Coupling the Planetary Boundary Layer to the Large Scale Dynamics of the Atmosphere: The Impact of Vertical Discretisation

Submitted by

Dan Holdaway

to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Mathematics, May 2010.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.
I certify that all material in this thesis which is not my own work has been identified and that no material is included for which a degree has previously been conferred upon me.

........................
Dan Holdaway

1
Abstract

Accurate coupling between the resolved scale dynamics and sub-grid scale physics is essential for accurate modelling of the atmosphere. Previous emphasis has been towards the temporal aspects of this so called physics-dynamics coupling problem, with little attention towards the spatial aspects. When designing a model for numerical weather prediction there is a choice for how to vertically arrange the required variables, namely the Lorenz and Charney-Phillips grids, and there is ongoing debate as to which is the optimal. The Charney-Phillips grid is considered good for capturing the large scale dynamics and wave propagation whereas the Lorenz grid is more suitable for conservation. However the Lorenz grid supports a computational mode. In the first half of this thesis it is argued that the Lorenz grid is preferred for modelling the stably stratified boundary layer. This presents the question: which grid will produce most accurate results when coupling the large scale dynamics to the stably stratified planetary boundary layer? The second half of this thesis addresses this question.

The normal mode analysis approach, as used in previous work of a similar nature, is employed. This is an attractive methodology since it allows one to pin down exactly why a particular configuration performs well. In order to apply this method a one dimensional column model is set up, where horizontally wavelike solutions with a given wavenumber are assumed. Applying this method encounters issues when the problem is non normal, as it will be when including boundary layer terms. It is shown that when addressing the coupled problem the lack of orthogonality between eigenvectors can cause mode analysis to break down. Dynamical modes could still be interpreted and compared using the eigenvectors but boundary layer modes could not. It is argued that one can recover some of the usefulness of the methodology by examining singular vectors and singular values; these retain the appropriate physical interpretation and allow for valid comparison due to orthogonality between singular vectors.

Despite the problems in using the desirable methodology some interesting results have been gained. It is shown that the Lorenz grid is favoured when the
boundary layer is considered on its own; it captures the structures of the steady states and transient singular vectors more accurately than the Charney-Phillips grid. For the coupled boundary layer and dynamics the Charney-Phillips grid is found to be most accurate in terms of capturing the steady state. Dispersion properties of dynamical modes in the coupled problem depend on the choice of horizontal wavenumber. For smaller horizontal wavenumber there is little to distinguish between Lorenz and Charney-Phillips grids, both the frequency and structure of dynamical modes is captured accurately. Dynamical mode structures are found to be harder to interpret when using larger horizontal wavenumbers; for those that are examined the Charney-Phillips grid produces the most sensible and accurate results. It is found that boundary layer modes in the coupled problem cannot be concisely compared between the Lorenz and Charney-Phillips grids due to the issues that arise with the methodology. The Lorenz grid computational mode is found to be suppressed by the boundary layer, but only in the boundary layer region.
Acknowledgements

First and foremost I would like to thank my supervisors John Thuburn and Nigel Wood. They have been a tremendous help and support throughout the course of my PhD and I’m forever grateful for everything I have learnt from them. Thanks also to the Met Office and to the EPSRC for jointly funding the work.

I would like to thank my parents Sue and Graham and brother Dom for always being there for me and for their continued and generous support. Thanks also to my extended family for their support and always showing such a keen interest.

Thanks to all the people I have known and lived with while in Exeter. Special thanks to my house mate Andy and to K4, Joe, Mercedes, Jamie and Tessa.

Finally a loud thank you to all of my fellow PhD students for making PhD life so entertaining!
Contents

Contents

Acknowledgements 5

List of Figures 8

List of Tables 14

1 Introduction and Motivation 16

1.1 Introduction .. 16
1.2 Dynamics .. 17
1.3 Physics Parametrisation 18
 1.3.1 The Atmospheric Boundary Layer 19
1.4 Physics-Dynamics Coupling 21
 1.4.1 Stably Stratified Planetary Boundary Layer 23
 1.4.2 Grid Staggering 25
 1.4.3 Grid Spacing 27
1.5 Governing Equations 28
1.6 Methodology ... 30
 1.6.1 Linearisation 31
 1.6.2 Dispersion Relation 32
 1.6.3 Eigendecomposition 35
 1.6.4 Singular Value Decomposition (SVD) 36
 1.6.5 Discrete and Continuous Spectra 38
1.7 Thesis Outline .. 40
4.3.2 Form of the Spectrum ... 129
4.4 Testing Methodology .. 131
4.5 Physical Interpretation of Eigenvectors and Singular Vectors 133
4.6 Comparison of High Resolution Singular Vectors 142
4.7 Comparison of Lorenz and Charney-Phillips Low Resolution 147
 4.7.1 Comparison with Charney-Phillips Option I-iii 158
 4.7.2 Shallower Boundary Layers and Alternative Grid Spacing .. 162

