,

(2.19)

∂ρ

∂t
+
∂ρũ

∂x
+
∂ρṽ

∂y
+
∂ρw̃

∂z
= 0. (2.20)

Equations (2.16) - (2.20) represent the fully compressible Reynolds averaged

Navier-Stokes equations. All the terms on the left hand side of these equations de-

pend on the large-scale time-averaged mean part of the flow and can be considered

‘known’. Terms on the right hand side include products of fluctuating variables

and are ‘unknown’. These unknown terms are crucial in that they represent the

turbulent part of the flow, however some can be ignored due to the type of flow

that is being examined. For the purposes of this thesis the fluxes need only to

represent boundary layer turbulence.

This thesis will focus on the stably stratified planetary boundary layer. For the

stably stratified boundary layer attention can be restricted to the case of horizon-

tally homogeneous turbulent flux, in regions which exhibit fairly uniform terrain

this is a reasonable approximation [34]. Further to this reasoning a scale argument

can show this to be a good approximation, for the stably stratified boundary layer

eddies will have horizontal scale of the order of a few kilometres but the shallow

depth of the boundary layer will limit their vertical scale to less than a kilome-

tre. Horizontal gradients of turbulent flux will be considerably less than vertical

gradients of turbulent flux. Eddies in a convective boundary layer will stretch out

vertically, eddies in a stably stratified boundary layer will stretch out horizontally.

Homogeneity in gradients of horizontal turbulent flux is represented mathemati-

cally as,

∂

∂x

(
ρu′′u′′

)
<<

∂

∂z

(
ρu′′w′′

)
, (2.21)

∂

∂y

(
ρu′′v′′

)
<<

∂

∂z

(
ρu′′w′′

)
. (2.22)
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The approximation made earlier that transport by viscosity is dominated by

turbulent transport is represented formally as,

Tx <<
∂

∂z

(
ρu′′w′′

)
. (2.23)

One further approximation suitable for the boundary layer, and indeed much of

the atmosphere, is that w is small compared with u and v so the vertical transport

of vertical velocity is negligible.

∂

∂z

(
ρw′′w′′

)
<< g and

1

ρ

∂p

∂z
. (2.24)

Applying these approximations and dropping the overbar notation for terms on

the left hand side, since these are now the predicted variables, gives the full system

of equations. The remaining flux gradients are required for modelling boundary

layer turbulence.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv +

1

ρ

∂p

∂x
= −1

ρ

∂

∂z

(
ρu′′w′′

)
, (2.25)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu+

1

ρ

∂p

∂y
= −1

ρ

∂

∂z

(
ρv′′w′′

)
, (2.26)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+

1

ρ

∂p

∂z
= −g, (2.27)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
= −1

ρ

∂

∂z

(
ρθ′′w′′

)
, (2.28)

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0. (2.29)

In part II of this thesis equations in the form (2.25)-(2.29) will be used since

they are capable of supporting both the stably stratified boundary layer and the

dynamics, indeed these equations represent the fully coupled problem. For the

boundary layer only case the equations can be filtered further so that the boundary

layer mechanisms can be examined on their own, this can be achieved in part by

using the Boussinesq approximation, as outlined in the next section.
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2.1.2 Boussinesq Approximation

A useful approximation, sufficient when applying equations (2.25) - (2.29) to the

boundary layer is the Boussinesq approximation. The Boussinesq approximation

assumes that the thermodynamic variables p and ρ can be split into hydrostatically

balanced vertical reference profiles and finite amplitude perturbations away from

the reference profiles, for example ρ = ρ(z) + ρ′. It needs to be noted that in the

literature there is a notation conflict between Reynolds averaging and Boussinesq

approximation. Following [23] the overline and ′ notation are used in this section

to refer to reference and perturbation profiles. However in terms like u′′w′′ the ′

still refers to terms that result from Reynolds averaging. To free up notation, and

avoid ambiguity, use of ′ is dropped from density and pressure perturbation terms

in the equations. In a situation such as the boundary layer it can be assumed that

the reference profile has only small variation with height and so can be replaced by

a constant reference density ρ0; this is the fundamental property of the Boussinesq

approximation. Note that the perturbation quantity still represents a perturbation

away from the height dependent reference profile, i.e. ρ′ = ρ − ρ(z). Now since

density perturbations are small relative to the constant reference state ρ0 density

can be replaced by its reference state. However, since the flow characteristics are

governed by buoyancy perturbations, density perturbation should be retained when

it occurs in buoyancy terms. A further influence of the Boussinesq approximation

is that the flow can now be considered incompressible, i.e. ∇.u = 0. With the

Boussinesq approximations equations (2.25)-(2.29) become,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv +

1

ρ0

∂p

∂x
= − ∂

∂z

(
u′w′

)
, (2.30)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu+

1

ρ0

∂p

∂y
= − ∂

∂z

(
v′w′

)
, (2.31)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+

1

ρ0

∂p

∂z
= −g ρ

ρ0

, (2.32)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
= − ∂

∂z

(
θ′w′

)
, (2.33)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (2.34)
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Note that, as mentioned earlier, when the flow is incompressible the Reynolds

averaging is simplified, rather than using mass weighted terms all flow parameters

can be decomposed into just mean and fluctuating part u = u + u′ (Reynolds

averaging notation), hence only single primed terms in the turbulent fluxes.

Recall that θ is related to the other equations through the turbulent flux terms.

Also note that in the Boussinesq framework equation (2.32) may be written in

terms of potential temperature, [23],

−gρ− ρ(z)

ρ0

= g
θ − θ(z)

θ0

. (2.35)

By applying the Boussinesq approximation to the system all acoustic mecha-

nisms are filtered out by the incompressibility. In order to study the boundary layer

on its own, without any dynamics, these equations need to be further simplified

by assuming that the flow is homogeneous in the horizontal and that the vertical

component of velocity is zero. With this level of approximation the Rossby and

gravity mechanisms are also filtered out leaving the boundary layer mechanism and

the inertial mechanism. Also note that the system is in hydrostatic balance. Al-

though these approximations would be unlikely employed in an operational model,

they are quite reasonable in the boundary layer and assist the study considerably

by minimising the types of wave propagation that are supported.

Above the boundary layer the turbulence goes to zero and for synoptic scales

inertial forces are negligible compared to Coriolis force and pressure gradient.

For a steady solution here horizontal momentum equations must therefore be in

geostrophic balance,

−fvg = −1

ρ

∂p

∂x
, (2.36)

fug = −1

ρ

∂p

∂y
, (2.37)

where subscript g denotes geostrophic wind. Since all variables are independent

of x and y (except pressure) the horizontal gradients of pressure are independent

of height. This can be seen by differentiating the hydrostatic balance equation
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1
ρ0

∂p
∂z

= −g θ
θ0

with respect to x or y, e.g. ∂2p
∂z∂x

= 0. The horizontal pressure

gradients can therefore be replaced with their far field values (2.36) and (2.37)

throughout the domain.

To summarise, the horizontally homogeneous equations that will be used to

model the boundary layer without any dynamics are,

∂u

∂t
− f(v − vg) = −∂u

′w′

∂z
, (2.38)

∂v

∂t
+ f(u− ug) = −∂v

′w′

∂z
, (2.39)

∂θ

∂t
= −∂θ

′w′

∂z
. (2.40)

Due to incompressibility and no vertical wind the vertical momentum equation,

which now just represents hydrostatic balance, is decoupled and so does not need

to be included in the solution.

2.2 Model Closure and Parametrisation

Equations (2.38) -(2.40) are the equations required for modelling the boundary

layer but they do not form a closed set since the turbulent fluxes u′w′, v′w′ and

θ′w′ are unknown. In order to model the equations a closure is required so that

these unknowns can be written in terms of the mean flow. The classic approach to

this is the K-diffusion closure,

u′w′ = τx = −Km
∂u

∂z
, (2.41)

v′w′ = τy = −Km
∂v

∂z
, (2.42)

θ′w′ = H = −Kh
∂θ

∂z
. (2.43)

Writing the equations in this form one can see the similarity with the original vis-

cosity term ν ∂
2u
∂x2 , the idea originates from the premise that locally eddies influence

the flow in a way comparable to molecular diffusion. Indeed Km is commonly

known as the eddy viscosity and Kh the eddy heat diffusivity. This type of closure
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is first order since second order fluxes are replaced with first order terms. Other

first order closures exist, such as K-profile, there also exist higher than first order

closures such as the turbulent kinetic energy closure where a further energy budget

equation is carried, this is said to be a one and half order closure and is used in

high resolution models. The focus of the work carried out here is to examine the

effect of vertical staggering, since the K-diffusion closure is used in operational

models and, as will be demonstrated, is sensitive to vertical staggering it is most

immediately relevant. The intention here is not to compare vertical staggering for

different closures nor comment on the suitability of the closure.

For simplicity equations (2.38) - (2.40) shall be written in their τ -form,

∂u

∂t
− f(v − vg) = −∂τx

∂z
, (2.44)

∂v

∂t
+ f(u− ug) = −∂τy

∂z
, (2.45)

∂θ

∂t
= −∂H

∂z
. (2.46)

2.2.1 Parametrisation

Now that the general form of the closure has been decided, the terms need to be

linked to the mean model parameters. This will be done using the mixing length

formulation [34, 54]. Km and Kh are obtained as,

(Km, Kh) = l2
∣∣∣∣∂u

∂z

∣∣∣∣ {fm(Ri), fh(Ri)}. (2.47)

The idea behind the formulation is that when a particle is moved by turbulence it

will mix with the surrounding fluid and loose the characteristics it possessed before

being moved. The distance it can move before the loss is known as the mixing

length l. The formulation for the mixing length as given by [54], is,

l =
κzl∞
κz + l∞

, (2.48)

where l∞ is the mixing length for a neutrally stratified layer and is generally ob-
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tained empirically, here 20m will be used, as from an example in [54]. Numerical

experimentation suggests that the value of l∞ has relatively little influence on the

overall boundary layer steady state structure and so should not influence the sen-

sitivity to staggering, thus for simplicity it will be kept fixed for all boundary layer

depths. κ is the von-Karmen constant, taken to be 0.4.

The stability functions that shall be used are the SHARP form of [41],

{fm, fh} =



a
(

1
20Ri

)2
Ri ≥ 0.1

a(1− 5Ri)2 0 ≤ Ri < 0.1

1 Ri = 0

, (2.49)

where a = 1 for fm and a = 1/Pr for fh; the Prandtl number Pr is a ratio of

kinematic viscosity and heat diffusivity, i.e. Km
Kh

, here the neutral value is used Pr =

0.7 to help distinguish between fm and fh; in [41] Pr = 1 was used. If Ri < 0 then

the fluid is unstably stratified and a different usually non-local closure is generally

required. This form of the stability functions is employed by the Met Office over

the sea [11] where it is more natural to employ a fixed boundary condition on

temperature, as will be crucial to the methodology subsequently presented. Ri is

the Richardson number, given by,

Ri = g
∂ ln(θ)
∂z∣∣∂u
∂z

∣∣2 . (2.50)

Turbulence can be produced by either buoyant instability or by shear, Richardson

number describes a local ratio between buoyancy and shear and so provides useful

information about the onset of turbulence. There is a critical Richardson number

Ric, when below this value the fluid is said to be turbulent, the fluid will be

turbulent whenever unstably stratified. When the fluid is statically stable, as it

is for the stably stratified boundary layer, whether or not the fluid is turbulent

depends on how much shear there is versus how stably stratified it is. If there is
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enough shear to overcome the stabilising effect of the buoyant stability the fluid

can be turbulent, as is the case in the boundary layer.

2.2.2 The Surface Boundary Conditions

The parametrisation, equation (2.47), will need to be adapted at the surface, both

Km and Kh involve calculating gradients of velocity and potential temperature,

furthermore gradients of Km and Kh will be used. If not altered then values

below the ground would be required. As is generally popular in numerical weather

prediction, the lower boundary conditions are imposed through a roughness length,

a formula based on surface layer similarity theory and the universal logarithmic wall

law. Rather than for example velocity being zero at height z = 0 it is said to go

to zero at the top of the roughness length.

The boundary conditions for the three model variables are,

u = v = 0 at z = zrm, (2.51)

θ = θs at z = zrh, (2.52)

where zrm and zrh are the height of the roughness length for momentum and heat;

both will be taken to be 0.1m so for ease of notation both will be referred to as zr.

The full parametrisation of, for example, τx away from the surface is,

τx = −l2
∣∣∣∣∂u

∂z

∣∣∣∣ fm(Ri)
∂u

∂z
. (2.53)

In order to obtain a parametrisation of the surface stresses
(
u′w′

)
0

= τx0 and(
v′w′

)
0

= τy0 note first that as z → 0 the mixing length l→ κz. Also note that in

the lowest 10m of the boundary layer it can be assumed that fluxes are constant

[34], this aids the analysis in that wind direction can be assumed to be aligned

with the x-axis, giving v ≡ 0. Now (2.53) becomes,

τx0 ≈ −(κz)2

(
∂u

∂z

)2

fm(Rib). (2.54)
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whereRib is the bulk Richardson number, an approximation to the gradient Richard-

son number and equivalent to measuring the Richardson number from zr to a height

z; it is given by,

Rib = g(z − zr)(ln θ − ln θs)

|u| . (2.55)

Assuming that sufficiently close to the ground, where fluxes are constant, the

bulk Richardson number and thus the stability function tend to some constant,

integrating (2.54) and rearranging gives that,

u ≈ 1

κ

( −τx0

fm(Rib)

) 1
2

ln

(
z

zr

)
, (2.56)

=⇒ τx0 ≈ −
 κ

ln
(
z
zr

)
2

fm(Rib)u
2; (2.57)

the bracketed part of (2.57) is known as Cmn and is the neutral drag coefficient for

momentum. Obtained in a likewise manner, the surface heat flux is,

H0 ≈ −
 κ

ln
(
z
zr

)
2

fh(Rib)u(θ − θs). (2.58)

In the non wind-aligned coordinate system this is,

τx0 = −Cmnfm(Rib)|u|u = Cm|u|u, (2.59)

τy0 = −Cmnfm(Rib)|u|v = Cm|u|v, (2.60)

H0 = −Chnfh(Rib)|u|(θ − θs) = Ch|u|(θ − θs). (2.61)

The drag coefficients are defined as Cm = −Cmnfm(Rib), Ch = −Chnfh(Rib).
For the purposes of this thesis the form for the surface fluxes in equations (2.59)

- (2.61) is sufficient. Operational forecasting models will tend to use log-linear

formulations, a useful review of the two procedures is given in [17].
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2.3 Subsidence to Balance the Boundary Layer

Diffusion

In the atmosphere even the very stably stratified boundary layers are not completely

steady but have continuous cooling and heating through radiative processes. In

idealized models it is possible create a quasi-steady-state whereby certain flow

properties continue to vary but momentum flux, potential temperature and surface

potential temperature flux are constant [10, 18, 55]. Indeed situations where these

conditions are satisfied in the atmosphere exist. One such example is the wintertime

Antarctic boundary layer, a very shallow layer that evolves so slowly that it can

be considered as steady [42, 30].

The overall aim of this project is to address the questions on how staggering

and use of stretched grids affects the numerical modelling of the boundary layer,

and to achieve this in a systematic way. A methodology that would provide this

systematic approach is to linearise the model around a steady state and examine

the parts separately, i.e. the steady state on its own and the transients modes. For

this methodology to be used a completely steady state is required.

The overall structure of the quasi-steady-state of equations (2.44)-(2.46) would

appear steady or evolve very slowly, though the solution is not truly steady since

quantities are still evolving. Without a true steady state, where nothing is trans-

ported, it would not make physical sense to examine the transients. Although (2.44)

-(2.46) are well suited for modelling the constantly changing boundary layers, found

in much of the atmosphere, employing a fixed surface potential temperature is not

possible. Conversely the only way to obtain a truly steady state of these equations

requires a fixed surface potential temperature boundary condition along with fixed

potential temperature at the top of the domain. If fixed potential temperature

boundary conditions are used heat will diffuse downwards causing the potential

temperature in the boundary layer to reduce until equal to the surface potential

temperature throughout the depth.

It is known from the literature, as cited above, that during the Antarctic win-
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ters the boundary layer can satisfy ‘steady’ conditions and that a fixed surface

temperature would be a realistic approximation here due to the frozen surface but

further processes must be occurring which are not accounted for in the basic bound-

ary layer equation set. By representing these processes in the equations it would

be possible use fixed boundary conditions on potential temperature and simulate

a truly steady Antarctic wintertime type boundary layer. This would enable the

desirable methodology to be used.

In the Antarctic strong Katabatic (drainage) winds occur persistently and these

strong winds lead to some interesting phenomena. There have been a number of

studies examining the Antarctic boundary layer and general climatic processes, in

particular the divergent circulation that occurs as a result of the Katabatic wind in

the boundary layer, [36, 56, 74, 50]. The Katabatic wind occurs as the air is cooled

dramatically by the cold surface or by radiation, as the density of this air increases

it moves down slope, towards the coast in Antarctica. The effect of the horizontal

divergence of air in the boundary layer would be an overall reduction in potential

temperature, such as seen when using a fixed surface temperature. As discussed by

[36] this horizontal flow divergence must be balanced by a horizontal convergence

and subsidence just above the boundary layer. Though it is not necessary to model

specifically Katabatic type winds, the resulting effect they have on a boundary layer

(reduction of potential temperature) would be equivalent to that which is seen with

the fixed surface potential temperature and so each can be balanced by the same

process. Since there is no x or y dependence in the boundary layer only model

it would not be possible to produce and horizontal convergence but it is possible

to produce a subsidence heating. Subsidence heating in the context of the stably

stratified boundary layer has also been recently examined by [51].

A subsidence heating can be implemented by reintroducing the vertical advec-

tion of the potential temperature term, but with an imposed subsidence velocity,

given by,

wsub
∂θ

∂z
. (2.62)

The wsub, known as the subsidence velocity, will be negative as it is a velocity
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towards the ground, it will be zero at the surface and have absolute value increasing

upwards, this can be achieved by using a tanh type function. A suitable form for

this term, which is found empirically, is,

wsub = −0.015 tanh
( z

1000

)
. (2.63)

This gives sufficient heating so as to balance the cooling of the boundary layer

due to the fixed surface potential temperature whilst still giving sensible depths

and structure when comparing to the boundary layers observed in the literature

e.g. [6].

Subsidence velocity provides the mechanism which allows a fully steady state

to be found. Further to this a radiative cooling term will be included. Consider a

situation in neutral stratification with no shear, both Km = 0 and Kh = 0, if some

shear grew in that region then some eddy viscosity and eddy diffusivity would also

appear, the neutral stratification would keep potential temperature from changing

through the boundary layer terms but velocity would change. Then through the

Coriolis it could oscillate, this type of behaviour is known as the nocturnal jet. If

instead the shear grew in a region of fluid that was stably stratified the stability

would damp away the shear and prevent it from oscillating. The nocturnal jet itself

is an interesting phenomena but this kind of behaviour needs to be avoided since

an oscillation would prevent a fully steady state being achieved. It may be that

shear grows above the boundary layer, where the fluid is neutrally stratified, as a

numerical artefact which could be difficult to predict. By adding a radiative cooling

ensures that the whole domain is stably stratified and thus guarantees that any jet

effect is damped away and the steady state properly approached. To implement

the stable stratification an overall radiative cooling Rc of around 1K per day is

included in the equation.

With the inclusion of both the subsidence heating and radiative cooling, equa-

tion (2.46) becomes,
∂θ

∂t
= −∂H

∂z
− wsub

∂θ

∂z
−Rc. (2.64)

61



This subsidence warming term is not explicitly added to global forecasting mod-

els but exists, where necessary, through the normal vertical advection term. The

extra terms in the energy budget due to the subsidence and radiative cooling are

negligible in comparison to the overall energy in the system. Using the simplest

forward finite difference in the subsidence prevents this extra term affecting the

sensitivity of results on averaging. Having a steady state that can be linearised

about is a highly powerful tool in terms of examining configurations of the grid

and model variables.

2.4 Test Cases

Five stable boundary layers which can be used to compare any configurations of

staggering with stretched and uniform grids are constructed. A typical shallow

stable boundary layer may be about 100m deep, a very deep layer may be around

1000m. The five boundary layers will be in this range with different depths obtained

by choosing the boundary conditions; the upper boundary condition on velocities ug

and vg and the surface potential temperature, θs. The upper condition on potential

temperature is fixed as θg = 308K. The two components of geostrophic wind are

chosen to be equal ug = vg. Sometimes in the literature vg is set to zero to assist

in analysis, although this is not necessary here. Later when dynamical processes

are introduced it may be useful to have ug = vg so that modes have equivalent

advective properties in each direction. A deeper boundary layer will have either

more shear, larger difference between upper and surface potential temperature

boundary condition or both compared with a shallow boundary layer. Deeper

boundary layers are less stably stratified than shallow boundary layers and have

larger Km and Kh, giving increased damping. Stratification is determined by the

gradient of θ, i.e. if θ is increasing with height the regime is stably stratified. While

stably stratified boundary layers have positive θz, unstably stratified boundary

layers have a negative θz and neutral layers have θz = 0. The approximate depths

and boundary conditions for the five boundary layers that will be compared in the

model are summarised in Table 2.1.
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Notation ug, vg (ms−1) θs(K) Approx. depth (m) Obukhov Length (m)

BL1 4 283 100 8.33
BL2 6 288 200 27.18
BL3 8.5 293 400 84.04
BL4 10.5 298 650 229.59
BL5 14 298 950 407.17

Table 2.1: Five boundary layers with varying depths, dependent on the boundary
conditions of velocities and potential temperature.

2.5 Discretisation and Averaging

In order to solve equations (2.44) - (2.46), with their respective parametrisations,

they must be discretised and solved numerically. Derivatives are solved using sec-

ond order finite differencing. A vertical grid is constructed, the lowest discrete level

in the model will be at zr, the highest model level will be at 2000m, this ensures

any boundary layer structure lies in the domain. The grid is constructed such that

there are N zρ levels, so called due it being the location where density will be stored,

and N + 1 zw levels, so called as it will be where vertical velocity is always stored.

zρ levels are thought of as being staggered relative to zw, the unstaggered levels,

since each zρ level lies between two zw levels. The lowest zw level is fixed at zr and

the highest zw level fixed at 2000m the position of all other levels is dependent on

the choice of spacing and the number of grid points used. The model levels can

be arranged uniformly or with a stretching, this will be discussed presently. Since

the equations present a highly nonlinear problem no analytical solution is known

of, instead a high resolution numerical solution will be used as a ‘truth’ reference

solution. For normal low resolution 11 zw including zr are used for the domain of

2000m, this number of grid points represents the operational resolution that was

in use at the Met Office when this work was undertaken. For the high resolution

run 100 zρ and 101 zw grid points are used.
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2.5.1 Choice of Vertical Staggering

There are two types of vertical staggering to consider: the Lorenz grid and Charney-

Phillips grids. For each of the grids, the horizontal velocity variables u and v are

stored at the same grid point, these are the staggered zρ levels. Note that ρ and

w are not required in the boundary layer only formulation but are considered

temporarily to demonstrate the two grid types. If considering the full dynamics

then on both Lorenz and Charney-Phillips grids the vertical velocity w would be

stored at the unstaggered zw levels. Horizontal velocities u and v need to be stored

together to avoid averaging in the Coriolis terms. Staggering density relative to w

ensures no vertical averaging is required in ∇.u in the continuity equation whilst

storing w at the unstaggered levels makes fulfilling the no flux boundary conditions

easier.

In addition to ρ a second thermodynamic variable is required and this is cho-

sen to be potential temperature θ. The difference between the Lorenz grid and

Charney-Phillips grid is the choice of whether to place the potential temperature

with horizontal velocity and density or with vertical velocity. For the Lorenz grid

it is stored with density, with the Charney-Phillips grid it is stored with vertical

velocity. When in the Charney-Phillips framework the unstaggered levels are some-

times given notation zθ, since θ will be moved for the purpose of the comparison

in this work the unstaggered levels shall be labelled as zw. For the boundary layer

only case, where ρ and w are not required, the Lorenz grid is effectively unstaggered

since all model variables lie at the same grid points.

The configuration of the grids for both Lorenz and Charney-Phillips is shown

in Figure 2.1. The zρ levels have integer indices, the spacing between is denoted by

∆z with ±1
2

indices, the zw levels have ±1
2

indices and have spacing with integer

indices. The indices of the grid spacings are designated so as to match the indices

of the level that they cross.

In order to calculate the Richardson number it is clear that the derivatives of

velocities and potential temperature are required at the same model level. On the

Lorenz grid these quantities will naturally lie on the zw levels which is also where
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Figure 2.1: The Lorenz (left) and Charney-Phillips (right) grids. zρ levels have
integer indices and are represented by solid lines, zw levels are the dashed lines.
∆z are assigned indices by the model level that they cross, i.e. whole indices
represent spacing between zw levels.
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Km and Kh will be required in the calculation of the fluxes; no averaging will

be present. When using the Charney-Phillips grid the shear will naturally lie on

zw levels while the potential temperature gradient will lie on the zρ levels. This

means that one or the other of these quantities will need to be averaged in order

to obtain the Richardson number. This is why solutions obtained when using the

Lorenz grid can be expected to be more accurate than those found when using the

Charney-Phillips grid.

The three basic cases to consider for the Charney-Phillips grid are,

I. Potential temperature gradient is averaged so that Richardson number

is calculated at the zw levels.

II. Shear is averaged so that Richardson number is calculated the zρ levels.

III. Both quantities are averaged so that Richardson number is computed

at zρ and zw grid levels.

For the second II and third III configurations four subclasses denoted ‘a’ -‘d’

can be added. There are three stages in the computation of the shear squared,

∣∣∣∣∂u

∂z

∣∣∣∣2 =


[(

∂u

∂z

)2

+

(
∂v

∂z

)2
] 1

2


2

, (2.65)

first finding the gradients of the two components of velocity, then taking the mod-

ulus (absolute value) and finally squaring, as the Richardson number requires. The

averaging can take place at any stage during this calculation.

a. Average velocity gradients then square them in order to compute squared

modulus. ∣∣∣∣∂u

∂z

∣∣∣∣ =

[(
∂u

∂z

)2

+

(
∂v

∂z

)2] 1
2

, (2.66)

b. Average squared velocity gradients then compute squared modulus.

∣∣∣∣∂u

∂z

∣∣∣∣ =

[(
∂u

∂z

)2

+

(
∂v

∂z

)2
] 1

2

, (2.67)
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c. Compute the modulus and then average before squaring.

∣∣∣∣∂u

∂z

∣∣∣∣2 =


[(

∂u

∂z

)2

+

(
∂v

∂z

)2
] 1

2


2

(2.68)

d. Compute the squared modulus and then average.

∣∣∣∣∂u

∂z

∣∣∣∣2 =


[(

∂u

∂z

)2

+

(
∂v

∂z

)2
] 1

2


2

(2.69)

In option I Ri lies at θ levels, this is also where shear lies and thus Km and

Kh can be readily found at these levels. A further three options arise for how to

compute Kh at the zρ levels.

i. Kh itself can be averaged.

ii. The stability function fh(Ri) can be averaged as well as the shear.

iii. The Richardson number Ri can be averaged as well as the shear.

Similarly, for each of the various configurations under option II three options

exist for the averaging required to obtain Km at the zw levels; for option III no

further averaging is required for Km and Kh.

This gives three cases under option I, twelve under option II and four under

option III, a total of 19 that require consideration for Charney-Phillips, although

others would be possible. With the Lorenz grid case this gives a total of 20 and

for 5 depths of boundary layer a total of 100 configurations. In addition to this

there are a number of possible grid spacings to consider. As the investigation

progresses it should be possible to reduce the number of cases that need to be

considered as it becomes apparent which of the varying options have the greatest

effect. Charney-Phillips configurations are labelled as, for example II(b)-ii, denot-

ing that Richardson number is calculated at zρ levels, that option b is used for

calculating shear squared and that the stability function is averaged to find Km.

Under option I the bracketed lower case letter is omitted and for option III the
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lower case Roman numeral is omitted. A selection of the candidate configurations

are displayed in Table 2.2.

Shear Handling K handling

Lorenz N/A N/A

Charney-Phillips Option I Required at natural location
Average Kh -i
Average fh -ii
Average Ri -iii

Charney-Phillips Option II Sub Options (a-d)
Average Km -i
Average fm -ii
Average Ri -iii

Charney-Phillips Option III Sub Options (a-d) At required locations

Table 2.2: Outline of a selection of choices for the boundary layer term averaging
when using the Charney-Phillips grid.

Averaging in Boundary Conditions

Reconsider equations (2.44)-(2.46) but in discretised form at the lowest internal

model level,

∂u

∂t

∣∣∣∣
1

− f(v1 − vg) = −
(τx) 3

2
− τx0

z 3
2
− zr , (2.70)

∂v

∂t

∣∣∣∣
1

+ f(u1 − ug) = −
(τy) 3

2
− τy0

z 3
2
− zr , (2.71)

∂θ

∂t

∣∣∣∣
j

= −
Hj+ 1

2
−H0

zj+ 1
2
− zr , (2.72)

j in equation (2.72) is 1 for the Lorenz grid and 3
2

for the Charney-Phillips grid.

Recalling from equations (2.59)-(2.61), the discretised form for the surface fluxes

are,

τx0 = −
 κ

ln
(
z1
zr

)
2

fm(Rib)|u1|u1, (2.73)
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τy0 = −
 κ

ln
(
z1
zr

)
2

fm(Rib)|u1|v1, (2.74)

H0 = −
 κ

ln
(
zj
zr

)
2

fh(Rib)|uj|(θj − θs). (2.75)

subscript j in (2.75) is again 1 for the Lorenz grid and 3
2

for the Charney-Phillips

grid. When using the Charney-Phillips grid the |u 3
2
| will be an averaged quantity.

Now consider the discretised bulk Richardson number,

Rib = g(zj − zr)(θj − θs)
|uj| . (2.76)

When using the Lorenz grid j will be 1 for all calculations of bulk Richardson

number. When using the Charney-Phillips grid j will be 1 for the bulk Richardson

in fm, θ1 will be an averaged quantity. The subscript j will be 3
2

in fh and |u 3
2
|

will be an averaged quantity.

Close to the surface the model variables u, v and θ exhibit log-like behaviour

[28, 34], e.g. u ∼ ln
(
z
zr

)
. When using the Charney-Phillips grid a straight forward

averaging of these quantities may thus be inaccurate. When a curve is logarithmic

a point a on that curve can be approximated as c ln(a), where c is some constant

which can be pinned down using a known point. Instead of a straight forward

averaging this log like behaviour can be used to approximate model variables at

unknown points. For example,

u 3
2

=
ln
( z 3

2

zr

)
ln
(
z1
zr

) u1, (2.77)

θ1 =
ln
(
z1
zr

)
ln
( z 3

2

zr

)(θ 3
2
− θs) + θs. (2.78)

Accuracy can be further improved by extrapolating from more grid points and

averaging.
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2.5.2 Grid Spacing

For flows with a boundary layer such as the atmosphere the choice of grid stretching

is crucial. The simplest type of grid would be one where zw levels in the model are

spaced uniformly, such that the spacing between unnstaggered levels ∆z is simply

the domain size divided by the number of staggered grid points N ; zρ levels would

lie halfway between zw levels. From a computational point of view this is somewhat

inefficient when considered the underlying structure in the atmosphere. The com-

plex topography of the Earth together with all the vegetation and buildings creates

turbulent flow near the ground, the very reason that a specific boundary layer clo-

sure is used. High up in the atmosphere the flow structure has greater regularity

and larger overall structure. To have a completely uniform grid throughout is to

dedicate equivalent computer processing time to the large well resolved structure of

the upper atmosphere as to the unresolved small scale turbulent processes close to

the surface. In fact, if the resolution is so coarse that no boundary layer structure

is resolved at all, then it has been shown that large errors will occur throughout

the model, [39].

It is widely accepted that a grid having finer resolution close to the surface and

lower resolution higher up produces a considerably more efficient and accurate way

to model the atmosphere. One can construct a grid with high resolution near the

ground by implementing a geometric stretching of the grid spacing, this is similar

to the method in place at the Met Office. There are, however, some subtle issues,

associated to the log-like behaviour of the model variables near the surface, which

cause numerical solutions to converge to the true solution very slowly with uniform

and geometrically stretched grids. It is crucial to the methodology that solutions

converge at a reasonable rate, if they do not then there would be differences be-

tween solutions on Lorenz and Charney-Phillips for even a relatively large number

of grid points such as N = 100. This does not mean that stretched grids should not

be considered at all only that they can not be used in order to generate the high

resolution reference solution. For the high resolution a transformation to a loga-

rithmic coordinate is required in order to obtain fast enough convergence. In this
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section the geometric grids are introduced and then the logarithmic transformation

with more detailed reasons behind its use.

Geometric Grids

Although poor convergence is expected high (N = 100) and low resolution geo-

metric grids are set up for comparison purposes. The high resolution geometric

grid will be useful to examine and confirm poor convergence. Since geometric grids

can be easily adapted, i.e. to bias the points closer to the ground or vice versa,

it will be of interest to have low resolution geometric grids to compare with the

Met Office grid. For the high resolution the minimum spacing (between the top of

the roughness length and (zρ)1) is chosen as (∆zh)0 = 100/N = 1m, subsequent

spacings are found geometrically,

(∆zh)j = (∆zh)0(1 + α)j for j = 1, 2, ..., 2N, (2.79)

where (∆zh) represents the spacing between an unstaggered and a staggered level.

The unknown term α can be determined by solving,

(∆zh)0

D

[
1− (1 + α)2N−1

−α
]
− 1 = 0. (2.80)

Equation (2.80) can be solved by using any root finding algorithm. Some examples

of values for α are displayed in Table 2.3.

N α
10 0.2138
100 0.0177
200 0.0088
400 0.0044

Table 2.3: Values of α for increasing resolution.

Equation (2.79) gives 2N grid spacings, each representing the distance between

a zρ level and a zw level. These are now combined to give spacings between one zρ

level and another, the (∆z)j+ 1
2

spacings, and likewise (∆z)j the spacing between
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one zw level and another.

(∆z)j = (∆zh)2j−1 + (∆zh)2j, j = 1, 2, ..., N, (2.81)

(∆z)j+ 1
2

= (∆zh)2j + (∆zh)2j+1, j = 1, 2, ..., N − 1. (2.82)

This produces a zw and zρ stretched at the same rate. Alternatively the grid

could be constructed so that the staggered levels are positioned halfway between the

unstaggered, as is the case in the levels obtained from the Met Office. Following

[39] a higher level of accuracy is expected when levels vary smoothly, this gives

numerical derivatives with as close to second order accuracy as possible. During

this study the effect of placing zρ halfway between zw as opposed to a continuous

stretching is investigated. The low resolution geometric grid with α as given in

Table 2.3 will be compared with the Met Office grid spacing and uniform grids

for computing the steady and transient solutions; results for this are presented in

the next two chapters. The levels provided by the Met Office are 0.1m, 20.1m,

80.1m, 180.1m, 320.1m, 500.1m, 720.1m, 980.1m, 1280.1m, 1620.1m and 2000m

for the unstaggered levels and 10.1m, 50.1m, 130.1m, 250.1m, 410.1m, 610.1m,

850.1m, 1130.1m, 1450.1m, 1810.1m for the staggered levels, levels have all had

the roughness length added to them and are given accurate to one decimal place.

These levels were obtained at a time when the Met Office employed a model with

38 vertical levels; it should be noted that at the time of writing an upgrade to use

70 vertical levels had occurred. The low resolution geometric grid that will be used

here biases model levels slightly more toward the surface than the Met Office grid.

Logarithmic Transformation

It is well known that near the surface model variables have mean properties propor-

tional to the log of their distance from the wall [34]. For example the logarithmic

wind speed profile is given by u ∼ ln
(
z
zr

)
. In this regime the vertical derivative

approaches a singularity as z → 0. The basic Taylor series expansion which leads

to the centered difference scheme for the derivative of a model variable, which will
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then be used in the equations for the fluxes, is,

∂u

∂z

∣∣∣∣
j+ 1

2

=
uj+1 − uj
(∆z)j+ 1

2

+ ε. (2.83)

The formal order of accuracy m of the scheme is determined by examining ε as

resolution increases and is generally determined by the leading term. For a general

level the truncation error is given by,

ε = −∆z2

6

∂3u

∂z3
− ∆z4

120

∂5u

∂z5
− ... . (2.84)

For u which is infinitely differentiable, and has properly bounded derivative,

the order of this scheme would be said to be O(∆z2) (second order); that is to

say the error in the approximation reduces like the square of the grid refinement.

Close to the ground, however, the derivatives of u are not necessarily bounded, but

since u is logarithmic will scale like ∂pu
∂zp
∼ (−1)p+1(p−1)!

zp
. Plugging this term into

the derivative in equation (2.84) means that the error ε near the ground would be

approximated by,

ε ≈
∞∑
k=1

− (∆z)2k

(2k + 1)z2k+1
. (2.85)

The increasing powers of z as k → ∞ in the denominator means that the

overall magnitude of successive terms in ε will not quickly reduce. It is not clear

that the overall scheme will have second order convergence, as implied by the

leading order numerator, but likely some slower rate of convergence governed by

a combination of grid spacing and the influence of the derivative approaching the

singularity. Although the boundary condition assumes a logarithmic variability

there will be other model levels in the logarithmic region that will not have good

convergence. Further it is not clear that in reducing the size of ∆z the magnitude

of ε is reduced. Take for example the uniform grid, in this case the level heights

are given by z = j∆z, then equation (2.85) reduces to

ε ≈
∞∑
k=1

− 1

(2k + 1)j2k+1∆z
. (2.86)
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For a level j near the surface the overall error increases as ∆z decreases.

The singularity is due to the derivative having a 1
z

factor, which follows into

the truncation error of the scheme, if the derivative were completely bounded so as

to avoid this term the behaviour of the terms in ε would change so as to decrease

as ∆z decreased. A way to achieve this is to perform a coordinate transformation

ζ = η(z), as in [8, 77]. For any model variable whose derivative is required the

chain rule is applied to obtain, for example,

∂u

∂z
=
∂ζ

∂z

∂u

∂ζ
. (2.87)

Now, provided that η(z)→ ln(z) as z → 0 it is found that, near to the ground,

∂u

∂z
=

1

z

∂u

∂ζ
(2.88)

where ∂u
∂ζ

is a bounded derivative. Now the centred difference approximation for

the derivative of u with respect to ζ gives a truncation error of,

ε = −∆ζ2

6

∂3u

∂ζ3
− ∆ζ4

120

∂5u

∂ζ5
− ... . (2.89)

The derivatives ∂pu
∂ζp

are bounded and so the order of the scheme is O(∆ζ2),

where ∆ζ is uniform throughout the domain.

A further advantage of choosing η such that the coordinate is logarithmic near

the surface is that τx near the surface would then be given by,

τx ≈ −κ2fm(Ri)

∣∣∣∣∂u

∂ζ

∣∣∣∣ ∂u∂ζ . (2.90)

In the new coordinate the Richardson number is given by,

Ri = g

(
∂ζ
∂z

)−1 ∂ ln θ
∂ζ∣∣∣∂u∂ζ ∣∣∣2 (2.91)

in the logarithmic coordinate. The ∂ζ
∂z

terms have cancelled with the z2 that appears
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in the mixing length, l2. This gives an expression for the surface momentum flux

where dependence on z only occurs through the Richardson number.

Note that the averaging as described in Table 2.2 for the Charney-Phillips

configurations can be modified so that the mixing length l2 lies at the correct level,

so as to ensure the cancelling of z. For example consider the discretised version of

the θ equation (2.64), which would contain the term,

− ∂H
∂ζ

∣∣∣∣
j+ 1

2

=
1

(∆ζ)

[
(Kh)j+1

1

zj+1

∂θ

∂ζ

∣∣∣∣
j+1

− (Kh)j
1

zj

∂θ

∂ζ

∣∣∣∣
j

]
, (2.92)

where Kh is averaged from zw levels to zρ, for example,

(Kh)j =
1

2

[
l2
j+ 1

2

(
∂ζ

∂z

)
j+ 1

2

∣∣∣∣∂u

∂z

∣∣∣∣
j+ 1

2

fh(Ri)j+ 1
2

+ l2
j− 1

2

(
∂ζ

∂z

)
j− 1

2

∣∣∣∣∂u

∂z

∣∣∣∣
j− 1

2

fh(Ri)j− 1
2

]
.

(2.93)

In this example the two 1
z

terms which cancel with z2 in the mixing length

come from the shear in Kh and the ∂θ
∂z

term which Kh multiplies. However due

to the averaging the mixing length and the shear will be a half level away from

the vertical gradient of θ. Instead the mixing length and the ∂ζ
∂z

in front of the

shear are taken outside of the averaging. Both of these quantities are smooth so

whether they appear inside the averaging or outside makes little difference to the

configuration, especially in the high resolution run for which this coordinate system

is used. Instead the averaging to find Kh is given by,

(Kh)j =
l2j
2

(
∂ζ

∂z

)
j

[∣∣∣∣∂u

∂z

∣∣∣∣
j+ 1

2

fh(Ri)j+ 1
2

+

∣∣∣∣∂u

∂z

∣∣∣∣
j− 1

2

fh(Ri)j− 1
2

]
. (2.94)

In the new coordinate system equation (2.44) is given by,

∂u

∂t
− f(v − vg) =

∂ζ

∂z

∂τx
∂ζ

. (2.95)

The derivatives of τ with respect to ζ will be well bounded and depend on ζ rather

than z; meaning the return to finding that ε ≈ O(∆ζ2) as N →∞.

The major disadvantage to a purely logarithmic grid is that resolution is biased
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entirely in the lowest part of the domain. It may be desirable to redistribute some

of the points higher up, especially if the domain is quite large. The simplest way

to achieve this is by setting up a hybrid log-linear coordinate such as that given by

[77],

ζ = ln

(
z + zr
zr

)
+
z

b0

. (2.96)

Increasing b0 in (2.96) biases the concentration of grid points towards a more log-

arithmic setup. The difference between location of grid points for N = 100 is

shown in Figure 2.2, for the log-linear grid β0 = 67.5. Clearly the hybrid grid gives

much better resolution higher in the domain whilst still providing the logarithmic

behaviour close to the ground, ensuring the good convergence properties.
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Figure 2.2: Distribution of points when using purely logarithmic and log-linear
hybrid grids, N = 100.

Although the logarithmic and log-linear grids will provide good convergence

properties for the high resolution runs they may not be that well suited to low

resolution runs. When the number of points is quite low, as it is in global models,

satisfying the logarithmic spacing near the ground may result in insufficient points

higher in the domain. Later when the steady states are examined the ability of low

resolution versions of the logarithmic and log-linear grids will be tested.
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Chapter 3

Steady State Solution

For the proposed methodology equations (2.44), (2.45) and (2.64) are linearised

about an assumed steady reference state. This is achieved by Taylor expanding

variables; as an example consider a time dependent function F of variable U . The

expansion around the reference state is F (U) = F (r) + dF
dU

∣∣(r) U ′+ .... Superscript (r)

denotes steady reference state and is the part independent of time. The ′ represents

the linear departure from the reference state known as the transient, i.e. U ′ =

U − U (r). An assumption of the expansion is that |U ′| << |U (r)| so higher order

terms can be neglected. For the model variables themselves the expansion is simple

since the function is just the variable and u = U + u′, v = V + v′ and θ = θ(r) + θ′.

Note that previously ′ had been used to represent the sub-grid part of the Reynolds

averaging but for any terms introduced in the remainder of Part I ′ shall be used

to denote the fluctuating or transient part of the linearisation. For the velocity

components upper case will be used for the steady parts U , V and W ; for the

thermodynamic terms the steady part will be denoted with a superscript (r).

First the steady reference state part is considered by neglecting all the transient

parts (i.e. u′ = v′ = θ′ = 0, ∂
∂t

= 0). Writing in K-form the steady state is thus

found by solving,

0 = f(V − vg) +
∂

∂z

(
Km

∂U

∂z

)
, (3.1)

0 = −f(U − ug) +
∂

∂z

(
Km

∂U

∂z

)
, (3.2)

77



0 =
∂

∂z

(
Kh

∂θ(r)

∂z

)
− wsub

∂θ(r)

∂z
−Rc. (3.3)

There are a number of ways to compute the solution of equations (3.1)-(3.3). In

the Met Office NWP the governing equations are solved using a Crank-Nicholson

iteration. The simplest in terms of coding is that of false time-stepping. Since

the boundary layer equations are being solved it can be assumed that any tran-

sient processes will be diffusive, this means that if the full equations are iterated

forward in time they will eventually just arrive at the steady state. The form of

the equations to be solved is thus just the above but with a temporal derivative of

the steady part of each model variable on the left hand side. If iterated through

sufficient numerical time steps, the above equations will arrive at their steady state.

