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ABSTRACT 
The operational management of Water Distribution Systems (WDS), particularly under 

failure conditions when the behaviour of a WDS is not well understood, is a challenging 

problem. The research presented in this thesis describes the development of a 

methodology for risk-based diagnostics of failures in WDS and its application in a near 

real-time Decision Support System (DSS) for WDS’ operation. 

In this thesis, the use of evidential reasoning to estimate the likely location of a burst 

pipe within a WDS by combining outputs of several models is investigated. A novel 

Dempster-Shafer model is developed, which fuses evidence provided by a pipe burst 

prediction model, a customer contact model and a hydraulic model to increase 

confidence in correctly locating a burst pipe. 

A new impact model, based on a pressure driven hydraulic solver coupled with a 

Geographic Information System (GIS) to capture the adverse effects of failures from an 

operational perspective, is created. A set of Key Performance Indicators used to 

quantify impact, are aggregated according to the preferences of a Decision Maker (DM) 

using the Multi-Attribute Value Theory. The potential of distributed computing to 

deliver a near real-time performance of computationally expensive impact assessment is 

explored. 

A novel methodology to prioritise alarms (i.e., detected abnormal flow events) in a 

WDS is proposed. The relative significance of an alarm is expressed using a measure of 

an overall risk represented by a set of all potential incidents (e.g., pipe bursts), which 

might have caused it. The DM’s attitude towards risk is taken into account during the 

aggregation process. 

The implementation of the main constituents of the proposed risk-based pipe burst 

diagnostics methodology, which forms a key component of the aforementioned DSS 

prototype, are tested on a number of real life and semi-real case studies. The 

methodology has the potential to enable more informed decisions to be made in the near 

real-time failure management in WDS.  
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CHAPTER 1 INTRODUCTION 

1.1 Motivation and Background 
Water utilities all over the world face serious problems with satisfying increasing water 

demands. The number of sources of clean and fresh water is becoming scarce while the 

population of the Earth grows. Furthermore, year by year the required standards of 

service of the delivery of potable water increase in terms of water quality, reducing the 

number of supply interruptions and providing adequate pressure at consumers’ taps. 

Apart from this, water utilities are also required to deliver water more efficiently than 

ever before in order to cut down their carbon footprint (e.g., due to climate change). 

Effective and efficient operational management of Water Distribution Systems (WDS) 

has thus become a vital, however, difficult task faced by water utilities nowadays. 

In the UK water utilities have to deal with an increasing number of problems (e.g., pipe 

bursts) due to ageing infrastructure. Some of the underground assets (e.g., pipes) were 

laid more than 100 years ago. Although, significant effort is put into their ongoing 

rehabilitation and maintenance programmes the number of incidents caused by pipe 

bursts and other equipment failures is still significant. Control room operators are not 

only tasked with operating WDS optimally to meet required standards, but also to deal 

with contingency situations when failures of various types occur in day-to-day 

operation. Due to the stochastic nature of failures it is impossible to predict and 

completely eliminate them. 

Risk analysis has started to be applied by water utilities in their strategic rehabilitation 

plans to maximise benefits of investment by replacing or repairing those elements, 

which represent the highest risk. However, applications of risk analysis in operational 

management of WDS in near Real-Time (R-T) are currently lacking, despite the 

consistent approach towards failure management they offer. Possible reasons for the 

shortage of near R-T risk applications could be in the difficulties imposed by a usually 

dynamically changing environment and severe time constraints. 

Early detection and location of failures in WDS is of paramount importance to all water 

utilities. Whilst, early warning failure detection systems have started to be applied in 

real life WDS (Mounce et al. 2010), locating failures represents a major challenge, 
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which has not yet been satisfactorily resolved. Diagnostics of failures in WDS still 

usually relies on time intensive and expensive field investigations carried out by field 

technicians. Their work is, however, becoming more and more difficult, particularly 

when dealing with burst pipes, which are harder to locate due to pressure management 

programmes and the installation of Polyvinyl Chloride (PVC) pipes. This represents an 

opportunity for the application of data and model driven burst diagnostics methods, 

which at the same time have to cope with a limited number of field measurements and 

imperfect knowledge of failure behaviour as well as inaccurate data. The challenges of 

such an uncertain environment and the lack of knowledge are addressed in this thesis 

using a risk-based decision-making methodology. The early location of failures, which 

could be achieved using the proposed approach, can facilitate their timely repair and 

safeguard the continuity of water supply for customers.  

Expert Systems (ES) have for a long time dominated the field of R-T applications. Such 

systems have been successfully deployed to solve well defined structured problems, 

however, their adoption in fields requiring solutions to complex unstructured problems 

has been limited. On the other hand, Decision Support Systems (DSS), which aim to 

provide human Decision Makers (DM) with relevant information in order to reach better 

informed decisions, have enjoyed a growing popularity in the past few decades. They 

have been successfully applied to support complex decision-making situations, 

however, their application in near R-T environments has been challenging. 

Nevertheless, tasks such as a near R-T pipe burst diagnostics can benefit from the 

synergetic effect of combining the expertise of an experienced operator and a DSS 

capable of reducing the information load, which will be explored in this work. 

Some of the above mentioned issues were investigated in a three-year research project 

NEPTUNE (Savić et al. 2008) funded by the EPSRC, which started in April 2007. The 

project was a joint effort of seven major academic institutions (Imperial College 

London, University of Sheffield, University of Exeter, Leicester University, De 

Montfort University, Cambridge University and Lancaster University) and three 

industrial partners (Yorkshire Water, United Utilities and ABB). The project aimed to 

develop a number of methodologies to improve the operational management of WDS in 

terms of energy efficiency and level of service of delivery of potable water. This thesis 

discusses the development, implementation and application of a risk-based decision-
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making methodology for failure diagnostics in WDS, which forms a significant part of a 

near R-T DSS prototype, one of the project’s key deliverables. The work presented in 

this thesis is, therefore, relevant for the water industry and has the potential to improve 

current practices of operational management of WDS. 

1.2 Aims and Objectives 
The main aim of this work is to develop and implement a risk-based methodology for 

near R-T diagnostics of failures (i.e., pipe bursts) in a WDS. More specifically, this aim 

is achieved through the following objectives: 

1. To investigate the potential of applying information fusion in diagnostics of pipe 

bursts. Information from a number of sources and models currently available to 

water utilities worldwide will be combined in the effort to locate a burst pipe 

within a District Metered Area (DMA). The Dempster-Shafer theory of 

Evidence will be used to fuse outputs of a Pipe Burst Prediction Model (PBPM), 

a Customer Contacts Model (CCM) and a Hydraulic Model (HM) to increase the 

confidence in locating a burst pipe, given the frequently imperfect and 

conflicting outputs of the individual models and underlying data sources. 

2. To design an impact model capable of capturing various adverse effects of a 

burst pipe on the principal stakeholders (i.e., the water utility and its customers). 

The impact assessment will be approached from an operational, rather than 

strategic perspective to enable R-T decision-making. A suitable aggregation 

technique will be developed, which reflects preferences of a water utility in 

terms of significance of specific types of impact. The integrated impact model 

will thus be able to return a single measure representing an impact of a burst 

pipe over a specific risk horizon. 

3. To explore the potential of risk-based pipe burst diagnostics, which will enable 

WDS operators to focus their investigation of burst pipes within a DMA not 

only based on the information about the most likely location of the burst but also 

the likely impact. A risk metric comprising likelihood and impact of potential 

failure will be formed based on the outcomes of the above two objectives. The 

non-aggregated risk of a pipe burst will be presented in the form of a risk-map 
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and will enable WDS operators to make better informed decisions on where to 

dispatch field technicians for further investigation.  

4. To develop a methodology to prioritise amongst multiple abnormal events (i.e., 

increased inflow into a DMA indicating a possible pipe burst) occurring in a 

similar time horizon in different parts of a WDS. A suitable ranking technique 

will be applied, incorporating attitude towards risk of a human DM, in order to 

calculate the criticality of a particular abnormal event. This will allow better 

utilisation of resources in situations when investigating multiple failures, 

ensuring that the most significant events are dealt with first according to the 

overall level of aggregated risk they represent. 

1.3 Thesis Structure 
This thesis is divided into six chapters including this introduction.  

In Chapter 2 a review of relevant literature is provided. The review covers key areas of 

research addressed in this thesis including decision-making and decision support, 

application of risk-based methodologies in water systems, techniques for locating burst 

pipes within WDS, modelling of the impact of failures in WDS and information fusion 

methods. 

In Chapter 3 first the overall methodology for risk-based pipe burst diagnostics is 

introduced and its individual constituents are described. Suitable models to quantify the 

likelihood and impact components of risk are then presented. A novel methodology, 

based on evidential reasoning and information fusion, to estimate the likely location of a 

burst pipe in a WDS is described. Next, an operational impact model, utilising the 

Multi-Attribute Value Theory (MAVT) to incorporate preferences of a water utility 

regarding various aspects of failure impact, is proposed. Finally, a possible application 

of the risk metric formed by outputs of the aforementioned likelihood and impact 

models to prioritise abnormal events in a WDS is discussed.  

In Chapter 4 an implementation of the proposed risk-based pipe burst diagnostics 

methodology in the context of an integrated DSS is presented. The structure of a spatial 

database, which forms the core of a near R-T DSS, is proposed there. The functionality 

and mutual interaction of a number of background modules, which contain the actual 
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implementation of individual constituents of the risk-based pipe burst diagnostics 

methodology, are described. Special attention is paid to parallel computing, which is 

explored as one of the possibilities to improve the performance of the DSS to reach the 

requirements of a near R-T environment. Efficient ways of storage and visualisation of 

underlying spatial and non-spatial data used by the DSS are also discussed. 

In Chapter 5, a number of case studies to illustrate the proposed methodologies are 

presented. First, the possibility of locating a burst pipe within a DMA using an HM and 

R-T data collected from the field is illustrated on a set of engineered events conducted 

in a real life WDS. Next, the proposed evidential reasoning methodology (i.e., 

information fusion) is applied on a number of semi-real case studies, based on historical 

events, to demonstrate its full potential if sufficient data were available over a long 

period of time. Consequently, results of a quantitative questionnaire survey, used to 

determine preferences of a water utility with respect to different aspects of failure 

impacts, are presented. Finally, a risk-based prioritisation of abnormal events detected 

in a real life WDS over a period of two years is shown to portray the possible 

advantages of this approach. 

In Chapter 6 the key findings of this thesis are summarised and relevant conclusions are 

drawn. The novel aspects introduced in this thesis are highlighted, followed by possible 

directions of future research to enhance and extend the methodologies presented. 
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CHAPTER 2 REVIEW OF LITERATURE 

2.1 Introduction 
This chapter provides a review of literature relevant to near Real-Time (R-T) risk-based 

decision support for the operation of WDS under abnormal conditions, when failures 

such as pipe bursts occur. First, the literature dealing with decision-making and decision 

support, with an emphasis on near R-T Decision Support Systems (DSS), is reviewed to 

establish a context for the methodology presented in this thesis. Secondly the concept of 

risk, which forms the foundation of the proposed methodology, is introduced and its 

applications related to water systems are reviewed. Currently available burst detection 

and diagnostics methods are then examined as a means to provide an indication of a 

likely location of a burst pipe within a WDS to represent the likelihood of pipe failure. 

Literature dealing with quantification of impact of failures is reviewed to establish 

grounds for development of an integrated impact model, which complements the 

aforementioned risk metric. WDS modelling methods are then presented with a focus on 

their simulation under abnormal conditions, when failures occur. Finally, a brief 

overview of information fusion techniques is given because of its importance to the 

methodologies presented in this thesis. The chapter concludes with a summary 

identifying gaps in the current research. 

2.2 Decision-Making & Decision Support 
Decision-making is a cognitive process of choosing amongst several alternatives which 

results in only one of the alternatives being selected in the end according to the 

preferences of a Decision Maker (DM) (Turban 1995). Making decisions is one of the 

daily activities each human being has to perform. Some decisions are made almost 

automatically thanks to intuition and instincts without deeply analysing the problem, 

other more complex decisions require thorough analysis and understanding of various 

options, risks and consequences inherently linked to them. The ongoing research in 

several fields including Mathematics, Psychology and also the rapid development of 

computers help improve our problem solving capabilities. (Holloway 1979; Gass 1985) 

The foundations of decision-making and decision support can be traced back to the 

early work of Herbert A. Simon in the 1960s. Simon (1977) studied decision-making by 

management executives and looked at how the decision-making of organisations is 
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influenced by new technologies. He was awarded the Nobel Prize in Economics in 1978 

for his work on decision-making processes. He classified decision-making processes as: 

(1) structured processes that are routine or repetitive for which standard solutions exist, 

and (2) unstructured decision processes that are the exact opposite and are defined as 

complex “fuzzy” processes for which there are no routine solutions.  

There exists no exact definition of a DSS. The meaning of DSS has been evolving 

together with the wider application of such systems. DSS developed from early 

Management Information Systems. The term DSS was first defined by Scott-Morton in 

1971 as “an interactive computer-based system, which helps DMs utilise data and 

models to solve unstructured problems”. This differentiates DSS substantially from 

Expert Systems (ES).  

An ES is according to Turban (1995) defined as “a decision-making and/or problem 

solving package of computer hardware and software that can reach a level of 

performance comparable to - or even exceeding that of - a human expert in some 

specialised and usually narrow problem area.” DSS have gained increasing popularity 

over ES that focused on solving structured problems (Simon 1977). On the other hand 

DSS exploit the synergetic effect of combining modern techniques of artificial 

intelligence with human judgement to tackle complex semi-structured and unstructured 

problems. Eom et al. (1998) conducted a large survey of over 270 DSS developed over 

a period from 1988-1994 and concluded that their number has increased compared to 

the previous period and highlighted artificial intelligence as an emerging area of 

decision support.  

Recently, Kapelan et al. (2005a) reviewed a number of DSS in urban water planning 

and suggested the following future research to improve the DSS currently in place: (1) 

Better integration of DSS into existing systems as well as improved integration of 

various models that form part of a DSS. The issues with insufficient integration have 

been partially addressed using OpenMI (Moore and Tindall 2005), an open standard for 

model interfacing; (2) Modelling of risk and uncertainty should be part of DSS; (3) 

Further development of comprehensive impact assessment models and their integration 

within DSS is important, together with better support for group decision-making tools; 
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(4) More systematic calibration and validation of models used by DSS should be put in 

place. 

2.2.1 Real-Time Decision Support 
Given the focus of this thesis extra attention is paid to supporting DMs in dynamically 

changing environments in near R-T. This section outlines some of the challenges 

imposed by the R-T environment. In the past, computerised support of decision-making 

was typically in the area of strategic decisions. However, with the growing performance 

of today’s computers, decision support in R-T applications is becoming more and more 

frequent. Typical areas where decisions must be made in R-T include: scheduling, 

dynamic vehicle routing and dispatching, air traffic control, military applications, 

process control systems, etc. The operational management of WDS is a field that could 

certainly benefit from near R-T decision support as well.  

As discussed by Turner (1986) the main use of R-T ES is to reduce the cognitive load 

on users or to enable them to increase their productivity without increasing the load. In 

situations requiring making decisions in R-T, humans tend to overlook relevant 

information, respond inconsistently, respond too slowly or panic when the rate of 

information flow is too great (Laffey et al. 1987; Musliner et al. 1995). The concept of 

R-T is perceived differently in various disciplines. Laffey et al. (1987) defined the R-T 

applications as: (1) fast, (2) faster than a human can do it, or (3) fast enough. According 

to the third definition a “fast enough” R-T system is able to respond to incoming data at 

a rate as fast or faster than it is arriving. Musliner et al. (1995) also defined “hard R-T” 

domain as an environment where decisions must be produced within the available time 

frame otherwise catastrophic events occur. 

Jamieson et al. (2007) developed a DSS for R-T near-optimal control of WDS. They 

emphasised the importance of feed-forward control systems using forecasts of future 

demands. The size, complexity and varying pattern of water demand of WDS was 

identified as one of the main difficulties in the application of R-T control. A single-

objective Genetic Algorithm (GA) was applied to minimise operating costs. The 

computational burden of running a hydraulic solver was eliminated using a surrogate 

model based on an Artificial Neural Network (ANN) (see e.g., Haykin 1999). The 

proposed R-T DSS was verified on a number of case studies to propose optimal 
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alternatives to an operator who could manually override the suggested solution at any 

time. 

2.3 The Concept of Risk and Its Applications 
Every individual is exposed to various risks and has to deal with them every day 

throughout their whole life. The early works dealing with risk date back to the 

beginning of the 20th century when risk generated interest particularly in the insurance 

industry (Rowe 1977). One of the first formal definitions of risk can be found in the 

work by Willet (1901) who defined risk as “the objectified uncertainty as to the 

occurrence of an undesired event”. Since then a number of other definitions have 

emerged and no common definition has been established. Lowrance (1976) defined risk 

as a measure of the probability and severity of adverse effects. On the other hand Rowe 

(1977) suggested the following risk definition: “the potential for realization of 

unwanted, negative consequences of an event”. Mathematically risk can also be 

formulated according to Kaplan and Garrick (1981) as an ensemble comprising risk 

scenarios associated with the likelihood of their occurrence and a damage vector of 

resulting consequences. Frequently, risk is also referred to as a function of likelihood, 

severity and vulnerability, where likelihood and severity represent the characteristics of 

a hazard or threat while vulnerability represents the property of an asset that is 

influenced by the hazard or threat. In this definition, both hazards/threats and assets are 

explicitly considered. Risk was also defined in the IEC 60300-3-9 standard as a 

“combination of the frequency, or probability, of occurrence and the consequence of a 

hazardous event” (Tuhovcak et al. 2006). 

Knight (1921) stressed the importance of distinguishing between risk and uncertainty. 

The fundamental difference between these two lies in the fact that risk is a situation 

where mathematical probabilities can be assigned either through a priori knowledge or 

from the statistics of past experience. On the other hand, uncertainty refers to 

randomness, which cannot be explained. It was argued by Haimes (2004) that the need 

for risk assessment becomes more imperative with less knowledge of a system. Such 

needs have become increasingly important with the emergence of complex man-made 

engineering systems, such as WDS, which affect our daily lives.  
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2.3.1 WDS Reliability Studies 
Reliability can be defined as the probability that a system is operational for a given 

period of time (Haimes 2004). WDS reliability has received significant attention in 

literature over the past few decades. In the field of WDS the research has been 

concerned with their ability to supply water of adequate quality and quantity under 

normal and abnormal conditions (Xu and Goulter 1999). As discussed by Gupta and 

Bhave (1994) there exists no common definition of reliability of a WDS.  

Reliability studies can be seen as the first step to a complete risk analysis, providing not 

only the likelihood part (i.e., indicating if the network is able to supply water), but also 

including the consequence component that quantifies the impact in case of a failure 

(Kapelan et al. 2007). Only several applications related to WDS will be discussed here 

since reliability studies fall beyond the scope and focus of this thesis. Ostfeld (2001) 

classified WDS reliability studies as: topological (e.g., Wagner et al. 1988a) and 

hydraulic (e.g., Gupta and Bhave 1994; Todini 2000). Lansey (2006) in his overview of 

optimisation techniques applied to WDS highlighted the importance of taking reliability 

of newly designed or rehabilitated WDS into account as one of the design objectives. 

Farmani et al. (2005a) developed a single-objective reliability based optimization model 

for rehabilitation of WDS using fuzzy rules. Duan et al. (1990) presented a 

methodology for reliability-based design of WDS with a focus on number, location, and 

size of pumps and tanks. Farmani et al. (2005b) used multi-objective optimisation to 

obtain a trade-off between cost and reliability of a WDS.  

2.3.2 Applications of Risk 
The concept of risk has been successfully applied in various disciplines including 

military (Dillon et al. 2009) and business applications (Li and Liao 2007), the aircraft 

industry, food processing, software engineering (Lee 1996), etc. According to Egerton 

(1996) risk analysis and management were not commonly applied in the water utility 

sector until recently. She suggested that water companies in the UK were increasingly 

interested in risk analysis since it could help ensure maximum value for invested 

money. She also pointed out that with improved quality of data sources, risk analysis 

would be more frequently applied to optimise maintenance and operational processes. 

Consequently, Egerton (1999) reviewed a number of risk assessment techniques used in 

the water industry, particularly in water treatment works. She was then followed by 
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Pollard et al. (2004) and MacGillivray et al. (2006) who provided a comprehensive 

review of applications of risk analysis and management in the water utility sector from 

strategic, program and operational perspectives. Their works focused on a broad range 

of risks faced by water utilities worldwide rather than on specific applications of risk-

based methodologies, as presented below.  

Applications of risk in the water industry, reviewed below, can be broadly classified 

into quantitative, qualitative and quantitative-qualitative studies. Quantitative studies 

express risk in purely numerical terms, whereas in case of qualitative risk analysis 

linguistic terms and fuzzy logic (Zadeh 1975) were used. Hybrid studies typically utilise 

and combine both of these methods.  

Risk analysis techniques have received significant attention from the investigators 

dealing with water treatment and water quality issues (e.g., Sadiq et al. 2007; 

Francisque et al. 2009), primarily due to health and safety implications caused by 

failures. Recent studies have also emerged from several other fields including design 

and rehabilitation of WDS (e.g., Kapelan et al. 2006). Nevertheless, applications of risk 

analysis in near R-T WDS operation and failure diagnostics are currently lacking.  

Zongxue et al. (1998) applied quantitative risk analysis to evaluate the performance of a 

Water Supply System (WSS) during drought periods. They proposed an integrated 

drought risk index, defined as a weighted function of reliability, resiliency and 

vulnerability of the system studied. The consequences of drought were captured using a 

ratio of water deficit and water demand over a specific period of time. 

Cooper et al. (2000) built a trunk mains burst risk model using a Geographic 

Information System (GIS) for optimisation of a WDS maintenance program. Their 

consequence model was based on the cost of damage caused by major pipe breaks and 

included damage of properties combined with a flooding model evaluated using a GIS. 

They suggested that for low probability and high consequence pipe breaks a valve 

exercising program could be adjusted to ensure timely isolation in case of their failure. 

Dey (2001) developed a strategic risk-based DSS for inspection and maintenance of 

cross-country petroleum pipelines. Analytic Hierarchy Process (AHP) (Saaty 1980) was 
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used to identify factors that most influence the risk of failure of a specific segment of 

the pipeline.  

Rajani and Kleiner (2002) proposed a holistic methodology for pro-active renewal of 

water mains based on the level of risk associated with their failure. The authors 

discussed possible ways to quantify the probability and impact components of risk, 

however, they did not provide any specific details or models to do so. 

Sadiq et al. (2004a) presented a quantitative-qualitative framework for aggregative risk 

analysis of water quality failures in WDS using fuzzy logic. AHP was applied to aggregate 

individual risk factors in a hierarchical structure. Their approach, however, lacked an 

application on a real life case study. 

Sadiq et al. (2004b) used Monte Carlo simulations to perform quantitative risk analysis 

of corrosion associated failures of iron water mains. They suggested that the high degree 

of uncertainty in attributes that contribute to pipe failure requires a probabilistic 

analysis. The consequences of pipe failure were only quantified as a reduction of a 

Factor of Safety (FOS), which reflected a relationship between structural capacity of a 

pipe and its actual loads.  

Dewis and Randall-Smith (2005) presented a methodology to assess discolouration risk 

based on risk trees developed by a panel of experts. Their model considered the 

likelihood of pipe failure based on properties of an asset (e.g., a pipe). A demand driven 

Hydraulic Model (HM) was used to estimate changes in velocity in a WDS caused by 

pipe failure (i.e., burst). Simulation results together with additional input data were then 

combined using the aforementioned risk tree. As discussed by Vreeburg and Boxall 

(2007) other more advanced techniques to model discolouration exist (e.g., the 

Resuspension potential method or Cohesive transport model). 

Almoussawi and Christian (2005) used quantitative risk analysis to evaluate the 

performance of several designs of water distribution networks. They used a simple 

consequence model based on the amount of undelivered water due to isolation of a 

network segment and did not report on using a hydraulic solver to evaluate impact.  

Merrifield (2005) stressed the importance of risk analysis for effective asset 

management (i.e., a strategic application) and outlined key features of software to 
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enable it. No details of models to quantify likelihood and impact components of risk 

were provided. 

Michaud and Apostolakis (2006) presented a methodology for the ranking of elements 

of WDS based on quantitative risk analysis. They developed an impact model based on 

a value tree, considered different types of consumers and impact categories, however, 

only used graph theory to evaluate the impact of segment isolations. 

Tuhovcak et al. (2006) provided an overview of the most commonly used techniques of 

WSS risk analysis and described the implementation of Hazard Analysis and Critical 

Control Points (HACCP) methodology. They concluded that performance risk analysis 

of WSS was not very common in the Czech Republic and that methodologies from other 

industries are easily applicable. Later on, Tuhovcak and Rucka (2007) proposed a 

methodology for risk analysis of drinking WSS using the Failure Mode, Effects and 

Criticality Analysis (FMECA) (Department of Defense 1980). Application of such 

approaches from an operational perspective is not seen as suitable. 

Kapelan et al. (2006) compared the robustness and risk-based solution of multiple-

objective rehabilitation of WDS and concluded that the risk-based approach was 

superior since it considered the impact of hydraulic failures. Only a simple measure 

based on a fraction of assumed undelivered demand, evaluated using a demand driven 

hydraulic solver, was used to represent the consequences.  

Kapelan et al. (2007) developed a methodology to assess the risk of supply interruption 

due to mechanical failures. They used a pressure driven hydraulic solver to evaluate 

consequences of burst pipes, however, only based the impact metric on the amount of 

undelivered water irrespective of the type of consumers and other aspects of the failure 

impact.  

Filion et al. (2007) proposed a stochastic design of WDS considering the impact of low- 

and high-pressure failures in WDS. They quantified the consequences of a failure using 

expected annual damages sustained by residential, commercial, and industrial users. 

Liserra et al. (2007) assessed the vulnerability of a WDS by combining a demand driven 

HM with a GIS and argued that due to scarce data it was not possible to apply a 
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complex risk based approach like Failure Mode and Effects Analysis (FMEA). Failure 

to use a pressure driven hydraulic model in their study can be seen as a significant 

drawback. 

Beuken et al. (2008) used quantitative risk analysis to identify the most critical pipes 

(i.e., in terms of likelihood of burst and impact) within a WDS. In their study they 

applied an HM and a GIS in the impact evaluation. A set of impact factors reflecting the 

potential damage caused by a pipe burst was developed including surrogate models for 

water quality problems and public image of a water utility. 

Meoli et al. (2008) used an aggregated risk measure to prioritise replacement of water 

mains. They coupled a pressure driven HM with a GIS to evaluate the impact of supply 

interruption on two types of customers (i.e., key customers and others). However, due to 

performance implications they only evaluated the impact during morning peak demand 

and did not use extended period simulation.  

Thorne and Fenner (2009) developed a risk-based methodology to assess impacts of 

climate change on reservoir water quality. They argued that it was not only necessary to 

present the system operators with possible impacts of climate change, but also with the 

probability of their occurrence so that better informed decisions could be made. The 

authors represented risk as a product of probability and consequences, which might not 

be suitable for all decision-making situations as shown later in this thesis. 

Sadiq et al. (2007) used fuzzy logic and evidential reasoning to evaluate the risk of 

accidental water quality failures in WDS. Sadiq et al. (2008) and Lee et al. (2009) used 

fuzzy fault tree analysis to predict risk of water quality failures in distribution networks. 

None of the above water quality studies attempted to use an HM to model the 

consequences of the actual contaminant intrusion. 

Li (2007) used fuzzy fault trees in a hierarchical object-oriented risk assessment of 

components of WSS. The adopted qualitative approach might suit high level strategic 

decision-making, however, operational decisions would benefit from a quantitative 

approach and use of hydraulic modelling to better estimate consequences of a failure. 
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Christodoulou et al. (2009) developed a neuro-fuzzy DSS for risk-based asset 

management of water piping networks. Their work was mostly concerned with the 

relative probability of failure of a particular pipe, expressed in linguistic terms, and 

lacked the impact component of risk. A GIS was used to present the outputs of the risk 

analysis to a DM.  

Francisque et al. (2009) proposed a fuzzy-risk methodology to prioritise water quality 

monitoring locations within a WDS. The proposed method considered vulnerability of a 

particular area in the WDS to water quality problems depending on the hydraulics, 

structural integrity of pipes and various water quality parameters as well as sensitivity 

of the customers in that area (e.g., hospitals, day care centres, small children and old 

people).  

2.4 Burst Detection and Diagnostics 
This section reviews relevant literature dealing with the detection of abnormal events 

(e.g., pipe bursts and leakage) in WDS and their location (i.e., diagnostics) using data 

driven and model based techniques. The focus of the review is on methods for 

diagnostics (i.e., model-based location of bursts) and only key publications dealing with 

burst detection methods will be discussed here since the contribution of this thesis lies 

in the combination of multiple imperfect models. 

Detection of leaks and bursts has been vital for many other industries. The majority of 

failure detection methods for pipelines originated from the gas, oil and chemical 

industries where leakages can cause severe environmental impacts or represent health 

and safety hazards. Misiunas (2005) in his PhD thesis provided a review of burst 

detection and location techniques in both, pipelines and pipe networks. Methods based 

on steady and unsteady (i.e., transient) network conditions were discussed. A more 

recent review of leakage detection, location and management methods can be found in 

Puust et al. (2010). A broad range of methods was considered by the authors, including 

traditional techniques for leak detection and location, such as acoustic logging, step-

testing, ground motion sensors, ground penetrating radars, etc. Methods requiring field 

inspection, will not be considered here since they are beyond the scope of this thesis.  
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2.4.1 Data and Model Driven Anomaly Detection 
With recent advances in sensor technologies and Supervisory Control And Data 

Acquisition (SCADA) systems, “intelligent”, wireless pressure and flow sensors have 

been widely deployed to monitor the state of WDS in R-T (Mounce et al. 2010). Their 

data was used in combination with data and model-based methodologies in an attempt 

to detect and locate leakage or pipe bursts within a WDS. 

Verde (2001) presented a methodology, based on transient analysis, for detection and 

location of multiple-leaks in fluid pipelines based on a set of pressure and flow 

measurements taken at the ends of a duct. Given the focus of the methodology on 

pipelines only, its application in a WDS would be problematic.  

Khan et al. (2002) designed a low-cost turbidity sensor and tested its functionality in a 

real life WDS. Changes in water flow regime, such as sudden increases in flow caused 

by pipe bursts or flushing affect opacity of water flow (e.g., due to disturbance of 

sediments in the pipe).  

The use of ANNs to detect anomalies, such as pipe bursts, in a WDS has been explored 

by a number of researchers (e.g., Mounce et al. 2002; Romano et al. 2009). Mounce et 

al. (2003) coupled an ANN burst detection system with a rule based classifier to fuse 

outputs of several ANNs to identify the state (i.e., burst or no-burst) of multiple DMAs. 

They demonstrated the methodology on a hydrant flushing case study and also 

suggested that pressure gradients within a DMA might provide a more precise location 

of the burst pipe. Mounce and Machell (2006) compared the capabilities of several types 

of ANNs to detect bursts and leakage in DMA flow patterns and concluded that time 

delay neural networks performed better for leak detection than static networks. In 

Mounce et al. (2006) a Fuzzy Inference System (FIS) was used to classify discrepancies 

between DMA inflow predictions produced by an ANN and field observations. Alarms 

signalling an anomaly were then generated using fuzzy rules. Mounce et al. (2007) 

further improved their burst detection methodology to provide accurate estimates of 

average burst flow. Later on, Mounce et al. (2008; 2010) presented an application of 

their methodology in a near R-T environment and demonstrated its performance on real 

life case studies. The time window (i.e., 12h or 24h) used in their work for burst 

detection was in all cases rather wide, which can be seen as a significant drawback to 
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their approach. Late detection of the burst not only reduces the response time a water 

utility might gain to locate and fix the burst but it also makes further diagnostics (e.g., 

model based burst location) more difficult.  

On the other hand, Romano et al. (2009) worked with only a 30 minute time window in 

their Bayesian-based burst detection methodology. They utilised both pressure and flow 

measurement data from multiple sensors within a DMA to increase the accuracy of 

correct detection. The performance of the new methodology was demonstrated by an 

analysis of historical burst events. Its application in a near R-T environment, which 

represents significant challenges in terms of automatic re-training of the burst detection 

system, was not demonstrated by the authors.  

Buchberger and Nadimpalli (2004) proposed a statistical leak detection method for well 

defined residential DMAs. Their method required high frequency flow measurements 

taken during a minimum night flow period and was never tested in a real life WDS. The 

method provided certain advantages over traditional water audits, however, was 

unsuitable for R-T burst detection and location. 

Ragot and Maquin (2006) proposed a model-based methodology for detection of 

measurement faults (e.g., sensor failures) in water supply networks. A number of 

redundant models were first developed based on physical relationships between sensor 

measurements (e.g., flow mass balance relations, pressure-flow relationships, etc.). 

Residuals of sensor measurements and model expectations were generated and analysed 

using fuzzy logic to identify sensor failures. The method was tested on data obtained 

from a real life system. 

2.4.2 Anomaly Diagnostics 
A number of techniques for burst diagnostics (i.e., determining location of a burst pipe) 

based on the behaviour of pipe networks in unsteady (i.e., transient) state were 

developed. Colombo et al. (2009) and Puust et al. (2010) provided a comprehensive 

review of these methods. Only key publications from this field will be mentioned here 

since such methods typically rely on more expensive transient loggers, which are not 

commonly available. Moreover, most of the applications of transient techniques were 

only done in laboratory conditions or in pipelines and there has been very little evidence 

that they can be successfully applied in real WDS (Wu et al. 2010). The higher costs of 
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collection, processing and storage of high frequency data produced by transient loggers 

could be also seen as another disadvantage of such approaches. 

Wiggert (1968) was amongst the first to investigate unsteady flows in pipelines 

experiencing leakage. He concluded that the lateral outflow attenuated the pressure 

transient wave. The transient-based methods can be generally classified into: leak 

reflection methods (Brunone 1999), inverse transient analysis (Vitkovsky et al. 2000; 

Kapelan et al. 2003), impulse response analysis (Liou 1998), transient damping method 

(Wang et al. 2002) and frequency domain response analysis (Stoianov et al. 2001). 

A more promising approach to help locate leaks and bursts in a WDS is seen in various 

model-based methodologies that can be applied under steady conditions and do not 

require the collection of data at high frequencies. Pudar and Liggett (1992) were 

amongst the first to solve the inverse problem to locate leaks in a WDS using pressure 

and flow measurements under steady conditions. They argued that measurements should 

be taken at locations of maximum sensitivity and that the more over determined (i.e., 

the higher was the number of pressure measurements compared to the number of leaks 

in a WDS) the inverse problem, the better the results. It was suggested that the success 

of leak detection further depended on a particular configuration of a WDS, accuracy of 

pressure measurements, and accuracy of system characteristics such as pipe roughnesses 

and known demands.  

Evolutionary optimisation techniques were used by several researchers to solve the 

inverse problem of locating a leak. Puust et al. (2006) used the Shuffled Complex 

Evolution Metropolis (SCEM-UA) (Vrugt et al. 2003) optimisation algorithm to 

estimate the posterior probability density functions of leakage areas and demonstrated 

their approach on a synthetic case study with uncertain measurements. Wu and Sage 

(2006) used a Genetic Algorithm (GA) combined with a steady-state HM calibration to 

locate leakage hotspots within DMAs. Depsite its pressure sensitive character, leakage 

was modelled as constant demand. Deagle et al. (2007) presented the results of leakage 

hotspot identification using an HM on 3 real life DMAs. They used a GA to calibrate 

their HMs and incorporated leakage allocation into the calibration procedure. Wu et al. 

(2008) used GAs to optimise the pressure-dependent emitter locations and coefficients 

as possible leakage areas and illustrated the methodology on a real life network. Wu 



Chapter 2 - Review of Literature 

 33 

(2009; 2010) proposed a unified parameter optimisation approach, combining 

identification of leakage hotspots with Extended Period Simulation (EPS) HM 

calibration using a GA and demonstrated the methodology on a real life DMA in the 

UK.  

Misiunas et al. (2006) presented a methodology for detection and location of bursts in 

residential DMAs. They used a change detection test based on Cumulative Sum 

(CUSUM) to detect the burst and estimate its size. Consequently, the EPANET 

(Rossman 2000) hydraulic solver was applied to find the burst location by comparing 

the fit between modelled and measured changes in pressures in a DMA. The 

methodology was only demonstrated on a small synthetic case study, assuming real-

time pressure measurements at 3 locations within a DMA.  

Sterling and Bargiela (1984) presented a WDS state estimation algorithm and solved the 

problem of minimisation of measurement inconsistencies using linear programming. 

Gabrys and Bargiela (1999) examined the patterns of state estimates of a WDS using an 

ANN and developed a fault detection system capable of locating leakage. Andersen & 

Powell (2000) presented an implicit state estimation technique to locate a burst and 

demonstrated the methodology on a simple looped network without explicitly taking 

into account uncertainty and measurement errors. Izquierdo et al. (2007) developed a 

neuro-fuzzy approach to perform diagnostics of leaks and other failures and anomalies 

in a WDS based on network state estimation and data driven modelling. Their 

methodology has only been applied to a synthetic case study. 

Poulakis et al. (2003) developed a Bayesian probabilistic framework for pipe burst 

detection and showed the capability of the methodology to identify the most likely burst 

location on a synthetic case study based on a simple network. Uniformly distributed 

demands were assumed across the WDS studied. Furthermore, an unrealistic sensor 

density of 7 sensors per 30 demand nodes in this WDS was considered by the authors. It 

was concluded that measurement accuracy as well as sensor locations played an 

important role in successful burst location. 

Shinozuka et al. (2005) used a data driven technique to analyse pressure measurements 

collected from a WDS in order to determine the location and extent of damage of a burst 

caused by an earthquake. An ANN was trained to provide Euclidean distance from a 



Chapter 2 - Review of Literature 

 34

suspected burst location to a pressure monitoring station. The method was demonstrated 

on the same simple case study as used by Poulakis et al. (2003). The use of Euclidean 

distance might have been suitable for the WDS being studied, which was shaped as a 

rectangular grid with only two different pipe lengths, but could be inappropriate in other 

situations.  

Holnicki-Szulc et al. (2005) applied the Virtual Distortion Method to solve the inverse 

problem of locating leakages in a WDS. The method assumed a reliable numerical 

model of the WDS and continuous observation of pressure heads in the WDS. 

Measurement uncertainty was not accounted for by the authors and availability of 

pressure measurements at every node in the network was assumed. The application of 

the methodology was not demonstrated on real life data and the unrealistic assumptions 

stated above seriously restrict its applicability to real life WDS. 

Mashford et al. (2009) attempted to use Support Vector Machines (SVM), which act as 

pattern recognisers, to detect and locate leakage in a WDS. They trained two SVMs on 

synthetically generated noise-free data to predict leak size and leak location. The 

assumption of complete knowledge of a WDS without any uncertainties and availability 

of unrealistically accurate pressure measurements to detect small leakages makes the 

study infeasible for practical use. 

Recently, Borovik et al. (2009) presented an active burst identification procedure based 

on altering DMA inlet pressure during the minimum night flow period to obtain a 

gradient of pressure line. An HM was used to simulate bursts at different nodes of the 

network and the modelled gradient of pressure line was then compared with the 

measured one using chi-square test. The requirement to alter the DMA inlet pressure 

typically involves manual intervention (at least in the UK where the number of remotely 

controlled devices is generally low) and is, therefore, not suitable for R-T burst 

diagnostics. 

2.5 Failure Impact in WDS 
Failures in WDS occur on a daily basis, primarily due to ageing infrastructure or 

equipment failure, but often also due to damage caused by third parties. The magnitude 

and scale of their impact typically depends on a number of factors amongst which the 
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geographic location and topology of the WDS play an important role. Generally, three 

types of failures in WDS can be recognised: mechanic, hydraulic and water quality 

failures (Filion et al. 2007). Many researchers over the years tried to estimate the impact 

of failures in a WDS on its stakeholders and a number of Key Performance Indicators 

(KPIs) were developed. An exact quantification of failure impact is a highly subjective 

and complex problem, particularly because of differing social situations.  

The work done so far has focused primarily on impacts caused by pipe bursts, as part of 

strategic management and long term asset management plans (e.g., Skipworth et al. 

2002). With very few exceptions (e.g., Burrows et al. 2000) operational impact 

assessment has been mostly lacking.  

In the UK, the high standard of delivery of potable water is monitored by the Water 

Services Regulation Authority (OFWAT) using several KPIs, which amongst other 

aspects focus on long term pressure adequacy (i.e., Pressure of water mains – the DG2 

indicator) and continuity of water supply (i.e., Supply interruptions – the DG3 indicator) 

(OFWAT 2008). Such indicators provide only a long term overview of performance of a 

water utility and do not sufficiently reflect the impact of a failure on customers from an 

operational perspective.  

Most of the research dealing with failures in WDS (e.g., Gupta and Bhave 1994; Ostfeld 

et al. 2002; Kapelan et al. 2006) used the Fraction of Delivered Demand (FDD) and its 

similar forms as a KPI to assess the level of service. Although being an effective 

measure on large scale, FDD does not consider the sensitivity of individual customers to 

a reduced level of service and additional impacts, such as increased discolouration risk, 

lost water, etc.  