5 Summary of Part I .. 168

II Comparison of Vertical Discretisations Whilst Coupling Boundary Layer and Dynamics 176

6 The Fully Compressible Dynamics-Boundary Layer Model 179
 6.1 Form of the Vertical Pressure Gradient 181
 6.2 Linearisation ... 182
 6.2.1 Steady State .. 182
 6.2.2 Transients .. 186
 6.2.3 Energy Norm .. 190
 6.3 Case studies ... 193

7 Examination of Mode Types and Interaction 195
 7.1 Isothermal - Dynamics only Case 196
 7.1.1 Capturing Modes with Singular Vectors 205
 7.1.2 Lorenz Grid Computational Mode 210
 7.1.3 Shorter Horizontal Wavelengths 210
 7.2 Isothermal Case with Stretched Grid 213
 7.2.1 Lorenz Grid Computational Mode 215
 7.2.2 Shorter Horizontal Wavelength 216
 7.2.3 Mode Structure ... 218
 7.3 Coupled Reference State, Dynamics only in the Linearisation 223
 7.3.1 Dispersion Relation .. 224
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Arakawa A- to D-grids for the shallow water equations</td>
<td>33</td>
</tr>
<tr>
<td>1.2</td>
<td>Lorenz v Charney-Phillips for isothermal Euler equations</td>
<td>34</td>
</tr>
<tr>
<td>2.1</td>
<td>Lorenz and Charney-Phillips grid schematic</td>
<td>65</td>
</tr>
<tr>
<td>2.2</td>
<td>Distribution of points for log and log-linear grids</td>
<td>76</td>
</tr>
<tr>
<td>3.1</td>
<td>High resolution Lorenz and Charney-Phillips with different stretching</td>
<td>84</td>
</tr>
<tr>
<td>3.2</td>
<td>High resolution errors for different grid stretching</td>
<td>85</td>
</tr>
<tr>
<td>3.3</td>
<td>θ comparison of log and log-linear high res grids</td>
<td>86</td>
</tr>
<tr>
<td>3.4</td>
<td>High resolution error convergence rates, Lorenz grid</td>
<td>87</td>
</tr>
<tr>
<td>3.5</td>
<td>High resolution error convergence rates, Charney-Phillips grid</td>
<td>88</td>
</tr>
<tr>
<td>3.6</td>
<td>Lorenz grid steady states against high resolution - velocity</td>
<td>90</td>
</tr>
<tr>
<td>3.7</td>
<td>Lorenz grid steady states against high resolution - potential temperature</td>
<td>91</td>
</tr>
<tr>
<td>3.8</td>
<td>Charney-Phillips option I steps</td>
<td>92</td>
</tr>
<tr>
<td>3.9</td>
<td>Lorenz versus Charney-Phillips steady states against high resolution - velocity</td>
<td>93</td>
</tr>
<tr>
<td>3.10</td>
<td>Lorenz versus Charney-Phillips steady states against high resolution - potential temperature</td>
<td>94</td>
</tr>
<tr>
<td>3.11</td>
<td>Comparison of different versions of Charney-Phillips option I steady states - velocity</td>
<td>95</td>
</tr>
<tr>
<td>3.12</td>
<td>Comparison of different version of Charney-Phillips option I steady states - potential temperature</td>
<td>96</td>
</tr>
<tr>
<td>3.13</td>
<td>Test case comparing option I configurations</td>
<td>97</td>
</tr>
</tbody>
</table>
7.8 Isothermal Rossby Singular Vectors 207
7.9 Isothermal Computational Mode .. 211
7.10 Isothermal Dispersion, Larger Horizontal Wavenumber, Charney-Phillips .. 212
7.11 Isothermal Dispersion, Larger Horizontal Wavenumber, Lorenz .. 212
7.12 Isothermal Dispersion Relation, Stretched Grid, Charney-Phillips .. 215
7.13 Isothermal Dispersion Relation, Stretched Grid, Lorenz .. 215
7.14 Isothermal Stretched Grid Computational Mode .. 216
7.15 Isothermal Dispersion Relation, Stretched Grid and Larger Horizontal Wavenumber, Charney-Phillips .. 217
7.16 Isothermal Dispersion Relation, Stretched Grid and Larger Horizontal Wavenumber, Lorenz .. 217
7.17 Isothermal Inertio-Gravity Mode, Stretched Grid, Larger Horizontal Wavenumber .. 219
7.18 Isothermal Rossby Mode, Stretched Grid, Larger Horizontal Wavenumber .. 220
7.19 Isothermal Rossby Singular Vector, Stretched Grid, Larger Horizontal Wavenumber .. 222
7.20 Frequencies For Coupled But No Transient Boundary Layer, Lorenz Grid .. 225
7.21 Frequencies For Coupled But No Transient Boundary Layer, Larger Horizontal Wavenumber, Lorenz Grid .. 226
7.22 Eigenvalues For Coupled But No Transient Boundary Layer, Lorenz Grid .. 229
7.23 Growth/Decay Rates For Coupled But No Transient Boundary Layer, Lorenz Grid .. 230
7.24 Frequency For Coupled But No Transient Boundary Layer, Larger Horizontal Wavenumber, Lorenz Grid .. 230
7.25 Growth/Decay Rates For Coupled But No Transient Boundary Layer, Larger Horizontal Wavenumber, Lorenz Grid .. 231
7.26 Frequency For Coupled But No Transient Boundary Layer, Larger Horizontal Wavenumber, Lorenz Grid .. 231
7.27 Eigenvalues For Fully Coupled, Lorenz Grid 234
7.28 Growth/Decay Rates For Fully Coupled, Lorenz Grid 235
7.29 Frequencies For Fully Coupled, Lorenz Grid 235
7.30 Growth/Decay Rates For Fully Coupled, larger Horizontal Wavenumber, Lorenz Grid ... 237
7.31 Frequencies For Fully Coupled, larger Horizontal Wavenumber, Lorenz Grid ... 237
7.32 Fully Coupled Inertio-Gravity Mode ... 240
7.33 Fully Coupled Rossby Mode ... 242
7.34 Fully Coupled Damped Mode .. 243
7.35 Growth/Decay Rates For Fully Coupled, Boundary Layer 5, Lorenz Grid ... 247
7.36 Frequencies For Fully Coupled, Boundary Layer 5, Lorenz Grid . . 247
7.37 Fully Coupled Inertio-Gravity Singular Vector 250
7.38 Fully Coupled Rossby Singular Vector 251
7.39 Mode Tracking From Boundary Layer Off to Boundary On in the Transients ... 257
7.40 Boundary Layer Off Modes That Become Damped 258
7.41 Computational Mode in Fully Coupled, Boundary Layer Off in Transients ... 259
7.42 Two Grid Wave Schematic ... 260
7.43 Computational Mode in Fully Coupled ... 261