This method can have quite slow convergence for simple first or second order time

schemes since it is limited by stability criteria, given by K∆t
∆z2

< 1, sometimes re-

ferred to as the viscous Courant number. If the resolution is fine and the boundary

layer is deep, giving larger K, then the required time step may be quite small.

Note also that nonlinearities in the system may reduce the time step further. It is

found that false time-stepping is suitable for finding the solution of low resolution

configurations where large grid spacing will allow for large time steps and so will

be used for all low resolution runs. Since false time-stepping is sufficient for finding

the low resolution steady states the Crank-Nicholson scheme is not considered here.

In discretised form the false time stepping of (3.1) and (3.2) is,

Un+1
j = Un−1

j + 2∆t

{
f(V n

j − vg) +
1

(∆z)j

[
(Km)j+ 1

2

Uj+1 − Uj
(∆z)j+ 1

2

−

(Km)j− 1
2

Uj − Uj−1

(∆z)j− 1
2

]n−1
 , (3.4)

V n+1
j = V n−1

j + 2∆t

{
−f(Un

j − ug) +
1

(∆z)j

[
(Km)j+ 1

2

Vj+1 − Vj
(∆z)j+ 1

2

−

(Km)j− 1
2

Vj − Vj−1

(∆z)j− 1
2

]n−1
 . (3.5)

78



On the Lorenz grid equation (3.3) is written as,

(
θ(r)
)n+1

j
=
(
θ(r)
)n
j

+
∆t

(∆z)j

{[
(Kh)j+ 1

2

θ
(r)
j+1 − θ(r)

j

(∆z)j+ 1
2

− (Kh)j− 1
2

θ
(r)
j − θ(r)

j−1

(∆z)j− 1
2

]

− (wsub)j
θ

(r)
j+1 − θ(r)

j

(∆z)j+ 1
2

}n

−Rc, (3.6)

or on the Charney-Phillips grid as,

(
θ(r)
)n+1

j+ 1
2

=
(
θ(r)
)n
j+ 1

2

+
∆t

(∆z)j+ 1
2


(Kh)j+1

θ
(r)

j+ 3
2

− θ(r)

j+ 1
2

(∆z)j+1

− (Kh)j
θ

(r)

j+ 1
2

− θ(r)

j− 1
2

(∆z)j


− (wsub)j+ 1

2

θ
(r)

j+ 3
2

− θ(r)

j+ 1
2

(∆z)j+1


n

−Rc.

(3.7)

Note that an upwind scheme is used for the subsidence for simplicity at the lower

boundary. Superscript n denotes time level and subscript j denotes the height

level. A second order time scheme is required for velocity and first order for the

potential temperature, this ensures stability in the scheme.

At the lowest model level the boundary conditions are included as,

Un+1
1 = Un

1 + 2∆t

f(V n
1 − vg) +

1

(∆z)1

[
(Km) 3

2

U2 − U1

(∆z) 3
2

− (Cm)1|U1|U1

]n−1
 ,

(3.8)

V n+1
1 = V n

1 + 2∆t

−f(Un
1 − ug) +

1

(∆z)1

[
(Km) 3

2

V2 − V1

(∆z) 3
2

− (Cm)1|U1|V1

]n−1
 .

(3.9)

On the lowest Lorenz grid level potential temperature is implemented as,

(
θ(r)
)n+1

1
=
(
θ(r)
)n

1
+

∆t

(∆z)1

{[
(Kh) 3

2

θ
(r)
2 − θ(r)

1

(∆z) 3
2

− (Ch)1|U1|(θ(r)
1 − θs)

]
−

(wsub)1

θ
(r)
2 − θ(r)

1

(∆z) 3
2

}n

−Rc, (3.10)
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or on the lowest Charney-Phillips grid level as,

(
θ(r)
)n+1

3
2

=
(
θ(r)
)n

3
2

+
∆t

(∆z) 3
2


(Kh)2

θ
(r)
5
2

− θ(r)
3
2

(∆z)2

− (Ch) 3
2
|U 3

2
|(θ(r)

3
2

− θs)
−

(wsub) 3
2

θ
(r)
5
2

− θ(r)
3
2

(∆z)2


n

−Rc.

(3.11)

During each iteration the values for Km, Kh, Cm and Ch are updated using

the latest values for the model variables. All model variables are sampled every

6 hours, if the maximum change, level by level, for that time period has reached

a value less than either 10−4ms−1 or 10−4K then the system is considered to have

reached its steady state.

3.1 Newton Iteration

In the case of the operational resolution runs the stability criteria will allow for large

enough ∆t, even on the geometric grid, to use false time-stepping. In fact running

with up to 100 grid points is reasonable, however much more than this results in the

deepest boundary layers (larger K) taking a large amount of computational time

to reach the condition of stability, of the order of 107 iterations for 300 grid points.

In addition to this the convergence of the solutions with increasing resolution is

expected to be poor for the geometric and uniform grids due to the singularity in

the derivative at the surface. Resolution would need to be increased to the order of

thousands of grid points before negligible difference between Lorenz and Charney-

Phillips would be observed. For this level of resolution generating solutions that

meet the steady criteria would be highly expensive. Further to this any convergence

testing would be unfeasible.

If using the logarithmic grid the convergence between the Lorenz and Charney-

Phillips grid will be much faster and thus negligible difference between solutions

should be achieved for a reasonable number of grid points, of the order of one
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hundred. However the relatively fine spacing of the logarithmic grid spacing means

that a very small time step would be required to meet the stability criteria, in turn

meaning an unfeasible number of iterations required.

Instead of the false time-stepping a much more efficient method will be re-

quired.One such scheme is the Newton method, an iteration that seeks the root

of a function. The method works by making a guess at the root, it then uses

the derivative of the function to produce a better guess at the root and so on.

Provided the original guess lies close to the root and the function does not have

lots of local minima and maxima points between the guess and root then it will

quickly approach the solution. The conditions of iteration are easy to envisage for

say a one or two dimensional function and the same principles extend to as high

a dimensional space as required; the dimension of the boundary layer model will

depend on the resolution. The iteration is written,

xnew = x− [∇xF(x)]−1F(x), (3.12)

where x is a vector containing the three model variables at each model level. The

vector F(x) is the right hand side of the discretised steady state equations (i.e.

from equations (3.4)-(3.11)) with the latest guess for the model variables. The

only complicated part of the Newton method is in obtaining the Jacobian ∇xF(x).

Recall however that the linearisation around the steady reference state for some

arbitrary function of a model variable is the sum of the reference function and

the gradient of the reference function with respect to the variable multiplied by

the transient function. Entries in the Jacobian matrix are also the gradients with

respect to the variable. In finding the Jacobian the matrix of transient coefficients

is also obtained, this is required in the eigendecomposition when the transient part

of the equations is considered later. The transient equations, and thus the Jacobian

matrix, are obtained by linearising equations (2.44), (2.45) and (2.64) and leaving

only terms involving first order transients, giving

∂u′

∂t
= fv′ +

∂

∂z

(
Km

∂u′

∂z
+K ′m

∂U

∂z

)
, (3.13)
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∂v′

∂t
= −fu′ = ∂

∂z

(
Km

∂v′

∂z
+K ′m

∂V

∂z

)
, (3.14)

∂θ′

∂t
=

∂

∂z

(
Kh

∂θ′

∂z
+K ′h

∂θ(r)

∂z

)
− wsub

∂θ′

∂z
. (3.15)

Discretised versions of the right hand side of equations (3.13)-(3.15) can be writ-

ten in matrix form, i.e. Ax, where x is a vector containing all transient variables at

each model model. The Jacobian matrix A is the matrix of transient coefficients,

A = ∇xF(x). For use in the Newton method A is used with the latest guess for

the steady variables. The full expansion of the transient equations is shown in the

next section.

Some care needs to be used when applying a Newton type iteration for a problem

of this kind. The full stably stratified problem represents a nonlinear function.

The complex nature of the underlying structure makes it necessary to assist the

iteration with a good guess of the solution so that the root can be found. Setting the

iteration going with a poor guess will generally lead to the solution diverging. If the

complexity of the equations is reduced then it is possible to use the Newton method

with simpler, less informed, initial guesses. For example the problem can be reduced

to neutral conditions, (fm = fh = 1) effectively removing any dependence on θ(r)

in the equations. For the neutral problem it is sufficient to choose an initial guess

that consists of a constant velocity profile U = ug and V = vg. With these initial

guesses the Newton Method will find the proper steady state profile for the neutral

boundary layer. By making a gradual switch from neutral to stably stratified

conditions is enough to assist the iteration in ‘homing-in’ on the root of the stably

stratified boundary layer equations. The first guess for the θ(r) profile, which is

decoupled initially, is chosen to be exponential, θ(r) = θs+(θs − θg) exp(− z
50.0

). The

switching is achieved by placing a factor in front of every occurrence of Richardson

or bulk Richardson numbers in the equation set. This factor will begin at 0 and

approach 1 as the iteration moves forward, by the time the iteration ends the

equations being solved will be the full stably stratified problem. As an example

the factor that is used may reach 1 after around 100 iterations, although this may

need to be adapted for each problem.
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3.2 High Resolution Convergence

Before ensuing with the comparison of the different grid configurations at opera-

tional resolution, high resolution solutions are examined for the uniform, geometric

and logarithmic grids. When comparing low resolution grids a high resolution so-

lution will be be used to place a measure on how well each candidate performs.

To be sure that this measure is accurate and the methodology viable there should

be negligible difference between Lorenz and Charney-Phillips high resolution solu-

tions, when this occurs the high resolution solutions can be considered the ‘truth’

solution.

The equation set that is being modelled has some exact solution. Although

this exact solution is not known analytically it would be theoretically possible to

increase resolution until able to capture all scales and thus obtain an exact sampling

of the true solution. If the resolution were sufficiently high then this exact sampling

would be irrespective of whether using the Lorenz of Charney-Phillips grid, they

would be equivalent. The convergence rate of the solution describes how quickly the

solution will approach the point where Lorenz and Charney-Phillips are equivalent.

If the problem exhibits poor convergence then this situation would be harder to

achieve.

If numerically computing the solution of a problem with reasonably large scale

structure and bounded derivatives then a stretched grid with around 100 grid points

over a domain of 2000m would probably be expected to be enough to obtain good

agreement between different configurations and thus achieve the truth solution.

Figure 3.1 shows, for 100 grid points, the three model variables as found using

the Lorenz and Charney-Phillips grids for the uniform, geometric, logarithmic and

log-linear level spacing. The test is with boundary layer 1 so for each plot only the

lowest 150m of the domain is shown to highlight the differences.

Studying the four rows of Figure 3.1 it is clear that the uniform grid is far from

giving converged solutions. Less clear is the difference between the stretched grids.

Figure 3.2 shows the absolute difference between the Us and V s predicted by the

Lorenz and Charney-Phillips grids on the geometric and logarithmic grids, i.e. the
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Figure 3.1: Plots U , V and θ(r) on Lorenz and Charney-Phillips grids. The top
row shows the uniform grid, the second row the geometrically stretched grid, the
third row the logarithmic grid and the bottom row the log-linear hybrid grid. All
are for boundary layer 1, with 100 grids points and with only the lowest part of
the domain where interesting structure lies shown.

difference between the curves shown in the plots on columns 1 and 2 of rows 2

and 3 in Figure 3.2. Upon closer inspection it is clear that the difference for the

geometric grid is approximately an order of magnitude larger than the difference

in the logarithmic grid. Furthermore if the resolution is doubled the difference in
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the geometric stretching plot is not significantly reduced. Certainly the solutions

found using the geometric grid cannot be said to have as good convergence as the

logarithmic grid.
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Figure 3.2: Differences between U and V in the lowest 150m of the domain for a
geometrically stretched grid (left) and logarithmic grid (right). Both are for runs
with 100 grid points.

For these tests the shallowest boundary layer is used. This is the least ‘fair’ to

the uniform grid, less than 10% of the grid points are within the boundary layer;

for a deeper boundary layer it would have a better chance at capturing some of the

near-surface structure. The log-linear hybrid grid seems to offer little to improve

on the fully logarithmic grid, again however the benefits it affords will be more

noticeable for deeper boundary layers. The benefits of using log-linear can be seen

in Figure 3.3 which shows the θ(r) field for boundary layer 5 on logarithmic and

log-linear grids, clearly the solutions are closer for the hybrid grid.

The above figures point towards potential issue in using the geometric grid

for the high resolution solution. As was discussed in the previous chapter the

singularity in the derivative at the surface does indeed appear to be preventing

good convergence properties. In order to confirm this full convergence tests need

to be performed, this will also highlight the rate of convergence that can be expected

and check that the logarithmic grid does indeed improve matters.

In order to perform convergence tests a number of solutions with relatively

high resolution need to be obtained and so the Newton method is used for all

85



295 300 305 310
0

200

400

600

800

1000

!(r) (K)

H
ei

gh
t (

m
)

 

 

295 300 305 310
0

200

400

600

800

1000

!(r) (K)

H
ei

gh
t (

m
)

Lorenz
Charney!Phillips

Figure 3.3: Solutions to the θ(r) for boundary layer 5 on the logarithmic and log-
linear grids.

cases, uniform, geometric and logarithmic. First a ‘very high resolution’ solution is

obtained using 640 grid points and the logarithmic stretching. Convergence rates

are obtained by calculating the error between the surface fluxes, τx0, τy0 and H0,

at each lower resolution and the surface fluxes at very high resolution. The lower

resolution runs double successively from 10 grid points to 320 grid points.

Figure 3.4 and Figure 3.5 show the convergence rates for uniform, geometric and

logarithmic grids when using the Lorenz and Charney-Phillips grids respectively.

Included on the plots are lines showing exact first and second order convergence

rates for comparison with the actual convergence rates.

With the exception of one or two outliers it is clear from Figure 3.4 and Figure

3.5 that the logarithmic grid provides the most reliable convergence and impor-

tantly that it does on all surface fluxes simultaneously. In all three of the surface

fluxes for both Lorenz and Charney-Phillips the convergence rate is somewhere

between first and second order. For the other two grids there is more overall vari-

ation in the convergence rates and the magnitude of the error can be an order of

magnitude larger than for the logarithmic grid. The geometrically stretched grid

has better convergence for the Lorenz grid than the Charney-Phillips grid which

appears first order or worse, seen by comparing the second rows of Figure 3.4 and

Figure 3.5. For the geometric grid the staggered levels are smoothly stretched,

it may produce even worse convergence results if the staggered levels were placed
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Figure 3.4: Convergence rates for the three types of stretching using the Lorenz
grid. The uniform grid is shown in the top row, geometrically stretched in the
middle row and logarithmic in the bottom row. From left to right shows the
dimensional errors in surface fluxes τx0, τy0 and H0 against resolution. On each
plot straight lines show exact first (shallower) and second order convergence.

halfway between unstaggered levels [39]. The uniform grid gives first order or worse

in all except the surface heat flux and the magnitude of the error is higher than

both stretched grids.

In order to obtain accurate solutions to any of the model variables throughout

the depth of the boundary layer requires all three surface fluxes to be captured

accurately. The logarithmic grid gives reliably faster convergence and error mag-

nitude for all three variables. The other two grids do not and this is why larger

errors are seen when comparing Lorenz and Charney-Phillips even with reasonably

high resolution solutions and why increasing resolution sees limited reduction in

the error.
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Figure 3.5: As for Figure 3.4 but using the staggered Charney-Phillips grid.

In all future comparisons the high resolution solution will be obtained using

either a logarithmic or log-linear stretching with 100 grid points.

3.3 Lorenz Configuration

Having obtained the high resolution truth solution there are now a number of low

resolution configurations to consider and compare. It is first important to examine

the differences between the Lorenz and Charney-Phillips staggering, establishing

whether a particular configuration is favoured for obtaining the steady state. Fur-

ther to the comparison between the alternate staggerings is the choice for how to

arrange the actual levels of the model. So far the use of uniform, geometric and

logarithmic grids have been discussed in terms of their ability to obtain ‘truth’

solutions to the equations, of potential interest is also their ability to obtain the
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low resolution solution. In discussion of Lorenz versus Charney-Phillips the model

levels as used in a previous Met Office operational model are the most immediately

relevant. These levels are obtained using a stretching method, similar to the way

in which the geometric grid is constructed here. It will be interesting to compare

the solutions when using the Met Office levels with those found when using the

geometric grid designed here to establish if any improvement is possible with dif-

ferent stretching factors. It will also be interesting to compare the Met Office and

geometric grids with low resolution versions of the uniform, logarithmic and hybrid

of logarithmic-linear grids.

The Lorenz grid is the easiest to implement since it requires no averaging, so

the comparison begins by obtaining solutions for this case. Solutions are obtained

using the Met Office grid for boundary layer 1 to boundary layer 5. Figure 3.6 and

Figure 3.7 show the steady reference states U , V and θ(r) for the Lorenz grid, the

high resolution solution has also been added to show how well the low resolution

performs. The domain is always fixed at 2000m but the figures only show the part

of the domain which contains the interesting boundary layer structure.

The shallowest boundary layer, boundary layer 1, is only around 100m deep;

for the low resolution Met Office levels this means only two zρ levels lie within the

boundary layer. Examining the top row plots in Figure 3.6 it is clear that this lack

of resolution is fairly damaging to the solution of the velocity equations. The overall

depth of the boundary layer is clearly misrepresented. Some of the jet structure in

the V field is captured due to a model level coinciding with the strongest part but

the jet in the U field is not captured at all. At a height of say 100m the U wind

speed is predicted to be around 3ms−1 when in actual fact it should be around

4ms−1, no errors of this magnitude occur in V . The boundary layer 1 θ(r) field is

quite poorly captured by the low resolution solution, with a vertical shift of up to

a 20m in comparison with the high resolution. With resolution this coarse it is

always unlikely that boundary layer structure will be captured, particular features

will only be captured if they happen to occur near a grid point.

As the depth of the boundary layer increases and the size of the overall structure
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Figure 3.6: Met Office grid solutions for boundary layer 1 to boundary layer 5 (top
to bottom) with the Lorenz configuration. High resolution, shown with a dashed
line, uses the logarithmic grid. This figure shows reference velocities U (left) and
V (right), potential temperature θ(r) is shown in Figure 3.7.

increases, more grid points come into use and the ability to capture the profiles

increases. From boundary layer 2 onwards the U field is captured reasonably well,

particularly in the lower part of the boundary layer, although it is not until the
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Figure 3.7: Corresponding to Figure 3.6 this figure shows reference potential tem-
perature θ(r) for the Lorenz grid.

depth of boundary layer 5 that any of the jet structure can be seen in the low

resolution. In the V field the deepening boundary layer also sees more of the

features captured by the high resolution appearing in the low resolution. θ(r) is

still captured least accurately of the model variables. The overall structure is

captured but has a vertical shift. More resolution at the top of the boundary layer

could help to more accurately represent the depth of the boundary layer in the

potential temperature field.

For the deepest boundary layer where seven of the low resolution levels fall in

the boundary layer the low resolution looks reasonably close to the high resolution

solution.
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3.4 Charney-Phillips Option I (Ri computed at

zw levels)

Now the three Charney-Phillips configurations where Ri is computed on the zw

levels are considered. In all three cases the potential temperature gradient θ
(r)
z is

averaged so that Ri is found at zw levels. The three configurations come from how

Kh is computed on the zρ levels, either average Kh I-i, average fh I-ii or average

Ri I-iii. The averaging steps taken to obtain Km and Kh at their relevant levels

are shown in Figure 3.8

u, v

u, v

u, v

θ

θ

|uz|

θz

θz

|uz|

θz

θz

θz

Km, Kh

Km, Kh

Kh

Kh

Kh

Ri fm, fh

Ri fm, fh

Ri fh

Figure 3.8: The steps taken to obtain Km and Kh with the Charney-Phillips option
I grids on a section of the grid away from boundaries. The option I-ii and I-iii
choices are shown in grey.

Figure 3.9 and Figure 3.10 show the Met office grid solutions for Charney-

Phillips option I-i, i.e. with Kh itself averaged to the zρ levels. Included for

comparison on the plots is the Met Office grid Lorenz solutions as shown in Figure

3.6 and Figure 3.7 and the high resolution solutions.

Despite the averaging involved with the Charney-Phillips grids, the low res-

olution solutions of the steady state are quite reasonable. Even the shallowest

boundary layer, particularly in the velocity fields, appears to be captured quite

well by the Charney-Phillips grid. The depth in the U and V fields is as accurate

as the Lorenz version and all of the jet in the V field is present. The θ(r) field is

not as good as in the Lorenz case but results are reasonable considering the low

resolution.

Despite model levels being equivalent for the velocity fields the averaging has
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Figure 3.9: High (dashed) and Lorenz and Charney-Phillips option I-i (Kh itself av-
eraged) solutions for boundary layer 1 to boundary layer 5 (top to bottom). High
resolution uses the logaithmic grid, low resolution uses the Met Office stretched
grid. This figure shows reference velocities U (left) and V (right), potential tem-
perature θ(r) is shown in Figure 3.10.

the effect of capturing more of the jet feature than was captured when using the

Lorenz grid. For example in boundary layer 4 the jet is quite clear and there are
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Figure 3.10: Corresponding to Figure 3.9 this figure shows reference potential
temperature θ(r) for the Charney-Phillips I-i grid.

even signs of it in boundary layer 3.

The low level structure in the U field is more accurate when using the Lorenz

grid than when using the Charney-Phillips I-i grid, but vice versa in the V field.

Capturing of the jet part of the velocity field is less clear cut. For the Lorenz

case the strongest part of the jet in the V field is a little too high up and for the

Charney-Phillips case is a little too low but there is only noticeable difference in

the deeper boundary layers. Charney-Phillips does slightly better in capturing the

U jet.

The Charney-Phillips I-i grid does a better job of capturing the lower part of

the potential temperature field than the Lorenz grid did but the compromise is

that the top of the boundary layer is smoothed. For example looking at boundary
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layer 5, both grids have a vertical shift in the θ(r) field, but the Lorenz grid solution

has greater shift at the lower part of the boundary layer but less of a shift close to

the top of the boundary layer. This may enable the Lorenz grid to provide a better

approximation to the height of the top of the boundary layer, a useful quantity in

boundary layer modelling [47].

Figure 3.11 and Figure 3.12 compare the three sub options I-i, I-ii and I-iii.

Again the Lorenz and high resolution solutions have been added to the plots to aid

comparison.
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Figure 3.11: Plots of boundary layers 1, 3 and 5 for Charney-Phillips option I-i, I-ii
and I-iii against Lorenz and high resolution solutions. This figure shows reference
velocities U (left) and V (right), potential temperature θ(r) is shown in Figure 3.12,
along with a legend of entries.

Most important to note from Figure 3.11 and Figure 3.12 is that for option

I-iii, where Ri is averaged, the θ(r) field is captured significantly more accurately
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Figure 3.12: Corresponding to Figure 3.12 this figure shows reference potential
temperature θ(r) for the Charney-Phillips option I grids.

than, not only the other two Charney-Phillips cases, but also the low resolution

Lorenz case. This sub option will therefore be useful to include in the study of the

transient evolution.

Interestingly the case where fh is averaged seems to give solutions in the velocity

field that are quite similar to the solutions found by the Lorenz grid. This similarity

does not appear to extend to the θ(r) field where this option offers no benefit over

simply averaging Kh.

To further understand the differences between the option I configurations a test

case is considered. Model variables U , V and θ(r) are found by interpolating, using

high order cubic interpolation, from a high resolution truth solution to the Met

Office grid. The test is shown here for boundary layer 2. From these variables the

Richardson number is calculated at the zw levels by averaging the gradient of the

potential temperature. The three sub options are then used to calculate the eddy

diffusivity Kh and the results are shown in Figure 3.13. For each configuration the
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figure shows the Richardson number, the stability function and Kh; the height of

the boundary layer is determined by seeking the point where Km goes to zero in

the equivalent high resolution solution. Note that there is a different vertical scale

for each sub-plot to show the most important features and that the horizontal scale

on the stability function plot is adjusted to show clearly where they go to zero.
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Figure 3.13: A test case comparing the differences between the three option I
Charney-Phillips configurations when calculating eddy diffusivity Kh. In the top
left plot is the Richardson number, the bottom left plot shows the stability function
and the right plot shows Kh.

Since there is no difference in the way the boundary conditions are implemented

between options i-iii the cause for differences must be in the way the outer levels

are solved. Option I-i and I-ii grids start with the same Richardson number so only

two curves are shown in that plot, the green curve is averaged from the blue curve.

In the stability function plot the red curve is averaged from the blue curve. Crosses

on the curves note the location of the grid points. It can be seen in the figures that

when Richardson number is averaged with option iii the top of the boundary layer

is reduced. Kh goes to zero for option I-iii well below the location it goes to zero
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for option I-i and I-ii and this is why the reduced height is observed in Figure 3.11

and Figure 3.12. This reduced height allows for the option iii grid to give better

overall representation of the upper part of the boundary layer.

3.5 Charney-Phillips Option II (Ri computed at

zρ levels)

Now steady state solutions are sought for the Charney-Phillips option II staggerings

to establish whether any benefit is afforded by averaging the shear instead of the

potential temperature gradient. For the option II there are four times as many

configurations as there were for option I, this is due to the four ways of obtaining

the squared shear (a)-(d). For each option on the shear the three options i-iii can

be used for obtaining Km, giving a total of 12 choices. Figure 3.14 shows a selection

from the possible steps that are required in order to obtain Km and Kh when using

option II.

u, v

u, v

θ

θ

|uz|

θz

θz

|uz|
Km, Kh

Km, Kh

Ri fm, fh

Ri fm, fh

Ri

θ |uz| Km

Km

Kmfm

|uz|2 or |uz|2

|uz|2 or |uz|2

Figure 3.14: As for Figure 3.8 but for the Charney Phillips option II grids. The
beginning of the alternative options for finding Km are shown in grey.

To begin with attention is restricted to the option -i case where Km is averaged

rather than fm or Ri. Figure 3.15 and Figure 3.16 show the three reference model

variables as predicted by Charney-Phillips option II(c)-i and II(d)-i. The Lorenz

and high resolution solutions are also shown for comparison.

As can be seen from the figures no useful solutions are obtained when using

option II(c)-i or II(d)-i. Apart from the fact that the solutions lack the correct
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Figure 3.15: The three steady state model variables as found by Charney-Phillips
option II(c)-i and option II(d)-i against low resolution Lorenz and high resolution.
The solutions are for boundary layer 1 to boundary layer 5 (top to bottom). This
figure shows reference velocities U (left) and V (right), potential temperature θ(r)

is shown in Figure 3.16, along with a legend of entries.

structure some of the runs failed to approach a steady solution, whether approxi-

mated through false time-stepping or the Newton method. When it became appar-
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Figure 3.16: Corresponding to Figure 3.15 this figure shows reference potential
temperature θ(r) for the Charney-Phillips option II grids.

ent that solutions were not likely to approach steady conditions they were halted.

For boundary layer 3 neither option II(c)-i or II(d)-i approached the steady state

and had to be halted. For boundary layer 2 option II(d)-i had to be halted. One

reason that the numerics can fail to approach steady state is due to a nocturnal jet

type effect. As first explained in [9] the nocturnal jet results as the depth of the

boundary layer decreases at sunset, leaving ageostrophic wind in a region of neutral

stratification and so free to undergo inertial oscillation. In some of the runs the

large errors resulted in big discontinuities in potential temperature giving regions

of neutral stratification and in the cases that were halted an inertial oscillation was

observed, implying regions of ageostrophic wind free of the Km and Kh forcing.

With the exception of boundary layer 2, where option II(c)-i does a reasonable
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job, there is a significant issue in the structure of the solutions. For boundary layer

1 the solution becomes negative near the ground in the U field. Other boundary

layers develop large discontinuities in the solution, resulting in regions of neutral

stratification and in the velocity fields shear is predicted in regions high above the

boundary layer. The potential temperature field is almost captured for bound-

ary layer 3 but has a large discontinuity. For the deepest boundary layers the

potential temperature is vertically shifted almost down to the surface with huge

discontinuities to the top of the boundary layer.

In all there does not appear to be any viable solutions for the Charney-Phillips

II grid, all twelve configurations were considered and all found to have some degree

of issue. A number of numerical tests have been considered in order to try and

understand why these configurations performed badly. It is generally quite difficult

to fully establish where the errors occur since they will generally occur very sud-

denly during in the early stages of the iteration and simultaneously in all the model

parameters. There is a clear sensitivity to any error that occurs in the shear and

this appears to be due to the more direct way in which shear enters into Km and

Kh. For the option I configurations the averaging is on potential temperature gra-

dient and so this is where errors would occur. However the potential temperature

gradient only enters through the Richardson number and the stability function and

so likely undergoes a smoothing effect. The errors seen for option II are seen again

in the next section examining the option III configurations, further discussion of

the problems encountered is presented there.

3.6 Charney-Phillips Option III (Ri computed at

all levels)

The final group of Charney-Phillips grids to be considered comes under option III,

for these configurations Ri is calculated at all of the model levels. The number of

cases to be considered is reduced by the fact that Km and Kh are automatically

found at the level at which they are required, meaning only the options on averaging
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shear require consideration, these are sub options (a) to (d). Using the option III

grid is equivalent to computing Km using an option I grid and Kh using an option

II grid. The steps taken for options III(c) and III(d) are shown in Figure 3.17.
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fm
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Figure 3.17: As for Figure 3.8 but for the option III(c) and III(d) grids.

Plots of the low resolution solutions for the five boundary layer depths with

Charney-Phillips option III(c) and III(d) are shown in Figure 3.20 and Figure 3.21.

Clearly by averaging both shear and potential temperature gradient an improve-

ment is gained on just averaging shear, as in option II. For all five boundary layers

the velocity fields are considerably improved over option II, there are no regions

of ageostophic wind above the boundary layer and the predicted structure of the

velocity in the boundary layer is reasonably close to the high resolution solution,

although not as good as that predicted by the Lorenz or Charney-Phillips option I

grids.

The results from using option III give further insight into why the option II

grids performed so badly. It is clear that in averaging the shear errors can occur

and that the system is quite sensitive to these errors; more so than it is to errors

when averaging potential temperature gradient, implied by the good results found

when using option I. For the option III grids the sensitivity to the error in averaging

shear is seemingly reduced. This is due to the influence of the errors in shear as Km

is calculated and used to update U and V since under option III Km is calculated

without averaging shear. The U and V wind components are not immune from

errors in shear but may feel them through the potential temperature which is more

directly affected by the error through the shear averaging required to find Kh. Also
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note that the predictions of potential temperature are considerably worse than the

predictions of the velocity.

Consider the route that any error occurring as a result of averaging shear must

take before entering the velocity terms and thus introducing further shear errors.

First Kh is calculated using an averaged shear, this is then used to update potential

temperature. The gradient of potential temperature gradient is calculated and

then averaged, then passed into Ri, then the stability function before entering

into Km, this is then used to update velocity. The error that originates in the

shear in Kh is smoothed and suppressed as it passes through this link. Conversely

if Km is calculated more directly from an averaged shear, as it is in option II,

then greater sensitivity to the error is seen. Averaging shear is seen to produce

discontinuities and errors in the velocity profiles, as the shear is recalculated and

averaged the error becomes worse still, feeding back in continuously. A further

important difference between the way Km is calculated in option II and option

III is in the way that the averaged shear enters; either directly with option II, or

through the stability function via potential temperature with option III. Recall

that Km = l2
∣∣∂u
∂z

∣∣ fm(Ri), under option II the shear in Km is averaged and so has

a more direct influence, under option III it is not averaged, except in fm. Similarly

for option I the errors due to averaging potential temperature gradient can only

influence the solution through the stability function.

The differences between the way averaged shear can enter the model variables

in option II and option III is further highlighted in Figure 3.18 and Figure 3.19.

These figures show flow diagrams of the different stages of the iteration as the

model variables are updated. In both cases the velocities are stored at the zρ levels

and potential temperature is stored at zw levels. In Figure 3.18 there is one loop

to represent that Richardson number is only computed on zρ levels, in Figure 3.19

there are two loops due to Richardson number being computed on both levels.

Figure 3.18 shows the stages of the iteration when using Charney-Phillips option

II(d)-i. For the II(d)-i configuration averaged shear is computed immediately and

then used to compute Richardson number which is in turn used to compute the
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stability function and then Km and Kh, which are then used to update the model

variables. Further the averaged shear enters Km and Kh directly (dashed arrows).

If an error occurs in averaging shear then u and v are quite directly affected by the

error, potentially leading to even greater error. Conversely consider Figure 3.19,

which shows the stages of the iteration when using the option III(d) configuration.

Before any error that occurs in the averaged shear can re-enter u and v it must

first travel around the Kh side of the iteration and only enters into the Km side of

the iteration through potential temperature. Any error in the shear is likely to be

smoothed.
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∂ ln θ
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Figure 3.18: Flow diagram demonstrating the process of updating the model vari-
ables during iteration. The diagram shows the process when using the Charney-
Phillips option II(d)-i grid.

Other than finding that the model is more sensitive to errors in shear than errors

in potential temperature gradient it is difficult to pin down exactly where errors

in shear arise. Output has been examined in the early stages of the iterations for

option II and III. It seems that for some cases errors appear near the ground first

then propagate throughout the domain. It is possible to see this error propagation

by using the interpolated high resolution solutions to slow down the divergence of

the solution. For example by holding either the Km or Kh side of the iteration

constant at values obtained from interpolating the high resolution solution or by

allowing them to only vary from these below or above a certain height. It is near

the surface that shear varies most strongly so it is where the greatest errors would
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Figure 3.19: Flow diagram demonstrating the process of updating the model vari-
ables during iteration. The diagram shows the process when using the Charney-
Phillips option III(d) grid.

be expected when averaging. A number of numerical test have been considered in

an attempt to fully understand why options II and option III are found to give such

poor results. It is generally found that iteration will develop significant errors after

just a few iterations or very suddenly between iterations. This has made it very

difficult to fully investigate the problem and establish how the apparent smoothing

of errors through the stability function occurs. The presence of a computational

mode in the problem was also investigated. This was done by linearising about a

reference state generated for option I but using an option II transient discretisation,

a description of the transient calculation follows in the next chapter. No structure

with computational mode like behaviour was identified however.

The results from the configurations that have been examined here suggest that

when an averaging is required it is better to avoid averaging shear. The sensitivity

that the model has to errors in the predicted shear are greater than the sensitivity

to errors in potential temperature gradient. Using a shear averaging may result in

unpredictable behaviour in the model.

3.7 Comparison of various types of grid spacing

The previous few sections have compared the steady state results for the Met

Office operational grid. It also interesting to compare the performance of the
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Figure 3.20: The three steady state model variables as found by Charney-Phillips
option III(c) and option III(d) against low resolution Lorenz and high resolution.
This figure shows reference velocities U (left) and V (right), potential temperature
θ(r) is shown in Figure 3.21, along with a legend of entries.

Met Office grid against the other ways of spacing the model levels. Grids that

can be considered in addition to the Met Office grid are: the uniformly spaced

grid, a geometric grid, a logarithmic grid and a log-linear grid. Although the

106



280 290 300 310
0

100

200
BL 1

H
ei

gh
t (

m
)

280 290 300 310
0

200

400

600
BL 2

H
ei

gh
t (

m
)

290 295 300 305 310
0

200

400

600
BL 3

H
ei

gh
t (

m
)

295 300 305 310
0

200

400

600
BL 4

295 300 305 310
0

500

1000

!(r) (K)

BL 5

H
ei

gh
t (

m
)

 

 
High Res
Charney!P III(c))
Charney!P III(d)
Lorenz

Figure 3.21: Corresponding to Figure 3.20 this figure shows reference potential
temperature θ(r) for the Lorenz grid.

Met Office grid also has a geometric type stretching the one designed here has a

different bias so that levels concentrate slightly closer to the ground. Two geometric

grids are considered, each with the unstaggered zw levels at the same place but

with the staggered zρ levels placed either halfway between unstaggered levels or

stretched smoothly at the same rate as the unstaggered levels. The uniform grid

is useful in the sense that it is the type of grid used in previous studies such as

[68] and may prove useful in later configurations, such as when examining the

fully coupled problem. Results from the geometrically stretched grid will ascertain

whether bringing more points close to the ground can help; this is also addressed

by examining use of the logarithmic grids but with a more radical bias towards the

ground.
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Figure 3.22: A comparison of steady states predicted by the Lorenz grid whilst
using a variety of ways of spacing the model levels. This figure shows reference
velocities U (left) and V (right), potential temperature θ(r) is shown in Figure
3.23, along with a legend of entries.

Figure 3.22 and Figure 3.23 shows the steady states for the five boundary layers

as predicted by the Lorenz grid with the variety of grid spacing options. Figure 3.24

and Figure 3.25 shows the steady states for the five boundary layers as predicted
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Figure 3.23: Corresponding Figure 3.22 this figure shows reference potential tem-
perature θ(r) for the variety of grids.

by the Charney-Phillips option I-i grid with the variety of grid spacing options.

Finally Figure 3.26 shows the Lorenz grid solutions for the lowest 20m to examine

the ability of each grid to capture the near surface structure.

The first and most important point to note from the various plots is that overall

the Met Office grid does well at capturing the solutions. It offers a good balance

across the cases and across the depth of the boundary layer. Although the grids

with more bias towards the ground are slightly better for the very shallow bound-

ary layers the Met Office grid produces the most accurate results for the deepest

boundary layers

The uniform grid is never expected to perform well for this kind of problem and

indeed for the shallowest boundary layer feels virtually no boundary layer effect. It
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Figure 3.24: A comparison of steady states predicted by the Charney-Phillips I-i
grid whilst using a variety of ways of spacing the model levels. This figure shows
reference velocities U (left) and V (right), potential temperature θ(r) is shown in
Figure 3.25, along with a legend of entries.

starts to do a better job of the deepest boundary layer but nowhere near as good

as anything else.

There appears to be little difference between the two geometric grids that were
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Figure 3.25: Corresponding Figure 3.24 this figure shows reference potential tem-
perature θ(r) for the variety of grids.

tested, for every boundary layer depth there is little to distinguish between them.

The extra resolution near to the ground does mean that the geometric grid is able

to capture the shallowest boundary layer accurately; for boundary layer 1 it is only

bettered by the logarithmic grid.

Like the geometric grid the logarithmic grid does well for the most shallow

boundary layer, however the concentration of grid points near to the ground means

structure of deeper boundary layers is generally misrepresented. The log-linear grid

is quite good for capturing the large-scale structure of the deeper boundary layers

but had issue in predicting the structure of the shallower boundary layers. When

using the Lorenz grid with the log-linear spacing the U profile goes negative near

the surface. The bias from log to linear can be adjusted and so it may be that the
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Figure 3.26: A comparison of the near surface structure as found by the Lorenz
grid with the variety of grids. Shown for boundary layer 1 and boundary layer 5

log-linear grid can be made to give better representation, it is unlikely that it can

improve much on the Met Office and geometric grids however.

3.8 Concluding Remarks on Steady State Solu-

tions

For the full picture of how well a grid configuration can perform the full lineari-

sation and transient analysis must be considered. Despite this the steady state

examination has revealed useful information about the vertical configurations.

Before the steady states were compared the problem had to be modified to

suit the methodology. Firstly, in order to use the methodology requires that a

completely steady state is obtained, it has been shown that, with a modification,

it is possible to achieve this for the boundary layer equations. In order to obtain

a completely steady state requires a fixed boundary condition on the potential
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temperature, the lack of imposed fluxes means subsidence warming is required to

balance the overall cooling. A further requirement of the methodology is that

the numerics have good convergence properties so that a ‘truth’ solution can be

obtained. It has been shown that a transformation to a logarithmic coordinate is

needed in order to obtain good convergence properties.

A selection of stably stratified boundary layers with steady state structures

that would commonly be found in the atmosphere have been studied. In general

the Lorenz grid is capable of representing the steady state more accurately than

any of the Charney-Phillips grids options that were tested. The Charney-Phillips

option I had the best results. Indeed for the majority of the cases examined the

option II and option III configurations encountered problems. Under option I three

configurations were considered, defined by the averaging in the Kh term. The case

where the Richardson number was averaged had promising results, particularly in

its ability to represent the potential temperature profiles.

In comparing different ways of spacing the model levels in the low resolution runs

no configuration has been found to significantly outperform the Met Office grid.

The geometric grids could capture the shallowest boundary layers slightly more

accurately but were less accurate for the deeper boundary layers. The uniform grid

gave the most inaccurate representation of the steady states, but may be useful for

the deepest boundary layer if it will assist the transient methodology later. The

logarithmic and log-linear grids were not found to be useful for the low resolution

since the biasing meant only boundary layers at each extreme were captured well.

Boundary layer 1 was captured well by the log grid but boundary layer 5 was not,

conversely the log-linear grid captured boundary layer 5 well but not boundary

layer 1.

Going into the transient examination it is possible to reduce the number of test

cases to consider as some of the configurations have been found to be problematic in

some way. Any Charney-Phillips configuration that requires the averaging of shear

was prone to error and in some cases unable to approach a proper physical steady

state. These configurations can be neglected going into the transient comparison
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since if they are unable to capture even the steady state accurately they will be less

useful for modelling the stable boundary layer. Configurations of interest moving

forward are the Lorenz grid and Charney-Phillips option I-i and I-iii grids.
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Chapter 4

Transient Solution

Computing the steady solution gives considerable insight into the way in which the

different grid staggering can perform for this type of problem and highlights any

unsuitable configurations. The model as a whole evolves in time and the ability

of a particular configuration to capture the reference solution does not necessarily

extend to describing its ability to represent the whole time dependent problem.

In order to further understand the differences between configurations the transient

part of the equations needs to be examined. The transient part of the linearisation

represents the small amplitude linear departure from the reference state; combining

a study of the transients with the steady state study will provide insight into how

well a configuration will be able to model the full problem. Note that linearising

about a reference state will not reveal information about any nonlinear temporal

behaviour.

Examining the transients is a popular methodology for measuring the capabil-

ities of a numerical model and is often done by studying the normal modes of the

solution, [68, 16, 66, 67, and references therein]. Normal modes of the solution

represent a set of linearly independent solutions; any discrete transient behaviour

can be projected onto this set of solutions. As discussed in the introduction to this

thesis forcing mechanisms can perturb the atmosphere away from balance and as

restoration occurs waves are radiated. These waves that occur due to perturbations

are represented by the normal modes. For the dynamics the types of waves that will
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be considered are the acoustic, inertio-gravity and Rossby modes. Any model needs

to be able to represent the vertical structure of the acoustic and inertio-gravity nor-

mal modes so that it can accurately represent the restoration of balance. It also

needs to be able to represent Rossby modes since they are energetically dominant.

The boundary layer is different to the dynamics in that modal solutions do not just

radiate but will be damped, representing the boundary layer diffusion.

When examining individual normal modes the methodology is similar to that

used when examining the steady states. Once some normal mode is identified in two

competing low resolution configurations it is then compared to the high resolution

version of that mode. Again there should be negligible difference between config-

urations at high resolution. The process of comparing modes is made somewhat

more difficult than comparing steady states since the number of normal modes in

the solution is related to the number of degrees of freedom in the system and so

an order of magnitude more will exist in the high resolution solution.

The number of degrees of freedom in the system is determined by the number

of prognostic variables and where they are positioned. Recall from Figure 2.1 that

there are N + 1 zw levels and N zρ levels, where N is 10 for the Met Office grid

and 100 for the high resolution grid. For variables stored on the zw levels the

boundary conditions are implemented at the lowest and highest level, this gives

N − 1 degrees of freedom for each variable. For the fully coupled problem, that is

considered in Part II, prognostic variables stored on zρ are free to vary at all levels,

giving N degrees of freedom for each variable. If a boundary condition is required

on a variable stored on the zρ levels it is taken at the top of the roughness length

or at a ‘ghost’ level above the domain. Clearly there will be one more degree of

freedom when using the Lorenz grid than when using the Charney-Phillips grid due

to the extra degree of freedom when storing potential temperature at the zρ levels.

When considering the boundary layer without the dynamics it is sufficient to allow

variables stored on zρ levels to only vary on N−1 model levels so that both Lorenz

and Charney-Phillips support the same number of degrees of freedom. Ensuring

the same number of degrees of freedom across both Lorenz and Charney-Phillips
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configurations prevents the need for the potentially arduous task of identifying the

mode only supported by the Lorenz grid and removing it from any comparison. In

each configuration considered there will be 3(N − 1) degrees of freedom. In the

high resolution runs there will be an order of magnitude more modes supported

and so some methodology will be required for identifying those which correspond

to the modes supported by the low resolution configurations.

