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Abstract

ABSTRACT

The operational management of Water Distributiost&ys (WDS), particularly under
failure conditions when the behaviour of a WDSas$ well understood, is a challenging
problem. The research presented in this thesisridesc the development of a
methodology for risk-based diagnostics of failure$VDS and its application in a near
real-time Decision Support System (DSS) for WDS2i@ion.

In this thesis, the use of evidential reasoningsbmate the likely location of a burst
pipe within a WDS by combining outputs of severaldals is investigated. A novel
Dempster-Shafer model is developed, which fusedeenie provided by a pipe burst
prediction model, a customer contact model and drdufic model to increase

confidence in correctly locating a burst pipe.

A new impact model, based on a pressure drivenauidr solver coupled with a
Geographic Information System (GIS) to captureatieerse effects of failures from an
operational perspective, is created. A set of Keyfdmance Indicators used to
guantify impact, are aggregated according to tleéepences of a Decision Maker (DM)
using the Multi-Attribute Value Theory. The poteitiof distributed computing to
deliver a near real-time performance of computatigrexpensive impact assessment is

explored.

A novel methodology to prioritise alarms (i.e., eged abnormal flow events) in a
WDS is proposed. The relative significance of arralis expressed using a measure of
an overall risk represented by a set of all postnticidents (e.g., pipe bursts), which
might have caused it. The DM'’s attitude toward& rsstaken into account during the

aggregation process.

The implementation of the main constituents of gneposed risk-based pipe burst
diagnostics methodology, which forms a key comporwdrthe aforementioned DSS

prototype, are tested on a number of real life aedhi-real case studies. The
methodology has the potential to enable more inéakakecisions to be made in the near

real-time failure management in WDS.
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Chapter 1 - Introduction

CHAPTER 1 INTRODUCTION

1.1 Motivation and Background

Water utilities all over the world face serious lgems with satisfying increasing water
demands. The number of sources of clean and fraséris becoming scarce while the
population of the Earth grows. Furthermore, yearybgr the required standards of
service of the delivery of potable water increaséerms of water quality, reducing the
number of supply interruptions and providing adeéguaressure at consumers’ taps.
Apart from this, water utilities are also requireddeliver water more efficiently than

ever before in order to cut down their carbon fdatp(e.g., due to climate change).
Effective and efficient operational management ct®V Distribution Systems (WDS)

has thus become a vital, however, difficult tagtethby water utilities nowadays.

In the UK water utilities have to deal with an ieasing number of problems (e.qg., pipe
bursts) due to ageing infrastructure. Some of tidetground assets (e.g., pipes) were
laid more than 100 years ago. Although, significaffort is put into their ongoing
rehabilitation and maintenance programmes the nurabéncidents caused by pipe
bursts and other equipment failures is still sigaifit. Control room operators are not
only tasked with operating WDS optimally to meejuiged standards, but also to deal
with contingency situations when failures of vasotypes occur in day-to-day
operation. Due to the stochastic nature of failutegs impossible to predict and

completely eliminate them.

Risk analysis has started to be applied by waibtiag in their strategic rehabilitation
plans to maximise benefits of investment by repigcor repairing those elements,
which represent the highest risk. However, appbeat of risk analysis in operational
management of WDS in near Real-Time (R-T) are atiyelacking, despite the
consistent approach towards failure management diffey. Possible reasons for the
shortage of near R-T risk applications could béhm difficulties imposed by a usually

dynamically changing environment and severe tinrestaints.

Early detection and location of failures in WDSfsparamount importance to all water
utilities. Whilst, early warning failure detecti®ystems have started to be applied in

real life WDS (Mounceet al. 2010), locating failures represents a major chagke
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which has not yet been satisfactorily resolved.gbastics of failures in WDS still
usually relies on time intensive and expensivedfielestigations carried out by field
technicians. Their work is, however, becoming manel more difficult, particularly
when dealing with burst pipes, which are harddobtate due to pressure management
programmes and the installation of Polyvinyl ChderiPVC) pipes. This represents an
opportunity for the application of data and modelveh burst diagnostics methods,
which at the same time have to cope with a limitachber of field measurements and
imperfect knowledge of failure behaviour as wellir@accurate data. The challenges of
such an uncertain environment and the lack of kadge are addressed in this thesis
using a risk-based decision-making methodology. &dudy location of failures, which
could be achieved using the proposed approachfamditate their timely repair and

safeguard the continuity of water supply for custosn

Expert Systems (ES) have for a long time domingtedield of R-T applications. Such
systems have been successfully deployed to solWledeBned structured problems,
however, their adoption in fields requiring soluisoto complex unstructured problems
has been limited. On the other hand, Decision Suppgstems (DSS), which aim to
provide human Decision Makers (DM) with relevarformation in order to reach better
informed decisions, have enjoyed a growing poptylan the past few decades. They
have been successfully applied to support complegistbn-making situations,
however, their application in near R-T environmerttas been challenging.
Nevertheless, tasks such as a near R-T pipe blaghaktics can benefit from the
synergetic effect of combining the expertise of experienced operator and a DSS
capable of reducing the information load, whichl Wwé explored in this work.

Some of the above mentioned issues were invedstigata three-year research project
NEPTUNE (Sau et al. 2008) funded by the EPSRC, which started in Ap0i07. The
project was a joint effort of seven major acadenmstitutions (Imperial College
London, University of Sheffield, University of Exf Leicester University, De
Montfort University, Cambridge University and Laster University) and three
industrial partners (Yorkshire Water, United Uidg and ABB). The project aimed to
develop a number of methodologies to improve theragpnal management of WDS in
terms of energy efficiency and level of servicedefivery of potable water. This thesis

discusses the development, implementation and cgpigh of a risk-based decision-
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making methodology for failure diagnostics in W@ich forms a significant part of a
near R-T DSS prototype, one of the project’s kelwdebles. The work presented in
this thesis is, therefore, relevant for the watelustry and has the potential to improve

current practices of operational management of WDS.

1.2 Aims and Objectives
The main aim of this work is to develop and impleta risk-based methodology for
near R-T diagnostics of failures (i.e., pipe byrsisa WDS. More specifically, this aim

is achieved through the following objectives:

1. To investigate the potential of applying informatimsion in diagnostics of pipe
bursts. Information from a number of sources andet®currently available to
water utilities worldwide will be combined in théfat to locate a burst pipe
within a District Metered Area (DMA). The Dempstehafer theory of
Evidence will be used to fuse outputs of a PipesBBrediction Model (PBPM),
a Customer Contacts Model (CCM) and a Hydraulic 8I¢&iM) to increase the
confidence in locating a burst pipe, given the Giegly imperfect and

conflicting outputs of the individual models andderlying data sources.

2. To design an impact model capable of capturingouariadverse effects of a
burst pipe on the principal stakeholders (i.e.,wager utility and its customers).
The impact assessment will be approached from amatpnal, rather than
strategic perspective to enable R-T decision-makigsuitable aggregation
technique will be developed, which reflects prefiess of a water utility in
terms of significance of specific types of impathe integrated impact model
will thus be able to return a single measure repriasg an impact of a burst

pipe over a specific risk horizon.