Rajani and Kleiner (2002) outlined direct, indirect and social costs associated with pipe 

failure but did not suggest how these should be quantified. Consequently, Rahman et al. 

(2005) developed a framework to estimate social costs related to infrastructure works, 

such as pipe burst repairs, which incorporated a number of aspects such as, property 

damage, traffic disruptions, environmental impacts and health and safety issues. They 

argued that failure to account for social costs might lead to poor decisions. Studying 

past projects was suggested as means for data collection to better quantify costs 
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associated with social impacts. Their framework is best suited to strategic applications 

due to the medium and long term character of some of the impacts considered. 

Mansoor et al. (2005) analysed the performance of WDS under failure conditions and 

proposed a number of operational and strategic performance indicators. They used an 

ANN to simulate the effect of pressure on nodal demands and improved the commonly 

used performance indicator based on the fraction of undelivered demand to incorporate 

different types of customers. The customers were divided into 4 classes (i.e., low 

income, medium income, high income) and their sensitivity was, therefore, primarily 

determined by their financial situation. Although such classification might be 

appropriate for less developed countries, its application in the UK could be 

questionable.  

Beuken et al. (2006) studied external effects of pipe bursts, such as damage and injuries 

in the proximity of the burst pipe. They performed a strategic risk analysis using a GIS 

to identify high risk pipes depending on their proximity to important structures (e.g., 

railway, main roads, bridges, etc.). Beuken et al. (2008) further extended their 

consequence model to account for the following impacts: supply interruption, low 

pressure, water quality, public image and direct costs. They suggested suitable measures 

to quantify these impacts from a strategic perspective and used a GIS and an HM to 

identify critical valve sections in a WDS. Furthermore, a rule based system was applied 

to aggregate the above listed impacts.  

Trietsch and Mesman (2006) performed a strategic analysis of the reliability of valves in 

a WDS to isolate a burst pipe. They only considered complete interruption of water 

supply and did not use an HM to evaluate potential secondary low pressure problems. 

Walski (1993) was one the first who pointed out the importance of considering the 

location of valves in WDS reliability studies. He argued that often not only one pipe is 

taken out of service to carry out burst repairs but rather a segment of pipes is 

disconnected depending on the location and functionality of isolation valves. Jun et al. 

(2007; 2008) presented an efficient algorithm to identify segments in a WDS and 

evaluated the system wide impact of valve failures from a strategic perspective. Low 

pressure problems or other types of impacts, such as water utility’s financial losses were 

not considered by the authors.  



Chapter 2 - Review of Literature 

 37 

Recently, Giustolisi et al. (2008a) evaluated the impact of segment isolations in a WDS 

over an EPS using a pressure-driven HM. They proposed several operational KPIs 

based on the amount of undelivered demand, however, they did not capture the effects 

of the burst before it was isolated and also did not take into account the sensitivity of 

customers.  

Michaud and Apostolakis (2006) analysed the criticality of network elements in a WDS 

using graph theory. They proposed a hierarchical value tree to aggregate impacts (i.e., 

health & safety, company image, financial and environmental) of pipe isolation using 

the Multi-Attribute Utility Theory (MAUT). Several types of customers were 

considered by the authors. Their strategic assessment did not take into account locations 

of isolation valves and neither used an HM to evaluate the full effect of segment 

isolation (e.g., low pressure problems).  

Vamvakeridou-Lyroudia et al. (2009) proposed a hierarchical structure to aggregate 

multiple KPIs calculated using a pressure driven HM. The factors considered included 

supply interruption, low pressure, discolouration, and economic impacts to assess the 

effectiveness of interventions (e.g., valve manipulation) to mitigate the impact of 

unintended isolation. The proposed hierarchical structure seemed too rigid to provide a 

DM with sufficient flexibility to express his/her preferences. 

Water quality problems, such as discolouration or contaminant intrusion, caused by 

pressure and flow disturbances triggered by a pipe burst or consequently repair works, 

have been mentioned by many (Rajani and Kleiner 2002; Sadiq et al. 2005; Sadiq et al. 

2006; Beuken et al. 2008). However, quantification of such impacts has been difficult 

and often only surrogate measures were used. Dewis and Randall-Smith (2005) 

developed a discolouration model based on risk trees developed by a panel of experts 

and applied it to estimate the increase in discolouration potential of all pipes in the 

WDS after a failure. As Vreeburg and Boxall (2007) pointed out using a discolouration 

model based on shear stress (Boxall and Saul 2005) would be more appropriate than the 

adopted approach.  

Burrows et al. (2000) developed a near R-T WDS performance evaluation system, 

based on EPANET and a GIS. They used demand driven EPANET to develop a specific 

regression formula for every node in the network. Pressure at a node was a function of 
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boundary conditions of the HM (i.e., inlet pressure and flow, export flows and pressure 

measurements in a DMA). Their approach, which considered also dynamic model re-

calibration thus enabled a truly near R-T impact assessment. The impact model, based 

only on a demand driven solver, simply considered low pressure impacts on customers 

linked with an HM through an integrated information system. 

2.5.1 WDS Modelling Under Failure Conditions 
Modelling of WDS has become a widely applied practice amongst academics and 

practitioners of water utilities. It is most frequently applied to simulate the operational 

behaviour of a WDS, for planning, design (Savić and Walters 1997; Kapelan et al. 

2005b), rehabilitation  purposes, etc. Hardy Cross (1936) developed the first numerical 

method to solve looped WDS in the 1930s and established the foundations for future 

use of this technique on computers. Adams (1961) used a computer to model the 

hydraulics of a WDS using Cross’ method in 1960s. He was shortly after followed by 

Shamir and Howard (1968) who used a more powerful Newton-Raphson method. Since 

then various methods (Todini and Pilati 1988) have been developed to solve the mass 

and energy conservation equations used to describe the behaviour of a WDS (Walski et 

al. 2003; Kapelan et al. 2005b).  

Traditionally, WDS were modelled under the assumption that demands are always 

delivered. Such an approach is also referred to as demand driven analysis, however, 

under pressure deficient conditions the assumption of fixed demands at nodes does not 

hold. When insufficient pressures are available in a WDS the nodal demands cannot be 

completely satisfied. Bhave (1981) was one of the first who studied the behaviour of 

WDS under pressure deficient conditions and reformulated the mass and energy 

conservation equations to include Pressure Dependent Demands (PDD), sometimes also 

referred to as Head Driven Analysis (HDA) or Pressure Driven Analysis. Since then a 

number of different formulations describing the dependence of nodal demand on 

available pressure have emerged (Germanopoulos 1985; Wagner et al. 1988b; Reddy 

and Elango 1989; Gupta and Bhave 1996; Fujiwara and Li 1998; Tucciarelli et al. 1999; 

Tanyimboh et al. 2001; Wu et al. 2006).  

As suggested by Gupta and Bhave (1996) the approach of Wagner et al. (1988b) has 

yielded the best results. This fact has been further proven by its application by many 
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other researchers (e.g., Cheung et al. 2005; Giustolisi and Doglioni 2005; Morley and 

Tricarico 2008). Cheung et al. (2005) implemented Wagner’s formula in the EPANET 

(Rossman 2000) hydraulic solver. They concluded that pressure driven formulations by 

Fujiwara and Li (1998) and Tucciarelli et al. (1999) produced similar results and that 

testing on larger networks was necessary.  

Hayuti and Burrows extensively studied HDA and have extended the EPANET solver to 

support such analysis (Hayuti and Burrows 2004; Hayuti and Burrows 2005; Hayuti et 

al. 2006; Hayuti et al. 2007). They called their approach Simple Sequential HDA 

Solution Seeking (SSS) demand driven approach. They iteratively called the EPANET 

solver to identify all pressure deficient nodes and modified their outflows according to 

Wagner et al. (1988b). Their approach was computationally extremely inefficient and 

PDD should be directly implemented in the hydraulic solver as done by, e.g., Giustolisi 

and Doglioni (2007).  

Todini (2003), Ozger and Mays (2003), and Ang and Jowitt (2006) proposed very 

similar approaches, which instead of modifying nodal demands according to available 

pressure, connected / disconnected an artificial reservoir to pressure deficient nodes. 

Water was allowed to flow only from the node to the reservoir (i.e., the reservoir was 

disconnected if the outflow was negative and started to drain water from the reservoir 

into the system). The major benefit of their approach was that no calibration parameters 

(i.e., describing the pressure-demand relationship) were required unlike in the case of all 

the other previously mentioned methods. The only reasonable assumption made was 

that customers experiencing pressure deficient conditions drew as much water as 

possible (i.e., up to the requested demand). 

Rossman (2007) commented that the approaches described above were also 

computationally demanding since every iteration consisted of running a full hydraulic 

simulation of EPANET and the addition or removal of artificial reservoirs as needed 

until convergence was achieved. Another argument against this technique was made by 

Wu (2007) who pointed out that implementation of EPS, was in such a technique, 

difficult if at all possible. However, Rossman (2007) showed that the above mentioned 

algorithm (SSS) could be efficiently implemented in EPANET using emitters by 

introducing an extra status array which controlled their state and activated them only in 
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pressure deficient situations when system pressures were above 0 m. Recently, Morley 

and Tricarico (2008) extended the pressure driven implementation of EPANET 

proposed by Rossman (2007) to allow for any pressure - demand relationships and used 

Wagner’s representation as the default one. 

Giustolisi et al. (2008c) developed a steady-state network simulation model, which 

integrated PDD and leakage at pipe level into hydraulic representation. The authors 

stressed the importance of a more realistic simulation model allowing for leakage 

analysis, verified its convergence and concluded that the proposed algorithm was 

robust, which was not the case in most of the PDD modifications discussed above. It 

was further noted that PDD simulation generally resulted in higher pressures in a WDS. 

Consequently, Giustolisi et al. (2008b) extended the robust pressure driven simulation 

model discussed above and incorporated an algorithm for an automatic detection of 

topological changes in pipe networks due to interruptions. Nodes and pipes that were 

not linked to any source were removed from the set of hydraulic equations. The newly 

developed algorithm was demonstrated on a real life pipe network. It was concluded 

that the newly proposed algorithm was robust in terms of numerical accuracy and 

convergence rate but was computationally demanding. 

2.5.2 Pipe Burst Modelling 
Modelling of pipe bursts has received significant attention in the literature, primarily 

due to its significance in reliability studies and risk assessment. This section provides 

details about modelling of pipe bursts in the EPANET (Rossman 2000) hydraulic 

solver, which has de facto become a standard software package used by the academic 

community. Depending on the purpose of the simulation (e.g., reliability analysis, etc.) 

as well as the capabilities of the hydraulic solver used, the methods of modelling pipe 

bursts can be broadly divided into two classes depending on the type of analysis: (1) 

Strategic decision-making or (2) Operational decision-making.  

2.5.2.1 Strategic Applications 

In strategic applications, the time over which a pipe needs to be isolated for repairs is 

dominant and, therefore, the outflow from a burst before the isolation takes place is 

neglected. The simplest technique applied by several researchers (e.g. Farmani et al. 
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2005b) was to disconnect the failed pipe. In EPANET a single pipe can be disconnected 

in the following ways: 

• set its status to CLOSED 

• set its diameter to a very small number (e.g., 0.0001) 

• physically remove the pipe from the network 

The physical removal of the failed pipe, although being the most difficult one to 

implement, can be considered as the best option since it effectively reduces the 

complexity of the governing nonlinear equations and thus speeds up the convergence of 

the gradient algorithm (Todini and Pilati 1988) used in EPANET. It also eliminates 

potential convergence problems caused by the first two approaches, which introduce 

abnormally high resistance coefficients in the hydraulic equations.  

Furthermore, as noted by Walski (1987; 1993) and Jun et al. (2007; 2007; 2008) another 

limitation of such an approach is that it does not respect the location of isolation valves 

in the real network (note that isolation valves are not typically included in HMs). This is 

vital since it is often necessary to isolate a segment of pipes due to the location of the 

valves or because of the inability to shut a valve which has not been exercised regularly. 

As an example Jun et al. (2008) reported that there were approx. 4.3% of inoperable 

valves in a studied WDS. An unintended isolation of additional segments can occur 

downstream when pipes are isolated for repairs. 

2.5.2.2 Operational Applications 

From an operational view, typically the outflow from the burst is modelled to observe 

the effects of an abnormal demand (e.g., drops in pressures) on the rest of a WDS. 

Hayuti and Burrows (2005), and Mansoor and Vairavamoorthy (2003) modelled pipe 

bursts in EPANET by inserting an artificial reservoir in the middle of a pipe and setting 

its water surface level to correspond to the elevation of the pipe. The outflow through 

the pipe was then controlled by changing its properties (i.e., diameter, length and 

roughness). Placing the burst into the centre of a pipe is an approximation which is 

reasonable for relatively short pipes, however, might become less applicable in rural 

areas where pipe lengths tend to be significantly longer than in urban areas. 
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More frequently, pressure sensitive outflows are modelled using emitters, which are 

devices used typically to model sprinklers or irrigation networks governed by the 

equation for orifice flow (Walski et al. 2003): 

ghACQ d 2=  (2.1) 

where: Q is the outflow (discharge), Cd is a discharge coefficient, A is the area of an 

orifice, g is the gravitational acceleration constant (9.81 ms-2), and h is the head loss 

across orifice (m). 

The orifice equation can be generalised and written as:  

dQ C Pγ=  (2.2) 

where: Q is the flow rate, P is pressure at junction, Cd is a discharge coefficient and γ is 

a pressure exponent. 

The generalised orifice equation is used in EPANET to model pressure sensitive 

outflow, such as leakage or pipe bursts. 

Studying the behaviour of bursts and leakage has attracted the attention of many 

researchers. Van Zyl and Clayton (2005; 2007) investigated factors affecting magnitude 

of pipe a burst. They identified four primary factors: (1) leak hydraulics, (2) pipe 

material behaviour, (3) soil hydraulics and (4) water demand. Van Zyl and Clayton 

(2007) further noted that specific types of failures are likely to develop depending on 

pipe material. Results of their experimental study related pipe material and type of the 

opening to the pressure exponent γ which had the most significant effect on the flow 

through a burst. The value of γ typically ranged from 0.52 to 1.85 for round holes and 

longitudinal cracks, respectively. Lambert (2002) reported that values of γ typically 

ranged from 0.5 to 1.5 and occasionally also between 2.0 and 2.5 during field tests 

conducted in the UK. Lately, Cassa et al. (2010) conducted a numerical study into the 

effects of pressure on holes and cracks and concluded that values of γ > 1.5 did not have 

theoretical justification. The above reported findings could be exploited to produce a 

more realistic model of leakage and bursts in a WDS by assigning the most likely values 

of pressure exponent to bursts in pipes according to their material and additional 

properties. 
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2.6 Information Fusion 
With the increasing availability of sensors and measurements, information fusion has 

become a popular approach in order to infer maximum information from collected data. 

Amongst other available techniques, the Dempster-Shafer theory (D-S) of Evidence 

(Shafer 1976) represents a suitable mathematical framework to combine uncertain 

information. Sentz & Ferson (2002) provided a review of applications of D-S theory in 

various disciplines including classification and recognition (Polikar 2006; Oukhellou et 

al. 2010), decision-making (Tanaka and Klir 1999), engineering and optimization 

(Agarwal et al. 2004), fault detection (Chen and Aickelin 2006), failure diagnostics 

(Rakar et al. 1999; Basir and Yuan 2007), target tracking (Dezert et al. 2006), etc. 

A limited number of applications of evidence theory can also be found in the water 

industry. Most frequently, it has been employed in water quality problems or strategic 

applications. However, its use on operational problems has been limited, unlike in other 

fields, including, e.g., military applications (Dezert et al. 2006). 

Demotier et al.(2003) applied the Transferable Belief Model (TBM), which is an 

extension of D-S theory proposed by Smets and Kennes (1994) to risk analysis of water 

treatment processes. No application of the methodology on a real life case study was 

reported by the authors.  

Sadiq and Rodriguez (2005) and Sadiq et al. (2006) used D-S theory to interpret water 

quality data. They explored the potential of four combination rules (i.e., Dempster’s, 

Yager’s, Dubois-Prade’s and Dezert-Smarandache’s rules) and discussed their 

limitations, particularly with respect to combining conflicting evidence. The authors did 

not attempt to determine the most suitable combination rule for their particular decision-

making context. 

Li (2007) used D-S theory and fuzzy logic to aggregate risk levels in a hierarchical risk 

assessment of components, subsystems, and the overall WSS. The proposed 

methodology lacked the calibration of fuzzy membership functions representing hazards 

in a WDS, however, it was suggested that they could be determined from analysis of 

historical data. 
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Bai et al. (2008) used Dempster’s combination rule in a hierarchical aggregation of 

evidence to assess the condition of buried pipes. Only Dempster’s combination rule was 

used by the authors, despite evidence in the literature that the selection of a particular 

combination rule is problem specific. 

2.7 Summary & Conclusions 
This chapter provided a review of literature related to risk-based operation of WDS 

under failure conditions, particularly when pipe bursts occur. Given the multi-

disciplinary character of this research a number of areas were covered, including 

decision-making and decision support, risk-based methodologies, pipe burst diagnostics, 

WDS failure impact assessment including pressure driven WDS modelling and 

information fusion. 

In section 2.2 the key publications dealing with decision-making and decision support, 

with an emphasis on applications of DSS in R-T were reviewed. The key conclusions 

that can be drawn from the current research are summarised as follows: 

• Decision support systems have gained popularity in a number of industries and 

recently also in the water sector. 

• Optimisation algorithms and artificial intelligence methods are commonly 

becoming part of modern DSS. 

• The number of applications of R-T DSS in the literature is scarce compared to 

R-T ES used to solve structured problems. This can be explained by difficulties 

with the presentation of R-T data to DMs and insufficient performance of 

conventional computers in the past. 

• It can be expected that the number of R-T DSS will be increasing because the 

current trend is to support expert judgement rather than trying to replace it 

completely by AI (Koutsoyiannis et al. 2003). 

• High efficiency of DSS in terms of their performance is crucial for any kind of 

R-T application and, therefore, off-line pre-computing of results and the use of 

surrogate models have been frequently applied. 
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From the review of applications of risk presented in section 2.3 it can be concluded that: 

• Risk assessment of WDS has primarily focused on strategic applications. It can 

be argued that until recently the computing power available prevented 

operational applications requiring near R-T performance. 

• The number of applications of risk to water quality problems clearly dominates 

other research areas. 

• The lack of research in the field of risk analysis applied to the failure 

management of WDS is apparent, which creates the grounds for the work 

addressed in this thesis. 

• Frequently, the measure of risk, comprising the probability and consequence 

components (Kaplan and Garrick 1981), has been presented to DMs in an 

aggregated form. As shown in this work, this can be often avoided and can lead 

towards better informed decisions. 

Section 2.4 provided a review of model based pipe burst diagnostics methods. 

• It can be seen that despite the progress achieved in the field of pipe burst 

diagnostics there is little evidence that the methods reviewed, when used on their 

own, are ready to be applied in real life conditions for operational decisions. 

• The application of transient techniques is seen as problematic since the 

published results are typically not based on real water distribution networks that 

exhibit much higher noise levels than pipelines studied under laboratory 

conditions. 

• The R-T environment considered in this work also presents a significant obstacle 

for a number of methods presented in this section. 

• Up to now none of the proposed techniques attempted to combine the outputs of 

several models in order to determine the location of a burst pipe within a DMA. 

In section 2.5 a review of commonly used performance indicators to capture the impact 

of failures in WDS was provided. The following can be observed: 
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• The performance indicators currently used by researchers and practitioners do 

not fully satisfy the requirements of operational impact assessment. The majority 

of them suit best strategic applications, concerned with whole-life cost of assets 

and frequently they are unable to capture the wide range of adverse effects 

caused by failures, such as pipe bursts. 

• HMs have been frequently coupled with a GIS in order to include customer 

information and land use data from the proximity of a failure to quantify its 

impact on the principal stakeholders. 

• As pointed out by many (Wagner et al. 1988b; Gupta and Bhave 1994) the use 

of pressure driven HMs is imperative when studying WDS under pressure 

deficient conditions, which has not always been the case in previous research. 

• The use of complex impact models (e.g., Beuken et al. 2008), capturing a wide 

range of effects of a failure on stakeholders has been limited and such models 

have not been applied to operational impact assessment. Furthermore, studies 

investigating the preferences of water companies in terms of significance of 

various types of impacts (e.g., supply interruption, inadequate pressure, 

discolouration, etc.) are lacking. 

• As stated by many (e.g., Gupta and Bhave 1996; Tanyimboh and Tabesh 1997, 

etc.), the behaviour of a WDS under pressure deficient conditions is a complex 

phenomena which is not well understood. A particular difficulty is caused by an 

uneasy collection of sample data from real WDS because simulation of such 

conditions can affect customers. 

• The inclusion of HDA has only minimum impact on computational efficiency 

but on the other hand models the behaviour of a WDS under pressure deficient 

conditions more realistically (Germanopoulos 1985). 

• From an operational perspective, bursts should be modelled as pressure sensitive 

outflows from a WDS, using emitters. Information about the properties of a 

burst pipe, such as its material could be used to set the most likely value of 

pressure exponent to more accurately capture the behaviour of a failure. 
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Finally section 2.6 provided a brief overview of the application of information fusion, 

with an emphasis on D-S theory, from a number of fields, including the water industry. 

It can be concluded that: 

• D-S theory has become a popular mathematical tool for information fusion 

across many industries, however, its application in the water sector has been so 

far limited. 

• The choice of the most suitable combination rule in information fusion is 

problem specific and no single rule can perform well in all situations. Selection 

of a combination rule should, therefore, be carefully determined as part of the 

development of an information fusion model. 

• D-S theory has been applied in R-T applications in other industries, 

predominantly in military applications and pattern recognition problems, 

however, its operational use in the field of WDS has been so far limited. 
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CHAPTER 3 RISK-BASED PIPE BURST 
DIAGNOSTICS 

3.1 Introduction 
Dealing with failure conditions in a WDS is one of the primary functions of control 

room operators. The process of discovering that a WDS is not functioning normally, 

investigating potential incidents and deciding on how to deal with them is still 

challenging, even with recent progress in monitoring and communication technologies. 

Data coming from sensors and notifications from customers in the form of phone calls 

are the two main indicators that a problem that warrants further investigation and 

possibly repairs has occurred in a WDS. The operator then typically has to check and 

process information coming from various systems in order to assess whether the 

perceived incident in the network is real, rather than a consequence of malfunctioning 

monitoring and communication devices. The investigation depends strongly on the 

internal business processes of a particular water utility but frequently requires a field 

technician to be sent out to visually inspect the situation at a particular location and 

confirm (or not) the potential incident. Furthermore, in situations when several alarms 

(i.e., detected abnormal events, such as pipe bursts) occur simultaneously in the same 

time horizon, the operator usually has to prioritise both investigative and intervention 

actions with dynamically changing information about the potential incidents. Most 

decisions are currently made on an ad-hoc basis, primarily based on the experience of 

skilled operators.  

This chapter presents a methodology to enhance the decision-making of WDS operators 

when dealing with abnormal situations (e.g., increased DMA inflows) in a WDS caused 

by pipe bursts. The chapter is organised as shown in Figure 3.1, which also indicates the 

mutual relationships between constituents of the proposed methodology. First, in 

section 3.2 the conceptual development of a risk-based decision-making methodology to 

support near R-T diagnostics of burst pipes within a DMA is discussed. Then the 

components of a risk metric (i.e., the likelihood and impact) used in this work are 

described in detail in the following sections. A novel method to estimate the likely 

location of a burst pipe within a DMA in near R-T is proposed in section 3.3. The 

method is based on the fusion of evidence provided by a number of models. The 
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combined results, generated using a Dempster-Shafer (D-S) model, form the likelihood 

component of the above mentioned risk metric. An impact model able to capture various 

operational aspects of adverse effects caused by a pipe burst is described in section 3.4. 

The impact model, based on the Multi-Attribute Value Theory (MAVT), completes the 

risk metric and provides control room personnel with an insight about the expected 

consequences of a burst in different parts of a DMA, if left unattended. Often, multiple 

failures can occur in a similar time horizon (e.g., during 24 hours) in different parts of a 

large WDS. Such situations require operators to prioritise their actions due to limited 

resources. A novel ranking methodology is introduced in section 3.5, which is able to 

prioritise alarms based on an overall aggregated level of risk they represent, to help 

control room operators deal with the most severe failures first. 

3.2 Risk-Based Burst
Diagnostics

3.3 Likelihood Model 3.4 Impact Model

3.5 Abnormal Event
Prioritisation

 

Figure 3.1 Structure of the risk-based pipe burst diagnostics methodology 

3.2 Risk-Based Decision-Making 
Nowadays, WDS are typically divided into DMAs to better account for and reduce 

leakage. Within a DMA all water inputs and outputs are measured to allow monitoring 

of consumption trends of water consumers. The number of properties supplied by a 

DMA is usually between 1,000 to 5,000 (Burrows et al. 2000), however, this may vary 

depending on topographic and demographic characteristics of an area. Thanks to 

technological advances, the cost of pressure and flow monitoring devices has reached 

the level that enables their large scale deployment at strategic locations in DMAs 

(Kapelan et al. 2005c). The wide availability of pressure and flow data has triggered 

research into early warning systems (Mounce et al. 2002; Mounce et al. 2003; 

Buchberger and Nadimpalli 2004; Romano et al. 2009) and lead towards their 
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application in real life WDS to detect leaks and bursts (Mounce and Boxall 2010; 

Mounce et al. 2010). 

Currently, the online early warning systems (i.e., pipe burst detection systems) typically 

do not go beyond generating an alarm (see Figure 3.2) to notify control room personnel 

of possible problems in a particular DMA that exhibits abnormal flow and/or pressure 

patterns.  

Failure
(e.g., pipe burst)

Anomaly
(e.g., flow 
increase)

Detector
(e.g., ANN-FIS)

Alarm
causes generatesIs detected

by

 

Figure 3.2 A conceptual diagram of the alarm generation process 

Such an alarm, which carries information about the likely timing of a burst, its size and 

ID of the DMA where it occurred (without providing information about the exact 

location of the burst within a DMA) is a starting point for the risk-based pipe burst 

diagnostics methodology presented in this thesis. It was assumed here that the detected 

flow anomalies are the result of a single failure (i.e., a pipe burst within a DMA). This 

assumption might not hold every time and it is possible that multiple pipe bursts could 

occur within a DMA. Given the typical size of DMAs discussed above (i.e., 1,000 – 

5,000 properties) such situations are not very common. Analysis of main pipe repair 

data of Yorkshire Water in the UK, over a period of eight years, has shown that multiple 

main pipe repairs were carried out in the same DMA during the same day in 10.2% of 

cases (i.e., in total there were 55,641 main repairs carried out). This analysis was based 

on main pipe repair data and not directly on detected burst times and dates. It is possible 

that main repair records could contain some follow up actions (e.g., another burst 

occurred as a result of the repair work) and the number of simultaneous bursts that 

occurred in one DMA during one day might be significantly lower. This, however, does 

not prevent the simultaneous occurrence of failures in multiple DMAs, which is not 

uncommon given the size of WDS (e.g., more than 2,100 DMAs in case of Yorkshire 

Water in the UK). Multiple failures are likely to occur particularly under severe weather 

conditions (e.g., extended periods of air frost). According to the above mentioned 

dataset 89.7% of main repairs were carried out in different DMAs during the same day. 
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A burst detection system monitoring only flow measurements is typically unable to 

distinguish between a pipe burst and an abnormal demand (e.g., caused by a fire flow, 

etc.). If the increased demand is not localised (as in the case of a burst) the risk analysis 

presented here could provide incorrect results since both, the likelihood component of 

risk (i.e., the likely location of a burst pipe) as well as the impact component would be 

based on an erroneous assumption. 

Following the above assumptions a one-level (i.e., only one failure at a time) fault tree 

analysis (Vesely et al. 1981) of every detected anomaly (i.e., an alarm) is performed as 

suggested in Figure 3.3. The outcome of the analysis is a set of potential incidents, 

which typically comprises every pipe segment in the affected DMA. Additional types of 

failures, such as pump or valve failures could be included in the analysis as well. The 

focus of this thesis is an investigation of pipe bursts only and other failure types will not 

be discussed here.  
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Figure 3.3 A high level overview of the risk-based diagnostics methodology 

The diagram in Figure 3.3 provides an overview of the risk-based pipe burst diagnostics 

methodology. Moreover, it also highlights the key components of the whole 

methodology (using different colours). These are mainly the models to estimate the 

likely location of a burst pipe and its impact as well as the alarm prioritisation model, 

which ranks alarms in the order of their significance based on the overall level of risk 

they represent. 

Each potential incident identified during the preliminary diagnostics phase can be 

characterised with a certain level of risk as indicated in Figure 3.3. The definition of risk 

used in this work was adopted from Lowrance (1976), as a measure of likelihood and 

impact of adverse effects. The risk metric can thus be defined as R=f(L,I) where R 
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stands for the risk, L represents the likelihood of burst occurrence and I represents its 

impact. The above adopted definition implies that risk of potential incidents is not 

aggregated before it is presented to a Decision Maker (DM).  

Presenting the risk to a DM in a non-aggregated form using risk maps (see, e.g., 

Figure 3.4) brings a number of advantages. First of all the spatial distribution of risk can 

be fully revealed. Because risk was not aggregated, no assumptions about the DM’s 

preferences between impact and likelihood were made. Risk-based pipe burst 

diagnostics thus leads towards better informed decisions compared to the state of the art 

methods, based primarily on ad-hoc investigations and experience of WDS operators.  

 

Figure 3.4 An example risk map of a real pipe burst 
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One of the advantages of the use of risk maps is that they allow an easy identification of 

important potential incidents, requiring the attention of a DM. Such potential incidents 

have typically low likelihood of occurrence, but on the other hand, very high impact in 

comparison to other cases. If the likelihood and impact components of risk are 

aggregated prior to the visualisation it is impossible to immediately differentiate 

between potential incidents with high impact and low likelihood of occurrence and their 

counterparts having low impact and high likelihood of occurrence.  

During the risk-based diagnostics all elements within the set of potential incidents (see 

Figure 3.3) undergo a full risk assessment. The real incident (i.e., cause) which triggered 

the alarm and the consequent diagnostics should (ideally) be a member of this set and 

have a higher likelihood of occurrence than other potential incidents. To visualise the 

risks of individual potential incidents, the risk maps can be also rendered in the form of 

scatter plots (see e.g., Figure 3.5). The scatter plot displaying the non-aggregated risk of 

potential incidents (i.e., likelihood and impact) provides a more intuitive means to 

compare overall risk of alarms in order to distinguish their mutual significance. This 

will be investigated further in section 3.5, where an alarm ranking methodology is 

presented. 

The likelihood of occurrence will probably be the primary criteria to drive the field 

investigations. The operator, however, may also choose to investigate pipe bursts with 

lower likelihood but higher impact. This could be the case in situations when the impact 

of a burst in elevated parts of a DMA would cause low pressures, ultimately leading to a 

full interruption of water supply. Even if the likelihood of pipe burst occurrence in such 

parts of the system was lower, the risk might still be unacceptable for the water utility. 

To clearly identify such pipes (i.e., low likelihood of occurrence and high impact), it is 

vital that the risk of each potential pipe burst is presented in a non-aggregated form. The 

key advantage of the proposed approach is that the DM can make a risk-aware decision 

when it is possible to consider the trade-off between the likelihood of burst occurrence 

and the impact of the failure at a given location.  
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Scatterplot of the Likelihood vs. Impact
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Figure 3.5 A scatter plot showing distribution of risk of two alarms 

In most applications of strategic risk analysis, the risk of a failure can be managed by 

reducing the probability of its occurrence or mitigating its consequences. In the context 

of operational risk analysis presented here, the likelihood component of risk does not 

refer to the traditional understanding of probability as the frequency of occurrence of a 

failure (e.g., return period of a flood, etc.) but instead suggests the fact that the 

occurrence of a failure on one element is more likely than on another. Unlike in 

strategic applications, the likelihood component of risk, therefore, cannot be reduced by 

the replacement or rehabilitation of assets in the short term operational horizon, since 

the failure has already occurred and only its exact nature is unknown. Moreover, the risk 

metric considered here can be dynamic and evolve with time, depending on new 

evidence available (e.g., field measurements or investigations). On the other hand the 

consequence component of risk of a failure could be reduced by a fast intervention (e.g., 

temporary valve manipulation). The possible ways to mitigate the impact, however, fall 

beyond the scope of this thesis and will not be discussed here. 

Following the general description of the risk-based decision-making approach 

individual models to quantify the likelihood and impact components of risk are 

described in the next two sections. 
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3.3 Likelihood Component of Risk 
As discussed in the literature review in section 2.4, locating a burst within an affected 

DMA using data and model-based methods is a challenging task. A number of emerging 

methodologies are available (e.g., Misiunas et al. 2006; Wu et al. 2010), however, none 

of them seems to be entirely fit for the purpose of a near R-T pipe burst diagnostics 

required in this work. In situations of great importance, one frequently seeks an opinion 

of others before making a final judgement. Consulting a number of experts in order to 

reach a better informed decision seems to be natural in decision-making by humans. 

However, similar approaches have only recently started to be applied in automated 

decision-making (Polikar 2006). Given the severe time constraints, highly uncertain 

environment and limited availability of measurements in the field, it is argued here that 

such conditions can benefit from utilising information fusion (Nilsson and Ziemke 

2007) to combine available evidence from multiple sources providing an indication of 

the likely/unlikely location of a burst pipe. 

A methodology for combining outputs of several models, including a Pipe Burst 

Prediction Model (PBPM), a Hydraulic Model (HM) and a Customer Contacts Model 

(CCM) is proposed here to improve the potential for reliable and rapid identification of 

the possible location of a pipe burst. This is essential to water companies, reflecting a 

proactive approach that attempts to detect and fix failures in a WDS before they start 

affecting customers. Proactive response to failures (i.e., their detection, location and 

repair) is not always possible (e.g., due to the time required to receive and process data 

from the field or dispatch a leakage team) and in some situations the water utility can 

only react after a problem is first reported by customers.  

In the proposed methodology, information provided by individual models is fused 

together, using D-S theory of Evidence (Shafer 1976). The combined output, which 

encapsulates the varying credibility of the individual models, provides spatial 

distribution of Belief and Plausibility (see e.g., Figure 3.6) of failure of any pipe in the 

WDS being studied to support the decision-making process by an operator in a control 

room. This evidential reasoning approach further reduces the information load faced by 

operators and increases confidence in the results that are supported by several models. 
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Figure 3.6 An example of spatial distribution of Belief and Plausibility 

The rest of this section is organised as follows. First the theoretical concepts of D-S 

theory necessary to understand the information fusion process proposed here are 

introduced. Then the individual information sources (i.e., models) whose outputs are 

combined are described. Finally, the process of information fusion, including a novel 

calibration methodology based on multi-objective optimisation, are explained.  

3.3.1 Dempster-Shafer Theory of Evidence 
This sub-section provides a brief introduction to the underlying mathematical Theory of 

Evidence applied here to combine outputs from multiple information sources. The 

reader is referred to Appendix A of this thesis for a more detailed explanation.  

The D-S theory, also known as Evidence Theory, was first formulated in the late 1970’s 

by Dempster (1967) and later on extended and formalised by Shafer (1976). D-S theory 

can be used for inference in the presence of incomplete and uncertain information, 

provided by different, independent, sources. A significant advantage of D-S theory is its 

ability to deal with missing information (i.e., epistemic uncertainty) and to estimate the 

imprecision and conflict between different information sources.  

The D-S theory operates on a “frame of discernment” Θ, which is a finite set of 

mutually exclusive and exhaustive propositions. Unlike traditional Bayesian models 

(Bayes 1763), probability mass can be assigned to subsets of the frame of discernment 

Θ using a Basic Probability Assignment (BPA), typically denoted m(A), where A is a 
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non-empty subset of Θ. D-S theory defines two fundamental functions: Belief (Bel) and 

Plausibility (Pl):  

∑
⊆

Θ =→
AB

BmABelandBel )()(]1,0[2:  (3.1) 
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Where: B is a non-empty subset of Θ. 

Bel corresponds to the total mass of evidence, which supports a proposition and all of its 

subsets, whereas Pl corresponds to the total mass of evidence, which is not in 

contradiction with a proposition (Shafer 1976). The mutual relationship between Bel 

and Pl is shown in Figure 3.7. 

0 1

Bel(A) uncertainty Bel(A)

Pl(A)  

Figure 3.7 A graphical representation of Belief and Plausibility 

In this study, a Binary Frame of Discernment (BFOD) Θ (Safranek et al. 1990), is used, 

comprising two propositions (“Burst” and “NoBurst”) representing the likelihood of 

occurrence / non-occurrence of a burst in a particular pipe. The power set 2Θ is thus 

formed by the following subsets: (Ø, {Burst}, { NoBurst}, { Burst, NoBurst}), where the 

subset {Burst, NoBurst} represents the whole frame of discernment Θ and any 

probability mass assigned to this subset corresponds to a lack of knowledge (i.e., 

ignorance). The chosen definition of the BFOD implies that the process of identifying 

the location of a burst pipe is similar to a classification problem where value of belief is 

calculated for every pipe in the WDS indicating the likelihood of that pipe being the 

true (i.e., {Burst}) or false (i.e., {NoBurst}) burst location. As suggested by Polikar 

(2006) combining outputs of several classifiers (i.e., ensemble classifiers) has been 

shown to be an effective approach, to obtain better and more reliable classification 

results, in a number of real-world problems. Other representations of the frame of 

discernment Θ are possible (e.g., containing multiple hypotheses), however, these are 

likely to have negative effect on computational complexity of algorithms implementing 

the D-S theory (see Appendix A.4 for more details). 
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Dempster’s rule of combination (Shafer 1976) forms an inherent part of D-S theory, 

which allows information from different, independent sources of evidence to be 

combined. It is defined as follows: 
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Where: m1,2 is the combined BPA, m1, m2 are the BPAs of independent sources of 

evidence, K represents the level of conflict amongst the evidence and A, B and C are 

non-empty subsets of Θ. 

Since the introduction of Dempster’s rule various other combination rules have been 

developed. Sentz and Ferson (2002) discussed foundations of D-S theory and provided a 

review of a number of the available combination rules available. As argued by many 

(Hall and Garga 1999; Polikar 2006) there is no universal combination rule that would 

perform well in all situations. In this work, Yager’s combination rule (Yager 1987) and 

the PCR5 combination rule (Smarandache and Dezert 2006) were used, in addition to 

Dempster’s rule, to observe their different behaviour and performance in the process of 

information fusion. These rules differ in the way they distribute conflicting probability 

mass K (Eq. (3.4)) amongst the propositions of Θ. Dempster’s rule distributes the 

conflicting mass equally amongst all propositions of Θ (e.g., {A} and {B}), while 

Yager’s rule (see Eq. (A.13)) attributes conflicting mass to Θ (e.g., {A, B}) and the 

PCR5 rule (see Eq. (A.17)) proportionally redistributes partial conflicting masses 

amongst propositions involved in the partial conflict. Further details about the additional 

combination rules, including their definition and a numerical example demonstrating 

combination of conflicting evidence, can be found in Appendix A.2. 

3.3.1.1 Decision-Making Using Belief Structures 

Although decision-making using Beliefs and Plausibilities as suggested in Figure 3.6 

brings certain advantages, it can be challenging for DMs. On the one hand, a DM has 

the opportunity to fully explore the evidence directly supporting a particular hypothesis 

(e.g., that a pipe burst is located in some part of a WDS) represented by Belief and also 

the evidence, which does not contradict a hypothesis (i.e., Plausibility). On the other 
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hand, particularly in situations when one operates with complex frames of discernment 

(i.e., comprising a higher number of hypotheses) the additional complexity of operating 

with Beliefs and Plausibilities might be overwhelming. To make decisions based on 

belief functions, Smets & Kennes (1994), proposed a model of transformation, based on 

the assumption that “beliefs manifest themselves at two mental levels: the ‘credal’ level 

where beliefs are entertained and the ‘pignistic’ level where beliefs are used to make 

decisions”. Based on the principle of insufficient reason, Smets & Kennes (1994) 

defined the pignistic probability function BetP, which performs the transformation from 

the credal level, as follows:  

2

( ) ( )
A

B A
BetP B m A

AΘ∈

∩
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The pignistic probability function (BetP) is a measure that can be used to present the 

outputs of the information fusion process to DMs and will be later utilised in calibration 

of the D-S model (section 3.3.5) and performance evaluation of the information fusion 

methodology (section 5.3.3.2). 

On a simple BFOD used in this work, the pignistic probability function reduces to: 

1
({ }) ({ }) ({ , })

2
BetP Burst m Burst m Burst NoBurst= +  (3.7) 

This effectively distributes the uncertainty, represented by the probability mass 

m({ Burst, NoBurst}), equally between the {Burst} and {NoBurst} hypotheses. 