4.1 Transient Equations and Discretisation

Linearising (2.44), (2.45) and (2.64) about the steady reference state and ignoring

terms which contain products of two or more transient terms gives,

∂u′

∂t
= fv′ +

∂τ ′x
∂z

, (4.1)

∂v′

∂t
= −fu′ + ∂τ ′y

∂z
, (4.2)

∂θ′

∂t
=
∂H′
∂z
− wsub

∂θ′

∂z
. (4.3)

where,

τ ′x = Km
∂u′

∂z
+K ′m

∂U

∂z
, (4.4)

H′ = Kh
∂θ′

∂z
+K ′h

∂θ(r)

∂z
. (4.5)

The transient eddy viscosity and diffusivity are given by,

K ′{m,h} =
l2∣∣∂U
∂z

∣∣
(
∂U

∂z

∂u′

∂z
+
∂V

∂z

∂v′

∂z

)
f{m,h}(Ri)+

l2
∣∣∣∣∂U

∂z

∣∣∣∣ ∂f{m,h}∂Ri

g ∂
“

θ′

θ(r)

”
∂z∣∣∂U
∂z

∣∣2 − 2g
∂θ(r)

∂z∣∣∂U
∂z

∣∣4
(
∂U

∂z

∂u′

∂z
+
∂V

∂z

∂v′

∂z

) , (4.6)

the square bracketed part of the right hand side of (4.6) represents Ri′.

The spatial discretisation of equations (4.1) to (4.3) away from the boundaries

is analogous to the discretisation of the steady state part of the equations. For the
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lowest model level the spatial discretisation is implemented as,

(
∂u′

∂t

)
1

= fv′1 +
∂

∂z

[(
Km

∂u′

∂z

)
3
2

− Cmn (fm(Rib)|U1|u′1 + fm(Rib)|u1|′U1

+
∂fm
∂Rib

Ri′b|U1|U1

)]
,

(4.7)(
∂v′

∂t

)
1

= −fu′1 +
∂

∂z

[(
Km

∂v′

∂z

)
3
2

− Cmn (fm(Rib)|U1|v′1 + fm(Rib)|u1|′V1

+
∂fm
∂Rib

Ri′b|U1|V1

)]
,

(4.8)(
∂θ′

∂t

)
j

=
∂

∂z

[(
Kh

∂θ′

∂z

)
j+ 1

2

− Chn
(
fm(Rib)|Uj|θ′j + fm(Rib)|uj|′(θ(r)

j − θs)

+
∂fm
∂Rib

Ri′b|Uj|(θj − θs)
)]
−
(
wsub

∂θ′

∂z

)
j

.

(4.9)

The j in equation (4.9) is either 1 for the Lorenz grid or 3
2

for the Charney-Phillips

grid. For the Charney-Phillips grid all terms in equation (4.9) involving velocities

also need to be averaged to the z 3
2

level, similarly all terms in equations (4.7) and

(4.8) involving potential temperature would need to be averaged to the z1 level.

The transient bulk Richardson number is,

(Ri′b)j = g(zj − zr)


θ′
j

θ
(r)
j

|U|2j
− 2

log(θ
(r)
j )− log(θs)

|U|4j
(
Uju

′
j + Vjv

′
j

) ; (4.10)

again j will be either 1 for the Lorenz grid or 3
2

for the Charney-Phillips grid with

the relevant averaging on the terms not stored at j. Note that all ∆z terms are

replaced by the factor (zj − zr) in the bulk Richardson number.

Coefficients of all the transient terms in the discrete versions of (4.1)-(4.3) can

be gathered into a matrix, allowing the problem to be written as,

ẋ = Ax. (4.11)
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The transient solutions have no horizontal dependency for the boundary layer

only problem and so solutions of the form exp(λt) are sought, where λ = µ − iω.

Seeking wave like solutions leads to equation (1.2). The matrix A is decomposed

using the eigendecomposition to give the eigenvalues and eigenvectors. Since the

problem is one of diffusion and there is no horizontal mechanism the real part of all

of the eigenvalues is negative, denoting decay. Some modes may be propagating and

so will have an imaginary part denoting the frequency; in general the frequencies

will be small in comparison to the damping rates. A number of neutral inertial

modes with frequency ±f are possible; for these modes the imaginary part of the

eigenvalue dominates the real part.

4.2 Matrix Normality

The eigenvectors, or modes, of the matrix A represent the transient part of the

solution. Any linear time dependant behaviour may be projected onto combinations

of these modes. It is not, however, always possible to easily interpret this linear

behaviour by examining each individual mode. The level of interpretation will

depend on the orthogonality between the modes, which depends on the form of the

matrix A, which in turn depends on the complexity of the equations.

For an appropriate equation set, such as that studied by [68], the matrix A is

normal, that is to say A?A = AA?, where A? is the conjugate transpose. When

a matrix is normal its eigenvectors are all orthogonal and are referred to as the

normal modes of the system. That the modes are orthogonal means that each

individual mode must represent a certain scale in the problem and so can be easily

interpreted and understood quantitatively. For the boundary layer only problem

being examined here it is found that the matrix A is far from normal. The result

is that the modes are not orthogonal. When modes are not orthogonal it makes

interpreting their individual contribution considerably more difficult [71]. This is

demonstrated in Figure 4.1 which shows successive eigenvectors from the matrix

A, generated for a high resolution run of boundary layer 1.

In order to generate Figure 4.1 each eigenvector is ordered by the real part of
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Figure 4.1: This figure shows the real part of u′ for some successive eigenvectors
using a stretched Lorenz grid to model boundary layer 1. In red is one type of
behaviour for 13 successive modes, in blue shows the behaviour that the system
then flips to for the next 25 modes.

its corresponding eigenvalue, so neighbouring modes have similar decay rates. If

the modes were normal modes then each successive mode would have a particular

scale and structure associated with it, as is clear from the figure this is not the

case. Many modes in sequence can have very similar overall scale and structure.

Lack of orthogonality does not mean that modes do not represent the discrete

behaviour, only that they do so in a way that makes it impossible to quantify the

behaviour of the system by looking at individual modes. Further to this it is not

possible to easily compare modes from different configurations. For example, the

thirteen modes plotted in red in Figure 4.1 all look very similar, if the Charney-

Phillips grid also supported a similar family of modes then it would not possible

to know which modes corresponded to each other. The problems, due to lack of

orthogonality, can be summarised as:

• It is not possible to interpret the contribution represented by an individual

mode and thus know which modes are most relevant for comparison.
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• It is not possible to know which modes correspond to each other across dif-

fering configurations or resolutions.

4.2.1 The form of Matrix A

One may reduce the complexity of the problem in order to obtain normality in A,

for example by considering the Ekman layer on a uniform grid. The equations for

the Ekman layer are,

∂u

∂t
= fv +Km

∂2u

∂z2
, (4.12)

∂v

∂t
= −fu+Km

∂2v

∂z2
, (4.13)

where Km is temporarily considered constant with height. If equations (4.12) and

(4.13) are discretised and written in matrix form ẋ = Ax then it would take the

form,  u̇

v̇

 =

 Ψ Φ

−Φ Ψ

 u

v

 . (4.14)

Vectors u and v contain the model variables at each level. The matrix Φ is diagonal

with f on the diagonal. Ψ is a matrix containing the coefficients of the discretised

form of Km
∂2

∂z2
. If a centred difference approximation is used for the derivative

and the grid is spaced uniformly then Ψ is a symmetric Toeplitz matrix. For this

simplified model the conjugate transpose of A is,

A? =

 Ψ −Φ

Φ Ψ

 . (4.15)

It then follows that,

AA? = A?A =

 Ψ2 + Φ2 0

0 Ψ2 + Φ2

 , (4.16)

meaning that A is normal.

If the grid is then stretched the matrix Ψ is neither symmetric or Toeplitz. As
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a result of the increased complexity and the loss of symmetry in Ψ the similarity

between the matrix and its conjugate transpose, as in (4.14) and (4.15), is lost. In

turn the form of AA? becomes more complicated and different from A?A, meaning

that normality in A has been lost. Further to this, in any realistic situation Km is

a function of height so a uniform grid will not necessarily provide normality in A.

For the full boundary layer equations a further equation for potential temper-

ature is required and each model variable is dependant on the other two model

variables through the Richardson number. The matrix A can be thought of as

consisting of nine parts, not four as in (4.14), and none of the parts have the

simple form that would be required to see normality in A itself.

4.3 Singular Value Decomposition (SVD)

The reason that using using the eigendecomposition fails to offer easy interpretation

of the behaviour of the system is due to the eigenvectors not forming an orthogonal

basis. Another type of matrix decomposition is the Singular Value Decomposition

(SVD), which produces left (output) and right (input) singular vectors rather than

eigenvectors, and singular values rather than eigenvalues. Singular vectors always

form an orthogonal basis [71].

Instead of equation (1.2) the decomposition produces solutions to an equation

of the form,

σu = Av, (4.17)

where u is the left singular vector, v is the right singular vector and σ is the

corresponding singular value. The decomposition is,

A = UΣV?. (4.18)

Columns of U are magnitude 1 and give the output orthonormal basis u, columns

of V also have magnitude 1 and give the input orthonormal basis v. Σ is a diagonal

matrix whose entries are σ.

Informally the action of a general matrix on a general vector can be thought of
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as rotation and stretching. Matrix decompositions break this action down so as to

represent it as a rotation followed by a stretching followed by another rotation. In

the eigendecomposition the eigenvectors have the special property that they are the

vectors that are only magnified when multiplied by the matrix, the first rotation

is cancelled by the second. The magnification is given in the eigenvalue.

The SVD is different to the eigendecomposition. Rather than just the eigen-

vector basis, it has both an input and an output basis and the two have to be

considered together. When multiplying singular vectors by V?, then Σ and then

U the rotations by V? and U do not necessarily cancel each other out. Physically

when the input singular vectors are multiplied by the matrix from which they are

derived they are rotated and stretched to be the equivalent to the output singular

vectors multiplied by the corresponding singular values. The additional property is

that the output singular vector is the vector that when multiplied by the conjugate

transpose of the original matrix is equal to the input singular vector multiplied by

the corresponding singular value.

In the special case that the matrix is normal, Hermitian and sign-definite the

rotations by V? and U will cancel each other out when multiplying a singular

vector. In this special case the SVD and eigendecomposition are equivalent since

the singular vectors are also the vectors that are only stretched when multiplied

by A.

Formally the SVD can be related to the eigendecomposition by noting that,

AA? = UΣV?VΣ?U?

= U (ΣΣ?) U? (4.19)

and

A?A = V (ΣΣ?) V?. (4.20)

The left singular vectors are equal to the eigenvectors of AA? and the right

singular vectors are equal to the eigenvectors of A?A. The non-zero singular values
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are equal to the square root of the non-zero eigenvalues in either case.

Due to the algorithms used to compute the SVD the singular values are au-

tomatically sorted by magnitude. Examining the corresponding singular vectors

with increasing singular value magnitude, equivalent to the structures plotted in

Figure 4.1, finds behaviour that changes more consistently than was found in the

eigenvectors. The behaviour is more representative of the physical behaviour that

would be expected. Firstly the singular vector with smallest scale corresponds to

the largest singular value. Secondly the problem seen in the eigenvectors, of se-

quences of similar behaviour, is not seen in the singular vectors. Instead a decrease

in singular vector scale with increase in corresponding singular value is seen, as

might be hoped for.

Seeking solutions of the form exp(λt) leads to an equation of the form λx =

Ax, solutions of this equation are not directly given by the SVD. The use of

the SVD therefore depends on whether a physical interpretation can be applied

to its components. The SVD is widely used in meteorological and mathematical

applications, particularly in understanding the growth of errors in initialisations

e.g. [49, 25, 53]. The SVD has also been used in geophysical applications e.g [72].

In previous applications the SVD is used to understand the behaviour of the matrix

A, where A represents some dynamical system, for example a global atmospheric

model. This is effectively what is required here. However, the ability of the SVD to

relay useful information about the problem being examined here still needs to be

explored. Ideally the SVD should represent the behaviour as it is represented by the

eigendecomposition but in an orthogonal way. The extent to which interpretation

of the SVD is similar to interpretation of the eigendecomposition will depend on

the form of the matrix. It will be shown in the next section that by choosing an

appropriate norm the form of the matrix can be manipulated to make the SVD

and eigendecomposition as close to each other as possible. It is also shown that in

transforming to the appropriate norm the necessary physical interpretation of the

SVD is provided.
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4.3.1 Energetics and The Energy-Norm

When decomposing a matrix with the eigendecomposition the form of the eigen-

vectors depends on the choice of norm, however the value of the eigenvalues do not.

Likewise for the SVD, the singular vectors are dependent on the choice of norm.

For the SVD however the singular values are also dependent on the choice of norm.

The method of SVD can be further related to the eigendecomposition by choos-

ing the appropriate norm, effectively a transformation of the model variables. Doing

this transformation should allow for easier physical interpretation of the compo-

nents of the SVD. In this section the energetics of the system are examined and it

is shown that by placing the model in the energy norm a link is created between

the SVD and eigendecomposition. The energy norm is often used when applying

SVD analysis to error growth, see for example [24, and references therein]. The

link between the two decompositions is due to the matrix A being normal and Her-

mitian when the system conserves energy and is written in the energy norm. First

an equation describing the conserved energy in the system needs to be derived, it

is then shown that in transforming the variables so as to describe the energy in the

system the matrix of coefficients becomes normal and Hermitian.

It should be noted that the boundary layer equations that are being modelled

are not energy conserving; however the basic Boussinesq equations from which

they have been derived are. Despite the system not being energy conserving it is

nevertheless useful to use the energy norm and provide the link between matrix

decompositions. Neglecting the boundary layer terms and replacing the horizontal

pressure gradient terms, the basic energy conserving Boussinesq equations, in their

linearized form are,

∂u

∂t
− fv +

1

ρ0

∂p

∂x
= 0, (4.21)

∂v

∂t
+ fu+

1

ρ0

∂p

∂y
= 0, (4.22)

∂w

∂t
+

1

ρ0

∂p

∂z
= b, (4.23)

∂b

∂t
+ wN2

b = 0, (4.24)
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∇.u = 0. (4.25)

To aid in the derivation of the energy, equations (4.23) and (4.24) are written

in terms of the buoyancy b and Brunt–Väisälä frequency Nb, these can be related

back to the potential temperature using, b = gθ′

θ0
and N2

b = g
θ0
∂θ
∂z

. θ0 is the reference

potential temperature. Combining the above equations as, u× (4.21)+v× (4.22)+

w× (4.23) + ρ0b
N2
b
× (4.24) + p× (4.25) gives the energy conservation principle for the

system,

ρ0
∂e

∂t
+∇.(up) = 0, (4.26)

where e = u2

2
+ v2

2
+ w2

2
+ b2

2N2
b
. The total energy contained in the system can thus

be found by computing the volume integral of e. On the discrete Lorenz grid the

energy integral for the three original model variables is approximated by,

E =
N∑
j=1

[
(∆z)j

(
u2
j

2

)
+ (∆z)j

(
v2
j

2

)
+ (∆z)j+ 1

2

(
w2
j+ 1

2

2

)
+ (∆z)j

(
g2θ2

j

2θ2
0(Nb)2

j

)]
.

(4.27)

Note that w is zero for the case being considered here.

Now note that equation (4.27) can be written as,

E =
1

2
x?Ex (4.28)

where x = (u, v, θ)T is the state vector, x? is its conjugate transpose and E is a

diagonal matrix of the form,

E =


∆z 0 0

0 ∆z 0

0 0 ∆z g2

θ20N
2
b

 . (4.29)

To write in the energy norm the model variables are transformed so that E = I.

Introducing s =
(

∆z
1
2u,∆z

1
2v,∆z

1
2

g
θ0Nb

θ
)T

to denote the vector of transformed
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model variables the energy is then obtained as,

E =
1

2
s?Is. (4.30)

Now it can be shown that the matrix of coefficients that corresponds to s is

normal. For a system that conserves energy dE
dt

= 0, which written in matrix form

is,

d

dt

(
1

2
x?Ex

)
= 0, (4.31)

=⇒ 1

2

[
dx?

dt
Ex + x?E

dx

dt

]
= 0. (4.32)

Substituting the time derivatives using (4.11) gives,

1

2
[x?A?Ex + x?EAx] = 0, (4.33)

=⇒ 1

2
[x? (A?E + EA) x] = 0. (4.34)

Now if the state variables are transformed such that E = I then the only

way for equation (4.34) to be satisfied is if A? + A = 0, or A = −A?. If A =

−A? the matrix is said to be skew-Hermitian. This also gives that A?A = AA?

meaning A is normal. In summary, for a system that conserves energy, if the

state variables are transformed so as to give the identity matrix in (4.28) then the

resulting matrix of coefficients A will be normal and skew-Hermitian. Although

this does not guarantee a sign-definite matrix it will likely produce a situation

where close similarity between the SVD and the eigendecomposition is seen, making

physical interpretation of the SVD more readily available. The similarity between

the SVD and the eigendecomposition for the energy conserving isothermal resting

state, dynamics only system is examined in Part II.

The transformed state vector can be related to the original state vector by a

matrix multiplication,

s = Bx. (4.35)
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Since ẋ = Ax and x = B−1s it follows that ṡ = Bẋ = BAx = BAB−1s.

Written in the energy norm the system is thus,

ṡ = Cs, (4.36)

where C = BAB−1. The matrix B is just a conversion matrix, for this case it is

diagonal and the entries are the square roots of the coefficients of the new model

variables in (4.27), so (B2 = E).

As for the eigenvalues the singular values have dimension of time. Once in the

energy norm the singular values have a similar overall magnitude to the real part

of the eigenvalues, this is examined in the next section. Leading modes are the

most physically relevant modes, they are the longest lived decaying modes that

have structure lying entirely within the boundary layer region. By examining the

corresponding singular value and the overall structure, a leading singular vector is

identified and is plotted in Figure 4.2. Despite the system not conserving energy the

improved physical representation that is afforded by generating the decomposition

from C rather than A can be seen. The figure shows the input singular vectors

on the bottom row and the output singular vectors on the top row. Singular

vectors computed from the energy norm form are scaled back to give just the

model variables. From left to right the u′, v′ and θ′ parts of the singular vector

are shown. For θ′ the singular vector computed from the transformed variables has

all of its structure lying in the boundary layer, whereas in the standard norm the

behaviour can dominate above the boundary layer. For a leading boundary layer

mode the structure would be expected to be dominant in the boundary layer region

so clearly a simpler physical interpretation is afforded by writing in the problem in

the energy norm to calculate the SVD. For these singular vectors it is mainly the

θ′ part that benefits from the energy norm formulation. Both velocity variables are

significantly rescaled by the energy norm formulation, however both remain having

similar magnitude to each other. Also note that the input and output versions of

θ′ are quite different in the standard norm, whereas in the energy norm the overall

input and output structure is closer, making the behaviour easier to interpret.
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Figure 4.2: A comparison of a leading singular vector in the standard and energy
norms.

4.3.2 Form of the Spectrum

An important consideration when using this kind of methodology for comparing

configurations is in the form of the spectrum. The spectrum represents the range

of scales supported by the continuous system. Depending on the system that is

being examined this spectrum of solutions may be either discrete, continuous or

exhibit a combination of the two. For the isothermal reference state linearised Eu-

ler equations, as considered by [68], it is clear that only a discrete set of transient

solutions are possible. Solutions are sinusoidal and limited by boundary conditions

on a finite domain; an infinite but discrete set of possible solutions exist. When the

eigendecomposition is computed for the discretised equations it will sample every

solution in the discrete set up to the scale allowed for by the resolution. Among the

types of fluid flow that are known to exhibit a continuous part to the spectrum is

boundary layer flows in an infinite domain [19, and references therein]. That these
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flows have continuous spectrum is due to there existing an infinite and continuous

number of ways that transient solutions that can satisfy the boundary conditions.

Any discretisation of the equations results in a sampling of the continuous spec-

trum; this sampling is represented in the eigendecomposition. When the discrete

equations are perturbed, as they will be when comparing two different configura-

tions or resolutions, it is possible for the sampling of the continuous spectrum to

completely change.

It is not clear whether a boundary layer type flow within a bounded domain,

as being examined here, should exhibit a wholly discrete spectrum or whether

it can support continuous spectrum. Due to the potential difficulty presented

it is beyond the scope of this thesis to determine rigorously whether or not the

spectrum is wholly discrete. Indeed there are two distinct situations considered

here, boundary layer on its own and boundary layer coupled to the dynamics,

the form of the spectrum would need to be derived for both. If the spectrum of

solutions is continuous then it would be considerably more difficult to compare

configurations using this methodology.

Although it would be difficult to determine rigorously whether the spectrum

is discrete or not for the stably stratified boundary layer equations if the problem

is reduced to the solvable Ekman equations it can be shown that the spectrum

is discrete, e.g. [34]. Of course the stably stratified boundary layer has more

complicated processes occurring due to the stratification and so it is not clear that

the analysis should extend from the Ekman layer to this case. The later inclusion of

the dynamics further complicates matters. It could be perceived, for example, that

dynamical waves of any wavelength may be absorbed or distorted by the boundary

layer in a way that would result in a continuous spectrum of solutions.

It seems likely that if the coupled problem exhibits a discrete spectrum the

boundary layer only problem also should. The reference state would be similar for

both and the transient boundary layer terms are not altered by the presence of the

extra dynamics terms. On this reasoning a more detailed examination of the form

of the spectrum is postponed here but performed in Part II for the coupled case.
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For the remaining studies in Part I it will be assumed that the spectrum of solutions

is discrete. It is important to be aware of the possibility of continuous spectrum

and this will be taken into consideration throughout the study and comparison of

the boundary layer modes.

4.4 Testing Methodology

The methodology that is usually employed in order to examine the transient be-

haviour is the normal mode analysis. Due to the complexities contained in the

boundary layer equations the mode analysis is unlikely to be able to represent eas-

ily interpretable transient behaviour in the system. Mode analysis relies on the

eigenvectors forming an orthogonal basis, which, due to the stratification and grid

stretching, is not the case. A decomposition that does produce vectors with an

orthogonal basis is the SVD. However it is not clear the extent to which the SVD

is representative of the equation’s transient solution. For the eigendecomposition

there is a clear relationship between the decomposition and the solution to the

transient equations. Although the SVD does describe the behaviour of A for the

SVD there is no clear relationship between the transient solution and the decom-

position. The SVD produces singular vectors, which are not the vectors which are

only scaled by the matrix. Instead they exhibit a more complex property repre-

sented by a relation between input and output singular vectors. Nevertheless the

two methods are related. The eigendecomposition can be considered a special case

of the SVD; when the matrix is normal, Hermitian and sign-definite the two are

equivalent. Numerical testing will be required to fully establish whether or not the

SVD will be able to represent the transient behaviour in an easily interpretable

way and thus be useful for comparing different vertical configurations. It has been

argued that by writing the system in the energy norm provides further relation

between the SVD and eigendecomposition and so this will be used to maximise the

SVD’s potential.

Due to the problems with the methodology neither decomposition should be

completely relied on for understanding and comparing the transient behaviour.

131



Instead both must used to complement each other. For example if a certain level

of agreement exists between eigenvalues and singular values then confidence is

gained in extracting information from singular values, if there is no correspondence

between them it is unlikely they can be used. Similarly if the singular vectors

are found to reveal behaviour similar in nature to the behaviour that would be

expected in the eigenvectors then confidence is gained in their use.

With the various options on averaged terms when using the Charney-Phillips

grid as well as the different ways of spacing the model levels a large number of

test cases have been presented. Considering the potential difficulties in comparing

transients, only those configurations that are most relevant, or are most promising,

will be considered. The Met Office grid is most relevant in terms of spacing the

model levels since it is taken from an operational model. The Charney-Phillips

configurations that gave the most accurate results for the steady state part of the

investigation were option I-i and I-iii, these were both configurations which averaged

potential temperature gradient and then averaged either Kh or Richardson number.

The focus of the transient investigation will thus be on these two cases, option I-i

and I-iii with the Met Office stretching.

Further to the choice of vertical configuration there are five boundary layer

depths to consider. Due to the limited number of grid points close to the ground it

is likely to be easiest to compare singular vectors for the deepest boundary layers,

where increased boundary layer structure will be resolved. The low resolution Met

Office grid only has one model point inside the shallowest boundary layer meaning

virtually no structure will be seen in the singular vectors; it will therefore be difficult

to match low and high resolution singular vectors.

The following three sections present the transient investigation. Firstly the

methodologies are examined in detail in order to determine the physical inter-

pretation that each can offer. Secondly the high resolution solution is examined.

This is to examine the convergence properties between the high resolution config-

urations. Finally, with all the methodology carefully examined, a comparison is

performed for the configurations at operational resolution.
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4.5 Physical Interpretation of Eigenvectors and

Singular Vectors

In many well behaved dynamics-only cases such as that described by [68] it is

possible to identify and classify the types of modes analytically. For example their

system supports a definite number of acoustic, inertio-gravity and Rossby modes.

For the boundary layer equations no analytical solution of the dispersion relation is

currently known, instead classifying modes is achieved by examining the numerical

results. By determining the value of the eigenvalue and singular value as well as

examining the structure of eigenvectors or singular vectors classifying eigenmodes

should be possible.

Figure 4.3 shows plots, in the complex plane, of the eigenvalues of A for a

logarithmic grid high resolution run of boundary layer 5. The first plot shows all of

the eigenvalues, the second and third show the eigenvalues with smaller magnitude

real part in more detail.

Firstly note that the real parts of all the eigenvalues are negative, meaning that

all modes are damped; any positive eigenvalues would represent unsteady growing

modes. The magnitude of the real part of an eigenvalue can thus be considered as

describing how fast the corresponding eigenmode is damped. The eigenvalues with

the largest absolute real part are the fastest damped and so should correspond to

the eigenmodes with smallest scale. For these modes the evolution is dominated by

diffusion rather than propagation, so the imaginary part is zero. Eigenvalues with

smaller absolute real part correspond to modes that are not damped so quickly.

Some of the slower damped modes have an imaginary part to the eigenvalue de-

noting that the corresponding eigenmode propagates, these approximately occur in

conjugate pairs implying similar modes propagating in opposite directions. Gener-

ally since the real part of the eigenvalue dominates; for these it is more important

that a configuration be able to accurately represent decay rather than the rate

of propagation. If there were errors in propagation it would be unlikely to cause

problems before the mode was damped away.
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Figure 4.3: Complex plane plots of the eigenvalues for high resolution boundary
layer 5. Successive plots zoom into the eigenvalues with smaller magnitude real
part.

For this resolution there exist a total of 16 (8 pairs) eigenvalues whose imaginary

part is very close to ±f the Coriolis parameter, these correspond to inertial modes

living entirely above the boundary layer. The eigenvalues corresponding to the

inertial modes can be seen at the right hand side of the lowest plot in Figure 4.3,

although they all lie on top of each other. The real part of these modes is effectively

zero and so they propagate with frequency f without being damped. The number

of inertial modes is a consequence of the number of grid points that lie in the region

above the boundary layer; if a log-linear grid were used the emphasis would shift,

giving more inertial modes and fewer boundary layer modes.

Some modes having very small-scale structure are possible due to the fine spac-

ing caused by using a logarithmic grid, these modes will be damped very fast and
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so the real part of the corresponding eigenvalue has large absolute value. That dif-

ferent scales have different rates of damping is due to relative size of the gradients

in the transient diffusion terms, structures with small-scale have larger gradients

and are thus damped faster. Viewing the eigenvalues without the imaginary part

can help to pick out the different types of behaviour, i.e. just by the rate at which

they are damped. Figure 4.4 shows the same eigenvalues as Figure 4.3 but just the

real part of the eigenvalue, denoting the decay rates of the modes.
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Figure 4.4: Real part of the eigenvalues for high resolution boundary layer 5. The
right plot shows the absolute value of the real part of λ with a log scaling on the
y axis, the first few (purely inertial) modes, which are effectively undamped, have
been omitted.

The figure shows more clearly the increasing rate at which the modes are

damped, although due to the large range of damping the log-scale for the ab-

solute value plot shows more clearly the varying behaviour. The plot to the right

in Figure 4.4 shows the real part but with a log scaling, note that the first few

modes, which are effectively undamped need to be omitted to benefit from the

scaling. In this plot it is much clearer that there is varying behaviour in the

modes. The omitted eigenvalues are the inertial type modes which lie above the

boundary layer. The next set of modes with index 16 to around 22 are damped,

but more slowly than others. There then exists a sequence of modes with a similar

damping rate to each other (22-30). Beyond this the damping rate increases with

each successive corresponding mode. Figure 4.5 shows the modes coming from the
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three sections of behaviour noted in Figure 4.4; the u′ part of the eigenvector is

shown for corresponding eigenvalues with index 16, 27 and 75. The slower damped

modes lie mainly near the top of the boundary layer and appear to be exhibiting

a combination of inertial and damped processes, all have corresponding eigenvalue

with an imaginary part. The eigenvalues which have similar real part correspond

to modes which lie in the boundary layer only but occupy approximately the whole

depth. The eigenvalues after this point, which show increasing damping rate all

correspond to modes that lie inside the boundary layer but do not occupy the

entire depth. The faster damping is due to the smaller scales that these modes

occupy; scanning through enough successive eigenvectors the structure can be seen

becoming concentrated near the ground.
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Figure 4.5: u′ part of the eigenvectors corresponding to eigenvalues with index
number 16 (left) 27 (middle) and 75 (right). The dashed black line represents the
approximate height of the boundary layer.

Obtaining and viewing the singular values and their corresponding singular vec-

tors is somewhat easier than examining the eigenvalues and eigenvectors. Singular

values are real and positive and are returned by the decomposition in order of

magnitude. The downside is that the singular values are therefore incapable of

describing both decay rate and frequency simultaneously. If a mode is propagating

it may be possible to interpret it from the singular vector structures. Figure 4.6

shows the singular values for the high resolution run of boundary layer 5. As for
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the eigenvalues the singular values have dimension s−1.

0 100 200 300
!2000

!1500

!1000

!500

0
!!

Index Number
0 100 200 300

10!5

100

105

!

Index Number

Figure 4.6: Singular values for high resolution boundary layer 5. Shown with a
linear scaling (left) and log scaling (right)

The first encouraging point to note from the singular values is the immediate

similarity with the plot of the real part of the eigenvalues implying that some of

the same physical interpretation applies. The overall damping rates as described

by singular values is similar to the damping rates as described by the eigenvalues.

Four types of behaviour were identified in the spectrum of eigenvalues and on close

inspection these are evident also in the singular values. These regions may not

necessarily be representing equivalent behaviour to the regions in the eigenvalues

and this needs to be determined by examining the corresponding singular vectors.

The behaviour as implied by the magnitude of the singular values can be grouped

as a set of singular values all with σ = f dividing two regions of likely damped

singular vectors, with corresponding singular values greater than or less than f .

Singular vectors are now examined to establish the physical interpretation they

provide. Figure 4.7 shows the singular vectors corresponding to a singular value

which is equal to the Coriolis parameter. Singular vectors are normalised. The plots

in the figure show that these correspond to the inertial modes; all the structure

is located above the boundary layer, which lies at approximately 950m. For these

modes the singular value is representing the equivalent to frequency. A mode with

structure lying above the boundary layer will not be decaying since it is independent
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of the damping mechanism, it will just propagate with frequency equal to the

Coriolis parameter. The effect of the Coriolis is further apparent from looking

at the structures of the input and output singular vectors. The input vector for

v′ is equal to the output vector for u′, and vice-versa (with a negative factor);

also note that the θ′ field contains only roundoff error and so can be neglected.

Recall that an input singular vector may be rotated to match the output singular

vector multiplied by the singular value. This appears to be happening here as the

rotational effect of the Coriolis parameter is represented by structures in the u′

direction being mapped onto the same structure in the v′ direction. It is clear that

these 16 singular values and their corresponding singular vectors are equivalent to

the 16 inertial modes found in the eigendecomposition.
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Figure 4.7: Singular Vectors corresponding to the stared singular value (index 15),
here the singular value is equal to f = 1.031×10−4s−1. On the top row are the left
(output) singular vectors u and on the bottom are the right (input) singular vectors
v. Here, and in similar figures, the dashed black line represents the approximate
height of the boundary layer.

Neglecting the singular values that are equal to the Coriolis parameter the
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sequence of corresponding singular vectors are found to have relatively smoothly

varying behaviour. Although not particularly prominent in the figure the biggest

change in behaviour comes at the singular value with index 37. Singular vectors

with corresponding singular value having index less than 37 have structure con-

centrated at the boundary layer top with a varying degree of structure in θ′ above

the boundary layer, an example of which can be seen in Figure 4.8. The singu-

lar vectors exhibiting a mixture of structure above and below the boundary layer

will likely be related to the modes whose corresponding eigenvalue had non-zero

imaginary part.
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Figure 4.8: Singular Vectors corresponding to the stared singular value (index 5).
On the top row are the left (output) singular vectors u and on the bottom are the
right (input) singular vectors v.

Singular vectors with corresponding singular value with index greater than 37

have structure completely within the boundary layer region. Figure 4.9 and Figure

4.10 show examples of singular vectors with only boundary layer structure. These

singular vectors have structure that would be associated to the modes which are
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most heavily damped. This appears to also be represented well by the magnitude of

the singular value which is similar to the equivalent eigenvalue. Progressing through

singular vectors with increasing corresponding singular value the structure is seen

becoming more concentrated near the surface, where there is sufficient resolution to

support the fastest damped small scales. For all the modes living in the boundary

layer there is no clear relationship between input and output singular vectors, nor

should one necessarily be expected. The transient boundary layer modes may have

quite complex behaviour and evolution meaning the relationship between input

and output singular vectors and singular values will be highly complex.
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Figure 4.9: Singular Vectors corresponding to the stared singular value (index 37).
On the top row are the left (output) singular vectors u and on the bottom are the
right (input) singular vectors v.

The advantage to using the deepest boundary layer is that the modes contained

inside the boundary layer are better resolved. Note that some structure is grid point

scale, as in Figure 4.9 so not all structure will be captured by the low resolution

grid. However when the comparison of modes is performed having large scale struc-
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Figure 4.10: Singular Vectors corresponding to the stared singular value (index
200). On the top row are the left (output) singular vectors u and on the bottom
are the right (input) singular vectors v.

ture will assist greatly. On the other hand, when considering a deeper boundary

layer, there are a number of singular vectors where there exists structure above the

boundary layer, where resolution is less. Figure 4.11 shows the singular values for

the shallowest boundary layer. Clearly there are a much higher number of inertial

modes supported, but more importantly a clearer pattern emerges to distinguish

modes contained entirely in the boundary and those with some structure above.

The same types of singular vectors that were apparent in the deeper boundary layer

are identified, and across all the boundary layer case. The proportion of modes

representing each type of structure depends on the depth of the boundary layer.

Throughout the spectrum it appears that the singular vectors are able to rep-

resent the kinds of structures that would be expected in the eigenvectors. It is not

necessarily clear at the outset that this should be the case, however the results show

that for this problem, and when writing in the energy norm, the SVD can be inter-
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Figure 4.11: Singular values for high resolution boundary layer 1. Shown with a
log-scaling.

preted in a useful way. The structures are similar to that found when looking at

eigenvectors. Further, the physical interpretation, by magnitude of the correspond-

ing singular value, is similar to that which would be expected, and is found when

checking against the eigendecomposition. That the SVD is representing similar

behaviour to the eigendecomposition increases confidence that it is revealing useful

information about the transient evolution in the system. It can therefore be used

as a tool for the comparison of configurations. The final step before the comparison

can be performed is to check the form of the high resolution solutions and establish

how dependent on the choice of configuration the results of the decomposition are.

4.6 Comparison of High Resolution Singular Vec-

tors

Although a good physical interpretation can be attached to the SVD it is not

sufficient to show that it will be useful for comparing configurations. One further
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requirement is that singular vector structures representing the same behaviour are

evident not only in low resolution configurations but also in all high resolution

configurations.

From the work in the previous chapter, steady state solutions for Lorenz and

Charney-Phillips that exhibit good convergence properties have been obtained.

This does not necessarily mean a whole set of like for like singular vectors is

achieved. The singular value decomposition will have a certain level of sensitivity

to any perturbations that occur in the matrix from which it is derived. Since the

matrices for Lorenz and Charney-Phillips will differ, due to averaging, there will

be some differences in the singular vectors and singular values. Further consider

the neutral drag coefficient, Cmn =

(
κ

ln( z
zr

)

)2

, which comes into the surface flux

terms. For the logarithmically stretched grid the model levels get very close to

the roughness length, this presents a singularity whereby Cmn tends to infinity as

z tends to zr. Whether the increasing Cmn remains balanced in the surface layer

equations or serves to produce significant differences in the decompositions needs

to be checked. In order to compare a low resolution Lorenz configuration against

a low resolution Charney-Phillips configuration by examining a particular singular

vector, the corresponding singular vector must exist in both the high resolution

solutions and have negligible difference between each. Whereas in the dynamics

only case [68] the best converged large-scale high resolution modes were also those

picked up by the low resolution grid this is not necessarily the case here.

The nonlinearities and non-uniform grid spacing result in singular vectors which

have quite complex structure. When trying to match up two singular vectors

it is not possible to apply an algorithm such as zero counting to systematically

identify partners. However it is possible to use the fact that the singular vectors

are orthonormal. Singular value decomposition of any matrix produces unitary U

and V, meaning rows and columns of each are magnitude 1.

For real vectors the inner product of a pair of vectors is given by the product

of their norms and the angle between them. For a pair of singular vectors from the

same U this will thus be 1, if the inner product with itself or 0 otherwise. This
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extends to complex space also, but with absolute value being closest to 1 or 0.

Numerically the most efficient way to calculate the inner product is by taking the

dot product of the pair of vectors.

In order to compute the inner product between a singular vector from the Lorenz

configuration and a singular vector from the Charney-Phillips configuration the θ′

part of the singular vector needs to be taken at the same model levels. This is done

by interpolating the θ′ part of the Charney-Phillips singular vector to the zρ levels,

the location it is stored at with the Lorenz grid. Note that similar results were

found when repeating the test while interpolating the Lorenz θ′ to the Charney-

Phillips grid. Using high order interpolation such as cubic will minimise any error

in achieving this. To keep the new interpolated singular vector as close as possible

to being a unit vector the ∆z component, coming from the energy integral (4.27)

is divided out before interpolating, the equivalent ∆z at the new levels is then put

back in.

Table 4.1 lists the singular vectors from the high resolution Lorenz solution for

boundary layer 5. The number given to each singular vector is the index number of

its corresponding singular value, so the singular vector ‘1’ has the smallest singular

value. For each Lorenz singular vector the inner product is computed with every

singular vector from the Charney-Phillips solution. The best matched vector is

then chosen as the one whose inner product is closest to 1 or -1 and these are listed

in the table.

For around 95% of the singular vectors interpolated from the Charney-Phillips

solution the vector norm (magnitude) was found to be between 0.8 and 1 and 80%

between 0.9 and 1 (not shown in the table). The few that fell below this were all

greater than 0.6 (again not shown) and all from singular vectors that would be be

unlikely to be captured by a low resolution grid. With the norms of the singular

vectors well preserved at close to 1, the inner product should just give either ±1

or 0, representing that the corresponding vector is either equivalent or orthogonal.

The norms are not exactly preserved however so some discrepancy is expected. The

data in Table 4.1 shows that there is clearly some sensitivity of the singular value
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decomposition to perturbations in the matrix otherwise the table would be filled

with 1s and -1s and every Lorenz vector would correspond to a single vector in the

Charney-Phillips. For a number of the vectors, however, a good correlation between

the two high resolution cases exists. Particularly important is that there appears

to be good correlation between the Lorenz singular vectors whose index is 34 and

upwards and their corresponding Charney-Phillips solution. These correspond to

the modes which lie in the boundary layer and will be damped. It is of most interest

to ensure that any configuration can capture the singular vectors corresponding to

leading boundary layer modes accurately. These structures will be the longest

lived, thus accurate representation will be important for proper evolution of the

boundary layer structure. Some of the poorest correlations are in the singular

vectors representing inertial oscillations, this is not a significant problem though

as the modes these singular vectors correspond to would not need to feature in any

comparison tests.

Using the inner product test provides an efficient way to obtain a handle on

how well the high resolution configurations agree, otherwise a comparison would

require visual examination of each successive Lorenz singular vector against each

Charney-Phillips singular vector. It also removes some of the subjectivity in that

type of approach. If two singular vectors are found to agree well by using the inner

product test and are then found to also agree well when examining the structure by

eye then, provided it is physically relevant, it can be confidently used to measure

the ability of low resolution configurations.

Examining the correlation between Lorenz and Charney-Phillips for the high

resolution using the table gives the best overall impression. Clearly some singular

vectors are very well matched, shown by an inner product that is close to ±1,

others however are not so close to ±1.

Since there is some discrepancy between high resolution singular vectors there is

a final requirement of using the SVD analysis. The high resolution singular vectors

that have been found to be well converged and physically relevant are also the

singular vectors that are needed when comparing the low resolution configurations.
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High Lorenz High ...continued from left
Charney-Phillips I

1 1 (-0.954) 35 35 (0.634) 69 66 (0.848)
2 2 (-0.941) 36 37 (-0.753) 70 73 (-0.688)
3 3 (-0.811) 37 36 (0.688) 71 69 (-0.873)
4 4 (0.692) 38 38 (0.631) 72 71 (0.509)
5 5 (0.841) 39 39 (-0.709) 73 71 (-0.626)
6 6 (0.828) 40 41 (-0.564) 74 72 (0.99)
7 7 (-0.944) 41 41 (0.654) 75 79 (0.646)
8 8 (-0.974) 42 42 (0.827) 76 74 (-0.861)
9 11 (-0.583) 43 43 (-0.936) 77 75 (0.983)
10 16 (0.591) 44 45 (-0.835) 78 82 (0.603)
11 18 (-0.535) 45 44 (0.89) 79 78 (-0.995)
12 9 (0.547) 46 46 (0.969) 80 77 (0.87)
13 10 (0.553) 47 48 (0.805) 81 84 (0.511)
14 13 (0.64) 48 47 (0.84) 82 80 (0.997)
15 14 (-0.619) 49 49 (-0.971) 83 87 (-0.544)
16 17 (0.596) 50 50 (0.815) 84 81 (0.844)
17 18 (-0.634) 51 53 (-0.788) 85 83 (0.998)
18 21 (0.552) 52 51 (-0.838) 86 90 (0.515)
19 19 (0.562) 53 52 (0.769) 87 85 (0.71)
20 13 (-0.546) 54 56 (0.782) 88 86 (-0.925)
21 15 (-0.571) 55 54 (0.992) 89 90 (-0.508)
22 20 (0.6) 56 55 (0.676) 90 89 (0.998)
23 25 (0.659) 57 55 (-0.532) 91 88 (-0.856)
24 23 (-0.803) 58 57 (0.985) 92 93 (0.527)
25 24 (0.863) 59 61 (0.768) 93 91 (-0.935)
26 26 (0.699) 60 60 (-0.928) 94 96 (-0.534)
27 28 (-0.665) 61 59 (-0.778) 95 92 (-0.805)
28 29 (0.665) 62 64 (-0.75) 96 94 (-0.998)
29 30 (-0.652) 63 62 (-0.99) 97 99 (-0.547)
30 31 (0.858) 64 67 (-0.623) 98 95 (0.846)
31 32 (0.553) 65 63 (0.865) 99 97 (0.996)
32 30 (-0.332) 66 65 (-0.98) 100 102 (-0.534)
33 33 (-0.801) 67 70 (-0.581)
34 34 (-0.917) 68 68 (-0.883)

Table 4.1: Listed by index number up to 100, this table shows the high resolution
Lorenz singular vectors from boundary layer 5 against the high resolution Charney-
Phillips singular vector with whom the inner product is closest to 1 or -1. The
actual inner product between those two vectors is bracketed.
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That is that high resolution singular vectors that correspond to the leading low

resolution singular vectors agree well across the configurations being compared at

low resolution.

4.7 Comparison of Lorenz and Charney-Phillips

Low Resolution

For this section when referring to Charney-Phillips it is for option I-i, later the other

case that had good accuracy for the steady state, option I-iii, shall be examined.

The low resolution grid is the Met Office grid.

To begin the comparison low resolution singular vectors need to be matched

up using the inner product test. First the low resolution Charney-Phillips solu-

tion is interpolated onto the low resolution Lorenz grid then the inner products are

computed between each Lorenz singular vector and every Charney-Phillips singular

vector. The next stage of the comparison requires that the low resolution Lorenz

solution is interpolated onto the high resolution Lorenz grid. Inner products can

then be computed between each low resolution singular vector and every high res-

olution singular vector. It is then possible to use the data derived in Table 4.1 to

determine whether the best matching high resolution singular vector can be used,

based on whether the high resolution Lorenz and Charney-Phillips singular vectors

agreed well. If high resolution vectors do not match for a particular low resolution

pair then there is little reason to believe that low resolution should match. For

each low resolution Lorenz singular vector Table 4.2 shows the closest low resolu-

tion Charney-Phillips singular vector as well as the closest high resolution singular

vector. In order to know whether comparison of a particular singular vector is likely

to be possible examine first the bracketed number in the fourth column, this value

is taken from Table 4.1. If this value is close to 1 or -1 then the high resolution

singular vectors should be generally well matched up. Examining the bracketed

number in the second column determines how well the two low resolution singular

vectors are matched up. The third column shows the inner product between low
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and high resolution Lorenz configurations; that the inner product is generally fur-

ther from 1 here is due to the error introduced when comparing singular vectors

from different resolutions, where different scales may be captured, even in singular

vectors corresponding to the same mode. In the table the singular vectors which

are considered to correspond to boundary layer modes are shown with a *.