3. To explore the potential of risk-based pipe buragdostics, which will enable
WDS operators to focus their investigation of byiies within a DMA not
only based on the information about the most likebation of the burst but also
the likely impact. A risk metric comprising likeblod and impact of potential
failure will be formed based on the outcomes ofdbeve two objectives. The

non-aggregated risk of a pipe burst will be presénh the form of a risk-map
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and will enable WDS operators to make better infEmrdecisions on where to

dispatch field technicians for further investigatio

4. To develop a methodology to prioritise amongst ipldtabnormal events (i.e.,
increased inflow into a DMA indicating a possiblge burst) occurring in a
similar time horizon in different parts of a WDS.sAvitable ranking technique
will be applied, incorporating attitude towardskrigf a human DM, in order to
calculate the criticality of a particular abnornealent. This will allow better
utilisation of resources in situations when inwgating multiple failures,
ensuring that the most significant events are dedtt first according to the

overall level of aggregated risk they represent.

1.3 Thesis Structure

This thesis is divided into six chapters includihs introduction.

In Chapter 2 a review of relevant literature isyided. The review covers key areas of
research addressed in this thesis including deeisiaking and decision support,
application of risk-based methodologies in watesteys, techniques for locating burst
pipes within WDS, modelling of the impact of faiisrin WDS and information fusion

methods.

In Chapter 3 first the overall methodology for rsksed pipe burst diagnostics is
introduced and its individual constituents are dbsd. Suitable models to quantify the
likelihood and impact components of risk are theaspnted. A novel methodology,
based on evidential reasoning and information fusio estimate the likely location of a
burst pipe in a WDS is described. Next, an opematiompact model, utilising the
Multi-Attribute Value Theory (MAVT) to incorporat@references of a water utility
regarding various aspects of failure impact, isppsed. Finally, a possible application
of the risk metric formed by outputs of the aforem@ned likelihood and impact

models to prioritise abnormal events in a WDS ssdssed.

In Chapter 4 an implementation of the proposed-besed pipe burst diagnostics
methodology in the context of an integrated DS@résented. The structure of a spatial
database, which forms the core of a near R-T DSBraposed there. The functionality

and mutual interaction of a number of backgroundimtes, which contain the actual
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implementation of individual constituents of theskrbased pipe burst diagnostics
methodology, are described. Special attention id pa parallel computing, which is

explored as one of the possibilities to improve iegformance of the DSS to reach the
requirements of a near R-T environment. Efficiematysvof storage and visualisation of

underlying spatial and non-spatial data used byX&8 are also discussed.

In Chapter 5, a number of case studies to illusttae proposed methodologies are
presented. First, the possibility of locating adbynipe within a DMA using an HM and
R-T data collected from the field is illustrated arset of engineered events conducted
in a real life WDS. Next, the proposed evidentiabsoning methodology (i.e.,
information fusion) is applied on a number of segat case studies, based on historical
events, to demonstrate its full potential if su#fit data were available over a long
period of time. Consequently, results of a quatiigaquestionnaire survey, used to
determine preferences of a water utility with redp@ different aspects of failure
impacts, are presented. Finally, a risk-based ifisation of abnormal events detected
in a real life WDS over a period of two years iowh to portray the possible

advantages of this approach.

In Chapter 6 the key findings of this thesis amasiarised and relevant conclusions are
drawn. The novel aspects introduced in this thasashighlighted, followed by possible
directions of future research to enhance and extemdethodologies presented.
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CHAPTER 2 REVIEW OF LITERATURE

2.1 Introduction

This chapter provides a review of literature reldévi@ near Real-Time (R-T) risk-based
decision support for the operation of WDS underaaimal conditions, when failures
such as pipe bursts occur. First, the literatuedidg with decision-making and decision
support, with an emphasis on near R-T Decision 8uystems (DSS), is reviewed to
establish a context for the methodology presemdtis thesis. Secondly the concept of
risk, which forms the foundation of the proposedthndology, is introduced and its
applications related to water systems are revieWzenrently available burst detection
and diagnostics methods are then examined as asmegovide an indication of a
likely location of a burst pipe within a WDS to repent the likelihood of pipe failure.
Literature dealing with quantification of impact @ilures is reviewed to establish
grounds for development of an integrated impact ehodhich complements the
aforementioned risk metric. WDS modelling methodsthen presented with a focus on
their simulation under abnormal conditions, wheflufas occur. Finally, a brief
overview of information fusion techniques is giveacause of its importance to the
methodologies presented in this thesis. The chaptercludes with a summary

identifying gaps in the current research.

2.2 Decision-Making & Decision Support

Decision-making is a cognitive process of choosingpngst several alternatives which
results in only one of the alternatives being getkdan the end according to the
preferences of a Decision Maker (DM) (Turban 19983king decisions is one of the
daily activities each human being has to performm& decisions are made almost
automatically thanks to intuition and instincts vatit deeply analysing the problem,
other more complex decisions require thorough amalgnd understanding of various
options, risks and consequences inherently linkethem. The ongoing research in
several fields including Mathematics, Psychology atso the rapid development of

computers help improve our problem solving capaédi (Holloway 1979; Gass 1985)

The foundations of decision-making and decisionpsupcan be traced back to the
early work of Herbert A. Simon in the 1960s. Sin{@877) studied decision-making by

management executives and looked at how the deemsaking of organisations is

20



Chapter 2 - Review of Literature

influenced by new technologies. He was awardedNthigel Prize in Economics in 1978
for his work on decision-making processes. He diaglsdecision-making processes as:
(1) structuredprocesses that are routine or repetitive for wisiemdard solutions exist,
and (2)unstructureddecision processes that are the exact oppositarndefined as

complex “fuzzy” processes for which there are natire solutions.

There exists no exact definition of a DSS. The rnmgpf DSS has been evolving
together with the wider application of such syster®SS developed from early
Management Information Systems. The term DSS wasdefined by Scott-Morton in
1971 as “an interactive computer-based system, hwhiglps DMs utilise data and
models to solve unstructured problems”. This dédfgrates DSS substantially from
Expert Systems (ES).

An ES is according to Turban (1995) defined as éaislon-making and/or problem
solving package of computer hardware and softwaia@ tan reach a level of
performance comparable to - or even exceeding dhat a human expert in some
specialised and usually narrow problem area.” D&% gained increasing popularity
over ES that focused on solving structured probl€aision 1977). On the other hand
DSS exploit the synergetic effect of combining nmoddéechniques of artificial
intelligence with human judgement to tackle commexni-structured and unstructured
problems. Eonet al. (1998) conducted a large survey of over 270 DS&ldeed over

a period from 1988-1994 and concluded that themlmer has increased compared to
the previous period and highlighted artificial ifigence as an emerging area of

decision support.