3.3.2 Information Sources 
Due to the flexibility of D-S theory, any kind of information providing an indication of 

the likelihood of a burst in a particular pipe in a WDS can be combined to reduce the 

lack of knowledge about the location of the failed pipe and increase the confidence in its 

correct identification. Without any loss of generality this research utilises three 

information sources depicted in Figure 3.8 that are considered to be independent: (a) a 

PBPM output, (b) a CCM output and (c) an HM output. This particular set of 

information sources was chosen because of its general availability to many water 

utilities worldwide and does not prevent other information sources from being used 

(e.g., information from a work management system or perhaps transient-based burst 

location models). The first source of information (i.e., based on the PBPM output) is 
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treated as a static indicator of pipe burst occurrence whereas the other two remaining 

sources can be dynamic and provide new information as it becomes available (e.g., 

when another customer complaint is received or when the HM is updated with new R-T 

measurements obtained from field sensors).  

 

Figure 3.8 Sources of evidence used in the information fusion 

The focus of this thesis is not on the development of the individual models but instead 

to demonstrate that by combining their outputs, certain benefits can be gained as 

illustrated later on a case study (section 5.2.3.1). Some of the models (e.g., the PBPM) 

have been extensively studied in the literature and will not be discussed here in detail.  

3.3.2.1 Pipe Burst Prediction Model 

A PBPM is used to obtain expected burst frequencies for every pipe in the WDS. The 

particular choice of the PBPM depends on the availability of data and is not important 

for the methodology shown here as long as the independence of the model outputs used 

in the information fusion holds (Bai et al. 2008; Marashi et al. 2008).  

More specifically, a regression-based PBPM was used here to obtain expected burst 

frequencies for every pipe in the WDS being studied during the current month. The 

burst frequency of a pipe was expressed as a function of its material, diameter, age, soil 

type, land use, and weather conditions. The specific expression and the related 

coefficients used in this work can be found in Tynemarch Systems Engineering Ltd. 

(2007) and will not be reported here as it falls outside the scope of this thesis. 
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3.3.2.2 Customer Contacts Model 

The current methods of detection and location of pipe bursts aim to notify control room 

personnel of any abnormal conditions before a failure starts affecting customers. 

However, frequently, large pipe bursts are first reported by customers (i.e., when leaked 

water emerges on the surface). In situations where no explicit pipe burst detection 

mechanisms are in place, customers reporting locations of bursts are the only means of 

(reactive) response to control leakage. Despite being a very strong indicator of a burst 

location, Customer Contacts (CC) are imperfect and cannot be entirely trusted. A CCM 

was developed under the assumption that a burst pipe is located in the proximity of the 

location reported by a customer. The coordinates of the geocoded location of a burst 

(i.e., easting and northing) provided by a customer were used in this work. Furthermore, 

the CCM used a weighted distance to reduce the influence of misleading CCs (i.e., 

outliers) in situations when multiple CCs were received. The fact of whether a CC is 

genuine and originated from the proximity of a burst can only be verified 

retrospectively. Analysis of CC data of a large number of DMAs confirmed the 

existence of misleading contacts. The mathematical formulation of the model is as 

follows:  
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where: i is the index of a pipe, dist is the shortest Euclidean distance between the 

customer location and the pipe, CCj is a customer contact j, wj corresponds to a relative 

distance and is a weight reflecting the significance of a particular CC (i.e., the lower the 

value of wj the more significant a given customer contact is), NCC is the total number of 

CCs associated with a particular pipe burst and C is the centroid of all CCs related to the 

pipe burst. 

The CCM is illustrated in Figure 3.9, which depicts an example of three CCs associated 

with a pipe burst. Two CCs (i.e., CC1 and CC3) form a cluster and the customer contact 

no. 2 (i.e., CC2) was incorrectly assigned to this particular pipe burst or was misleading.  
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Figure 3.9 Weighed distance from customer contacts to a pipe 

The CC1 and CC3, therefore, receive lower values of w1 and w3 compared to w2 received 

by CC2 and so will be treated as more important. 

3.3.2.3 Hydraulic Model 

A HM was used to locate a burst in a WDS by simulating its effects (i.e., an increase in 

flow and drops of pressure) and compare them with values obtained from pressure and 

flow sensors deployed in the field. An estimated magnitude of the burst flow is first 

provided by an early warning pipe burst detection system able to discover abnormally 

high inflows into a DMA (e.g., Mounce and Machell 2006; Romano et al. 2009). An 

extra demand, equal to the estimated burst flow, is then added to the centre of every 

pipe to model the effects of a burst in that location. The pressure boundary conditions of 

the HM are set according to the data obtained from inlet pressure sensors at the time 

when the burst was first detected. The customer demands are proportionally scaled so 

that they add up to the measured inflow into the DMA obtained from the DMA inlet 

flow meters data and all measured exports (i.e., Customer Demands = DMA inflow - 

exports - burst flow). The likelihood of any pipe bursting in the system is then indicated 

by a Sum of Squared Errors (SSE) between observed and modelled pressures calculated 

as follows: 
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where: i is an index of the burst pipe in the HM, s is an index of a node where a pressure 

sensor is located, NS is the total number of pressure sensors in the network, T is the 
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number of pressure measurements available (i.e., different times), P1,s(t) is the modelled 

pressure at time t at node s and P2,s(t) is the measured pressure at time t at node s. 

Flow measurements inside a DMA have not been utilised since these are not typically 

available in real life systems (at least not in the UK) due to the higher cost of flow 

meters in comparison to pressure sensors. Multi-inlet DMAs could also be easily 

exploited since depending on the location of the burst different amounts of water would 

be drawn from each of the DMA inlets.  

Only one set of pressure measurements taken at the time of burst detection was used 

here to allow for fast identification of the location of the burst. Clearly a trade-off exists 

between the response time and quality of the location. The method could be further 

improved to better utilise multiple measurements over time, e.g., by modelling the burst 

as pressure sensitive outflow using an emitter (Pudar and Liggett 1992; Wu et al. 2010).  

A pressure driven modification of EPANET (Morley and Tricarico 2008) was used here 

instead of a conventional demand driven hydraulic solver to obtain more realistic 

results. The burst flow added to the network at the time of its detection was considered 

to be pressure insensitive, unlike the nodal demands, which could be reduced when 

pressures in the system dropped below 15 m of head. The assumption of pressure 

insensitive burst flow in this situation can be justified since the amount of water 

escaping from the WDS was estimated by an ANN. The estimated burst flow, however, 

represents an average outflow over a given time window, which could be seen as a 

limitation to the adopted approach. Better results could be achieved if the ANN was 

able to provide estimated flow for every time step from the burst detection time. 

3.3.3 Information Fusion 
This section describes the information fusion process, which forms the core of the 

newly proposed D-S Model. Each of the information sources described above provides 

a single output (i.e., criterion measurement) for each potential incident associated with 

an alarm, reflecting the likelihood (i.e., a normalised value of the criterion 

measurement) of occurrence of a burst in that pipe. The criterion measurement is the 

expected burst frequency, weighted distance from a CC or SSE for the PBPM, CCM 

and HM, respectively. The individual information sources used are not considered to be 

fully reliable and each may be associated with a different level of credibility (i.e., 
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trustworthiness of the model, which is reflected through its mapping curves). In order to 

improve the combined confidence in the location of a burst pipe, the information from 

all available sources is fused using the D-S theory by applying a suitable combination 

rule (i.e., Eq. (3.3), Eq. (A.13) or Eq. (A.17)).  

Before the outputs of individual models can be combined, the criterion measurements 

(i.e., model outputs) need to be transformed into BPAs, each representing the exact 

belief in the given proposition (i.e., m({Burst}), m({ NoBurst})) as well as the degree of 

ignorance (i.e., m({ Burst, NoBurst})). For this purpose a two-step procedure has been 

adapted from Beynon (2005). The criterion measurement values are first converted to 

confidence factors using a suitable normalisation function and then transformed into 

BPAs as shown in Figure 3.10. 
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Figure 3.10 Transformation of measurement criteria into BPAs based on Beynon (2005) 

Beynon (2005) used a sigmoid normalisation function to transform criterion 

measurements into confidence factors that were mapped to corresponding BPAs. In 

accordance to Safranek et al. (1990), Beynon (2005) applied simple symmetric 

functions defined by two parameters A and B to map confidence factors to BPAs. On the 

other hand, Sadiq et al. (2006) used trapezoids, typical for fuzzy sets, to obtain BPAs 

directly from criterion measurements. In this work, however, the type of normalisation 

functions (i.e., linear, sigmoid, one-sided Gaussian and logit function) as well as the 



Chapter 3 - Risk-Based Pipe Burst Diagnostics 

 65 

shape of the mapping functions (defined by 8 parameters, i.e., 4 points A1, B1, A2 and B2 

as shown in Figure 3.10) were determined for each of the input models based on its 

performance (i.e., credibility) on a number of historical cases during calibration. The 

mapping function describing m({ Burst}) is a non-decreasing function whereas the 

function describing m({ NoBurst}) is a non-increasing function. Once the evidence for 

every pipe in the network is transformed to BPAs the individual pieces can be combined 

using a combination rule (e.g., Eq. (3.3)). The actual rule used (i.e., Dempster’s rule, 

Yager’s rule or the PCR5 rule) was determined as part of a calibration procedure 

(described in section 3.3.5) so that the ensemble of the combination rule, the 

normalisation and mapping functions gained the maximum benefit according to 

calibration objectives described in section 3.3.5. 

The information fusion procedure described above can be summarised in the following 

steps: 

1. Run each of the considered input models (e.g., PBPM, CCM and HM) to obtain 

criterion measurement of every potential incident. 

2. Based on the range of criterion measurements of a particular model obtained for 

every potential incident, perform normalisation (using appropriate 

normalisation function) as shown in Figure 3.10 to obtain value of confidence 

factor. 

3. For every potential incident compute its BPAs (i.e., m({ Burst}), m({ NoBurst}) 

and m({ Burst, NoBurst})) based on the value of its confidence factor by 

applying mapping functions corresponding to a particular model as suggested 

in Figure 3.10. 

4. Once BPAs for every potential incident and every considered input model (i.e., 

source of evidence) are obtained, apply a suitable combination rule (e.g., Eq. 

(3.3)) to obtain the combined BPAs, representing the level of Belief and 

Plausibility as well as BetP of every potential incident as being or not being the 

True Burst Location (TBL). 
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A data flow diagram of the information fusion methodology, described in the four steps 

above, is given in Figure 3.11. 

 

Figure 3.11 A data flow diagram of the information fusion process 

3.3.3.1 Information Fusion Example 

To illustrate the actual process of information fusion as described above a simplified 

example of one potential incident (i.e., pipe segment ID “0EJ9LL9L”) and 2 sources of 

evidence (i.e., the PBPM and HM only) is presented here.  
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1. PBMP and HM are run for every considered potential incident in a DMA and for 
the selected potential incident (“0EJ9LL9L”) return the following result: 
 
CriterionMeasurementPBPM(“0EJ9LL9L”) = 481 bursts/1000 km/year (burst rate)  
CriterionMeasurementHM (“0EJ9LL9L”) = 5.42 m2 (SSE) 

2. Confidence factor is then obtained after normalising Criterion Measurement of 
every considered model using a suitable normalisation function (i.e., sigmoid 
function for PBPM and logit function for HM): 
 
ConfidenceFactorPBPM(“0EJ9LL9L”) = 0.998  
ConfidenceFactorHM (“0EJ9LL9L”) = 0.635 

3. From the value of confidence factor the BPAs are obtained using mapping 
functions corresponding to each of the considered models (see, e.g., 
Figure 3.12). The actual mapping curves used in the case of the PBPM can be 
found in Figure 5.13.  
 
mPBPM({ Burst}) = 0.357  
mPBPM({ NoBurst}) = 0.014 
mPBPM({ Burst}, { NoBurst}) = 0.629 
 
According to Eqs. (3.1), (3.2) and (3.6) the Bel, Pl and BetP structures can be 
calculated: 
 
BelPBPM({ Burst}) = mPBPM({ Burst}) = 0.357 
PlPBPM({ Burst}) = mPBPM({ Burst}) + mPBPM({ Burst}, { NoBurst}) = 0.357 + 
0.629 = 1 - 0.014 = 0.986 
BetPPBPM({ Burst}) = [PlPBPM({ Burst}) + BelPBPM({Burst})] / 2 = [0.986 + 0.357] 
/ 2 = 0.672 
 
The actual mapping curves used in the case of the HM can be found in 
Figure 5.14. 
 
mHM({ Burst}) = 0.000 
mHM({ NoBurst}) = 0.130 
mHM({ Burst}, { NoBurst}) = 0.870 
 
According to Eqs. (3.1), (3.2) and (3.6) the Bel, Pl and BetP structures can be 
calculated: 
 
BelHM({ Burst}) = 0.000 
PlHM({ Burst}) = 0.000 + 0.870 = 1 - 0.130 = 0.870 
BetPHM({ Burst}) = [PlHM({ Burst}) + BelHM({ Burst})] / 2 = 0.435 
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Steps 1-3 are graphically illustrated in Figure 3.10 
 

4. Once the BPAs are obtained Dempster’s combination rule Eqs. (3.3)-(3.5) can 
be applied: 
 

K = mPBPM({ Burst}) × mHM({ NoBurst}) + mHM({ Burst}) × mPBPM({ NoBurst}) = 

0.357 × 0.130 + 0.000 × 0.014 = 0.046 
 

mPBPM,HM({ Burst}) = [mHM({ Burst}) × mPBPM({ Burst}) + mHM({ Burst}) × 

mPBPM({ Burst}, { NoBurst}) + mPBPM({ Burst}) × mHM({ Burst}, { NoBurst})] / (1-

K) = [0.000 × 0.014 + 0.000 × 0.629 + 0.357 × 0.870] / [1 - 0.046] = 0.326 
 
mPBPM,HM({ NoBurst}) = [mHM({ NoBurst}) × mPBPM({ NoBurst}) + 

mHM({ NoBurst}) × mPBPM({ Burst}, { NoBurst}) + mPBPM({ NoBurst}) × 

mHM({ Burst}, { NoBurst})] / (1 - K) = [0.130 × 0.014 + 0.130 × 0.629 + 0.014 × 
0.870] / [1 - 0.0464] = 0.1 
 
mPBPM,HM({ Burst},{ NoBurst}) = 1 - mPBPM,HM({ Burst}) - mPBPM,HM({ NoBurst}) = 
0.574 

The corresponding belief structures Bel, Pl and BetP could then be easily calculated 

using Eqs. (3.1), (3.2) and (3.6), respectively. Given the associativity of Dempster’s rule 

the combined results obtained above could be again combined with evidence from the 

CCM. If other combination rules (e.g., Yager’s or PCR5 rules) were applied, their 

quasi-associative versions would have to be used since the fusion results should be 

independent of the order in which evidence is combined. 

3.3.4 Independence Assumption 
One of the conditions of using the Dempster’s combination rule (as well as the other 

combination rules introduced here), applied in this work, is that the evidence coming 

from different sources is independent (Dempster 1967). Marashi et al. (2008) explained 

the concept of independence as “a situation when the knowledge of the particular value 

taken by a piece of evidence does not change our belief about the value that the second 

could take”. They further noted that the assumption of independence may suit domains 

such as sensor information fusion but is less realistic in the case of human subjective 

judgements. Bi et al. (2008) discussed the independence of outputs of ensemble 

classifiers and concluded that the assumption of their independence was sensible.  
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In this work, the evidence considered comes from three different models (i.e., PBPM, 

HM and the CCM), which accept different inputs and employ completely different 

methodologies. For example, the PBPM is based on the physical properties of the 

assets, the HM solves a series of continuity and energy equations to calculate pressures 

and flows in a WDS and the CCM calculates distances from CCs. The assumption of 

their independence is hence seen as realistic. However, if subjective human judgements 

also need to be considered as evidence (e.g., operator’s judgement), different families of 

combination rules may need to be adopted (Marashi et al. 2008). 

3.3.5 Dempster-Shafer Model Calibration 
The D-S model, like any other model, needs to be calibrated before it can be used. As 

suggested before, the credibility of the input models used in the information fusion 

process can vary significantly. The calibration procedure explicitly incorporates the 

varying credibility of the input models across their entire output range (i.e., the range of 

criterion measurements). The D-S theory is equipped with a mechanism to discount 

evidence (see Appendix A.3), to reflect the credibility of a particular information source 

and avoid situations of absolute conflict between two information sources. Discounting 

was not used in this work and the credibility of a particular information source was 

instead indirectly reflected through its mapping curves (see e.g., Figure 3.12).  
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Figure 3.12 An example of a mapping curve 

The maximum value of probability mass that can be attributed either to the {Burst} or 

{ NoBurst} hypothesis using a mapping curve reflects the credibility of a particular 
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information source. The higher the probability mass attributed to either the {Burst} or 

the {NoBurst} hypothesis, the more trustworthy a particular source of evidence is and 

the better is its capability to determine if a particular potential incident is the cause of 

the observed anomaly. On the other hand the higher the probability mass attributed to 

the {Burst, NoBurst} hypothesis the less specific and credible the given information 

source is. 

The calibration aims to determine the optimal values of the parameters defining the 

mapping functions (i.e., their coordinates) as well as to select the optimal normalisation 

function and the most suitable combination rule. Historical cases, where the TBL of an 

alarm was known were used to find the optimal set of parameter values that yield 

maximum benefit during the information fusion process in terms of identifying the true 

cause of a failure (using the three individual models). The calibration problem was 

formulated as a multi-objective optimisation problem as follows: Find vector 

* * * *
1 2[ , ,..., ]nz z z=z  such that: 

*
1 2( ) min ( ) min[ ( ), ( ),..., ( )]nf f f f f= =z z z z z  (3.11) 

Without any loss of generality only minimisation is assumed here, however, any 

maximisation problem can be easily re-formulated as a minimisation problem. 

The structure of the vector z is given in Table 3.1, which shows all its elements. The 

meaning of individual components of the vector is described as follows. Three 

information sources (i.e., the PBPM, the HM and the CCM) were considered here, each 

requiring two mapping functions (i.e., m({ Burst}), m({ NoBurst})) and each of the 

functions comprising 2 points (i.e., four x and y coordinates). This in total accounted for 

24 floating-point variables. The x coordinates were in the range [0, 1], however, the y 

coordinates were in the range [0, 0.9] (to avoid problems with saturation, when one of 

the information sources reaches absolute certainty (Safranek et al. 1990)). There were 

also 4 additional integer variables, 3 of them (i.e., N1, N2 and N3) were used to select a 

normalisation function (i.e., {0,1,2,3}a∈ ) for each of the three information sources 

(models) and the fourth variable (i.e., R) was used to choose the combination rule (i.e., 

{0,1,2}b∈ ). Each of the integer values of parameters a and b corresponded to one type 

of normalisation function or a combination rule, respectively. 
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Table 3.1 Structure of a vector of decision variables z 

Mapping curve 1 Mapping curve 2 Mapping curve 3 N1 N2 N3 R 

x  y  x  y  x  y  x  y  x  y  x  y  x  y  x y   x  y  x  y  x  y  x  y  a  a  a  b 

Based on Eq. (3.11), a three objective optimisation problem was formulated, minimising 

functions 1 2 3( ), ( )and ( )f f fx x x  defined as follows: 

1
1

( ) ( ({ }))
i

N

i TBL
i

f Rank BetP Burst
=

=∑x  (3.12) 

2
1 Proximity( )

( ) ({ })
i

N

j j
i j TBL

f w Bel Burst
= ∈

= −∑ ∑x  (3.13) 

3
1 \{ }

( ) ({ })
i i

N

j
i j PI TBL

f Pl NoBurst
= ∈

= −∑ ∑x  (3.14) 

where:  

• N is the number of historical calibration cases, 

• TBLi is the known True Burst Location (i.e., an index of a pipe where the burst 

was found) of historical case i, 

• BetPx({ Burst}) is the pignistic probability (see Eq. (3.6)) that pipe x burst, 

( ({ }))
ii TBLRank BetP Burst  is a function which returns the rank (see Figure 3.13 

for illustration) of the TBL within the set of potential incidents associated with 

case i when sorted in descending order of their value of BetP({ Burst}), 

• Proximity(TBLi) is a function that returns a set of 10 pipes that are topologically 

nearest to the TBL of case i. The topological distance is determined by tracing 

the network, wj is a weighting factor proportional to the distance of a pipe from 

the TBL (i.e., the closer a pipe from the TBL, the higher the weight), 

• ({ })jPl NoBurst  is the Plausibility (see Eq. (3.2)) that pipe j did not burst, and 

• ({ })jBel Burst  is the Belief (see Eq. (3.1)) that pipe j is the burst location. PIi is 

a set of potential incidents (i.e., possible burst locations) associated with 

historical case i. 
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Link Id BetP Link Id BetP Rank
0004G38E 0.962 0004G2MM 0.986 0
0004G370 0.945 0004G38E 0.962 1
0004G2MM 0.986 0004G370 0.945 2
0EIIII5H 0.826 0004E1IL 0.909 3
0EJ9KAGM 0.869 0EJ9KAGM 0.869 4
0004E1IL 0.909 0EIIII5H 0.826 5
0004G2F0 0.820 0004G2F0 0.820 6  

Figure 3.13 An example of the Rank of the TBL (Link Id 0004G2MM) 

Note that the minus sign in Eq. (3.13) and Eq. (3.14) effectively changes the 

minimisation problem into a maximisation problem. The optimisation produces a 

Pareto-front comprising non-dominated (i.e., equally good) solutions. The concept of 

dominance is graphically illustrated in Figure 3.14 on an example of a two-objective 

minimisation problem, where the non-dominated solutions are displayed in green.  
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Figure 3.14 An example of a Pareto front 

In the case of a two-objective problem, the non-dominated solutions are points on a 

Pareto curve. In the case of a three-objective problem as defined in this work, the non-

dominated solutions are points on a Pareto surface. Clearly, the objective functions 

presented in Eqs. (3.12), (3.13) and (3.14) are conflicting and the optimisation produces 

a trade-off surface. A single solution from the trade-off surface then has to be selected 

based on the DM’s preferences. The objective function 1( )f x  plays the most significant 

role in terms of the overall performance of the information fusion. The remaining two 

objective functions 2( )f x  and 3( )f x  are equally important and reaching a balance 

between those two objectives is desirable. 
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3.4 Impact Component of Risk 
As discussed in the literature review impact of various failures (e.g., pipe bursts, 

segment isolations, pump failures, etc.) in a WDS has been studied by a number of 

researchers. The adopted approach so far was primarily from a strategic perspective, to 

support rehabilitation of existing networks, and was not suitable to fully meet the 

requirements of operational decisions. Furthermore, only in very few cases (e.g., 

Michaud and Apostolakis 2006; Beuken et al. 2008; Vamvakeridou-Lyroudia et al. 

2009) was the impact model based on a complex metric, comprising a number of KPIs. 

This section describes an impact model, developed specifically to capture various 

adverse effects of pipe bursts (e.g., supply interruption, low pressure problems, 

discolouration, etc.) in a short term risk horizon (e.g., 24 hours) before they are located 

and repaired. The impact model presented here attempts to utilise data and models 

typically available to water utilities and does not try to cover all aspects associated with 

an impact of a failure, which would be beyond the scope of this thesis. The impacts are 

evaluated from the perspective of a water utility, rather than of its customers. 

Nevertheless, a strong focus on quality of service for various water consumers is 

incorporated in the impact model. The core of the proposed model is formed by a 

pressure-driven hydraulic solver (Morley and Tricarico 2008) coupled with a GIS. This 

ensemble is used to calculate basic performance measures (e.g., system pressures) that 

are later utilised by a number of additional models (e.g., a discolouration model and a 

third party damage surrogate model). The outputs of the models serve two main 

purposes.  

1) To provide a DM with a detailed breakdown of various aspects of the impact 

of a failure and its development throughout a given risk horizon. 

2) As inputs for calculation of an aggregated impact measure of a failure 

allowing comparison of mutual significance of the impacts in different parts of 

a WDS. 

The impact model was developed as follows: 

1) First major types of customers were identified, 



Chapter 3 - Risk-Based Pipe Burst Diagnostics 

 74

2) A suitable way of failure modelling was established, 

3) An objective tree using MAVT, based on the requirements of a water utility and 

data availability, was constructed, 

4) A set of KPIs, which serve as suitable surrogate measures to quantify the 

severity of various types of impacts considered in the objective tree, was formed. 

3.4.1 Customer Categories 
The KPIs proposed by OFWAT (2008) focusing on continuity of water supply (i.e., the 

DG3 indicator) and pressure adequacy (i.e., the DG2 indicator) treat all customers as 

equal. A number of publications (Michaud and Apostolakis 2006; Liserra et al. 2007; 

Beuken et al. 2008) suggested that it was important to take into account the type of 

customers when assessing impact of a failure. The results of a questionnaire survey 

shown later in this thesis (section 5.4.1) also confirmed that water companies consider 

the type of a customer when making operational decisions. Without any loss of 

generality, this research closely follows the customer classification suggested by 

Michaud and Apostolakis (2006) and operates with the following customer categories: 

• residential (houses, flats, etc.),  

• commercial (shops, businesses, etc.), 

• industrial  (factories, mills, etc.), and 

• critical  (hospitals, schools and other vulnerable customers) 

Michaud and Apostolakis (2006) further considered sub-zones, which are typically 

modelled as demand nodes in an HM representing a high number of accumulated 

customers of the four types above. Sub-zones were not considered in this work since 

estimating the effects of a failure beyond the boundaries of a WDS (i.e., its HM) is 

difficult. It is suggested here that the impact on sub-zones should only be considered 

when a full interruption of water supply occurs because of the physical disconnection of 

an export node. Even in such a case it is unknown whether or not the sub-zone is 

supplied from another source. Given the focus of this work on the impact of pipe bursts 

before they are repaired, no demand nodes can be completely disconnected and 
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therefore the exclusion of sub-zones does not represent any limitation to the 

methodology. 

3.4.2 Failure Modelling 
A pressure driven extension of EPANET (Morley and Tricarico 2008) was used in this 

work to model the effects of a pipe burst in a WDS. The pressure-demand relationship 

of all demand nodes was considered to be identical and described according to Wagner 

et al. (1988b) using following equations: 

min

1/min
min

min

0 j j

n

j jreq des
j j j j jdes

j j

req des
j j j

if P P

P P
Q Q if P P P

P P

Q if P P

 <


  −= ≤ ≤   −  
 >

 (3.15) 

where: 

• Qj is the real demand supplied at node j 

• Pj is the actual pressure head at node j 

• min
jP  is the minimum required pressure to supply any demand 

• req
jQ  is the required demand at node j 

• des
jP  is pressure required to fully satisfy the requested demand 

• n is a parameter, which takes value of 2 according to (Wagner et al. 1988b) 

The values of min
jP  and des

jP  should be ideally obtained from field tests during model 

calibration and are likely to differ amongst demand nodes (e.g., because of different 

type of customers, property height, etc.). It was assumed here that the minimum 

pressure min
jP  was 0 m of head at the water main (although this assumption might not be 

entirely realistic). The value of pressure des
jP  required to deliver all requested demand 

was considered to be 15 m of head following the minimum level of service requirements 

issued by OFWAT (2008). A typical shape of the pressure-demand curve, described by 

Eq. (3.15), is shown in Figure 3.15. Other pressure-demand relationships as suggested 

in the literature review in section 2.5.1 could be used, without any loss of generality. 



Chapter 3 - Risk-Based Pipe Burst Diagnostics 

 76

Pressure vs. Demand Relationship
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Figure 3.15 A relationship between pressure and demand of node j 

Pipe bursts can be modelled in a number of ways as discussed in the literature review in 

section 2.5.2. The most realistic way chosen in this work models bursts using 

EPANET’s emitters as pressure dependent outflows (see Figure 3.16) with the 

simplifying assumption that their pressure exponent γ was equal to 0.5, regardless of 

pipe material or other factors.  

The value of the exponent can vary from 0.5 to 2.5, however, as suggested by Cassa et 

al. (2010) values higher than 1.5 estimated during field trials do not have ground 

theoretical foundations. The chosen value of the emitter exponent of 0.5 agrees with 

Lambert (2002) who suggested that detectable leaks and bursts in metal pipes typically 

have values of exponent close to 0.5. In this case the emitter coefficient is calculated 

based on the estimated burst flow and actual pressure at the burst location. This 

approach provides more realistic results, however, it requires an extra steady state 

simulation to obtain pressure at the beginning of the impact simulation to calculate the 

value of the discharge coefficient Cd using Eq. (2.2). 
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Outflow profile of a simulated pipe burst
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Figure 3.16 A sample outflow profile from a pressure sensitive burst 

3.4.3 Impact Aggregation 
A simplified tree of objectives (see Figure 3.17), sometimes also referred to as a “value 

tree” (Michaud and Apostolakis 2006) was established. The tree in Figure 3.17 contains 

four main impact categories: Supply Interruption, Low Pressure, Discolouration and 

Economic impact. These are discussed in more detail in section 3.4.3, where KPIs 

corresponding to the leaves in the objective tree are defined in Eqs. (3.18) - (3.28). 

Every branch in the objective tree has a weighting factor associated with it, which 

reflects the importance of a particular type of impact to a water utility. The way specific 

values of the weighting factors can be obtained is explained later in section 5.4.1. 
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Figure 3.17 A tree of objectives 

Evaluation of the overall impact represented by the objective tree shown in Figure 3.17 

falls into the field of Multi-Criteria Decision Analysis (MCDA). MCDA provides a 

number of techniques that can be used to aid DMs to solve complex multi-objective 

problems. Following Løken (2007) the available methods can be broadly classified into 

3 categories: (1) value measurement models, (2) goal, aspiration and reference models 

and (3) outranking models. None of the above techniques is suitable for every 

application and selection of a particular technique depends on a particular decision-

making context. In this work, the MAVT (Keeney and Raiffa 1976), and the AHP 

(Saaty 1980) were used. The MAVT is one of the simplest methods available and is 

appropriate for the quantitative objectives used here. Its simplicity can be seen as an 

advantage since it can be easily understood and accepted by DMs, as opposed to more 

complex methods, such as the Multi-Attribute Utility Theory (MAUT). The principle 

behind MAVT is to associate a real number V(a) (see Eq. (3.16)) with every considered 

alternative (i.e., impact of a potential incident). The value V(a) is then used to rank 

alternatives. An alternative a is preferred (i.e., will have higher impact) to alternative b 

if and only if V(a) > V(b) (Løken 2007): 

1

( ) ( )
m

i i
i

V a w v a
=

=∑  (3.16) 
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where: wi is a weighting factor associated with criterion i (i.e., a leaf in the objective 

tree shown in Figure 3.17), vi is a function defining the performance of alternative a on 

criterion i (i.e., how severe the impact was).  

If the scale of each of the criteria is different (which was the case in this work) then 

normalisation has to take place so that the range of outputs of function vi(a) is identical 

for every criterion. The weights wi need to be elicitated from a DM, which was achieved 

here using the AHP as shown later on a case study presented in section 5.4.2. The 

requirement to normalise criteria might, however, affect their scale significantly when 

outliers are present in the set of alternatives. Mavrotas and Trifillis (2006) suggested 

using the fifth and the ninety-fifth percentile in the normalisation procedure instead of 

the minimum and maximum to alleviate this problem. The use of percentiles was not 

applied in this work, despite outliers being occasionally encountered within the set of 

potential incidents. 

The criteria in this work correspond to the leaves of the objective tree in Figure 3.17 

(e.g., Duration of Supply Interruption of Residential customers). The weighting factor 

wi of criterion i is obtained by multiplying all the weights on the path from the root of 

the tree towards a particular leaf as suggested on an example in the following formula: 

,1 ,1 ,2SDR I SI SIDw w w w= × ×  (3.17) 

The above Eq. (3.17) represents the weighting factor of the duration of supply 

interruption of residential customers and was expressed as a product of three weights 

from the objective tree in Figure 3.17. Other MCDA techniques (e.g., MAUT) could be 

used to aggregate the KPIs presented in section 3.4.4 into a single impact measure, 

without affecting the whole risk-based pipe burst diagnostics methodology. 

3.4.4 Key Performance Indicators 
This section describes KPIs to capture the adverse effects caused by a failure in a WDS. 

The KPIs introduced by OFWAT (2008) were extended and refined to better suit the 

needs of a near R-T impact assessment required by current customer-oriented water 

utilities.  

In the UK the minimum level of acceptable service is set by OFWAT (2008) as follows: 

“For two properties, a flow of 18 l/min at a pressure of 10 m head on the customers' side 
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of the main stop tap is appropriate”. Generally water companies use a surrogate measure 

of 15 m head in the adjacent main due to the fact that measuring the pressure on 

customers’ side would be difficult. This implies that the minimum required pressure in 

the mains has to be higher in order to achieve an acceptable level of service. Typically, 

water utilities try to maintain the pressure of at least 20 m at the water main in the street 

throughout the day to allow sufficient room for fluctuations. However, it is not desirable 

to keep the pressures in a WDS high, due to increased levels of leakage and higher burst 

rates.  

Following the objective-tree presented in Figure 3.17 the KPIs were classified into four 

main categories (i.e., supply interruption, low pressure, discolouration and economic 

impact), which will be discussed in detail in the following sections. 

3.4.4.1 Supply Interruption 

Supply interruption is treated as the disconnection from the water supply or a situation 

when no water is available at the consumers’ tap (i.e., the pressure is below the 

minimum acceptable pressure Pint). For the sake of simplicity, the value of Pint was 

assumed constant throughout the whole network, however, in reality it is node specific. 

To accommodate the height of properties, the minimum pressure Pint was taken as 7 m 

of head at the water main. The chosen value of Pint (7 m) might seem to be in contrast 

with Pmin (0 m) used in Eq. (3.15). Although, the customers are already considered as 

being affected by a complete supply interruption, the pressure driven HM assumes that 

some water consumption still occurs at demand nodes as long as the pressure is greater 

than 0 m. 

The major impact of the supply interruption for the water utility is in the form of 

penalties imposed by OFWAT as part of the DG3 performance indicator. Secondary 

losses are also represented by the decreased revenue due to no water consumption by 

disconnected metered customers and the costs of dealing with an increased number of 

CCs. Furthermore, significant drops of pressure (i.e., when pressure reaches 0 m of 

head) can lead to intrusion of contaminants into a WDS (Sadiq et al. 2006) and cause 

water quality problems that might affect the health and safety of water consumers. 
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OFWAT (2008) describes the DG3 indicator as follows: “The aim of this indicator is to 

identify the number of properties affected by planned and unplanned supply 

interruptions lasting longer than 3 hours, 6 hours, 12 hours and 24 hours.” 

For the scope of this work, supply interruption will be restricted to only unplanned 

interruptions caused by failures in a WDS. It is proposed here to extend the existing 

supply interruption KPIs (Mansoor et al. 2005; Michaud and Apostolakis 2006; 

OFWAT 2008) and express the impact of supply interruption in a more customer 

focused way, using the Supply interruption Scale (SIS) and Supply Interruption 

Duration (SID) KPIs, as follows: 
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(3.19) 

where: 
• SISCustType is the Supply Interruption Scale quantified per customer type 

• NN is the number of demand nodes in the network 

• T is the total simulation time (with assumed time step of 1 hour) 

• Custi,CustType is the number of customers of a particular type supplied from node i 

• Pi(t) is the pressure at demand node i at time step t 

• Pint is the minimum required pressure in m of head below which a node is 

considered as being without water supply (in this case 7 m) 

• SIDCustType is the weighted average Supply Interruption Duration evaluated per 

customer type 

• ID i is the duration of supply interruption measured from the first time when 

pressure at demand node i dropped below Pmin until the time when the supply 

was fully restored (i.e., excluding any gaps) as illustrated in Figure 3.18 
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0 1 2 3 4 5 6 t

Supply interruption duration = 5h

Low pressure duration = 3h

 

Figure 3.18 Measurement of duration of supply interruption and low pressure impact 

3.4.4.2 Low Pressure 

Low pressure problems cause a wide range of direct and indirect impacts affecting the 

water utility and its customers. The economic regulator OFWAT requires low pressure 

incidents (i.e., drops of pressure below 15 m of head at the water main) to be reported as 

part of the DG2 performance indicator by a water utility. Short term failures such as 

those caused by pipe bursts are excluded from the DG2 register. Although short term 

pressure problems caused by burst mains are excluded from the DG2 register, all 

properties receiving substandard pressure for more than 1 hour have to be listed together 

with the reason for their exclusion. Low pressure problems caused by pipe bursts thus 

should not represent a direct economical impact on the water utility in terms of financial 

penalties imposed by OFWAT. 

Low pressure causes inconvenience to customers and affects pressure sensitive water 

consumption thus reducing the revenue of a water utility in the case of metered 

customers. From a strategic perspective, inadequate pressure problems occurring in the 

case of fire might even lead to loss of life and property (Filion et al. 2007). 

OFWAT (2008) describes the DG2 indicator as follows: “The register must clearly 

identify those properties reported under DG2 and distinguish them from those that 

receive low pressure but are excluded from DG2, and provide a verifiable reason for 

the exclusion (e.g., as abnormal demand or short duration of low pressure).”  

The DG2 index is calculated as the total number of properties receiving substandard 

pressure for more than 1 hour throughout the whole day. Here an extended version, 

which explicitly considers type of customers, was used: 
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where: 
• LPSCustType is the Scale of the Low Pressure impact expressed as the number of 

properties of given type experiencing low pressure problems 

• Preq,i(t) is the minimum required pressure at node i at time t (i.e., 15 m of head) 

• CustCustType,i is the number of customers of a particular type supplied from node i 

To take into account the duration (see Figure 3.18) of the low pressure impact Eq. (3.21) 

defines the weighted average Low Pressure Duration (LPD) for a given type of 

customer. 
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(3.21) 

Indirectly, the water utility also has to deal with an increased number of customer phone 

calls caused by low pressure problems (this, however, was not incorporated due to 

insufficient data available).  

Similarly to low pressures, high pressure failures could also cause significant impact in 

a WDS. These could be caused by a malfunction of Pressure Reducing Valves (PRV), 

which could lead to an increased burst rate in the affected area. High pressure impacts 

were not considered in this work. 

3.4.4.3 Discolouration 

As reported by Vreeburg and Boxall (2007) discolouration can account for 

approximately 34% of CCs for a typical UK water company. It is, therefore, in the 

interest of water companies to be able to quantify its effects. The impact of 

discolouration caused by a burst pipe (i.e., increased flows and velocities and low 

pressures) is a complex phenomenon. A simplified Discolouration Risk Model (DRM) 

developed by Dewis and Randall-Smith (2005) based on risk-trees created by a panel of 

experts was used in this work. The development of the DRM is not a contribution 

presented in this thesis. The model provides a risk score for every pipe, which reflects a 

relative susceptibility of the pipe to generate discolouration. The magnitude (i.e., how 

severe the discolouration impact will be) was expressed here as a sum of the increase in 

discolouration risk between normal and failure operating conditions: 
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where: 
• NP is the number of pipes in the network 

• Disci,norm is discolouration risk score of pipe i under normal conditions 

• Disci,failure is discolouration risk score of pipe i under failure conditions 

(Note that the discolouration risk score of the burst pipe was excluded from the 

analysis) 

Furthermore, the scale of discolouration impact (i.e., how large an area will be affected) 

was expressed as the total length of pipes experiencing an increase in the discolouration 

risk score over a given risk horizon (i.e., 24 hours). 
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where: 
• Length(j) is a function which returns the length of pipe j 

An example of a map showing the discolouration impact (based on the increase of 

discolouration risk score) caused by a large pipe burst (denoted by X) is shown in 

Figure 3.19. The figure enables WDS operators to estimate abnormal flow pathways 

that experience an increase in flow or possibly flow reversals and provides them with an 

insight into their discolouration risk. 
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Figure 3.19 A map showing the DISCM KPI after a pipe burst 

The methodology used in the discolouration model might not be the most suitable one 

to apply in WDS operation. Other more advanced techniques to model discolouration 

are available (e.g., the Resuspension potential method or Cohesive transport model) as 

suggested by Vreeburg and Boxall (2007).  

3.4.4.4 Economic Impact 

The following category of impacts represents direct and indirect costs that could affect a 

water utility because of a failure in a WDS. 

Lost Water 

In case of a pipe burst, the water losses are estimated by summing up the outflow from a 

burst modelled using an emitter over the whole risk horizon (e.g., 24 hours).  
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(3.24) 

where: 
• BurstFlow(t) is the simulated pressure sensitive burst flow in l/s at time t 

Lost Revenue Due to Undelivered Demand 

Low pressures in a WDS could represent a direct loss for a water utility since customers 

might not be able to receive all the water that would be consumed under normal 

DISCM 
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conditions. The amount of undelivered water can be quantified thanks to the use of a 

pressure driven hydraulic solver described in section 3.4.2. In the UK where only 37.3% 

of customers were metered in the year 2009/2010 (OFWAT 2009) the incurred losses 

come only from those customers who have a meter installed. 