The table indicates that three starred low resolution singular vectors (15,22,24)

have corresponding high resolution singular vectors where the inner product be-

tween the high resolution singular vectors is within 10% of 1 or -1. This gives

three cases where singular value decompositions of Lorenz and Charney-Phillips

have likely captured representations of the same eigenmode. Due to the implied

similarity in the high resolution differences in the low resolution can be legitimately

examined. Although the test is useful for quickly highlighting the best candidate

comparisons, all the pairings that it finds should be examined by eye. There is a

degree of uncertainty in the testing and it may be that matches which do not look

particularly good in the results turn out to match quite well.

Before examining the singular vectors themselves it is worth examining all of

the eigenvalues and singular values together as if the overall behaviour is similar

then it becomes easier to interpret the singular values. The singular values are

shown in Figure 4.12 and the eigenvalues are shown in Figure 4.13. The figures

show singular values and eigenvalues for the low and high resolution Lorenz and

Charney-Phillips grids for boundary layer 5, for all plots a log scaling has been

applied, eigenvalues are thus shown as absolute value. Examining the low resolu-

tion singular values and eigenvalues which have an index number of 15 or above

(corresponding to boundary layer modes) there appears to be a general trend of

the Charney-Phillips grid having decay rates that are smaller. The singular val-

ues and absolute real part of the eigenvalues are smaller for Charney-Phillips in

almost every case. Sorting Lorenz eigenvalues into order of magnitude does not

necessarily mean that the corresponding Charney-Phillips eigenvalues would be in

order of magnitude, seen by the index number in column two of Table 4.2, decay

rates can be compared more accurately once two singular vectors are confirmed
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Lorenz Low Charney-Phillips Low Lorenz High Charney-Phillips High

1 1 (0.98) 1 (0.888) 1 (-0.954)
2 2 (0.983) 2 (0.807) 2 (-0.941)
3 3 (0.952) 6 (-0.459) 6 (0.828)
4 4 (-0.831) 4 (0.461) 4 (0.692)
5 5 (-0.772) 5 (-0.527) 5 (0.841)
6 6 (0.899) 7 (-0.695) 7 (-0.944)
7 7 (0.937) 8 (0.412) 8 (-0.974)
8 10 (0.794) 21 (-0.393) 15 (-0.571)
9 11 (0.685) 11 (-0.424) 18 (-0.535)
10 8 (0.799) 17 (0.442) 18 (-0.634)
11 9 (0.67) 12 (0.426) 9 (0.547)
12 12 (0.938) 24 (0.398) 23 (-0.803)
13 13 (0.846) 30 (-0.532) 31 (0.858)
14 14 (-0.908) 33 (0.57) 33 (-0.801)
15* 16 (-0.709) 34 (-0.739) 34 (-0.917)
16* 15 (0.672) 35 (0.621) 35 (0.634)
17* 17 (0.868) 42 (-0.461) 42 (0.827)
18* 18 (-0.898) 40 (0.494) 41 (-0.564)
19* 19 (0.964) 41 (-0.511) 41 (0.654)
20* 20 (0.764) 47 (-0.415) 48 (0.805)
21* 21 (-0.895) 48 (0.55) 47 (0.84)
22* 22 (0.99) 49 (0.46) 49 (-0.971)
23* 24 (-0.909) 61 (-0.49) 59 (-0.778)
24* 25 (-0.994) 60 (0.358) 60 (-0.928)
25* 23 (-0.806) 59 (0.272) 61 (0.768)
26* 26 (0.982) 69 (-0.527) 66 (0.848)
27* 27 (0.995) 80 (-0.406) 77 (0.87)

Table 4.2: Inner product calculations of low resolution Lorenz against low resolution
Charney-Phillips option I-i and against high resolution Lorenz, values for the inner
product between high resolution solutions as in Table 4.1. Listed in the first column
is the index number for each low resolution Lorenz singular vector, singular vectors
with a * are those that have their structure entirely in the boundary layer. The
other columns show the index of the singular vector ‘most’ correlated to that Lorenz
singular vector with the actual inner product shown in brackets. A value of ±1 in
the bracket would show exact correlation a value of 0 for exactly orthogonal.

149



as being equivalent. Nevertheless it gives some insight, the majority of starred

singular vectors in Table 4.2 do have the same index in both low resolution cases.
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Figure 4.12: Singular values for the low (left) and high (right) resolution Lorenz
and Charney-Phillips solutions to boundary layer 5.
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Figure 4.13: Absolute real part of the eigenvalues for the low (left) and high (right)
resolution Lorenz and Charney-Phillips solutions to boundary layer 5.

That the Charney-Phillips grid has an overall trend of decreasing the decay

rates is due to the effect of the averaging involved, which is to reduce Km and Kh

and thus reduce the rate of damping. The result of this decaying too slowly is that

the corresponding mode will be longer lived in the Charney-Phillips simulation. If

that mode is captured inaccurately then the resulting error will be more influential

on the solution than if that mode were damped faster. The decay rates are closer

between configurations in the high resolution due to the increased accuracy.

150



Having considered the general picture now the singular vector structures need to

be examined. Scanning though the combinations of singular vectors, as predicted

by the inner product test in Table 4.2, it is found that the low resolution singular

vectors with index 15, 17, 22 and 25 are the most promising. 15 and 22 were

identified by the test, 17 was identified as being a good match when checked by

eye, as was 25. In the test 24 is found to have slightly better low and high resolution

matches than 25, but when checking by eye 25 gave the better match. The left

and right singular vectors for the four examples are shown in Figure 4.14 - Figure

4.17. The figures are arranged with the u′, v′ and θ′ component of the left (output)

singular vectors on the top row and the right (input) singular vectors on the bottom

row. The plots show the singular vectors after they have been transformed back to

the u′, v′ and θ′ form.

Figure 4.14 shows the singular vectors corresponding to the Lorenz singular

value with index 15. Recall that these tests are for the Met Office grid and Charney-

Phillips oprion I-i. To aid in comparison only the dominant part of the singular

vector is shown, whether it be the real or imaginary part. This goes for all plots

of singular vectors shown in this section, unless specified.

The singular vector that is shown is an important singular vector in that it

corresponds to the leading boundary layer mode and is thus the longest lived. The

overall structures in the singular vectors are quite similar and it does indeed appear

to be the same mode being represented in each configuration. Unfortunately there

is some difference in the high resolution solutions, however there is wider difference

in the low resolution solutions so there is likely some error. The magnitude of

the singular value is similar across each configuration, this would be expected

for a leading mode so adds further confidence that physical properties are being

represented. For this singular vector the difference between low resolution singular

values is quite small so a similar decay rate on the mode would be expected, in

fact the singular value is slightly larger for the Charney-Phillips grid implying

that it would be damped faster than it would be by the Lorenz grid. For the

singular vectors the closest match is in the velocity fields, here there is similar

151



!0.04 0 0.04
0

200

400

600

800

1000

H
ei

gh
t (

m
)

 

 

!0.04 0 0.04 !0.04 0 0.04
0

200

400

600

800

1000

O
ut

pu
t V

ec
to

r

Lor Low
CP Low
Lor High
CP High

!0.04 0 0.04
0

200

400

600

800

1000

u (ms!1)

H
ei

gh
t (

m
)

 

 

!0.04 0 0.04
v (ms!1)

!0.04 0 0.04
0

200

400

600

800

1000

! (K)

In
pu

t V
ec

to
r

" = 0.00025033
" = 0.00027097
" = 0.00024367
" = 0.00026126

Figure 4.14: Boundary layer 5. The low resolution Lorenz singular vectors with
index 15. Left (output) singular vectors are shown in the top row, right (input)
singular vectors are shown in the bottom row. The best matched singular vectors
in the low resolution Charney-Phillips and high resolution configurations are also
shown. These have index as given in Table 4.2. From left to right shows the u′,
v′ and θ′ component of the singular vector. The legend in the bottom row shows
the value of the corresponding singular value for each case. Here, and in similar
figures, the dashed black line represents the approximate height of the boundary
layer.

structure across all configurations. In the θ′ there is more difference between the low

resolution cases and there is also greater difference between low and high resolution.

This could be related to the singularity near the ground which would dominate in

the high resolution solution.

With the exception of the right input vector for u′ the Charney-Phillips grid

captures these singular vectors less accurately than the Lorenz grid. Near the

surface the Lorenz grid is very close to the high resolution structure in all the fields
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whereas Charney-Phillips appears mostly to overestimate the magnitude. The

singular values are quite close so the mode would not be expected to experience

significant decay errors.

In Figure 4.15 the singular vectors that are best matched to the low resolution

Lorenz singular vector with index 17 are shown. From Table 4.2 it is clear that

the only other combinations of singular vectors in the high resolution that match

as well as or better than those corresponding to the low resolution with index 15

correspond to the part of the spectrum with fastest decay (22, 24 and 25), two of

which are plotted later. If possible it is more interesting to compare the leading

singular vectors as these are longest lived and thus more important to capture. The

low resolution Lorenz singular vector with index 17 is chosen due to its superior high

resolution inner product compared with its immediate neighbours. From the plot

it is clear that the high resolution singular vectors still match quite well, despite

the reduced inner product compared with those corresponding to low resolution

index 15. All configurations clearly capture the same singular vector and both low

resolution cases appear to do a reasonable job. The low resolution is able to resolve

quite a lot of the detail as the mode’s structure is not so concentrated at the top

of the boundary layer as in the previous case, this can be seen in the structure

of the high resolution mode. There is again greater difference between low and

high resolution in the θ′ field. The Lorenz low resolution solution lies closer to

the high resolution solution than Charney-Phillips in the v′ vectors and the input

vector for θ′. Arguably the structure is more accurate for Charney-Phillips in the

u′ field although there is greater difference between the high resolution u′ fields.

The magnitude of peaks is slightly better for Lorenz.

In Figure 4.16 the singular vectors that are best matched to the low resolution

Lorenz singular vector with index 22 are shown. Comparison of this singular vector

is less directly indicative of the expected performance of the low resolution config-

uration due the fact that the corresponding singular value is larger, meaning it is

likely that it corresponds to a shorter lived mode. It will still provide further un-

derstanding of the behaviour of low resolution configurations, as will the index 25
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Figure 4.15: As for Figure 4.14 but for the low resolution Lorenz singular vector
with index 17.

case. The high resolution grids agree very well in the velocity fields but have quite

large differences in the potential temperature. For this singular vector however,

the θ structure is around an order of magnitude smaller so capturing the veloc-

ity of the corresponding mode would be more important. Actually there is little

to distinguish between the structure for the low resolution configurations except

near the surface where the Charney-Phillips is slightly closer to the high resolution

solutions. The magnitude of the maximum and minimum points is closer to the

high resolution grids for Lorenz. For this example a larger difference is observed in

the singular values than was previously, this is again what would be expected for a

faster less well resolved mode. The low resolution Charney-Phillips grid has smaller

singular value than the low resolution Lorenz and high resolution grids implying

that the decay of the corresponding mode would be too slow.
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Figure 4.16: As for Figure 4.14 but for the low resolution Lorenz singular vector
with index 22.

In Figure 4.17 the singular vectors that are best matched to the low resolution

Lorenz singular vector with index 25 are shown. The structure by this point on

the spectrum is getting quite small-scale making is increasingly harder to recognise

similarities between low and high resolution solutions. To aid in comparison the

singular vectors in their energy norm form, including the (∆z)
1
2 factor in (4.27),

and with all still on the high resolution grid are shown in Figure 4.18. In the energy

norm form there is less to differentiate between the low resolution grids showing

more clearly that the singular vectors are representing the same mode. In terms of

capturing the singular vector in its more natural form both the low resolution grids

do a pretty poor job, mainly due to this singular vector coming from a point on the

spectrum where structure may exist below the low resolution grid scale. In most

aspects the Lorenz configuration outperforms the Charney-Phillips, particularly in
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finding the peaks in the input vectors. There is again some difference between the

singular values and again they would imply that the corresponding mode decays

too slowly on the Charney-Phillips grid. This will be a short lived mode so even

though neither grid captures it it should not influence the solution too dramatically.
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Figure 4.17: As for Figure 4.14 but for the low resolution Lorenz singular vector
with index 25.

It is clear that the SVD methodology is not as revealing as when the normal

mode analysis is performed on an appropriate problem. Despite this it has been

possible to use the method to make comparisons between the low resolution con-

figurations. In all the cases that were compared the physical behaviour was similar

to that which would be expected based on how the equations are understood to

behave. In most of the cases the Lorenz grid was able to give better representa-

tion than the Charney-Phillips grid, either by giving better representation of the

singular vector structure or singular value magnitude.
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Figure 4.18: As for Figure 4.17 but with the singular vectors plotted in their energy
norm form.
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4.7.1 Comparison with Charney-Phillips Option I-iii

Of the cases considered when examining the steady state part of the solution the

option where the Richardson number is averaged rather than Kh was found to

be beneficial, this was option I-iii. The structures of the steady state potential

temperature solutions found when using option I-iii were closer to the high res-

olution solution than the other configurations that were tested. It now needs to

examined as to whether the advantages seen for the steady state extend to the

representation of the transients. Table 4.3 shows the inner product calculations for

Charney-Phillips option I-iii with boundary layer 5. The first point to note is that

unfortunately the high resolution option I-iii does not match the high resolution

Lorenz as well as the high resolution option I-i configuration did. If it is difficult to

match high resolution singular vectors it makes less sense to compare low resolution

singular vectors. The agreement between low resolution singular vectors is good

still.

Lorenz Low Charney-Phillips Low Lorenz High Charney-Phillips High

15 15 (0.692) 34 (-0.739) 34 (-0.748)
16 16 (0.669) 35 (0.621) 34 (0.58)
17 18 (-0.746) 42 (-0.461) 42 (-0.594)
18 17 (-0.702) 40 (0.494) 39 (0.766)
19 19 (-0.945) 41 (-0.511) 40 (-0.882)
20 21 (0.75) 47 (-0.415) 48 (0.598)
21 20 (-0.794) 48 (0.55) 47 (-0.881)
22 22 (-0.986) 49 (0.46) 49 (-0.729)
23 23 (-0.774) 61 (-0.49) 58 (-0.881)
24 24 (0.87) 60 (0.358) 59 (0.987)
25 25 (-0.471) 59 (0.272) 63 (0.558)
26 26 (0.906) 69 (-0.527) 66 (0.871)
27 27 (0.96) 80 (-0.406) 77 (0.855)

Table 4.3: Inner product calculations of low resolution Lorenz against low resolution
Charney-Phillips option I-iii and against high resolution Lorenz, values for the inner
product between high resolution Lorenz and high resolution Charney-Phillips are
shown in the final column. The table is arranged as Table 4.2 except that non-
boundary layer singular vectors have been omitted.
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Figure 4.19 shows the eigenvalues and singular values for Charney-Phillips op-

tion I-iii against Lorenz for the low resolution. As previously there appears a

tendency for the Charney-Phillips singular values to be smaller than the Lorenz

singular values. This could imply that the modes being represented are not damped

quickly enough under Charney-Phillips, which would mean larger errors if the mode

is not captured accurately. As previously the individual singular vectors need to

be matched in order to make accurate comparison.
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Figure 4.19: Absolute real part of the eigenvalues (left) and the singular values
(right) for Lorenz and Charney-Phillips option I-iii, boundary layer 5.

Figure 4.20 shows the input and output singular vectors for low resolution

Lorenz singular vectors with index 15. The best matched Charney-Phillips option

I-iii singular vectors and high resolution singular vectors are also shown. In this

instance the inner product test did not return the best low resolution match. The

test found the best matched Charney-Phillips singular vector to have index 15 but

the plotted Charney-Phillips singular vector has index 16, which is clearly well

matched.

Clearly the option I-iii grid produces results very similar to that found for option

I-i grid, plotted in Figure 4.14. Again there is a good match between both low

resolution configurations as well as between low and high resolution and between

high resolution. All configurations are finding the same singular vector. As was

found when comparing Lorenz and option I-i there is some difference between the
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Figure 4.20: As for Figure 4.14 but with option I-iii used for the low and high
resolution Charney-Phillips configurations.

high resolution configurations, slightly more for these configurations than there

was for option I-i. This makes it even harder to draw any solid conclusions in

how well the low resolution configurations are capable of capturing the singular

vector. Where there is similarity between high resolution, for example in the output

v′ vector, the option I-iii solution is slightly more accurate than the option I-i

solution. Across all the configurations the singular values are close, however the

difference between the low resolution solution is similar to the difference between

high resolution so it is not possible to conclude whether the corresponding mode

would decay at the wrong rate.

Figure 4.21 shows the input and output singular vectors for low resolution

Lorenz singular vectors with index 17. For this Lorenz singular vector the best

match that could be found in the Charney-Phillips singular vectors was that found
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by the inner product test.
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Figure 4.21: As for Figure 4.20 but for the low resolution Lorenz singular vector
with index 17.

The overall structure of the singular vectors is quite similar but unfortunately

there are quite large differences between the high resolution singular vector making

complete comparison impossible. Where the high resolution vectors are similar, in

the u′ part of the input vector and v′ part of the output vector, the Lorenz grid does

slightly better than the Charney-Phillips grid. Again there is difference between

singular values for the high resolution cases and for the low resolution cases. The

singular value for the Charney-Phillips grid is larger than for the Lorenz grid.

When the steady states were examined there was clear benefit to option I-

iii when using the Charney-Phillips grid. The structures of the steady states were

more accurately represented than they were when using any other Charney-Phillips

option. From the evidence that could be gathered for the transient cases it does
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not seem that any additional benefit is gained by using this option. The best com-

parison is seen by comparing Figure 4.14 and Figure 4.20, both Charney-Phillips

grids capture the same singular vector and there is no significant difference between

them.

4.7.2 Shallower Boundary Layers and Alternative Grid Spac-

ing

In the section covering the steady state the abilities of the configurations whilst

using a number of boundary layer depths and gird spacings was demonstrated.

In obtaining the comparison between Lorenz and Charney-Phillips for boundary

layer 5 in the last section various types of spacing we experimented with in order

to allow for most efficient results when employing the inner product test. As

part of the experimentation the log-linear hybrid was used. While the log-linear

spacing gave good results when comparing two high resolution solutions the results

were less positive when comparing low resolution configurations to high resolution

configurations. That results were less useful when comparing low to high resolution

is likely due to the large number of model levels higher in the domain, leading to, for

example, an increased number of inertial modes. Since using the logarithmic grid

yielded quite useful results the ability of the hybrid grid has not been extensively

investigated.

In addition to using the Met Office grid the investigation also considered other

ways of spacing the low resolution grid. However it was found that little benefit was

afforded by using other grid spacing in the low resolution. The uniform grid has

so little resolution where important structure lies that calculating inner products

becomes too error prone, also comparing singular vectors visually becomes highly

subjective. Singular vectors found when using the Met Office grid have also be

identified when using the geometric spacing but the structure was no closer to the

high resolution than it was for the Met Office grid.

So far only boundary layer 5 has been considered. Boundary layer 5 s the deep-

est that is being considered and thus has the highest number of model levels within
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the boundary layer region, this has been very useful in comparing singular vectors.

Other boundary layer depths are now examined to increase the understanding of

how the grids can capture singular vectors and establish the limitations of the

methodology. Table 4.4 - Table 4.7 show the inner product calculations for bound-

ary layer 1 to boundary layer 4, all with Charney-Phillips option I-i.

Lorenz Low Charney-Phillips Low Lorenz High Charney-Phillips High

1 1 (-0.97) 1 (-0.901) 1 (-0.969)
2 2 (0.938) 4 (0.469) 4 (-0.965)
3 3 (0.971) 3 (-0.789) 3 (-0.974)
4 4 (0.972) 4 (0.685) 4 (-0.965)
5 25 (-0.654) 2 (0.722) 2 (-0.995)
6 5 (0.974) 6 (0.553) 6 (0.938)
7 6 (-0.983) 7 (0.432) 7 (0.889)
8 8 (-0.993) 75 (-0.438) 73 (0.761)
9 9 (-0.96) 17 (-0.335) 68 (-0.306)
10 11 (-0.68) 16 (0.357) 61 (0.438)
11 15 (0.467) 23 (0.371) 68 (-0.307)
12 16 (0.447) 53 (0.234) 56 (-0.34)
13 15 (-0.619) 29 (-0.307) 23 (0.512)
14 17 (0.638) 46 (-0.314) 47 (-0.335)
15 21 (-0.584) 47 (-0.304) 53 (-0.418)
16 20 (-0.515) 34 (-0.353) 29 (-0.34)
17 16 (-0.531) 53 (0.294) 56 (-0.34)
18 13 (0.559) 51 (-0.324) 54 (-0.31)
19 12 (-0.238) 49 (-0.308) 60 (-0.343)
20 19 (-0.332) 42 (-0.304) 45 (-0.401)
21 11 (-0.732) 71 (0.337) 24 (0.44)
22 22 (-0.96) 70 (0.337) 17 (-0.318)
23 23 (-0.847) 14 (0.683) 13 (-0.869)
24 24 (-0.725) 12 (-0.393) 74 (0.616)
25* 26 (-0.91) 103 (-0.417) 103 (0.819)
26* 27 (0.931) 113 (0.329) 112 (-0.633)
27* 25 (-0.001) 91 (-0.373) 94 (-0.859)

Table 4.4: Inner product calculations for boundary layer 1. Table shows low res-
olution Lorenz against low resolution Charney-Phillips option I-i and against high
resolution Lorenz. Values for the inner product of high resolution Lorenz with
high resolution Charney-Phillips are shown in final column. Low resolution Lorenz
singular vectors with starred index are boundary layer singular vectors.
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Lorenz Low Charney-Phillips Low Lorenz High Charney-Phillips High

23* 23 (-0.805) 80 (-0.658) 80 (-0.827)
24* 24 (-0.762) 84 (0.383) 83 (0.827)
25* 26 (-0.936) 85 (0.332) 85 (0.818)
26* 25 (0.019) 83 (0.307) 84 (-0.801)
27* 27 (0.984) 100 (-0.324) 98 (0.72)

Table 4.5: As for Table 4.4 except for boundary layer 2. Only singular vectors with
structure entirely inside the boundary layer are shown.

Lorenz Low Charney-Phillips Low Lorenz High Charney-Phillips High

20* 20 (0.84) 59 (0.647) 59 (-0.835)
21* 25 (-0.556) 60 (-0.447) 60 (0.805)
22* 21 (-0.5) 61 (0.377) 62 (0.755)
23* 23 (0.747) 65 (0.423) 65 (-0.735)
24* 24 (-0.738) 77 (0.343) 76 (0.8)
25* 26 (-0.86) 76 (0.352) 75 (0.91)
26* 24 (0.485) 77 (-0.272) 76 (0.8)
27* 27 (0.988) 94 (-0.338) 92 (-0.699)

Table 4.6: As for Table 4.4 except for boundary layer 3. Only singular vectors with
structure entirely inside the boundary layer are shown.

For a given resolution the number of singular vectors whose structure lies en-

tirely in the boundary layer is reduced as the depth of the boundary layer decreases.

For boundary layer 1 only three singular vectors are clear boundary layer structures,

with the vast majority being inertial modes. At first glance the inner products seem

highly inaccurate compared with the deepest boundary layer, but this is due to the

difficulty in calculating inner product between inertial modes. The inner product

between the high resolution singular vectors that correspond to the low resolution

boundary layer singular vectors are quite good in all four boundary layer depths.

Based on these findings it is worth trying to extend the comparison of the singular

vectors to the shallower boundary layers.

Two cases are demonstrated, firstly in Figure 4.22, which shows the leading

boundary layer singular vectors for boundary layer 1.
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Lorenz Low Charney-Phillips Low Lorenz High Charney-Phillips High

17* 17 (-0.855) 45 (0.581) 45 (0.913)
18* 19 (0.618) 46 (-0.593) 46 (-0.894)
19* 19 (0.698) 47 (0.553) 47 (0.722)
20* 20 (0.91) 54 (-0.534) 53 (-0.872)
21* 21 (0.86) 53 (-0.451) 54 (-0.831)
22* 22 (0.976) 55 (0.472) 55 (0.929)
23* 23 (-0.84) 62 (0.529) 61 (0.642)
24* 25 (-0.992) 67 (0.368) 66 (0.991)
25* 24 (-0.754) 63 (0.286) 65 (-0.784)
26* 26 (0.971) 74 (0.46) 72 (-0.836)
27* 27 (0.991) 85 (0.386) 83 (0.812)

Table 4.7: As for Table 4.4 except for boundary layer 4. Only singular vectors with
structure entirely inside the boundary layer are shown.

A good match can be seen between high resolution vectors. Unfortunately

boundary layer structure is not well enough resolved in the low resolution to find the

equivalent high resolution mode and thus draw solid comparison between Lorenz

and Charney-Phillips. The size of the singular values agrees with what has been

seen in some of the previous cases, the Charney-Phillips grid gives slightly larger

singular value in both low and high resolution. For a very shallow boundary layer

it is too subjective to attempt to match singular vectors between low and high

resolution by eye, only the inner product test can be used. When examining by eye

a large number of high resolution singular vectors could be deemed a good match

for the low resolution singular vector in question. Judging by the singular values

it is difficult to be confident that the singular vectors being found are indeed the

same, the high resolution singular values are an order of magnitude smaller than

the low resolution singular values. In the deeper boundary layer experiments the

low and high resolution singular values were much closer in magnitude.

As the boundary layer depth is increased more grid points will lie in the bound-

ary layer region and thus the structure will be better resolved. It is only by bound-

ary layer 4 however that a similar level of confidence is gained in the comparison

as was had for the deepest boundary layer. Figure 4.23 shows an example of a
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Figure 4.22: As for Figure 4.14 but for boundary layer 1 and low resolution Lorenz
singular vector with index 25.

boundary layer 4 singular vector; the low resolution Lorenz singular vector has

index 20. For this particular singular vector the Lorenz and Charney-Phillips grid

both capture the structure accurately. The singular value as found when using

Charney-Phillips grid is smaller than that found when using the Lorenz grid while

the two high resolution singular values are similar.

In the following chapter a summary of results for the boundary layer only case

are offered, including a summary of the findings of this chapter.
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Figure 4.23: As for Figure 4.14 but for boundary layer 4 and low resolution Lorenz
singular vector with index 20.
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Chapter 5

Summary of Part I

The principal aim of this thesis is to understand the impact of the choice of vertical

staggering when coupling the large scale dynamics to the planetary boundary layer.

In particular the investigation has set out to establish differences between using

the Lorenz grid and using the Charney-Phillips grid. Previously it has been shown

that of these two the Charney-Phillips grid is preferable when modelling the large

scale dynamics on its own. It offers optimal wave propagation and supports no

computational mode. At the beginning of Part I of this thesis it was argued that

the Lorenz grid should be preferable when modelling the stably stratified boundary

layer on its own: when using the Lorenz grid no averaging occurs in the equations.

In order to investigate the question of whether either the Lorenz grid or the

Charney-Phillips grid offers an optimal configuration for the coupled case a sys-

tematic methodology, based on linearisation of the equations, has been considered.

First a steady state of the equations must be generated, linearising about this

steady state gives the transients. The transient part of the expansion represents

the linear time evolution of the equations. The transient evolution can be projected

onto normal modes, obtained through an eigendecomposition. Implementing a lin-

earisation of the equations representing the coupling between the dynamics and

boundary layer is not necessarily trivial. In order to use it to perform the com-

parison between the Lorenz and Charney-Phillips grid a careful examination of the

methodology has been required.
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In Part I of this thesis the boundary layer has been considered on its own,

without the large scale dynamics. The purpose of doing this is two-fold, to examine

the suitability of the methodology and to compare the Lorenz and Charney-Phillips

grid to ensure that, as expected, the Lorenz grid is the favoured configuration. If

it were found that the Charney-Phillips grid represented the boundary layer more

accurately it would seem unlikely anything different would be found when coupling

dynamics and boundary layer.

The first stage of both implementing the methodology and examining differences

between configurations is to consider the steady state part of the equations. With

the equations in their basic form it was not possible to generate a fully steady

state due to the downward diffusion of potential temperature. Usually this process

would be balanced by imposed heat fluxes. However in order to obtain a fully

steady state requires fixed surface and upper boundary conditions on potential

temperature. It has been shown that a completely steady state can be reached by

including a subsidence heating term to balance the diffusion. In doing this retaining

a realistic profile for the model variables is still achieved.

A further issue that has required attention is in finding high resolution solu-

tions. In order to compare configurations they must also be compared to a high

resolution solution, a resolution for which there is no discernible difference between

configurations. Even with a geometric spacing of the grid the convergence of the

solutions was not fast enough to obtain high resolution solutions for a reasonable

number of grid points. The poor convergence is due to a singularity in the deriva-

tive at the surface. It has been shown that good convergence properties can be

recovered by transforming to a logarithmic coordinate. With this grid transforma-

tion it has been possible to obtain a satisfactorily high resolution solution with 100

grid points.

In terms of capturing the steady state structure the Lorenz grid performed

well and overall made for the best choice. Boundary layer depths were chosen

ranging from 100m to 900m. For all depths the Lorenz grid was able to represent

the structure. The shallowest boundary layer had the largest errors in the low
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resolution structure, due to the lack of resolution in the boundary layer region. For

the deepest boundary layers the structure captured by the low resolution Lorenz

grid was very close to the high resolution ‘truth’ solution. The Charney-Phillips

configurations that were examined gather into configurations based on the choice

of averaging for obtaining Richardson number. Option I configurations were those

where Richardson number was found by averaging potential temperature gradient,

option II configurations averaged shear for the Richardson number and option III

configurations averaged both. Options II and III configurations were generally

found to be problematic due to the sensitivity to errors in the shear that result

from averaging. The shear enters the equations through the eddy diffusion Km

and diffusivity Kh, it enters directly and through the stability function. Averaging

results in errors in the shear which are fed back into the model variables producing

even greater errors in the shear; the result is non-physical structures in all the

model variables. Under option I and II there are further options for how to obtain

both Km and Kh. One is found without further averaging but the other can be

found by either averaging K itself, averaging the stability function or averaging

Richardson number. For option I all three configurations worked well and were

able to give accurate representation of the steady states. Except for the shallowest

boundary layer the Lorenz grid gave the most accurate overall representation of

the operational resolution steady states. The Charney-Phillips configurations that

gave the most promising results were ones which averaged Kh itself and averaged

Richardson number. The configuration that averaged the stability function did

not outperform the other two option I configurations in any of the tests that were

considered here.

In computing the transients a number of issues arose concerning the method-

ology. Linearisation expands the model variables into a reference and transient

part, the transient part represents the linear time evolution. In order to obtain the

structures of the discrete transients the linearisation is written as a matrix eigen-

value problem. In doing this all the possible transient structures are represented by

the eigenvectors, linear evolution can then be projected onto combinations of the
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eigenvectors. In order for the transient behaviour to be easily interpretable from

the eigenvectors they need to form an orthogonal basis and for this the matrix

must be normal [71]. For the boundary layer only problem it has been shown that

the matrix can be far from normal. For the dynamics only case, as considered by

[68], the matrix is normal and the eigenvectors form an orthogonal basis and are

referred to as the normal modes. Due to the matrix for the boundary layer only

problem being far from normal multiple eigenvectors representing similar behaviour

are found, making physical interpretation very difficult. The non-normality makes

it difficult to identify the modes which are of importance and therefore compare

them between configurations. Instead of using the eigendecomposition to repre-

sent the transient behaviour the Singular Value Decomposition (SVD) has been

considered.

The great advantage of the SVD over the eigendecomposition is that singular

vectors always form an orthonormal basis. For the SVD each pair of input and

output singular vectors corresponds to one singular value and this singular value

gives a measure of the amount those singular vectors would be perturbed when

multiplied by matrix. That the vectors are orthogonal and correspond one-to-one

with singular values means it should be possible compare configurations. Indeed it

has been shown that the method is quite successful for comparing configurations

for the boundary layer only problem. In order to increase the ‘closeness’ of the SVD

and the eigendecomposition the equations are written in the energy norm. It has

been shown that for an energy conserving system the matrix of transient coefficients

will be normal and Hermitian, in this situation the SVD and eigendecomposition

are likely to offer very similar physical interpretation; this is discussed in detail

in Part II. Although the boundary layer is not energy conserving, but dissipates

energy, it is nevertheless useful to provide this link. It was shown that by writing

in the energy norm the physical interpretation of the SVD results was more closely

aligned with the results that would be expected in the eigendecomposition.

That the singular vectors are always orthogonal has the added benefit that an

automated approach can be developed for identifying singular vectors that corre-
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spond to one another in differing configurations. The inner product between two

orthogonal vectors is equal to zero whereas the inner product between a vector and

itself is one. For example if a singular vector in the Lorenz configuration needs to be

identified in the Charney-Phillips configuration the inner products are calculated

between the Lorenz singular vector and all Charney-Phillips singular vectors. It

has been shown that by seeking the singular vector which has inner product closest

to one or minus one it is possible to quickly identify singular vectors that corre-

spond to the same behaviour. It has also been shown that this test can be used to

match singular vectors between low and high resolution. Some inaccuracies occur

in the test due to an interpolation that is required to bring variables to equivalent

model levels, as this is done some error is introduced. Further, a singularity in the

neutral drag coefficient has been identified which appears to affect the similarity

between high resolution configurations.

For comparison of the transients the option I-i and I-iii Charney-Phillips con-

figurations were considered as these were found to be the most promising con-

figurations for the steady state. For all the results presented the configurations

computed on the Met Office grid were compared to the configurations on the high

resolution logarithmic grid. The success of the testing was dependent on the depth

of the boundary layer. For deeper boundary layers, where more grid points coincide

with boundary layer structure, the testing was more successful. For the shallow-

est boundary layers it was possible to identify similar singular vectors in both low

resolution configurations but difficult to find the corresponding high resolution sin-

gular vector with any certainty. Other types of grid spacing were also tested but

the results did not differ significantly from the results found for the Met Office

grid. Given the difficulties with the methodology it was generally quite difficult to

perform detailed comparisons between different low resolution configurations.

The first case that was presented was for boundary layer 5 and compared low

resolution Lorenz versus low resolution Charney-Phillips option I-i versus high res-

olution cases of both configurations. Using the inner product test it was possible to

identify well matched corresponding singular vectors in every configuration. The
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singular vectors that were most interesting to compare were those that described

boundary layer behaviour but that underwent the smallest perturbation when mul-

tiplied by the matrix. These correspond to the longest lived boundary layer modes;

it is important to capture these accurately since they decay slowly and are long

lived in the solution. Although these were the most interesting singular vectors to

compare they were not always the easiest to compare since there could be greater

difference between high resolution structures. One case that was examined was for

the low Lorenz singular vector with index 22, although this is shorter lived it had

much closer matched high resolution singulars than the leading boundary singular

vector, index 15. Across the cases that were examined it was generally found that

differences existed between the corresponding high resolution solutions making it

difficult to draw confident comparisons between the low resolution configurations.

Where high resolution solutions were sufficiently close it was generally found that

the Lorenz grid captured the solution more accurately than the Charney-Phillips

option I-i configuration.

Two sets of singular vectors were shown for the comparison of Lorenz and

Charney-Phillips option I-iii configuration. The two that were shown were leading

boundary layer singular vectors which were also shown for the option I-i compar-

ison. There was increased difference between the high resolution singular vectors

for this case. Where there was similarity between the high resolution singular vec-

tors the operational resolution option I-iii solution was slightly more accurate than

the operational resolution option I-i solution. In addition to the improved steady

state representation this seems to be a useful configuration. The other leading

singular vector shown for this configuration was not captured as well as it was for

the option I-i configuration, further illustrating the difficulty in implementing this

methodology.

The form of the spectrum was discussed when completing the transient part

of the calculation. In the literature there exist examples of boundary layer flows

that have a continuous part of the spectrum; however these have unbounded do-

mains. It is not clear whether the stably stratified boundary layer model that is
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being considered here should exhibit wholly discrete spectrum and it is beyond the

scope of the work to rigorously prove either way. In Part II of this thesis a more

comprehensive study of the form of the spectrum is performed. In performing the

comparison between the Lorenz and Charney-Phillips grids in Part I no clearly

continuous behaviour has been identified. A number of similar singular vectors

have been identified across low and high resolution configurations, as well as in

cases with differing averaging options for the Charney-Phillips grid and differing

ways of spacing the model levels. Although the identification of similar singular

vectors in different configurations is not sufficient to prove the existence of only

discrete spectrum, it does increase confidence that a discrete spectrum exists.

The useful results as a whole, steady states, singular values, corresponding

singular vectors and eigenvalues are showing the Lorenz low resolution grid to be

more accurate than the Charney-Phillips. In most steady state runs the Lorenz

matched the high resolution converged solutions better. In the singular vectors

that could be examined the structure captured by the Lorenz grid was better

than the structure found by Charney-Phillips. There is an overall trend in the

eigenvalues and singular values suggesting that Charney-Phillips would damp the

associated mode too slowly, although this was not always the case when examining

individual singular vectors. It should be noted before concluding too much from the

singular values there was a difference of the same order between the high resolution

singular values, limiting the interpretation that can be drawn. If errors occur when

capturing the structure of a mode then their error will be compounded if that mode

decays slower than it should.

The results as a whole agree with the initial hypothesis that the Lorenz grid

should be more accurate for the boundary layer only. This also confirms the con-

flict between choice of vertical arrangement: for the dynamics using the Charney-

Phillips grid is more accurate, for the boundary layer using the Lorenz grid is more

accurate. It now needs to be established whether or not one choice of staggering

provides more accurate results when coupling dynamics and boundary layer. Of

interest while examining the coupled problem will be in how well all mode struc-
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tures, dynamical and boundary layer, are captured, how well the frequencies of the

dynamical modes are captured and how well the decay rates of the boundary layer

modes are captured. A further point of interest is the behaviour of the Lorenz grid

computational mode in the presence of the boundary layer.
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Part II

Comparison of Vertical

Discretisations Whilst Coupling

Boundary Layer and Dynamics
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In this part of the thesis the full system, where the boundary layer is coupled

to the large scale dynamics, is considered. From the work in Part I of this thesis,

along with the findings of papers such as [68], it is now understood that when the

two parts of the system are modelled independently contradictory vertical config-

urations would be preferable. For the boundary layer the Lorenz grid gives better

representation of boundary layer modes and their rate of damping and so is prefer-

able; for the dynamics the Charney-Phillips grid gives better dispersion properties

and has no computational mode and so is preferable. What now remains to be

established is how these two grid configurations will perform when used to model

a situation where physics and dynamics are coupled, specifically the atmospheric

boundary layer and the dynamics, where the conflict has been demonstrated.

Naively one may choose a certain configuration based on which aspects are

believed to be most important to capture in the numerical model. If capturing

the boundary structure accurately was considered less important than capturing

accurately the frequency of the Rossby modes one would conclude that using a

Charney-Phillips grid would be better. The problem with this approach, and in-

herent in the questions that need to be addressed here, is in understanding how the

two parts of the model interact with each other. It is desirable to avoid any kind

of computational mode, such as that associated to the Lorenz grid. It is difficult

to predict however, exactly what happens to the computational mode when intro-

ducing the boundary layer. It could be that it damps the computational mode,

meaning adverse effects may be avoided. This could be theorised by considering

the strong damping mechanism that the boundary layer imposes, however, com-

plex interactions may result in something different. This damping may also affect

the lower frequency Rossby modes, it may be that they are distorted and damped

considerably by the boundary layer mechanism, negating some of the benefits of

using Charney-Phillips. The differences observed between how a particular mode

is captured by each grid in the non-coupled case may not extend to the coupled

case.

In performing the comparison of Lorenz and Charney-Phillips for the boundary
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layer only case a number of problems were encountered when trying to employ the

usual normal mode analysis, due to the eigenvectors being non-orthogonal. This led

to the use of singular vectors which were found to give a good representation of the

physical behaviour of the system and allow for individual modes to be compared

by orthogonality between singular vectors. When examining the dynamics on its

own with a uniform grid the normal mode analysis works as expected and can

be used seamlessly for comparison of different vertical configurations. Using these

techniques that have been useful while studying the boundary layer along with the

normal mode analysis that has previously been used for the dynamics it should be

possible to gain considerable insight into how a particular staggering will perform

when coupling the two. In leading to the comparison of the Lorenz and Charney-

Phillips grids the methodology will be examined in detail.

Part II is arranged as follows: Chapter 6 will outline the model that will be used

for the fully coupled problem, this is essentially an extension of the model that was

used for the boundary layer to include the large scale dynamical mechanisms. In

order to perform a thorough comparison of the Lorenz and Charney-Phillips grids,

it is first important to understand all the behaviour that is supported by the coupled

model. Chapter 7 will examine the types of modes that are found in the coupled

problem and the differences between these and the structures found when each

part is modelled independently. This chapter will also be where the methodology

is examined and the extent of the usefulness of eigenvector analysis established.

The final part of this chapter will examine the Lorenz grid computational mode.

Chapter 8 covers the complete comparison of the Lorenz and Charney-Phillips grid

for the fully coupled problem, covering the ability of each configuration to capture

both the steady and transient part of the equations. The final chapter of this thesis

is Chapter 9, this will draw together all the findings of the work and outline ideas

for future work.
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Chapter 6

The Fully Compressible

Dynamics-Boundary Layer Model

In Part I of this thesis the full Navier-Stokes equations were approximated using the

Reynolds averaging technique. This is a useful technique that allows the turbulent

mechanisms in the flow to be written in terms of the mean large scale aspects

that are captured on the grid. With the right closure model turbulent processes

that could otherwise only be represented by capturing all relevant scales can be

well approximated. The technique is popular in numerical weather prediction for

modelling the atmospheric boundary layer. In Part I of this thesis the transient

and steady state structures of the stably stratified atmospheric boundary layer were

examined by modelling the Reynolds averaged Navier-Stokes equations. Then, by

applying the Boussinesq approximation and using the f -plane, the equations were

effectively filtered in order to avoid capturing any dynamical acoustic, gravity and

Rossby waves.

For Part II of this thesis the fully coupled problem will be examined and this

chapter describes the model that will be required in order to achieve this. The first

step in deriving the model requires the return to the form of the fully compressible

Reynolds Averaged Navier-Stokes equations, equations (2.25)-(2.29) in Part I. The

turbulent fluxes that result from the Reynolds averaging still only need to model

the turbulence that occurs in the boundary layer and so the approximations, based
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on scale, allowing for neglect of horizontal gradients of turbulent flux remain in

place. The boundary layer closure remains as for the boundary layer only model.

The equations are,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv + cpθ

∂Π

∂x
= −1

ρ

∂

∂z
(ρτx) , (6.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu+ cpθ

∂Π

∂y
= −1

ρ

∂

∂z
(ρτy) , (6.2)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+ cpθ

∂Π

∂z
= −g, (6.3)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
= −1

ρ

∂

∂z
(ρH) , (6.4)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+ ρ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
= 0, (6.5)

where cp = 1005.0 is the specific heat capacity for dry air. Thermodynamic vari-

ables are related through the ideal gas law,

p = Rθ

(
p0

p

)−κg
ρ, (6.6)

where p0 is a reference surface pressure, R = 287.05 J kg−1 K−1 is the gas constant

for dry air and κg = R
cp

. A subscript g has been added to κg, denoting gas, to

differentiate from the von-Karmen constant. Recall from Part I that the form of

the closure is, for example, τx = −Km
∂u
∂z

.

For the boundary layer only model it was most straightforward to work in

the Boussinesq framework; it would be viable to continue to use the Boussinesq

framework for the fully coupled system since only acoustic modes would be filtered

out, important Rossby and inertio-gravity waves would remain. There are three

factors making it desirable to be non-Boussinesq. Firstly it would otherwise require

use of the generalised form of the eigenvalue decomposition, meaning use of the less

well known generalised Singular Value Decomposition. Secondly, acoustic modes

propagate very quickly compared to other types of waves and so are less likely to

be distorted or slowed by the boundary layer mechanism. Having them included

will give a part of the spectrum that is highly distinguished from the rest, useful
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for analysing the methodology and examining overall transient behaviour. Thirdly

the Met Office’s Unified Model is based on the fully compressible equations.

6.1 Form of the Vertical Pressure Gradient

Note that equations (6.1) to (6.5) are written in terms of Exner pressure Π. For the

height based coordinate Thuburn and Woollings [68] showed that the optimal ver-

tical discretisation for the dynamics only case was one where pressure and potential

temperature were chosen for the thermodynamic variables and the Charney-Phillips

grid was used. Ideally one would like to choose density ρ as one of the thermo-

dynamic variables as it gives a more direct route to ensuring mass conservation

in the system [64]. With the equations written in terms of pressure p [68] found

that using ρ led only to near optimal representation of the dispersion relation; one

which had no computation mode but underestimated the frequency of the Rossby

modes.