Recently, Kapelaret al. (2005a) reviewed a number of DSS in urban watanmphg
and suggested the following future research to avpithe DSS currently in place: (1)
Better integration of DSS into existing systemswadl as improved integration of
various models that form part of a DSS. The issuigls insufficient integration have
been partially addressed using OpenMI (Moore amdidll 2005), an open standard for
model interfacing; (2) Modelling of risk and uneerty should be part of DSS; (3)
Further development of comprehensive impact assgsmodels and their integration

within DSS is important, together with better suppdor group decision-making tools;
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(4) More systematic calibration and validation afdels used by DSS should be put in

place.

2.2.1 Real-Time Decision Support

Given the focus of this thesis extra attentionaglgo supporting DMs in dynamically
changing environments in near R-T. This sectionlimeg some of the challenges
imposed by the R-T environment. In the past, coenped support of decision-making
was typically in the area of strategic decisionewdver, with the growing performance
of today’s computers, decision support in R-T aqgilons is becoming more and more
frequent. Typical areas where decisions must beemadR-T include: scheduling,
dynamic vehicle routing and dispatching, air t@ftontrol, military applications,
process control systems, etc. The operational neaneagt of WDS is a field that could

certainly benefit from near R-T decision supporivad.

As discussed by Turner (1986) the main use of RSTiEto reduce the cognitive load
on users or to enable them to increase their ptodlycwithout increasing the load. In
situations requiring making decisions in R-T, husiaend to overlook relevant
information, respond inconsistently, respond toow$} or panic when the rate of
information flow is too great (Laffegt al. 1987; Muslineret al. 1995). The concept of
R-T is perceived differently in various disciplinesaffey et al. (1987) defined the R-T
applications as: (1) fast, (2) faster than a huoando it, or (3) fast enough. According
to the third definition a “fast enough” R-T systésmable to respond to incoming data at
a rate as fast or faster than it is arriving. Muestiet al. (1995) also definedhard R-T
domain as an environment where decisions must dauped within the available time

frame otherwise catastrophic events occur.

Jamiesoret al. (2007) developed a DSS for R-T near-optimal cantfolVDS. They

emphasised the importance of feed-forward contystesns using forecasts of future
demands. The size, complexity and varying pattdriwvater demand of WDS was
identified as one of the main difficulties in thppdication of R-T control. A single-

objective Genetic Algorithm (GA) was applied to mse operating costs. The
computational burden of running a hydraulic solwers eliminated using a surrogate
model based on an Artificial Neural Network (ANN9ge€ e.g., Haykin 1999). The

proposed R-T DSS was verified on a number of cdsdies to propose optimal

22



Chapter 2 - Review of Literature

alternatives to an operator who could manually ogerthe suggested solution at any

time.

2.3 The Concept of Risk and Its Applications

Every individual is exposed to various risks and @ deal with them every day
throughout their whole life. The early works deglinvith risk date back to the
beginning of the 20 century when risk generated interest particularlyhe insurance
industry (Rowe 1977). One of the first formal ddfons of risk can be found in the
work by Willet (1901) who defined risk as “the otféied uncertainty as to the
occurrence of an undesired event”. Since then abeunof other definitions have
emerged and no common definition has been establidtowrance (1976) defined risk
as a measure of the probability and severity okesty effects. On the other hand Rowe
(1977) suggested the following risk definition: éthpotential for realization of
unwanted, negative consequences of an event’. Muteally risk can also be
formulated according to Kaplan and Garrick (198&)am ensemble comprising risk
scenarios associated with the likelihood of theicwsrence and a damage vector of
resulting consequences. Frequently, risk is alérnedl to as a function of likelihood,
severity and vulnerability, where likelihood and/eety represent the characteristics of
a hazard or threat while vulnerability represerite property of an asset that is
influenced by the hazard or threat. In this defan both hazards/threats and assets are
explicitly considered. Risk was also defined in t&C 60300-3-9 standard as a
“combination of the frequency, or probability, afaurrence and the consequence of a
hazardous event” (Tuhovcai al. 2006).

Knight (1921) stressed the importance of distinigimig between risk and uncertainty.
The fundamental difference between these two hethé fact that risk is a situation
where mathematical probabilities can be assignéerethrough a priori knowledge or
from the statistics of past experience. On the roth@nd, uncertainty refers to
randomness, which cannot be explained. It was drgyeHaimes (2004) that the need
for risk assessment becomes more imperative wih kmowledge of a system. Such
needs have become increasingly important with thergence of complex man-made

engineering systems, such as WDS, which affectially lives.
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2.3.1 WDS Reliability Studies

Reliability can be defined as the probability tleasystem is operational for a given
period of time (Haimes 2004). WDS reliability hasceived significant attention in

literature over the past few decades. In the fieldWDS the research has been
concerned with their ability to supply water of gdate quality and quantity under
normal and abnormal conditions (Xu and Goulter }99& discussed by Gupta and
Bhave (1994) there exists no common definitionetiibility of a WDS.

Reliability studies can be seen as the first sbegp tcomplete risk analysis, providing not
only the likelihood part (i.e., indicating if theetwork is able to supply water), but also
including the consequence component that quantiiesimpact in case of a failure
(Kapelanet al. 2007). Only several applications related to WD$8 be discussed here
since reliability studies fall beyond the scope &ocus of this thesis. Ostfeld (2001)
classified WDS reliability studies as: topologid@.g., Wagneret al. 1988a) and
hydraulic (e.g., Gupta and Bhave 1994; Todini 200@nsey (2006) in his overview of
optimisation techniques applied to WDS highlightieel importance of taking reliability
of newly designed or rehabilitated WDS into accoasitone of the design objectives.
Farmaniet al. (2005a) developed a single-objective reliabiliagéd optimization model
for rehabilitation of WDS using fuzzy rules. Duast al. (1990) presented a
methodology for reliability-based design of WDSwé focus on number, location, and
size of pumps and tanks. Farmatial. (2005b) used multi-objective optimisation to

obtain a trade-off between cost and reliabilitypdVDS.

2.3.2 Applications of Risk

The concept of risk has been successfully appliediarious disciplines including
military (Dillon et al. 2009) and business applications (Li and Liao 206 aircraft
industry, food processing, software engineeringe(L896), etc. According to Egerton
(1996) risk analysis and management were not cortyrapplied in the water utility
sector until recently. She suggested that waterpaomes in the UK were increasingly
interested in risk analysis since it could help ueasmaximum value for invested
money. She also pointed out that with improved itpalf data sources, risk analysis
would be more frequently applied to optimise maiatece and operational processes.
Consequently, Egerton (1999) reviewed a numbeiskfassessment techniques used in
the water industry, particularly in water treatmewdrks. She was then followed by
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Pollard et al. (2004) and MacGillivrayet al. (2006) who provided a comprehensive
review of applications of risk analysis and manageinin the water utility sector from

strategic, program and operational perspectivesirMmorks focused on a broad range
of risks faced by water utilities worldwide rathttéan on specific applications of risk-

based methodologies, as presented below.