The loss of revenue due to undelivered water (because of low pressure or complete 

supply interruption) assuming equal distribution of demand between metered and 

unmetered customers can be defined as follows: 
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where: 
• Di,req(t) is the requested demand of node i in l/s 

• Di(t) is the delivered demand of node i in l/s 

• Custi,M is the number of metered customers supplied from node i 

• Custi,UM is the number of unmetered customers supplied from node i 

Third Party Damage 

Failure in a WDS, such as a burst pipe, can lead towards traffic disruption and a number 

of indirect impacts affecting the water utility and its customers. The focus of this KPI is 

to estimate the likely damage to roads and railways and the social impact associated 

with their repairs. The model could be further extended to account for possible damage 

to properties (i.e., buildings), however, these were not considered here.  

Land use data and the flow in a pipe were used in this work to develop a surrogate 

measure for third party damage caused by a pipe burst. The model considers the length 

of the intersection of a pipe with various types of surfaces (of defined importance) 

above the pipe as well as the flow in the pipe in order to calculate the potential damage 

and inconvenience caused by a burst. The output of this model can be to a large extent 

pre-computed offline (e.g., the spatial analysis of the land above a pipe) and applied 

online by including information about the actual flow through the pipe. By assuming a 
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linear relationship between the criticality of the surface above a pipe (referred to here as 

the “Priority”) and the flow in the pipe, the model can be defined as follows: 
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where: 
• TPD(i) is the model output reflecting the damage caused to third parties by burst 

of pipe i 

• NormPriority(i) is a normalized measure indicating the importance of the 

surface(s) above pipe i  

• λ is a coefficient of relative importance of the flow in a pipe compared to the 

type of the land above 

• Qi(t) is the flow in pipe i at time step t 

The “Priority” of the surface above a pipe was obtained as follows. A vector dataset 

with all surface elements (e.g., roads, railways, buildings, etc.) represented as polygons 

was utilised. In particular, the Ordnance Survey MasterMap (Ordnance Survey 2010) 

dataset was used. The dataset was reclassified according to Table 3.2 and corresponding 

Category was assigned to its elements. The most critical surface type (i.e., Category 4) 

was identified as a railway since a pipe burst in its proximity might potentially cause 

damage to the rails and lead to reduced safety. The second most critical Category 

comprised roads and roadsides (i.e., Category 3) since these might be damaged by a 

pipe burst underneath them. The polygons falling into the road or roadside category 

were further split into 9 sub-categories as indicated in Table 3.3, to reflect the 

importance of a particular type of road. The percentage of the pipe length intersecting a 

particular polygon was calculated and used as a weighting factor. The priority class of a 

pipe was calculated according to the following formula: 

:
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where: 
• Priority is a measure of importance of the surface above a pipe 
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• s is the index of a surface on the land 

• Category(s) is a lookup function which returns a value from Table 3.2 according 

to the type of the surface 

• SubCategory(s) is a lookup function which returns a value from Table 3.3 

according to the type of road above / in close proximity of the pipe 

• Weight(s,i) returns the fraction of the intersecting length of pipe i with surface s 

relative to the total length of the pipe 

• i is the index of a pipe in an HM 

The value of Category in Eq. (3.27) was multiplied by factor of 10 to represent a 

hierarchical structure between categories and sub categories. Should the number of sub-

categories considered be higher than 9 (see Table 3.3) then a different constant would 

have to be selected to achieve the desired effect.  

The normalised Priority can be computed using the following equation: 
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where: 
• NormPriority is the normalised measure of importance of the surface above a 

pipe 

• i, k and l are indices of a pipe in an HM 
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Table 3.2 Available types of surfaces, their reclassification and category 

Description Reclassified Category 
Building Building 0 
Glasshouse Building 0 
Building; Rail Building 0 
General Feature; General Surface Land 1 
General Surface Land 1 
Landform Land 1 
Natural Environment Land 1 
Unclassified Land 1 
Landform; Rail Rail 4 
Natural Environment; Rail Rail 4 
General Feature; Road Or Track Land-Road 2 
General Surface; Road Or Track Land-Road 2 
Landform; Path Land-Road 2 
Landform; Road Or Track Land-Road 2 
Natural Environment; Road Or Track Land-Road 2 
General Surface; Inland Water Water 0 
Inland Water; Natural Environment Water 0 
Rail Rail 4 
Rail; Road Or Track Rail 4 
Path Path 2 
Road Or Track Road 3 
Roadside Roadside 3 
Path; Structure Path 2 
Road Or Track; Structure Structure 0 
Structure Structure 0 
Inland Water; Structure Structure 0 
Inland Water Water 0 
 

Table 3.3 Types of roads and their sub-category 

Description Sub-Category 
Motorway 9 
A Road 8 
B Road 7 
Minor Road 6 
Local Street 5 
Pedestrianised Street 4 
Private Road - Publicly Accessible 3 
Private Road - Restricted Access 2 
Alley 1 

An example output from the TPD model is shown in Figure 3.20. The “Third Party 

Damage” (displayed using a red-blue colour gradient) was calculated using Eq. (3.26) 
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by assuming λ = 0.5. The flow in the pipes at 8:00AM is displayed using different line 

thickness. 

 

Figure 3.20 An example output from the third party damage model 

The values of the Categories and Sub-categories used above were assumed to be linear 

although it might be necessary to further adjust these values as well as the coefficient λ 

depending on the preferences of a DM. The current setting of the values might pose a 

potential threat in situations where long pipes cross railways since, the intersection 

length with the railway is relatively small (however, so is the likelihood that the pipe 

burst would occur in the proximity of the rails) and thus the final priority of such pipe 

might be relatively small. 

3.5 Abnormal Event Prioritisation 
In the case of large WDS several pipe bursts or other types of failures can occur more or 

less simultaneously in different DMAs in a similar risk horizon (e.g., during 24 hours). 

Extreme weather conditions, such as extended periods of frost, are also likely to lead to 

an increased occurrence of bursts and consequently alarms (i.e., detected anomalies) 

across the whole WDS. When alarms from multiple DMAs are generated in a similar 

risk horizon, WDS operators frequently have to prioritise their actions, based on limited 

information (e.g., affected DMA, magnitude of abnormal flow, etc.) and their 

experience, since resources to deal with contingency situations are typically limited. 
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The decision about which alarms should be dealt with first has to be reached promptly 

to avoid unnecessary customer impact. As discussed by Laffey et al. (1987) humans 

making decisions in Real-Time (R-T) tend to overlook relevant information and respond 

inconsistently or too slowly if the rate of information flow is too great (e.g., an 

increased number of alarms received in a control room). 

Unlike in other fields, such as the power and chemical industries (Foong et al. 2009), 

operational prioritisation of failures in WDS is not well established. Current research 

has been mostly concerned with strategic applications such as prioritisation of existing 

infrastructure for renewal (Giustolisi and Berardi 2009) using evolutionary optimisation 

methods. The majority of the existing methods of failure detection and prioritisation in 

process control are based on rule-based Expert Systems (ES) (Foong et al. 2009) or 

model based techniques (Isermann 2005). Fuzzy logic (Zadeh 1975) has also been 

frequently used in conjunction with the rule-based system to encompass uncertainty by 

operating with linguistic terms rather than crisp values. The severity of an abnormal 

event in process control is typically derived from the state of a number of sensors 

related to a particular process. A rule-based system can contain rules in the following 

form: 

IF Temperature  > 50°C AND Pressure  > 300 kPa THEN  

priority = 10 

IF Temperature  > 50°C AND Pressure  < 300 kPa THEN  

priority = 5 

On the other hand a fuzzy rule-based system would capture the critical thresholds using 

linguistic variables to incorporate the vagueness of the definition of a particular alarm 

state. An example of a fuzzy-rule is shown below: 

IF Temperature  IS “ High”  AND Pressure  IS “High” THEN  

priority = “Very High” 

IF Temperature  IS “High” AND Pressure  IS “Normal” THEN  

priority = “Medium” 
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The rule-based prioritisation shown above utilises the observed symptoms caused by a 

failure, rather than the outcomes of diagnostics of the observed anomaly, to perform the 

prioritisation. Even model based methods, which typically generate residuals, i.e. 

differences between observations and model outputs, operate in a similar fashion. The 

suitability of application of such techniques to prioritise flow alarms (i.e., detected 

abnormal flows) in a WDS is questionable as will be illustrated later on case studies in 

section 5.5. 

A methodology for an initial automated screening of alarms to help control room 

personnel better prioritise their actions when investigating several alarms occurring in 

the same time horizon in different DMAs was developed. The conceptual foundations of 

this work were laid in section 3.2. Alarms can be presented to operators ranked in the 

order of their significance, which was determined from the outcomes of a near R-T risk 

analysis (described in sections 3.3 and 3.4). Alarms representing the highest overall risk 

to a water utility and customers can then be dealt with first.  

3.5.1 Alarm Ranking 
The aim of the alarm prioritisation methodology is to determine mutual significance of 

multiple alarms (i.e., to rank them) rather than to attempt to classify them into 

predefined categories (e.g., high risk, medium risk, low risk, etc.) The methodology 

comprises the following steps: 

1. Burst Detection - Detection of a burst (e.g., using an ANN-FIS), which does not 

form part of this thesis. 

2. Diagnostics & Risk Assessment - Identification of potential incidents of an 

anomaly and estimation of their likelihood of occurrence as well as their impact. 

3. Pipe Burst Risk Aggregation - Calculation of risk of failure of individual 

potential incidents. 

4. Overall Risk Aggregation - Calculation of an overall risk represented by all 

potential incidents. 

5. Anomaly Ordering - Sorting of abnormal events according to the level of their 

overall aggregated risk. 
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The individual steps defined above are described in detail in the following sub-sections. 

3.5.2 Diagnostics and Risk Assessment 
In this work it is assumed that an automated pipe burst detection system (Mounce et al. 

2010) or similar is already in place, providing the following information: (1) date and 

time of burst occurrence, (2) ID of the affected DMA, and (3) estimated burst flow. It is 

further assumed here that the detected anomaly (i.e., an alarm) is a result of a single 

pipe burst only within the reported DMA. This fact does not restrict the potential of the 

methodology to handle different types of failures (e.g., pump/valve failures) or 

alternatively handling of multiple failures within a DMA. 

Under the above assumptions a one-level fault tree diagnostics, mentioned previously in 

Figure 3.3, for every active alarm can be performed as shown in Figure 3.21 in a 

simplified form.  

Alarm m

PI1,1 PI1,j PI1,n
… … PIi,1 PIi,j PIi,n… … PIm,1 PIm,j PIm,n

… …

Alarm 1 Alarm i

… …
 

Figure 3.21 A hierarchical representation of alarms and potential incidents 

Typically, the set of potential incidents determined for every active alarm as shown in 

Figure 3.21 contains all pipe segments within the investigated DMA. For the purpose of 

prioritisation of alarms working with the complete set might not be necessary and only a 

representative number of pipe segments could be included. This was not investigated as 

part of this research and the risk of all potential incidents was used here. 

Once the set of potential incidents is determined a full risk assessment of all its elements 

can be carried out. This involves evaluation of the Likelihood of occurrence of a burst 

on every pipe segment (see section 3.3) and estimation of its aggregated Impact (see 

section 3.4) over a given risk horizon.  

3.5.3 Pipe Burst Risk Aggregation 
For the purpose of decision-making it is important that the risk metric is preserved in a 

non-aggregated form and as such also presented to a DM. However, as the first step in 

ranking of multiple alarms, the risk of individual potential incidents was aggregated. 
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The most commonly applied risk aggregation operation is to represent risk as a product 

of likelihood and impact (i.e., R L I= × ). Such a formulation could well suit problems 

where the likelihood component of risk reflects the traditional frequentists’ probability. 

However, the likelihood used in this context is a normalised measure indicating, which 

potential incidents are more likely than others to be the cause of the observed anomaly 

(i.e., the likelihood normalisation is carried out per alarm) and, therefore, a simple 

multiplication could completely eradicate potential incidents with very low likelihood 

and high impact, which might still be interesting for a DM as highly unlikely but 

disastrous events. To overcome the above issue it is suggested to use the concept of 

reference point (see Figure 3.22) used, e.g., by Zeleny (1973) to represent a risk of a 

potential incident. The aggregated risk can then be expressed as a distance metric 

defined as follows: 
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where: Ri,j is the aggregated risk of a potential incident j being the cause of an alarm i 

(note: the lower the value of this metric the higher the risk of a particular pipe burst), k 

is the index corresponding to the likelihood or impact, wk is a weighting factor reflecting 

the DM’s preference between likelihood and impact subject to wL + wI = 1, *
kP  is a 

coordinate of the reference point (see Figure 3.22) corresponding to the maximum 

likelihood (per alarm) or maximum impact (amongst all alarms), PIi,j,k is the coordinate 

representing the likelihood or impact component of risk of potential incident j, and h is 

the distance metric exponent, which typically takes value h = 2 to represent Euclidean 

distance. 
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Figure 3.22 Distance metric used to represent aggregated risk of a pipe burst 

The reference point (see the point P* in Figure 3.22) does not have to exist in the set of 

considered potential incidents, as in the case depicted in Figure 3.22, and is typically a 

fictitious point. In a situation when the potential incident with the highest impact 

amongst all considered alarms should also be the most likely burst candidate (as part of 

the alarm it belongs to), it would become the reference point and its value of Ri,j would 

be zero.  

It is important to note that the normalisation of the likelihood of a burst occurrence is 

carried out on all potential pipe bursts associated with a single alarm whereas the impact 

is normalised on all potential incidents of all considered alarms. Only such an approach 

enables the comparison of the overall risk of alarms. 

3.5.4 Overall Risk Aggregation 
To represent the overall risk of alarm i the individual risks of all its potential incidents 

Ri,j need to be aggregated. There are three main types of aggregation operators: 

intersection operators, union operators and averaging operators (Makropoulos and 

Butler 2006). In this work the Ordered Weighted Averaging (OWA) proposed by Yager 

(1988) was used. OWA is a flexible aggregation operator, which encompasses operators 

from minimum to maximum including various averaging operators such as the 

arithmetic mean. Another interesting property of the OWA is that during the process of 

generation of the weights applied in the aggregation, it is possible to incorporate the 

DM’s attitude towards risk (e.g., neutral, optimistic, pessimistic, etc.) based on his/her 

degree of risk aversion (Makropoulos and Butler 2006). 
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The application of OWA to calculate the overall risk Ri of an alarm is carried out as 

follows. First a vector vi, comprising risks Ri,j of all potential pipe bursts j associated 

with alarm i is formed and its elements are sorted in an ascending order of their Ri,j 

values, such as vi[x] ≤ vi[y] where x < y. The overall measure of risk Ri is then obtained 

by multiplying vector vi with the transposed vector of weights W of the same dimension 

using following equation: 

[ ]1
1 1

[ ] [ ] , such that = ,..., ,..., , 0,1  and 1
n n

i i l n l l
l l

R v l W l W w w w w w
= =

= ⋅ ∈ =∑ ∑  (3.30) 

As in the case of any aggregation, some information loss inevitably occurs. To 

maximise the degree of information used from the non-aggregated risk vector vi a set of 

maximum entropy (Shannon 1948) weights owai is generated given DM’s attitude 

towards risk α according to O’Hagan (1988). Calculation of the maximum entropy 

weights requires solving the following constrained non-linear problem (O’Hagan 1988): 
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Makropoulos (2003) solved the optimisation problem defined in Eq. (3.31) using 

Sequential Quadratic Programming implemented in Matlab. However, Fullér and 

Majlender (2001) proposed an analytic solution to the problem defined as follows: 

1) If n=2, then w1=α, w2=1 – α 

2) If α = 0 or α = 1, then the associated weighting vectors are uniquely defined as 

w = [0,0,...,1] and w = [1,0,...,0], respectively, with value of dispersion equal to zero. 

3) If n ≥ 3 and 0 < α < 1, then 

11
1
n j jn

j nw w w− −−=  (3.32) 
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1 1 1[( 1) 1 ] (( 1) ) [(( 1) ) 1]n nw n nw n n n wα α α−− + − = − − − +  (3.34) 

The maximum entropy weights were calculated here using the analytic solution of 

Fullér and Majlender (2001). The implicit Eq. (3.34) was solved iteratively using 

arbitrary precision numbers. 

The parameter α defines the level of optimism or pessimism of a DM. The effect of 

parameter α on the number of elements effectively considered during the aggregation is 

shown in Figure 3.23. It can be observed that with an increasing level of pessimism only 

a small number of potential incidents with the highest risk of failure contribute towards 

the overall aggregated risk representing an alarm. A purely pessimistic attitude (α = 1) 

would mean that the overall risk of an alarm would be represented by only one potential 

pipe burst with the highest risk (i.e., the maximum operator). On the other hand purely 

optimistic attitude (α = 0) would select the least risky pipe burst as the representative of 

an alarm (i.e., the minimum operator). A neutral attitude where (α = 1/n), where n is the 

number of potential incidents associated with an alarm would perform aggregation 

using the arithmetic mean.  

In the case of an optimistic attitude towards risk, which does not seem to be appropriate 

in this decision-making context, the X-axis in Figure 3.23 would be reversed and the 

less risky pipe bursts would contribute most. 
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Figure 3.23 The effect of DM’s attitude towards risk α on maximum entropy OWA 

weights 

3.5.5 Anomaly Ordering 
The above approach, used to calculate the overall measure of risk Ri, is repeated for 

every active alarm (i.e., an alarm that has not yet been completely resolved). The lower 

the value of Ri the higher the overall risk associated with a particular alarm. The ranking 

of an alarm should also reflect the state in which an alarm is. Clearly a confirmed alarm 

has a higher priority than an unconfirmed one, which, on the other hand, is more 

important than an alarm that is believed to be a false alarm. This work considers the 

following alarm states: active, investigated, modified, real and false that were derived 

based on an input from a water utility and academic partners in the NEPTUNE project 

(Savić et al. 2008). Figure 3.24 shows the states of an alarm as well as possible 

transitions between them. The alarm states presented here are not a direct contribution 

of the author unlike the rest of the methodology presented herein. 
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Figure 3.24 An alarm state diagram 

An active alarm represents a fresh alarm that has just been detected and presented to an 

operator. The alarm can remain in this state until it is either marked as false in which 

case it was not genuine or as real in which case it was a real event. If new evidence 

becomes available, which affects the priority of an alarm (e.g., a customer call moves 

the most likely location of the burst to a high impact part of a DMA), while the alarm is 

in the alarm list, the state of an alarm changes to modified to raise the attention of an 

operator. Alternatively, an alarm can change its state to investigated (i.e., from the 

active and modified states), which indicates that it is being handled and further explored 

by an operator (e.g., using an interactive alarm diagnostics user interface discussed in 

Chapter 4). The false and real states are only set once the true nature of an alarm is 

determined (e.g., by a field technician). The alarm remains in the real or false states 

until it is manually deleted by an operator as resolved or specific period of time elapses 

(e.g., 1 week). 

To incorporate the alarm state in the ranking, the available states were reclassified into 3 

classes, unconfirmed (i.e., active, investigated, modified), confirmed real and confirmed 

false. It was desirable that a confirmed real alarm always had a higher priority than an 

unconfirmed one, which in turn had a higher priority than a confirmed false alarm. This 
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was achieved by assigning a Base_Priority level to every alarm according to the 

following rules: 

IF State( i ) IN ( active, investigated, modified ) THEN 
Base_Priority = 1000 

ELSE 
IF State( i ) IN ( real ) THEN  

Base_priority = 2000  
ELSE 

Base_priority = 0 

The final sorting criterion, which encompasses the overall risk of an alarm as well as its 

state, can then be defined as follows: 

( ) ( ) ( )Sort _ Priority   Base _ Priority   10 Ranki i i= + ×  (3.35) 

where: i is the index of an alarm, Base_Priority is a function defined using the above 

rules and Rank is a function, which returns the order of an alarm in an alarm list sorted 

in descending order of Ri so that the alarms with high risk (i.e., low values of Ri) obtain 

high ranks. 

The Base_Priority levels of 1,000, 2,000 and 0 for the unconfirmed, confirmed real and 

confirmed false alarms, respectively were derived from the assumption that at no point 

in time there will be more than 100 alarms in each of the categories. The Base_Priorities 

could be increased (e.g., by multiplying them by 10) should the values above be too 

restrictive. 

The alarms can then be presented to a WDS operator in the form of an alarm list that is 

sorted in descending order of Sort_Priority (see Eq. (3.35)) of the considered alarms. 

This ensures that the most severe alarms appear on the top of the list and receive more 

attention from the control room operators. The Rank of an alarm was multiplied by the 

factor of 10 since it was believed that higher values will generally receive more 

attention from the operators. This subjective assumption, however, has no scientific 

grounds.  

3.6 Summary 
This chapter presented a methodology for a near R-T risk-based diagnostics of flow 

anomalies in a WDS. Its key constituents, namely the Likelihood model, Impact model 

and Alarm prioritisation model, were discussed.  
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After the introduction in section 3.1, the conceptual foundations of risk-based decision-

making in diagnostics of pipe bursts in a WDS were laid in section 3.2. It was suggested 

that burst investigation within a DMA should be driven by risk maps presenting risk of 

a failure (i.e., its likely location and impact) in a non-aggregated form. The likelihood 

component of risk plays a dominant role when dispatching field technicians to 

investigate potential pipe bursts. On the other hand, the impact can be also considered as 

a secondary criterion by an operator when a burst in a particular part of a DMA has 

significant consequences. 

Section 3.3 presented a methodology, based on evidential reasoning, to estimate the 

likely location of a burst pipe within an affected DMA. The outputs of several models 

(i.e., a PBPM, an HM and a CCM) were combined in order to increase the confidence in 

the likely location of a burst pipe. A novel calibration procedure, based on multi-

objective optimisation was developed, to determine the necessary parameters of the D-S 

model. 

In section 3.4 the development of an impact model based on a pressure driven hydraulic 

solver and a GIS was described. A number of KPIs were developed to assess the 

performance of a WDS under failure conditions. MAVT, a technique from the field of 

MCDA, was used to obtain an aggregated impact of a failure based on a number of 

criteria and preferences of a DM. 

A method for prioritisation of alarms (i.e., detected abnormal events) was proposed in 

section 3.5. Its application enables the mutual significance of anomalies in situations 

when multiple failures are detected in a similar time horizon (e.g., 24 hours) in different 

parts of a WDS to be determined. Aggregated risk was expressed using the concept of a 

reference point and the DM’s preferences between the likelihood and impact 

components of risk. The OWA operator was applied to calculate an overall aggregated 

risk of an alarm, which together with the state of an alarm reflected its significance. 

Based on the outcomes of the alarm prioritisation, WDS operators can pay more 

attention to the most severe incidents first. 
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CHAPTER 4 DSS IMPLEMENTATION 

4.1 Introduction 
This chapter aims to put the methodologies proposed in Chapter 3 into a broader context 

of a near Real-Time (R-T) DSS for the operation of WDS under abnormal conditions. 

More specifically the overall architecture of this DSS will be described and details of 

the implementation of the main DSS modules, arising from the work presented in this 

thesis, will be discussed. Additional components of the DSS, such as an intervention 

management module (Vamvakeridou-Lyroudia et al. 2009) or an interactive User 

Interface (UI) described in Morley et al. (2009), which were not directly implemented 

by the author, will not be described here.  

First an overview of the whole architecture of the DSS is provided followed by a 

discussion on the design of a Database (DB), which forms the core of the entire DSS. 

Then the functionality of background modules, which implement the risk-based 

diagnostics methodology proposed in Chapter 3, is described. Distributed computing, 

one of possible solutions to achieve a near R-T performance required in WDS operation 

and failure management, will be discussed in section 4.4.3.1. The process of R-T 

visualisation of GIS data as implemented by the author in one of the UIs of the DSS will 

be briefly mentioned here as well.  

4.2 Architecture Overview 
As discussed by Morley et al. (2009) the DSS was designed in a modular fashion to 

maximise its extensibility in the future. Figure 4.1 provides a high level overview of a 

possible architecture of a near R-T DSS for operation of WDS under abnormal 

conditions. Off-line modules utilised by the DSS for one-off data import or model 

calibration are not included in the figure. A loose form of coupling between individual 

modules (i.e., mostly via a DB) was chosen to facilitate their integration within the DSS. 

All inter-process communication is achieved indirectly by polling information stored in 

a DB or alternatively through Hypertext Transfer Protocol (HTTP) requests (e.g., the 

interaction between the “System Overview” and the “Alarm Diagnostics” UI modules 

of the DSS front-end). 
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The entire DSS can be divided into several main blocks: (1) Back-end, (2) Front-end 

and (3) External modules as highlighted in Figure 4.1 using different colours. The focus 

of this work is on the back-end part, which contains an implementation of the 

methodologies presented in this thesis.  

To maximise the ease of integration of various DSS modules, Microsoft .NET was 

chosen as the main implementation platform. The majority of the source code was 

written in the C# programming language. The web-based application providing the 

“System Overview” was implemented in Personal Home Page (PHP), a server-side 

scripting language, and JavaScript. 
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Figure 4.1 A simplified overview of DSS architecture 
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4.3 Database Management System 
A Database Management System (DBMS) was employed by the DSS to provide 

concurrent access to data utilised by a number of processes that form the DSS as shown 

in Figure 4.1. Most of the DBMS nowadays are Relational Database Management 

Systems (RDBMS), which are built upon strong theoretical foundations of relations laid 

by Edgar F. Codd (1970). Despite the popularity of the object oriented programming 

paradigm, which was applied in the DSS implementation, purely Object Oriented 

Database Management Systems (OODBMS) have not become widely used and are 

typically only deployed in specialised applications. The primary reason for this was the 

lack of theoretical foundations underlying the OODBMS. The Object-Relational 

Database Management Systems (ORDBMS) attempt to fill-in the divide between purely 

RDBMS and OODBMS, exploiting the advantages of both approaches.  

ORDBMS were built upon the strong theoretical foundations of RDMBS, however, they 

offer a number of appealing object oriented features including user defined types, 

methods and inheritance that can be found in OODBMS. One of the main advantages of 

an ORDBMS is that it can store complex user defined types, such as geometries 

containing spatial information associated with a particular record. This allows the 

storage of GIS data in a relational DB and spatial queries to be performed on the data in 

an efficient manner thanks to special index structures. 

The PostgreSQL (Worsley and Drake 2002) ORDBMS, together with its spatial 

extension PostGIS (Refractions Research 2009) was chosen as a DBMS platform in this 

work. This combination allows easy storage and retrieval of relational as well as spatial 

data. A simplified structure of the DB used by the DSS is shown in Figure 4.2. Only the 

main tables, out of 54 tables used by the DSS are shown in the figure. The colour 

coding indicates which datasets were directly provided by a water utility and which 

were generated or derived during the development of the DSS. The border of the tables 

in Figure 4.2 identifies whether a particular table contained spatial information or not.  
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Figure 4.2 An entity-relationship diagram capturing the main tables used by the DSS 

The key tables in Figure 4.2 are the “Links” and “Nodes” tables that were imported 

from an HM of the WDS. A number of associations were then constructed, typically 

using spatial analysis, representing the mutual relationship between the HM and 

additional data sources (e.g., Customers, DMAs, Valves, etc.). The second main group 

of tables (e.g., Source_Alarms, Alarms, Evidence, Potential_Incidents, Impact_Results, 

etc.) is responsible for the management of alarms and storage of the results of the risk 

analysis described in Chapter 3. 

To maximise the portability of the whole DSS and avoid reliance on a particular type of 

DBMS used (e.g., PostgreSQL), the Open Database Connectivity (ODBC) standard was 

employed. ODBC provides a standardised Application Programming Interface (API) to 

communicate with a DBMS. Every module, which is part of the DSS, uses ODBC to 

access the PostgreSQL DBMS.  
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4.4 The Back-End 
The back-end part of the DSS comprises a number of non-interactive background 

processes that are primarily responsible for: 

• Import of near R-T data received from a water utility into a DB and its filtering 

• Monitoring of newly received alarms (Alarm Monitor ) 

• Distributed evaluation of the impact of a failure (Impact Evaluator) 

• Evaluation of the likelihood of pipe failure within a DMA (Likelihood 

Evaluator) 

• Prioritisation of alarms (Alarm Ranking ) 

The data import and filtering modules are responsible for processing and importing near 

R-T pressure and flow data (received every 30 minutes), Customer Contact (CC) data 

and information from a Work Management Systems (WMSY) (received twice per day). 

The data is transferred from a water utility using the File Transfer Protocol (FTP). 

The remaining four back-end processes form the core of the implementation of the risk-

based anomaly diagnostics methodology presented in Chapter 3. Figure 4.3 shows an 

activity diagram in Unified Modelling Language (UML) capturing the interaction of 

those processes. 
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Figure 4.3 The interaction of processes involved in anomaly diagnostics  

At first the presence of new alarms generated by the external pipe burst detection 

module (see section 4.6) is periodically checked by the Alarm Monitor, which is 

described in more detail in section 4.4.1. Once a new alarm is identified, the risk 

assessment can commence. This is achieved by concurrently evaluating the Likelihood 

and Impact of all potential incidents (i.e., possible causes of an alarm). Finally, after the 

risk assessment is completed, the aggregated impact of possible causes can be computed 

and all active alarms can be Ranked and Prioritised to determine the significance of the 

most recent event relative to the other active alarms. 

4.4.1 Alarm Monitor 
An activity diagram, which is similar to a flow diagram, of the Alarm Monitor is shown 

in Figure 4.4. The process periodically checks the contents of the “source alarm” table 

in the DB (see DB schema in Figure 4.2) and in case a new (fresh) alarm is discovered, 

it performs necessary initialisation steps before the risk assessment can be started. The 

initialisation stage involves generating a set of potential incidents associated with an 

alarm. This set by default comprises all pipe segments within a DMA from where the 

alarm originated. The current implementation of the module is only limited to 

diagnostics of pipe bursts. As previously discussed, extension to include other types of 

failures is possible. Furthermore, a new HM (i.e., an EPANET input file) of the whole 
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system (i.e., not necessarily only the investigated DMA) is generated for every alarm, as 

part of the initialisation stage. The new custom HM contains forecasted boundary 

conditions and is used in the next Impact Evaluation phase. Should R-T information 

about active devices (such as valves, pumps, etc.) be available at the time that the 

custom model is created, it could also be incorporated to provide a more realistic picture 

of the WDS.  
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Figure 4.4 An activity diagram describing the Alarm Monitor module  

Setting the boundary conditions in the new model involves the calculation of pattern 

multipliers for all demand nodes and reservoirs at every time step over the next 24 hours 

(i.e., the default risk horizon). Pre-computed forecasts (i.e., using the external 

forecasting module shown in Figure 4.1) of relevant variables, i.e., DMA inflows and 

outflows, exports from the WDS and reservoir levels, are retrieved from a DB. Ideally, 

the forecasted boundary conditions should be updated every time new measurements are 

obtained from the field. This would allow a re-evaluation of the impacts of potential 

incidents using real observations. In the current implementation forecasting is carried 

out only once in 24 hours. The forecasted boundary conditions are imposed in the new 
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custom model either directly in case of reservoir levels or exports by modifying their 

diurnal patterns, or indirectly in case of DMA demands. It is assumed that the increase 

or decrease of water consumption by all consumers within a DMA is proportional to 

their average water consumption. On this assumption the average base demands of 

individual demand nodes at every time step are scaled (up or down) to match the 

forecasted consumption of the whole DMA at given time.  

When a prediction of DMA inflow or outflow is not available (e.g., long term sensor 

failure preventing the prediction of future demands) the average nodal demands of this 

particular DMA, stored in the default EPANET input file, are used instead. Should 

cascading DMAs be present in the system (i.e., a DMA supplies another DMA 

downstream) and forecasts were not available for any of the downstream DMAs, then 

average demands are used in all upstream DMAs as well to avoid any flow balance 

problems.  

For the sake of simplicity, pressure measurements from the field were not considered as 

additional boundary conditions when redistributing nodal demands since this would 

require the adoption of a more sophisticated state estimation technique (e.g., Machell et 

al. 2009; Preis et al. 2009).  

Once the new HM is generated, a new alarm record, including a set of potential 

incidents associated with this alarm, are then stored in a DB. The presence of the new 

alarm consequently triggers the risk assessment carried out separately by the Likelihood 

and Impact Evaluators described below. 

4.4.2 Likelihood Evaluator 
Figure 4.5 shows an activity diagram of the Likelihood evaluator, which is a process 

responsible for determining the likelihood of occurrence of every potential incident 

within a DMA where an alarm was generated. The likelihood evaluator periodically 

checks for new alarms, whose likely cause needs to be identified. Once a new alarm is 

recognised, the individual models (i.e., a PBPM, a CCM and an HM) are initialised and 

a set of all potential incidents associated with an alarm (i.e., those previously generated 

by the Alarm Monitor) are loaded. 
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Figure 4.5 An activity diagram describing the Likelihood Evaluator module 

The model initialisation stage involves the retrieval of CCs from the affected DMA that 

were recorded 24 hours before the detection of the burst and during the same day. For 

the PBPM pipe properties (e.g., age, material, diameter, etc.), the characteristics of the 

surrounding soil, type of the land above the pipe, average weather conditions and 

historical burst rates are loaded from a DB. The initialisation of the HM requires the 

loading of an EPANET model of a given DMA (i.e., not a model of the whole WDS as 

in the case of the Impact Evaluator) and the retrieval of pressure and flow measurements 

associated with the DMA (e.g., inflows, outflows and pressures) at the time of the burst 

detection. The DMA EPANET model is then dynamically adjusted, as described in 
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section 3.3.2.3, to impose inlet pressure boundary conditions and establish flow balance 

between the model and flow measurements from the field. 

Three different models that are capable of providing evidence about the likely / unlikely 

location of the burst within a DMA are then executed. Each of the available models 

(e.g., CCM can be excluded in situations when no CCs were recorded) provides a value 

of criterion measurement for every potential incident. The model outputs then undergo 

the information fusion process in the D-S Model as described in section 3.3. Once the 

information fusion is completed, the combined likelihood (i.e., BetP) as well as the 

underlying evidence provided by the individual models are stored into a DB for future 

visualisation using the interactive Alarm Diagnostics UI, which is part of the DSS front-

end (see Figure 4.1).  

4.4.3 Impact Evaluator 
A high level activity diagram of the Impact Evaluator is shown in Figure 4.6. The figure 

describes a distributed implementation of the Impact Evaluator, which can be run on a 

number of computers simultaneously. Similarly to the Likelihood Evaluator described 

above, the process also monitors the alarms table for newly generated alarms. If a new 

alarm, which requires impact assessment, is recognised, the process attempts to load an 

EPANET model of the whole WDS, which was generated by the Alarm Monitor 

(described in section 4.4.1) and includes forecasted boundary conditions for this new 

alarm. Should the custom model be not available for some reason (e.g., the Alarm 

Monitor process failed to generate an input file) the impact assessment reverts to use the 

base model of the WDS, with average demands only. 
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Figure 4.6 An activity diagram describing the Impact Evaluator module 

Once the HM is loaded and initialised, first a base line scenario, representing the state of 

the WDS under normal conditions is evaluated. The baseline scenario serves to 

determine normal flows and pressures in the WDS, which are used to calculate the 

discolouration potential of every pipe in the system under such conditions. 

Consequently, the Impact Evaluator starts retrieving batches of potential incidents (the 

number of potential incidents retrieved at a time needs to be selected according to the 

number of instances of the Impact Evaluator). Only those potential incidents whose 
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impacts have not yet been evaluated (e.g., by another instance of the Impact Evaluator) 

are loaded at this stage. For every potential incident, its impact on the whole WDS is 

evaluated by running an HM, discolouration risk model and calculating KPIs proposed 

in section 3.4.4. The results are then stored into a DB and the potential incidents are 

marked as evaluated. In case there are no unevaluated potential incidents available in 

the DB and no other instances of the impact evaluator are processing potential incidents 

associated with an alarm, the alarm can be flagged as processed and its impact 

evaluation is completed. This final step is required only in the distributed version of the 

Impact Evaluator and assures that an alarm is flagged as processed only after all other 

instances of the Impact Evaluator (e.g., running on different computers) finished its 

processing. 

Ideally, the pressure driven hydraulic solver should be able to reach a solution for every 

configuration of a WDS. The gradient algorithm proposed by Todini and Pilati (1988) 

might be unable to converge under certain circumstances (e.g., when pipe resistances 

are too high or velocities in the system are too low). If the pressure driven hydraulic 

solver used (i.e., Morley and Tricarico 2008) fails to converge when simulating a pipe 

burst, an exception is generated. The potential incident whose impact evaluation failed 

is then flagged in the DB so that its impact can be excluded from further risk analysis. 

4.4.3.1 Distributed Computing 

The primary focus of the methodology presented in this thesis is to support near R-T 

decision-making. Evaluating the impact of all potential failures within a DMA at system 

level (rather than DMA level only) requires hundreds of runs of a hydraulic solver on a 

large network, typically containing thousands of nodes and pipes. Therefore, it is 

computationally demanding as those runs cannot be performed off-line (i.e., pre-

computed). This is a consequence of the need to consider the current state of the system 

based on information from: (i) pressure and flow monitoring devices, (ii) magnitude of 

abnormal burst flow and also (iii) predictions of demands and reservoir levels. Even 

with the high-performance personal computers available nowadays impact evaluation of 

a single failure can take up to several seconds, which makes its application in the near 

R-T domain difficult. To increase the speed of impact evaluation, a database-centric 

distributed architecture was implemented (see Figure 4.7).  
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Figure 4.7 A database-centric architecture for distributed impact evaluation 

The proposed distributed computing architecture builds upon strong transaction 

processing capabilities of modern RDBMS. A RDBMS serves as a mediator between a 

client application and a computer cluster comprising several nodes. The distributed 

impact evaluation is carried out in following steps: (1) the client application inserts a set 

of impact scenarios into the DB; (2) each of the processes running on the computing 

nodes in the cluster periodically attempts to retrieve new scenario(s) from the DB; (3) if 

a new failure scenario(s) is/are retrieved from the DB, their impact is evaluated; (4) the 

results are stored back into the DB; and (5) the client application retrieves the results of 

evaluated impact scenarios. 

4.4.3.2 Performance Evaluation 

The architecture presented above has proved to be suitable for the given application 

since the time required to retrieve failure scenario(s) and to store the results into a DB 

was negligible compared to the time needed to evaluate the impact of one potential 

incident. Implementation of this distributed application was conceptually simple and the 

solution should be well scalable. 

Evaluation of the performance gains using distributed computing was carried out on a 4 

node computing cluster. All the machines in the cluster had identical hardware 

configuration and were connected using 1Gb/s Ethernet network (to minimise 

communication latency). The hardware configuration of the nodes was as follows: Intel 

Core 2 Quad Central Processing Unit (CPU) Q8300 @ 2.5GHz and 4GB of RAM. 

Different versions of the operating system were installed on each of the computing 

nodes, which had only a minimum impact on the difference in overall performance of 

the individual nodes. One of the computing nodes in the cluster acted as a DB server 
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and its load was always balanced in such a way that the DBMS had sufficient resources 

available to handle client requests. 

The scalability of the current implementation of the distributed impact evaluation is 

shown in Figure 4.8.  
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Figure 4.8 Speedup achieved using distributed computing 

The figure shows the approximate total time in seconds required to perform a complete 

impact evaluation of 469 pipe bursts in an urban DMA as well as the speedup achieved 

(i.e., a ratio of time required by a sequential algorithm and the distributed one) as 

defined in Eq. (4.1).  

1
p

p

T
S

T
=  (4.1) 

where: p is the number of processors, T1 is the execution time of the sequential 

algorithm and Tp is the execution time of the parallel algorithm with p processors 

The impact assessment was carried out using a pressure driven HM that comprised over 

9,000 pipes and 8,700 nodes (i.e., impact of the burst in a DMA was evaluated at system 

level). The loading of the processes on the nodes was done in such way that the number 

of processes per node was minimised. Moreover, it was attempted to avoid running any 

processes on the node with the DB server where possible. The polling frequency (i.e., 
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how often the client nodes access the DBMS) as well as the number of impact scenarios 

retrieved at a time (i.e., one at a time in the current setup) can influence the total 

duration of the impact evaluation. The influence of these parameters was not studied in 

detail. It is believed that it is marginal and can be easily tailored to best suit a given 

distributed environment (i.e., a computing cluster).  

As can be seen from Figure 4.8, the solution scaled up almost linearly up to 4 processors 

(i.e., 1 instance of Impact Evaluator running on all 4 computing nodes). When multiple 

instances of the impact evaluator were created on a single node the performance has 

dropped significantly. This can be observed in scenarios with 6 (i.e., 2 processes on 

each of the 3 nodes used), 8 (i.e., 2 processes on all 4 computing nodes) and 12 (i.e., 4 

processes on each of the 3 nodes used). 

Figure 4.9 shows the difference in speedup when multiple instances were launched on a 

single multi-core computer and when the instances were distributed across a number of 

physical machines. This figure suggests that the scalability issue in current 

implementation is not caused by communication overheads when impact scenarios are 

retrieved from and stored into the DB (see the almost linear speedup curve of the 

configuration with N nodes). 