As was shown by [68] the averaging required on the model variables is related to

how well the frequencies of the normal modes are represented by the discretisation.

When the p form of the pressure gradient is used and ρ is chosen as a prognostic

variable an extra averaging step is required in the w equation compared to when p

is chosen as a prognostic variable. The extra averaging when using ρ results in the

slowing of the smallest scale inertio-gravity or Rossby modes.

In [64] and simultaneously in [70] it was shown that when the vertical pressure

gradient term is written in terms of the Exner function the extra averaging when

using ρ is avoided. The result is an optimal configuration, while still allowing ρ

to be used as a prognostic variable. Pressure p can be recovered from the Exner

pressure by the relation,

Π =

(
p

p0

)κg
. (6.7)
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6.2 Linearisation

For the coupled dynamics-boundary layer study the nature of the questions that

need to be addressed are slightly different to the questions that were addressed

for the boundary layer separately. Firstly the overall steady state structures will

be largely the same in the coupled case, the only additional requirement is that

density comes into the equations, which can be calculated through hydrostatic

balance. The reference solution for the vertical velocity remains zero. The process

of computing the transient part of the equation is also similar to the boundary layer

only case, only with the addition of the transient vertical velocity and density.

Whereas the efforts of the Part I have been in both understanding how to prop-

erly compute the linearisation of this complex problem and in examining solutions

for differences in vertical configurations, the focus of the remaining chapters shifts.

The methodology is largely in place and now the task is to examine the complicated

coupling interactions and then to compare the grid configurations. With this in

mind, the way in which the results are presented for the coupled case will differ.

In Part I two distinct chapters, covering first the computation and comparison of

the steady state and then the transients, was most natural. For the coupled prob-

lem the linearisation requires only small adjustments, that are covered presently.

Later in the investigation different parts of the linearisation can then be called

upon as required. For example in the next chapter, when examining the coupling,

the transient part of the calculation will be required. Examining the steady state

is postponed until comparing Lorenz and Charney-Phillips. It will have similar

overall structure in the coupled system as it had in the boundary layer problem.

6.2.1 Steady State

Capturing a suitable steady state for the whole coupled model does not differ much

from the boundary layer only case. It is still sufficient (and necessary) to assume

that the reference vertical wind W is zero since it is dominated by horizontal wind

speeds. Coriolis parameter f is constant and all reference state variables except p

are independent of x and y, making it possible to continue to employ the geostrophic
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approximation for the horizontal derivatives of pressure. The only addition to

the velocity equations is density in the boundary layer diffusion terms. That the

reference vertical velocity is zero leads to a reference state that is in hydrostatic

balance. The ρ equation becomes decoupled for the horizontally homogeneous,

no vertical wind approximation. The equation for hydrostatic balance is used to

compute density, this can be thought of as a diagnostic step. Note that the cooling

and heating terms remain in the thermodynamic potential temperature equation

so as to obtain the steady state, if it were not present then the same issues of a

continually cooling boundary layer would be encountered, as discussed in Part I.

The full set of equations required to solve the steady state are obtained by

leaving just the steady parts of equations (6.1), (6.2) and (6.3) and by adding in

the subsidence heating and radiative cooling to (6.4),

0 = f(V − vg)− 1

ρ(r)

∂

∂z

(
ρ(r)τ (r)

x

)
, (6.8)

0 = −f(U − ug)− 1

ρ(r)

∂

∂z

(
ρ(r)τ (r)

y

)
, (6.9)

0 = −cpθ(r)∂Π(r)

∂z
− g, (6.10)

0 = − 1

ρ(r)

∂

∂z

(
ρ(r)H(r)

)− wsub
∂θ(r)

∂z
−Rc. (6.11)

Reference thermodynamic variables are related through the equation of state.

p(r) = Rθ(r)

(
p0

p(r)

)−κg
ρ(r). (6.12)

Hydrostatic Balance

The reference state consists of thermodynamic variables that are in hydrostatic

balance; the vertical pressure gradient balances the gravitational force. Equations

(6.8)-(6.11) can be solved as previously by the method of false time stepping or, for

the high resolution, the Newton method. Equation (6.10) can be solved during a

diagnostic step (ρ diagnosed from θ). If using the false time stepping method then,

by using the latest guess for the potential temperature, Π(r) that is in hydrostatic
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balance is calculated, from which the pressure and density follow. Π(r) can be

solved by a simple rearrangement of (6.10). i.e.,

∂Π(r)

∂z
= − g

cpθ(r)
. (6.13)

The pressure at top boundary pN is chosen, giving Π(r) at the top boundary. Inte-

grating downwards using a numerical form of (6.13) Π(r) is obtained throughout the

domain. Pressure is then obtained throughout by using (6.7) written in terms of

reference variables and then density using (6.12). In order to approximately obtain

the realistic surface pressure p0 = 100000Pa, pN = 81000Pa is chosen for the top of

the domain at 2000m. Note that when fixing the top boundary condition on pres-

sure, and following the calculation in this way, the surface value will vary slightly,

depending on the surface boundary condition on the potential temperature.

If using the Newton method there is no need to have a diagnostic step to

calculate the hydrostatic balance, it is numerically more efficient for the condition

to be satisfied automatically through the iteration. Recall from Part I that the

Newton iteration is given by,

xnew = x− [∇xF(x)]−1F(x), (6.14)

where x is now the vector containing all five model variables at each model level.

The function F represents the right hand side of (6.8)-(6.11) with zeros for the

ρ equation. ∇xF(x) is the matrix of the coefficients of the transients which is

described in detail in the next section.

Discretisation

Here the discretisation for the false time stepping scheme is demonstrated in order

to highlight the terms that will require averaging. For the scheme the time deriva-

tive of reference model variables is put back in to the equations. The only supported

transients are damped through boundary layer diffusion, allowing a steady state

to be reached. For both the Lorenz and Charney-Phillips grids the horizontal
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momentum equations are given by,

Un+1
j − Un−1

j

2∆t
= f(V n
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(6.15)
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(6.16)

Superscript n denotes time level and subscript j the spatial level, overbar, e.g. ρ,

denotes an averaged quantity. Options for averaging in the boundary layer terms

are unchanged from Part I.

On the Lorenz gird the θ equation is,
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(6.17)

and on the Charney-Phillips grid it is,

[
θ(r)
]n+1

j+ 1
2
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j+ 1

2

∆t
=

− 1
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n

. (6.18)

Recall that wsub is negative. An analogous process of discretisation follows for use

in the Newton method.
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6.2.2 Transients

Leaving just the order one transient terms when linearising equations (6.1), (6.2),

(6.3), (6.4) and (6.5) gives,

∂u′

∂t
+ U

∂u′

∂x
+ V

∂u′

∂y
+ w′
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= − 1

ρ(r)

∂

∂z

(
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+

ρ′

ρ(r) 2

∂
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)
, (6.19)
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(
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where transient boundary layer diffusion terms τ ′x, τ
′
y and H′ are unchanged from

Part I. In each material derivative 3 or 4 terms vanish due to either the reference

W = 0 or reference U and V being independent of x and y. The linearised form of

the ideal gas law, equation (6.6), is,

p′ =
p(r)

1− κg

(
ρ′

ρ(r)
+

θ′

θ(r)

)
. (6.24)

For Exner function the linearised ideal gas is given by,

Π′ =
κgΠ

(r)

1− κg

(
ρ′

ρ(r)
+

θ′

θ(r)

)
. (6.25)

Since coefficients (reference state variables) in equations (6.19) to (6.23) are

independent of x, y and t, solutions can be Fourier decomposed into horizontally

wavelike solutions proportional to exp(ikx + ily + λt). k is the zonal horizontal

wavenumber and l is the meridional horizontal wavenumber. Having set the hor-

186



izontal structure reduces the calculation to a one dimensional column model, as

was the form of the solution in Part I.

Inclusion of the β-effect

For the equations written in this form, where f is constant and not dependent on

position, Rossby waves are unable to propagate. This poses the problem that the

Rossby modes would be degenerate. It is known that the Lorenz grid supports a

computational mode of zero frequency and examining it is of particular interest;

without varying Coriolis it would require visual examination of mode structure

to identify the computational mode, rather than looking for the mode with zero

frequency. Ideally the model could be rewritten replacing f with f = f0 + βy,

giving variation with latitude (y). By doing this however, it would no longer be

possible to seek solutions proportional to exp(ikx + ily + λt) and hence write the

problem as a one dimensional column model. Instead the technique of [68] and [78]

is used. Through use of a β-effect terms which emulate latitude dependence are

included in the equations for conservation of horizontal momentum, see [78] for a

detailed description of the technique.

With the inclusion of the β-effect and seeking wavelike solutions for transient

terms that are proportional to exp(ikx+ ily+λt) equations (6.19) - (6.23) become,

λu′ = −Uiku′ − V ilu′ − w′∂U
∂z

+ fv′ − ikβ

K2
u′ − cpθ(r)ikΠ′

− 1

ρ(r)

∂

∂z

(
ρ(r)τ ′x + ρ′τ (r)

x

)
+

ρ′

ρ(r) 2

∂

∂z

(
ρ(r)τ (r)

x

)
, (6.26)

λv′ = −Uikv′ − V ilv′ − w′∂V
∂z
− fu′ − ikβ

K2
v′ − cpθ(r)ilΠ′

− 1

ρ(r)

∂

∂z

(
ρ(r)τ ′y + ρ′τ (r)

y

)
+

ρ′

ρ(r) 2

∂

∂z

(
ρ(r)τ (r)

y

)
, (6.27)

λw′ = −Uikw′ − V ilw′ − θ′∂Π(r)

∂z
− θ(r)∂Π′

∂z
, (6.28)

λθ′ = −Uikθ′ − V ilθ′ − w′∂θ
(r)

∂z

− 1

ρ(r)

∂

∂z

(
ρ(r)H′ + ρ′H(r)

)
+

ρ′

ρ(r) 2

∂

∂z

(
ρ(r)H(r)

)
, (6.29)
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λρ′ = −Uikρ′ − V ilρ′ − ρ(r) (iku′ + ilv′)− ∂

∂z

(
w′ρ(r)

)
. (6.30)

Attention can be restricted to l = 0 since rotating the horizontal wavevector

K2 = k2 + l2 is equivalent to rescaling β.

Discretisation

The following demonstrates the discretisation of equations (6.26)-(6.30), firstly for

the Lorenz grid the λu′, λw′ and λρ′ equations discretise to,

λu′j = −Ujiku′j − Vjilu′j − w′j
Uj+1 − Uj−1

(∆z)j+ 1
2

+ (∆z)j− 1
2

+ fv′j −
ikβ

K2
u′j − cpθ(r)

j ikΠ′j

− 1

(∆z)j ρ
(r)
j

(
ρ(r)

j+ 1
2

(τ ′x)j+ 1
2

+ ρ′j+ 1
2

(
τ (r)
x

)
j+ 1

2

− ρ(r)
j− 1

2
(τ ′x)j− 1

2
− ρ′j− 1

2

(
τ (r)
x

)
j− 1

2

)
+

ρ′j

(∆z)j ρ
(r)
j

2

(
ρ(r)

j+ 1
2

(
τ (r)
x

)
j+ 1

2

− ρ(r)
j− 1

2

(
τ (r)
x

)
j− 1

2

)
, (6.31)

λw′
j+ 1

2
= −U j+ 1

2
ikw′

j+ 1
2
− V ilw′

j+ 1
2
− θ′j+ 1

2

Π
(r)
j+1 − Π

(r)
j

(∆z)j+ 1
2

− θ(r)
j+ 1

2

Π′j+1 − Π′j
(∆z)j+ 1

2

,

(6.32)

λρ′j = −Ujikρ′j − Vjilρ′j − ρ(r)
j

(
iku′j + ilv′j

)− w′j+1ρ
(r)
j+1 − w′j−1ρ

(r)
j−1

(∆z)j+ 1
2

+ (∆z)j− 1
2

, (6.33)

where e.g. u represents that an averaging is required. The equations for λvj, λθj

are similar in nature to the λuj equation.

The horizontal velocity equations differ between the Lorenz and Charney-Phillips

grids only through the boundary layer terms, with placement of variables analo-

gous to that described in Part I. The density equation does not differ between the

grid configurations. On the Charney-Phillips grid the discretisations for vertical

velocity and potential temperature are,

λw′
j+ 1

2
= −U j+ 1

2
ikw′

j+ 1
2
− V ilw′

j+ 1
2
− θ′

j+ 1
2

Π
(r)
j+1 − Π

(r)
j

(∆z)j+ 1
2

− θ(r)

j+ 1
2

Π′j+1 − Π′j
(∆z)j+ 1

2

, (6.34)
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and

λθ′
j+ 1

2
= −U j+ 1

2
ikθ′

j+ 1
2
− V j+ 1

2
ilθ′

j+ 1
2
− w′

j+ 1
2

θ
(r)

j+ 3
2

− θ(r)

j− 1
2

(∆z)j+1 + (∆z)j

− 1

(∆z)j+ 1
2
ρ(r)

j+ 1
2

(
ρ

(r)
j+1H′j+1 + ρ′j+1H(r)

j+1 − ρ(r)
j H′j − ρ′jH(r)

j

)
+

ρ′j+ 1
2

(∆z)j+ 1
2
ρ

(r)

j+ 1
2

2

(
ρ

(r)
j+1H(r)

j+1 − ρ(r)
j H(r)

j

)
. (6.35)

The above discretised equations can be written as the matrix eigenvalue prob-

lem,

λx = Ax. (6.36)

Solutions or modes of the system are the eigenvectors x, the eigenvalues λ = µ− iω
have real part describing the decay or growth rate of the corresponding mode and

imaginary part giving the frequency. Positive µ denotes growth, negative denotes

decay. Positive ω denotes eastward propagating, negative denotes westward.

Transient Subsidence Heating

Previously the model had no dependency in the horizontal and was incompressible;

this meant that the subsidence heating, used to balance the diffusion, could be

used without concern for balancing the mass budget. If the subsidence heating

was included now then some transient horizontal divergence would be required to

balance the flux of mass through transient subsidence heating. This would be

difficult to implement and would likely cause problems with the methodology.

The extra heating terms were needed to balance the cooling caused by the

fixed surface temperature boundary condition, required to obtain the steady state.

The easiest way to counteract the cooling was to introduce the subsidence term,

and of course a term of this form arises in the transient part of the calculation as

well. It can however, be omitted from the transient calculation without affecting

the validity of the results. Although more tricky and time consuming the same

steady state could have been obtained by finding an appropriate heating profile,
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i.e. just a function of z that had no dependency on the model variables but had

similar structure to wsub
∂θ
∂z

. Could this function have been easily found the same

steady state would be obtained. Writing the equations with this form of subsidence

heating would not have altered the steady state but, since not a function of a model

variable, would not appear in the transients. Rather than attempting to balance

the mass budget in the model it is assumed that the steady state was found with

the aid of a heating profile; allowing efforts to be focused on the main points of

interest, i.e. in examining the overall behaviour and comparing the configurations.

6.2.3 Energy Norm

As for the boundary layer only case it will be useful to be able to work in the Energy

norm. As established previously, for an energy conserving system the matrix of

coefficients in (6.36) will be normal and skew-Hermitian if the system is the written

in the energy norm. That is that model parameters are linearly transformed such

that the total energy in the system can be written as,

E = sTIs. (6.37)

where s is the transformed version of x and I is the identity matrix. As noted previ-

ously, when a matrix is normal, Hermitian (or skew-Hermitian) and sign-definite it

has eigendecomposition and Singular Value Decomposition (SVD) that yield equiv-

alent results. For the problem that has a reference state which is isothermal and

has no shear, as considered by [68], energy will be conserved so the matrix will

be normal and skew-Hermitian when written in the energy norm. The SVD pro-

duces real singular values, whereas a skew-Hermitian matrix has purely imaginary

eigenvalues so a factor i will likely appear in the SVD. Although eigenvalues will

be purely imaginary they will still be positive and negative, denoting eastward and

westward propagation. This means the matrix will not be sign-definite, the impact

of this in terms of interpreting the SVD, in comparison to the eigendecomposition,

can be examined for the isothermal case.

The coupled problem will not conserve energy due dissipation of energy by
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the boundary layer diffusion. The SVD is dependent on the norm in which the

problem is written. Due to the relation for the conserved energy case, using the

energy norm should achieve physical interpretation of singular vectors closest to

the physical interpretation of the eigenvectors.

For a system that conserves energy,

DE

Dt
+∇. (up) = 0. (6.38)

In order to convert to the energy norm the term E needs to be found. Equation

(6.38) only holds for a system with a resting basic state and no boundary layer

terms so in order to convert to the energy norm these terms must be neglected.

The advective material derivative terms that exist due to shear in the reference

state represent an exchange of energy between scales, rather than change of overall

energy, so this approximation is reasonable. Since it is simpler to calculate energy

whilst using pressure rather than density transforming the variables will also result

in converting to pressure. Where required, the equation for pressure is,

∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y
+ w

∂p

∂z
+ c2ρ(r) − ρ(r)gw = 0. (6.39)

To obtain the total energy in the system a procedure analogous to that described

in [66] and [67] is used, i.e. by taking,

u× (6.1) + v × (6.2) + w × (6.3) +
gθ

θ(r) ∂θ(r)

∂z

× (6.4) +
p

c2
× (6.39). (6.40)

The speed of sound c is given by

c2 =
RT (r)

1− κg , (6.41)

where T (r) = Π(r)θ(r) is the reference temperature. Coefficients in (6.40) are chosen

so as give cancelling of terms not obviously conserved. Once expanded equation
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(6.40) is equivalent to equation (6.38) with,

E =
ρ(r)u2

2
+

gρ(r)θ2

2θ(r) ∂θ(r)

∂z

+
p2

2ρ(r)c2
.

Using a simple midpoint type numerical integration the discrete energy in the

system is therefore given by,

E =
n∑
j=1

(∆z)j
ρ

(r)
j u2

j

2
+ (∆z)j

ρ
(r)
j v2

j

2
+ (∆z)j

gρ
(r)
j θ2

j

2θ
(r)
j

∂θ(r)

∂z

∣∣∣
j

+ (∆z)j
p2
j

2ρ
(r)
j c2

j

+
n−1∑
j=1

(∆z)j+ 1
2

ρ
(r)

j+ 1
2

w2
j+ 1

2

2
(6.42)

on the Lorenz grid, and

E =
n∑
j=1

(∆z)j
ρ

(r)
j u2

j

2
+ (∆z)j

ρ
(r)
j v2

j

2
+ (∆z)j

p2
j

2ρ
(r)
j c2

j

+
n−1∑
j=1

(∆z)j+ 1
2

gρ
(r)

j+ 1
2

θ2
j+ 1

2

2θ
(r)

j+ 1
2

∂θ(r)

∂z

∣∣∣
j+ 1

2

+ (∆z)j+ 1
2

ρ
(r)

j+ 1
2

w2
j+ 1

2

2
(6.43)

on the Charney-Phillips grid.

As the investigation progresses it will be useful to use the transient variables in

their energy form, for example when establishing the energetically dominant part

of a mode. So that they can be described more easily a more compact notation is

used, so for example equation (6.42) is,

E =
1

2

n∑
j=1

(∆z)jEu + (∆z)jEv + (∆z)jEθ + (∆z)jEp +
1

2

n−1∑
j=1

(∆z)j+ 1
2
Eρ.

When working in the energy norm, instead of equation (6.36), solutions take

the from,

λs = Cs. (6.44)
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where,

C = BAB−1. (6.45)

Multiplying the state vector x by B transforms into the energy variables, i.e s =

Bx. Vector s contains pressure instead of density. The matrix B will have values on

the diagonal representing the coefficients in either (6.42) or (6.43), with the addition

of a block corresponding to the θ part of the linearised ideal gas law (6.24), used

to eliminate ρ. Once solutions are found, either in the form of eigenvectors or

singular vectors, they may be scaled back to the original form to produce figures

with clearer physical interpretation.

6.3 Case studies

Case studies of varying complexity can be formulated from the basic equations

described so far, ranging from uncoupled isothermal to fully coupled. This gives a

suite of test cases, allowing for careful examination and understanding of the types

of behaviour that can occur and how the dynamics and physics interact. If the

most complex fully coupled problem was set up and examined initially a significant

amount of information would be generated that would be difficult to interpret and

understand physically. The cases to consider are,

• Isothermal no shear uniform grid [68].

• Isothermal no shear but using a stretched grid.

• Boundary layer only case. (Covered in Part I).

• Full boundary layer plus dynamics reference state but boundary layer ex-

cluded in the transient calculation.

• Full boundary layer plus dynamics mechanisms included in both reference

state and transient calculations.

The first case, where only dynamics are included is well understood and so will

only be briefly revisited in this study, in part to check how well SVD matches the
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eigendecomposition for a normal, skew-Hermitian, but not sign-definite, matrix. It

is important to check that physical interpretation of singular vectors equates with

that for eigenvectors. It is expected that introducing the stretched grid will have

some effect on the solutions of the isothermal case, for example modes may only

have structure where resolution is sufficient for their frequency. A grid finer in

places than the uniform grid will therefore lead to supporting of some faster prop-

agating modes. Examining this case will help to give an understanding of where

modes of certain frequencies will have their dominant structure. The boundary

layer only case has been examined in detail in Part I and this has provided an un-

derstanding of the decaying modes that the damping mechanism introduces, this

will be used to identify these modes in the full coupled case.

The next level of complexity is one where the boundary layer mechanism is

introduced into the reference state; this means the reference profiles must represent

the fully coupled state. The difference between the two coupled stages will be

the terms included in the transients. For both cases all the dynamics terms are

included but in the first case all the terms that represent the transient boundary

layer structure will be omitted. Doing this provides a set of modes that have

simpler physical interpretation. It is anticipated that the complex reference state

associated with the boundary layer will introduce new behaviour in the dynamical

modes, for example by Doppler shifting of waves or introducing shear instability.

By excluding the boundary layer at first it should be possible to quantify the full

effect of the reference state first, before the full coupled problem is studied.
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Chapter 7

Examination of Mode Types and

Interaction

The overall aim of this chapter is to understand the interaction between the dynam-

ics and the physics so that later the Lorenz and Charney-Phillips configurations

can be effectively compared. In order to do this it is first helpful to re-visit the

more well known dynamics only case. There is little new to say about the choice

of grid staggering for this case since it is well established that Charney-Phillips is

more suited, it does however provide the clearest insight into the types of dynam-

ical mode. From this case the complexity is built up until an understanding of the

modes that exist in the coupled case is gained. Not only does the occurrence of

each type of mode need to be identified but also how the dynamics and physics

interact. It will be interesting to identify which types of dynamical mode retain

their physical properties after coupling and which do not and to identify how and

why they change. The isothermal resting state case has so far only been investi-

gated for a uniform grid, this can be extended to examine the effect of employing a

stretched grid. Further to this the horizontal wavenumber may be altered to pro-

duce different behaviour, this is particularly relevant for coupling to the boundary

layer where shorter horizontal wavelengths than that used by [68] may be relevant.

For the isothermal case with uniform grid, solutions produce the normal modes;

it is in this situation that eigenvectors most effectively describe the system’s small
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amplitude transient behaviour. As the complexity is built up the system becomes

non-normal and the results obtained from the eigendecomposition depart from be-

ing the normal modes. The work of Part I showed that the system could be very

far from normal for the boundary layer only, meaning eigenvectors did not form

an orthogonal basis. This meant that eigenvectors could not be readily interpreted

and thus could not be used to effectively compare different vertical configurations.

By systematically building up the complexity of the model, as described, it should

be possible to quantify the onset of the non-normality and thus the extent of the

usefulness of the methodology.

7.1 Isothermal - Dynamics only Case

The following revisits the results of [68]. Here there are no boundary layer terms,

the grid is uniformly spaced with N = 20 points over a domain 10,000m deep. The

steady state is isothermal (T (r) = 250K) and stationary (U = V = 0), pressure

is given by P (r) = exp
( −gz
RT (r)

)
, density ρ(r) is obtained from the ideal gas law, the

Exner function is obtained most simply as, Π(r) =
(
p(r)

p0

)κg
and then θ(r) = T (r)

Π(r) .

The horizontal wavenumber is k = 2π
106 , giving a horizontal wavelength of 1000km.

With this level of approximation one can obtain an analytical description of the

dispersion relation and normal modes for each discretisation [64].

The equations are solved with the above approximations as a matrix eigenvalue

problem as before. The equations are thus written λx = Ax, eigenvalues and

eigenvectors of A are obtained giving λ and x. Now that there is no damping

mechanism and the reference state is sufficiently simple the eigenvalues are just

frequencies ω and the eigenvectors are normal modes. The normal modes are

wavelike solutions, they have sinusoidal structure and vertical wavenumber m. The

vertical wavenumber m can be any integer up to that allowed by the resolution

multiplied by π
D

, where D is the domain height..

Figure 7.1 and Figure 7.2 show the numerically computed eigenvalues, singular

values as well as the analytical dispersion relation for the Charney-Phillips and

Lorenz grids. The plots show the frequencies for a given normal mode against the
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number of zeros in the p′ field of that normal mode and hence figures represent the

dispersion relation. The figures use number of zeros in keeping with similar plots

in the previous studies, the vertical wavenumber is given by m = nπ
D

, where n is

the number of zeros in the eigenvector. The three branches, from highest to lowest

frequency, represent acoustic modes, inertio-gravity modes and Rossby modes. The

vertical wavenumber m of a given mode can be obtained as the number of zeros in

p′ multiplied by π
D

.
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Figure 7.1: Frequencies of the westward propagating modes with the Charney-
Phillips grid. The frequency is plotted against the number of zeros in the p′ part
of that mode and so shows the dispersion relation. The plot shows the frequencies
as found by eigenvalues and singular values and as found analytically.

Acoustic modes have the fastest propagation and are thus the highest branch on

the figure. Use of either grid staggering option will slow the fastest acoustic modes

slightly. For the isothermal case the analytical frequency of an acoustic mode is

given by,

ω ≈ ±cm, (7.1)

where c is the speed of sound. Acoustic waves may propagate in either an eastward

or westward direction. In Figure 7.1 and Figure 7.2 only the westward modes are

shown since the eastward modes have very similar behaviour.
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Figure 7.2: As for Figure 7.1 but for the Lorenz grid.

The middle branch represents inertio-gravity modes; in the large m limit they

tend to inertial modes, in the small m limit they tend to gravity modes. For small

k, as being used here, both Lorenz and Charney-Phillips grids accurately capture

the inertio-gravity part of the spectrum. Following the approximations made by

[64] the analytical dispersion relation for gravity waves is given by,

ω ≈ ±
(
m2f 2 +K2N2

b

m2 +K2

) 1
2

, (7.2)

where K2 = (k2 + l2) and N2
b = g

θ
∂θ
∂z

is the buoyancy frequency, as used in part I.

Equation (7.2) is equivalent to the dispersion relation for gravity waves in Boussi-

nesq flow. In equation (7.2) as m → ∞, ω ≈ ±f so equation (7.2) is sufficient

for representing the analytical inertio-gravity dispersion relation when measuring

discrete dispersion relations. As is the case for the acoustic waves, inertio-gravity

waves may also propagate eastward or westward, again only the westward are con-

sidered in this case since behaviour is so similar in either direction. Note that

the behaviour may not be identical between eastward and westward acoustic and

inertio-gravity modes due to an asymmetry introduced by using the β-effect. In

order to obtain equation (7.2) a number of approximations are made meaning that
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β does not appear in the expression of the dispersion relation, however it will

influence the actual dispersion relation, see the full dispersion relation in [68] or

[64].

The lowest branch and therefore slowest frequency modes are the Rossby modes

and here is where the greatest difference between using Lorenz and Charney-Phillips

grids is found. Using the Lorenz grid will lead to significant reduction of the

frequency of the large m Rossby modes, whereas when using the Charney-Phillips

grid the frequency is slightly over predicted, but is closer than with the Lorenz

grid. The analytical dispersion relation for the Rossby modes is given by,

ω ≈ −kβN2
b

K2N2
b +m2

[
f 2 − ( kβ

K2

)2
] . (7.3)

Note that the frequencies of Rossby modes are negative so in the absence of any

forcing they propagate westward.

Figure 7.1 and Figure 7.2 demonstrate one side of the argument presented

for why the Charney-Phillips grid is the favoured configuration for modelling the

dynamics, the other being the presence of the computational mode. Note that the

computational mode does not appear on these plots due it having zero frequency.

Of the types of waves supported in the atmosphere Rossby waves are generally

considered most important in that they determine large scale weather patterns. It

is therefore crucial that a numerical scheme can capture them accurately [34] [66].

Since the Lorenz grid is poorer at representing the frequency of these modes it is less

desirable than Charney-Phillips. The other side to the argument against Lorenz,

the computational mode, is discussed later. Figure 7.1 is equivalent to Figure 3 in

[64]. Comparing Figure 7.2 with Figure 4 in [68] it is clear that introducing the

Exner form of the vertical pressure gradient has no adverse or beneficial effect on

the discrete dispersion relation when using the Lorenz grid.
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Identifying Types of Dynamical Mode

In this isothermal case the type of mode is clear by comparing the numerical and

analytical frequencies and by the clear branches that they appear in. Other than

this a mode can be identified by examining the eigenvectors and where the dominant

features lie. Later when other physical processes are introduced into the equations

the frequency of the dynamical modes is likely to change, i.e. they would be

Doppler shifted by background wind, leaving less distinction between the three

branches as seen in Figure 7.1 and Figure 7.2. It is desirable to ensure that any

mode in question can have its structure identified in order to be classified and help

later identify how vertical configurations compare. Note that the acoustic modes

propagate considerably more quickly so will likely retain a relatively high frequency

and remain in a separate branch; this should prove to be a useful way of assessing

the methodology.

To assist in the classification of a normal mode one can make use of the energy

in the system (this calculation has already been implemented in order to assist

in the generation of the singular value solutions to the problem). Just examining

the perturbation fields can be slightly tricky as it is not necessarily clear whether a

particular field dominates relative to other fields. Instead, consider the contribution

to the energy in the system from each field in each eigenvector; a mode of a certain

type will have highest energy in the fields associated with that motion. To convert

an eigenvector to give the mode energy it can simply be multiplied by the matrix

B in equation (6.45). A further advantage is that this eliminates density in favour

of pressure, which has been more commonly used in ascertaining mode type in

previous studies [66, 67]. Note that the matrix B includes (∆z)
1
2 terms from

the discrete energy sum. Dividing through by (∆z)
1
2 will give clearer physical

interpretation and comparison between different resolutions.

Figure 7.3 shows the mode energy variables for an acoustic mode calculated

on the Lorenz grid, the figure shows the real and imaginary parts of each modal

energy variable along with the corresponding eigenvalue. An acoustic mode propa-

gates due to perturbations in pressure, i.e. as a local pressure change occurs in the
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system it would be immediately restored causing the initial pressure perturbation

to propagate away from the source. As this process of restoration occurs air will

be required to move (from regions of high pressure to low pressure) hence acoustic

waves also require perturbations to velocity. Since this is a vertical only represen-

tation of the propagation of the acoustic mode the dominant contribution to the

energy would be expected in the pressure and vertical velocity field; examining the

figure this can clearly be seen.
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Figure 7.3: The mode energy variables for an acoustic mode in the isothermal case.
The lower part of the figure shows the frequencies with the eigenvalue corresponding
to the plotted mode marked with a black star.

Figure 7.4 and Figure 7.5 show the structure of the inertio-gravity waves in

energy variables, for regions of the spectrum representing the small m and large m

limit respectively. When a flow is rotationally and buoyantly stable, as it is here,

perturbations to particles in the fluid flow will be opposed by the Coriolis force and
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the buoyancy force (gravity). These forces act in the horizontal and vertical axis

respectively. Consider, for example, a particle moving in a horizontal-vertical two-

dimensional plane, clearly some component of the rotational and buoyant forces

would act upon it, resisting any perturbation. How close the trajectory of the par-

ticle lies to the horizontal or vertical axis will determine the degree to which each

force acts upon it in that axis. This explains why frequencies in this branch are

seen tending to the Coriolis. As vertical wavenumber increases (corresponding to

more zeros in the eigenvector) the scale of the perturbations will become dominant

in the horizontal and so the restoring force will be the Coriolis and thus frequen-

cies will lie close to Coriolis. Conversely as the vertical wavenumber decreases

(corresponding to fewer zeros in the eigenvector) the scale of the perturbations will

become dominant in the vertical. The restoring action of a vertical perturbation is

the buoyancy force and thus the frequency of the perturbation will be closer to the

buoyancy frequency. The horizontal scale of the perturbation is fixed by choosing

k. Decreasing m gives a perturbation with vertically dominant scale, equivalent

to the trajectory being close to the vertical axis in the two dimensional analogy.

Increasing m gives a perturbation with horizontally dominant scale, equivalent to

the trajectory being close to the horizontal axis in the two dimensional analogy.

Note that in (7.2) as m→∞, ω → ±f and as m→ 0, ω → ±Nb.

Figure 7.4 shows the inertio-gravity wave for smaller m. The frequency here

is larger than f and the contribution to the mode energy is of the same order

in horizontal velocity and potential temperature (buoyancy). Figure 7.5 shows a

mode from further along the spectrum where the vertical wavenumber is larger,

here the frequency is closer to f and the potential temperature energy variable is

an order of magnitude smaller than the horizontal velocity energy variables.

The third type of dynamical mode that the system supports represents Rossby

waves and these are the most energetically dominant dynamical modes. They

evolve slowly and drive the large scale cyclones and anti-cyclones that directly affect

day to day weather. It is easiest to consider Rossby modes in potential vorticity

terms since their existence is directly due to a gradient in the potential vorticity.
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Figure 7.4: As for Figure 7.3 but for an inertio-gravity mode.

If the potential vorticity of a fluid particle is perturbed; then due to conservation

of potential vorticity, neighbouring particles are subject to that displacement also.

Since potential vorticity is equivalent to the product of absolute vorticity and the

stratification a perturbation to the potential vorticity will lead to perturbations in

velocity and potential temperature and this is what is observed in Figure 7.6, the

energy variables with largest magnitude are the horizontal velocity and potential

temperature. In a state without any background wind Rossby waves propagate in

the westward direction.

The energy variables that are expected to dominate for each type of dynamical

mode are summarised in Table 7.1. Note that a lower case x is shown for Ep in the

Rossby mode to denote that it is likely to be larger in a Rossby mode in comparison

to an inertio-gravity mode, helping to distinguish between the two. These are the
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Figure 7.5: As for Figure 7.3 but for an inertio-gravity mode.

findings for the isothermal case with k = 2π
106 and with a D = 10km domain. For

different values of k and D the dominant energy variables may differ.

The number of modes that the system supports is related to the number of

degrees of freedom. The number of degrees of freedom is defined by the number of

model parameters and the number of grid points N that each parameter is stored

on, excluding the boundary conditions. There are N zρ levels and N + 1 zw levels

but the top and bottom zw levels are where boundary conditions are implemented.

So for each parameter stored at zρ there are N degrees of freedom and for each

parameter stored on zw levels N−1 degrees of freedom. When using the Lorenz grid

there are therefore 5N − 1 degrees of freedom. When using the Charney-Phillips

grid there are 5N − 2 degrees of freedom. The number of modes, or solutions,

that the system supports is equal to the number of degrees of freedom. For the
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Figure 7.6: As for Figure 7.3 but for a Rossby mode.

isothermal case with either grid the modes supported are 2N acoustic modes (N

east N west), 2N − 2 inertio-gravity modes (N − 1 east N − 1 west) and N Rossby

modes; the extra mode supported by the Lorenz grid is the computational mode.

Analytically it is found that for every internal Rossby mode there exist 2 acoustic

modes and two inertio-gravity modes.

7.1.1 Capturing Modes with Singular Vectors

In Part I it was found that the matrix A was far from normal and that subsequently

results from the eigendecomposition were difficult to interpret, instead the SVD was

considered. The problems of normality are likely to be encountered again when the

fully coupled problem is examined and so it will be useful to call once again on

the SVD. Before using the SVD to examine the coupled problem it will be useful
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Eu Ev Ew Eθ Ep

Acoustic Mode X X
I-G Mode (Small m) X X X
I-G Mode (Large m) X X

Rossby Mode X X X x

Table 7.1: Summary of the expected dominant energy variables for each type of
dynamical mode.

to understand how it performs for the isothermal case and thus how it represents

the dynamical modes in the system. Figure 7.7 and Figure 7.8 show the singular

vector representation of the acoustic mode shown in Figure 7.3 and the Rossby

mode shown in Figure 7.6.
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Figure 7.7: Singular vector representation of the acoustic mode shown also in Figure
7.3. The model variables as returned by the SVD are converted to show the energy
variables.

The singular values reproduce the magnitude of the eigenvalues almost exactly,

as seen in Figure 7.1 and Figure 7.2. However the singular vectors are not identical
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Figure 7.8: Singular vector representation of the Rossby mode shown also in Figure
7.6. The model variables as returned by the SVD are converted to show the energy
variables.

to the eigenvectors, indeed there remains distinction between the input right and

output left singular vectors. In the case where the matrix is normal, Hermitian

and sign-definite the eigenvectors would agree identically with the singular vectors

[71]. In order to generate the SVD the system has been written in the energy

norm. Along with the uniform grid this guarantees normality and that the matrix

is skew-Hermitian, i.e. that A = −A? but not that the matrix is sign-definite. That

the matrix is not sign-definite is why both input and output singular vectors do

not simultaneously match the eigenvectors identically. Comparing Figure 7.7 and

Figure 7.8 with Figure 7.3 and Figure 7.6 it is clear that the singular vectors produce

the same overall structure as the eigenvectors and that input and output singular

vectors have the same scale. However there are also two clear differences between

the input and output singular vectors. Firstly there is a magnitude difference
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between them that can be negative and secondly that magnitude difference includes

a factor of i. For each energy variable the input singular vector can be multiplied

by some factor multiplied by i to obtain the output singular vector.

That the overall structure of singular vectors is similar to the eigenvectors is due

to the matrix being normal and both sets of vectors forming an orthogonal basis.

Recall that writing in the energy norm produces a skew-Hermitian matrix. The

property of a skew-Hermitian matrix is that the eigenvalues are purely imaginary,

conversely a property of the SVD is that all singular values are real. It is a property

of taking the SVD of a skew-Hermitian matrix that a multiplication by i between

singular vectors must occur. If the problem were formulated to produce a Hermitian

matrix the i would be absorbed. If the matrix were normal, skew-Hermitian and

sign-definite the SVD could be written as

iσu = Au, (7.4)

where u is the input singular vector. (7.4) is effectively the same as the eigendecom-

position ω is purely imaginary and iσ = ω. The magnitude difference between input

and output singular vectors cannot be avoided. It would require a sign-definite ma-

trix to see identical behaviour between input and output singular vectors; however

a sign-definite matrix has only positive or negative eigenvalues which is not the

case here. Note by the similarity in Figure 7.1 and Figure 7.2 that this does not

impact on the singular values.

Despite the magnitude differences between input and output singular vectors

strong physical interpretation is still possible. Consider the acoustic mode in Figure

7.7, the dominant energy variable is Ew in the output (left) singular vectors and

Ep in the input (right) singular vectors, consistent with the physical properties of

an acoustic mode, i.e. that perturbations in w are a response to perturbations

in p. The magnitude of Ew in the output vectors is equivalent to the magnitude

of Ep in the input vectors. For each acoustic mode there is an eastward and

westward propagating version; the frequency of the eastward propagating mode

will be positive while the frequency of the westward propagating will be negative.
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There is a pair of singular vectors corresponding to the pair of eigenvectors, one

with Ew dominating in the output vector and Ep dominating in the input vector, as

plotted, and one where the opposite is true. The pair of singular vectors correspond

to the pair of eigenvectors with the same scale. However each singular vector does

not represent either eastward or westward propagation, instead some combination

of the two singular vectors represents eastward and westward.

For the inertio-gravity singular vectors (not plotted) behaviour similar to that

seen in Part I is seen. Recall that for the boundary layer only model a set of inertial

modes with frequency ±f where identified living above the boundary layer. For

the inertio-gravity singular vectors in the isothermal resting state Euler equations

the same behaviour is seen. The Ev part of an input singular vector has the same

structure as the Eu part of an output singular vector and the Eu part of an input

singular vector has the same structure as -1 times the Ev part of an output singular

vector. The other important energy variable for inertio-gravity modes is Eθ; for

this energy variable the output singular vector is equal to a factor times i times

the input singular vector. Again the pairs of input and output singular vectors

correspond to the pairs of eigenvectors with the same scale.

The singular vectors representing the Rossby modes are also clear. All the dom-

inant fields are concurrent with the dominant fields in the eigenvector. Recall from

Table 7.1 that the dominant energy variables are expected to be Eu, Ev and Eθ.

Examining Figure 7.8 it is clear that correspondence, in terms of magnitude, be-

tween one variable in the input and a different variable in the output, as seen in the

acoustic and inertio-gravity singular vectors, is not seen. As seen for the potential

temperature energy variable in the inertio-gravity singular vectors the input-output

response can be understood in terms of the complex parts. For a Rossby singular

vector the magnitude of each input variable is similar to the magnitude of the same

variable in the output. For every variable the output singular vector is approxi-

mately equal to just i times the input singular vector, with a change of sign in Ev

and Ew.

It is clear that strong physical interpretation and understanding is possible with
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the singular vectors and that they are capable of showing the normal modes of the

system. When modes occur in eastward and westward pairs, as is the case for

acoustic and inertio-gravity modes, interpretation is provided through an input-

output response. For a set of modes that can only propagate in one direction, as

is the case for Rossby modes, the interpretation is equivalent to if the matrix were

sign-definite.

7.1.2 Lorenz Grid Computational Mode

The Lorenz grid has an extra degree of freedom compared to the Charney-Phillips

grid. When using the Charney-Phillips grid θ′ is free to vary on N − 1 of the zw

levels, however on the Lorenz grid it is free to vary on all N of the zρ levels. This

extra degree of freedom allows for a computational mode to exist. Examining the

vertical momentum equation (6.3) it is clear that when using the Lorenz grid θ′ will

require averaging to the zw levels, where it is multiplied by the vertical gradient

of Π. Should a perturbation to θ′ be a two grid wave, the averaging would result

in θ′ = 0. This means a transient solution where θ′ is a two grid wave and all

other variables are zero may exist. The overall solution would be non-physical

since θ′ would be invisible to the dynamics. The resulting mode would have zero

frequency and hence fail to propagate. This non-physical static mode could then

start to interfere with other structures in the solution and lead to model errors.

The computational mode is associated with the averaging in equation (6.3). Figure

7.9 shows the computational mode for the isothermal case, the two grid wave in

θ′ is clear. The structure of this mode is dominated by the potential temperature,

however the two grid wave signal is seen also in the density field and the Π′ field

(not plotted).

7.1.3 Shorter Horizontal Wavelengths

So far the results have been calculated using the same horizontal wavenumber as

used by [68], k = 2π
106 . This gives a horizontal wavelength of 1000km. This is

quite large considering the increasing horizontal resolution in numerical models
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Figure 7.9: This plot shows the eigenvector whose corresponding eigenvalue is zero.
This is the computational mode, signified by a two grid wave in the θ field.

and relatively shallow boundary layer depth of 1km or less. Instead the horizontal

wavenumber can first be increased to k = 2π
104 giving a horizontal wavelength of

10km. The frequencies with this wavelength are shown in Figure 7.10 and Figure

7.11 for the Lorenz and Charney-Phillips grids.

As noted by [64] the Rossby waves for this horizontal wavenumber are repre-

sented more accurately by the discrete Charney-Phillips and Lorenz grids than in

the longer wavelength case. However the inertial end of the inertio-gravity waves

are represented less accurately. It can be seen that when using the Exner form

of the pressure gradient, in conjunction with this horizontal scale, the Charney-

Phillips configuration that has density as a prognostic variable performs as well as

the Charney-Phillips configuration with pressure, i.e. Figure 7.10 against Figure 4

in [64].

That there is a difference in the frequencies of the inertio-gravity and Rossby

waves is due to relative sizes of m and k. When considering the dispersion relations

of both inertio-gravity and Rossby waves (7.2) and (7.3) it is clear that certain

terms will dominate. For example in the inertio-gravity dispersion when K is

relatively small, as it would be in the original case, any discretisation error in
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Figure 7.10: Charney-Phillips: as for Figure 7.1 but with a horizontal wavelength
of 10km.
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Figure 7.11: Lorenz: as for Figure 7.2 but with a horizontal wavelength of 10km.

computing the buoyancy frequency will have little effect, when K is large it will,

giving slowed frequencies ω. Similarly the Rossby frequency reduces to −β
k

for

l = 0 and large enough k. This is approximately constant and the terms that can

pick up errors from vertical discretisation become negligible, giving more accurate
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representation of the dispersion relation. The Lorenz grid performs poorly against

the Charney-Phillips grid for the inertio-gravity waves in this case for the same

reasons that it performed badly against Charney-Phillips for the Rossby waves in

the longer wavelength case. The terms that need averaging when using the Lorenz

grid introduce errors into the buoyancy frequency, but whether or not this term

dominates in the dispersion relation is dependent on the relative size of horizontal

wavenumber in relation to the size of the vertical wavenumber.