Applications of risk in the water industry, reviedveelow, can be broadly classified
into quantitative, qualitative and quantitative-ligaéive studies. Quantitative studies
express risk in purely numerical terms, whereaxdre of qualitative risk analysis
linguistic terms anduzzy logic (Zadeh 1975) were used. Hybrid studigscally utilise

and combine both of these methods.

Risk analysis techniques have received significatention from the investigators
dealing with water treatment and water quality essue.g., Sadiget al. 2007;
Francisqueet al. 2009), primarily due to health and safety impimas caused by
failures. Recent studies have also emerged frorerakwther fields including design
and rehabilitation of WDS (e.g., Kapelahal.2006). Nevertheless, applications of risk

analysis in near R-T WDS operation and failure dasgics are currently lacking.

Zongxueet al. (1998) applied quantitative risk analysis to easduthe performance of a
Water Supply System (WSS) during drought periodseyT proposed an integrated
drought risk index, defined as a weighted functioh reliability, resiliency and
vulnerability of the system studied. The conseqasraf drought were captured using a
ratio of water deficit and water demand over a gpgoeriod of time.

Cooper et al. (2000) built a trunk mains burst risk model usiagGeographic

Information System (GIS) for optimisation of a WD®&aintenance program. Their
consequence model was based on the cost of daraagedcby major pipe breaks and
included damage of properties combined with a floganodel evaluated using a GIS.
They suggested that for low probability and higmsegquence pipe breaks a valve

exercising program could be adjusted to ensurdyimelation in case of their failure.

Dey (2001) developed a strategic risk-based DSSnfgpection and maintenance of
cross-country petroleum pipelines. Analytic Hiehgrérocess (AHP) (Saaty 1980) was
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used to identify factors that most influence trek rof failure of a specific segment of
the pipeline.

Rajani and Kleiner (2002) proposed a holistic mdttogy for pro-active renewal of
water mains based on the level of risk associatétl wheir failure. The authors
discussed possible ways to quantify the probabdigl impact components of risk,
however, they did not provide any specific detarlsnodels to do so.

Sadiget al. (2004a) presented guantitative-qualitative framework for aggregativek
analysis of water quality failures in WDS using4yZogic. AHP was applied to aggregate
individual risk factors in a hierarchical structur€heir approach, however, lacked an

application on a real life case study.

Sadiget al. (2004b) used Monte Carlo simulations to perforrargitative risk analysis

of corrosion associated failures of iron water reaifrhey suggested that the high degree
of uncertainty in attributes that contribute to eifailure requires a probabilistic
analysis. The consequences of pipe failure werg qohntified as a reduction of a
Factor of Safety (FOS), which reflected a relatitopsetween structural capacity of a

pipe and its actual loads.

Dewis and Randall-Smith (2005) presented a metlgyaio assess discolouration risk
based on risk trees developed by a panel of expé&hsir model considered the
likelihood of pipe failure based on properties ofasset (e.g., a pipe). A demand driven
Hydraulic Model (HM) was used to estimate changeselocity in a WDS caused by
pipe failure (i.e., burst). Simulation results tthg with additional input data were then
combined using the aforementioned risk tree. Asutised by Vreeburg and Boxall
(2007) other more advanced techniques to modeloldisation exist (e.g., the

Resuspension potential method or Cohesive transpaatel).

Almoussawi and Christian (2005) used quantitatiisk ranalysis to evaluate the
performance of several designs of water distributietworks. They used a simple
consequence model based on the amount of undeliveater due to isolation of a

network segment and did not report on using a hyraolver to evaluate impact.

Merrifield (2005) stressed the importance of riskalgsis for effective asset
management (i.e., a strategic application) andirmd| key features of software to
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enable it. No details of models to quantify likeldd and impact components of risk
were provided.

Michaud and Apostolakis (2006) presented a metloggofor the ranking of elements

of WDS based on quantitative risk analysis. Theyetigped an impact model based on
a value tree, considered different types of conssrmaad impact categories, however,
only used graph theory to evaluate the impact gt isolations.

Tuhovcaket al. (2006) provided an overview of the most commordgditechniques of
WSS risk analysis and described the implementatioHazard Analysis and Critical
Control Points (HACCP) methodology. They concludeak performance risk analysis
of WSS was not very common in the Czech Republitthat methodologies from other
industries are easily applicable. Later on, Tuhkvead Rucka (2007) proposed a
methodology for risk analysis of drinking WSS usithg Failure Mode, Effects and
Criticality Analysis (FMECA) (Department of DefensE980). Application of such
approaches from an operational perspective isa®t as suitable.

Kapelanet al. (2006) compared the robustness and risk-basedimolaf multiple-

objective rehabilitation of WDS and concluded thhe risk-based approach was
superior since it considered the impact of hydatdilures. Only a simple measure
based on a fraction of assumed undelivered denmevadiiated using a demand driven

hydraulic solver, was used to represent the coresenps.

Kapelanet al. (2007) developed a methodology to assess thefiskpply interruption
due to mechanical failures. They used a pressuverdhydraulic solver to evaluate
consequences of burst pipes, however, only basedrtpact metric on the amount of
undelivered water irrespective of the type of caonsts and other aspects of the failure

impact.

Filion et al. (2007) proposed a stochastic design of WDS coriegléhe impact of low-
and high-pressure failures in WDS. They quantitieel consequences of a failure using
expected annual damages sustained by residemimamercial, and industrial users.

Liserraet al. (2007) assessed the vulnerability of a WDS by daimf a demand driven

HM with a GIS and argued that due to scarce dat@ag not possible to apply a
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complex risk based approach like Failure Mode afidcEs Analysis (FMEA). Failure
to use a pressure driven hydraulic model in thiidy can be seen as a significant

drawback.

Beukenet al. (2008) used quantitative risk analysis to identifg most critical pipes
(i.e., in terms of likelihood of burst and impaet)thin a WDS. In their study they
applied an HM and a GIS in the impact evaluatiosefof impact factors reflecting the
potential damage caused by a pipe burst was deaetliogluding surrogate models for

water quality problems and public image of a watéity.

Meoli et al. (2008) used an aggregated risk measure to psengplacement of water
mains. They coupled a pressure driven HM with a t618valuate the impact of supply
interruption on two types of customers (i.e., kagtomers and others). However, due to
performance implications they only evaluated theant during morning peak demand

and did not use extended period simulation.

Thorne and Fenner (2009) developed a risk-basetianelogy to assess impacts of
climate change on reservoir water quality. Theyadgthat it was not only necessary to
present the system operators with possible imp#atimate change, but also with the
probability of their occurrence so that better infied decisions could be made. The
authors represented risk as a product of probglaihtd consequences, which might not
be suitable for all decision-making situations lasven later in this thesis.

Sadiget al. (2007) used fuzzy logic and evidential reasonimgevaluate the risk of
accidental water quality failures in WDS. Sadicgal. (2008) and Leet al. (2009) used
fuzzy fault tree analysis to predict risk of watgsality failures in distribution networks.
None of the above water quality studies attempteduse an HM to model the

consequences of the actual contaminant intrusion.