Performance of Distributed Impact Evaluation on 1 node / N nodes

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0 1 2 3 4 5

Number of Processors

S
p

ee
d

u
p

Speedup 1 node

Speedup N nodes

 

Figure 4.9 Speedup achieved using distributed computing on 1 node vs. N nodes 
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Profiling of the source code revealed that the slowdown apparent when multiple 

processes (i.e., instances of the Impact Evaluator) were run on a single computer was 

most likely caused by an inefficient memory management of the Impact Evaluator. This 

could be either due to improper use of data structures offered by the Microsoft .NET 

Framework or possibly by the garbage collection mechanism (i.e., an automatic freeing 

of unused memory). Table 4.1 shows the time in milliseconds required to perform 

selected actions as shown in Figure 4.6 to evaluate impact of a single potential incident. 

The timings of the part of the code responsible for accessing the DB are highlighted in 

green and it can be observed from the table that the DB access did not vary significantly 

amongst the different scenarios. On the other hand, the time required to complete 

memory and CPU intensive operations (i.e., the HM Run, KPI Evaluation and Results 

Generation), which comprise the Evaluate Pipe Burst Impact block, as shown  in 

Figure 4.6, deteriorated significantly. 

Table 4.1 Results of profiling of the distributed Impact Evaluator 

Evaluate Pipe Burst Impact 
Scenario 

Load 
Potential 
Incident 

HM 
Run 

KPI 
Evaluation 

Results 
Generation 

Store 
Results 

Single process 5.3 ms 1742.8 ms 116.3 ms 297.7 ms 8.4 ms 
2 Processes 2 machines 4.4 ms 1757.6 ms 116.3 ms 297.3 ms 7.1 ms 
2 Processes 1 machine 5.2 ms 2088.6 ms 126.8 ms 361.2 ms 7.7 ms 
4 Processes 1 machine 5.1 ms 3467.4 ms 196.1 ms 589.2 ms 7.9 ms 

The slowdown when multi-core computers are used can be seen as an obstacle in large 

scale deployment of the application given the wide availability of multi-core CPUs 

nowadays. Nevertheless, the distributed impact evaluation as proposed in this work is 

generally a well scalable problem. The sequential part of the algorithm, which includes 

mostly loading of required data and initialisation of the HM takes approx. 10s (i.e., 

0.5% of the overall sequential runtime on 469 potential incidents) on the hardware 

described above.  

4.4.4 Alarm Ranking 
Figure 4.10 depicts an activity diagram of the Alarm Ranking process. This process 

concludes the risk-based methodology by performing impact aggregation and alarm 

prioritisation. Similarly to the Likelihood and Impact Evaluators, the process also 

monitors the alarms table in the DB. Once an alarm that underwent the complete risk 
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analysis (i.e., the likelihood and impact of all its potential incidents were evaluated) is 

found, then the ranking process is initiated. At first, all active alarms that need to be re-

prioritised are loaded. Next, the process retrieves all potential incidents, including their 

non-aggregated impact metrics at a given risk horizon (i.e., 24 hours), associated with 

those alarms. The aggregation of impacts of potential incidents can only take place once 

the KPIs off all considered potential incidents are known since the normalisation of 

impact KPIs (described in section 3.4) takes place across all active alarms. Once the 

aggregated impacts of all potential incidents are re-computed, the alarm ranking 

methodology (see section 3.5) can be applied.  
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Alarms have to be re-prioritised?

No

Yes

Load Potential Incidents
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Yes Terminate?

Load Active Alarms
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Figure 4.10 An activity diagram describing the Alarm Ranking module 
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A caching mechanism was implemented to improve the efficiency of calculating the 

maximum entropy weights. The weights for a particular value of parameters α and n are 

stored in a DB and can be efficiently retrieved when needed. When a desirable value of 

parameter α is determined by the DM, the cache could be seeded with all weights for 

common values of n (i.e., the number of potential incidents within a DMA) and given a 

level of attitude towards risk α. The structure of the tables used to store the weights is 

shown in Figure 4.11. 

 

Figure 4.11 Table structure of the cache used to store maximum entropy weights 

Once the alarm ranking is completed, results, including the newly computed aggregated 

impacts and alarm priorities, are stored into the DB. The alarm can then be flagged as 

ranked and only at this point it is presented to an operator through the “System 

Overview” UI, described further in section 4.5.1. 

4.5 The Front-End 
The processes that form part of the front-end (see Figure 4.1) are responsible for 

presenting the outcomes of the risk-analysis as well as additional relevant information to 

the end user (i.e., a control room operator) of the DSS. At any time, an overview of the 

near R-T state of the entire WDS is available to the operator through a prioritised list of 

all alarms (i.e., detected anomalies) as well as through using a GIS interface. This is 

achieved by a multi-user web-based application, which is introduced in the following 

section. Detailed results of the risk analysis are then made available to the end user 

through the “Alarm Diagnostics” UI, which has not been developed as part of this thesis 

and will not be described here. 

4.5.1 System Overview User Interface 
This section discusses the development of a web-based application that provides the 

DSS user with a near R-T overview of alarms in a WDS through a GIS and an alarm 

list. The GIS visualisation comprises several layers overlaid on top of a background 
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map as illustrated in Figure 4.12. The GIS layers contain information about sensors that 

were in an alarm state (note the red dots in Figure 4.12) over a specified period of time 

(e.g., 7 days), DMA boundaries, topology of the WDS, etc.  

 

Figure 4.12 A screen capture of GIS layers projected on top of a background map 

A number of approaches to visualise data stored in a spatial DB (e.g., sensors in an 

alarm state) can be adopted. Figure 4.13 shows a possible setup used to serve GIS layers 

to end users using a MapServer (Kropla 2005). MapServer provides a number of 

interfaces to access spatial data (e.g., stored in a PostgreSQL DB with PostGIS spatial 

extensions). The most commonly used protocols to access GIS data nowadays are the 

Web Map Service (WMS) and Web Features Service (WFS) standards developed by the 

Open Geospatial Consortium (OGC). The WMS and WFS standards are supported by 

all major GIS software packages, including ArcGIS.  
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Figure 4.13 Online generation of GIS layers from a spatial DB 

MapServer can be accessed by end users (or other processes such as a Tile cache) as a 

web application hosted on a HTTP server (e.g., Apache HTTP server). Users are thus 

allowed to retrieve layers using HTTP requests in a number of formats. GIS layers 

rendered in raster format can be retrieved using the WMS protocol or alternatively 

vector data can be requested using the WFS protocol. In case of WMS, the most 

commonly used format to render GIS data is the Portable Network Graphics (PNG) 

format thanks to its suitable compression.  

To request a GIS layer, a MapServer needs to perform a spatial query on a DB, then 

retrieve and process the results. Such an approach might represent a potential 

performance bottle neck when the number of requests is too high. It is frequently the 

case that web-based GIS visualisation frameworks (e.g., OpenLayers) split an image 

into a number of smaller tiles to allow smooth panning and navigation over a GIS map. 

Since information in some of the layers presented to the user does not change frequently 

(e.g., DMA boundaries) it is possible to store such layers in the form of cached tiles 

(i.e., images of fixed size, typically 256x256 pixels containing the graphical 

representation of a particular area at given zoom level). The tiles that are rendered off-

line can then be efficiently served to the end user without requiring any additional 

resources of the DBMS as well as the MapServer. The Tile cache can be periodically 

refreshed when needed (e.g., during night hours) to reflect long term changes in the 

underlying data.  
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4.5.1.1 Alarm List 

Information about sensors in an alarm state is also available through an alarm list (see 

Figure 4.14), which lets the user perform further actions. The alarm list contains 

information such as (1) the time when an alarm was received; (2) Alarm ID (in the 

“Investigate” column) in case further investigation is possible; (3) Alarm state; (4) 

Alarm priority; (5) ID of a sensor, which triggered the alarm; (6) ID of an affected 

DMA; (7) estimated burst flow; (8) Control button; and (9) additional information about 

the alarm.  

Operators can start the investigation of an alarm, which allows the exploration of 

detailed results of risk-based diagnostics of possible causes of an alarm, using the 

interactive Alarm Diagnostics UI. The interaction between the web application and the 

Alarm Diagnostics UI is achieved by sending an HTTP request. The HTTP request acts 

as a message and carries information about an alarm to be investigated. This allows 

asynchronous communication between the two main front-end applications.  

The alarm list also allows users to invoke a trend display to visualise data associated 

with a particular sensor in an interactive way. The trend display contains 2 panes, where 

the bottom pane provides an overview of the trend over the past 2 weeks and the main 

top pane provides the trend of a dynamically selected period of time using the bottom 

pane. 

 

Figure 4.14 An example of an alarm list  

When the nature of an alarm is verified (e.g., by a field technician dispatched to the 

field) it is also possible to change the state of an alarm (e.g., to Real or False) and thus 

affect its overall priority. Should the automatic prioritisation performed by the DSS 
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(using methodology described in chapter 3.5) provide priorities that are not in 

agreement with the judgement of the operators, these can be manually overridden. In the 

current implementation the manually overridden priority has only a temporary effect 

and is reset when alarm re-prioritisation takes place with the arrival of a new alarm. 

 

Figure 4.15 An interactive trend display 

The alarm list could be easily extended to capture the exact cause of real alarms by 

associating them with main pipe repairs from a WMSY. Such feedback could then be 

used by the DSS to re-calibrate the D-S model used by the Likelihood Evaluator. The 

functionality to carry out the automatic re-calibration was not implemented since it 

represents a number of challenges and is suggested as part of future research in section 

6.3.1. 

4.6 External Modules 
The DSS utilises two external modules responsible for near R-T detection of pipe bursts 

and forecasting of trend data. These modules were provided by academic partners as 

part of the NEPTUNE project (Savić et al. 2008). 
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The Pipe Burst Detection Module was developed by the University of Sheffield 

(Mounce et al. 2010). An ANN was trained on continually updated historic data to 

predict future flow profiles. The flow data measured every 15 minutes and provided by 

a water company once per hour is then compared with the predicted flows over a given 

time window using a Fuzzy Inference System (FIS). An alarm to notify control room 

personnel is generated and stored in a DB in case a significant discrepancy between 

observed and predicted data is discovered. 

A Forecasting Module, to predict future water DMA demands, export flows and 

reservoir levels was developed by De-Montfort University. The module was part of an 

optimal pump scheduling software package FINESSE (Rance et al. 2001). The 

prediction is done in three stages: (1) screening, (2) smoothing and (3) forecasting. At 

first outliers in the data set are removed. Fast Fourier transform is then applied to reveal 

trends in the historical data. Finally, the Triple Exponential Smoothing is used to 

extrapolate the smoothed trend into the future. 

4.7 Summary 
This chapter provided details about the possible implementation of the risk-based 

decision support methodology for near R-T WDS operation under abnormal conditions 

presented in Chapter 3. The focus of the description was on the implementation of 

processes responsible for the background risk-analysis that were designed and 

implemented by the author. 

A loosely coupled design of the risk-analysis and alarm prioritisation modules was used 

here to facilitate their integration. The methodology presented in Chapter 3 was broken 

down to 4 main modules, namely the Alarm Monitor, Likelihood Evaluator, Impact 

Evaluator and the Alarm Ranking and Prioritisation module. The functionality as well 

as implementation details of each of the aforementioned modules were discussed.  

It was demonstrated that distributed computing can be exploited to speed up risk 

assessment of potential incidents. Given the reliance of impact evaluation on the use of 

an HM and the requirement to run an EPS, any overhead of inter-process 

communication is negligible compared to the computational time required to evaluate a 

single impact scenario. A database-centric distributed architecture was designed and 



Chapter 4 - DSS Implementation 

 125 

implemented. The theoretical scalability of such a solution should be very good (i.e., 

almost linear), however, the current implementation suffered serious slow down on 

multi-core CPUs. 

The use of ORDBMS with spatial extensions has proved as beneficial since it 

significantly facilitated operating with GIS data. Thanks to the adopted approach, GIS 

data was effortlessly made available and visualised in a number of formats including 

WMS, WFS and PNG, using a MapServer. A web-based application, utilising the WMS 

technology, providing an overview of the near R-T state of a WDS (i.e., alarms) was 

implemented. To ensure scalability of the visualisation solution, its performance can be 

further improved by caching the static contents in the form of graphic tiles. 
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CHAPTER 5 CASE STUDIES 

5.1 Introduction 
This chapter illustrates the application of the models and methodologies presented in 

Chapter 3 on a number of real life and semi-real case studies. The software 

implementation of the back-end modules described in Chapter 4 was used to perform 

the testing. The availability of required data in sufficient quality and quantity was in 

some cases limited, which prevented the entire risk-based pipe burst diagnostics 

methodology being demonstrated on data collected from a real WDS. 

This chapter is organised as follows. First, the use of a Hydraulic Model (HM) as a 

Real-Time (R-T) source of evidence suggesting the likely location of a burst pipe is 

demonstrated on real life Engineered Events (EE) in section 5.2. Second, the potential 

of applying information fusion, using the Dempster-Shafer (D-S) model presented in 

section 3.3, to locate a burst pipe is shown in section 5.3 on a number of historical pipe 

bursts with synthetic noisy pressure and flow measurements. Section 5.4 provides 

details of the calibration of the impact model introduced in Chapter 3.4. Results of an 

online questionnaire survey were analysed to derive a number of weighting factors 

reflecting the preferences of a water company. Finally, the automated prioritisation of 

alarms (i.e., detected abnormal events) is described in section 5.5 on a number of real 

life alarms detected over a period of two years. 

The case studies presented in this thesis are based on data from a real life WDS located 

in the Harrogate and Dales area in North Yorkshire, UK as shown in Figure 5.1. The 

WDS in question supplied water to almost 25,000 properties with an average daily 

water consumption of 37 Ml/d (in March 2010).  
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© Crown Copyright/database right 2010.
An Ordnance Survey/EDINA supplied service. 

Figure 5.1 Location of the case study area in the UK 

5.2 Hydraulic Model Evidence 
The aim of this case study is to demonstrate the possibility of using calibrated HMs 

together with near R-T pressure and flow measurements to estimate the location of a 

burst pipe within a DMA. HMs were previously used in the attempts to locate leakage / 

bursts in a WDS and a number of methods similar to the one used here were proposed in 

the literature. Their validation using real field data was lacking and, therefore, the 

potential of the HM is demonstrated here. Hydrant openings were used in the past (e.g., 

Mounce et al. 2003) to simulate effects of pipe bursts. Similarly, in this case study data 

collected during a set of EEs, when fire hydrants were flushed at different locations 

within a DMA to simulate bursts, was used.  

In EEs the application of the whole information fusion methodology as described in 

section 3.3 does not make sense since the location of the hydrant opening has, unlike a 

real burst, no correlation with the results provided by a Pipe Burst Prediction Model 

(PBPM). The abnormal flows introduced during EEs are within safe thresholds so that 

customers are not affected by low pressures. An EE will, therefore, not be reported by 
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customers since it is supervised by a field technician and, therefore, the use of a 

Customer Contacts Model (CCM) cannot yield any benefit. Therefore, the Likelihood 

Evaluator process, whose implementation was described in section 4.4.2 was modified, 

to exclude the information fusion portion and to output only the criterion measurements 

(i.e., the Sum of Squared Errors (SSE)) produced by an HM in this case. 

First, results from two sets of EEs carried out in a relatively simple, tree-like DMA (see 

Figure 5.2) in a predominantly rural area will be presented here followed by an 

application of the HM in a more complex DMA (see Figure 5.7) with only a small 

number of pressure sensors. The first set of EEs in a simple DMA (section 5.2.1) was 

based on large burst flow simulations (i.e., approx. 36% of an average peak DMA 

inflow or 63% of an average inflow in April 2010) whereas the second set of EEs 

(section 5.2.2) was based on medium burst flows (i.e., approx. 10% of an average peak 

DMA inflow or 18% of an average inflow in April 2010). Section 5.2.3 presents the 

results achieved on medium burst flow simulations (i.e., approx. 6% of an average peak 

DMA inflow or 10% of an average inflow in April 2010) conducted in a highly looped 

urban DMA. 

5.2.1 Large Burst Flow Simulations (EE1) 
Figure 5.2 shows the layout of a predominantly dendritic DMA comprising 390 demand 

nodes and 373 pipes where the first set of large and medium burst flow simulations 

were conducted. The total mains length was 17.8 km. The DMA had 1 inlet, shown as a 

reservoir in Figure 5.2, and 2 metered exports to other DMAs in the northern part of the 

DMA at the location of sensors 3276 and 3277. The DMA supplied water to 897 

domestic and 28 commercial properties (annual water consumption greater than 

400 m3). There were no tanks, pumps or PRVs installed in this DMA. The real location 

of the hydrant opening is denoted using an X symbol and a number corresponding to a 

particular event. The large burst flow simulations took place on 7 August 2008. 



Chapter 5 - Case Studies 

 129 

 

Figure 5.2 An overview of the case study area for EE1 and EE2 

Under normal conditions, there are only 4 loggers installed in the DMA (denoted as 

“Permanent” in Figure 5.2). One logger is at the inlet of the DMA (pressure + flow), 

two loggers are at the exports to other DMAs (pressure + flow) and the fourth logger 

(pressure only) is located at the highest elevation point of the DMA (i.e., the highest 

DMA elevation DG2 point). Before the EEs were conducted, 19 additional loggers were 

installed in the DMA at locations shown in Figure 5.2, to achieve an even coverage of 

the whole DMA (without taking optimal sampling design into consideration). There 
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were two types of loggers deployed in the field, 9 normal Cello loggers (Technolog 

2010), and 10 high speed (i.e., 100Hz) loggers (Race Technology 2010) denoted as DL1 

in Figure 5.2 that were equipped with pressure transducers supplied by SensorsOne Ltd 

(2010). The accuracy of the Cello loggers, the DL1 loggers and the Permanent loggers 

was +/- 0.5 m (i.e., +/- 0.5% on 100 m range), +/- 0.64 m (i.e., +/- 0.25% on 255 m 

range) and +/- 1 m (i.e., +/- 1% on 100 m range) of head, respectively.  

Due to equipment failures only 9 out of the 10 high speed loggers were operational. The 

existing (i.e., “Permanent”) Cello logger 3308 at DG2 (i.e., high elevation) point was 

malfunctioning during the EEs and was not used either. Further analysis of the data 

recorded by the loggers revealed unexpected readings from loggers 3583 and 3587, 

which lead to their exclusion from the analysis. As can be seen from Figure 5.3 the data 

from sensors 3583 and 3587 seemed to be delayed in comparison with the data from 

other sensors (e.g., 3588, 3590 and 3589). The portion of the trend highlighted in green 

indicates the return of the majority of the loggers to normal (i.e., a hydrant was shut off) 

whereas the parts of the trend highlighted in yellow show when the excluded sensors 

3583 and 3587 returned to normal. 
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Figure 5.3 Erroneous data from sensors 3583 and 3587 

One of the Cello loggers (i.e., 3585) was used to measure pressure at the inlet to 

establish boundary conditions of the DMA. In total, data from 15 newly installed 

loggers and two existing loggers at DMA exports was used in the analysis. 
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The quality of the HM, which was not recalibrated prior to the EEs, was tested on field 

data recorded under normal conditions (i.e., before the EEs were conducted). The 

Table 5.1 shows differences of pressures obtained by running the HM with updated 

boundary conditions (i.e., DMA inflows, outflows and inlet pressure) and field 

observations. The rows highlighted in red correspond to the two loggers (i.e., 3583 and 

3587) excluded from the analysis. 

Table 5.1 Difference between pressure measurements and the HM in m of head 

Pressure Difference (m) 
Node Id Cello 06/08 

18:00 
07/08 
00:00 

07/08 
07:00 

07/08 
08:00 AVG 

Offset 

5JYT466T2U 3581 -1.89 -2.05 -2.12 -2.33 -2.1 2.1 
5LLWL6C8E7 3583 2.6 -0.15 -0.74 4.99 1.7   
5JA10688K4 3584 -3.93 -4.5 -4.39 -4.23 -4.3 4.3 
5LMBK6DIBA 3586 -1.88 -3.42 -2.9 -0.79 -2.2 2.2 
5KJNJ6DYU8 3587 8.15 6.67 -3.52 7.36 4.7   
5IBN06CRID 3588 1.79 0.17 0.68 3.1 1.4 -1.4 
5LRX2681QL 3589 2.12 1.62 1.75 2.13 1.9 -1.9 
5H9CQ6CTQY 3590 0.8 -0.85 -0.17 1.77 0.4 -0.4 
5JPYD690DW DL1 001 4.96 4.55 4.45 4.35 4.6 -4.6 
5MDFP6DERE DL1 002 1.37 0.03 0.4 2.28 1.0 -1 
5KRGF68AIV DL1 003 -0.51 -0.71 -0.32 -0.27 -0.5 0.5 
5MEMV6DF8F DL1 004 2.92 1.59 2.21 4.1 2.7 -2.7 
5LH486CE8V DL1 005 4.19 2.57 2.99 5.1 3.7 -3.7 
5L1XM66MJ2 DL1 007 5.99 6.7 6.09 4.41 5.8 -5.8 
5KG7R66M2K DL1 008 -1.17 -0.71 -1.14 -1.35 -1.1 1.1 
5LYDR67UPL DL1 009 5.86 5.49 5.43 5.73 5.6 -5.6 
5KU4F67AHI DL1 BIG -10.85 -11.98 -11.83 -10.35 -11.3 11.3 
5MFXU6DGYP 3276 2.55 2.12 2.07 5.9 3.2 -3.2 
5MHCX6DF7U 3277 1.55 1.12 1.08 4.9 2.2 -2.2 

The table further shows that some of the loggers exhibited a systematic discrepancy that 

could be either caused by incorrect calibration of the HM (e.g., node elevation error), 

calibration of the pressure transducers or noise. Rather than recalibrating the HM of the 

studied DMA to match the observed pressures, which would be the most appropriate 

approach, it was assumed that the pressure measurements were not entirely correct and 

were either increased or decreased by applying a constant offset to match the HM 

results (under normal operating conditions) as closely as possible. The actual value of 

the applied adjustment is reported in the “Offset” column in Table 5.1. It was calculated 

as an average discrepancy between model results and field measurements computed 

over 4 randomly chosen time steps. 
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5.2.1.1 Data Pre-Processing 

It was discovered that the data collected during the EEs was in different time zones. 

Typically, all measurements are recorded in Greenwich Mean Time (GMT), however, 

the newly deployed loggers, due to incorrect setting, recorded time in British Summer 

Time (BST), which is equal to GMT+1. Given the fact that the EEs took place in the 

summer, failure to synchronise the time zones would yield erroneous results. The 

common time base used needs to consider the local time of a particular country to 

reflect the current water consumption trends and, therefore, the time base of all 

measurements was converted to BST to correspond with the HM. 

The transient DL1 loggers recorded pressures at 100 Hz frequency, whereas the Cello 

loggers recorded data every 5 seconds. So a high sampling rate is unrealistic for long 

term deployment of battery-only powered sensors since it would lead to fast battery 

depletion. Moreover, given the 15 minute time steps of the HM, all pressure data had to 

be down sampled to 15 minute time step using a moving average to reduce the effect of 

noise (the averaging window was 2 minutes). Pressure at the Nth minute was calculated 

by averaging pressure readings in the (N-1)th and the Nth minute. Detailed analysis of 

the influence of the size of the averaging window used was not carried out. The average 

difference of pressures aggregated over a 1-minute time window was approx. 0.52%, 

which seemed insignificant compared to the drops in pressure observed during the EEs. 

5.2.1.2 Event Detection 

As stated in section 3.3.2.3 the HM requires the detection time of a burst as well as the 

estimated magnitude of burst flow as inputs. These input parameters are normally 

provided by an automated pipe burst detection system (Mounce et al. 2010). In case of 

EE1 and EE2 the aforementioned system could not readily detect consecutive hydrant 

openings carried out within one day. The burst detection times were determined in this 

particular case manually by visual inspection of pressure data from a selected pressure 

sensor, whose trend during two consecutive days is shown in Figure 5.4. The hydrant 

openings correspond to pressure drops lasting approximately 1 hour and could be easily 

recognised in the trends. 
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Comparison of pressures in E013 on 6 and 7 August 2008

25

30

35

40

45

50

55
06

:0
0

06
:1

5

06
:3

0

06
:4

5

07
:0

0

07
:1

5

07
:3

0

07
:4

5

08
:0

0

08
:1

5

08
:3

0

08
:4

5

09
:0

0

09
:1

5

09
:3

0

09
:4

5

10
:0

0

10
:1

5

10
:3

0

10
:4

5

11
:0

0

11
:1

5

11
:3

0

11
:4

5

12
:0

0

12
:1

5

12
:3

0

12
:4

5

13
:0

0

13
:1

5

13
:3

0

13
:4

5

14
:0

0

14
:1

5

14
:3

0

14
:4

5

15
:0

0

Time (BST)

P
re

ss
ur

e 
(m

)

06-Aug

07-Aug

EE1-1 EE1-2 EE1-3 EE1-4 EE1-5

 

Figure 5.4 Pressure data of a selected logger for event detection on 6 and 7 August 2008 

The manually detected and actual hydrant opening times are shown in Table 5.2. The 

table suggests that the manually detected hydrant openings closely corresponded to the 

actual times when the hydrants were opened. 

Table 5.2 Detected and actual hydrant opening times of EE1 

Hydrant Opening Times (BST) 
EE1 

Manually Detected Actual 

1 08:24 – 09:26 08:25 – 09:29 

2 09:31 – 10:34 09:33 – 10:37 

3 10:56 – 11:58 10:56 – 11:58 

4 12:07 – 13:08 12:06 – 13:09 

5 13:15 – 14:24 13:17 – 14:20 

5.2.1.3 Abnormal Flow Estimation 

Under normal conditions an automated pipe burst detection system (Mounce and Boxall 

2010) is able to provide a good estimate of the abnormal flow. As discussed in the 

previous section, the system was not used during these EEs and it was therefore 

necessary to estimate the burst flow manually. To estimate the flow from the open 
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hydrants during the first set of EEs the difference between an average demand over the 

past 3 days (i.e., from 4 to 6 August) and the actual demand on 7 August was taken. The 

estimated abnormal flow was required as one of the inputs to the HM. 

EE1 - 7 August 2008 E013 - Estimation of Burst Flow
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Figure 5.5 Comparison of flow data on 7 August 2008 with an average demand 

Table 5.3 provides a summary of abnormal flows estimated by comparing flow patterns 

under normal and abnormal conditions in the network using Figure 5.5. The column 

“Difference” corresponds to the estimated flow rate used by the HM whereas the “Real 

Flow” column contains observed flow measurements, disclosed after the analysis. The 

flow rate from the hydrant was measured using a hydrant pipe flow meter which, 

although digital, is prone to error. The five manually detected events (i.e., the assumed 

burst detection times) are highlighted in yellow in Table 5.3. 
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Table 5.3 Summary of times and abnormal flows used by the HM 

Date 
AVG 

Outflow 
(l/s) 

AVG 
Inflow 

(l/s) 

AVG 
Demand 

(l/s) 

7 Aug 
Demand 

(l/s) 

Difference 
(l/s) 

Real 
Flow (l/s) 

07/08/2008 08:00 9.75 16.93 7.18 8.13 0.94  
07/08/2008 08:15 10.03 17.25 7.22 7.74 0.52  
07/08/2008 08:30 9.95 17.19 7.24 9.23 1.99  
07/08/2008 08:45 10.03 16.76 6.73 12.69 5.96 6.6 
07/08/2008 09:00 9.90 16.80 6.90 13.20 6.30  
07/08/2008 09:15 9.49 16.46 6.97 12.91 5.93  
07/08/2008 09:30 8.80 15.77 6.97 11.22 4.25  
07/08/2008 09:45 8.82 15.57 6.75 11.80 5.05  
07/08/2008 10:00 10.16 16.42 6.26 12.84 6.58 6.2 
07/08/2008 10:15 8.93 15.19 6.26 11.69 5.43  
07/08/2008 10:30 8.00 13.69 5.68 11.65 5.97  
07/08/2008 10:45 7.44 12.78 5.34 8.72 3.38  
07/08/2008 11:00 7.30 12.21 4.90 7.49 2.58  
07/08/2008 11:15 6.37 12.41 6.03 11.47 5.44 7.3 
07/08/2008 11:30 6.15 11.68 5.53 11.51 5.97  
07/08/2008 11:45 5.96 11.35 5.40 11.12 5.72  
07/08/2008 12:00 5.70 10.96 5.27 11.17 5.90  
07/08/2008 12:15 5.77 10.64 4.87 9.17 4.30  
07/08/2008 12:30 5.44 10.27 4.83 11.62 6.79* 7.3 
07/08/2008 12:45 4.18 9.44 5.26 11.79 6.52  
07/08/2008 13:00 4.89 12.00 7.11 10.78 3.66  
07/08/2008 13:15 6.19 10.87 4.68 7.52 2.84  
07/08/2008 13:30 6.00 9.54 3.54 8.19 4.65 7.5 
07/08/2008 13:45 5.98 9.38 3.40 7.87 4.47  
07/08/2008 14:00 5.85 10.14 4.28 8.18 3.89  

*) The estimated hydrant flow of 6.79 l/s at 12:30 seemed too high (without knowing 

the real flow) and the HM identified the same burst location as was the case at 11:15. 

Therefore, the burst flow was reduced by 1 l/s to 5.79 l/s. This globally reduced the 

SSE, which suggested it was likely that the initial burst flow had not been estimated 

correctly. After the locations of hydrant openings, their times and the measured hydrant 

outflows were revealed, it was found out that the actual hydrant outflow was higher than 

the estimated one. This might indicate an incorrect calibration of the hydraulic model. 

The actual measurement (i.e., Real Flow) recorded using a digital hydrant pipe flow 

meter could also be subject to errors. 

5.2.1.4 Results and Discussion 

The results obtained for locating the open hydrant are summarised in Table 5.4, which 

reports a topological distance of the pipe identified by the HM as a burst location from 
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the actual hydrant opening. The topological distance was measured here as the shortest 

path between two points in the network by tracing the network connectivity schematics. 

The column “All loggers” corresponds to a scenario when all (15+2) loggers were used 

to determine the location using an HM. In the “Cello only” scenario only (6+2) Cello 

loggers were used. The “DL1” scenario considered only 9 DL1 loggers and Cello 

loggers at exports. In the “Selection” scenario measurements from only 2 additional 

loggers (i.e., 3590 and 3584) were used. 

Table 5.4 HM hydrant opening results for EE1 

Distance from an open hydrant (m) EE1 Time 
All loggers Cello only DL1 only Selection 

1 08:45 346 346 346 346 
2 10:00 42 42 85 85 
3 11:15 157 157 45 157 
4 12:30 194 194 194 194 
5 13:30 603 603 1,140 1,210 

Table 5.4 shows that the increased number of pressure sensors used in a relatively 

simple DMA did not necessarily yield an extra benefit in identifying the location of the 

open hydrant more accurately. In the majority of cases very similar results could be 

obtained just by using 2 additional loggers deployed at suitable locations sensitive to 

changes in pressure. Where only a small number sensors were used (e.g., the 

“Selection” scenario) a higher number of pipes received very similar value of criterion 

measurement and the method would be more prone to measurement errors. 

Detailed results of the analysis are shown in Appendix C.1 in the form of GIS maps, 

showing the spatial distribution of SSE for each of the “All loggers” scenario 

considered in Table 5.4. From the figures presented in Appendix C.1, it can be observed 

that the HM in the majority of cases (i.e., except EE1-5) managed to identify a burst 

hotspot (i.e., a group of pipes having a similar SSE value). EE1-5 was conducted at 

13:30 (see Figure C.5) and it can be observed that the HM did not manage to identify a 

burst hotspot in the proximity of the open hydrant. This can also be seen in Table 5.4, 

where the distance from the open hydrant was significantly higher (i.e., 603 m) than 

other EEs. The most likely explanation for this failure could be the poor calibration of 

the HM, which was over predicting head losses in pipes in the top part of the DMA.  
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5.2.1.5 Summary 

The above case study was carried out as a blind test and the actual locations of the 

hydrant openings as well as the opening times and flush flow rates were unknown to the 

author before submitting the results. From the results presented in Table 5.4 and 

Appendix C it can be concluded that the adopted method has the potential to provide an 

estimated location of a large pipe burst within a relatively simple DMA where a 

reasonably calibrated HM exists and a sufficient number of suitably located pressure 

monitoring points are available. The combined model calibration and burst location as 

suggested by Wu et al. (2010) as well as the use of multiple measurements taken at 

different times (ideally during minimum night flow hours) is likely to lead to further 

improved results. However, if multiple measurements or night flow values had been 

used, it would have caused a delay to the investigation. Therefore, these were not 

considered in this work, which required near R-T burst location. 

5.2.2 Medium Burst Flow Simulations (EE2) 
Similarly to the first set of EEs presented in section 5.2.1, another hydrant flushing 

exercise took place in the same DMA on 8 August 2008. This time the flow rates were 

significantly reduced. The same set of sensors as described above (see Figure 5.2) was 

used. The pressure data was pre-processed in the same way as in the case of EE1 (e.g., 

time shift, moving average applied, etc.). The pressure measurements from the field 

were corrected in the same way as in EE1 by applying constant offsets as shown in 

Table 5.1. 

On 8 August 2008 the flow data of the exports (i.e., loggers 3276 and 3277) was 

corrupted (see Figure 5.6). In order to utilise the dataset it was necessary to synthetically 

generate the outflows. Average values over the period from 4 - 7 August 2008 (Monday 

to Friday) were used to fill-in the missing data. This might have affected the results to 

some extent. 
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Figure 5.6 Corrupt flow data of logger 3276 

5.2.2.1 Event Detection & Abnormal Flow Estimation 

Detecting the time of the hydrant opening and estimating the flow would be difficult in 

this case since the magnitude of abnormal flow was much lower than in case of the large 

burst flow simulations. Such situations would certainly benefit from a more advanced 

automated approach (Mounce et al. 2010). Unlike in the previous case, here the known 

hydrant opening times and measured flush flow rates were used. The actual considered 

input parameters can be found in Table 5.5. The assumed conditions might represent a 

significant challenge for an online pipe burst detection system and could be seen as 

ideal, however, they were partially compensated by the unknown outflows from the 

DMA exports.  

Table 5.5 Time schedule and hydrant flow rate of EE2 

EE2 Time Abnormal flow 
5 09:00 2 l/s 

4 11:00 2 l/s 

1 12:30 2 l/s 

2 14:30 2 l/s 

The ID of an EE corresponds to the location of hydrant opening as shown in Figure 5.2. 

In case of EE2, only four hydrant openings were carried out and their order was 

different to that in EE1. 
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5.2.2.2 Results & Discussion 

Similarly to the previous set of EEs (i.e., EE1) a different number of pressure sensors 

were used in the attempt to determine the location of an open hydrant. The distances of 

the most likely burst location from the actual hydrant opening are presented in 

Table 5.6.  

Table 5.6 HM hydrant opening results for EE2 

Distance from an open hydrant (m) EE2 Time 
All loggers Cello only DL1 only Selection 

5 09:00 340 1,940 340 1,090 
4 11:00 25 25 25 25 
1 12:30 324 395 324 376 
2 14:30 270 270 270 270 

Table 5.6 shows that the performance of the HM in this DMA was similarly to EE1 still 

acceptable even when a smaller number of sensors were used. Detailed results of the 

analysis of EE2 are presented in Appendix C.2 in the form of GIS maps, showing the 

spatial distribution of SSE for each of the “All loggers” scenarios considered in 

Table 5.6. The most likely hydrant opening locations identified by the HM were slightly 

different in case of EE2 compared to EE1. Whereas the differences in the values of SSE 

between differently colour coded classes in the figures presented in Appendix C.1 (i.e., 

EE1) were significant, the lower hydrant flush rates generated smaller drops in pressure 

and the values of SSE in case of EE2 (see Appendix C.2) were much more similar 

across a number of pipes. Similarly to the scenario EE1-5 discussed above, even the 

scenario EE2-5 (i.e., the same location of an open hydrant) generated much higher 

values of SSE. This further supports the hypothesis of inadequate calibration of the HM 

(i.e., at least in the top part of the DMA).  

5.2.2.3 Summary 

This set of EEs was not a blind test and the locations of open hydrants as well the 

opening times and flows used during the flushing were known a priori. Even the 

significantly lower abnormal flows (i.e., 2 l/s) generated in the DMA sufficient head 

losses, which were picked up by the sensors. Therefore, the methodology performed 

similarly to the large burst flow simulations presented in section 5.2.1. In this case the 

estimated abnormal flow was considered as known, which represented an ideal case. On 
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the other hand, the measured outflows from the DMA were only approximated based on 

average values, which to some extent compensated the advantage of the known 

abnormal flows. Similarly to EE1 even in this case (i.e., a simple DMA) an increased 

number of pressure monitoring points did not yield substantial benefit that would justify 

the additional investment. 

5.2.3 Engineered Events in a Typical DMA (EE3) 
This section provides details of the performance of the HM in the attempt to locate an 

open hydrant in a highly looped urban DMA (see Figure 5.7). The studied DMA 

contained 698 demand nodes and 738 pipes. The total mains length was 19.2 km. The 

DMA had 1 inlet shown as a reservoir in Figure 5.7 and 1 metered export to other DMA 

in the eastern part of the network at the location of sensor 3122. The DMA supplied 

water to 2,640 domestic and 122 commercial properties (annual water consumption 

greater than 400 m3). There was one major metered consumer (i.e., monitored by a 

dedicated logger) in the DMA, having demand greater than 10,000 m3/year or 5% of the 

total DMA inflow. No tanks, pumps or PRVs were installed in this DMA. 
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Figure 5.7 An overview of the case study area for EE3 

The number of pressure sensors deployed in the DMA was relatively small (i.e., only 2 

additional loggers) compared to the previous EEs. However, the additional sensors (see 

the yellow dots in Figure 5.7) were deployed at strategic locations as identified by 

Farley et al. (2008). The EE was a part of validation tests of the whole DSS described in 

Chapter 4. Unlike in the case of EE1 and EE2, this time the hydrant opening was 

automatically detected by the ANN-FIS (Mounce et al. 2010), denoted as an external 

Pipe Burst Detection module in Figure 4.1. All required inputs, such as the affected 
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DMA, detection time and the estimated burst flow, were stored in the DB (see 

Table 5.7) and marked as a fresh alarm. After being first processed by the Alarm 

Monitor (see section 4.4.1), the alarm was passed to the Likelihood Evaluator 

(described in section 4.4.2), where the evidence of the HM was computed. The time 

considered for burst location is highlighted in yellow in Table 5.7 and corresponds to 

the end of the time window used by the ANN-FIS for burst detection. Ideally, a much 

narrower time window should be used for burst detection as well as estimation of the 

abnormal flow. This should be possible as Romano et al. (2009) reported successful 

burst detections with only a 30 minute time window. 

Table 5.7 Alarm information provided by a pipe burst detection module 

EE3 Alarm Received ANN-FIS Window Start ANN-FIS Window End Burst 
flow DMA 

1 02/03/2010 15:15 01/03/2010 17:30 02/03/2010 05:30 1.7 l/s E021 

The estimated burst flow of the EE3 was 1.7 l/s (see Table 5.7) and corresponded to 

approx. 15% of DMA inflow at 7AM (i.e., peak demand). The automatically estimated 

flow was close to the actual flow used during the hydrant flushing (i.e., 2 l/s). As in the 

previous EEs, offsets to pressure measurements (calculated under normal operating 

conditions) had to be applied to achieve a closer match between the HM and field 

observations. Table 5.8 provides details of the actual values of constant pressure offsets 

used. 

Table 5.8 Pressure measurement corrections for EE3 

Pressure measurement corrections (m) on 01/03/2010 
Logger 

00:00 04:00 05:00 05:15 05:30 05:45 06:00 
AVG Offset (m) 

3610 0.55 -0.31 0.16 -0.43 0.5 -0.08 0.69 0.06 
3584 1.14 0.79 0.75 1.16 1.09 0.51 1.28 0.91 
3300 0.9 1.25 1.23 2.18 2.14 1.09 1.97 1.47 
3122 1.65 1.39 2.28 2.21 2.11 2.04 2.74 1.95 
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Figure 5.8 A map showing the most likely location of hydrant opening of EE3 

Figure 5.8 shows the performance of the HM after applying pressure offsets presented 

in Table 5.8. The distance from the location with lowest SSE (i.e., the most likely 

location of the open hydrant), identified by the HM, to the actual location of the open 

hydrant was 165 m. However, the hydrant flushing caused pressure drops across the 

DMA in the range from 0 - 0.55 m. The abnormal flow of 1.7 l/s did not generate 

pressure drops above 0.5 m at the location of the newly deployed sensors (i.e., 3610, 



Chapter 5 - Case Studies 

 144

3584) and nor at the location of the permanent sensors (3300, 3122) with a 1 m 

accuracy. The HM in this case, therefore, could not provide a sensible answer. The 

promising result shown in Figure 5.7 was, therefore, obtained only by chance. If the HM 

had been run at a different time (i.e., other than 5:30AM) during the EE an entirely 

different location could be identified. 

5.2.3.1 Summary 

EE3 shows that the use of HM as a source of evidence suggesting the likely location of 

a burst pipe might be problematic in situations when the abnormal flow escaping from 

the system does not generate sufficient pressure drops at the locations of pressure 

sensors. Moreover, the accuracy of the pressure sensors can play an important role, 

particularly in highly looped urban DMAs where the effects of a burst will be mitigated 

since the additional flow can reach the burst through a number of alternative paths.  