7.2 Isothermal Case with Stretched Grid

Almost all operational models employ some kind of vertical stretching of the grid.

So that results generated subsequently for the stretched grid coupled case can be

fully reconciled with those generated thus far it is of interest to first check the

effects of using a stretched grid on dynamical modes. This can be done for the

original smaller horizontal wavenumber and the larger wavenumber. The grid is

geometrically stretched with all levels stretched smoothly, rather than by placing

any halfway between others.

Figure 7.12 and Figure 7.13 show the dispersion relation for the Charney-

Phillips and Lorenz grids whilst employing the geometrically stretched grid that

was designed in Part I. From the figures it appears that the discrete modes are gain-

ing large inaccuracies in the dispersion of the large m waves. It has to be noted

that it is not actually fair to compare the set of waves that are captured by the

stretched grid with those waves captured either by the uniform grid or even those

found analytically. As the wavenumber increases (and the wavelength decreases)

there becomes a region in the domain where the stretched grid has insufficient spa-

tial resolution to capture the wave. For small m both uniform and stretched grid

will capture the same wave and the plots reveal that here the stretched grid has as

good dispersion properties as the uniform grid. At some point along the discrete

spectrum the wavelength will become smaller than the maximum grid spacing of

the stretched grid and the overall wave that is captured will be different. Indeed

the stretched grid will be capable of distorting waves to give much higher wavenum-
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ber than the uniform grid, at least in the region of increased resolution near the

ground. The frequency of waves with a given large m in Figure 7.12 and Figure

7.13 cannot be fairly compared since the waves captured by the stretched grid have

much smaller wavelength, indeed the wavenumber m is height dependent for the

stretched grid. When using a stretched grid it is not sensible to count zeros in the

eigenvector due to the more inhomogeneous structure. Instead the x-axis refers

simply to an index number. Index number increases as, depending on the type

of mode, the frequency of the wave it corresponds to increases or decreases. It is

not even clear which analytical wavenumber the stretched grid is trying to capture

since the scale can be height dependent.

By examining the corresponding eigenvectors for the stretched grid it is clear

that the scale of the modes decreases as the index number increases, so the fre-

quency plots show the trend in the dispersion relation, but for unknown correspond-

ing wavenumber. As vertical wavenumber m increases the frequency of acoustic

waves increases, the high wavenumber modes captured by the stretched grid prop-

agate much faster than the highest wavenumber modes captured by the uniform

grid. For the inertio-gravity waves the frequency tends to the value of the Cori-

olis parameter as m increases, hence the frequencies appear unchanged for the

stretched grid. For the slowest propagating Rossby modes the Lorenz grid gives

smaller frequencies than the Charney-Phillips grid. Although there is no analytical

version of the stretched grid frequency it is likely that the Lorenz is capturing the

frequency less accurately than Charney-Phillips. The slowing of the frequency of

the Rossby modes is due to the averaging in θ′. This in turn introduces an error

in the Buoyancy frequency which occurs in (7.3). As m → ∞ the Buoyancy fre-

quency dominates in the dispersion relation and the error that it contains because

of averaging causes the slowing. Having a stretched grid will not prevent this from

occurring. Note that for the stretched grid case Lorenz is marginally better for the

modes with index 2, 3 and 4.
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Figure 7.12: Charney-Phillips: as for Figure 7.1 but with a geometrically stretched
grid.
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Figure 7.13: Lorenz: as for Figure 7.2 but with a geometrically stretched grid.

7.2.1 Lorenz Grid Computational Mode

The stretched grid alone will not prevent the presence of the computational mode,

however it is useful just to examine the structure that it has. Figure 7.14 shows

the computational mode with the stretched grid. It is unmistakably the computa-
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tional mode, consisting of a two grid wave throughout the domain and having zero

frequency.
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Figure 7.14: Lorenz grid computational mode on the stretched grid.

7.2.2 Shorter Horizontal Wavelength

Figure 7.15 and Figure 7.16 show the dispersion relation for the Charney-Phillips

and Lorenz grids respectively. The stretched grid is combined with the shorter hori-

zontal wavelength k = 2π
104 . This is the furthest the simpler isothermal and no shear

case can be taken towards the coupled case and so gives the closest representation

of the dynamical modes than can be expected in the coupled case.

The figures highlight the combination of the effects shown in Figure 7.10, Figure

7.11, Figure 7.12 and Figure 7.13. The decrease in grid spacing afforded by the

stretched grid allows for faster acoustic modes and slower Rossby and inertio-

gravity modes than can be supported by the uniform grid.

The difference in the frequency of the high vertical wavenumber acoustic waves

introduced by the larger horizontal wavenumber is similar for the stretched and

uniform grids.
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Figure 7.15: Charney-Phillips: As for Figure 7.10 but with a stretched grid.
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Figure 7.16: Lorenz: As for Figure 7.11 but with a stretched grid.

The effect of the increased horizontal wavenumber was to give worse represen-

tation of frequencies at the inertial end of the inertio-gravity branch. Increasing

k means that the term involving the error prone buoyancy frequency becomes im-

portant in the inertia-gravity dispersion relation. The stretched grid reduces m

further increasing the noticeable error in the frequency.

217



The combination of better Rossby dispersion achieved with the smaller wave-

length is somewhat negated by the increased m afforded by the stretched grid and

again the Lorenz grid is doing poorly compared to Charney-Phillips in the very

large m limit. When the larger k is combined with the uniform grid k >> m and

the frequency of Rossby modes reduces to −β
k
. When a stretched grid is used the

assumption that k >> m is less accurate in the large m limit, the errors in the

buoyancy frequency return into the dispersion relation. In any of these stretched

grid plots it is not fair to compare the discrete dispersion relation with the analyt-

ical dispersion relation.

7.2.3 Mode Structure

While changing the horizontal wavenumber will have little effect on the structure

of the isothermal modes, other than to alter how much certain fields dominate,

introducing the stretched grid is likely to have quite significant effect on the struc-

ture. As mentioned previously the stretched grid will capture a largely different

looking set of waves to the uniform grid. The modes whose scale is larger than

the maximum spacing on the stretched grid will be captured by both but modes

with smaller scale than this will differ. On the uniform grid the wavenumber will

increase as integers times π
D

, on the stretched grid the set of captured modes will

also decrease in scale but cannot be easily associated with a given wavenumber

since the scale may differ with height.

Understanding how the dynamical modes are captured by the stretched grid

will further assist in identifying them when the whole coupled case is computed on

a stretched grid. Figure 7.17 shows an example of an inertio-gravity mode. This

is a mode which has relatively high wavenumber and so represents a wave whose

restoring mechanism would normally be dominated by rotational forces. However

the figure shows the mode captured on the stretched grid to have similar magnitude

in both horizontal velocity and potential temperature; this is also found for the

shorter horizontal wavelength and a uniform grid. The high wavenumber modes

will have their structure dominant near the surface where the resolution is sufficient
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for capturing it. Although for a longer horizontal wavelength the mode shown in

Figure 7.5 has the same structure as the mode that would be captured in place of

this one if using a uniform grid. Clearly the mode captured by the stretched grid

in Figure 7.17 has structure that is vastly different to the overall structure of the

mode captured by the uniform grid in Figure 7.5. The stretched grid acts to distort

the structure of the mode, giving decreased scale near the ground where resolution

is finer.

!2 0 2
x 10!3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
 Eu 

H
ei

gh
t (

m
)

 

 

Real
Imag

!1 0 1
x 10!3

 Ev 

!4 0 4
x 10!5

 Ew 

!2 0 2
x 10!3

 E
!
 

!1 0 1
x 10!6

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
 Ep 

0 5 10 15 2010!10

100

Number of zeros in eigenvector

Fr
eq

ue
nc

y 
 !

 (s
!1

)

 

 

Eigenvalues
Analytical
Corresponding

Figure 7.17: As for Figure 7.5 but the equivalent mode that is captured by the
stretched grid and when using a horizontal wavelength of 10km.

Figure 7.18 shows a Rossby mode. This is for the part of the spectrum where

the stretched grid and uniform grid are able to resolve the modes in an equivalent

manner. Again the comparison with the uniform grid version of this mode in Figure

7.6 is across different wavenumbers. However the similarity in the overall structure
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can be seen.
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Figure 7.18: The Rossby mode as for Figure 7.6 but with a stretched grid and
horizontal wavelength of 10km.

An important feature of the stretched grid modes, most noticeable in the large

m limit, is that the mode has smaller amplitude in the higher part of the domain

where the grid spacing is much larger than the mode scale. It might be expected

that the grid would sample some underlying wave structure of the solution and

therefore have amplitude throughout the domain but in a seemingly random way as

the wave is aliased. This would be the case if a standing wave were simply sampled

by a stretched grid. However the behaviour has to be understood in terms of

propagation. The structure of a propagating wave will dominate in the region only

where sufficient resolution exists for supporting its frequency. Many phenomena

have been observed related to the propagation of waves on stretched grids. For
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example, [75], where waves are found to be reflected as they propagate into regions

of insufficient resolution for their wavelength. This is likely the effect that is being

observed in Figure 7.17, here the inertio-gravity wave is being vertically reflected

at the point where its group velocity goes to zero, which is where ∂ω
∂m

= 0.

Capturing with Singular Vectors

Now that a stretched grid is being used for the computation the problem will be

further from normal and the SVD will depart further from the eigendecomposition.

Although the solutions are different, physical interpretation is still possible and

this is demonstrated in Figure 7.19, which shows the same Rossby mode that is

shown in Figure 7.18. Clearly the mode structure as found by the eigenvector and

the singular vectors is similar. Further to this the energy variables that dominate,

meridional velocity and potential temperature followed by pressure, are equivalent,

although two orders of magnitude larger for the singular vectors. The relationship

between input and output singular vectors that was observed for the uniform grid

Rossby singular vectors is also seen here. There is multiplication by i between

output and input as well as similar magnitude for the input and output of each

energy variable. The only field that appears to be different in the singular vectors

is Eu, this is likely due to the relative size of this field when the shorter horizontal

wavelength is used. Throughout all the modes the singular vectors are found to

agree well with the eigenvectors in terms of structure and dominant field. Indeed

for all modes the type of wave can be classified by examining the singular vectors.
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Figure 7.19: Singular vector representation of the Rossby mode as shown by eigen-
vector representation in Figure 7.18. The model variables as returned by the SVD
are converted to show the energy variables.
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7.3 Coupled Reference State, Dynamics only in

the Linearisation

The previous sections of this chapter have examined the isothermal case. This is a

useful example to consider, not only because it reveals which vertical configuration

is preferable for the large scale dynamics, but also because it provides a sufficiently

simple set of equations to give normality in the system and therefore test the

methodology in the optimal environment. Combining the ideas of Part I with the

ideas discussed so far in Part II, a full understanding is gained of the types of mode

that are possible when the parts of the system are dealt with separately. The

challenge, before a comparison is performed of the configurations for the coupled

problem, is to understand exactly how the different types of mode behave and

interact with each other when coupled.

For the remainder of this chapter attention will be restricted to the Lorenz case,

for now it is assumed that the modes supported by the Charney-Phillips grid will

have overall behaviour and interaction that is similar to the Lorenz grid. Here the

computational mode that the Lorenz grid supports can be fully examined to assess

how the addition of the boundary layer influences it.

The addition of the boundary layer significantly changes the reference state of

the model. Both temperature T (r) and horizontal velocities U and V will be de-

pendent on height z, this will have large influence on the behaviour and structure

of each mode type. Varying levels of complexity for linearising around the steady

state can be designed to help break the problem down and understand the interac-

tions. The first case considered in this section is one where only the dynamics and

no boundary terms are considered in the transient part of the linearisation; the

fully coupled equations are used to generate the steady state but the perturbations

to all the boundary layer terms are ignored. Ignoring the boundary layer terms

means that only dynamical modes will be supported in the transients, allowing

their structure and evolution to be gauged in the presence of the more complex

background flow.
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In the next section, when the boundary layer is switched on, the behaviour

of some dynamical modes will be affected. This will be represented by solutions

that are damped by the boundary layer diffusion or result from the coupling. This

section aims to build an understanding of how the dynamical modes are affected by

the boundary layer background flow so that later the boundary layer type behaviour

can be distinguished from the behaviour of the dynamics.

Note that now the boundary layer is included, the background flow varies with

height, meaning the system will be further from normal. Solutions can be thought

of just as eigenmodes rather than normal modes since eigenvectors will not form an

orthogonal basis. For simplicity they remain being referred to as modes. Further,

extra advection terms in the material derivatives means writing in the energy norm

will not guarantee a normal and Hermitian matrix and so larger differences are

anticipated between the eigendecomposition and the SVD for the boundary layer

on in the reference state case.

The steady state is obtained by finding the solution to equations (6.8)-(6.11).

The steady states for the coupled problem are quite similar to the steady states

for the boundary layer only problem but with the addition of a steady profile for

the density. Figures showing the structure of the coupled steady states are omitted

here and shown when comparing the Lorenz configuration to the Charney-Phillips

configuration in the next chapter. Some of the behaviour of the modes depends on

the background flow, particularly the background shear and stratification. Overall

structure of the steady states can be recalled from Figure 3.6 and Figure 3.7 on

pages 90 and 91 when interpreting mode behaviour.

The transient solution comes from solving the eigenvalue form of equations

(6.26)-(6.30) but with all the boundary layer terms omitted.

7.3.1 Dispersion Relation

Figure 7.20 shows the absolute imaginary part ω of the eigenvalues λ and also the

singular values σ for the shallowest boundary layer, boundary layer 1. Recall from

Part I that this kind of boundary layer has an approximate depth of 100m.
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Figure 7.20: Absolute value of the imaginary part of the eigenvalues and the sin-
gular values for the Lorenz grid. Steady state generated for boundary layer 1, no
boundary layer mechanism in the transient calculation. Met Office grid.

The grid used here is the stretched Met Office grid. In this figure the eigen-

values are ordered by descending absolute imaginary part and the index number is

just a reference. Previously it was clear that figures such as Figure 7.1 represented

wavenumber against frequency and therefore gave some visual representation of the

dispersion relation, even if no wavenumber was directly obtainable such as when

shown for a stretched grid. Although likely to have some relation it can no longer

be assumed that ordering by imaginary part will automatically order by vertical

wavenumber. To help determine how well the figure represents the dispersion rela-

tion, the spectrum must be sampled and the corresponding eigenvectors examined.

Once branches are confirmed to represent different mode types and the mode struc-

tures have been checked for approximate wavenumber the shape of the dispersion

relation can be more closely identified.

Previously only the westward propagating acoustic and inertio-gravity modes

were considered, the westward set also contained the Rossby modes and the east-

ward counterparts had almost identical structure. The increased complexity in the

background flow means differences between eastward and westward modes are more

distinguished and so both will be considered.

The immediate change observed when using the boundary layer reference state
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is that Rossby modes are now all eastward propagating whereas were previously

all westward propagating. This is due to the wind above the boundary layer in

the background flow dominating the relatively small phase velocity of the Rossby

modes, Doppler shifting them to an overall eastward propagation. Similarly note

that the computational mode is advected by the background flow and no longer

exhibits a zero frequency but is mixed in with the other branches of mode and

becomes eastward propagating. In checking structures by eye is is found that in

Figure 7.20 the computational mode corresponds to the eigenvalue with index 39.

Whether a given wave propagates eastward or westward depends on the type of

solution, the wind speed in the background flow and in the choice of the horizontal

wavenumber. For example in Figure 7.20 the horizontal wavenumber is k = 2π
106

whereas in Figure 7.21 everything remains fixed except that k = 2π
103 , the smaller

horizontal scale allows the background flow to dominate, causing all but one Rossby

mode and all inertio-gravity waves to propagate eastward. Note that only acoustic

modes lie in a distinct branch, other have to be classified by examining the mode

structure. In following the work of [64] in the previous section the horizontal

wavenumber was chosen as 2π
104 . This is still quite large considering the 100m deep

boundary layer and so k = 2π
103 is used, giving a 1km wavelength.
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Figure 7.21: As for Figure 7.20 but with the larger wavenumber.

Comparing Figure 7.20 and Figure 7.21 it is clear the choice of horizontal
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wavenumber is quite significant when including the boundary layer in the refer-

ence state. The frequencies for all of the inertio-gravity and Rossby solutions are

within a much smaller range now, as the Doppler shifting dominates their natural

frequencies. When a wave is Doppler shifted the change in frequency is inversely

related to the wavelength. For the same background flow a wave with smaller hor-

izontal wavenumber will undergo a smaller Doppler shift than a wave with larger

horizontal wavenumber.

The fact that waves are being Doppler shifted so much by the background flow

makes it even harder to visually represent the dispersion relation. If all the waves

have similar frequencies then it becomes more likely that ordering by frequency,

as is most natural to do, will produce an order unrelated to vertical wavenumber,

especially since the two branches of Rossby and inertio-gravity modes are observed

to be becoming entangled. Again a way to get around this, and understand to

what level the figure gives a visual representation of the dispersion relation, is to

examine the mode structure by eye and try to classify their type and place on the

spectrum.

A further issue potentially preventing modes appearing in an order related to

vertical wavenumber is due to the structure that can result due to the complex

reference state. Gravity waves, for example, can only exist in regions of stable

stratification, and since the background flow is close to neutrally stratified above

the boundary layer, they may have the majority of their structure in the boundary

layer. Meanwhile the inertial waves may have the majority of their structure above

the boundary layer where rotational effects dominate over shear; despite both waves

being represented by the same underlying dispersion relation it may not be possible

to relate wavenumber to frequency clearly.

The branch of acoustic solutions is clear in both wavenumber cases since the

frequencies of acoustic waves are relatively fast, making them less susceptible to

Doppler shifting. The acoustic branch is the highest fastest frequency branch.

Further to this it is likely that their structures will depend less on the background

flow since they do not rely on horizontal velocity or potential temperature fields in

227



order to propagate. Indeed this is the only part of the frequency plot that reliably

represents the dispersion relation. The conjugate pairs of eastward and westward

propagating acoustic modes are clearly visible in the spectrum. That the acoustic

modes are still well represented gives further confidence in the numerics and the

methodology. For example it appears to exhibit a discrete spectrum and this can be

checked and used for comparison. In addition it may help to measure how well the

singular values can perform, if for example they were not capable of representing

even this part of the spectrum it would be a strong warning against their use for

the coupled problem.

7.3.2 Unstable and Decaying Modes

Now that shear is present in the reference state, it is possible to to have Kelvin-

Helmholtz type instability. These instabilities occur as shear can act to advect the

crests of a horizontally propagating wave faster than the troughs [19]. The shear

driven decay is effectively the opposite of this process. When modes are decaying

or unstable it is represented by the eigenvalues having a real part, as was seen

when the boundary layer was studied in Part I. Figure 7.22 shows the eigenvalues

for the k = 2π
106 and k = 2π

103 cases plotted in the complex plane. It is clear that

there now exist eigenvalues that have real part that may be positive or negative.

Eigenvalues in the left half-plane correspond to damped modes, eigenvalues in the

right half-plane correspond to growing modes, upper half-plane corresponds to

eastward propagation and lower half-plane westward propagation.

Firstly note that the growth rate of the majority of modes is relatively small.

Secondly note that it is clear from the figure that the extent of the shear induced

instability or decay is dependent on the horizontal wavenumber and that modes in

the shorter horizontal wavelength case can have larger growth or decay rates. The

shear acts to roll up the fluid, creating the possibility of instability, if the scale of

motion is similar in the vertical compared to the horizontal then the rolling up is

stronger. When the horizontal wavenumber is larger the horizontal and vertical

scales are closer and hence why larger real part is seen for this case.
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Figure 7.22: Eigenvalues for the two horizontal wavenumber cases plotted in the
complex plane. Boundary layer switched off in the transients.

As the boundary layer is switched on the solutions which correspond to the

boundary layer diffusion will likely have a negative real part. It is therefore impor-

tant to be able to distinguish between solutions that are damped due to the shear

and those that are damped by the boundary layer.

Figure 7.23 and Figure 7.25 show the real part of the eigenvalues found for the

k = 2π
106 and k = 2π

103 cases respectively. Figure 7.24 and Figure 7.26 show the

corresponding frequency plots but with the modes with largest growth or decay

shown in black. Recall that the transient solutions are proportional to exp(λt)

where λ = µ − iω. Those plotted in black in Figure 7.24 and Figure 7.26 have

|µ| > 10−8.

For the smaller horizontal wavenumber case the modes with largest real part

appear to correspond to the inertio-gravity branch with a few Rossby modes af-

fected. In the larger wavenumber case modes undergo stronger damping or decay

and thus more modes appear in black for the same condition on the magnitude of

the real part. Based on their frequencies the modes undergoing the largest growth

or decay appear to be inertio-gravity and Rossby modes. However this needs to

be checked by looking at the structures since frequency does not necessarily define

mode type. In fact, for k = 2π
103 , inertio-gravity and Rossby modes are found to mix
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into a single branch. The Doppler shift and general advection by the background

flow is large enough to give Rossby modes with faster frequency than inertio-gravity

modes.
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Figure 7.23: Real part of the eigenvalues for the longer horizontal wavelength case
(k = 2π

106 ). Boundary layer 1 reference state, boundary layer switched off in the
transients. Sorted by real part but absolute real part plotted
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Figure 7.24: Imaginary part of the eigenvalues for the longer horizontal wavelength
case. Boundary layer 1 reference state, boundary layer switched off in the tran-
sients.

The modes with fastest decay or growth in Figure 7.22 need to be identified.
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Figure 7.25: Real part of the eigenvalues for the longer horizontal wavelength case
k = 2π

106 . Boundary layer 1 reference state, boundary layer switched off in the
transients.
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Figure 7.26: Imaginary part of the eigenvalues for the longer horizontal wavelength
case. Boundary layer 1 reference state, boundary layer switched off in the tran-
sients.

For k = 2π
106 the largest growing and decaying eigenvalues have index 29 and 28

respectively in Figure 7.24. For k = 2π
103 the largest growing and decaying eigen-

values have index 47 and 48 in Figure 7.26. In both horizontal wavenumber cases

the modes structures are examined and found to correspond to the same largest
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scale inertial modes. In both cases it is a very similar pair of modes, the dominant

energy variable is horizontal velocity and all the structure is in the region above

the boundary layer. For the k = 2π
106 case the Doppler shift is less and it is still

possible to distinguish between direction of propagation. The unstable of the pair

is the eastward propagating, and the decaying version is westward propagating.

Since the modes that appear most susceptible to the shear are the inertial end of

the inertio-gravity modes it should be possible to distinguish between boundary

layer modes and modes decayed by shear. In Part I the inertial modes were purely

neutral and so unaffected by the boundary layer diffusion.

The shear instability and decay explains why the singular values do not match

the frequencies so well in the shorter horizontal wavelength case, where growth and

decay rates are larger. Since singular values are real the SVD will not be capable

of representing propagating and growing/decaying modes in an equivalent manner

to the eigendecomposition. Instead singular values may tend to represent either

frequency or growth/decay rate. This will be investigated when the boundary

layer is switched on in the transients. When examined it is found that for the

modes corresponding to singular values and eigenvalues that do not match in Figure

7.24 the corresponding real part of the eigenvalue will be quite large. Instead of

representing the frequency of the mode the singular value represents something

else, which may be a combination of the growth/decay and frequency.

In this section the changes to the frequencies of the dynamical modes that are

caused by the coupled reference state have been observed. However a number of

questions have been raised relating to the classification of modes. In order to fully

appreciate the frequency plots and generate an understanding of the dispersion

properties of the system the eigenvectors clearly need to be examined. This also

needs to be done in Section 7.4 when the fully coupled linearisation is considered.

Of course this increases the complexity of the problem in that some modes will

become damped by the boundary layer, however for many modes the structures

will remain as they are and these are of less interest anyway. To avoid repetition the

mode structures are examined and classified only for the later fully coupled case.
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The modes that are of interest in the case examined in this section are those that

are liable to be distorted and become boundary layer modes in the fully coupled

problem. As these are identified it will be interesting to examine them.

7.4 Fully Coupled Linearisation

When linearising about the fully coupled reference state with only the dynamics and

not the boundary layer the solutions are all dynamical structures, either acoustic,

inertio-gravity or Rossby waves. When the boundary layer is turned on in the

linearisation some of the solutions will correspond to the damping by the boundary

layer. The efforts in this section will be directed towards identifying the different

types of solutions based on their dominant structure, examining what the spectrum

looks like and attempting to establish which types of modes are most likely to be

influenced by the boundary layer. This also provides a useful analysis of how well

the different methodologies work for classifying solutions and thus how useful they

may be for comparing vertical configurations.

Figure 7.27 shows the eigenvalues in the complex plane for the fully coupled

problem. Clearly the eigenvalues for the larger horizontal wavelength case have

shifted so that now damped modes dominate modes driven unstable by the shear.

This would imply that the boundary layer damping dominates over the shear driven

decay or instability. For the shorter horizontal wavelength the influence of the

boundary layer is less clear, indeed there is a mode with growth rate equivalent to

the fastest damped mode in the ‘no transient boundary layer’ case.

The information in this figure needs to be broken down as before to establish

the exact behaviour of the modes. Points that need to be addressed include: are the

damped modes due to boundary layer diffusion or shear driven decay? If modes

have been distorted by the addition of the boundary layer in the linearisation

then which modes are they? How important is the horizontal wavenumber and

are shorter horizontal wavelength solutions less susceptible to the boundary layer

diffusion as would be suggested by Figure 7.27?

The fastest growing mode in the right hand plot
(
k = 2π

103

)
of Figure 7.27 is
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Figure 7.27: Eigenvalues for the two horizontal wavenumber cases plotted in the
complex plane. Fully coupled transients.

still an inertial mode, as it was for the case with no transient boundary layer

(Figure 7.22), however it is a slightly different inertial mode than that which was

found to be the most unstable mode previously. The mode that was previously

the fastest growing is now one of the fastest decaying modes. Based on findings in

Part I an inertial mode would not be expected to be decayed by the boundary layer

diffusion. For the boundary layer only all the inertial modes had zero real part.

Further, in the previous section inertial modes were identified as being susceptible

to the shear. In addition the inertial mode that is the fastest growing mode here

was almost neutral when the boundary layer was switched off in the transients.

This suggests increased difficultly in interpreting the k = 2π
103 case; clearly there is

a high degree of sensitivity.

Figure 7.28 and Figure 7.29 show the real (growth/decay) and imaginary (fre-

quency) parts of the eigenvalues respectively for the k = 2π
106 case. The most

damped eigenvalues have been highlighted in black in each plot and correspond to

each other. These are the modes that are most likely associated with the boundary

layer diffusion mechanism since the decay rates are greater than that of any mode

found when the boundary layer was switched off in the transients. The overall fre-

quency plot is similar to that in Figure 7.20, when no boundary layer was included
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in the linearisation.
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Figure 7.28: Real part of the eigenvalues for the k = 2π
106 case. The reference

state is found using boundary layer 1 and the boundary layer is switched on in the
linearisation. Modes are sorted by real part and the magnitude of the real part is
plotted.
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Figure 7.29: Imaginary part of the eigenvalues and the singular values for the
k = 2π

106 case. These eigenvalues correspond to the those in Figure 7.28 but are
ordered by imaginary part here.

Figure 7.30 and Figure 7.31 show the real and imaginary parts of the eigenvalues

for the k = 2π
103 case. This also shows the most damped modes plotted in black. For
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the same condition on the size of the real part of the eigenvalue, i.e. that it is less

than −10−6, there are approximately the same number modes. However there are

eigenvalues with comparable magnitude that are growing and the overall magnitude

of the real part of the eigenvalues is similar to that seen when no boundary layer

terms were included in the transient part of the linearisation, as seen in Figure 7.25.

The growth of the fastest growing mode is slightly reduced with the boundary layer

switched on from 3.902× 10−3 to 3.596× 10−3.

From Figure 7.28 to Figure 7.31 a general picture of how the boundary layer

affects the solution is emerging. The plots of eigenvalues suggest that solutions with

longer horizontal wavelength have less susceptibility to the shear, whereas solutions

with shorter horizontal wavelength will have more. Even with the boundary layer

switched on, modes in the k = 2π
103 case remain being decayed or driven unstable by

the shear. This can be seen in Figure 7.31 where modes plotted in black, denoting

decay, include parts of the acoustic branch. Also, when structures were examined

some fast decaying modes were found to be inertial modes. If acoustic and inertial

modes are being decayed it is unlikely that it is due to boundary layer diffusion

since acoustic modes have very high frequencies and inertial modes have all their

structure above the boundary layer. The real part of eigenvalue for the inertial

and acoustic modes when the boundary layer is switched on in the transients is of

a similar magnitude to the real part that they had when the boundary layer was

switched off in the transients.

It will be interesting to investigate the structures of the modes highlighted in

black which share the characteristics of the modes found in the boundary layer

only case. So far those plotted in black are only based on a simple criterion. The

condition for highlighting in black is based on the k = 2π
106 case. The condition is

designed to pick out the modes which have larger decay rates when the boundary

layer is switched on than the decay or growth rates of any of the modes found when

the boundary layer is switched off. So the magnitude of the eigenvalues plotted

in black in Figure 7.28 is larger than the magnitude of all the eigenvalues plotted

in Figure 7.23. So far only the same condition has been applied to the k = 2π
103
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Figure 7.30: Real part of the eigenvalues for the k = 2π
103 case. The reference

state is found using boundary layer 1 and the boundary layer is switched on in the
linearisation. Modes are sorted by real part and the magnitude of the real part is
plotted.
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Figure 7.31: Imaginary part of the eigenvalues and the singular values for the
k = 2π

103 case. These eigenvalues correspond to the those in Figure 7.30 but are
ordered by imaginary part here.

figures. For the shorter horizontal wavelength it is likely to be more difficult to

pin down which modes are boundary layer modes just by looking at eigenvalues.

Of course for both cases the modes needs to be investigated in detail, it may be
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that not all of these modes are boundary layer modes or that more than these

are. To identify whether a mode is a boundary layer mode, one must examine the

structure of the eigenvector, if it has structure similar to the boundary layer modes

found in Part I and is damped then it is considered to be a boundary layer mode.

This type of mode will be important when it comes to comparing the Lorenz and

Charney-Phillips grids.

The singular values are no longer capable of representing the frequency of all

the modes in either wavenumber case. This is again due to the increased damping

of certain modes and the inability of the singular values to capture both the decay

rate and the frequency. Whether or not the singular values and singular vectors

are capable of representing the structure and behaviour of the modes in a similar

way to the eigenvalues and eigenvectors can only be determined by examining the

mode structures themselves.

7.4.1 Mode Structures

Longer Horizontal Wavelength
(
k = 2π

106

)
Starting with the longer horizontal wavelength case (k = 2π

106 ), and moving along the

frequency plot in Figure 7.29 from index 1 to 49, the mode structures are examined

and classified. The internal acoustic modes are those that have index number on

the frequency (imaginary) plots going from 1 to 18. The structure of the acoustic

modes is similar between the coupled case and the isothermal case in that they

consist of a dominant structure in the vertical velocity and pressure. The structure

is also only dominant in regions with sufficient resolution for their frequency and

vertical structure. Plots of the structures are omitted for their similarity to the

isothermal examples.

The modes with imaginary index 19 and 20 in Figure 7.29 are external modes

that have structure similar to the external acoustic modes found in the isothermal

case. They also exist as a conjugate pair and have no significant real part and so,

although the frequencies are considerably slowed by the Doppler shifting, compared

to the isothermal case, they are almost certainly the external acoustic modes. The
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next two modes have imaginary index numbers 21 and 22, these have dominant

structure lying near the surface in horizontal velocity and potential temperature

and are also highlighted in black in Figure 7.29 implying that they are likely damped

by the boundary layer. All the boundary layer mode candidates will be examined

together in detail later.

Figure 7.32 shows the structure in energy variables of a typical inertio-gravity

mode in the coupled problem. The figure is arranged so as to show the structure

of the mode along with the position of that mode in the eigenvalue spectrum, as

arranged by frequency and by growth rate. The eigenvalue plots are given to show

position of the corresponding mode and are equivalent to Figure 7.28 and Figure

7.29. The mode shown in Figure 7.32 is more towards the inertial end in that the

structure is dominant in the horizontal velocity over the potential temperature and

that k
m
<< f

Nb
. This is also evident by the fact that the majority of the structure lies

above the boundary layer, whose height is at around 100m. This was also the case

in the boundary layer only problem, where a set of inertial modes with frequency

close to Coriolis were found to have structure entirely above the boundary layer.

The structure of the inertial modes will dominate above the boundary layer where

the shear goes to zero and is dominated by rotation.

The inertial mode plotted in Figure 7.32 lies in a branch of other inertial type

modes going from imaginary index 23 to 30 (with the exception of 24), these are

all eastward propagating. The scale of the mode increases as frequency increases,

consistent with the inertio-gravity wave dispersion relation. A set of very similar

westward propagating inertial modes are found in the branch below, imaginary

index going from 31 to 38 (with the exception of 36), again scale increases as

frequency increases. The two modes lying in these branches that have structure

not like an inertial mode have imaginary index 24 and 36. These are also modes

that have large rate of damping, real index number 45 and 46 respectively, and

will be examined with the boundary layer modes later. All the modes checked so

far are either damped, acoustic or look like the inertio end of the inertio-gravity

modes found in the isothermal case. The structure of the acoustic modes is very
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Figure 7.32: A typical inertio-gravity mode in the coupled problem, the reference
state is boundary layer 1 and the horizontal wavenumber is k = 2π

106 . The lower
part of the figure shows the position of this mode in both the imaginary and real
part of the spectrum.

similar to the isothermal case. The structure of the inertial modes is also quite

similar except that their structure is dominant in the region above the boundary

layer. When the stretched grid isothermal case was studied at the beginning of this

chapter some modes at the inertial end of the inertio-gravity spectrum were found

which had structure only dominant near the ground. For the fully coupled case

no such modes are identified, all inertial type modes have structure throughout

the domain. Modes have been redistributed to suit what is able to exist with the

presence of the sheared background flow. Mode 39 is another plotted in black and

has structure around the boundary layer.

The mode with imaginary index number 40 has external mode structure and so
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is the most likely candidate for the Rossby external mode; this is also the mode with

largest damping rate that did not meet the criteria to be plotted in black in Figure

7.29. Although this is a Rossby type mode it is likely to decay away relatively

quickly in comparison to other dynamical modes. The mode with index 41 is the

computational mode, the computational mode will be discussed in a subsequent

section.

Modes 42 to 47 have their dominant structure in the meridional component

of velocity and in the potential temperature, an example of this kind of mode is

shown in Figure 7.33. This set of modes all have dominant structure similar to

that found in Rossby modes in the isothermal case in that the meridional velocity

perturbation dominates the zonal velocity perturbation. It also has similar mag-

nitude in the meridional velocity compared with the potential temperature and

increased pressure perturbation compared with the inertio-gravity modes. The or-

der in which the frequency relates to vertical scale has been flipped compared with

the isothermal case; now the smaller the frequency the larger the vertical scale.

All the modes 42 to 47 have a positive real part and are thus unstable modes.

The larger the vertical scale, and thus the smaller the frequency the larger the

growth rate of that mode. This is interesting and somewhat counter intuitive since

one might expect Rossby modes to feel the effect of the boundary layer damping

but instead seem to be driven unstable by the shear. However this is a very shallow

boundary layer.

Mode 48 also has similar structure to the other Rossby candidate modes but

is the fastest growing and thus most unstable mode. Whereas the other modes in

this branch have vertical scale increasing with decreasing frequency at this mode

the behaviour changes to dominate only near the surface. This is possibly a mode

resulting from the coupling. Mode 49 is the most damped mode and has structure

in the fields that would be expected to have structure in the boundary layer modes.

So far all the modes that were not highlighted in black have been examined.

They are the acoustic modes, the inertial end of the inertio-gravity modes, and

the Rossby modes. In addition to these there are 3 external modes, two acoustic
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Figure 7.33: A typical Rossby mode in the coupled problem, the reference state is
boundary layer 1 and the horizontal wavenumber is k = 2π

106 . The lower part of the
figure shows the position of this mode in both the imaginary and real part of the
spectrum.

and one Rossby that has quite large damping rate. There is also a mode which is

unstable and has structure dominating in the same fields as the Rossby modes but

has structure only near the surface. The acoustic and inertial modes behave much

as they do in the isothermal stretched grid case and have been checked also to

agree well with the form of these mode types when the boundary layer is switched

off in the transients. Six modes have been identified (21, 22, 24, 36, 39, 49, all

plotted in black) as being damped by the boundary layer. Recall that the criteria

for choosing them was that the absolute real part of the eigenvalue was larger than

the real part of the eigenvalues when the boundary layer was switched off in the

transients. These modes have structure in the horizontal velocity and potential
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temperature fields, an example of a damped mode is given in Figure 7.34. This

is one of the slower damped modes and so will be of interest when comparing the

Lorenz and Charney-Phillips grids.
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Figure 7.34: A typical damped mode in the coupled problem, the reference state
is boundary layer 1 and the horizontal wavenumber is k = 2π

106 . The lower part of
the figure shows the position of this mode in both the imaginary and real part of
the spectrum.

The damped modes have similar structure to what would be expected in the

gravity modes. Having examined all the modes which are less damped, acoustic,

inertial and Rossby modes were identified, the latter of which was found to be

unstable. A gravity mode would be expected to have dominant structure in the

boundary layer anyway since the restoring mechanism is stable stratification and

the fluid is stably stratified in the boundary layer and close to neutrally stratified

above. No modes that are not damped were found to have this kind of structure;
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all six modes that are significantly damped have exactly this kind of structure.

Consider Figure 7.28. The six modes working from the right hand side are

the damped modes. The seventh mode in, i.e. the one with real part index 43

was an external mode, working further left to modes with less damping, the two

fastest frequency acoustic modes are found followed by the external acoustic modes

followed by inertial modes. Any damping in acoustic and inertial modes is likely

to be shear driven rather than boundary layer diffusion driven. The six modes

identified originally seem therefore to be accurately describing the boundary layer

modes.

For the case where the boundary layer is switched off in the transients the

mode structures have also been examined and are found to have overall quite

similar behaviour. The main difference is the presence of a set of gravity modes,

these exist with imaginary index 28 to 31 in Figure 7.24. There are four in total.

All the structure is in the lower part of the domain where the background fluid is

stably stratified and dominated in horizontal velocity and potential temperature.

No modes with this kind of structure, and that do not have significant negative

real part, were found in the coupled case, suggesting that all four are damped into

boundary layer modes. This leaves two more to be found that turn into boundary

layer modes, likely slow Rossby modes. In Figure 7.24 these were highlighted

in black denoting that there was a significant real part to the eigenvalues. On

examining the four gravity modes closer they are also found to be the fastest

decaying and growing modes, but are driven so through shear rather than the

boundary layer. These are the clear candidates for being most affected by the

boundary layer since the structure remains similar and all are damped with the

boundary layer switched on and with a faster damping rate than when the boundary

layer was switched off.

With the boundary layer switched off in the linearisation most of the modes

with structure like Rossby modes have eigenvalue with negative real part, whereas

when the boundary layer is switched on in the transients they all have positive

real part. This suggests that the boundary layer or the sheared reference state has
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some mechanism that is capable of driving the Rossby modes unstable. There is

evidence of unexpected instability is dynamical waves, for example in [31] where

unstable external Rossby modes are observed in the presence of dissipation. A

further possible mechanism for the instability seen could be due to the way the

β-effect is added to the model, although switching β to zero did not produce any

significant difference to the decay rates.

Shorter Horizontal Wavelength
(
k = 2π

103

)
As has been previously discussed the shorter horizontal wavelength is physically

relevant for the boundary layer, the mode structures need therefore to be examined

also for this case. From Figure 7.30 and Figure 7.31 it would seem that this may be

harder due to the closer clustering of the frequencies and the unexpected damping

of certain modes.

For the k = 2π
103 case the modes with imaginary part index going from 1 to 18

(Figure 7.31) are again found to be the acoustic modes with structure very similar

to that found in the longer horizontal case. The 19th and 20th modes are also the

external acoustic modes. For this case however the frequencies are closer to the

other acoustic modes due to the larger k.

For the modes with index 21 up to the last, 49, classification is considerably

harder than for the longer horizontal wavelength case. There are clear inertial

modes from 30 to 36 and two modes with a two grid type wave in θ, discussed later

in the computational mode section. The majority of the remaining modes have

very similar dominant structure to each other and so it is difficult to distinguish

between them. There are however, three modes at 46 to 49 which are also the

fastest damped modes and have structure like the boundary layer modes in the

smaller horizontal wavenumber case.

Due to increased difficulty in identifying modes in the shorter horizontal wave-

length case more care will be required in identifying modes for the Lorenz versus

Charney-Phillips examination. It may be that additional information is gained

when comparing Lorenz and Charney-Phillips modes in the longer horizontal wave-
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length case that could help with comparison in the shorter horizontal wavelength

case.

Deeper Boundary Layers

Figure 7.35 and Figure 7.36 show the real and imaginary part of the eigenvalues

found when the reference state is boundary layer 5. This boundary layer has a depth

of around 950m. The eigenvalues whose corresponding modes have structure in the

boundary layer and with significant damping rate are plotted in black.

When switching to a much deeper boundary layer the overall behaviour changes

and the distribution and behaviour of modes needs to be rechecked. Firstly note

that the same number of acoustic modes exist in the deeper boundary layer case,

further confirming their independence from the boundary layer influence; their

structures are also unaffected; these have imaginary index going from 1 to 20.

Index 19 and 20 correspond to the external acoustic modes. After checking by

eye it is apparent that for the deeper boundary layer there are considerably more

damped modes than previously, from index 30 to 49 in the real part plot and

corresponding black circles in the imaginary plot, Figure 7.36. All of the damped

modes have structure lying in the boundary layer and the dominant fields are the

horizontal velocity and potential temperature perturbations.

Modes with imaginary index 29 to 31 are inertial modes, imaginary index 34

is the computational mode and 35 and 36 look like inertial modes. Mode 38 is

difficult to classify but looks somewhat similar to the Rossby external mode, but

only in vertical velocity and pressure. Modes 47 and 48 are also inertial modes.

There is clearly considerable dependence on the depth of the boundary layer. For

boundary layer 1 there existed acoustic modes, inertial modes, Rossby modes and

six damped boundary layer/gravity modes. In addition the Rossby modes were all

unstable. For the deeper boundary layer there exist acoustic modes, inertial modes

and twenty damped/gravity modes but no obvious Rossby modes except possibly

the external mode. There are only four unstable modes on the figure, two of which

are inertial, one of which is the computational and the only one with any significant
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Figure 7.35: Real part of the eigenvalues for the k = 2π
106 case. The reference

state is found using boundary layer 5 and the boundary layer is switched on in the
linearisation.
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Figure 7.36: Imaginary part of the eigenvalues and the singular values for the
k = 2π

106 case. These eigenvalues correspond to the those in Figure 7.35.

growth is the external Rossby. The real part of the eigenvalue corresponding to

the computational mode is 3.853× 10−12 so it can be considered neutral.

These results would suggest that the boundary layer is indeed capable of damp-

ing the Rossby modes but only when sufficiently deep, bringing increased damping,

otherwise they may even be unstable. When comparing the Lorenz and Charney-
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Phillips grids the shallower boundary layers may be more useful for comparing how

each can capture the dynamical modes such as Rossby and inertial but the deeper

boundary layers may be more useful for comparing how they capture the boundary

layer modes.

Boundary layer 1 and boundary layer 5 offer the two extremes, a depth of 100m

and 950m. For the shallow case structures of Rossby modes are largely unaffected

by the boundary layer. As the depth of the boundary layer increases the number of

clear Rossby modes decreases and the number of boundary layer modes increases.

The number of damped modes with boundary layer structure is: ten for boundary

layer 2, twelve for boundary layer 3 and sixteen for boundary layer 4.

7.4.2 Comments on the Methodology

From examining the mode structures a picture is starting to develop for how the

methodology performs. When looking at the boundary layer on its own, without

any dynamics, problems were encountered associated with the normality of the

matrix of transient coefficients. The matrix was so non-normal that comparing

eigenvectors became impossible as any orthogonality between them was lost. By

adding in the dynamics this problem is somewhat alleviated. It does not return the

matrix to normality, and in checking inner products it is evident that eigenvectors

are not completely orthogonal, however it is much better than for the boundary

only case. Indeed as eigenvectors are examined it is clear that some physical inter-

pretation can be attached to the eigenvectors; the issue that was seen previously

where lots of simultaneous eigenvectors had almost identical structure is not seen

here, even when resolution is increased.