Li (2007) used fuzzy fault trees in a hierarchiosject-oriented risk assessment of
components of WSS. The adopted qualitative approaigiht suit high level strategic
decision-making, however, operational decisions lddoenefit from a quantitative

approach and use of hydraulic modelling to bettéinete consequences of a failure.

28



Chapter 2 - Review of Literature

Christodoulou et al. (2009) developed a neuro-fuzzy DSS for risk-bassdet
management of water piping networks. Their work wasstly concerned with the
relative probability of failure of a particular @pexpressed in linguistic terms, and
lacked the impact component of risk. A GIS was usepresent the outputs of the risk

analysis to a DM.

Francisqueet al. (2009) proposed a fuzzy-risk methodology to ptieei water quality

monitoring locations within a WDS. The proposed moelt considered vulnerability of a
particular area in the WDS to water quality probdedepending on the hydraulics,
structural integrity of pipes and various water lgugparameters as well as sensitivity
of the customers in that area (e.g., hospitals, aag centres, small children and old

people).

2.4 Burst Detection and Diagnostics

This section reviews relevant literature dealinghwvthe detection of abnormal events
(e.g., pipe bursts and leakage) in WDS and theamtlon (i.e., diagnostics) using data
driven and model based techniques. The focus ofrévéeew is on methods for

diagnostics (i.e., model-based location of burastg) only key publications dealing with
burst detection methods will be discussed hereesine contribution of this thesis lies

in the combination of multiple imperfect models.

Detection of leaks and bursts has been vital fonyr@her industries. The majority of
failure detection methods for pipelines originatedm the gas, oil and chemical
industries where leakages can cause severe enwraahimpacts or represent health
and safety hazards. Misiunas (2005) in his PhDishpsovided a review of burst
detection and location techniques in both, pipsliaed pipe networks. Methods based
on steady and unsteady (i.e., transient) networditions were discussed. A more
recent review of leakage detection, location ancagament methods can be found in
Puustet al. (2010). A broad range of methods was consideretthéyauthors, including
traditional techniques for leak detection and lmrgtsuch as acoustic logging, step-
testing, ground motion sensors, ground penetraidgrs, etc. Methods requiring field
inspection, will not be considered here since thieybeyond the scope of this thesis.
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2.4.1 Data and Model Driven Anomaly Detection

With recent advances in sensor technologies ander8ispry Control And Data
Acquisition (SCADA) systems, “intelligent”, wirelegpressure and flow sensors have
been widely deployed to monitor the state of WDR#1 (Mounceet al. 2010). Their
data was used in combination with data and modstdanethodologies in an attempt

to detect and locate leakage or pipe bursts wahiviDS.

Verde (2001) presented a methodology, based osi¢rananalysis, for detection and
location of multiple-leaks in fluid pipelines basemh a set of pressure and flow
measurements taken at the ends of a duct. Giveriothes of the methodology on

pipelines only, its application in a WDS would belgematic.

Khan et al. (2002) designed a low-cost turbidity sensor arstetits functionality in a
real life WDS. Changes in water flow regime, sustsadden increases in flow caused
by pipe bursts or flushing affect opacity of wafaw (e.g., due to disturbance of
sediments in the pipe).

The use of ANNSs to detect anomalies, such as pipgtd) in a WDS has been explored
by a number of researchers (e.g., Mouatal.2002; Romanet al. 2009). Mounceet

al. (2003) coupled an ANN burst detection system wittule based classifier to fuse
outputs of several ANNSs to identify the state (iteirst or no-burst) of multiple DMAs.
They demonstrated the methodology on a hydranthifhgs case study and also
suggested that pressure gradients within a DMA trpgbvide a more precise location
of the burst pipe. Mounce and Machell (2006) coraegdhe capabilities of several types
of ANNSs to detect bursts and leakage in DMA flowttpms and concluded that time
delay neural networks performed better for leakeckn than static networks. In
Mounceet al.(2006) a Fuzzy Inference System (FIS) was usethssify discrepancies
between DMA inflow predictions produced by an ANNd&field observations. Alarms
signalling an anomaly were then generated usingyfumles. Mounceet al. (2007)
further improved their burst detection methodoldgyprovide accurate estimates of
average burst flow. Later on, Mouneg al. (2008; 2010) presented an application of
their methodology in a near R-T environment and @estrated its performance on real
life case studies. The time window (i.e., 12h oh)2dised in their work for burst

detection was in all cases rather wide, which carsden as a significant drawback to
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their approach. Late detection of the burst noy @atiuces the response time a water
utility might gain to locate and fix the burst bhtialso makes further diagnostics (e.g.,

model based burst location) more difficult.

On the other hand, Romaeobal. (2009) worked with only a 30 minute time window in
their Bayesian-based burst detection methodolobgyutilised both pressure and flow
measurement data from multiple sensors within a DidAncrease the accuracy of
correct detection. The performance of the new ndeilogy was demonstrated by an
analysis of historical burst events. Its applicatio a near R-T environment, which
represents significant challenges in terms of aatame-training of the burst detection

system, was not demonstrated by the authors.

Buchberger and Nadimpalli (2004) proposed a stedisteak detection method for well
defined residential DMAs. Their method requiredhhigequency flow measurements
taken during a minimum night flow period and wasardested in a real life WDS. The
method provided certain advantages over traditiomater audits, however, was

unsuitable for R-T burst detection and location.

Ragot and Maquin (2006) proposed a model-based auelingy for detection of
measurement faults (e.g., sensor failures) in watgply networks. A number of
redundant models were first developed based onigaty®lationships between sensor
measurements (e.g., flow mass balance relatioregspre-flow relationships, etc.).
Residuals of sensor measurements and model expastatere generated and analysed
using fuzzy logic to identify sensor failures. Thiethod was tested on data obtained

from a real life system.

2.4.2 Anomaly Diagnostics

A number of techniques for burst diagnostics (determining location of a burst pipe)
based on the behaviour of pipe networks in unste@dy, transient) state were
developed. Colombet al. (2009) and Puustt al. (2010) provided a comprehensive
review of these methods. Only key publications fritms field will be mentioned here
since such methods typically rely on more expensiaasient loggers, which are not
commonly available. Moreover, most of the applmasi of transient techniques were
only done in laboratory conditions or in pipelireagl there has been very little evidence

that they can be successfully applied in real WiD& €t al.2010). The higher costs of
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collection, processing and storage of high frequetata produced by transient loggers

could be also seen as another disadvantage ofagyebaches.

Wiggert (1968) was amongst the first to investigatesteady flows in pipelines
experiencing leakage. He concluded that the lateudflow attenuated the pressure
transient wave. The transient-based methods cageberally classified into: leak
reflection methods (Brunone 1999), inverse transaralysis (Vitkovskyet al. 2000;
Kapelanet al. 2003), impulse response analysis (Liou 1998) sieart damping method
(Wanget al. 2002) and frequency domain response analysisai&ivet al. 2001).