8.1 High Resolution Steady State Density .. 269
8.2 High Resolution Steady State Dynamics Versus Boundary Layer ... 270
8.3 Lorenz Versus Charney-Phillips Coupled Reference State U and V . 271
8.4 Lorenz Versus Charney-Phillips Coupled Reference State $\theta^{(r)}$ and $\rho^{(r)}$ 272
8.5 Lorenz vs Charney-Phillips Boundary Layer 1 Off in Transients ... 277
8.6 Lorenz vs Charney-Phillips Boundary Layer 1 On in Transients ... 278
8.7 Frequency Lorenz vs Charney-Phillips Boundary Layer 5 On in Transients ... 279
8.8 Lorenz vs Charney-Phillips Boundary Layer 1 On in Transients ... 281
8.9 Lorenz vs Charney-Phillips Coupled Inertio-Gravity Mode ... 283
8.10 Lorenz vs Charney-Phillips Coupled Rossby Mode ... 285
8.11 Lorenz vs Charney-Phillips Coupled $k = \frac{2\pi}{10^3}$ Mode ... 287
8.12 Lorenz vs Charney-Phillips Coupled BL1 damped modes ... 290
8.13 Growth/Decay Lorenz vs Charney-Phillips Boundary Layer 5 On in Transients 291
8.14 Lorenz vs Charney-Phillips Coupled Boundary Layer Mode .. 293
8.15 Lorenz versus Charney-Phillips Boundary Layer Mode in Singular Vectors ... 296
8.16 Lorenz versus Charney-Phillips Acoustic Mode in Singular Vectors .. 298
List of Tables

2.1 Test cases by boundary depths ... 63
2.2 Charney-Phillips averaging choices ... 68
2.3 Values of α in geometric grid. .. 71

4.1 Boundary layer 5, comparison of high resolution singular vectors by orthogonality test .. 146
4.2 Boundary layer 5, comparison of low and high resolution singular vectors by orthogonality test .. 149
4.3 Comparison of Lorenz and Charney-Phillips I-iii by orthogonality ... 158
4.4 Comparison of Lorenz and Charney-Phillips by orthogonality, boundary layer 1 ... 163
4.5 Comparison of Lorenz and Charney-Phillips by orthogonality, boundary layer 2 ... 164
4.6 Comparison of Lorenz and Charney-Phillips by orthogonality, boundary layer 3 ... 164
4.7 Comparison of Lorenz and Charney-Phillips by orthogonality, boundary layer 4 ... 165

7.1 Dominant Energy Variables .. 206
7.2 Continuous Spectrum Search, Fully Coupled 254

8.1 μ For Most Damped Boundary Layer 1 290
8.2 μ For Least Damped Boundary Layer 5 BL modes 295