Building up the complexity in the way done here enables one to gauge also the

ability of the singular values and singular vectors to represent the behaviour of

the system in a way that can be interpreted straightforwardly. For the isothermal

resting case, even in the non-normal stretched grid case, all the modes could be

easily identified in the singular vectors and the frequencies were well represented

by the singular values. Part of the reason that frequency can be represented well
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by singular values is because the modes are all neutral. Singular values are purely

real while eigenvalues will be purely imaginary, although the problem could be re-

written so that eigenvalues were purely real. As the reference state is changed the

difference between the singular values and eigenvalues is increased. Eigenvalues

become complex and can be positive and negative; singular values remain real and

positive. In this more complex situation the two decompositions will inevitably

have to represent the behaviour in different ways. The boundary layer reference

state introduces shear instability and Doppler shifting, producing eigenvalues with

significant imaginary as well as real part. As the boundary layer depth is increased

Km and Kh increase so the rate of damping and the number of damped modes

increases. For boundary layer five the difference between singular values and the

imaginary part of the eigenvalues is increased due to the larger damping. In Part

I the singular values were quite similar to the real part of the eigenvalues, this was

due to the eigenvalues having dominant real part. Here the imaginary and real part

of the eigenvalues are similar in magnitude and so it is not clear which part the

singular value will be closest to, if any. It becomes more difficult to identify a mode

type by looking only at the singular value due to the large range of values they can

take, from representing the high frequencies of the acoustic modes to the damping

rate of boundary layer modes. Instead the singular vectors themselves need to

be examined. Physical interpretation of the dynamical modes through the singular

vectors is still possible, as can be seen in Figure 7.37 and Figure 7.38. These figures

show how the modes shown in Figure 7.32 and Figure 7.33 are represented by the

singular vectors.

The overall structure looks quite similar to that given in the eigenvectors and

indeed the behaviour identified in the isothermal resting state singular vectors oc-

curs here. For example in Figure 7.37 is the inertial mode as shown in eigenvectors

in Figure 7.32, apart from the similar structure it is clearly an inertial mode since

the input singular vector for Ev has equivalent structure to the output singular

vector for Eu and the negative version vice-versa, exactly as would be expected

due to the findings of earlier in this chapter and in Part I. This increased informa-
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Figure 7.37: The singular vectors with closest structure to the inertial mode plotted
in Figure 7.32. k = 2π

106 , boundary layer 1.

tion can help in distinguishing inertial modes from Rossby modes in the shorter

horizontal wavelength case where dominant structure does not change significantly.

The Rossby mode in Figure 7.38 is also clearly identifiable, having the dominant

structures in the same fields as found in all previous cases. A further point to

note is that the relationship between input and output vectors that was seen for

the isothermal case is still seen. In the dominant energy variables Ev, Eθ and Ep

the output singular vectors include a multiplication by i from the input singular

vectors.
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Figure 7.38: The singular vectors with closest structure to the Rossby mode plotted
in Figure 7.33. k = 2π

106 , boundary layer 1.

7.4.3 Mode Tracking: Motivation

A number of modes have been identified that become more quickly damped when

the boundary layer is switched on. It would be useful if these modes could be

tracked as the boundary layer is gradually switched on so that the form of the

mode most susceptible to the boundary layer could be established. It would also

be useful if the computational mode could be tracked. In the shallow boundary

layer it is quite likely that the only modes that become boundary layer modes start

off as gravity modes since no near neutral gravity modes were identified with the

transient boundary layer switched on for this boundary layer depth. For the deeper

boundary transients off case both Rossby and gravity modes appear to turn into

boundary layer modes and it would be useful to be able to distinguish between
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them. Being able to track modes is potentially problematic however. If there is a

continuous part to the spectrum then completely different modes will exist in each

case, boundary layer off and boundary layer on.

As discussed in Part I the form of the spectrum is an underlying issue that

requires careful consideration when using this type of methodology. It is clear

that the isothermal Euler equations can only have a discrete spectrum; there is no

viscosity and therefore only waves with vertical wavenumber like integer times π
D

can match the imposed boundary conditions; there are infinitely many but only

discrete possibilities. It has also been argued in Part I that, when solving the

boundary layer only case, there is only a discrete spectrum. If both individual

components support only a discrete spectrum it seems likely that, when coupled,

the spectrum should also be discrete, but care should still be exercised. It is possible

that the boundary layer reference state but with boundary layer transients switched

off could have continuous spectrum. One may hypothesise that when coupled

equations are used a continuous part to the spectrum could exist. For example

if say the boundary layer mechanism were capable of absorbing certain dynamical

modes of any wavelength. Due to the complexity of the fully compressible equations

it would be beyond the scope of this work to derive rigorously whether the spectrum

consists only of discrete values or contains a continuous part. Some tests will be

implemented to search for a continuous part of the spectrum. From examining the

mode structures by eye no continuous part has been identified. Similar physical

behaviour is seen across the range of cases that were examined, all of which can be

understood quantitatively.

Given the possibility of having a continuous spectrum it may not be wise to

try and track modes that appear to turn into boundary layer modes but it should

be possible to confirm which modes do not feel the boundary layer. In addition

to the tracking of modes, the form of the spectrum is fundamental for the task

of comparing Lorenz and Charney-Phillips. If a continuous spectrum is possible

then there is no reason to believe that the two grids should even capture equivalent

modes.
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The most obvious test to look for a continuous spectrum is to examine the

behaviour as resolution increases. If the modes that are captured during a low

resolution run are not captured at all by the high resolution run then it would imply

a continuous spectrum. Having all the modes captured by the high resolution would

be necessary for a discrete spectrum but not sufficient to prove that only discrete

spectrum exists. Initially the eigenvalues themselves were checked with increasing

resolution but since the eigenvalues are within a very close range, i.e. all the inertial

modes have almost identical frequency, this was not found to be helpful. The

alternative, and the basis of the test used here, is to visually compare eigenvectors

across different resolutions to ensure all low resolution solutions are captured in

the high resolution, this is potentially a highly arduous and ambiguous process.

The results so far show the eigenvector methodology to be working quite well,

although eigenvectors are not orthogonal they are not as far from being orthogonal

as in Part I. Computing inner products can save a lot of time when comparing

eigenvectors from different resolutions and remove some of the ambiguity. It is not

sufficient to rely on this test however because of the non-normality in the problem,

any matching eigenvectors returned by the test need to be checked by eye.

The whole process can be sped up considerably though. Using the geometrically

stretched grid that was constructed in Part I two resolutions of 20 and 30 grid

points are compared. The eigenvectors in the low resolution are interpolated to the

high resolution grid. A matrix is constructed whose entries are the inner product

between each eigenvector in the low resolution (rows) and each eigenvector in the

high resolution (columns), the column with the entry closest to 1 or -1 gives the high

resolution eigenvector most similar to the low resolution one. Table 7.2 shows the

high resolution eigenvector most closely resembling each low resolution eigenvector,

a tick in the table denotes that when checking by eye the eigenvectors gave best

agreement. For this particular example boundary layer 4 was used in the reference

state, but the boundary layer was switched off in the transients.

It is clear from the table that the agreement is good and that all modes that

are found in the low resolution case are also found in the high resolution case;
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n = 30
n = 20 ...continued from left

Orth Test By Eye
1 5 X 35 56 X 69 103 X
2 6 X 36 55 X 70 107 X
3 9 X 37 58 X 71 118 X
4 10 X 38 57 X 72 110 X
5 11 X 39 60 X 73 112 X
6 12 X 40 59 X 74 113 X
7 16 X 41 61 X 75 114 X
8 15 X 42 63 X 76 115 X
9 20 X 43 64 X 77 116 X
10 19 X 44 65 X 78 117 X
11 21 X 45 66 X 79 118 X
12 22 X 46 68 X 80 119 X
13 26 X 47 71 X 81 123 X
14 25 X 48 73 X 82 122 X
15 29 X 49 75 X 83 124 X
16 30 X 50 73 X 84 125 X
17 32 X 51 77 X 85 126 X
18 31 X 52 77 X 86 128 X
19 36 X 53 80 X 87 131 X
20 35 X 54 81 X 88 132 X
21 38 X 55 83 X 89 133 X
22 37 X 56 85 X 90 135 X
23 42 X 57 85 X 91 137 X
24 41 X 58 88 X 92 138 X
25 44 X 59 89 X 93 140 X
26 43 X 60 91 X 94 141 X
27 48 X 61 93 X 95 143 X
28 47 X 62 92 X 96 144 X
29 50 X 63 96 X 97 146 X
30 49 X 64 98 X 98 148 X
31 52 X 65 99 X 99 149 X
32 51 X 66 97 X
33 54 X 67 99 X
34 53 X 68 103 X

Table 7.2: Comparison of the modes found when using a geometrically stretched
grid with 20 and 30 grid points, boundary layer 4 reference state but with boundary
layer switched off in transients. A tick denotes that when checking by eye the mode
in each configuration agrees.
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no continuous part to the spectrum is evident. The test used to generate the

results in the table has been repeated for a number of different cases, covering

boundary layer switched on, boundary switched off, uniform grids, the Met Office

grid and for different boundary layer depths. The results were reasonably good

and in most cases the test returned the best match for around 90% of the low

resolution eigenvectors. For the majority of individual modes for which the test

failed, a candidate making a good match could be found by eye. The methodology

of comparing eigenvectors works better for some cases than others. The table

shows a boundary layer off case. Here every eigenvector could be identified by the

test and agreed when checked by eye. When the boundary layer is switched on

the test does not always produce complete success, particularly for the boundary

layer modes which are likely further from orthogonal. It was also found that the

methodology worked better when the two chosen resolutions were quite close, again

due to orthogonality issues; when there are more modes to choose from a number

may have inner product close to 1 or -1. When a number are found close to 1 or -1

a few may need to be checked by eye before finding the most appropriate match.

7.4.4 Mode Tracking: Methodology

Given the lack of evidence for a continuous spectrum after extensive testing it seems

that tracking may be able to produce some useful information. Tracking as the

boundary layer terms come into the problem is done by altering a coefficient in front

of the transient boundary layer terms gradually from 1 to 0, effectively a matrix

perturbation problem. The problem in doing this is that the matrix perturbation is

unbounded since the boundary layer terms include second order derivatives. Even

placing a factor << 1 in front of the transient boundary layer term may results in

significant change in overall behaviour. This means that standard techniques for

matrix perturbation problems are generally not useful. Some matrix perturbation

procedures look to calculate the change in a particular eigenvalue, for example by

looking for the eigenvalue after the perturbation lying closest to the location of

that particular eigenvalue before the perturbation. This would likely be difficult
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for this problem since again, even a coefficient << 1, compared to 0, in front of

the transient boundary layer terms could move eigenvalues a relatively long way

in the complex plane. Recall that for k = 2π
103 the fastest growing mode in the

boundary layer off case became the fastest decaying mode when the boundary

layer was switched on. If eigenvalues move as much as that for a relatively small

perturbation it could not be tracked by looking for the closest eigenvalue after

perturbation. Given the success of calculating inner products of eigenvectors this

is used instead to attempt to track modes as the boundary layer is switched on. It

seems more natural to perform the tracking from boundary layer switched off to on

(0 to 1) but since ‘singular’ behaviour will likely occur when going from 0 to any

amount of boundary layer switched on the tracking is performed from on to off.

A simple iterative procedure starting with the boundary layer switched on (coef-

ficient = 1) is considered. The coefficient is reduced, to say 0.9, and inner products

are calculated between the two cases, coefficient = 1 and coefficient = 0.9. Before

the coefficient can be reduced further towards boundary layer off, two conditions

must be found to hold. The conditions that must hold are that i. for the best

matched modes the inner product must be sufficiently close to 1 or -1 and ii. that

modes correspond one-to-one. If the conditions do not hold then the original reduc-

tion in the coefficient is iteratively reduced until they do. So for example, if after

the initial reduction to 0.9 one of these tests does not hold then the step would

be halved to give 0.95. If the reduction is halved approximately 25 times and the

conditions still do not hold then the test is likely to fail. Due to the simple nature of

the process it will not have success in every situation, and has issues reaching 0 for

deep boundary layers, where modes are further from being orthogonal. Generally

if the test failed it was as the coefficient in front of the boundary layer transients

got close to 0.

Figure 7.39 shows the values of the eigenvalues as the matrix is perturbed so

that the boundary layer goes from on to off in the transients. Completely on is

the right hand side of the plots, completely off at the left. The figure is for the

longer horizontal wavelength case with boundary layer 1 for the reference state and
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the Met Office grid. Using the results of the test the eigenvectors are examined

to check which retain their structure as the boundary layer is switched from on to

off. Eigenvector structures are checked by eye along each line in Figure 7.39, if the

structure is equivalent at either end of the line then that line is plotted in blue, if

the structure is clearly different then the line is plotted in red. This is combined

with a check that each mode with different structures at either end can not be

matched with another eigenvector.
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Figure 7.39: The imaginary (left) and real (right) parts of the eigenvalues as the
boundary is switched from on to off in the transient calculation. Boundary layer 1
reference state and the Met Office grid. Modes found when the boundary layer is
switched on that are not found when the boundary layer is switched off are plotted
in red.

The red lines in the figure do not necessarily describe which mode with the

boundary layer off turns into each boundary layer mode. There may not be smooth

behaviour as the tracking occurs, especially going from no boundary layer transients

to ‘any’ boundary layer transients. The tracking could therefore incorrectly show a

relation between modes. However it is reasonably safe to deduce which modes stay

approximately the same. In Figure 7.40 the imaginary part of all the eigenvalues

at the boundary layer off end of Figure 7.39, i.e. the same as Figure 7.24, are

plotted. The modes which did not stay approximately the same, i.e. corresponding

to red lines in Figure 7.39, are plotted with a black asterix. When examining the

structure of these boundary layer off modes the four together in the middle (28 to

31) are all found to look like gravity modes. The two modes with index 48 and 49
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have dominant fields corresponding to what would be expected in Rossby modes

but with structure dominant near the ground.
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Figure 7.40: The imaginary part of the eigenvalues with the boundary layer
switched off in the transient calculation. Modes found when the boundary layer is
switched on that are not found when the boundary layer is switched off are plotted
in black. Boundary layer 1 reference state, k = 2π

106 and the Met Office grid.

The results of the tracking confirm the results of simply examining modes. For

this boundary layer 1 case with k = 2π
106 a set of six boundary layer type modes were

found, however no gravity modes were found, but gravity modes were identified in

the boundary layer off case implying they had all been damped. Only four gravity

modes were identified in the boundary layer off case implying that other types of

mode were also damped by the boundary layer. The results of the tracking would

imply that the two slowest Rossby modes in the boundary transients off case have

been damped by the boundary layer and turned into boundary layer modes, since

neither could be found in the coupled modes.

7.5 Lorenz Grid Computational Mode

As discussed previously the Lorenz grid has one too many degrees of freedom,

resulting in a spurious computational mode. Within the isothermal framework the

computational mode could be identified by a two grid wave existing throughout the
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domain. The structure is a two grid wave in θ′ as this is the kind of structure that

when averaged in the vertical momentum equation would be zero. It is a major

disadvantage to the Lorenz grid that it supports a computational mode since it has

been shown to manifest itself as non-physical properties in the model, such as the

baroclinic instability as discussed in [4].

It is of interest to understand what happens to the computational mode when

the complexity is increased to include a sheared background flow and boundary

layer mechanism. Figure 7.41 shows the computational mode for the boundary

layer 1 case, with dynamics only in the linearisation, the grid is the Met Office

grid. The two grid wave in θ′ and ρ′ is clear but now only exists in the region

above the boundary layer.
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Figure 7.41: This figure shows the computational mode for the boundary layer 1
background flow but with the boundary layer transient terms switched off.

In addition to the two grid signal in θ′ and ρ′ the two grid signal also appears

in u′, v′ and w′. In the region above the boundary layer the flow is in geostrophic

balance, fv = cpθ
∂Π
∂z

and −fu = cpθ
∂Π
∂z

. The signal in θ′ results in a similar signal in

ρ′ through Π′ which in turn results in a signal in the velocities through geostrophic

balance. The plot reveals that, as expected, shear alone in the background flow

is not sufficient to suppress the computational mode throughout the domain. The
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shear does suppress the structure of the computational mode in the shear region

though.

That the shear suppresses the computational mode can be understood in terms

of the speed of propagation of waves at different heights. If shear exists in the

background flow then waves at different heights in the shear region will propagate

at different rates, thus the vertical wavelength will only be twice the grid spacing at

certain instants. A schematic to further demonstrate this is shown in Figure 7.42.

A snap shot of three theoretical θ′ waves at different heights on theoretical grids

are shown in a vertical two grid wave configuration, a peak in the highest wave

coincides with a trough on the wave below it. Immediately after the theoretical

point shown in the figure the three waves would cease to exist in a two grid wave

configuration, the peak of the highest wave would have moved faster than the

trough of the wave below it and so on.
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Figure 7.42: Two grid wave schematic. Under shear waves at different heights
travel at different velocities.

This argument would suggest that having any amount of shear in the fluid

might alleviate issues associated to the computational mode; this certainly would

be beneficial since throughout the atmosphere there is always some amount of

shear. Reconsider the schematic in Figure 7.42; although the waves will propagate
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at varying rates, at some point they will realign to produce a two grid wave.

Figure 7.43 shows the computational mode for the fully coupled problem, where

the boundary layer transient terms are switched back on. Again the computational

mode remains, existing as a two grid type wave everywhere above the boundary

layer. It is unchanged by the addition of transient boundary layer terms. In the

full coupled problem the strong diffusion mechanism in the boundary layer is not

sufficient for suppressing the computational mode throughout the domain. This

has been checked for all the boundary layer depths and found to hold unanimously.
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Figure 7.43: This figure shows the computational mode for the boundary layer 1
background flow, this is the full coupled problem where the transient boundary
layer transient terms are switched on.

7.6 Chapter Summary

This chapter has aimed to build up an understanding of the types of modal solu-

tions that are captured by the coupled problem. To build on the knowledge gained

from examining the boundary layer only case in Part I, the dynamical modes have

been examined. The case that allows for the most concise representation of the

dynamical modes is the isothermal resting reference state, solved on a uniform grid;
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the solutions for which have been examined by previous authors. By building up

from the isothermal case a picture of how the solutions behave for the coupled

problem can be constructed. First the solutions were sought for the isothermal

resting state on a stretched grid, this is important since using a stretched grid

offers the best overall representation of the atmosphere in a numerical model. As

the grid is stretched the set of modes that are captured changes. The largest scale

modes will be captured in an equivalent manner, however some smaller scale modes,

sampled from a part of the spectrum that the uniform grid cannot support, will

change. These waves will have all their structure in the region of the grid which has

sufficient resolution for supporting their frequency. In addition to stretching the

grid, solutions for a shorter horizontal wavelength were computed. As resolution of

atmospheric models increases, how the behaviour of waves at shorter wavelengths

is captured becomes an important question. In addition to this the shorter hori-

zontal wavelengths are of a similar scale to the depth of the boundary layer. For

the isothermal case the shorter horizontal wavelength meant better discrete repre-

sentation of the Rossby frequency but worse representation of the inertio-gravity

frequency.

An intermediate case where the dynamics and physics are coupled in the refer-

ence state but then only dynamics are included in the transient state was considered

before the fully coupled problem. This allows one to build up a picture of how the

dynamical modes are distorted and altered by the added complexity in the ref-

erence state. Once the reference state includes shear there is considerably more

sensitivity to the choice of the horizontal wavenumber. For smaller wavenumbers

the frequencies of the three types of dynamical mode types are closer to that seen

in the isothermal no shear case. The larger horizontal wavenumber leads to a more

condensed dispersion relation where Rossby and inertio-gravity waves appear to

inhabit a single branch. The big difference seen as the wavenumber changes is due

Doppler shifting by the background wind, causing the frequencies to be distorted

from their natural range.

With the understanding gained from the three simpler test cases - isothermal
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resting reference state on a uniform grid, isothermal resting reference state on a

stretched grid and fully coupled reference state but boundary layer excluded from

the transients - the fully coupled case was considered. This is the most complex

case that will be considered and the case for which the difference between Lorenz

and Charney-Phillips is of most interest. This chapter has largely been concerned

with examining the coupling. However one important result regarding the compar-

ison of the Lorenz and Charney-Phillips grids has been obtained in examining the

structure and behaviour of the Lorenz grid computational mode. As outlined in the

introduction to this thesis, spurious behaviour can result from from the presence

of a computational mode and this makes the Lorenz grid a dangerous choice when

designing a numerical model. If the boundary layer’s damping mechanism had

been found to damp the computational mode throughout the domain it could have

been argued that the Lorenz grid could be more useful than previously thought.

In addition to investigating the computational mode the interaction of dynami-

cal and boundary layer modes was investigated. The dependency on the boundary

layer depth is clear. The deeper the boundary layer the more boundary layer modes

that are supported and the more potential problems in using the methodology. The

investigation has revealed that gravity and Rossby modes can be expected to be

most susceptible to the boundary layer damping. These are the kinds of modes

present when the boundary layer is switched off but distorted in some way when

switched on.

Going forward into the comparison of Lorenz and Charney-Phillips grids both

horizontal wavenumber cases may be useful. The original and smaller wavenumber

of k = 2π
106 produces results which are potentially easier to interpret since the

three types of dynamical mode are more evident by differences in the frequencies.

The larger wavenumber case k = 2π
103 may cause problems with the methodology

if solutions are harder to interpret. Nevertheless it provides a more appropriate

length scale for coupling with a shallow boundary layer and is relevant given the

increasing resolution in current weather and climate models. Although it is harder

to distinguish between dynamical modes in this case the boundary layer modes
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were found reasonably easily and so a comparison of how each grid captures these

may still be possible.

In addition to the two different wavelengths there are still the different bound-

ary layer depths to help with comparison. Deeper boundary layers support more

boundary layer modes and shallow boundary layers support more dynamical modes.

If wanting to compare how well Lorenz and Charney-Phillips capture the Rossby

frequency, for example, then using a shallower boundary layer will help. If wanting

to compare the slowest damped boundary layer modes a deeper boundary layer

may be more useful.

In addition to understanding the structures and behaviour of the various modes

in the problem, the work in this chapter has sought to examine the extent to which

the normal mode type methodology can be useful. From Part I it is clear that

having the boundary layer on its own causes problems in terms of comparing eigen-

modes. The matrix is far from normal and eigenvectors become far from orthogonal.

In this chapter, by building up the complexity, it seems that the usefulness of the

eigendecomposition is somewhat recovered. There appears to be ‘enough’ dynamics

in the problem to counteract the issues found previously, particularly for shallow

boundary layers. This should improve the ability of the eigendecomposition to re-

veal differences between the configurations, the subject of the subsequent chapter.

For the boundary layer only it was found that the usefulness of the systematic

methodology afforded by the eigendecomposition could be somewhat recovered by

examining the singular vectors of the matrix. By examining the isothermal case

a situation where the singular values produce very similar results to the eigenval-

ues is obtained. As the complexity of the problem is increased the SVD departs

further from the eigendecomposition. However the results shown in this chapter

suggest that the physical behaviour is still well represented by the SVD. Along with

the results that were obtained in Part I it does seem that the singular values and

singular vectors can be used to understand the behaviour of the system. In the

next chapter, when configurations are compared, it will be investigated whether

the decomposition can be useful for comparison purposes. It seems likely, based
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on the results of this chapter, that for deeper boundary layers the eigenvectors will

be further from orthogonal than in the shallower boundary layers. Here singular

vectors will be needed for the comparison.
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Chapter 8

Comparison of Lorenz and

Charney-Phillips Grids

The aim of this chapter is to compare the Lorenz and Charney-Phillips config-

urations for the fully coupled dynamics-boundary layer problem. It is now well

understood that when modelling the dynamics of the atmosphere the Charney-

Phillips grid is preferable, in that it gives optimal wave dispersion properties. On

the other hand the Lorenz grid has the benefit of being more suitable for conserva-

tion, however the Lorenz grid has one too many degrees of freedoms and as a result

supports a computational mode in the dynamics. Further to this the Lorenz grid

is the preferable configuration for modelling the stably stratified boundary layer.

It was hypothesised during the introduction to this thesis that the boundary layer

may be capable of distorting the computational mode, for example by slowing and

diffusing it into a decaying boundary layer mode. This would be highly beneficial

for the Lorenz grid. Although the computational mode has been identified as still

existing in the coupled problem it will still be useful to compare how well all the

other mode structures are captured by each grid.

As was the testing order for the boundary layer only, the comparison can be

divided up into examining first the steady state structure and then the transient

structure. Computing the steady states for the coupled problem is similar to the

boundary layer only problem and so differences in overall structure are not antic-
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ipated. The transient structures for the fully coupled problem are considerably

more complex than for the boundary layer only and so require more careful con-

sideration. In the previous chapter the transient solutions for the Lorenz grid were

examined, this was done to provide insight into the coupling mechanisms, establish

particular modes of interest and check the methodology. In doing this cases with

properties that can aid in the comparison were established, based on boundary

layer depth and horizontal wavenumber. In conjunction with the array of cases

considered in Part I this leads to a huge number of potential configurations, these

can be summarised as,

• Three options on averaging to obtain Kh in boundary layer terms when using

Charney-Phillips.

• Five grid spacing options, uniform, geometric, Met Office, logarithmic and

log-linear grids.

• Two options for horizontal wavenumber k = 2π
106 or k = 2π

103 .

• Five depths of boundary layer, 1-5.

When examining the transients it is neither possible nor particularly interesting

to demonstrate a comparison of every mode for every case that was considered.

Instead just those configurations likely to yield interesting results are considered.

For the low resolution runs the Met Office type stretching is most relevant since

it is similar to that used in operational models; attention can first be restricted

to using this grid. In terms of choosing model parameters it was found that the

smaller wavenumber could be more useful in terms of identifying and interpreting

modes. In part I it was found that the way in which Kh was obtained, i.e. by

averaging either Richardson number, stability function or Kh itself, made some

difference. For the coupled steady state all three are considered, from there the

choice can be narrowed down. This just leaves the choice of boundary layer depth.

The shallower the boundary layer the more dynamical modes that are supported

and the deeper the boundary layer the more damped boundary layer modes will
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be supported. Initially both shallowest and deepest will be considered in order to

draw comparisons of each type of mode.

8.1 Steady State Comparison

The steady state equations to be solved are given in equations (6.8) - (6.11). The

only addition to these equations in comparison to those used to solve for the bound-

ary layer only is the density in the boundary layer diffusion terms. The density

itself is computed through a hydrostatic balance diagnostic step.

8.1.1 High Resolution Steady States

As previously, the low resolution Lorenz and Charney-Phillips solutions are com-

pared to a high resolution solution. For the methodology to be viable there should

be negligible difference between Lorenz and Charney-Phillips for the high resolu-

tion; again this can only be achieved for a relatively small number of grid points

by employing a logarithmic stretching near the surface. For the coupled case the

log-linear grid is used for the high resolution to ensure good representation of the

dynamical modes whilst allowing for good convergence properties. In computing

the high resolution steady states the Newton method is again used with success.

Recall from Part I that in order to use the Newton method a smooth switching be-

tween neutral and stable stratification is employed, this provides the iteration with

a suitable guess for the solution. Using the Newton method has the added advan-

tage that it requires calculating the Jacobian matrix which is also used in finding

the transients. Note that, although not shown, using the logarithmic coordinate

transform is found to produce good convergence between Lorenz and Charney-

Phillips grid solutions. High resolution solutions from Lorenz and Charney-Phillips

grids agree well; when a high resolution solution is used in comparisons it can be

considered to have been obtained from either.

The high resolution density is shown in Figure 8.1 for all boundary layer depths.

Density varies relatively smoothly in the boundary layer and over a relatively small
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range. It can be seen in the figure that the density near the surface varies, this

is due to the way in which the boundary conditions are implemented. Different

cases of boundary layer depth were chosen by setting the surface boundary con-

dition for potential temperature. In addition an upper boundary condition is set

on pressure to calculate hydrostatic balance. The difference in surface potential

temperature results in different pressure and therefore density at the surface. Note

that boundary layer 5 and boundary layer 4 have similar density in the boundary

layer due to their boundary conditions for potential temperature being equivalent;

the different depths between these two cases is due to different boundary conditions

on geostrophic wind.
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Figure 8.1: High resolution steady state densities for all boundary layer depths.

It is clear that density varies quite smoothly in the boundary layer although

has a sharp feature near the top of the boundary layer. It is therefore anticipated

that little difference will be found between the high resolution coupled steady state

profiles and the high resolution boundary layer only profiles, except for possibly

near the top of the boundary layer for shallower boundary layers. The density inside

the vertical gradient terms in equations (6.8), (6.9) and (6.11) will approximately

cancel with the division by density in front. The similarity between the high

resolution coupled and boundary layer steady states can be seen in Figure 8.2.

Clearly the high resolution velocity and potential temperature are similar in each
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case. This also provides a useful check on the numerics used in the Newton method.
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Figure 8.2: Lorenz grid high resolution steady states for boundary layer 5. Shown
for the boundary layer only against the coupled problem.

8.1.2 Operational Resolution Steady States

The steady states are now computed for the low resolution Met Office grid. For

the low resolution there may be increased differences between the boundary layer

only profiles and the coupled profiles, larger spacing introduces greater errors when

averaging densities. Figure 8.3 and Figure 8.4 show the steady states as computed

using the Lorenz and the three Charney-Phillips option I configurations, against

high resolution. For all three option I configurations Richardson number Ri is

computed at zw levels. The option I-i configuration is the one where Kh at zρ levels

is obtained by averaging Kh itself, option I-ii is when the stability function and

shear are averaged to zρ levels and option I-iii is when the shear is also averaged

but the stability function is obtained from Ri averaged to zρ levels. Recall the

schematic for the averaging when using Option I in Figure 3.8 on page 92.

Figure 8.3 and Figure 8.4 show the equivalent to Figure 3.9 to Figure 3.12 in

Part I. It is clear from the figures that inaccuracies that occurred in finding the low

resolution steady state profiles for the boundary layer only problem extend to the

coupled problem. The shallowest boundary layers are the least well represented by

the low resolution grids. In all four fields the lack of grid points close to the top of
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Figure 8.3: Steady States for the Fully Coupled Problem. Figure shows horizontal
velocities U (left) and V (right), boundary layer 1 to boundary layer 5 (top to
bottom).
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Figure 8.4: Steady States for the Fully Coupled Problem. Figure shows thermo-
dynamic variables θ(r) (left) and ρ(r) (right), boundary layer 1 to boundary layer 5
(top to bottom).
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the boundary layer causes a vertical shift in the structure. Generally speaking the

operational resolution Charney-Phillips option I-i configuration gives a better rep-

resentation of the high resolution solution for the coupled problem than it did for

the boundary layer only problem. This is most clear in the velocity fields U and V

for boundary layer 5, where Charney-Phillips option I-i is better than Lorenz. For

the boundary layer only the Lorenz grid gave the better representation of horizontal

velocity in boundary layer 5. The Charney-Phillips option I-i configuration is also

found to outperform the Lorenz grid for the shallower boundary layers. For the

potential temperature the Charney-Phillips I-i configuration captures the structure

near the ground more accurately than the Lorenz grid which was also the case for

the boundary layer only. Now the Lorenz grid does a worse job in capturing the

higher part of the boundary layer and so there is less difference between the two.

As was found for the boundary layer only there is a clear advantage gained by

using Charney-Phillips option I-iii. It produces the most accurate representation

of the reference thermodynamic variables near the top of the boundary layer for all

boundary layer depths. It is also representing the U component of velocity more

accurately than the other grids for the shallowest boundary layer. On the other

hand the option I-iii configuration gives the worst representation of the thermo-

dynamic variable in the lowest part of the boundary layer, which is independent

of the boundary condition implementation. There is little advantage to be gained

in using option I-ii, which gives the worst representation of the thermodynamic

variables in all cases.

The Charney-Phillips option I-i and I-iii configurations capture the overall struc-

ture of the velocity fields most accurately. Option I-i does marginally better, par-

ticularly lower in the domain. The Lorenz grid captures the highest part of the

velocity least accurately but does outperform option I-iii nearer the surface. Option

I-iii is least accurate for the velocities near the surface as well. Density does not

vary greatly in the boundary layer and is generally captured most accurately by

Charney-Phillips options I-i and I-iii configurations. For the potential temperature

the option I-iii has almost no vertical shift near the top of the boundary layer giv-

273



ing it best overall representation of the structure. However over approximately the

lowest 20% of the boundary layer depth option I-iii is least accurate for potential

temperature, option I-i is most accurate here. As was found for the boundary layer

only option I-i and I-iii are the most promising Charney-Phillips configurations.

The main difference now is that they mostly outperform the Lorenz grid, whereas

previously the Lorenz grid outperformed all the Charney-Phillips configurations.

The only difference between the coupled equations and the boundary layer only

equations is the additional diagnostic step in which density in hydrostatic balance

is calculated. It is due to this step that the Lorenz grid loses the benefit it gains by

requiring no averaging in Richardson number. Recall that the hydrostatic balance

is given by,
∂Π(r)

∂z
= − g

cpθ(r)
. (8.1)

The density ρ is obtained from the quantities in hydrostatic balance. Performing a

numerical integration of (8.1) gives Exner pressure which leads to giving pressure

and density. To ensure that the derivative is second order requires that θ is stored

halfway between Π, i.e. at zw levels. This is the natural place for θ when using

the Charney-Phillips grid but θ needs to be averaged when using the Lorenz grid.

Although averaging introduces some error, it is smaller than the error that would be

introduced by using a first order accurate scheme for the derivative. The averaging

required when using the Lorenz grid causes less accuracy in the density and as

a result the steady states are less accurate than those captured by the Charney-

Phillips grid.

8.2 Coupled Transient Comparison

Examination of the steady states revealed almost no benefit in using the Lorenz grid

in comparison to the Charney-Phillips grid for the coupled problem. Recall that

for the boundary layer only the Lorenz captured the steady states most accurately.

These findings would imply that errors in the Lorenz grid averaging to compute

the dynamics may dominate the errors in the Charney-Phillips grid averaging to
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compute the boundary layer terms. This needs to be examined for the linear time

dependent part of the equations by examining the transients. For the steady state

Charney-Phillips options I-i and I-iii appear to be the most useful configurations

since they both outperformed the Lorenz and option I-ii configurations. Neither

option is preferred outright however, option I-i is generally more accurate in the

lower part of the boundary layer and option I-iii is more accurate for the upper

part of the boundary layer. For the transient comparison Charney-Phillips option

I-i is considered since it almost always outperformed the Lorenz grid for the steady

states. Charney-Phillips option I-iii also had some promising results for the steady

state, however was often outperformed by the Lorenz grid near the surface.

Before examining any transients the computational mode can be identified in the

Lorenz configuration and removed. Since it will not be captured by the Charney-

Phillips grid it does not need to be included in any comparison. The process

of identifying the computational mode, so as to remove its eigenvector and the

corresponding eigenvalue, can be sped up considerably by automated counting of

zeros in the eigenvectors. The counting is done from the top of the domain to the

approximate top of the boundary layer. Unless using the deepest boundary layer

with low resolution the vector with the most zeros above the boundary layer will

generally be the computational mode. Any plots of frequencies or growth rates

that are shown henceforth will have had the computational mode removed.

Broadly the equations support two types of modes: dynamical and boundary

layer. From the study of the coupling in Chapter 7, as well as the findings of

Part I, it is clear that the behaviour of these modes is considerably different; both

physically and in terms of the methodology. The eigenvalues corresponding to

the dynamical modes generally have dominant imaginary part and the structure

of the modes can be dominant throughout the domain. Conversely the boundary

layer modes have eigenvalues with significant real part to them and have structure

dominating in the boundary layer region.

For these two general types of mode there appears to be two regimes for the

methodology. For the dynamical modes the eigendecomposition performs well, even
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in the coupled problem. It is likely that eigenvectors can be used to compare the

performance of configurations for dynamical modes. Conversely the problems of

non-normality that affected the results of the boundary layer only study are likely

to still occur when examining the damped boundary layer modes.

Due to the differences in both the structures of the solutions and the effective-

ness of the methodology the comparison of the transients is divided into examining

the dynamical modes and the boundary layer modes separately.

8.2.1 Examination of Dynamical Modes

In this section the ability of the Lorenz and Charney-Phillips grids to capture the

dynamical modes is compared.

Boundary Layer Switched off in the Linearisation

With the computational mode removed, any eigenvectors and corresponding eigen-

values found when using the Lorenz grid should also be found when using the

Charney-Phillips grid. However this will be dependent on how well the methodol-

ogy works and this depends on the configuration and boundary layer depth being

considered. The most clear results in terms of the methodology were afforded by

using smaller wavenumber k = 2π
106 and with the boundary layer switched off in the

transients. There are some modes where eigenvalues have a real positive (growing)

or real negative (decaying) part, but the imaginary part generally dominates. This

is a useful case to check first in the comparison as it allows clear examination of

the dynamical modes and the frequencies they should have. Figure 8.5 shows the

Lorenz and Charney-Phillips option I-i frequencies (imaginary part of the eigen-

value) for this wavenumber with boundary layer 1 in the reference state but the

boundary layer switched off in the transients.

It is clear from the figure that the low resolution Lorenz and Charney-Phillips

grids give similar frequencies for the majority of the dynamical modes, as was

found for the dynamics only isothermal case. The only significant difference is in

the two slowest propagating Rossby modes which propagate considerably slower
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Figure 8.5: Boundary layer 1 reference state, boundary layer switched off in the
transients. Frequencies as found by the Lorenz grid versus the frequencies as found
using the Charney-Phillips option I-i configuration.

for the Lorenz grid; this is also what was found for the isothermal case. When

the modes were examined in the previous chapter these two Rossby modes were

found not to exist in the fully coupled problem but had been replaced by boundary

layer modes. Although it is a useful check this demonstrates why, when comparing

the two configurations, the fully coupled equations must be considered. Modes

that only exist in the boundary layer off case are of little interest for comparison

since they would not form part of the solution for an overall model with these

parameters. For the remainder of this chapter, and the comparison between the

grids, attention will be restricted to the fully coupled linearisation. In restricting

the attention to fully coupled only, comparison of modes that do not actually exist

in the coupled problem is avoided.

Fully Coupled: Mode Frequencies

So far the methodology is found to work effectively for comparing modes in the

coupled problem. However it is not always straightforward to compare low resolu-

tion modes with high resolution modes. Techniques such as checking orthogonality

between high and low resolution will be less likely to work between eigenvectors.
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Any vectors deemed orthogonal need to be checked by eye. For some modes check-

ing orthogonality is found to work well, for others many high resolution modes may

still need to be checked by eye before finding a suitable match. Obtaining a high

resolution frequency for every low resolution mode would be highly arduous.

Figure 8.6 shows the imaginary part of the Lorenz and Charney-Phillips eigen-

values for the fully boundary layer on problem with boundary layer 1 and k = 2π
106 .

In order to produce more comparable results the six most damped modes have been

omitted. For the most damped modes the real part of the eigenvalue is important.

If the frequency is not captured accurately it is not particularly damaging since

the modes will damp away before errors in propagation become detrimental to the

model. With the most damped modes taken out of the spectrum the Lorenz and

Charney-Phillips grid can be seen producing very similar results. All frequencies

are virtually identical.
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Figure 8.6: Boundary layer 1 reference state, boundary layer switched on in the
transients and horizontal wavelength k = 2π

106 . The most damped modes are ex-
cluded from the plot.

It should be noted that the Lorenz and Charney-Phillips grids do not necessarily

damp the same dynamical modes at the same rate. For example if the number of

damped modes in Figure 8.6 is increased to include the seven fastest damped modes

then the Charney-Phillips grid solution gains a mode in the inertio-gravity branch

while the Lorenz grid gains a solution in the Rossby branch. Having examined
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different test cases there does not appear to be a general rule for the order in

which modes are damped by the boundary layer. Tracking the modes that become

damped when the boundary layer is switched on is likely to be inaccurate.

Figure 8.6 showed a comparison of the frequencies for the clear dynamical

modes, it is apparent that relatively little difference occurs between the grids. If

greater difference were evident it would have been useful to obtain the correspond-

ing high resolution frequency for each mode. In the next section the ability of each

grid to capture the structure of these dynamical modes is examined.

Figure 8.7 shows the frequency of the modes found using the deepest boundary

layer, boundary layer 5, the wavenumber is k = 2π
106 . As before the most strongly

damped modes have been omitted from the plot since their decay rate is the im-

portant and dominating factor. For a boundary layer of this depth the majority of

undamped modes are the acoustic modes with index 1 to 20 on Figure 8.7. These

are followed by six inertial modes for which the frequencies found by Lorenz and

Charney-Phillips agree well. In terms of capturing the propagation of the dynam-

ical modes little difference exists between the two grid configurations, as found for

boundary layer 1.
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Figure 8.7: Boundary layer 5 reference state, boundary layer switched on in the
transients and horizontal wavelength k = 2π

106 . The most damped modes are ex-
cluded from the plot.

The other boundary layer depths (not plotted) have also been examined and
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the results for boundary layer 1 and boundary layer 5 extend to all cases. For this

longer horizontal wavelength case little difference is seen between the frequencies of

the non strongly damped dynamical modes. Given the similarity of the frequencies

of the dynamical modes it is clear that overall both grids are either good or both

grids are poor. As was seen in the comparison of the coupling, for this horizontal

wavelength it is the slowest Rossby modes that are captured less accurately, which

are also the modes damped by the boundary layer.

In Chapter 7 it was established that for the shorter horizontal wavelength (k =

2π
103 ) it is the inertio-gravity waves that are slowed by using the Lorenz grid. As

also established in Chapter 7, when performing the mode tracking, inertio-gravity

modes are not the types of mode that are expected to be damped by the boundary

layer. Therefore differences are expected between the frequency of the dynamical

modes for the k = 2π
103 case.

Figure 8.8 shows the comparison of frequencies for the Lorenz and Charney-

Phillips grids for boundary layer 1 and k = 2π
103 . The shorter horizontal wavelength

case was considerably harder to interpret than the longer horizontal wavelength

case, as was found when examining the coupling in the previous chapter. As well

as a number of growing modes the branches of inertio-gravity and Rossby waves

become entangled by the Doppler shifting. In Figure 8.8 the Lorenz modes are

plotted by decreasing frequency, doing this for Charney-Phillips configuration does

not necessarily result in matching corresponding modes however. Instead each

Lorenz mode has to be compared to all Charney-Phillips modes to find the best

matching mode. For low resolution this is most effectively achieved by examining

them by eye. The modes that are omitted from Figure 8.8 are either due to there

being no suitable match between Lorenz and Charney-Phillips or because they are

quickly decaying boundary layer type modes.

It is clear from the figure that with this shorter horizontal wavelength that there

still remains clear difference between the frequencies of the dynamical modes, as

expected. For the dynamics only case with this wavenumber it was found that

inertio-gravity modes were slowed by Lorenz. Here there are some modes that
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Figure 8.8: Boundary layer 1 reference state now with the shorter horizontal wave-
length k = 2π

103 , boundary layer switched on in the transients. Modes which were
not captured by both grids are removed.

have higher frequency with Lorenz compared to Charney-Phillips and some that

have lower frequency. In the next section when dynamical modes are identified and

examined it will be useful to examine these differences.

Fully Coupled: Mode Structures

When the coupling mechanisms were examined it was found that the proportion of

dynamical to boundary layer modes was dependent on the depth of the boundary

layer. Deeper boundary layers have a stronger damping mechanism and are capable

of damping all of the Rossby and gravity waves; shallow boundary layers have

weaker damping and can only support a few strongly damped modes. Further to

this, the arrangement of the model levels must be considered. If more model levels

are present in the boundary layer region it will lead to a larger number of damped

modes being supported; if more levels are placed above the boundary layer it will

lead to a larger number of dynamical modes being supported. For example if the

logarithmic grid is used for the high resolution then more boundary layer modes

will be supported, if the log-linear grid is used instead the ratio will shift to support

more dynamical modes. The log-linear grid is used for the high resolution to give a
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balance, ensuring sufficient resolution above the boundary layer for capturing the

full structure of larger scale dynamical modes, whilst allowing for approximately

second order convergence of high resolution solutions. Using the log-linear grid has

the added benefit of capturing fewer boundary layer modes, which are far from

orthogonal and thus less suited to the eigendecomposition methodology.