A more promising approach to help locate leakslaumrdts in a WDS is seen in various
model-based methodologies that can be applied ustgady conditions and do not
require the collection of data at high frequenciBsdar and Liggett (1992) were
amongst the first to solve the inverse problenotale leaks in a WDS using pressure
and flow measurements under steady conditions. @lgpyed that measurements should
be taken at locations of maximum sensitivity anat tthe more over determined (i.e.,
the higher was the number of pressure measurernemipared to the number of leaks
in a WDS) the inverse problem, the better the tesitlwas suggested that the success
of leak detection further depended on a particatefiguration of a WDS, accuracy of
pressure measurements, and accuracy of systenctadraics such as pipe roughnesses

and known demands.

Evolutionary optimisation techniques were used byesgal researchers to solve the
inverse problem of locating a leak. Puestal. (2006) used the Shuffled Complex
Evolution Metropolis (SCEM-UA) (Vrugtet al. 2003) optimisation algorithm to
estimate the posterior probability density functiaf leakage areas and demonstrated
their approach on a synthetic case study with dacemeasurements. Wu and Sage
(2006) used a Genetic Algorithm (GA) combined watkteady-state HM calibration to
locate leakage hotspots within DMAs. Depsite itssgure sensitive character, leakage
was modelled as constant demand. Deagkd. (2007) presented the results of leakage
hotspot identification using an HM on 3 real liféMBs. They used a GA to calibrate
their HMs and incorporated leakage allocation ihi@ calibration procedure. Wt al.
(2008) used GAs to optimise the pressure-depergtaitter locations and coefficients
as possible leakage areas and illustrated the wohattgy on a real life network. Wu
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(2009; 2010) proposed a unified parameter optimsatapproach, combining
identification of leakage hotspots with Extendedriéte Simulation (EPS) HM
calibration using a GA and demonstrated the metloggoon a real life DMA in the
UK.

Misiunaset al. (2006) presented a methodology for detection andtion of bursts in

residential DMAs. They used a change detection bested on Cumulative Sum
(CUSUM) to detect the burst and estimate its siZensequently, the EPANET
(Rossman 2000) hydraulic solver was applied to fimel burst location by comparing
the fit between modelled and measured changes @sspres in a DMA. The
methodology was only demonstrated on a small syictltase study, assuming real-

time pressure measurements at 3 locations witBIMA.

Sterling and Bargiela (1984) presented a WDS sistienation algorithm and solved the
problem of minimisation of measurement inconsisEnaising linear programming.
Gabrys and Bargiela (1999) examined the patterrs¢abé estimates of a WDS using an
ANN and developed a fault detection system capablecating leakage. Andersen &
Powell (2000) presented an implicit state estinmatiechnique to locate a burst and
demonstrated the methodology on a simple loopedarktwithout explicitly taking
into account uncertainty and measurement errocglidrdoet al. (2007) developed a
neuro-fuzzy approach to perform diagnostics of seakd other failures and anomalies
in a WDS based on network state estimation and dateen modelling. Their

methodology has only been applied to a synthese study.

Poulakiset al. (2003) developed a Bayesian probabilistic framéwior pipe burst
detection and showed the capability of the methmglpto identify the most likely burst
location on a synthetic case study based on a simgiwork. Uniformly distributed
demands were assumed across the WDS studied. fodiee an unrealistic sensor
density of 7 sensors per 30 demand nodes in thiSW8&s considered by the authors. It
was concluded that measurement accuracy as weHensor locations played an

important role in successful burst location.

Shinozukaet al. (2005) used a data driven technique to analysespre measurements
collected from a WDS in order to determine the tmraand extent of damage of a burst
caused by an earthquake. An ANN was trained toigeofzuclidean distance from a
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suspected burst location to a pressure monitotatgps. The method was demonstrated
on the same simple case study as used by Powtakis(2003). The use of Euclidean

distance might have been suitable for the WDS bstndied, which was shaped as a
rectangular grid with only two different pipe lehgt but could be inappropriate in other

situations.

Holnicki-Szulcet al. (2005) applied the Virtual Distortion Method to welthe inverse
problem of locating leakages in a WDS. The methssumed a reliable numerical
model of the WDS and continuous observation of ques heads in the WDS.
Measurement uncertainty was not accounted for ley ahithors and availability of
pressure measurements at every node in the netmeskassumed. The application of
the methodology was not demonstrated on real ta dnd the unrealistic assumptions

stated above seriously restrict its applicability¢al life WDS.

Mashfordet al.(2009) attempted to use Support Vector MachinedMBWhich act as
pattern recognisers, to detect and locate leakageWDS. They trained two SVMs on
synthetically generated noise-free data to prebiak size and leak location. The
assumption of complete knowledge of a WDS withawt ancertainties and availability
of unrealistically accurate pressure measurementietect small leakages makes the
study infeasible for practical use.

Recently, Boroviket al. (2009) presented an active burst identificatioocpdure based

on altering DMA inlet pressure during the minimunght flow period to obtain a

gradient of pressure line. An HM was used to siteutaursts at different nodes of the
network and the modelled gradient of pressure lwves then compared with the
measured one using chi-square test. The requiretoeater the DMA inlet pressure
typically involves manual intervention (at leastle UK where the number of remotely
controlled devices is generally low) and is, theref not suitable for R-T burst

diagnostics.

2.5 Failure Impact in WDS
Failures in WDS occur on a daily basis, primarilyedto ageing infrastructure or
equipment failure, but often also due to damagesedy third parties. The magnitude

and scale of their impact typically depends on mlmer of factors amongst which the
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geographic location and topology of the WDS playiraportant role. Generally, three
types of failures in WDS can be recognised: meahadmydraulic and water quality
failures (Filionet al.2007). Many researchers over the years triedtimate the impact

of failures in a WDS on its stakeholders and a nemd§ Key Performance Indicators
(KPIs) were developed. An exact quantification afure impact is a highly subjective
and complex problem, particularly because of difigisocial situations.

The work done so far has focused primarily on inbpaaused by pipe bursts, as part of
strategic management and long term asset managegtzers (e.g., Skipwortlet al.
2002). With very few exceptions (e.g., Burrowes$ al. 2000) operational impact
assessment has been mostly lacking.

In the UK, the high standard of delivery of potaktater is monitored by the Water
Services Regulation Authority (OFWAT) using sevekd®ls, which amongst other
aspects focus on long term pressure adequacyRressure of water mains — the DG2
indicator) and continuity of water supply (i.e.,@ly interruptions — the DG3 indicator)
(OFWAT 2008). Such indicators provide only a loegn overview of performance of a
water utility and do not sufficiently reflect thepact of a failure on customers from an

operational perspective.

Most of the research dealing with failures in W2)(, Gupta and Bhave 1994; Ostfeld
et al. 2002; Kapelaret al. 2006) used the Fraction of Delivered Demand (FBDQY its
similar forms as a KPI to assess the level of servAlthough being an effective
measure on large scale, FDD does not consideetistivity of individual customers to
a reduced level of service and additional impasiish as increased discolouration risk,
lost water, etc.