The number of accurate pressure sensors (i.e., having accuracy of 0.1 m) that would 

have to be deployed in an urban DMA in order to be able to locate a burst pipe might be 

uneconomical, at least at current price levels. The accuracy necessary to locate such 

bursts might furthermore impose significant challenges on the quality of calibration of 

the HM. 

5.3 Dempster-Shafer Model: Semi-Real Case Study 
This section provides the results of an application of the D-S model presented in section 

3.3 of this thesis on a number of semi-real case studies in a large urban DMA in the 

Harrogate & Dales area in North Yorkshire, UK (see Figure 5.1). The aim of the case 

study is to show that combining realistic evidence, which can be obtained from a 

number of models in an effort to locate a burst pipe within a DMA, yields additional 

benefits.  

The layout of the highly looped urban DMA, which was subject of this study, is shown 

in Figure 5.9. The DMA had two inlets and no exports. A total of 10 pressure sensors 

were used in this case study. The DG2 pressure sensor, which was located at the critical 

point of the DMA (i.e., location with the highest elevation), and 9 additional sensors 

were placed according to an optimal sampling methodology developed by Farley et al. 

(2008). 
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Figure 5.9 An overview of DMA E022 

The selected case study area was one of the largest DMAs in the Harrogate and Dales 

area, supplying water to over 4,500 properties (almost 69% unmetered). The DMA 

comprised 998 demand nodes and 1,052 pipes (i.e., potential burst locations). The total 

length of water mains in this DMA was 33.5 km. There were only 6 commercial 

properties with an annual water consumption greater than 400 m3 and 1 major consumer 

(i.e., demand > 10,000 m3/year or 5% of the total DMA inflow), which was monitored 

by a standalone logger. 
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5.3.1 Individual Model Screening 
Before attempting to apply the information fusion methodology, the performance of 

individual models was evaluated first. The findings obtained during the application of 

the individual models (i.e., the HM, CCM and PBPM) on a selection of calibration 

cases in the DMA E022 are summarised in the following sub-sections. 

5.3.1.1 Hydraulic Model 

By modelling artificial bursts in the DMA it was observed that the HM was generally 

not very sensitive to noise added to nodal demands because these were substantially 

lower than the outflows from the simulated pipe bursts. Variation of nodal demands of 

20% (i.e., +/- 10% uniformly distributed) did not cause any major errors in determining 

the location of a burst pipe, since there were only very few major customers in the 

DMA.  

On the other hand, it was observed that the pressure measurements were very sensitive 

to the added noise. In the DMA, pressures generally ranged from 40 m up to 90 m due 

to the differences in elevation. A 2% error (i.e., +/- 1% uniformly distributed) added to 

pressure measurements for a 5 l/s burst (i.e., 12.5% of average peak demand or 20% of 

average DMA inflow) was still found acceptable. The HM performed reasonably well in 

most tested scenarios. The accuracy of the HM required by this method might be very 

difficult to achieve in real life conditions since it is close to the threshold of acceptable 

level of calibration (for this type of modelling), as discussed by Walski et al. (2003). 

Also the accuracy of commonly available pressure transducers is approx. +/- 0.5% of 

their full range, which might be insufficient under some conditions. 

5.3.1.2 Customer Contacts Model 

Two main data sources, provided by a water utility, were used during the development 

of the CCM. The first dataset contained classified CCs received by phone, containing 

the date and time of the complaint, its nature and geographic coordinates associated 

with the contact (i.e., either the coordinates of the property or geo-referenced location of 

a burst provided by a customer). The second dataset contained information from a Work 

Management System (WMSY), which contained a date when a mains repair was carried 

out as well as coordinates where it took place. 
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It was assumed here that a burst was repaired during the same day it was detected. 

Under such an assumption, the time window over which CCs were considered to be 

related to a particular burst event was established by performing spatial analysis of CCs 

and WMSY data of 15 DMAs collected over the period of 6 years (2002 - 2007). The 

size of the window was chosen according to Table 5.9 as the best trade-off maximising 

the number of CCs associated with pipe bursts (i.e., the “Bursts with CC” row) and 

minimising the distance of those contacts from the location of a burst pipe (i.e., the 

“AVG Dist” row).  

Table 5.9 An average distance of CCs from a burst pipe  

Criterion Same 
Day 

Same 
Day & 
12h 

Before 

Same 
Day & 
24h 

Before 

Same 
Day & 
36h 

Before 

36h 
Before 
+12h 
After 

24h 
Before 
+12h 
After 

12h 
Before 
+12h 
After 

24h 
Before 
+24h 
After 

Bursts with CC 143 171 183 192 199 190 178 193 

AVG CC Count / Burst 1.0 1.1 1.2 1.3 1.4 1.3 1.2 1.4 

AVG Dist (m) 233.9 240.2 239.3 277.8 307.6 272.0 275.2 284.5 

The “AVG CC Count / Burst” row provides information about the average number of 

CCs per burst given a particular size of time window and is correlated to the “Bursts 

with CC” row. The typical number of CCs per burst for a particular time window is then 

shown in detail in Table 5.10. It can be observed that for the chosen time window of 24 

hours before the repair and during the same day the repair took place, the majority of 

the bursts were not reported by any customer and if a burst was reported it was mainly 

by 1 or 2 customers.  

Table 5.10 A histogram showing frequency of CCs per pipe burst 

Customer 
Contacts 

Same 
Day 

Same 
Day & 
12h 

Before 

Same 
Day & 
24h 

Before 

Same 
Day & 
36h 

Before 

36h 
Before 
+12h 
After 

24h 
Before 
+12h 
After 

12h 
Before 
+12h 
After 

24h 
Before 
+24h 
After 

0 214 186 174 165 159 167 179 164 
1 60 75 80 81 84 83 78 80 
2 39 44 49 47 48 51 45 53 
3 20 24 24 32 31 23 23 25 
4 10 11 10 12 11 9 11 9 

More 14 17 20 20 24 24 21 26 

Figure 5.10 shows that most of the CCs (i.e., 70.6%) were typically within 200 m from 

the True Burst Location (TBL) for the time window of 24 hours before the WMSY 
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order creation date and the same day. Moreover, almost 40% of the CCs lay within 50 m 

from the TBL. However, almost 13% of the contacts lay further than 500 m from the 

TBL, which might indicate either incorrect association with a WMSY record or an error 

in WMSY or CC data (e.g., a misleading report). 

An average distance of a CC from a burst location
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Figure 5.10 A histogram of an average distance of customer contact from a burst 

location 

The CCM seemed to perform relatively well in the DMA. Typically the CCs associated 

with a burst event originated almost exactly from the area where a burst occurred or 

were misleading (i.e., came from a different part of the DMA). The time window (i.e., 

the CCs reporting Burst / Leak during the 24 hours before and during the same day 

when a WMSY entry was created were considered as related to a burst) identified in 

Table 5.9 seemed to be appropriate for this case study because only less than 30% of 

CCs were more than 200 m from the TBL. 

An attempt was made to combine multiple CCs hierarchically (see Appendix A.1 for 

additional details). This, however, brought certain difficulties related to an increased 

influence of the combined result, compared to other information sources (i.e., HM and 

PBPM). Also some performance issues related to the combination of many information 

sources (in some cases) were encountered, which could be overcome using a more 

efficient implementation of the D-S model. 
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5.3.1.3 Pipe Burst Prediction Model 

PBPMs are typically used for strategic planning to identify the most suitable assets for 

rehabilitation or replacement. Their predictions are generally not of a very high quality 

for operational use. The PBPM used in this work, which was built by a consultancy 

company, was treated as a black box and was not validated prior to use. As shown later, 

even such a model can bring certain benefits, despite its different primary use. 

5.3.2 Dempster-Shafer Model Calibration 
To calibrate the D-S model a number of historical cases are required so that its various 

parameters (e.g., the type of the normalisation functions, shape of the mapping 

functions, etc.) can be set to achieve the best gains from the information fusion. Since it 

was not possible to use real life examples due to missing or insufficient data, a number 

of semi-real case studies were created. In order to make these as realistic as possible, 

historical pipe burst events were first obtained from a WMSY. Where applicable, the 

CC DB was queried to retrieve CCs reporting burst pipe or a leak. 

Poor calibration of the available HM of the study area as well as missing historical 

pressure and flow records prevented the use of real data from pressure and flow sensors 

deployed in the field. Synthetic pressure measurements were generated by simulating a 

medium sized burst (i.e., 5 l/s = 12.5% of peak DMA inflow or 20% of average DMA 

inflow) as a fixed (i.e., pressure insensitive) demand added to the centre of the burst 

pipe at the location and date obtained from a WMSY. Pressures in the studied DMA 

were generally high due to significant differences in elevation and ranged from 40 m to 

90 m of head during minimum night flow hours (i.e., 4:00 AM). The chosen value of 

burst flow of 5 l/s, which seemed to generate sufficient pressure drops in the DMA, 

could be seen as representative for medium to large bursts. The time of burst detection / 

occurrence was randomly chosen between 0 and 24 hours. Pressures in the network 

obtained at demand nodes closest to the real locations of sensors in the WDS were 

recorded and used as reference pressures representing a pipe burst. White noise was 

added to the reference pressure values (i.e., ± 1% uniformly distributed) as well as 

nodal demands (i.e., ± 7.5% uniformly distributed). The base values were either 

increased or decreased by a given percentage, to more closely reflect the reality. 

Without adding the noise the HM would always find the right location of the burst and 

would significantly outperform the remaining information sources. In fact, there would 
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be no need to use information fusion to include information from additional data 

sources. The chosen values of added noise were selected according to observations 

during preliminary screening of the HM to allow the model to provide imperfect but still 

acceptable results.  

5.3.2.1 Calibration and Validation Data Sets 

A dataset comprising 54 historical pipe bursts in the DMA (see Figure 5.9) was formed 

and split into a calibration set comprising 41 cases and a validation set comprising 13 

cases (approx. ratio 75% calibration / 25% validation). The split between calibration and 

validation data was done in such a way that both datasets had similar properties (e.g., in 

terms of number of CCs received and the performance of individual models). Both 

calibration and validation sets contained similar numbers of CCs, i.e., 27 (66%) and 8 

(62%), respectively. The performance of the models was measured using the average 

likelihood attributed to the 10 nearest pipes in the proximity of the TBL (see section 

3.3.5). The pipes included in the “10 nearest” category are represented by the “Inner” 

region shown in Figure 5.11 
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Figure 5.11 Illustration of the Proximity function 

The split of data into calibration and validation sets was performed using GANetXL 

(Bicik et al. 2008), an optimization add-in for Microsoft Excel®, by applying a single 

objective GA (Goldberg 1989) where the objective was to minimize the difference in 
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performance of individual models (i.e., the PBPM, the HM and the CCM) between the 

calibration and validation sets while maintaining the chosen size of the calibration and 

validation sets (i.e., 41/13) and ensuring that the cases where CCs were present were 

proportionally split between the two sets. Decision variables in this case formed a vector 

of binary numbers, where the value of 0 indicated that a particular case should be 

included in the calibration dataset, whereas the value of 1 suggested including a case 

into the validation dataset. The objective function was defined by following equations: 

( ) ( )f Performance calibration set Performance validation set= −
 (5.1) 

( )

( )

1
( ) ( ) ( )

1
( )

cases X

cases Z

Performance X Perf PBPM Perf HM
X

Perf CCM
Z

∀ ∈

∀ ∈

= + +

+

∑

∑
 (5.2) 

 
where: 

• f is the objective function, 

• Performance is the function representing the overall performance of a given set 

X, 

• X represents the chosen set, i.e., calibration set or validation set, 

• Perf is a function returning the average likelihood of the 10 nearest pipes from 

the True Burst Location (TBL), which represents the performance of a particular 

individual model on a given case, and 

• Z is a subset of X ( Z X⊆ ) representing only those cases where CCs were 

available. 

Even though some of the calibration and validation cases were located close to each 

other in Figure 5.9, the bursts were simulated during different times of day and different 

sources of evidence, such as CCs, were available. Each of the models, therefore, 

performed differently, despite their geographical closeness. The above procedure was 

applied prior to any attempts to calibrate the D-S model, purely to determine 

representative calibration and validation data sets. The calibration of the D-S model 

presented in the following section was carried out only on the calibration dataset. 
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5.3.2.2 Multi-Objective Optimisation of the D-S Model 

The calibration of the D-S model defined in section 3.3.5 was solved using a multi-

objective GA (Goldberg 1989). GAs are population-based heuristic search algorithms, 

particularly suitable to solve complex non-linear problems, which was the case in this 

work. The particular type of multi-objective GA used here was the Non-dominated 

Sorting Genetic Algorithm (NSGA-II) proposed by Deb et al. (2002). The optimisation 

problem comprised 24 real decision variables, 4 integer variables and 3 objectives. The 

population size was set at between 100-240 solutions, crossover type: Simulated Binary 

Crossover (SBX) (Deb and Agrawal 1995), real crossover rate: 0.95, ηc = 1-3, real 

mutation type: polynomial mutation, mutation rate: 1/24 and ηm = 1-3, binary crossover 

rate: 0.9 and binary mutation rate: 0.1-0.25. The suitable ranges of parameters of the GA 

shown above were determined manually by trial and error. A number of runs were 

conducted prior to the main optimisation to establish an understanding of the influence 

of the parameters on the convergence and diversity of solutions produced by the GA. 

Given the stochastic nature of GAs it is not guaranteed that they converge to a global 

optimum (i.e., a Pareto front in the case of a multi-objective problem). Their strength 

lies in their ability to produce a good approximation of the Pareto front. The 

convergence can be influenced by the randomly generated initial population and, 

therefore, multiple runs were conducted. Figure 5.12 shows the final Pareto Front 

produced by combining the frontiers obtained from 4 independent optimisation runs 

with different initial populations (i.e., random seeds) and parameters of the GA. 

5.3.2.3 Calibration Results 

The algorithm produced an approximation of a Pareto-front of non-dominated solutions 

from which a single set of parameters was selected based on subjective criteria outlined 

in section 3.3.5. The selected solution (see the black circle in Figure 5.12) contained 

sigmoid normalisation function for the PBPM and logit normalisation function for the 

HM and the CCM. The preferred combination rule was the original Dempster’s 

combination rule in this instance. 
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Figure 5.12 A 2D View of the 3D Pareto front showing the chosen solution  

The shapes of the mapping functions as shown in Figure 5.13, Figure 5.14 and 

Figure 5.15 were suggested for the PBPM, the HM and the CCM, respectively. 

a) Pipe Burst Prediction Model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Confidence Factor

B
P

A

m(Burst)

m(NoBurst)

m(Burst,NoBurst)

 

Figure 5.13 Mapping functions of the PBPM 
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b) Hydraulic Model
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Figure 5.14 Mapping functions of the HM 

c) Customer Contacts Model
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Figure 5.15 Mapping functions of the CCM 

The above curves capture information about the overall performance of the individual 

models on calibration cases. The fact that the mapping curves are available and can be 

analysed by a DM can be seen as a benefit of the methodology over, e.g., ANNs 

(Haykin 1999), which behave as a “black box” and their internal structure remains 

hidden.  

From the mapping curves presented in Figure 5.13, Figure 5.14 and Figure 5.15, it can 

be concluded that the PBPM (see Figure 5.13) played a less significant role in terms of 

0.78 

0.76 

0.56 
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contributing to the fact that a particular element was the TBL (because of its lower 

credibility). It also did not provide much “negative” evidence suggesting that a 

particular pipe was not the TBL, which suggests that the PBPM would normally 

generate a high number of false positive locations.  

Both the CCM and the HM were capable of narrowing down the search area where the 

TBL might be. Interestingly, in the case of the studied DMA the HM (see Figure 5.14) 

attributed equal level of belief (i.e., m({ Burst})) to a number of potential incidents 

whose value of the normalised confidence factor was greater than 0.78. This might 

suggest that the model was typically unable to distinguish the TBL within those 

potential incidents (e.g., because of the noise added to pressure measurements and nodal 

demands) and only perceived potential incidents with a high value of confidence factor 

as more plausible.  

On the other hand, the CCM (see Figure 5.15) clearly showed that belief attributed to a 

potential incident was decreasing with an increase in distance of a pipe from CCs. The 

mapping curves of the CCM reflect the fact that it can be in some cases significantly 

wrong, which can be explained by the generally large level of epistemic uncertainty in 

the range of a confidence factor from 0.56 to 0.76. All potential incidents within this 

range are still entirely plausible burst locations. Only potential incidents whose value of 

confidence factor was below 0.56 were deemed as significantly less plausible burst 

locations. 

The mapping curves presented above are likely to be valid for a single DMA only and a 

different set of curves needs to be obtained for other DMAs depending on the 

performance of the three individual models in those DMAs. The calibration of the 

curves for other DMAs might be difficult when only a short burst record history is 

available. The D-S model could be recalibrated as new historical cases become 

available. Such a process was not fully automated as part of this work since no rules 

were created to select a solution from the Pareto front produced during the calibration. 

For future calibration / re-calibration of the D-S model it is, therefore, vital to capture as 

much information about every burst pipe as possible (i.e., at least the exact date and 

time of burst detection and the location of the burst). 
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The mapping curves also justify the adoption of D-S theory, compared to a traditional 

Bayesian approach. As discussed in section 3.3.1 and in more detail in Appendix A, one 

of the distinguishing features of D-S theory is its ability to assign probability mass to 

subsets of the frame of discernment Θ. The mapping functions in Figure 5.13, 

Figure 5.14 and Figure 5.15 show that in all cases a significant amount of probability 

mass was attributed to the whole frame of discernment Θ representing complete lack of 

knowledge. The adopted calibration approach could, however, converge to a solution, 

where no or very little probability mass was assigned to Θ. This was not the case, which 

leads to the conclusion that the D-S theory was in this context a better mathematical 

framework than the traditional Bayesian approach. 

5.3.3 Results and Discussion 
The main aim of information fusion applied in the context of pipe burst diagnostics is to 

identify hotspots, comprising a small number of pipes, where the burst is most likely to 

be located. Table 5.11 gives detailed results about the performance of the individual 

models as well as the D-S model on all of the 54 calibration and validation cases 

considered in this case study. Besides providing information about a particular historical 

burst, such as its WMSY ID, date when it was repaired, ID of a burst pipe (i.e., the 

TBL) it also reports Belief (Bel), Plausibility (Pl) and pignistic probability (BetP) 

attributed to the TBL by the D-S model. Most importantly the last four columns (i.e., 

the D-S M, PBPM, HM and CCM) show the rank of the TBL provided by each of the 

individual models as well as the D-S model. The lower the value of the rank, the better 

is the performance of a particular model. It is, therefore, possible to assess the scale of 

improvement (or deterioration of performance) in identifying the TBL for every case in 

Table 5.11. 

Table 5.11 Detailed results of the performance of the D-S model 

  Burst ID Order Date Link Id Bel Pl BetP D-S M PBPM HM CCM 
6038359 13/04/2004 12:00 0004G302 0.90 0.93 0.91 85 1049 47 - 
6588773 16/12/2004 05:00 0004G39H 0.92 0.94 0.93 22 149 77 - 
7701432 24/04/2006 07:00 0004G30E 0.92 0.94 0.93 23 104 50 - 
7719426 02/05/2006 08:00 0004G30A 0.92 0.95 0.93 6 104 13 - 
4998859 10/01/2003 07:00 0EJ9KB3F 0.92 0.94 0.93 27 287 62 - 
5600831 30/09/2003 03:00 0004G37I 0.92 0.93 0.92 3 167 50 - 
5710918 18/11/2003 05:00 0004E1IL 0.90 0.92 0.91 74 1049 63 - ca

lib
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 C

C
 

9540594 28/04/2008 17:00 0EJ9KAGM 0.90 0.94 0.92 15 305 11 - 
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  Burst ID Order Date Link Id Bel Pl BetP D-S M PBPM HM CCM 
8640654 23/05/2007 12:00 0004EI1G 0.90 0.94 0.92 4 588 5 - 
8681541 05/06/2007 02:00 0EJ9KB36 0.92 0.93 0.92 1 24 37 - 
5468788 04/08/2003 01:00 0EJ9KB36 0.90 0.94 0.92 80 287 70 - 
4398117 23/04/2002 03:00 0EIIJ3F3 0.92 0.93 0.92 21 244 163 - 
4533556 19/06/2002 11:00 0004G39H 0.92 0.94 0.93 10 149 94 - 
5571373 17/09/2003 06:00 0004G2F0 0.90 0.94 0.92 74 406 6 - 
4651377 06/08/2002 07:00 0EJ9KDNN 0.81 0.84 0.83 10 167 81 1036 
8230257 11/12/2006 10:00 0004E1I9 0.78 0.80 0.79 105 655 126 562 
5523071 27/08/2003 12:00 0004G3AI 0.90 0.92 0.91 63 975 57 410 
8343335 31/01/2007 01:00 0004G28G 0.92 0.93 0.92 11 26 197 346 
8120373 22/10/2006 17:00 0004E9G5 0.90 0.94 0.92 3 765 7 304 
8375245 13/02/2007 05:00 0EIIII5H 0.90 0.94 0.92 8 764 4 284 
5003372 13/01/2003 15:00 0004E1G2 0.90 0.94 0.92 58 616 18 224 
8044356 17/09/2006 17:00 0004G393 0.90 0.93 0.92 39 631 48 153 
9085548 08/11/2007 01:00 0004E1M5 0.20 0.89 0.55 106 605 181 93 
7575245 02/03/2006 14:00 0004G36G 0.93 0.95 0.94 7 232 81 7 
5773552 17/12/2003 03:00 0EJ9KC14 0.91 0.95 0.93 4 512 1 4 
6004593 29/03/2004 09:00 0004E1EK 0.99 0.99 0.99 0 144 10 0 
6565521 04/12/2004 01:00 0004G28G 0.99 0.99 0.99 0 672 7 0 
7435423 03/01/2006 08:00 0004E1II 0.99 0.99 0.99 0 21 0 0 
9298957 30/01/2008 21:00 0004G2MM 0.99 0.99 0.99 0 16 2 0 
8914690 03/09/2007 07:00 0004G370 0.99 0.99 0.99 0 490 119 0 
4953310 18/12/2002 01:00 0EJ9LH1N 0.99 0.99 0.99 0 616 115 0 
5000220 11/01/2003 11:00 0004G283 0.99 0.99 0.99 0 565 19 0 
5871806 01/02/2004 08:00 0004G38H 0.99 0.99 0.99 0 406 46 0 
7879730 09/07/2006 21:00 0004G38I 0.99 0.99 0.99 0 406 15 0 
8284538 07/01/2007 15:00 0004G2N6 0.99 0.99 0.99 0 948 26 0 
8732007 24/06/2007 02:00 0004G38E 0.91 0.98 0.95 0 451 121 0 
5251001 01/05/2003 05:00 0004E1J3 0.99 0.99 0.99 0 636 49 0 
6911300 11/05/2005 23:00 0004G2DG 0.99 0.99 0.99 0 708 17 0 
7180113 09/09/2005 22:00 0004G2MM 0.99 0.99 0.99 0 261 0 0 
7354905 26/11/2005 20:00 0004G37I 0.99 0.99 0.99 0 167 5 0 

C
C

 

5553615 09/09/2003 22:00 0004E1IL 0.99 0.99 0.99 0 1049 46 0 
4396152 22/04/2002 17:00 0004G37A 0.90 0.92 0.91 35 548 20 - 
4396389 22/04/2002 08:00 0004G3AB 0.90 0.94 0.92 93 416 108 - 
8005667 31/08/2006 04:00 0004G38E 0.19 0.89 0.54 500 406 458 - 
8606121 09/05/2007 19:00 0004G2FE 0.90 0.93 0.91 36 179 38 - no

 C
C

 

4639990 01/08/2002 21:00 0004E1KJ 0.90 0.93 0.91 66 512 87 - 
6283602 28/07/2004 09:00 0EJ9LG5E 0.81 0.84 0.83 9 232 6 694 
7080348 26/07/2005 06:00 0EJ9L2BD 0.79 0.82 0.80 97 287 25 575 
9315021 05/02/2008 13:00 0EIIII5H 0.90 0.94 0.92 7 742 0 10 
8905881 31/08/2007 05:00 0EJ9L2BF 0.93 0.95 0.94 9 291 54 9 
8583704 30/04/2007 10:00 0004G2FE 0.98 0.99 0.98 3 179 9 3 
5957590 09/03/2004 09:00 0EJ9LHHD 0.99 0.99 0.99 1 672 1 2 
6657966 22/01/2005 19:00 0EJ9LHHD 0.99 0.99 0.99 2 672 7 2 

va
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5086020 19/02/2003 22:00 0004G37I 0.99 0.99 0.99 0 167 197 0 
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If the combined results were compared to the best individual model (i.e., based on the 

results presented in Table 5.11), it can be seen that the D-S model results were equal or 

better than the best individual models in 61% and 75% of validation and calibration 

cases, respectively. It should be noted, however, that such information (i.e., which is the 

“best” individual model) would not be a priori known in real decision-making 

situations. The D-S model provided better result than any of the individual models in 

23% and 34% of validation and calibration cases, respectively. 

5.3.3.1 D-S Model Example Application 

Figure 5.16 illustrates the performance of the D-S model on a historical pipe burst 

selected from the calibration dataset. In this case, the burst was reported by two 

customers and, therefore, all three sources of evidence were available.  
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Figure 5.16 An example output from the a) PBPM, b) HM, c) CCM and d) the D-S 

model: BetP({ Burst}) 

The accuracy of the PBPM was limited and a large number of pipes received the same 

value of confidence factor (see Figure 5.16a). The HM performed poorly in this 

particular case and identified two possible pipe burst hotspots, with the most likely 

location being far from the burst pipe (see Figure 5.16b). One of the CCs was received 

from a location in close proximity to the burst pipe whereas the other one was more than 

250 m away from the burst location (see Figure 5.16c). Mostly based on the input of the 
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CCM, the D-S model attributed higher levels of BetP({ Burst}) (see Figure 5.16d) to the 

pipes in the proximity of the second pipe burst hotspot previously identified by the HM, 

supporting the proposition that this was the TBL (i.e., according to a record in WMSY 

that a burst was repaired there). The pipes close to the second customer contact, which 

was further away from the TBL, received a lower level of BetP({ Burst}). Therefore, a 

field investigation, based on the results of the D-S model, could focus on the first 

customer contact and thus reduce the time needed to locate the burst, decrease the 

amount of water lost from the system and the possible follow-on (socio-economic) 

impact on customers. 

Figure 5.17 shows spatial distribution of Belief and Plausibility. It can be observed that 

after the information fusion high levels of belief are typically attributed to only a small 

number of potential incidents. On the other hand a high number of potential incidents 

typically receive a high level of plausibility, suggesting that no evidence exists, 

supporting the fact that those pipes could not be the TBL. 

  

Figure 5.17 Belief and Plausibility maps produced by the D-S model 

Additional detailed examples of four cases selected from the validation dataset shown in 

Table 5.11 are given in Appendix D. The examples provided aim to demonstrate the 

properties of the D-S model in situations when evidence from some data sources (e.g., 
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the CCM) was conflicting or missing entirely. The importance of considering both, 

Belief and Plausibility by the DM under certain circumstances is also illustrated. 

5.3.3.2 Performance Comparison 

Table 5.12 shows the performance of the D-S model and the individual models on 

calibration and validation cases. These were further split depending on the presence of 

CCs. The comparison was based on the ranking (see section 3.3.5) of the TBL 

according to the output of the D-S model (i.e., the BetP({ Burst})) and the ranking 

assigned by individual models (i.e., based on their criterion measurement). The 

performance of any model was considered good if the TBL was amongst the top 10 

burst candidates identified by the respective model. As can be seen from Table 5.12 

none of the individual input models, i.e., the PBPM, HM and CCM, was able to achieve 

the above goal in all of the situations (i.e., 54 historical pipe bursts) considered in the 

case study. The degree of success in identifying the location of a burst pipe varied 

significantly amongst the models. According to this assessment criterion the overall 

performance of the D-S model was on average in every scenario either equally good or 

better than the performance of any of the individual models. Similar performance can be 

observed when the number of potential burst candidates was increased from 10 to 50 

(i.e., the area of the burst hotspot was expanded). 

Table 5.12 An overview of the performance of the D-S model 

Rank of TBL < 10 Rank of TBL < 50 Scenario 
D-S Model PBPM HM CCM D-S Model PBPM HM CCM 

Calibration (No CC) 28.6% 0.0% 14.3% 0.0% 71.4% 7.1% 42.9% 0.0% 
Calibration (CC) 74.1% 0.0% 29.6% 66.7% 85.2% 11.1% 66.7% 66.7% 
Validation (No CC) 0.0% 0.0% 0.0% 0.0% 40.0% 0.0% 40.0% 0.0% 
Validation (CC) 87.5% 0.0% 62.5% 62.5% 87.5% 0.0% 75.0% 75.0% 

The D-S Model, however, as well as the HM and CCM significantly outperform random 

identification of the TBL, which would yield less than 1% and less than 5% for the 

“Rank of TBL < 10” and the “Rank of TBL < 50” scenarios, respectively. The 

performance of the PBPM might in this sense be seen as disappointing. This can be 

explained by the fact that a relatively high number of potential incidents receive the 

same value of criterion measurement from the PBPM. The TBL, therefore, does not fall 

within the top 10 or 50 potential incidents (i.e., due to the way the rank was calculated), 
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despite having the highest value of criterion measurement (i.e., likelihood of failure 

occurrence). 

Evaluating the benefits of information fusion algorithms is not simple and using only 

the measure above would not reflect the additional advantages of this approach. A 

particular model might fail to identify the correct burst location according to the criteria 

used above but can, on the other hand, still identify a number of locations where the 

burst pipe is unlikely to be located. To take this fact into the account and to compare the 

quality of the output of the D-S model and the individual models, the following set of 

performance indicators was established: 

Likelihood concentration. For the method to be useful operationally, it is important that 

the likelihood of burst occurrence assigned to the pipes near the TBL is significantly 

higher than the likelihood assigned to pipes further away. This can be expressed using 

the ratio of the average likelihood of occurrence of the burst assigned to pipes close to 

the TBL over the average likelihood of burst occurrence assigned to all remaining pipes. 

The higher this ratio, the better the overall performance of a particular model. The set of 

pipes in the proximity of the TBL was assumed here as the 10 topologically nearest 

pipes. Given that the average length of pipes in the case study area was 30 m and that 

the network was highly looped, such resolution should be considered acceptable. 

Certainty. According to Yager (2004), Shannon entropy (Shannon 1948) was used to 

characterise the certainty of the outputs of the individual models and the D-S model. 

The entropy of an information source (i.e., output of a particular model) was calculated 

using Eq. (5.3) and its certainty can be expressed using Eq. (5.4). The higher the 

certainty of a particular model the better its performance was. 

1

( ) ln( ( ))
PN

k k
k

H p Burst p Burst
=

= −∑  (5.3) 

1
ln( )P

H
Certainty

N
= −  (5.4) 

where: H is Shannon entropy, pk is either the normalised BetPk({ Burst}) or the 

normalised value of confidence factor of a potential incident (pipe) k in the case of the 

D-S model and the individual models, respectively and NP is the number of potential 

incidents (i.e., pipes) in the DMA. 
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The results of the comparison based on the two additional criteria suggested above are 

shown in Table 5.13. The table indicates in how many calibration and validation cases 

the D-S model was better than the individual models (values above 50% indicate that 

the D-S model on average improved over the prediction of an individual model and 

100% means that the D-S model was better in all considered cases than a particular 

individual model). Again, cases were further split into scenarios where CCs were and 

were not available. 

Table 5.13 Performance of the D-S model compared with PBPM, HM and CCM based 

on spatial distribution of the likelihood of potential incidents 

Likelihood concentration Certainty Scenario 
D-S > PBPM D-S > HM D-S > CCM D-S > PBPM D-S > HM D-S > CCM 

Calibration (No CC) 100.0% 100.0% - 85.7% 28.6% - 

Calibration (CC) 96.3% 100.0% 100.0% 96.3% 44.4% 100.0% 

Validation (No CC) 80.0% 80.0% - 80.0% 0.0% - 

Validation (CC) 100.0% 100.0% 100.0% 100.0% 75.0% 100.0% 

Table 5.13 shows that the D-S model yields better results (e.g., D-S > PBPM) in terms 

of the Likelihood concentration in a higher number of cases when compared to the 

individual models. The D-S model was significantly better than the PBPM and CCM in 

view of the Certainty criterion, however, in some situations, it performed worse than the 

HM. This fact is most apparent in scenarios where no CCs were received and only the 

outputs of the HM and PBPM were combined. In such situations the most likely 

locations of the burst pipe typically form a number of scattered hotspots rather than a 

relatively well confined area as shown in Figure 5.16d. Despite this fact the use of the 

PBPM as an information source still yields certain benefits as demonstrated in 

Table 5.12. 

5.3.4 Sensitivity Analysis 
To investigate the sensitivity of individual model outputs as well as the D-S model 

output to noisy inputs, a global sensitivity analysis using Monte Carlo simulation (1,000 

samples) was performed on the example presented in Figure D.5. The selected case 

represented a suitable scenario from the validation data set since at least two of the 

individual models (i.e., the HM and the CCM) performed acceptably and, therefore, the 

effect of the added noise could be observed. Various levels of uniformly distributed 
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noise as indicated in Table 5.14 were added to the inputs of the individual models, 

namely the HM (observed pressures, demands and estimated burst flow) and the CCM 

(Easting and Northing). Adding noise to the PBPM would be problematic (e.g., because 

it uses a number of non-numerical inputs, such as pipe material, etc.) and given its 

relatively low credibility it would not make a significant difference in this case. The 

AVG rank of the PBPM was, therefore, the same for all scenarios and had the value of 

742.0 out of 1,052 potential incidents (i.e., poor performance in this case). 

Table 5.14 Results of a global sensitivity analysis (case 9315021) 

Scenario Burst 
Flow 

Pressure 
Noise 

Demands 
Noise 

Burst Flow 
Noise 

CC 
Noise 

AVG D-S 
Rank 

AVG HM  
Rank 

AVG CCM  
Rank 

A 5 1.0% 5.0% 0.5% 0.01% 6.4 4.8 10.2 
B 5 2.0% 10.0% 1.0% 0.01% 7.2 5.4 10.2 
C 3 2.0% 7.5% 1.0% 0.01% 62.6 84.0 10.2 
D 5 3.0% 10.0% 2.0% 0.02% 24.8 16.5 14.4 
E 5 4.0% 10.0% 2.0% 0.02% 42.9 52.5 14.4 
F 7 3.0% 10.0% 5.0% 0.03% 8.1 5.2 20.1 
G 5 2.0% 7.5% 2.0% 0.03% 8.4 5.5 20.1 
H 5 2.0% 7.5% 4.0% 0.03% 9.9 5.6 20.1 
I 5 3.0% 7.5% 1.0% 0.03% 26.4 16.3 20.1 
J 3 2.0% 7.5% 1.0% 0.03% 66.9 84.0 20.1 
K 5 1.0% 7.5% 0.5% 0.05% 8.1 4.8 37.5 
L 5 2.0% 10.0% 1.0% 0.05% 8.9 5.4 37.5 
M 3 2.0% 10.0% 1.0% 0.05% 78.0 84.0 37.5 
N 7 2.0% 10.0% 2.0% 0.08% 8.2 4.9 70.1 
O 7 5.0% 10.0% 2.0% 0.08% 26.5 9.8 70.1 

The “AVG Rank” shown in Table 5.14 is the rank as described in section 3.3.5, 

averaged over 1,000 samples. The lower the value of the “AVG Rank” the better the 

performance of a particular model was. Table 5.14 suggests that the combined results 

were in all scenarios (for this particular case) slightly worse than those of the best model 

(such information is, however, unknown until the burst is located by a field technician). 

On the other hand, the D-S model outputs were to some extent less sensitive to the noise 

added to the inputs of individual models. If the performance of only one of the models 

degraded significantly, the two remaining models (the CCM or HM in particular) would 

still influence the combined results so that they did not degrade as fast as the worst 

model. However, in cases where the quality of evidence of the most influential input 

models (i.e., the HM and the CCM) deteriorated at the same time (e.g., because of the 
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amount of noise present in the data or due to low burst flow; illustrated in scenarios D 

and I in Table 5.14), then the combined results were worse than those of any of the two 

key input models. 

5.3.5 Comparison with Other Methods 
The performance of the newly proposed D-S model was compared with other simple 

information fusion methods, such as Mean, Weighted Average (WA), Product and 

Generalised Mean (GM) (Polikar 2006). The comparison of the performance was again 

based on the rank of the TBL when all potential incidents were sorted in a descending 

order according to their likelihood of occurrence (i.e., BetP({ Burst}) in case of the D-S 

model or criterion measurement in case of the individual models). In the case of the WA 

and GM methods the values of required parameters were optimised to achieve the best 

possible results in all 54 cases (i.e., not only on the calibration data set). Table 5.15 

shows that the combination of the model outputs using Evidence theory dominates the 

other methods’ outputs in majority of the cases analysed. 

Table 5.15 Comparison of the performance of the D-S theory with other combination 

functions 

 Mean WA Product GM 
D-S equal or better [%] 94.4 75.9 96.3 83.3 
D-S better [%] 87.0 64.8 96.3 55.6 

The relatively high number of cases where the D-S model performed equally well with 

the WA and GM functions can be explained by the fact that in these cases all methods 

managed to correctly identify the burst pipe and, therefore, there was no potential for 

further improvement.  

5.4 Impact Model 
This section describes the calibration of the impact model developed in Chapter 3.4, by 

conducting a quantitative questionnaire survey. Detailed outputs of the impact model 

are not presented here due to the amount of data produced by the model and difficult 

visualisation of its outputs in a non-interactive way. Instead, the aggregated outputs of 

the impact model are presented as part of section 5.5, which discusses the automated 
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alarm prioritisation, where the impact model was used to provide one part of the risk 

metric. 

5.4.1 Impact Importance Survey 
To determine the preferences of a water utility in terms of importance of different types 

of impacts a questionnaire survey (see Appendix B) was conducted in two UK water 

utilities. For confidentiality reasons, the results presented here do not refer to a specific 

company.  

The questionnaire comprised four main sections, excluding an introduction. First, the 

purpose of the survey was explained to the respondents and guidance on how to answer 

the questions used in the survey was provided. Contact details of the author were 

available to allow the respondents to get support in case of any problems. The 

respondents were asked to answer all 9 questions in the survey from the perspective of 

an employee of a particular water company rather than its customers. The four main 

sections of the questionnaire were as follows: 

• Customer Importance (1 question) – to determine the mutual importance of 

different customer types 

• Types of Impact (5 questions) – to determine the mutual importance of different 

types of impact, their duration and scale 

• Personal Information (2 questions) – to determine the role of the respondent 

within a company 

• Other (1 question) – to allow respondents to provide further comments 

Table 5.16 provides a summary of the questions included in the survey for each of the 

above categories.  
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Table 5.16 A summary of questions included in the online survey 

Group Id  Question 

Customer 
Importance 

1 

Please, indicate the mutual importance of the following types of 
customers according to their vulnerability in case of a failure in  a 
water distribution system (e.g., a pipe burst causing low pressure or 
supply interruption).  

2 

Please, indicate the importance of the following economic impacts, 
having equal scale (i.e., financial losses), which affect the water 
utility (company). Bear in mind that the impacts might negatively 
affect the public image of the company. 

3 
Please, indicate the importance of the duration of supply interruption 
affecting the same number of customers of the same type (e.g., 
residential). 

4 

Please, indicate the importance of the duration of low pressure 
problems affecting the same number of customers of the same type 
(e.g., residential). 
 

5 
Please, indicate the importance of the scale of the same impact (e.g., 
supply interruption) on the customers of the same type (e.g., 
residential) for the same period of time. 

Types of 
Impact 

6 
Please, indicate the mutual importance of the following types of 
impacts affecting the same number of properties for the same period 
of time (where applicable). 

7 Please, select the company / organisation you work for: Personal 
Information 8 Please, select your occupation 
Other 9 Please, provide additional comments 

The questions were set up in a way that would allow easy extraction of the preferences 

in form of a vector of weights using the AHP developed by Saaty (1980). AHP is a well 

established method for solving complex decision-making problems using a number of 

pairwise comparisons between a set of criteria. One of the advantages of AHP is also its 

capability to determine consistency of the responses.  

The respondents were asked to indicate the mutual importance of two criteria (e.g., 

Supply Interruption and Discolouration) according to their preferences. A 9-point 

linguistic scale adapted from Saaty (1980) shown in Table 5.17 was used.  
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Table 5.17 Arithmetic scale used in AHP (adapted from (Saaty (1980)) 

Linguistic Preference Importance 
(arithmetic scale) 

Unquestionably more important 9 

Much more important 7 
More important 5 
Rather more important 3 
Equally important 1 
Rather less important 1/3 
Less important 1/5 
Much less important 1/7 
Unquestionably less important 1/9 

Apart from the arithmetic scale, other scales such as the exponential and fuzzy scale 

exist (Vamvakeridou-Lyroudia et al. 2006) but these were not applied in this work. One 

of the disadvantages of applying AHP is that the number of criteria to be compared 

needs to be small (e.g., less than 5) otherwise the number of pairwise comparisons 

required from a respondent would be too high. To determine preference weights of N 

criteria 
( 1)

2

N N −
 pairwise comparisons are required. Therefore, the number of criteria 

used in this survey was a maximum of four, requiring at most six pairwise comparisons 

to be entered by a respondent. 