When the boundary layer is included in the reference state but not in the tran-

sients and k = 2π
106 differences remain in the frequencies of the Lorenz grid and

Charney-Phillips grid Rossby modes. This is expected from looking at the isother-

mal case. However the modes which are most significantly slowed by Lorenz, com-

pared to Charney-Phillips, are the slowest propagating modes, which tend not to

be present as Rossby modes in the coupled problem. Although the rate of prop-

agation of dynamical modes in the coupled problem is similar between grids it is

also important to check how well the structures of the modes are captured. For all

cases examined the acoustic mode structures are found to be captured equally ac-

curately by both grids in comparison to high resolution. Two good approximations

can be made for acoustic modes, firstly that they are independent from any steady

or transient boundary layer structure and secondly that acoustic modes do not de-

pend on the transient θ′ structure, the handling of which is the difference between

the grids. Due to these approximations it is sufficient to understand the differences

between the grids for the acoustic modes by examining the dynamics only case [68],

plots comparing their structures are omitted here. The inertio-gravity and Rossby

mode structures will depend on the boundary layer and thus they still need to be

examined. The configuration which allows for the clearest comparison of dynamical

modes is the shallow boundary layer 1 case with k = 2π
106 .

Figure 8.9 shows the same inertio-gravity mode that was shown in Figure 7.32

for the Lorenz grid. The figure shows the mode energy variables as captured by the

Lorenz grid, the Charney-Phillips grid and by the 100 grid point log-linear grid.

For the log-linear 100 grid point model there is no noticeable difference between

the Lorenz and Charney-Phillips grids for this mode and so it is considered the

actual solution. In order to give clear plots only the dominant part of the complex
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eigenvector is shown, generally either the real or imaginary part of the mode is

represented at once and so it is sufficient to compare only this in order to check

how well the mode is captured. The frequencies and growth/decay rates of the

plotted mode, as captured by each grid, are shown in the legend of the eigenvalue

plot. The imaginary and real parts of the eigenvalue are ordered separately and

the absolute value part plotted.
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Figure 8.9: Shows the same inertio-gravity mode that was shown in Figure 7.32
except now against Charney-Phillips I-i and the high resolution run. The values
of the frequency and growth rate are given for each case in the eigenvalue legend.
Note that the two eigenvalue plots are ordered separately and the index numbers
do not correspond to one another.

It is clear from the figure that with this configuration, i.e. boundary layer 1

and k = 2π
106 , the two different staggering options produce results that are quite

close. This is a mode that has dominant structure in the Eu and Ev fields and

so it is important that these are captured accurately, since Lorenz and Charney-
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Phillips configurations do not differ in the Coriolis parts of the equations it is

expected that they should produce similar results. The high resolution solution

demonstrates how the inertial mode can only exist above the boundary layer. Also

note how the structure of the high resolution mode is clearly bunched up above

the boundary layer, this can be understood through a WKB type approximation.

Rearranging the inertio-gravity wave dispersion relation given in equation (7.2) on

page 198 gives,

m ≈
(
K2 (N2

b − ω2)

ω2 − f 2

) 1
2

. (8.2)

Regions where N2
b is larger will give larger m. In the boundary layer N2

b is

largest and it decreases upwards, resulting in larger m lower in the domain. This

height dependent wavenumber was seen in the low resolution mode structures when

comparing the coupling in the previous chapter but it is much more noticeable

when they are compared with the high resolution solution. Above the boundary

layer both grids capture the wavelength of the mode accurately but slightly more

accurately higher up.

In the high resolution solution there is a sharp jump to zero in Eu and Ev at

approximately the height of the boundary layer which is not resolved by either low

resolution grid. In trying to represent this sharp feature the Charney-Phillips grid

produces some overshoot, rather than just going to zero the variable changes sign

then goes to zero. The Charney-Phillips grid also produces a larger upward vertical

shift than the Lorenz grid for the location of the sharp jump.

The Eθ part of this mode is also captured reasonably well by both grids, but is

again more accurate higher in the domain where the structure is smoother. Again

there is a sharp jump to zero at the top of the boundary layer but this time it

is captured more accurately by the Charney-Phillips grid. Eθ is approximately

zero in the boundary layer region for the high resolution and Charney-Phillips grid

whereas has a large positive spike with the Lorenz grid.

All of the inertio-gravity modes are captured reasonably accurately by the two

grids. This has also been confirmed for other boundary layer depth test cases.

Figure 8.10 shows the Rossby mode that was shown in Figure 7.33, again the
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Lorenz grid is compared to the Charney-Phillips grid and the high resolution so-

lution. Low resolution results are similar to those found for the inertio-gravity

modes and the overall structure of the mode is captured well. As was found for the

inertio-gravity modes there is high resolution structure at the top of the boundary

layer that cannot be resolved by the low resolution grids. The Charney-Phillips

grid captures this structure near the top of the boundary layer more accurately.

Again the results extend to other Rossby modes captured in this and other test

cases. Both Lorenz and Charney-Phillips find this mode to be slowly growing, the

rate of growth is similar for each and similar to the high resolution. The frequency

of this mode is also well captured by the low resolution grids.
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The results found for boundary layer 1 have been checked for other boundary
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layer depths and similar results have been found across the cases. For the dynamical

modes supported in the coupled equations, with k = 2π
106 , there is little to distinguish

between Lorenz and Charney-Phillips. Both grids can capture the frequencies and

growth rates well in comparison to the high resolution and the overall structure of

the modes is also captured well.

In Figure 8.7 the frequencies in the k = 2π
103 case were examined. This hor-

izontal wavelength is of a similar order to the depth of the boundary layer and

thus the depth of the region of shear. As a result the flow is more susceptible to

shear influence, for example the shear driven decay and instability that have been

observed. Rather than the system supporting just modes whose behaviour can be

understood in terms of the dynamics or boundary layer mechanisms considerably

more complex behaviour is encountered. This means that the behaviour of the

different modes is much harder to interpret. Although these difficulties exist it has

been possible to go some way to comparing the Lorenz and Charney-Phillips grids

for this case. Figure 8.11 shows the low resolution Lorenz and Charney-Phillips

grid versions of the mode with index 27 in Figure 8.7.

The mode plotted in Figure 8.11 was identified as being of interest since a

significant frequency difference is observed between the low resolution Lorenz and

Charney-Phillips grids. The Rossby and inertio-gravity modes appear in a single

branch of frequencies for the k = 2π
103 meaning the only way to identify the mode

type is to examine the structure. However, as is clear from the figure, it is not

straightforward to identify this mode type; the dominant energy variables do not

coincide with those that would be expected to dominate in any particular dynamical

mode. The singular vectors can assist in identifying this mode. Recall that there

are certain relationships between the input and output singular vectors for each

type of mode. For example an acoustic mode would be represented by having

dominant input energy variable as pressure and dominant output energy variable

as vertical velocity, or vice-versa. Singular vectors with structure very similar to

that seen in Figure 8.11 can be identified. For these singular vectors the relationship

between input and output is the same as that which was seen for the dynamical
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Figure 8.11: A comparison of Lorenz and Charney-Phillips for a dynamical Rossby
mode for the k 2π

103 case. The plotted mode corresponds to the mode with index 27
in Figure 8.7.

Rossby modes, implying that this is in fact a Rossby mode. In contrast, for this

wavenumber differences in frequencies would be expected for the inertio-gravity

modes.

From Figure 8.11 it is clear that the high resolution modes are not sufficiently

close to draw any solid conclusion about the behaviour of the Lorenz and Charney-

Phillips grids. First of all the structure in the boundary layer region is completely

different. The high resolution Charney-Phillips mode has no structure at all in the

boundary layer whereas the high resolution Lorenz version has significant structure.

Towards the top of the boundary layer the high resolution Lorenz grid captures

a two-grid like structure. This large difference in structure in the boundary layer

also appears to be the cause for the large phase differences in the Ev and Ew
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fields. It is not possible to determine from this experiment which of the high

resolution solutions, if either, is most accurate; indeed one would expect them to

be considerably closer considering the large number of grid points in the boundary

layer region. The high resolution solutions are further from each other than the

low resolution solutions, suggesting non-physical behaviour is occurring, especially

given the two-grid like structure. The frequencies of the high resolution solutions

are very similar, however the Lorenz grid solution has much larger decay rate than

found for the other solutions. The structure in the boundary layer with the high

resolution Lorenz grid extends to the low resolution solution of Ev and Ep. If the

Lorenz grid is producing spurious behaviour it is also seen in the low resolution.

The low resolution Lorenz grid under predicts the frequency and the low resolution

Charney-Phillips grid over predicts the frequency. It is difficult to establish whether

the low resolution structure is captured more accurately because of the differences

in the high resolution and because the low resolution versions of the mode are

actually closer than the high resolution versions.

The difficulties encountered for this mode are encountered when comparing any

non-acoustic mode for the k = 2π
103 case.

8.2.2 Examination of Damped Modes

It is clear from the steady states and the dynamical modes that there exists dif-

ferences between the Lorenz and Charney-Phillips configurations. However the

differences are not as clear cut as they were when the dynamics and boundary

layer were considered separately. The Lorenz grid captured the boundary layer

steady states more accurately however the coupled steady states are generally cap-

tured more accurately by the Charney-Phillips grid. When the dynamics was stud-

ied on its own the Charney-Phillips grid gave optimal wave propagation. For the

coupled problem the extent to which the Charney-Phillips grid outperforms the

Lorenz grid in terms of propagation is reduced; the main differences occurred for

the slowest Rossby modes, however these are distorted into boundary layer modes

and so growth rates become important. From the individual dynamical modes that
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could be examined both the Lorenz and Charney-Phillips grids were able to cap-

ture the structure accurately. To complete the comparison the damped boundary

layer modes are examined. These present a more challenging problem in that the

methodology of eigendecomposition is not expected to work as well as it does for

the dynamical modes. However, it is worth first attempting the eigendecomposition

to establish whether or not it can be useful.

Boundary Layer 1

The approximate rates of damping for the boundary layer modes can be seen in

the real part of the eigenvalues, plotted in Figure 8.9 and Figure 8.10. The real

part of the eigenvalues µ represents the growth or decay of the mode. The right

hand end of the plot shows the damped boundary layer modes and the left hand

end shows the growing modes. There appears to be quite good agreement between

the two grids for the most damped modes. However this needs to be examined in

detail. Figure 8.12 shows the six most damped boundary layer modes for Lorenz

and Charney-Phillips for boundary layer 1, k = 2π
106 . Each Lorenz mode is matched

to a Charney-Phillips mode by checking orthogonality. By this test the ordering

of the damping rates is found to be the same for each, i.e. the fastest damped

Lorenz mode is also the fastest damped Charney-Phillips mode. The eigenvectors

corresponding to these modes will generally not be orthogonal so the check is likely

inaccurate; examining Figure 8.12 by eye it does seem to have found the best

matches though. That the orthogonality test has any success is likely due to the

small number of boundary layer modes supported by the system. Whether or not

these are indeed the same modes is difficult to determine for such low resolution.

A comparison of the actual growth rates for the six modes plotted Figure 8.12 is

provided in Table 8.1.

There are clear differences between Lorenz and Charney-Phillips, there are dif-

ferences in the structures of the modes and by Table 8.1 the Charney-Phillips grid

appears to be damping most modes more slowly than Lorenz. The problem now is

in obtaining the equivalent high resolution modes so it can be determined whether

289



!0.5 0 0.50

100

200

300
Index = 48

H
ei

gh
t (

m
)

 

 

Lorenz
Char!Phil

!0.5 0 0.50

100

200

300

H
ei

gh
t (

m
)

!0.5 0 1

Index = 47

!0.5 0 0.5

!1 0 2

Index = 46

!0.1 0 0.1

!1 0 0.5

Index = 45

!0.2 0 0.2

!0.5 0 0.5

Index = 44

!0.2 0 0.2

!0.5 0 1 0

100

200

300
Index = 43

E u

!0.5 0 0.50

100

200

300

E !

Figure 8.12: The Eu and Eθ parts of the six most damped Lorenz and Charney-
Phillips modes for the boundary layer 1 configuration. The index corresponds to
ordering by real part so index 48 is the fastest damped.

Index µ (Lorenz) µ (Charney-Phillips)
43 -4.434×10−5 -1.706×10−5

44 -1.080×10−4 -9.093×10−5

45 -1.268×10−4 -1.054×10−4

46 -7.923×10−4 -6.893×10−4

47 -1.590×10−3 -8.123×10−4

48 -1.602×10−3 -2.334×10−3

Table 8.1: The rate of damping µ for the most damped modes in the boundary
layer 1, k = 2π

106 , test case. Index corresponds to the modes plotted in Figure 8.12.

or not a particular configuration gives the better overall representation. The or-

thogonality test was employed which finds a ‘closest’ mode but even when checking

by eye it is not clear if it is indeed the same mode. Given the lack of orthogonality

it is not clear that two configurations should capture the same mode anyway. To

improve matters the deeper boundary layers can be used, this way there are more

grid points in the boundary layer region and larger scale structure to compare.
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Boundary Layer 5

Figure 8.13 shows the real part of the eigenvalues for the boundary layer 5 test case,

the modes that were omitted from the frequency plot are shown in black. As was

being suggested in Table 8.1, for the shallowest boundary layer, the figure points

towards the decay rate found when using the Charney-Phillips grid being smaller

than the Lorenz grid. This was also found when examining the boundary layer only

case in Part I where boundary layer modes were damped too slowly when using

the Charney-Phillips grid. If the Lorenz grid does indeed find the decay rate more

accurately then it would suggest a disadvantage in using the Charney-Phillips grid.

Modes that are not damped quickly enough could produce more inaccurate results,

particularly if the structures of those modes are also captured inaccurately.
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Figure 8.13: Boundary layer 5 reference state, boundary layer switched on in the
transients. The most strongly damped modes which were omitted from Figure 8.7
are shown in black.

Again although there appears to be faster damping of boundary layer modes

by Lorenz this needs to be confirmed by comparing the structures to check that

modes with the same index are indeed the same mode. Each pair of low resolution

modes then needs to be found in the high resolution case to check what kind of

structure and damping rate it should have. Further to this it has to be checked

that each mode in the Lorenz grid high resolution agrees and is present in the
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Charney-Phillips grid high resolution.

In the study in Part I the most interesting part of the boundary layer mode

spectrum was the slowest of the damped modes. They are longer lived in the

solution meaning they will have the largest influence in the solution. Now that the

dynamics are included the rate of damping has to be considered against the time

scales of the dynamics. The leading boundary layer modes have slowest damping

rates, however if their decay rate is negligible in comparison to the frequencies

of the dynamical modes then capturing their decay rate is less important. The

fastest damped boundary layer modes are still less important in that they decay

quickly, giving errors in capturing them less chance to impact the solution. So for

the coupled problem the boundary layer modes that are most important to capture

are those that are neither damped too quickly nor too slowly in comparison to the

dynamical time scales. From Figure 8.7 the frequencies of the dynamical mode are

in a range from approximately 10−4 to 10−5 so it is the boundary layer modes with

decay rates in this range that are also important.

For the deepest boundary layer, there were approximately 21 modes that had

the fastest damping and also had structure associated with the boundary layer.

These have index 27 to 48 in Figure 8.13. Using the eigenvalues and eigenvectors

the structure of the modes with decay rates on a similar time scale to frequencies

of dynamical modes are investigated. These are the modes with real index near

to 30. Figure 8.14 shows the Lorenz grid mode with real index 31 plotted against

the Charney-Phillips grid mode with index 33, this is one of the most important

boundary layer modes. Indexes correspond to Figure 8.13. The Charney-Phillips

grid mode could be identified immediately using the orthogonality test. Both real

and imaginary parts of the energy variables are plotted separately since there is

greater difference between them for Eθ, ensuring a proper comparison.

Examining the structures in Figure 8.14 it seems highly likely that the grid

configurations are both capturing similar modes. The horizontal velocity energy

variables are almost identical. Although there are differences in Eθ this is somewhat

expected given the different ways in which θ′ is handled and the overall structure
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Figure 8.14: Shows the damped Lorenz mode with real index 33 against Charney-
Phillips I-i counterpart. Boundary layer 5. The values of the frequency and growth
rate are given for each case in the eigenvalue legend.

looks quite similar for each. For this mode the Charney-Phillips grid predicts larger

decay rate than predicted by the Lorenz grid. As for boundary layer 1, problems

are encountered when trying to compare these modes to a high resolution version.

In order to attempt to compare the performance of the Lorenz and Charney-

Phillips grids for the boundary layer modes a large number from different test

cases were considered. For the boundary layer depth boundary layer 4 and bound-

ary layer 5 depths were considered as these had the most promising results in Part

I. For the high resolution solution both logarithmic and log-linear grids were consid-

ered and for the low resolution the Met Office and geometric grid were tried. Both

horizontal wavenumber cases were also considered. Across these cases it was usu-

ally possible to identify modes which looked quite similar across the low resolution
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solutions but very difficult to be sure of having found matches in the high resolu-

tion. As a result of the difficulties in matching low resolution to high resolution

it has not been possible to use the eigendecomposition to perform a comprehen-

sive comparison of the performance of the Lorenz and Charney-Phillips grids for

capturing the boundary layer modes.

That the eigendecomposition is not useful is somewhat expected given the prob-

lems encountered throughout this study. Firstly the lack of orthogonality between

modes becomes more problematic as resolution increases and more modes are in-

cluded. The lack of orthogonality does not so severely prevent interpretation as it

did in Part I. Despite this improvement however, when performing the orthogonal-

ity test there will be many potential pairings. Further to this the scale in the high

resolution modes makes it difficult to compare structures; there may be significant

small scale detail in the high resolution mode as was seen in Part I. This means that

even when scanning through by eye it is difficult to believe with any confidence

that the modes being compared are equivalent. The final issue that makes the

whole process tricky is due to the near singularity in the surface layer formulation

meaning potential differences, even between high resolution configurations.

Although it is difficult to determine the high resolution versions of boundary

layer modes it is possible get reasonable matching between low resolution versions.

In addition to the mode plotted in Figure 8.14 there are another three modes

living in the interesting part of the spectrum which appear to be captured by

both low resolution Lorenz and Charney-Phillips grids. The real part index and

corresponding decay rates and frequencies of these modes are highlighted in Table

8.2.

The values of the decay rates in the table are somewhat inconclusive. Two

modes are damped more slowly when using Charney-Phillips grid; two are damped

faster. Generally the decay rates are quite close between each grid. For the fre-

quencies there is also little difference, suggesting that corresponding modes result

from similar dynamical modes being distorted by the boundary layer, and in an

equivalent manner. These are the only clear cut results that can be obtained for
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Real Index Decay Rate µ Frequency ω
Lorenz Charney-P Lorenz Charney-P Lorenz Charney-P

29 28 -1.052×10−5 -4.346×10−6 1.980×10−5 1.999×10−5

30 31 -1.640×10−5 -1.928×10−5 8.394×10−5 7.554×10−5

31 33 -2.561×10−5 -2.645×10−5 3.911×10−5 4.260×10−5

32 32 -3.028×10−5 -2.089×10−5 1.743×10−5 1.776×10−5

Table 8.2: The rate of damping µ and frequency ω for some of the least damped
damped boundary layer modes modes in the boundary layer 5 test case.

the interesting part of the spectrum for this case. When other modes are examined

there is less similarity between Lorenz and Charney-Phillips and it is difficult to

be sure whether modes are equivalent. Based on these few results obtainable for

boundary layer 1 and boundary layer 5, little difference is seen between Lorenz and

Charney-Phillips grids. Decay rates of the boundary modes with the most relevant

time scale appear to be quite similar.

8.3 Comparing Transients Using the SVD

Since the eigenvectors do not appear to offer much assistance in terms of comparing

boundary layer modes, the singular values and singular vectors are next considered.

For the boundary layer only they were found to be quite useful and for the cases

considered in Chapter 7 they were shown to be able to represent the physical prop-

erties of the coupled system. If singular vectors that represent the boundary layer

structures can be compared then it will give some insight into how the different

configurations capture the structure of boundary layer modes. The possible diffi-

culties in using the SVD is in the understanding gained from the singular values.

They have been found to give a good insight into the corresponding decay rates or

frequency of modes but only in the decoupled cases, where either real or imaginary

part of the eigenvalue dominates throughout. Interpretation of the singular values

for the coupled problem is not always clear.

Figure 8.15 shows a boundary layer type mode in the low resolution Lorenz

singular vectors, parameters are for boundary layer 5 and k = 2π
106 . Although it
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is not necessarily clear from the singular value that this is a damped mode the

structure looks similar to the leading damped modes found in the eigenvectors.

Using a test of orthogonality, as done in Part I, the corresponding low resolution

Charney-Phillips representation of this singular vector is found, this is also shown

in the figure. As was found for the eigenvectors with this kind of structure, the Eu

and Ev parts are captured well by both grid configurations, but there is significant

difference in the Eθ part.
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Figure 8.15: A boundary layer type mode in the boundary layer 5, k = 2π
106 , test

case, represented in the singular vectors the corresponding singular value is shown
below. The figure shows the low resolution Lorenz and Charney-Phillips represen-
tations of this singular vector.

As was performed for the eigenvectors a large selection of test cases are used

to try and compare the performance of the Lorenz and Charney-Phillips grids

for capturing boundary layer singular vectors. The problem again is in finding a
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high resolution solution from which conclusions about which low resolution grid is

better can be drawn. When the boundary layer was studied on its own it was not

always straightforward to find corresponding high resolution singular vectors. Gen-

erally some conclusions were possible by seeking the corresponding high resolution

singular vector using the orthogonality test and checking that it was represented

equivalently in both high resolution cases. This does not seem to be the case for the

coupled problem. The whole process is more ambiguous and even with extensive

searching across the test cases it has not been possible to find sufficient similarity

between high resolution singular vectors corresponding to low resolution modes in

the interesting part of the spectrum. This is possibly due to the increased number

of mode types in the problem. Previously all modes were boundary layer type and

so with enough testing some could be found. The problem of the near singularity

also seems to be causing problems, high resolution Lorenz and Charney-Phillips

singular vectors were found which agreed well in the velocity fields but poorly in

the potential temperature. Recall that it is in the surface potential temperature

flux that the large differences in Cmn and Chn occur. When studying the boundary

layer it was also possible to increase the confidence in finding a match by looking

at the singular value. However it is more difficult to assume the singular value will

be similar between grids now. Further, the fact that the singular value is harder

to interpret means it is not possible to be sure that the singular vectors being ex-

amined represent modes lying in the interesting part of the spectrum. Two modes

that have similar decay rates may have quite different singular values. If modes

with similar decay rates represent distortions of very different dynamical modes

they are likely to have different frequencies and thus different singular values. Any

kind of tracking to establish which mode has been distorted is likely to be highly

inaccurate.

SVD For Comparing Dynamical Modes

Although the SVD was not found to work well for the boundary layer type modes

it can be effective when examining dynamical modes. Figure 8.16 shows the low
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resolution Lorenz and Charney-Phillips singular vectors representing the largest

scale acoustic mode. This is the kind of mode that is captured accurately by both

Lorenz and Charney-Phillips and this can be seen in the dominant parts of this

singular vector, input pressure and output vertical velocity.
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Figure 8.16: The largest scale acoustic mode shown in the singular vectors. The
Lorenz and Charney-Phillips representations are compared with a high resolution
truth solution.

Further to the ability of both low resolution grids to capture the mode it is also

easy to find the high resolution version, also shown in the figure. In order to find

the corresponding singular vector in other configurations orthogonality is checked.

All the singular vectors representing other behaviour will have inner product close

to zero while, provided the unit norm is retained by appropriate ∆z weighting, the

inner product with corresponding singular vector is close to the unit circle (absolute

value 1).
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Clearly for this type of mode the SVD methodology works very well. Perform-

ing the SVD comparison of a dynamical mode is useful for testing the numerical

process of finding corresponding singular vectors and thus checking the methodol-

ogy. However the eigendecomposition also works well for these cases so is generally

of less interest as a tool for comparison. Unfortunately the results for the boundary

layer modes, for which the SVD is needed, are nowhere near as good.

At the beginning of this Chapter a number of other test cases were considered,

namely different ways of obtaining Kh and different ways of stretching the grid.

However these are the kinds of changes that would be most likely to influence the

ability to capture the boundary layer modes, hence these are the most difficult

to study making any conclusive results difficult to achieve. A number of these

additional cases were tried for the transient comparison but were not found to

improve matters regarding the comparison of boundary layer modes so no in depth

discussion is presented.

8.4 Chapter Summary

Comparison of the Lorenz and Charney-Phillips grids has been shown for the fully

coupled boundary layer and dynamics. First the steady state was examined, and

then the transients for two cases of horizontal wavenumber, k = 2π
106 and k = 2π

103 .

For the k = 2π
106 case results were presented for the shallowest and deepest boundary

layers, boundary layer 1 and boundary layer 5. It has been difficult to generate

highly conclusive results and that is due to the complex nature of the flow that

is being considered and due to the inability of the methodology to relay easily

interpretable results.

It is found that the Charney-Phillips grid gives the best overall representation

of the steady state structures. This is in contrast to the boundary layer only model,

for which the Lorenz grid is found to represent steady states most accurately. The

Charney-Phillips configurations that gives the most promising results are those

that average Kh or Ri, option I-i and I-iii. Neither wholly outperforms the other;

option I-i gives better near surface structure and option I-iii gives better structure

299



near the top of the boundary layer. The Lorenz grid will sometimes perform better

than option I-iii near the surface but is generally unable to outperform option I-i.

This in mind the Charney-Phillips option I-i was used to perform the transient

comparison.

Of the two horizontal wavenumber cases, the k = 2π
106 case is most easy to inter-

pret. The behaviour of the system divides clearly into the three types of dynamical

mode and the boundary layer modes. From examining the dynamics only case

it is found that the Lorenz grid reduced the frequencies of the slowest, smallest

scale, Rossby modes; this is also identified as occurring for the linearisation about

a sheared reference state. When the boundary layer and dynamics are coupled

certain dynamical modes are distorted and become decaying boundary layer type

modes. Through tracking (in Chapter 7) these have been identified as being the

slowest Rossby modes and the gravity modes, the number of each depends on the

strength of the damping and thus the depth of the boundary layer. Due to the

distortion into boundary layer modes the only dynamical modes which are not

quickly decaying have their frequencies captured equally well by the Lorenz and

Charney-Phillips grid.

Results for the k = 2π
103 case are considerably harder to interpret. The flow

has strong instabilities and the distinction between different types of dynamical

mode by frequency is not possible. Certain low resolution dynamical modes in

the coupled problem have been identified as having different frequencies between

Lorenz and Charney-Phillips, unlike in the k = 2π
106 case. Although the structures

of these mode types agree well in the low resolution it has been difficult to identify

corresponding high resolutions that look well converged. It is therefore difficult

to establish whether or not either Lorenz or Charney-Phillips captures the modes

more accurately. Some of the structure in the high resolution Lorenz grid mode

is different to what would be expected and to what is found in a similar mode in

the k = 2π
106 case. This would imply possible spurious or unstable behaviour being

produced by the Lorenz grid and its associated averaging.

Comparing the ability of the Lorenz and Charney-Phillips grids to capture the
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boundary layer modes has not been possible. The boundary layer modes are far

from orthogonal and thus results from the eigendecomposition are not easy to

interpret and cannot be used to compare grid configurations. For the boundary

layer only study in Part I the SVD was found to be quite useful for comparing

boundary layer modes. This was also tried here but could not be made to work.

The SVD is found to be well suited for examining the boundary layer on its own or

the dynamics on its own, or for examining the dynamics in the coupled problem.

When it is used to examine boundary layer modes in the coupled problem it is

firstly very difficult to interpret what the singular value represents and secondly

find corresponding high resolution boundary layer singular vectors.
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Chapter 9

Overall Summary

In this chapter all of the results and findings of this thesis are summarised. The

extent to which the posed questions have been answered is examined. Areas where

it has not been possible to completely fulfil the initial aims will be identified and

discussed. Some ideas for further work will be outlined at the end of the chapter.

The overall aim, as set out at the beginning of the study, was to determine

whether either the Lorenz or Charney-Phillips vertical configurations offered the

greater accuracy when coupling large scale dynamics to the sub-grid scale physics.

In the previous work of Thuburn and Woollings [68] it was shown that certain

configurations are favoured for the large scale dynamics. When they compared

Lorenz and Charney-Phillips it was Charney-Phillips that was favoured. In their

study Thuburn and Woollings were able to implement a systematic methodology,

based on normal mode analysis. The aim of this thesis was to use a methodology

like this to first confirm that the Lorenz grid is better for certain physics processes

and secondly to examine the fully coupled problem.

The case that was chosen for the study was the coupling between the large

scale Rossby, inertio-gravity and acoustic waves and the sub-grid scale motions

of the stably stratified planetary boundary layer. These three dynamical wave

types (represented by the normal modes) are those supported by the inviscid Euler

equations of motion. For the coupled dynamics-boundary layer case there is a clear

conflict in which grid configuration to choose: for the optimal representation of the
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dynamical modes the Charney-Phillips grid is optimal [68] whereas the Lorenz

grid allows for the boundary layer equations to be written without any averaging.

Determining whether the Lorenz grid would be optimal for the planetary boundary

layer was part of this study. An inherent question in the study is in determining

the nature of the Lorenz grid computational mode when coupling dynamics and

physics.

Using the normal mode methodology, as in [68], is appealing since it allows for

a highly systematic approach and reveals for what scales a particular configura-

tion performs better. In this method the time dependent part of the system is

decomposed into a set of linearly independent small amplitude oscillations called

modes. Linear time dependent motion can then be represented by combinations

of these modes. Examining all of these structures independently to see which are

most accurately captured can offer a very clear insight into why a configuration

performs better. The alternative would otherwise be to code up the full problem

with certain initial conditions and compare model output after certain time. This

only offers insight into the performance of the configurations for a very specific

situation, dependent on the initial conditions. The approach can be quite ambigu-

ous and provide little general insight into how configurations can be expected to

perform. However, the advantage of using a time integration is that the whole

nonlinear response would be considered, whereas normal mode analysis can only

measure the linear response. The overriding issue that needs to be considered if

attempting to use the normal mode analysis is that for the methodology to work

seamlessly requires a normal system. For the fully coupled problem it is not always

clear whether this suitable system can be achieved.

Due to the complexities in applying the normal mode analysis the focus of the

thesis has not only been on answering the central question over choice of vertical

configuration but also in analysing the methodology and establishing its suitability

for this kind of problem. Further to this the actual physical interactions in the

coupled problem are not simple and have required careful examination. This has

been required in order to understand and effectively compare configurations but
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has also revealed some interesting behaviour in itself.

The discussion of the outcome of this work can be divided into examining the

effectiveness of the methodology and examining the results, i.e. which configuration

is better. The next two sections contain the discussion of these two parts of the

work respectively.

9.1 Methodology

In order to use eigenmode analysis the system is linearised around a steady reference

state and the system of transient equations is written in matrix form λx = Ax.

The matrix A contains the coefficients of the transient model prognostic variables

and will depend on the steady state. Modes of the system x are the eigenvectors

of the matrix of coefficients and the eigenvalue λ corresponding to the eigenvector

describes the frequency and growth or decay rate of the mode.

The issues that were encountered first were in obtaining a proper steady state

of the system. Firstly the form of the boundary layer terms required modification

to allow a steady state to be reached and secondly a coordinate transform was

required in order to get good convergence with increasing resolution so that a ‘truth’

solution could be obtained in reasonable computational time. That the boundary

layer terms require modification is due to the imposed boundary conditions on

potential temperature. In most realistic situations the planetary boundary layer

is far from steady but evolves continuously as heating and cooling occurs. In

operational models this is represented by imposed fluxes, for example at the surface,

and by the diffusion mechanism. In order to use the proposed methodology it would

be insufficient to represent flux terms as this would never result in a completely

steady state; effectively leaving the diffusion unbalanced. The result is that the

boundary layer continuously loses potential temperature, reducing it to the value of

the surface boundary condition throughout the domain. This reduction in potential

temperature would normally be balanced by the natural fluxes at the top of the

boundary layer and at the surface. In order to get around this modelling artefact

and obtain a steady state but with a realistic θ profile a subsidence heating was
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imposed. This downward advection of potential temperature balances the diffusion

while allowing a steady state to be reached. With the right chosen parameters it

will also produce realistic stable boundary layer steady state profiles. A further

radiative cooling term was added to the potential temperature equation to give

stable, rather than neutral, stratification above the boundary layer. Having stable

stratification will damp any spurious creation of shear above the boundary layer,

which could otherwise prevent a steady state being reached.

Differences in solutions found when using Lorenz and Charney-Phillips grids

occur due to averaging of prognostic variables. At operational resolution these

differences can be quite significant. In order to quantify the differences between

the two configurations they need to be compared to the high resolution solution.

A high resolution is such that there is no noticeable difference between solutions

found when using Lorenz and Charney-Phillips. Near to the surface the velocity

and potential temperature in the system behave in a logarithmic way and this re-

sults in derivatives of those profiles approaching a singularity as the grid is refined.

This singularity reduces the convergence rate of the scheme and so it is not pos-

sible to obtain good convergence. With a geometric type grid stretching it would

require of the order of one thousand grid points to obtain suitably similar Lorenz

and Charney-Phillips results and obtain the high resolution solution. Given the

large number of test cases to consider this would require an unrealistic amount of

computational effort. In order to avoid the singularity a coordinate transform was

performed to give a logarithmic grid stretching. In doing the transform a close to

second order convergence was recovered and a high resolution solution was obtained

for one hundred grid points. Due to the small grid spacing near the surface with a

high resolution logarithmic grid the false time-stepping scheme, that was used for

the low resolution steady state generation, could not be used, due to the small time

step that would be necessary. Instead the Newton method was used successfully

by transitioning smoothly from neutral to steady conditions in the boundary layer

terms. This is an appealing method as it allows for rapid generation of steady

state profiles and generates the Jacobian matrix, also used in obtaining the tran-
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sient part of the calculation. Implementing a Newton method thus requires little

extra coding, ideal if testing lots of cases.

If the matrix of coefficients A is normal then the eigenvectors form an orthogonal

basis and represent normal modes of the system. These normal modes are well

understood and can be interpreted with relative ease. When the matrix is far from

normal the eigenvectors do not form an orthogonal basis and so are not normal

modes, instead they are thought of as eigenmodes. These eigenmodes still represent

physical behaviour of the system but can be very similar to each other and are thus

considerably harder to interpret than when looking at normal modes. When the

boundary layer is included in the equations, whether with all the dynamics or not,

the matrix will not be normal. Although it is not normal two levels of interpretation

depending on whether dynamics are included or not are seen.

When the boundary layer was studied on its own it was found that the matrix

was far from normal and the usefulness of the eigenvectors was completely lost.

This was discussed in the previous summary chapter at the end of Part I. When the

dynamics were included in the equations the usefulness of the eigendecomposition

was somewhat recovered. It has been possible to interpret the behaviour and

compare the Lorenz and Charney-Phillips grids for the dynamical modes using

the eigendecomposition. It has also been possible to identify the boundary layer

modes and compare low resolution versions of boundary layer modes. However the

non-normality caused problem when trying to compare boundary layer modes from

low resolution solutions with boundary layer modes from high resolution solutions.

For the boundary layer only it was not possible to even compare low resolution

eigenvectors so an improvement is certainly gained in the fully coupled problem.

A method that was employed to try and avoid the issue of orthogonality was

the SVD. This is a method similar to the eigendecomposition and indeed the two

are related for certain situations. Although this method does not offer the same

interpretation as the eigendecomposition it will always produce singular vectors

which form an orthogonal basis. The method was used mainly for the boundary

layer only case where lack of orthogonality between eigenvectors was most prevent-
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ing of physical interpretation. Although the method was used with a degree of

success for this case it was found to be less useful for the fully coupled problem.

Singular vectors representing boundary layer structure were identified in the low

resolution configurations but, as was found for the eigenvectors, it was not possible

to match those up with high resolution singular vectors, at least not to the same

level of accuracy that was possible for the boundary layer only case. With the fully

coupled problem more different mode types have to be simultaneously captured by

the decomposition and this hinders the SVD. When only boundary layer modes are

captured the chance of finding corresponding modes is increased by having more

to choose from.

A further issue that hinders the finding of corresponding high resolution modes

is the presence of a singularity in the surface formulation of the boundary layer

terms. In the neutral drag coefficient there is a term in the denominator tending

to zero for height levels close to the roughness length. For the logarithmic grid, for

which levels can get very close to the roughness this singularity appears to impact

the solution. The surface formulations seem unable to balance with the singularity

for such bunched up height levels.

In addition to the problems of orthogonality between eigenvectors the form of

the spectrum was considered. Comparison of modes across configurations requires

that only discrete spectrum is supported. If continuous spectrum is supported then

it is entirely feasible that different configurations could sample from different parts

of the continuous spectrum. The form of the spectrum was carefully examined and

no evidence was found for the presence of continuous spectrum. When dealing with

a complex problem like that being considered here however, continuous spectrum

can not be completely ruled out. Ideally a rigorous derivation would be formulated

to show the form of the spectrum for the equations, though this is beyond the scope

of this project.

In all, the methodology does not work seamlessly. Unfortunately the system can

be far from normal meaning eigenvectors become difficult to interpret and compare

between configurations. Instead a selection of workarounds have been devised and
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used to varying degrees of success. Importantly it has allowed for some comparison

of grid configurations to be made using a more systematic approach. Additionally

it has provided good insight into the limitation of the methodology and thus the

non ideal situations where it may still be useful. For example if one wished to

study the dynamical modes in any coupled problem but was less interested in the

modes of the physics the eigendecomposition could still be quite useful.

9.2 Vertical Configurations

It is well understood from the literature that the Charney-Phillips grid is the pre-

ferred choice for modelling the dynamics, at least in terms of obtaining optimal

wave propagation and in that it supports no computational mode. This has been

further confirmed in this work. In Part I and discussed in the summary therein, it

was shown that the Lorenz grid is the preferred choice for the stably stratified plan-

etary boundary layer. It seems likely from the discrete equations that the Lorenz

would be preferred since no averaging occurs. This was confirmed through study-

ing the steady state and the singular vectors and singular values of the linearised

system.

When the equations include both dynamics and physics the difference between

the two grids is quite clear for the steady states but less so for the transients.

The steady states of the full coupled problem are captured more accurately by

the Charney-Phillips grid than the Lorenz grid. In particular the option I-i and

option I-iii configurations performed well, these are where either eddy diffusivity

or Richardson number is averaged. For the boundary layer only the Lorenz grid

had performed better for the steady states, however when density is included the

benefits afforded by the lack of averaging in the diffusion terms is outweighed by

the need to satisfy hydrostatic balance and the associated averaging.

When [68] and later [64] investigated the dynamics only case they found the

Charney-Phillips grid to be preferred due to two key factors. Firstly the Lorenz grid

was shown to support a computational mode and secondly the Charney-Phillips

grid was shown to give optimal representation of the dispersion of the Rossby and
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inertio-gravity waves. The Lorenz grid significantly slows either Rossby or inertio-

gravity modes, depending on the horizontal wavenumber. The size of the horizontal

wavenumber determines whether buoyancy frequency terms either dominate or

do not in the dispersion relations. The associated averaging associated with this

term when using the Lorenz grid results in slowing of frequencies when this term

dominates. When horizontal wavenumber is small the buoyancy terms dominate

in the Rossby dispersion relation, when it is large buoyancy terms dominate in the

inertio-gravity dispersion. In Part II of this thesis it was shown that the same modes

are slowed in these two horizontal wavenumber regimes when using the stretched

grid. However it was not possible to determine an exact dispersion relations for

the stretched grid due to the increased complexity in the mode structures. Modes

with higher frequency are found to be supported by the stretched grid and these

have structure only on regions with sufficient resolution to support their increased

frequency. As waves propagate into regions that cannot support their frequencies

they can be reflected; evidence of this kind of behaviour has been observed for the

dynamical modes on a stretched grid.

The dynamical modes that were found to be much better represented by the

Charney-Phillips grid did not always exist in the coupled problem. For example

in the longer horizontal wavelength case the Lorenz grid slowed the Rossby modes

in the large m limit, i.e those with shortest vertical scale. However these are the

modes most susceptible to the boundary layer diffusion. In the cases tested for this

horizontal wavelength no coupled case Rossby modes were found to have consid-

erable difference between Lorenz and Charney-Phillips. It is concluded that some

of the benefits afforded by using the Charney-Phillips grid regarding frequencies

are lost once the boundary layer is included. Conversely for the shorter horizontal

wavelength case it was found that dynamical modes did have differences in fre-

quencies as predicted by the Lorenz and Charney-Phillips grid. These would be

expected to be inertio-gravity modes since these are slowed by the Lorenz grid

in the dynamics only case. However some Rossby modes were also identified as

having frequency differences. It was generally more difficult to analyse the larger
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horizontal wavenumber case since modes were more sensitive to the Doppler effect

making it hard to distinguish between mode branches. It was also not possible to

find converged high resolution modes.

As discussed in the methodology section of this chapter it was difficult to gen-

erate conclusive results regarding the boundary layer type modes. It was possible

to compare some of the leading boundary layer structures across the Lorenz and

Charney-Phillips configurations when at the operational resolution but not to com-

pare with the high resolution versions. Caution is taken in concluding too much

from this part of the results given the issues with methodology. Some modes were

found to be damped faster by Charney-Phillips compared to Lorenz and some were

found to be damped slower. However there were not unanimous results across the

test cases. For the boundary layer only the Lorenz grid gave better predictions for

the steady states, for the coupled equations the Charney-Phillips grid gave bet-

ter representation of the steady states. This in mind some improvement in the

representation of coupled boundary layer modes may be expected when using the

Charney-Phillips grids.

The Lorenz grid computational mode was examined for two cases, one where

the boundary layer was switched off in the transients and one where the boundary

layer was switched on. The case where it is switched off appeared to reveal that

shear suppresses the structure of the computational mode. This may not necessarily

always be the case as the effect of the shear will just be to realign horizontal waves

away from a two-grid wave configuration, it could just as well act to align back

into a two-grid wave configuration. When the resting isothermal reference state is

considered the computational mode has zero frequency and appears as a two-grid

wave in θ throughout the domain. When the boundary layer is included and the

reference state has shear the computational mode structure is altered. Instead of

having zero frequency it has frequency of the same order as the other dynamical

modes as it is advected by the background flow. It can also have structure in the

other fields due to geostrophic balance above the boundary layer. This methodology

is not particularly well suited to examining the computational mode further, to
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establish the influence of having shear throughout the domain. The isothermal

case of [68] was extended to include shear throughout the domain in the reference

state; however for the cases tried continuous parts of the spectrum were identified.

For the fully coupled problem the computational mode was identified in all cases.

As with the boundary layer switched off case, the structure of the computational

mode was suppressed only in the boundary layer region. All the results imply that

the boundary layer is not capable of distorting the computational mode as might

have been hoped. This means the main downside of using the Lorenz grid remains.

This also agrees with the results of [81]. In [81] behaviour associated to the Lorenz

grid computational mode was identified in a hurricane model, formulated with a

well mixed boundary layer.

9.3 Concluding Discussion

Despite the difficulties encountered in attempting to apply this kind of methodology

to this kind of problem some significant insight has been gained. The boundary

layer only case was examined and it has been shown that the Lorenz grid is the

preferred configuration. In doing this a fully steady state boundary layer has been

obtained along with good convergence of the high resolution solutions. The singular

vector analysis has been employed and found to be useful in the situation where

eigenvectors are not.

In studying the coupled problem understanding has been gained of the coupling

processes that occur and which types of dynamical modes are replaced by boundary

layer modes. The Lorenz and Charney-Phillips configurations have been examined

for the coupled problem and it has been shown that, for the dynamical modes at

least, there is little to distinguish between the two grids. Gaining a full insight into

the accuracy of the boundary layer modes has not been possible but it seems likely

that the Charney-Phillips grid will do better than when no dynamics are included.

The Charney-Phillips option I-i configuration outperformed the Lorenz grid for the

coupled steady states. It was also found that the computational mode supported

by the Lorenz grid configuration is only suppressed in the boundary layer, but
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not everywhere in the domain as had been originally hoped. Given these findings

it seems unlikely that, neglecting conservation properties, much benefit would be

gained by using the Lorenz grid for a model covering the large scale dynamics and

the stably stratified planetary boundary layer.

From the work undertaken here a number of potential issues have arisen that

could not be covered within the scope of this project but might prove of interest

for further study. Firstly it would be interesting to further investigate whether the

spectrum is discrete, continuous or consists of both discrete and continuous parts.

Second, some interesting reflection type behaviour was identified in the dynamical

modes when using the stretched grid. It may be possible to identify the types of

discrete modes that can be expected to be captured by a given stretched grid by

considering the boundary condition at the point of reflection. This would give a

further understanding of the use of normal modes with a stretched grid. Although

the aim of this thesis was to use a systematic methodology to examine differences

between grid staggerings it may further complement the findings by performing

time integrations of the full model with different initial conditions.

This study has used the stably stratified planetary boundary layer for the

physics. This configuration gives the most obvious conflict in the choice of grid

staggering. It would be interesting to try adding in other physics which may ben-

efit from different choices, for example cloud processes or gravity wave drag. One

could test the methodology for these cases and also consider coupling between

different sub-grid models, e.g. radiation and convection.
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