Rajani and Kleiner (2002) outlined direct, indir@ctd social costs associated with pipe
failure but did not suggest how these should batified. Consequently, Rahma al.
(2005) developed a framework to estimate socialscadated to infrastructure works,
such as pipe burst repairs, which incorporated rab@u of aspects such as, property
damage, traffic disruptions, environmental impaatsl health and safety issues. They
argued that failure to account for social costshhigad to poor decisions. Studying

past projects was suggested as means for datectamileto better quantify costs
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associated with social impacts. Their frameworkast suited to strategic applications
due to the medium and long term character of sdnl@edmpacts considered.

Mansooret al. (2005) analysed the performance of WDS under riaittonditions and
proposed a number of operational and strategicopeence indicators. They used an
ANN to simulate the effect of pressure on nodal deds and improved the commonly
used performance indicator based on the fractiandtlivered demand to incorporate
different types of customers. The customers wexedeld into 4 classes (i.e., low
income, medium income, high income) and their $etityi was, therefore, primarily
determined by their financial situation. Althoughuck classification might be
appropriate for less developed countries, its appbn in the UK could be

questionable.

Beukenet al. (2006) studied external effects of pipe burstshsas damage and injuries
in the proximity of the burst pipe. They performeedtrategic risk analysis using a GIS
to identify high risk pipes depending on their proity to important structures (e.qg.,
railway, main roads, bridges, etc.). Beukenh al. (2008) further extended their
consequence model to account for the following iogasupply interruption, low
pressure, water quality, public image and diresteol hey suggested suitable measures
to quantify these impacts from a strategic perspeand used a GIS and an HM to
identify critical valve sections in a WDS. Furthenma, a rule based system was applied

to aggregate the above listed impacts.

Trietsch and Mesman (2006) performed a strategityais of the reliability of valves in
a WDS to isolate a burst pipe. They only considezechplete interruption of water
supply and did not use an HM to evaluate potesgalbndary low pressure problems.
Walski (1993) was one the first who pointed out thmportance of considering the
location of valves in WDS reliability studies. Hegaed that often not only one pipe is
taken out of service to carry out burst repairs bather a segment of pipes is
disconnected depending on the location and funalitgnof isolation valves. Juet al.
(2007; 2008) presented an efficient algorithm teniify segments in a WDS and
evaluated the system wide impact of valve failuresn a strategic perspective. Low
pressure problems or other types of impacts, saatader utility’s financial losses were
not considered by the authors.
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Recently, Giustoliset al. (2008a) evaluated the impact of segment isolatioras\WDS

over an EPS using a pressure-driven HM. They prexgbaseveral operational KPIs
based on the amount of undelivered demand, howgwey,did not capture the effects
of the burst before it was isolated and also ditltake into account the sensitivity of

customers.

Michaud and Apostolakis (2006) analysed the ciiticaf network elements in a WDS
using graph theory. They proposed a hierarchichlevaee to aggregate impacts (i.e.,
health & safety, company image, financial and esvimental) of pipe isolation using
the Multi-Attribute Utility Theory (MAUT). Severaltypes of customers were
considered by the authors. Their strategic assegsiite not take into account locations
of isolation valves and neither used an HM to eatduthe full effect of segment

isolation (e.g., low pressure problems).

Vamvakeridou-Lyroudiaet al. (2009) proposed a hierarchical structure to aggeeg
multiple KPIs calculated using a pressure driven.HMe factors considered included
supply interruption, low pressure, discolouratiand economic impacts to assess the
effectiveness of interventions (e.g., valve marapah) to mitigate the impact of
unintended isolation. The proposed hierarchicaicstire seemed too rigid to provide a
DM with sufficient flexibility to express his/hergferences.

Water quality problems, such as discolouration @ntaminant intrusion, caused by
pressure and flow disturbances triggered by a pipst or consequently repair works,
have been mentioned by many (Rajani and KleineR28@adiget al. 2005; Sadicet al.
2006; Beukeret al. 2008). However, quantification of such impacts hasn difficult
and often only surrogate measures were used. Dawis Randall-Smith (2005)
developed a discolouration model based on riskstdsveloped by a panel of experts
and applied it to estimate the increase in disgaliitan potential of all pipes in the
WDS after a failure. As Vreeburg and Boxall (20pd)nted out using a discolouration
model based on shear stress (Boxall and Saul 2008l be more appropriate than the

adopted approach.

Burrows et al. (2000) developed a near R-T WDS performance etialusgsystem,
based on EPANET and a GIS. They used demand daRP&NET to develop a specific

regression formula for every node in the netwomesBure at a node was a function of
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boundary conditions of the HM (i.e., inlet pressanal flow, export flows and pressure
measurements in a DMA). Their approach, which aereid also dynamic model re-
calibration thus enabled a truly near R-T impasieasment. The impact model, based
only on a demand driven solver, simply considered pressure impacts on customers

linked with an HM through an integrated informatsystem.

2.5.1 WDS Modelling Under Failure Conditions

Modelling of WDS has become a widely applied peetamongst academics and
practitioners of water utilities. It is most frequily applied to simulate the operational
behaviour of a WDS, for planning, design (Sasnd Walters 1997; Kapelagt al.
2005b), rehabilitation purposes, etc. Hardy C(a€86) developed the first numerical
method to solve looped WDS in the 1930s and estaddli the foundations for future
use of this technique on computers. Adams (196&d s computer to model the
hydraulics of a WDS using Cross’ method in 1960s.Whs shortly after followed by
Shamir and Howard (1968) who used a more poweréwtdn-Raphson method. Since
then various methods (Todini and Pilati 1988) hagen developed to solve the mass
and energy conservation equations used to dedtrbleehaviour of a WDS (Walskt
al. 2003; Kapelaret al.2005b).

Traditionally, WDS were modelled under the assuomptihat demands are always
delivered. Such an approach is also referred tdemsand driven analysis, however,
under pressure deficient conditions the assummtidixed demands at nodes does not
hold. When insufficient pressures are availabla WDS the nodal demands cannot be
completely satisfied. Bhave (1981) was one of th& fvho studied the behaviour of
WDS under pressure deficient conditions and refteted the mass and energy
conservation equations to include Pressure DepémiEnands (PDD), sometimes also
referred to as Head Driven Analysis (HDA) or PresdDriven Analysis. Since then a
number of different formulations describing the elegence of nodal demand on
available pressure have emerged (Germanopoulos, 1888neret al. 1988b; Reddy
and Elango 1989; Gupta and Bhave 1996; Fujiward.ad898; Tucciarelliet al. 1999;
Tanyimbohet al.2001; Wuet al.2006).

As suggested by Gupta and Bhave (1996) the approfttagneret al. (1988b) has

yielded the best results. This fact has been funpheven by its application by many
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other researchers (e.g., Chewetgal. 2005; Giustolisi and Doglioni 2005; Morley and
Tricarico 2008). Cheungt al. (2005) implemented Wagner’s formula in the EPANET
(Rossman 2000) hydraulic solver. They concludet phessure driven formulations by
Fujiwara and Li (1998) and Tucciareéi al. (1999) produced similar results and that

testing on larger networks was necessary.