An online form of delivery of the questionnaire was chosen to facilitate its creation and 

analysis of the results. The questionnaire was created and deployed using the 

LimeSurvey (2010) software package. A printed copy of the questionnaire is included in 

Appendix B.  

To ensure that the questionnaire was designed well to provide answers to the unknown 

impact preferences of water companies, a small scale pilot study was first carried out 

within the Centre for Water Systems at the University of Exeter. The very specific 

target group for the pilot was particularly chosen to resemble the highly skilled and 

experienced employees of a water company. The pilot study revealed a small number of 

issues in the questionnaire that were corrected to improve the clarity of the questions 

before the survey was conducted at selected water utilities, which were participating in 

the aforementioned NEPTUNE project (Savić et al. 2008). 
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In total 26 responses were received from Company 1 and only 6 responses from 

Company 2. Out of the 26 responses (approx. 25% return rate) of Company 1, two were 

incomplete and an additional five questionnaires had to be discarded due to highly 

inconsistent answers or misunderstanding of the linguistic scale used. For the analysis 

considered here, 19 questionnaires from Company 1 and all 6 responses from Company 

2 were used. Figure 5.18 shows the distribution of the respondents depending on their 

role in the company. Due to the small sample of respondents in this survey, a 

comparison of responses from people of different positions in the companies could not 

be carried out.  

Distribution of respondents depending on their role w ithin a company
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Figure 5.18 Distribution of respondents depending on their role within a company 

5.4.2 Questionnaire Survey Analysis Methodology 
The responses collected were analysed separately for each of the two companies to 

allow a comparison of the preferences. The aim of the survey was to derive preferences 

of the company as a whole (i.e., a group decision-making context) rather than of the 

individual participants of the survey. Given the chosen mode of delivery of the survey 

(i.e., an online questionnaire), consensus voting, which requires direct involvement of 

the DMs to reach agreement for each pairwise comparison, could not be used. As 

discussed by Mikhailov (2004) a number of group decision-making methods exist to 

aggregate the opinions of a group. The aggregation can take place at two different levels 
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(Forman and Peniwati 1998) depending on how the group wants to act, i.e., as a unit or 

as individuals. In the first case, referred to as Aggregation of Individual Judgements 

(AIJ), the individual pairwise comparisons are first aggregated before the AHP is 

applied. The second method, sometimes also called the Aggregation of Individual 

Priorities (AIP), applies AHP separately to the pairwise comparisons of every group 

member and then aggregates the weights derived using AHP. The arithmetic mean and 

the geometric mean are commonly applied to aggregate group preferences for both 

aggregation levels (i.e., AIJ and AIP) (Mikhailov 2004). As suggested by Forman and 

Peniwati (1998) the geometric mean is more suitable for the AIJ aggregation, whereas 

both the arithmetic mean and the geometric mean could be used in case of the AIP 

aggregation. Forman and Peniwati (1998) further suggested that in situations when the 

importance of the DMs is not equal then weighted alternatives of the means could be 

used. 

It was decided here to follow the AIJ approach and first aggregate the pairwise 

comparisons of individuals within a group before applying AHP only once. The chosen 

approach not only emphasises that the group (i.e., a water company) acts as a unit but 

also overcomes problems of slightly inconsistent responses of some individuals, which 

were softened during the aggregation of judgements. Moreover, by aggregating the 

individual judgements first, AHP only has to be applied once, which could save 

computational time if it was necessary to derive the priorities in R-T. However, this was 

not needed in the work presented here since the impact preferences were derived only 

once. The influence of individuals within the group was considered equal, whereas in 

reality it is likely that the managers would have a higher decision-making power 

compared to other employees of a water utility. The geometric mean (Eq. (5.5)) was 

used to aggregate the individual judgements.  

1/
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=

 
=  
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∏  (5.5) 

where: ai,j is the preference of a group with respect to pairwise comparison of criteria i 

and j, ai,j,k is the numerical representation (see Table 5.17) of pairwise comparison of 

criteria i and j of respondent k and NR is the number of respondents considered in the 

survey. 
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Table 5.18 shows an example of a pairwise comparison matrix A  built based on 

aggregated responses ai,j (i.e., Eq. (5.5)) of survey participants. 

Table 5.18 A pairwise comparison matrix A  for Customer importance (Company 1) 

  Critical Residential Commercial Industrial 

Critical 1.00 6.81 7.28 5.48 
Residential 0.15 1.00 1.57 0.95 
Commercial 0.14 0.64 1.00 0.41 
Industrial 0.18 1.05 2.45 1.00 

Every element in the pairwise comparison matrix suggests the mutual importance of 

criteria in a row of the element compared to the criteria in the column of the element. 

E.g., the value of 7.28 in the second row and the fourth column of Table 5.18 (i.e., the 

first row and the third column of matrix A ) suggests that the impact on Critical 

customers is perceived by a company as “much more important” (i.e., according to the 

linguistic scale in Table 5.17) than the impact on Commercial customers. 

The values of elements of the lower triangular of the pairwise comparison matrixA , 

generated from the questions included in the survey, correspond to the inverse values of 

the elements in the upper triangular of the matrix A  (i.e., ai,j = 1 / aj,i). This is the result 

of the formulation of the pairwise comparisons in the questionnaire survey and the 

above relationship does not have to hold every time. Situations when ai,j ≠ 1 / aj,i 

typically indicate inconsistency in the pairwise comparisons. 

Once the opinion of a group of DMs regarding all pairwise comparisons was expressed 

using the pairwise comparison matrix above, the AHP was applied. A number of 

prioritisation methods can be used within AHP (e.g., Eigenvalue Method, Logarithmic 

Least Squares Method, Least Squares Method, etc.) (Saaty and Vargas 1984; Srdjevic 

2005). Here the Eigenvalue Method (EM) method as originally proposed by Saaty 

(1980) was used to derive a vector of preference weights w from the pairwise 

comparison matrix A . The preference (priority) weights can be expressed using the EM 

method as follows: 

1

, 1,2,...,
n

ij j max i
j

a w w i nλ
=

= =∑  (5.6) 
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where: λmax is the principal eigenvector and n is the number of criteria in the pairwise 

comparison matrix A , ai,j is an element of matrix A . 

As noted by Srdjevic (2005) the EM gives a reasonably good approximation of the 

preference weights when inconsistency is small. The consistency of the preferences of 

the pairwise comparisons provided by a DM can be quantified using the Consistency 

Index (CI) (Saaty 1980). If the EM method was used to derive weights from the 

pairwise comparison matrix, the CI is defined using the following equation: 

1
max n

CI
n

λ −=
−

 (5.7) 

Consistency can be also expressed using the Consistency Ratio (CR), which is shown in 

Eq. (5.8) as a fraction of CI and the Random Index (RI). RI is the average CI of 

randomly generated pairwise comparisons. Values of RI for a particular number of 

criteria are given in Table 5.19. (Saaty 1980) 

n

CI
CR

RI
=  (5.8) 

 

Table 5.19 Values of Random Index for a given number of criteria 

n 1 2 3 4 5 6 7 8 9 10 
RIn 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

Generally, values of CR < 0.1 are considered as consistent. Higher values indicate 

inconsistencies in the pairwise comparison matrix and might require the collection of 

new data or additional corrections of the pairwise comparison matrix. 

5.4.3 Questionnaire Survey Results 
The analysis of the data collected revealed that the consistency of answers to all three 

questions 3, 4 and 5 that tried to determine importance of different duration or scale of 

supply interruption or low pressure impact, was very low. Given the poor results 

obtained from questions 3, 4 and 5, question 5 (i.e., the duration and scale of impact) 

was excluded from the questionnaire given to Company 2, since the questionnaires were 

not distributed at the same time. As can be seen from Table 5.20, the CR index for 

questions 3, 4 and 5 exceeded the 0.1 threshold in most cases, which is an indication of 
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poor consistency. The aim of those questions was to find out whether the effect of 

duration or scale of the impact had a linear relationship or could be described by some 

other mathematical function. It seems that those questions were either misunderstood by 

the survey participants or the chosen type of question (i.e., the 9-point preference scale) 

was not suitable to determine such information. Those questions were discarded and not 

considered further in this work. Equal importance between the duration and scale of an 

impact was assumed. Similarly, no preference between the scale of an impact and its 

magnitude in the case of discolouration impact was presumed. The assumption of equal 

importance between the above criteria was chosen because of its simplicity and because 

it could be adjusted if more data was available. 

The responses to the remaining questions were more consistent (see Table 5.20) and 

almost all of them had CR < 0.1. Responses from Company 1 to question no. 6 were 

slightly less consistent (i.e., having CR = 0.101), which was still considered acceptable.  

Table 5.20 An overview of consistency of the responses 

CR 
Id Question 

Company 1 Company 2 
1 Customer Importance 0.016 0.022 
2 Economic Impact Type 0.000 0.065 
3 Duration of Supply Interruption 0.321 0.174 
4 Duration of Low Pressure Impact 0.285 0.049 
5 Scale of Impact 0.326 N/A 
6 Impact Type 0.101 0.041 

The outcomes of the questionnaire analysis are shown in Figure 5.19, Figure 5.20 and 

Figure 5.21. The importance of different customer types from the point of view of a 

water utility is shown in Figure 5.19. Critical customers (e.g., hospitals, schools, etc.) 

ranked highest, whereas commercial customers obtained the lowest priority. Both 

companies in this case seemed to have very similar preferences. 
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Figure 5.19 The relative importance of various types of customers 

Figure 5.20 displays the importance of different impact categories (i.e., objectives) from 

a hierarchy shown in Figure 3.17. Both companies ranked the impact categories in the 

same order of significance, however, attributed different levels of priority particularly to 

Supply Interruption and Discolouration. The similar value of weighting factor attributed 

to Supply Interruption and Discolouration by Company 2 (i.e., in contrast to Company 

1) could be explained by the fact that, in neither of the cases the consumers can use 

water (i.e., people would not drink discoloured water).  
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Figure 5.20 The relative importance of different types of impact 
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The preferences related to different types of economic impact are shown in Figure 5.21. 

The weights obtained do not differ too significantly between the two companies. 

Company 2 put much more emphasis on Third Party Damage impact, perhaps since it 

can be associated with negative public image. 

Importance of different types of Economic impact

0.49

0.26 0.24

0.69

0.18
0.13

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Third party damage Lost water Undelivered water

Type of economic impact

R
el

at
iv

e 
im

p
o

rt
an

ce

Company 1

Company 2

 

Figure 5.21 The relative importance of different types of Economic impact 

Based on the above results, the preferences obtained can be put into the objective tree 

from Figure 3.17. An updated objective tree with specific values for water Company 1 

is illustrated in Figure 5.22. 

 

Figure 5.22 An objective tree used in impact aggregation with determined weights  
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To calculate the overall impact of a failure, the values of KPIs proposed in section 3.4.3 

are substituted in the leaves in Figure 5.22 and propagated through a hierarchy of 

weights as suggested in Eq. (3.17). 

5.5 Alarm Prioritisation Case Study 
The alarm ranking methodology proposed in section 3.5 was tested on a number of real-

world alarms detected by an automated pipe burst detection system (Mounce et al. 

2010) applied to the Harrogate & Dales case study area. Only 11 out of all 15 DMAs 

were considered here (e.g., because of missing / malfunctioning sensors). Every DMA 

had its inflow monitored in the period from November 2008 to January 2010. 

Figure 5.23 shows the layout of the WDS, including the DMA boundaries and location 

of the flow meters as well as the number of alarms per sensor. 

The primary purpose of the alarm prioritisation methodology is to rank alarms occurring 

more or less simultaneously in a similar time horizon. The number of simultaneous 

alarms generated in the small number of DMAs was not significant. To demonstrate the 

full potential of the methodology, all 50 alarms detected throughout the above study 

period were prioritised regardless of their date/time of occurrence. Nevertheless, the 

exact date and time of burst detection affected the likelihood of potential incidents 

occurring as well as their impact. The state of the considered alarms (e.g., real or false) 

as well as their true nature (i.e., location of the burst pipe in case of a real alarm) 

remained unknown. It was assumed that all alarms were in an active state and, therefore, 

their priority was purely determined by the outcomes of the risk-based ranking (i.e., the 

rules presented in section 3.5.5 played no effect). 
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Figure 5.23 Case study area overview with locations of inlet flow meters and alarms 

The risk Ri,j of failure of every pipe segment within a DMA associated with an alarm 

was first evaluated using a number of back-end processes described in Chapter 4 of this 

thesis. A ‘neutral’ preference between likelihood and impact components of risk was 

chosen (i.e., wL = wI = 0.5). For the purpose of ranking, a DM’s pessimistic attitude 

towards risk (i.e., α = 0.8) was selected here so that the riskiest potential pipe bursts 

contribute most to the overall risk of an alarm. 

5.5.1 Main Results 
Table 5.21 provides an overview of the ranking of all 50 alarms. Four different rankings 

are presented in the table, where the first one (Ranking α = 0.8) corresponds to the 

parameter set as described above. The highlighted lines in the table correspond to 

alarms that are discussed in more detail below. 

The “Ranking Histogram” and “AVG ranking” were based on the outcomes of 

sensitivity analysis described below in section 5.5.3. The ranking based on a histogram 
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chose the most frequent rank of an alarm evaluated across a range of parameter values, 

whereas the average ranking was obtained by averaging all possible ranking outcomes 

produced during the sensitivity analysis as illustrated in Figure 5.24 on an example. 

α w L w I 8603 8644 8933 Alarm ID Ranking Hist. Ranking AVG
Scenario 1 0.72 0.5 0.5 3 2 4 8603 3 3.33
Scenario 2 0.72 0.48 0.52 3 2 4 8644 2 2.00
Scenario 3 0.72 0.46 0.54 4 2 3 8933 4 3.67  

Figure 5.24 An example of ranking based on histogram and an average 

The last column of Table 5.21 (i.e., “Pairwise comparison”) was obtained by performing 

( 1)N N× −  pairwise rankings of all 50 alarms and counting for every alarm the number 

of times it ranked higher than the other alarms (when compared mutually). The purpose 

of this ranking technique was to observe the effect of global (i.e., across all alarms) and 

local (i.e., pairwise) impact normalisation on the alarm ranking. 

Table 5.21 A list of 50 alarms considered in this case study 

Alarm ID Created Data DMA Flow Ranking 
α=0.8 

Ranking 
Histogram 

Ranking 
AVG 

Pairwise 
comparison 

8581 14/12/2008 12:10 E057 20.2 50 50 43.98 50 
9036 06/06/2009 18:10 E011 10.3 49 49 47.25 49 
8836 04/01/2010 12:42 E011 6.6 48 48 47.72 48 
8802 19/11/2009 12:59 E011 5.4 47 47 45.19 46 
8660 14/12/2008 07:12 E026 14.4 46 46 43.63 47 
8738 18/12/2008 10:12 E024 7.2 45 45 43.28 45 
8815 10/09/2009 13:05 E024 9.4 44 44 42.43 44 
9032 02/07/2009 21:15 E024 7.8 43 43 41.34 43 
9009 11/01/2010 08:41 E055 2.1 42 31 35.54 42 
8695 26/09/2009 21:05 E024 6 41 42 39.64 41 
8591 20/04/2009 00:10 E011 3.1 40 40 37.43 40 
8777 01/06/2009 07:10 E023 1.4 39 39 38.34 33 
9038 09/06/2009 08:13 E024 4.4 38 38 35.82 39 
8997 23/04/2009 01:12 E026 4.1 37 35 32.61 38 
9031 12/02/2009 17:13 E026 5.2 36 34 32.91 36 
8702 15/11/2008 22:13 E026 5 35 33 30.82 35 
8565 11/01/2010 01:40 E023 1.7 34 50 36.06 32 
8653 24/12/2009 19:40 E023 1.1 33 47 35.09 30 
8700 16/09/2009 09:04 E026 4.1 32 31 27.52 28 
8756 12/12/2008 19:10 E011 1.7 31 32 29.67 25 
8783 24/07/2009 04:10 E023 0.9 30 30 30.77 23 
8966 15/08/2009 02:04 E093 0.6 29 27 26.68 37 
8931 27/08/2009 09:57 E021 2.4 28 29 24.49 18 
9030 07/11/2008 04:16 E093 0.4 27 26 21.21 24 
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Alarm ID Created Data DMA Flow Ranking 
α=0.8 

Ranking 
Histogram 

Ranking 
AVG 

Pairwise 
comparison 

8563 11/01/2010 00:41 E026 4.9 26 28 23.49 17 
8996 22/04/2009 12:12 E055 3.9 25 25 28.52 29 
8888 04/10/2009 18:05 E022 5.4 24 29 32.15 34 
8771 19/03/2009 18:14 E093 0.4 23 16 22.41 26 
8610 18/04/2009 08:13 E093 0.5 22 14 19.36 20 
8819 16/09/2009 06:59 E204 5.8 21 17 19.81 15 
8638 05/01/2010 12:41 E022 2.3 20 19 20.71 22 
8936 04/09/2009 18:06 E022 5.1 19 28 29.35 31 
8906 05/01/2010 13:40 E022 1.2 18 11 13.90 13 
8772 30/05/2009 22:13 E093 0.8 17 12 22.55 27 
8611 19/04/2009 23:10 E057 1.1 16 20 15.30 11 
8609 07/01/2009 15:10 E054 1.2 15 11 12.74 16 
8781 14/06/2009 03:15 E093 0.7 14 10 15.87 19 
8778 01/06/2009 13:10 E057 1.4 13 13 19.39 10 
8854 23/12/2009 13:41 E026 5.6 12 24 21.21 21 
8869 07/01/2009 08:11 E022 0.5 11 11 19.33 14 
8701 16/09/2009 23:59 E022 1.2 10 12 16.29 9 
8841 20/12/2009 10:41 E093 0.4 9 1 13.04 12 
8965 14/08/2009 04:31 E054 0.7 8 9 8.40 5 
8588 08/01/2010 18:45 E054 1 7 8 7.78 8 
8840 20/12/2009 11:40 E054 0.7 6 7 7.13 6 
8780 13/06/2009 22:10 E054 1 5 5 5.40 7 
8933 29/08/2009 21:57 E054 0.7 4 4 2.96 1 
8644 23/05/2009 07:10 E054 0.5 3 3 2.88 3 
8603 07/11/2008 09:16 E054 0.5 2 4 3.64 4 
8555 11/12/2008 14:10 E054 0.4 1 1 1.99 2 

Detailed results of the initial risk analyses are presented in form of risk maps (see e.g., 

Figure 5.25). The thickness of the pipes reflects how likely it is that a burst has occurred 

in that part of the network, based on the output of the D-S model, and the colour (i.e., 

red = high impact and blue = low impact) corresponds to the aggregated impact that a 

burst of a given magnitude would cause at that location over a 24h risk horizon. The 

identification of impact and likelihood classes (i.e., breaks) used in the risk maps was 

done using the Natural Breaks algorithm (Jenks 1967), which tries to group similar 

values in the attempt to maximise the differences between the classes.  
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Figure 5.25 A risk map of alarm 8777 

Certain pipes were excluded from the impact aggregation (and thus also from the alarm 

ranking). Pipes excluded from the ranking are shown using a light grey dashed line on 

the risk maps. There were several reasons why a pipe was excluded from the ranking 

process. Sometimes, it was not possible to evaluate the impact of a burst on that pipe 

(e.g., the system was hydraulically unbalanced and it was not possible to find a solution 

to the governing mass and energy conservation equations). Also, on several occasions 

the evaluation of likelihood of failure of that pipe did not succeed for some reason (e.g., 

no evidence was available). 

5.5.2 Detailed Alarm Prioritisation Results 
As discussed in section 3.5 the impact of a pipe burst has to be compared across all 

potential incidents of all active alarms to establish a common scale. This fact was 

reflected in Table 5.21, however, the detailed risk maps presented below were re-

normalised in pairs (i.e., only the two alarms were considered as active) to emphasise 

Potential incident excluded 
from alarm ranking 
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the differences only between the impacts of potential incidents associated with the two 

alarms. The alarm ranking examples described below were included to demonstrate 

following: 

• Alarms 8966 & 9030 – to show that the methodology produces an expected 

ranking in case of similar alarms that differ predominantly in the magnitude of 

abnormal flow. 

• Alarms 8802 & 8660 – to illustrate the advantages of the alarm ranking 

methodology to take into account the usually complex development of the 

impact of potential incidents associated with an alarm. 

• Alarms 8854 & 8563 – to highlight a limitation of the methodology when 

dealing with outliers caused by potential incidents with very high values of 

impact or likelihood of occurrence. 

5.5.2.1 Alarms 8966 & 9030 

As discussed in section 3.5.2, the alarm ranking methodology assumes only one failure 

at a time from the same DMA. The majority of the alarms presented in Table 5.21 

originating from the same DMA at a similar time of day, show a strong positive 

correlation between their ranking and the magnitude of abnormal flow. Such behaviour 

is typically caused by the impact component of risk of potential incidents associated 

with an alarm and does not have to hold every time (i.e., because of the likelihood of 

occurrence of potential incidents). Figure 5.26 and Figure 5.27 show risk maps of two 

alarms 8966 and 9030 respectively that originated from the same DMA at 

approximately the same time, but at different dates. The likelihood component of 

potential incidents associated with each of the alarms is very similar. This fact can be 

explained by an incorrect calibration of the HM used, which affected both alarms in a 

similar way. In terms of impact, it can be observed from the risk maps and a scatter plot 

in Figure 5.28 that the higher burst flow increased the impact level of alarm 8966. This 

alarm consequently received a higher ranking and was perceived as more important.  
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Figure 5.26 A risk map of alarm 8966 

 

Figure 5.27 A risk map of alarm 9030 
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Alarm Scatter Plot Comparison
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Figure 5.28 A scatter plot of alarms 8966 and 9030 

5.5.2.2 Alarms 8802 & 8660 

The following example demonstrates the advantage of the risk-based approach to alarm 

prioritisation, in comparison to simply relying on the abnormal flow of an event, which 

could serve as a good indicator of alarm severity in a number of situations. In this case, 

the alarms 8802 (see Figure 5.29) and 8660 (see Figure 5.30) originated from different 

DMAs. As can be seen in Figure 5.29 and Figure 5.30, in both cases the most likely 

location of the burst coincided with the part of the DMA where the burst would have the 

highest impact.  

Despite the fact that the burst flow of the alarm 8802 (5.4 l/s = 25% of max. DMA 

inflow) was lower than in the case of alarm 8660 (14.4 l/s = 30% of max. DMA inflow), 

it obtained higher priority than the alarm 8660 due to a higher impact on customers in 

the north-west part of the DMA. If, however, at the time of the risk analysis there had 

been evidence available suggesting that the alarm 8802 was most likely to have been 

caused by a burst pipe in the southern part of the DMA, then ranking results would have 

been the opposite, since that burst would have caused much lower impact there (e.g., 

due to different topography and elevation). 
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Figure 5.29 A risk map of alarm 8802 
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Figure 5.30 A risk map of alarm 8660 

5.5.2.3 Alarms 8854 & 8563 

This example shows one of the weaknesses of the alarm ranking methodology in 

situations when outliers are present in the set of potential incidents associated with an 

alarm. Outliers typically manifest themselves as potential incidents with very high 

values of likelihood, impact or both. A group of outliers with high values of likelihood 

(compared to the rest of potential incidents) is highlighted in Figure 5.31. Those four 

outliers, associated with alarm 8854 affected the likelihood scale of that alarm and 

caused it to be ranked lower (i.e., less risky) than the alarm 8563. The presence of the 

outliers can be explained by an incorrectly calibrated HM, whose evidence was 

dominant in this case.  
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Alarm Scatter Plot Comparison
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Figure 5.31 An original (un-filtered) scatter plot of alarms 8854 and 8563 

After the outliers were excluded from the alarm ranking, the alarms were then ranked in 

a different order to the one shown in Table 5.21 (i.e., alarm 8854 ranked higher than 

alarm 8563). This fact can be seen from an updated scatter plot in Figure 5.32 where the 

potential incidents represented by red circles (i.e., alarm 8854) dominate the blue 

crosses representing potential incidents associated with alarm 8563. 
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Figure 5.32 A filtered scatter plot of alarms 8854 and 8563 
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The presence of outliers can affect the entire scale of impacts and likelihoods of the 

alarms being considered and could cause a rank reversal – a situation when a less 

significant alarm is treated as a more important one. Currently, the impact and 

likelihood components are normalised using Eq. (5.9) 

min( )
( )

max( ) min( )

x x
Norm x

x x

−=
−

 (5.9) 

where: Norm(x) is normalised value of attribute x, min(x) is the minimum value of 

attribute x and max(x) is the maximum value of attribute x. 

The influence of outliers could be reduced by adopting a different normalisation 

procedure. Mavrotas and Trifillis (2006) suggested using the fifth and ninety-fifth 

percentile in the normalisation procedure as shown in Eq. (5.10) instead of the 

minimum and maximum to alleviate this problem.  

0.95 0.05 0.05

0.95 0.05

max(min( , ( )), ( )) ( )
( )

( ) ( )

x p x p x p x
NormP x

p x p x

−=
−

 (5.10) 

where: p0.05 is the fifth percentile of attribute A and p0.95 is the ninety-fifth percentile of 

attribute x 

The use of percentiles was not applied in this work, although it might potentially reduce 

the risk of an incorrect prioritisation of alarms. 

5.5.3 Sensitivity Analysis 
A sensitivity analysis was carried out to investigate the influence of parameters used by 

the alarm ranking methodology (i.e., the operators’ attitude towards risk α and 

likelihood and impact preference weights wL and wI, respectively). Ranking of all 50 

alarms presented in this case study was done with parameter values varied across their 

entire feasible range. The results of sensitivity analysis are plotted in the form of a 

contour map (see Figure 5.33), where every point on the map represents a particular 

ranking obtained using a corresponding value of parameter α and likelihood weight wL 

(note that the weight wI is given by wI + wL = 1). The colour of every point corresponds 

to the distance of the rankings of alarms from a reference solution (α = 0.8 and wL = 0.5) 

presented in Table 5.21.  
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Figure 5.33 Influence of parameter values on distance from a reference solution 

The distance between the reference solution and ranking obtained using different values 

of parameters α and wL was expressed using the following equation: 

( )2

1

( ) ( ) ( )
AN

ref
i

RankingDistance i Rank i Rank i
=

= −∑  (5.11) 

where: NA is the number of alarms considered (in this case 50), Rankref(i) is the ranking 

of the i-th alarm of the reference solution and Rank(i) is the ranking of the i-th alarm 

obtained using different parameter values α and wL. 

The reference solution itself at coordinates α = 0.8 and wL = 0.5 clearly has a ranking 

distance equal to 0. As can be further seen from Figure 5.33, the ranking methodology 

provides very similar rankings for a wide range of values of input parameters α and wL. 

A significantly different ranking of alarms would be obtained for values of α close to its 

limits (i.e., 0 and 1). Similar phenomenon could be observed in cases when the value of 

the likelihood weight wL drops below 0.3 or exceeds the value of 0.7. It can, therefore, 

be concluded that the method is likely to produce an expected alarm ranking across a 

wide range of parameter inputs, which can be seen as a positive feature since high 

sensitivity could make the calibration difficult.  
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5.5.4 Discussion 
Prioritisation of alarms is a complex process, which needs to consider multiple criteria. 

An expert’s judgement based only on limited information such as the time of detection 

of an alarm, DMA characteristics and estimated magnitude of the burst flow might be 

insufficient to assess thoroughly the severity of an alarm. Alarm priority depends on the 

state of a WDS as a whole and might vary significantly depending on water 

consumption and pressures in the system.  

Manual ranking of alarms by visual comparison of risk maps has proved to be 

subjective and also difficult since both the likelihood and impact components of risk 

have to be considered simultaneously. An attempt was made to rank alarms manually by 

a visual comparison of their risk maps. This manual ranking seemed to lack consistency 

and put more emphasis on the impact component of risk, which might be also caused by 

the way the risk maps were visualised (i.e., visually the line colour seems to dominate 

its thickness).  

In situations where the likely location of the burst is confined to a small area, the overall 

risk of such an alarm is reduced since a higher number of less likely burst locations play 

a more important role during the aggregation. This might produce counterintuitive 

ranking in some cases when a high impact, well located burst would have lower rank 

than an average impact burst, whose location within a DMA is unknown (i.e., a large 

number of pipes have a high likelihood of bursting). Such behaviour could be reduced 

to a certain extent by increasing the level of pessimism of the DM (i.e., increasing the 

value of α or reducing the likelihood weighting factor wL). 

5.6 Summary 
This chapter has demonstrated the application of the individual constituents of the risk-

based pipe burst diagnostics methodology proposed in Chapter 3 on a number of real 

life and semi-real case studies. The results presented in this chapter were obtained using 

the background processes (i.e., the Alarm Monitor, Likelihood Evaluator, Impact 

Evaluator and the Ranking module) described in section 4.4. 
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Section 5.1 provided a brief introduction to the case studies presented here and 

explained the obstacles, which prevented the application of some of the methodologies, 

namely the D-S model on real life data. 

The possibility of using an HM and near R-T pressure and flow measurements from the 

field to locate a burst within a DMA was demonstrated in section 5.2. It was concluded 

that the magnitude of burst flow, calibration of the HM as well as the number of 

measurement points and their location (i.e., sensitivity to changes in pressure in a DMA) 

play an important role in the successful location of a burst. Small pipe bursts do not 

generate sufficient pressure drops and, therefore, cannot be located using measurements 

of current commonly used pressure transducers that have typical accuracy of +/- 0.5 m 

of head. On the other hand, such bursts are unlikely to significantly impact customers 

and do not require an immediate attention. 

Section 5.3 presented results of an application of the D-S model (see section 3.3) on a 

number of historical pipe bursts. It was shown that the long term credibility of 

individual information sources (i.e., the PBPM, CCM and HM) can be captured in the 

form of mapping curves during a multi-objective calibration procedure. Validation of 

the D-S model showed better performance than any of the individual models achieved 

on a high number of unseen validation cases (i.e., in terms of certainty in identifying the 

correct burst location and likelihood concentration).  

A possible way to determine weights used by the impact model was presented in section 

5.4. To gather data required to calibrate the impact model, an online questionnaire 

survey was conducted in two water utilities. First, a group decision-making approach 

was used to aggregate outcomes of the questionnaire survey within a company. The 

aggregated results were then analysed using the AHP, which was applied to derive 

preference weights from comparison matrices formed after the aggregation of individual 

judgements. Consequently, these weights were put into an objective tree, which 

reflected an overall aggregated impact of a failure on a water utility. 

The alarm ranking methodology, which combines the likelihood and impact 

components of the risk of potential incidents associated with an alarm to determine its 

severity, was demonstrated in section 5.5. The methodology produced intuitive ranking 

of real life alarms with only a small number of disputable cases (e.g., caused by the 
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presence of outliers). Based on the results achieved, it can be concluded that the 

measure of risk used in this work provides a suitable indicator for systematic alarm 

prioritisation. The newly proposed alarm prioritisation methodology enables control 

room personnel to identify and then pay more attention to the most severe failures first, 

leading to an improved response time and better quality of service. 
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CHAPTER 6 CONCLUSIONS 

6.1 Summary 
The concept of risk has been widely applied across the water industry, however, 

primarily from a strategic perspective. The main objective of this thesis was to introduce 

risk-based decision-making into the near Real-Time (R-T) operational management of 

WDS under failure conditions. In particular the aim was to support the process of 

diagnostics and prioritisation of abnormal flow conditions typically caused by burst 

pipes. 

A novel methodology for diagnostics of WDS failures (i.e., pipe bursts) based on the 

measure of risk associated with a failure was developed. The methodology allows better 

informed decisions to be made about where to dispatch field crews to investigate 

possible problems, not only based on information about the likelihood of a suspected 

failure occurring, but also according to the estimated impact such failure would have on 

the water utility and its customers. 

Suitable models to quantify the fundamental components of the risk metric, i.e., the 

likelihood of adverse effects occurring and their impact on the stakeholders concerned 

were first developed and implemented. The likely location of the burst pipe was 

estimated using a novel Dempster-Shafer (D-S) model by combining evidence from 

multiple information sources (i.e., a Pipe Burst Prediction Model (PBPM), a Customer 

Contact Model (CCM) and a Hydraulic Model (HM)) to increase confidence in the 

results. An impact model based on the Multi-Attribute Value Theory (MAVT), capable 

of incorporating Decision-Makers’ (DM) preferences, was created to capture 

operational aspects of a failure in a WDS during a risk horizon. 

The full potential of the risk-based approach towards failure diagnostics was exploited 

in a novel alarm ranking methodology. The proposed method is able to suggest mutual 

significance of multiple alarms (i.e., detected abnormal events), occurring more or less 

simultaneously during similar time horizon, based on the DM’s attitude towards risk 

and the level of aggregated risk they represent. Alarms are presented to a human DM in 

order of their importance and therefore the most severe failures can be dealt with first. 

In severe weather conditions, such as extended periods of frost, when multiple pipe 
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bursts are most likely to occur more or less simultaneously, the cognitive load of the 

operators can be effectively reduced using this approach. 

A possible implementation of individual constituents of the risk-based pipe burst 

diagnostics methodology was suggested in Chapter 4. The methodology presented in 

this thesis was then also put into a broader context of a Decision Support System (DSS) 

for near R-T WDS operation under abnormal conditions. A simplified design of a 

relational Database (DB) (with spatial extension), which formed the core of the 

proposed DSS, was presented. The possibility of using distributed computing in order to 

increase the computational efficiency of the impact evaluation, to gain the requested 

near R-T performance, was demonstrated. A scalable solution for the visualisation of 

GIS data, representing the current state of a WDS, directly from a spatial DB was also 

suggested. 

The risk-based decision support methodology was applied to a number of real life as 

well as semi-real case studies, which show its potential to improve the current practices 

of failure management in WDS, when pipe bursts occur. The control room operators can 

make better informed decisions, which are likely to ensure an improved level of service 

of delivery of potable water. 

6.1.1 Summary of the Contributions 
The main contributions of the work presented in this thesis are: 

• A novel D-S model, inspired by ensemble classifiers, to provide an estimate of 

the likelihood of burst occurrence at a particular location within a DMA by 

combining outputs from multiple information sources (i.e., a PBPM, a CCM and 

an HM). 

• A novel multi-objective calibration methodology to determine input parameters 

used by the D-S model, including a suitable combination rule, in order to learn 

the credibility of the individual information sources and achieve maximum 

benefits from the information fusion process. 

• A novel tree-like impact model based on the MAVT theory, which aggregates a 

number of KPIs computed using a pressure driven hydraulic solver coupled with 
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a GIS in order to estimate the relative importance of failure impact in 

accordance with preferences of a water utility represented by a group of DMs.  

• A novel risk-based pipe burst investigation method, to drive the burst 

diagnostics not only by the likelihood of burst location but also the impact of a 

burst in different parts of a DMA to enhance the decision-making of control 

room operators. 

• A novel alarm prioritisation methodology, which uses an overall aggregated risk 

of all potential incidents (i.e., causes) of an alarm (i.e., a detected anomaly), 

capable of determining mutual significance of a number of simultaneously 

occurring alarms according to the DM’s attitude towards risk. 

6.2 Main Conclusions 
The main conclusions are given here with respect to the individual constituents of the 

overall risk-based pipe burst diagnostics methodology presented in this thesis. 

6.2.1 Risk-Based Pipe Burst Diagnostics 

From the risk-based pipe burst diagnostics presented in Chapter 3.2, the following 

conclusions can be drawn: 

• Presenting risk in an aggregated form (e.g., by multiplying likelihood and 

impact) is a misapprehension frequently held by practitioners. It is important that 

the risk metric is presented in a non-aggregated form (i.e., the likelihood and the 

impact measures are treated separately where possible). This was achieved here 

using risk maps, which use varying line thickness and colour to separately 

present both components of risk. 

• Investigation of burst pipes is most likely to be driven primarily by the 

likelihood component of risk, whereas the impact only serves as a secondary 

indicator. On the other hand, impact plays a dominant role in alarm 

prioritisation, where it represents the primary feature that enables DMs to 

determine the mutual significance of several alarms. 
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6.2.2 Dempster-Shafer Model 

The Dempster-Shafer model presented in Chapter 3.3, which provides an estimated 

likelihood of burst occurrence at a particular location within a DMA, shows: 

• Locating a pipe burst within a DMA using data driven or conventional model-

based methods is a challenging problem. The main constraint of such methods is 

typically the lack of data or insufficient calibration of the models used. Under 

such conditions of uncertainty, when no single model is able to provide a 

satisfactory answer, it is beneficial to combine the outputs from several models, 

in order to improve confidence in the overall result. This thesis presented a 

methodology based on the D-S Theory which combines evidence from several 

independent sources/models (i.e., a PBPM, an HM and a CCM) to locate a pipe 

burst within a DMA. It is argued that this methodology is able to fully exploit all 

the information sources available in a WDS control room, reduce the 

information load faced by a human operator and facilitate targeted field 

investigations. 

• A limiting factor to a wider application of HMs in near R-T burst diagnostics is 

the unavailability of pressure and flow data in sufficient quantity and quality. In 

certain WDS deployment of a sufficient number of sensors might be 

uneconomical since the potential benefits from timely burst identification would 

not justify the cost of the sensors and their maintenance. However, stringent 

requirements on delivered levels of service and customer satisfaction might 

support more investment into monitoring technology in the not-too-distant 

future, which, coupled with the availability of cheaper sensors, due to 

technological advances, may tip the balance of the cost benefit analysis in favour 

of more sensors. 

• The performance of the information sources used in this work varies 

significantly, which makes information fusion difficult. Such phenomena can be 

observed for example in the case of the CCM which tends to be either 

completely correct or completely wrong. Ideally, all the information sources 

should perform similarly. Furthermore, the PBPM, which has significantly lower 
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credibility than the other remaining information sources, does not contribute 

much when the HM and CCM are in conflict. 

• A major strength of the proposed methodology is its potential to learn from the 

performance of the individual models during the calibration stage and 

successfully apply this knowledge to unseen cases. As information about new 

pipe bursts becomes progressively available, the D-S model can be recalibrated 

in order to better reflect the evolving performance of the input models. 

Moreover, additional models suggesting the location of a burst pipe (e.g., based 

on the information of third parties working in the system, weather information, 

etc.) can be readily incorporated acting as additional information sources, to 

further improve the performance and benefits of information fusion. 

• The novel multiple-objective calibration procedure developed, allows the D-S 

model to learn the credibility of the underlying information sources based on a 

set of historical events. However, criteria for selecting the most suitable non-

dominated solution from the Pareto front need to be established to allow for 

automation of the learning process. 

• Importantly, the calibration procedure selects the most suitable combination rule 

since, as stated by many, the choice of a particular rule for information fusion is 

problem specific and no single combination rule can yield optimal results in all 

decision-making contexts. 

• The results of calibration of the D-S model suggest that the D-S theory of 

Evidence is a suitable mathematical framework for information fusion applied in 

the context discussed in this work. In contrast to the traditional Bayesian theory, 

the ability of the D-S theory to handle epistemic uncertainty seems to yield 

certain advantages. 

• The initial calibration and maintenance of the mapping curves, which reflect the 

credibility of the input models, is not straightforward and represents a challenge 

that needs to be addressed.  
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• The results obtained by running the D-S model on a number of semi-real 

historical cases suggest that the methodology is capable of: 

o Identifying parts of the network where the problem is least likely to be 

located rather than providing an increased resolution of burst location. 

This could possibly help exclude areas where the burst may not have 

occurred from expensive field investigations. 

o Suggesting that conflicts exist between individual information sources, 

which might influence the decision-making processes. This would, 

however, require the “likelihood” to be presented using Belief and 

Plausibility instead of the pignistic probability (BetP), which might be 

impractical for WDS operators. 

o Providing an insight into the performance of individual models using the 

“mapping curves”, which reflect their credibility and specificity, presents 

an advantage over “black box” models such as ANNs. 

• No conclusions can be drawn about the performance and suitability of different 

combination rules since the solutions in the non-dominated set obtained during 

the calibration procedure contained all the three combination rules considered 

(i.e., Dempster’s rule, Yager’s rule and PCR5 rule). However, Yager’s rule 

seemed to generate results impractical for decision-making due to large 

differences between Belief and Plausibility, which was not observed in the case 

of the other two combination rules. 

6.2.3 Impact Model 

An impact model was developed (see Chapter 3.4) and implemented, based on an HM 

(i.e., a pressure driven modification of EPANET2) coupled with a GIS, in order to 

assess the impact of failures (i.e., pipe bursts) from an operational, rather than strategic 

perspective. 

• A set of KPIs capturing the impact of a pipe burst on a water utility, as well as 

its customers, was developed. The proposed KPIs are able to model the 



Chapter 6 - Conclusions 

 198

following impact categories: supply interruption, low pressure, discolouration, 

and economic impacts. 

• The KPIs reflecting impact on customers explicitly differentiate the following 

types of customers: residential, industrial, commercial, and critical. This is not 

the case of the KPIs used by OFWAT to monitor long term performance of 

water utilities. 

• It is suggested that the impact of pipe bursts needs to be evaluated on a system 

level, rather than within a single DMA since phenomena such as discolouration 

can affect much larger parts of the network (i.e., outside of the boundaries of an 

affected DMA) depending on the network topology. 

• A questionnaire survey was conducted in two UK water utilities in order to 

determine their perception of the impact of various failures in a WDS. The 

results identified very similar preferences in the two participating water utilities 

in terms of significance of different aspects of considered impacts. 

o Regarding the significance of different impacts of a pipe burst, full 

supply interruption was perceived as the most severe impact, followed by 

discolouration, low pressure and economic impacts. 

o Impact on critical customers (e.g., hospitals, schools, etc.) was perceived 

as being significantly more serious in comparison to the other customer 

categories (i.e., residential, commercial and industrial users) considered 

in this thesis. 

o In terms of economic impact, damage to third parties (e.g., damage to a 

road caused by a burst) was identified as the most severe economic 

impact, followed by undelivered demand and lost water. 

• Distributed computing was successfully applied in order to increase the 

performance of the impact evaluation of potential incidents, associated with an 

alarm in a particular DMA in order to reach a near R-T character of the 

methodology. 
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6.2.4 Alarm Prioritisation & Ranking 
Prioritisation of abnormal flow events (i.e., alarms) has received only a little attention 

by the water sector. The following conclusions can be drawn regarding the alarm 

prioritisation methodology proposed in Chapter 3.5. 

• A novel methodology for automatic prioritisation of flow alarms (i.e., detected 

flow anomalies) was developed. The methodology provides a DM with the 

means to determine mutual significance of multiple alarms occurring 

simultaneously in different parts of a WDS (e.g., during periods of abnormal 

frost). The risk of individual possible causes of an alarm was used here to 

calculate an overall aggregated risk associated with that alarm, depending on the 

DM’s preferences and attitude towards risk (e.g., pessimistic / optimistic).  

• Prioritisation of flow alarms in a WDS was found to be a complex and a highly 

subjective task. The information currently available to the control room 

operators might not be sufficient to assess the priority of an alarm. Estimating 

the alarm priority based on the magnitude of abnormal flow (or its fraction 

compared to the total DMA inflow only) might lead to incorrect conclusions. 

The risk-based alarm ranking methodology offers a systematic approach to 

alarm prioritisation.  

• The performance of the method can be negatively affected by the presence of 

outliers (i.e., potential incidents associated with an alarm that have 

unrealistically high impact or likelihood of occurrence compared to 

neighbouring pipes in the same DMA). Possible ways of overcoming this 

problem were suggested in section 6.3.3. Counterintuitive ranking might be also 

produced in situations when the likely location of the burst is confined to a small 

area since the aggregated risk of such an alarm might be lower than when the 

location of the burst is completely unknown.  

• The alarm ranking methodology on its own is a computationally efficient 

algorithm, where the calculation of the maximum entropy weights takes most of 

the time. These were stored in a cache for a given value of parameter α to 

improve the performance. The major computational burden lies in the pipe burst 
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risk analysis (primarily in the impact evaluation), which typically involves 

running hundreds of extended period simulations of an HM.  

6.3 Future Research 
This section suggests possible directions of further research to extend and improve the 

methodologies presented in this thesis. Generally, with the exception of the D-S model, 

uncertainty was not thoroughly considered in this work. The majority of the models 

developed here were deterministic (e.g., the impact model). Incorporating methods of 

uncertainty handling into near R-T environment represents an intriguing challenge that 

certainly deserves more attention in the future. 

Specific recommendations for further research are given separately for each key 

constituent of the risk-based pipe burst diagnostics methodology. 

6.3.1 Dempster-Shafer Model 
It is recommended that future research into the D-S Model (see chapter 3.3), utilised to 

estimate the likelihood of burst occurrence at a given pipe within a DMA, might include 

the following: 

• A method for automatic selection of the most suitable solution from the Pareto 

front produced during the calibration stage should be developed. This would 

facilitate automated re-training of the D-S model when new feedback about 

historical pipe bursts becomes available. 

• The mapping curves generated for each source of evidence should be 

parameterised to account for specific factors (e.g., magnitude of abnormal flow 

in case of the HM) temporarily affecting the performance of a particular 

information source (i.e., an input model). 

• To better utilise the uncertain output of the D-S model at credal level (i.e., 

Beliefs and Plausibilities) in the decision-making process. Methods for intuitive 

visualisation of such information to a DM in conjunction with risk-maps should 

be researched. 
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• Additional information sources or new models capable of suggesting the likely 

location of a burst pipe within a WDS could be utilised to strengthen the 

synergetic effect of information fusion. These might be based on information 

from a WMSY containing details about third party works, models using 

transient analysis or turbidity measurements. Alternatively, subjective human 

judgement could be also incorporated, together with new combination rules that 

take the inter-dependencies of such type of evidence into account. 

• The CCM could be further extended to take into account different types of CCs 

(e.g., low pressure problems, discolouration reports, etc.). In the case of such 

reports, the relationship between distance from the location of the caller and the 

actual location of the burst pipe is likely to be highly non-linear and the use of 

an HM would be required to incorporate this kind of evidence. 

• A number of enhancements could be implemented in the HM. First, flow 

measurements within a DMA as well as flow imbalance of multi-inlet DMAs 

should be incorporated in the error function (see Eq. (3.10)). Multiple field 

measurements taken at different time steps, after the burst detection, should be 

utilised. Pressure measurements recorded during minimum night flow hours 

could be particularly suitable when variation caused by regular water 

consumption during day time is significant. A combination of burst location 

together with automatic re-calibration of an HM as suggested by Wu et al. 

(2010) should be taken into account and further explored together with the use 

of emitters to model the pressure sensitive outflow from a burst. 

6.3.2 Impact Model 
The functionality of the Impact model proposed in chapter 3.4 could be enhanced as 

follows: 

• The set of KPIs proposed in section 3.4.3 could be further extended to better 

account for social aspects of the impact caused by failures. Moreover, better 

ways of quantification of water quality problems should be explored. In the case 

of discolouration risk state of the art models, based on shear stress (Boxall and 

Saul 2005), should be applied. 
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• A more detailed quantitative as well as qualitative survey on a wider sample 

including both key stakeholders (i.e., the water utility and its customers) should 

be conducted to gain better understanding of their preferences regarding various 

aspects of failure impact. 

• Possible ways to speed-up the impact evaluation, which was identified as the 

main bottleneck affecting the application of the risk-based burst diagnostics in 

near R-T, should be explored. Such techniques might include the use of ANNs 

to capture the knowledge of an HM (Salomons et al. 2007), dynamic 

skeletonisation (Shamir and Salomons 2008) or regression-based methods 

(Burrows et al. 2000), that would have to be extended to account for possible 

topological changes in the network. 

• Explore the use of fuzzy logic to quantify the impact in linguistic terms, rather 

than using crisp values, which give a DM a false impression of certainty and 

confidence in the accuracy of the results. 

6.3.3 Alarm Prioritisation & Ranking 
The alarm ranking methodology presented in chapter 3.5 could be further extended and 

improved in the following directions: 

• Better handling of possible outliers in the set of potential incidents, which could 

negatively affect the scale of impact and likelihood and, therefore, the priority of 

alarms. This could be achieved by introducing different normalisation schemes 

or intelligent filtering of potential incidents. 

• Currently, the alarm ranking methodology produces a relative rather than an 

absolute priority. By providing reference examples of alarm severity, alarms 

could then be classified to fall into several priority categories (e.g., high, 

medium and low risk), which would immediately tell an operator that urgent 

action (i.e., intervention) is required. 

• The feedback from an operator (e.g., manual overriding of alarm priority) 

currently only has a temporary effect and is not preserved when alarms are re-

prioritised (e.g., when a new alarm arrives). An operator’s feedback could be 



Chapter 6 - Conclusions 

 203 

better incorporated into the alarm ranking methodology. Various parameters 

(e.g., attitude towards risk, impact and likelihood preferences, etc.) could be re-

calibrated in order to find a ranking that best mimicked the one of a human 

expert. 

• Suitable methodology should be developed to determine an optimal sample of 

potential incidents that could reliably reflect the overall aggregated risk of an 

alarm. This could reduce the number of potential incidents that need to undergo 

the complete risk analysis and improve the performance dramatically, allowing a 

truly near R-T application even without the use of distributed computing. 
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APPENDIX A  EVIDENCE THEORY 
Most decisions in real life have to be made without complete knowledge of the given 

problem. To reduce the uncertainty and thus make a better decision a Decision Maker 

(DM) typically tries to find various information sources that would either increase or 

decrease confidence in a particular hypothesis. Tackling the uncertainty and the 

combination of evidence coming from several sources are key features of the Theory of 

Evidence which forms the mathematical foundation used in this work. This appendix 

provides a more detailed overview of the theory to allow the reader to better understand 

the information fusion methodology presented in section 3.3. 

The mathematical Evidence Theory also known as Dempster-Shafer theory was founded 

in the late 70’s by Dempster (1967) and later extended by Shafer (1976). The Evidence 

Theory stemmed from Bayesian probability theory (Bayes 1763) by extending it to take 

into account epistemic uncertainty. The Bayesian probability theory can be thus 

considered as a special case of the Evidence Theory.  

The Evidence Theory operates on the “frame of discernment” Θ which is a finite set of 

mutually exclusive and exhaustive hypotheses. Whereas in classic probability theory 

where probability p is assigned to an event and (1-p) is automatically assigned to its 

negation, in the Evidence Theory, the remaining probability can be “unassigned” 

reflecting the lack of knowledge about a given phenomenon (i.e., ignorance). 

The number of all subsets in a frame Θ (i.e., the number of elements in its power set) is 

Θ2 since each element is either included in the subset or it is not.  

In Evidence Theory the evidence is distributed amongst sets of hypotheses 

(propositions) by attributing probability mass to these subsets of the frame of 

discernment Θ using the Basic Probability Assignment (BPA). The BPA is a function 

]1,0[2: →Θm  complying with following conditions:  

0)0( =/m  
Θ⊆≥ AeveryforAm 0)(  

∑
Θ∈

=
2

1)(
A

Am  
(A.1) 

where: 
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• A is a non-empty subset of Θ 

It is important to note that no probability mass can be assigned to the empty set (i.e., 

0)0( =/m ). 

“m(A) measures the total portion of belief that is confined to A yet none of which is 

confined to any proper subset of A.” (Shafer 1976) According to Klir (1994) the 

quantity m(A) “represents the degree of evidential support that a specific element of Θ 

belongs to the set A but not to any particular subset of A”. A BPA m is said to be 

vacuous if m(Θ)=1 and m(A)=0 for all A≠ Θ. 

We call all subsets Θ⊆A , for which m(A) > 0, “focal sets” or “focal elements”. 

Belief and Plausibility are functions associated with the BPA. 

∑
⊆

Θ =→
AB

BmABelandBel )()(]1,0[2:  (A.2) 

where: 
• B is a non-empty subset of Θ 

Belief corresponds to the total probability mass which supports A and all of its subsets. 

∑
/≠∩

Θ =→
0

)()(]1,0[2:
AB

BmAPlandPl  (A.3) 

Plausibility corresponds to the total mass of evidence which is not in contradiction with 

hypothesis A. From the definitions above it is apparent that the relationship between Bel 

and Pl is as follows: 

)(1)( ABelAPl −=  (A.4) 

Our belief in A can be considered to be somewhere between [Bel(A), Pl(A)] where the 

Bel function is the lower bound whereas Pl represents the upper bound. The difference 

between the Bel and Pl functions is depicted in Figure A.1. 

 

Bel(A) Uncertainty 

Pl(A) 

)()( ABelADou =

 

Figure A.1 A relationship between Bel and Pl functions (Agarwal et al. 2004) 

A belief function on Θ2 is said to be a Bayesian belief function if:  
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Pl(A) = Bel(A) for all Θ⊂A  

This implies that m takes non-zero values only for singletons (Yager 1983). 

Other functions also used in Evidence Theory are Doubt and Commonality. These are 

defined as: 

Doubt: )()(1)( ABelAPlADou =−=  (A.5) 

Doubt represents the probability mass in contradiction with hypothesis A. 

Commonality: ∑
⊇

=
AB

BmAQ )()(  (A.6) 

The commonality function represents the mass of evidence equally in support of all the 

elements of A, i.e., the evidence focused on supersets of A. The use of the commonality 

function will be demonstrated later in relation to the computation of Dempster’s 

combination rule. The relationship between Bel and Q functions is described in Eq. 

(A.7) and Eq. (A.8). 

∑
⊂

Θ⊂−=
AB

B AallforBQABel )()1()(  (A.7) 

∑
⊂

Θ⊂−=
AB

B AallforBBelAQ )()1()(  (A.8) 

An inverse relationship exists between BPAs and the functions presented in this section 

(i.e., Bel, Pl, and Q). So, the BPA can be calculated from, e.g., a belief function in the 

following way: 

∑
⊂

− Θ⊂−=
AB

BA AallforBBelAm )()1()(  (A.9) 

A.1 Combining the Evidence 
Making judgements about a particular hypothesis is usually not easy given the rather 

scarce and scattered information available. The various pieces of evidence can thus be 

combined to facilitate the decision-making. The requirement of the bodies of evidence 

to be independent has to be stressed, since in reality it is very difficult to achieve as 

noted by Dempster (1967). The term “body of evidence” and “source of evidence” will 

be used interchangeably in this work. The problem of dependencies between bodies of 

evidence has been thoroughly studied by Ferson et al. (2004). Marashi et al. (2008) 

stated that “The assumption of independence and randomness may well suit the problem 
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domains like pattern recognition and sensors information fusion, but it seems to be less 

realistic in the case of human subjective judgements.” Given the similarities of this 

work and sensors information fusion, all the bodies of evidence used in this work were 

considered as probabilistically independent. 

The combination of evidence coming from N independent bodies of evidence is 

depicted in Figure A.2 . The combined evidence forms a new BPA which can again be 

combined with other evidence and thus form a hierarchical structure as shown in 

Figure A.3. 

 

Figure A.2 Combination of N independent bodies of evidence 

 

 

Figure A.3 A hierarchical structure of evidence 

There are several combination rules, each having different properties, which can be used 

in the Evidence Theory. The original rule was introduced by Dempster (1967) and 

formed a fundamental part of the Evidence Theory.  

A.1.1 Dempster’s Rule of Combination 
This combination rule can be seen as an orthogonal sum followed by a normalisation 

process, which has to be performed in case the evidence provided contains some level 

of conflict. 
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0
1

)()(
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2,1 /≠
−

=
∑

=∩ Awhen
K

CmBm
Am ACB  (A.10) 

∑
/=∩

=
0

21 )()(
CB

CmBmK  (A.11) 

0)0(2,1 /=/m  (A.12) 

where: 
• m1,2 is the combined BPA 
• m1, m2 are BPAs 
• A, B and C are non-empty subsets of Θ 

In the case of conflicting evidence when 0≠K , without normalising the combined 

BPA m1,2(A) by the factor 1 / (1 - K), some probability mass would be assigned to the 

empty set, which violates the condition in Eq. (A.1): 0)0( =/m . Dempster (1967) 

avoided this by scaling the combined BPA and distributing the conflicting mass 

amongst the focal sets of Θ. 

Definition: 

Let us denote ⊗  a binary operation on a set S. We say that the operation ⊗  is 

associative if: (a ⊗  b) ⊗  c = a ⊗  (b ⊗  c)   for all Scba ∈,,  

In particular associativity in terms of the Evidence Theory is defined as: Let ⊗  be a 

combination rule (e.g., Dempster’s rule, etc.) on a frame of discernment Θ. We say that 

the operation ⊗  is associative if: (A ⊗  B) ⊗  C = A ⊗  (B ⊗  C)   for all Θ∈CBA ,,  

The distinguishing feature of Dempster’s rule is that it is associative and thus allows 

evidence to be updated. Its major drawback, however, is that it can produce unexpected 

results under certain circumstances of conflicting evidence as pointed out by Zadeh 

(1984).  

The following example demonstrates this counterintuitive behaviour. Let us assume 

following situation of two engineers providing evidence about a particular failure. The 

frame of discernment Θ = { pipe burst, valve blockage, pump failure} 

Engineer 1: 
m1({ pipe burst}) = 0.90 
m1({ valve blockage}) = 0.1 

 
Engineer 2: 
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m2({ pump failure}) = 0.90 
m2({ valve blockage}) = 0.10 

 

1,2 1 2

1 2

1 2

(0) ({ }) ({ })

({ }) ({ })

({ }) ({ }) 0.9 0.9 0.1 0.9 0.9 0.1 0.99

K m m pipeburst m pump failure

m valveblockage m pump failure

m pipeburst m valveblockage

= / = ⋅ +
⋅ +

⋅ = × + × + × =
 

Combining the available evidence using Dempster’s rule gives a single result: 

m1,2({ valve blockage}) = 0.1 x 0.1 / (1 - 0.99) = 1 
 

Dempster’s rule is also unsuitable to combine completely conflicting evidence because 

in those situations the denominator of Equation (3.3) would be equal to zero. To prevent 

situations like this and to yield more intuitive results the conflicting evidence can be 

either discounted as described later in section A.3 to reduce the level of conflict, 

completely discarded by not considering it in the aggregation, or some other 

combination rules can be applied which handle the conflict in a different way. A review 

of additional combination rules can be found in Sentz and Ferson (2002). 

A.2 Combining Conflicting Evidence 
Aggregation of conflicting evidence has been studied by several researchers, for 

example, (Murphy 2000; Lefevre et al. 2002). Murphy (2000) pointed out the problems 

related to Dempster’s combination rule when conflicting evidence is aggregated and 

suggested the use of averaging, which avoids most of the problems related to conflicting 

evidence. Amongst the main advantages of averaging are identification of possible 

combination problems, preservation of ignorance (unassigned belief) and distribution of 

belief. Murphy (2000) also noted that the probability mass assigned to the empty set can 

be used as a warning indicator, however, setting the threshold level determining when 

the conflict is high enough to warn a DM, was difficult. In situations where the level of 

conflict is greater than 90% it can be considered as a good indicator of some problems. 

The Evidence Theory is based on the “close-world” assumption which requires that 

exactly one of the hypotheses in the frame of discernment is true. This assumption can 

be questionable when the evidence is contradicting and a significant amount of the 

probability mass is assigned to the empty set. This indicates a high level of conflict, 

which might stem from the fact that it is likely that the truth lies outside of the frame of 
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discernment in a hypothesis which had not been initially considered. Smets (1990) in 

his Transferable Belief Model (TBM) introduced the idea of the “open-world” 

assumption, allowing the probability mass to be assigned to the empty set and 

eliminating the need to normalise belief functions (unlike in the case of Dempster’s 

combination rule).  

A.2.1 Yager’s Combination Rule 
Yager’s rule of combination stems from the original work of Dempster, however, 

conceptualises the conflicting mass as part of the uncertainty pertaining to the problem 

and assigns it to the whole frame of discernment Θ. In Yager’s approach the combined 

basic probability assignment can be computed as: 

( ) ( )Ym A q A=  (A.13) 

( ) ( ) (0)Ym q qΘ = Θ + /  (A.14) 

∑
=∩

=
ACB

CmBmAq )()()( 21  (A.15) 

∑
/=∩

==/
0

21 )()()0(
CB

CmBmKq  (A.16) 

where: 
• mY is the combined BPA 

• m1, m2 are BPAs 

• q is a ground probability assignment which is different from the BPA obtained 

by Dempster’s combination rule in a way that that it allows 0)0( ≥/q . It is 

consequently transformed to BPA by attributing all )0(/q  to the frame of 

discernment. 

Applying Yager’s combination rule on the example of two engineers yields the 

following results: 

mY({ valve blockage}) = m1({ valve blockage}) × m2({ valve blockage}) = 0.01 
mY(Θ) = mY({ pipe burst, pump failure, valve blockage }) = 0.99 
 

The result obtained using Yager’s combination rule is more intuitive since conflict 

reinforces uncertainty rather than one of the alternatives. Unfortunately, Yager’s rule is 

not associative and thus cannot be applied for updating of evidence. However, as its 

quasi-associative form exists, the evidence can be re-combined to overcome this issue. 
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A.2.2 PCR5 Combination Rule 
A detailed description of the PCR5 combination rule is beyond the scope of this thesis 

and readers are referred to Smarandache and Dezert (2006) for exhaustive information. 

Only a version of the PCR5 combination rule that supports two information sources will 

be discussed here. According to Smarandache and Dezert (2006) the simplified version 

of the PCR5 rule can be defined as follows: 

5

2 2
1 2 2 1

2 \{ } 1 2 2 1

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
PCR

B A
A B

m A m B m A m B
m A q A

m A m B m A m BΘ∈
∩ =∅

 
= + + + + 

∑  (A.17) 

where: 
• mPCR5 is the combined BPA 

• m1, m2 are BPAs of the individual information sources 

• q is a ground probability assignment defined in Eq. (A.15) 

If the denominators in Eq. (A.17) are zero, that fraction is discarded. 

The application of the PCR5 combination rule on the example of two Engineers 

illustrated above yields following results: 

mPCR5({ valve blockage}) = 0.01 + 0.009 + 0.009 = 0.028 
mPCR5 ({pump failure}) = mPCR5 ({pipe burst}) = 0 + 0.405 + 0.081 = 0.486 
mPCR5 ({pipe burst, pump failure, valve blockage }) = 0 
 

The result obtained using the PCR5 combination rule is quite different from Yager’s 

and Dempster’s combination rules and certainly not counter-intuitive (as in the case of 

Dempster’s rule). Similarly to Yager’s combination rule, PCR5 is not associative and 

thus cannot be directly applied for updating the evidence. However, its quasi-associative 

form also exists. 

A.3 Discounting of Evidence 
As confidence in the reliability of a certain information source can vary, it is also 

possible to take this into account and apply a “discounting” operation to reduce the 

credibility of a particular source of evidence. In situations where there is a significant 

conflict in evidence, discounting reduces the level of conflict. The application of 

discounting to tackle conflicting evidence is also suggested in Lefevre et al. (2002), 

who further noted that the conflict amongst sources generally increases with their 

number. Discounting by a coefficient (1 - α) was defined by Shafer (1976) as follows: 
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m(A) = α m(A)   for all α ∈ [0, 1] (A.18) 
m(Θ) = α m(Θ) + (1 - α) (A.19) 

For: 

• α = 0 discounting renders the source as completely unreliable and effectively 

discards all the evidence by assigning all the probability mass to the frame of 

discernment Θ, 

• α = 1 represents a full confidence in the source and has no effect on the BPAs 

A.4 Computational Complexity of Dempster’s Combination 
Rule 

Let us begin with two fundamental definitions which are essential in order to assess the 

complexity of an algorithm. Complexity of an algorithm is typically measured in terms 

of computational time and memory used. If not explicitly stated otherwise, by 

complexity we mean the time complexity equivalent to the number of basic 

computational steps. 

Definition: 

Let us say that a function f(n) is O(g(n)) whenever there exist constants c and n0 such 

that 0 allfor   )()( nnngcnf ≥⋅≤  (Knuth 1976) 

where: 
• n is the length of the input (size of the problem) 

The function O(g(n)) thus represents an asymptotic upper bound of function f(n).  

Definition: 

A polynomial time algorithm is defined as one whose time complexity function is 

O(p(n)) for some polynomial function p (e.g., nb where b > 1) 

The computational complexity of Dempster’s combination rule belongs to the class of 

#P-Complete problems as proven by Orponen (1990) (equivalent to NP-Complete for 

decision problems). The class of NP-Complete1 (Garey and Johnson 1979) is 

characterised by the fact that no polynomial-time algorithm is known to exist to solve 

                                                 
1 NP stands for Non-deterministic Polynomial time 
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any of the problems belonging to this class. The complexity of the combination rule can 

be considered as one of the major barriers preventing wide spread application of the 

Evidence Theory.  

Haenni and Lehmann (2003) showed that for small problems, an efficient 

implementation of Dempster’s combination rule makes the computation time 

acceptable. In situations where an exact solution cannot be obtained in a reasonable 

time, approximate methods have to be applied. A review and comparison of some 

approximate methods can be found, for example, in Tessem (1993) and Bauer (1996). 

Xu and Kennes (1994) proposed three techniques to speedup the computation of 

Dempster’s combination rule. They suggested the use of local computation using 

Markov chains, implementation of belief functions using bit-arrays (used in this work) 

and finally using the commonality functions and Möbius transformation (which is in 

fact generalised Fourier transformation used to compute the commonality function Q(A) 

defined in Eq. (A.8) from BPA(A)). The major advantage of the commonality function 

is shown in Eq. (A.20). The orthogonal sum can be calculated simply by multiplying 

two commonality functions instead of by computing a sum every time. 

)()()(
2121

AQAQAQ mmmm ⋅=⊕  (A.20) 

Similarly, Denoeux and Yaghlane (2002) proposed an approximation algorithm to 

combine evidence based on fast Möbius transformation which can be computed in 

O( nn 22 ⋅ ). They also manipulated the size of the frame of discernment Θ to reduce the 

computational complexity. 

Kreinovich et al. (1994) developed an approximation algorithm employing Monte-Carlo 

simulation in order to avoid the computational complexity of combining evidence. They 

also pointed out that their approach can be easily parallelised.  
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APPENDIX B FAILURE IMPACT SURVEY 
 
Dear Participant, 
 
This survey was designed to determine the severity of various types of impacts caused 
by failures (e.g., pipe bursts) in a water distribution system. You are going to be asked 
to indicate mutual importance of several criteria from the perspective of an employee of 
a water utility (i.e., NOT from the perspective of a customer).  
 
The questionnaire is anonymous and the information provided will be confidential and 
used only for the purposes of this study carried out as part of the NEPTUNE project. 
There are 9 questions in the survey and it should not take more than 10 minutes to 
complete. Thank you very much for your time and kind support of this research. In case 
of any questions please do not hesitate and contact Josef Bicik (E-mail: 
j.bicik@exeter.ac.uk, phone: 01392 263730). 
 
Below is an answer to an imaginary question indicating that Quality is much more 
important than Price.  

 
 
To indicate the opposite, i.e., that Quality is much less important than Price select an 
option on the right-hand side from the Equally important answer as shown in the 
following figure: 
 

 
 
Please try to answer all questions in the survey and be consistent in your answers as 
much as possible (i.e., AVOID situations where Price>Quality, Quality>Design and 
Price<Design). 
 
 

Customers  

1. Please, indicate the mutual importance of following types of customers according to their vulnerability in case of 
a failure in  a water distribution system (e.g., a pipe burst causing low pressure or supply interruption). 

• critical (e.g., hospitals, schools and other vulnerable customers, etc.), 

• residential (e.g., flats, houses, etc.), 

• commercial (e.g., shops, businesses, etc.), 

• industrial (e.g., factories, mills, etc.) 

  Unquestionabl
y more 

important 

Much 
more 

importa
nt 

More 
importa

nt 

Rather 
more 

importa
nt 

Equally 
importa

nt 

Rather 
less 

importa
nt 

Less 
importa

nt 
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less 
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nt 

Unquestionabl
y less 

important 

  No 
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Residential  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Commerci
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Residential  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Industrial  
 

Commerci
al 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Industrial  
  

  

Types of Impact  

2. Please, indicate the importance of following economic impacts, having equal scale (i.e., financial losses), which 
affect the water utility (company). Bear in mind that the impacts might negatively affect the public image of the 
company. 

  Unquestionabl
y more 

important 

Much 
more 

importan
t 

More 
importan

t 

Rather 
more 

importan
t 

Equally 
importan

t 

Rather 
less 
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t 
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t 
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less 

importan
t 

Unquestionabl
y less 
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Lost water  
 

Third 
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Third party damage represents the estimated damage to third parties (e.g., damage to the road, flooding of 
basements, etc.). 
Lost water represents the amount of water escaped from the system due to a leak or pipe burst. 
Undelivered water represents loss of revenue of the water company due to pressure sensitive demand that was 
not delivered because of low pressure at consumers' taps (e.g., a garden hose). 

 

3. Please, indicate the importance of the duration of supply interruption affecting the same number of customers of 
the same type (e.g., residential): 

  Unquestionably 
more important 

Much 
more 

important 
More 

important 

Rather 
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important 
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>24h represents interruption of water supply of the same number of customers lasting more than 24 hours. 
 

4. Please, indicate the importance of the duration of low pressure problems affecting the same number of 
customers of the same type (e.g., residential): 
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>24h represents low pressure problems affecting the same number of customers for more than 24 hours. 
 

5. Please, indicate the importance of the scale of the same impact (e.g., supply interruption) on the customers of 
the same type (e.g., residential) for the same period of time: 
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<50 represents less than 50 customers of the same type affected for the same period of time. 
>1000 represents more than 1000 customers of the same type affected for the same period of time. 

 

6. Please, indicate the mutual importance of following types of impacts affecting the same number of properties for 
the same period of time (where applicable): 
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losses  

Supply interruption represents a situation when pressure in the water distribution system drops below 7 m of 
head. 
Low pressure is defined as situation when pressure in the water distribution system drops below 15 m of head 
(but is still above 7 m). 
Discolouration is characteristic by increased turbidity of water due to high levels of suspended particles. 
Economic losses represent direct or indirect financial losses sustained by the water company (e.g., lost water, 
third party damage, etc.) 

  

Personal Information  

7. *Please, select the company / organisation you work for: 
Choose one of the following answers  

 Please choose...  
 

 

8. Please, select your occupation: 
Choose one of the following answers  

 Please choose...  
 

  

Other  

9. Please provide additional comments: 
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APPENDIX C HYDRAULIC MODEL 
RESULTS 
This Appendix contains detailed results of locations of open hydrants identified by the 

Hydraulic Model. The pipe with the lowest value of SSE (i.e., the most likely location 

of the hydrant opening was highlighted in cyan). The actual location of the open hydrant 

is denoted using symbol X. Remaining pipes are colour coded using a red – blue 

gradient in an ascending order of their Sum of Squared Errors (SSE) (i.e., red refers to 

the likely hydrant opening locations with low SSE). 
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C.1 Large Burst Flow Simulations EE1 (All Sensors) 

 

Figure C.1 The most likely location of hydrant opening for EE1-1 
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Figure C.2 The most likely location of hydrant opening for EE1-2 
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Figure C.3 The most likely location of hydrant opening for EE1-3 
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Figure C.4 The most likely location of hydrant opening for EE1-4 
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Figure C.5 The most likely location of hydrant opening for EE1-5 
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C.2 Medium Burst Flow Simulations EE2 (All Sensors) 

 

Figure C.6 The most likely location of hydrant opening for EE2-5 
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Figure C.7 The most likely location of hydrant opening for EE2-4 
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Figure C.8 The most likely location of hydrant opening for EE2-1 
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Figure C.9 The most likely location of hydrant opening for EE2-2 
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APPENDIX D D-S MODEL PERFORMANCE 
This appendix contains detailed results and discussion of the application of the 

Dempster-Shafer (D-S) model on several cases selected from Table 5.11. The colour 

coding used in the figures (i.e., “likelihood“ maps) presented here was chosen so that 

the pipes in red are the most likely potential incidents whereas those in dark blue are 

less likely to be the True Burst Location (TBL). Pipes whose level of likelihood was 

below 0.5 were shown in light gray to suggest that these were unlikely to be the TBL. 

Labels were added only to those pipes whose likelihood was greater than 0.7 in order to 

preserve the clarity of the figures. All the distances reported in the appendix were 

estimated by tracing the pipe network rather than by calculating the Euclidean distance. 

D.1 Detailed results for case #7080348 
This example was taken from the validation data set presented in Table 5.11. The 

historical burst occurred on 26 July 2005. One customer contact was received in the 

time window being considered (i.e., 24 hours before the burst repair took place or 

during the same day). The burst report in this case might have been incorrectly 

associated with this burst event since it was located far from the location where the 

burst was later found and repaired.  

The Pipe Burst Prediction Model (PBPM) (see Figure D.1a) failed to provide a good 

indication of the most likely location of the TBL. On the other hand the Hydraulic 

Model (HM) (see Figure D.1b) in this particular case, given the added levels of noise to 

pressure measurements and magnitude of abnormal flow, managed to locate the likely 

burst location accurately (i.e., the TBL was approx. 250 m from the pipe identified as 

the most likely burst location by the HM). Apart from identifying a relatively well 

confined pipe burst hotspot in the proximity of the TBL, the HM also identified a 

number of pipes in the south east part of the DMA as likely burst candidates (note the 

pipes with Confidence factor around 0.71 in Figure D.1b). The Customer Contacts 

Model (CCM) shown in Figure D.1c identified the most likely burst location, which was 

more than 1,250 m from the TBL. 

The combined results from the D-S Model presented in Figure D.1d were worse than 

those provided by the HM. Such information would, however, be unknown in a real 
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decision-making situation until the TBL was found. The most likely pipe burst location 

would be where the Customer Contact (CC) originated. The second most likely pipe 

burst area would be 350 m from the TBL. One of the advantages of the combined result 

could be seen in the fact that the secondary burst hotspot in the south east part of the 

DMA identified originally by the HM, received significantly lower level of likelihood 

from the D-S Model and could be excluded from field investigations. 

  

  

Figure D.1 a) PBPM, b) HM, c) CCM and d) D-S Model results for case #7080348 
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Figure D.2 provides an overview of the spatial distribution of Belief and Plausibility 

returned by the D-S model. Figure D.2b suggests that potential incidents in a large 

portion of the DMA are not very plausible burst candidates and, therefore, the 

investigation could be better focused, starting with pipes with the highest levels of 

Belief. 

  

Figure D.2 a) Belief and b) Plausibility of the D-S Model for case #7080348 

No evidence was available in this case for a small number of potential incidents. Such 

potential incidents are, therefore, entirely plausible pipe burst candidates for the D-S 

model. As can be seen in Figure D.2b a pipe in the north part of the DMA has maximum 

plausibility (i.e., Plpipe({ Burst}) = 1) and minimum belief (i.e., Belpipe({ Burst}) = 0) 

implying that the D-S model was unable to make any judgement about such pipe. It is 

left up to a human Decision Maker (DM) to handle such potential incidents. 

D.2 Detailed results for case #8905881 
Figure D.3 presents results of the individual models as well as the D-S model on a 

historical pipe burst taken from the validation set in Table 5.11. The burst occurred on 

31 August 2007 and was reported by one customer. As can be seen from Figure D.3a 

the PBPM performed very strangely in this case and highlighted only very few pipes as 

potential burst candidates. Both, the HM (see Figure D.3b) and the CCM (see 

Figure D.3c) identified locations in very close proximity of the TBL. The HM again 
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highlighted the south west part of the DMA as a likely location of the burst, which 

could be due to limited pressure sensor coverage of that area (see Figure 5.9). The 

combined results of the D-S model in Figure D.3d are less specific than those of the 

CCM, however, better than the results provided by the HM.  

  

  

Figure D.3 a) PBPM, b) HM, c) CCM and d) D-S Model results for case #8905881 

The Belief and Plausibility maps shown in Figure D.4a and Figure D.4b, respectively, 

are similar to the previous case, which can be explained by the closeness of the TBL in 

both cases and, therefore, a similar performance of the HM (despite the different time of 
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day, pressure measurements and demands). Unlike in the previous case, the levels of 

Belief and Plausibility of potential incidents in the proximity of the TBL are very 

similar, which suggests that the individual models were in an agreement. 

  

Figure D.4 a) Belief and b) Plausibility of the D-S Model for case #8905881 

D.3 Detailed results for case #9315021 
Figure D.5 shows the results of another validation example from Table 5.11. The 

historical burst occurred on 5 February 2008 and was reported by three customers. The 

origin of the CCs (see, e.g., Figure D.5c) did not favour the fact that when a customer 

reports a burst, the actual coordinates of a geocoded location provided by the customer 

were stored in the CC database. In this case it seemed that the location of the caller was 

recorded rather than the location of the burst, which would explain why the CCs formed 

a triangle surrounding the TBL (which was not a common situation in the CC dataset). 

The HM (see Figure D.5b) managed to identify the location of the burst pipe precisely, 

since it was in close proximity of a pressure sensor. The PBPM (see Figure D.5a) did 

not perform very well in this case. The combined result shown in Figure D.5d was 

negatively affected by the CCM, which overweighed the HM and the most likely burst 

location was 650 m from the TBL. To facilitate the decision-making process (i.e., to 

avoid the need to use both Belief and Plausibility maps) only the pignistic probability 

BetP generated by the D-S model was primarily presented to a DM. The inevitable 
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information loss caused by the aggregation of Belief and Plausibility brings some 

disadvantages and represents a trade-off between quality and quantity of information.  

  

  

Figure D.5 a) PBPM, b) HM, c) CCM and d) D-S Model results for case #9315021 

Although the most likely location identified by the D-S model had the highest BetP (see 

Figure D.5d), it did not have the highest level of Belief as shown in Figure D.6a. The 

pignistic probability BetP provides a quick overview of the likely location of the burst 

and can be sufficient to make an informed decision in most cases. However, some 
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situations (e.g., as shown in Figure D.6) warranted more detailed inspection using the 

Belief and Plausibility maps. 

  

Figure D.6 a) Belief and b) Plausibility of the D-S Model for case #9315021 

The advantage of the results provided by the D-S model could be also seen in the fact 

that one of the CCs (i.e., the one located in the north east part of the DMA) received a 

significantly lower level of BetP as well as Belief and would be probably investigated as 

the last one after the other two pipe burst hotspots identified by the D-S model. 

D.4 Detailed results for case #4639990 
This example shows a historical pipe burst repaired on 1 August 2002, which was taken 

from the validation dataset. The burst was not reported by any customers and, therefore, 

only evidence from the PBPM and the HM was available. Figure D.7 provides the 

outputs of the PBPM (see Figure D.7a), the HM (see Figure D.7b) and the D-S model 

(see Figure D.7c). As can be seen from the figures, the PBPM highlighted a number of 

likely locations, however, also identified possible pipes, which were unlikely to burst. 

The HM identified two large pipe burst hotspots. The combined results in this particular 

case (see Figure D.7c) significantly reduced the area of the two hotspots and as can be 

seen from Table 5.11 even managed to improve the ranking of the TBL compared to the 

rankings of the other two models. The pipe burst hotspot in the south east part of the 
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DMA received only a slightly higher level of BetP compared to the other hotspot 

located in the south central part of the DMA. 

  

 

 

Figure D.7 a) PBPM, b) HM and c) D-S Model results for case #4639990 

The spatial distribution of Belief (see Figure D.8a) provided by the D-S Model was well 

confined, which was not the case of Plausibility as shown in Figure D.8b. The 

plausibility map depicted below represents a typical situation, when the HM is 

combined only with the PBPM. This usually results in little “negative” evidence 

supporting the hypothesis that certain potential incidents were unlikely the TBL. 
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Figure D.8 a) Belief and b) Plausibility of the D-S Model for case #4639990 
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GLOSSARY 
Background leakage is typically caused by a number of small leaks that are very 

difficult to detect. (van Zyl and Clayton 2007)  

Belief corresponds to the total probability mass which supports a proposition and all of 

its subsets. (Shafer 1976) It can be seen as a lower probability bound. 

Burst is a large individual leak that emerges on to the surface or is found through active 

leakage initiatives. (van Zyl and Clayton 2007)  

Decision Support System is an interactive computer-based system, which helps 

decision makers utilise data and models to solve unstructured problems. (Gorry and 

Scott-Morton 1971) 

Expert System is a decision-making and/or problem solving package of computer 

hardware and software that can reach a level of performance comparable to - or even 

exceeding that of - a human expert in some specialised and usually narrow problem 

area. (Turban 1995) 

Failure can be defined as the inability to achieve a defined level of performance. 

(Sayers et al. 2003) 

Hazard is defined as a situation with the potential to result in harm, however, it does 

not necessarily lead to harm. (Sayers et al. 2003). 

Intervention  is a planned activity designed to achieve an improvement in an existing 

system. (Sayers et al. 2003) 

Likelihood  is a general concept relating to the chance of an event occurring. (Sayers et 

al. 2003). 

Plausibility  corresponds to the total probability mass which is not in contradiction with 

a proposition. (Shafer 1976) It can be seen as an upper probability bound.  

Potential Incident refers to a suspected failure, which has not been confirmed. 

Risk is a measure of the probability and severity of adverse effects. (Lowrance 1976) 
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Risk analysis is part of the risk assessment procedure and comprises the identification 

of hazards and estimation of the risks. 

Risk assessment is defined as a process of identifying hazards and consequences, 

estimating the magnitude and probability of consequences and assessing the 

significance of the risk(s). (Kaplan and Garrick 1981) 

Risk management is following the IEC60300-3-9 standard defined as “a systematic 

application of management policies, procedures and practices to the tasks of analysing, 

evaluating and controlling risk.” (Tuhovcak et al. 2006) 

Uncertainty refers to randomness, which cannot be explained (Knight 1921). It can be 

broadly classified into aleatory uncertainty, which refers to natural variability, or 

stochastic uncertainty, and epistemic uncertainty, representing knowledge uncertainty 

or incompleteness. 
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