Hayuti and Burrows extensively studied HDA and haxtended the EPANET solver to
support such analysis (Hayuti and Burrows 2004;utiagnd Burrows 2005; Hayuét
al. 2006; Hayutiet al. 2007). They called their approach Simple Sequeii@A
Solution Seeking (SSS) demand driven approach. Tteegtively called the EPANET
solver to identify all pressure deficient nodes amobified their outflows according to
Wagneret al. (1988b). Their approach was computationally exélgnnefficient and
PDD should be directly implemented in the hydrasbtver as done by, e.g., Giustolisi
and Doglioni (2007).

Todini (2003), Ozger and Mays (2003), and Ang aoditi (2006) proposed very
similar approaches, which instead of modifying natkmands according to available
pressure, connected / disconnected an artificegruir to pressure deficient nodes.
Water was allowed to flow only from the node to tkservoir (i.e., the reservoir was
disconnected if the outflow was negative and sfiattedrain water from the reservoir
into the system). The major benefit of their apptowas that no calibration parameters
(i.e., describing the pressure-demand relationskgrg required unlike in the case of all
the other previously mentioned methods. The ongsoaeable assumption made was
that customers experiencing pressure deficient itond drew as much water as

possible (i.e., up to the requested demand).

Rossman (2007) commented that the approaches lksdcrabove were also
computationally demanding since every iterationststed of running a full hydraulic
simulation of EPANET and the addition or removalasfificial reservoirs as needed
until convergence was achieved. Another argumeaihagthis technique was made by
Wu (2007) who pointed out that implementation ofSERvas in such a technique,
difficult if at all possible. However, Rossman (Z0Ghowed that the above mentioned
algorithm (SSS) could be efficiently implemented BPANET using emitters by
introducing an extra status array which controtleeir state and activated them only in
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pressure deficient situations when system pressuees above 0 m. Recently, Morley
and Tricarico (2008) extended the pressure driveplementation of EPANET
proposed by Rossman (2007) to allow for any pressdiemand relationships and used

Wagner’s representation as the default one.

Giustolisi et al. (2008c) developed a steady-state network simulatimdel, which

integrated PDD and leakage at pipe level into hyldrarepresentation. The authors
stressed the importance of a more realistic sinwlamodel allowing for leakage

analysis, verified its convergence and concludeat the proposed algorithm was
robust, which was not the case in most of the PD&lifitations discussed above. It
was further noted that PDD simulation generallyitesl in higher pressures in a WDS.
Consequently, Giustoligt al. (2008b) extended the robust pressure driven simulat
model discussed above and incorporated an algorithnan automatic detection of
topological changes in pipe networks due to infgroams. Nodes and pipes that were
not linked to any source were removed from theo$étydraulic equations. The newly
developed algorithm was demonstrated on a realpifpe network. It was concluded
that the newly proposed algorithm was robust imgeof numerical accuracy and

convergence rate but was computationally demanding.

2.5.2 Pipe Burst Modelling

Modelling of pipe bursts has received significatiemation in the literature, primarily
due to its significance in reliability studies ansk assessment. This section provides
details about modelling of pipe bursts in the EPANERossman 2000) hydraulic
solver, which hasle factobecome a standard software package used by tderata
community. Depending on the purpose of the simutafe.g., reliability analysis, etc.)
as well as the capabilities of the hydraulic solused, the methods of modelling pipe
bursts can be broadly divided into two classes wiéipg on the type of analysis: (1)

Strategic decision-making or (2) Operational decisnaking.

2.5.2.1 Strategic Applications
In strategic applications, the time over which pepheeds to be isolated for repairs is
dominant and, therefore, the outflow from a burstobe the isolation takes place is

neglected. The simplest technique applied by sévessarchers (e.g. Farmagt al.
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2005b) was to disconnect the failed pipe. In EPANESIngle pipe can be disconnected
in the following ways:

» setits status to CLOSED
» setits diameter to a very small number (e.g., @00

» physically remove the pipe from the network

The physical removal of the failed pipe, althougkinly the most difficult one to
implement, can be considered as the best optioce sih effectively reduces the
complexity of the governing nonlinear equations #ng speeds up the convergence of
the gradient algorithm (Todini and Pilati 1988) disa EPANET. It also eliminates
potential convergence problems caused by the tiivet approaches, which introduce
abnormally high resistance coefficients in the lylic equations.

Furthermore, as noted by Walski (1987; 1993) amdedal.(2007; 2007; 2008) another
limitation of such an approach is that it does nespect the location of isolation valves
in the real network (note that isolation valvesoetypically included in HMs). This is
vital since it is often necessary to isolate a sagnof pipes due to the location of the
valves or because of the inability to shut a valech has not been exercised regularly.
As an example Just al. (2008) reported that there were approx. 4.3% openable
valves in a studied WDS. An unintended isolationadtlitional segments can occur
downstream when pipes are isolated for repairs.

2.5.2.2 Operational Applications

From an operational view, typically the outflow rinathe burst is modelled to observe
the effects of an abnormal demand (e.g., dropsrésspires) on the rest of a WDS.
Hayuti and Burrows (2005), and Mansoor and Vairavartiny (2003) modelled pipe

bursts in EPANET by inserting an artificial resenia the middle of a pipe and setting
its water surface level to correspond to the elemadf the pipe. The outflow through

the pipe was then controlled by changing its proger(i.e., diameter, length and
roughness). Placing the burst into the centre pfpa is an approximation which is

reasonable for relatively short pipes, however, hhigecome less applicable in rural

areas where pipe lengths tend to be significantigér than in urban areas.
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More frequently, pressure sensitive outflows aredefled using emitters, which are
devices used typically to model sprinklers or @tign networks governed by the
equation for orifice flow (Walsket al. 2003):

Q=C,A/2gh (2.1)
where:Q is the outflow (dischargel;q is a discharge coefficiend is the area of an
orifice, g is the gravitational acceleration constant (9.88%mandh is the head loss

across orifice (m).

The orifice equation can be generalised and writen

Q=C,F (2.2)
where:Q is the flow rateP is pressure at junctioy is a discharge coefficient ands

a pressure exponent.

The generalised orifice equation is used in EPAN&TmModel pressure sensitive

outflow, such as leakage or pipe bursts.

Studying the behaviour of bursts and leakage haacttd the attention of many
researchers. Van Zyl and Clayton (2005; 2007) ingated factors affecting magnitude
of pipe a burst. They identified four primary fasto (1) leak hydraulics, (2) pipe
material behaviour, (3) soil hydraulics and (4) evatiemand. Van Zyl and Clayton
(2007) further noted that specific types of faikiere likely to develop depending on
pipe material. Results of their experimental stoelpted pipe material and type of the
opening to the pressure exponegnivhich had the most significant effect on the flow
through a burst. The value pftypically ranged from 0.52 to 1.85 for round hotexl
longitudinal cracks, respectively. Lambert (2002parted that values of typically
ranged from 0.5 to 1.5 and occasionally also betw2€® and 2.5 during field tests
conducted in the UK. Lately, Casstaal. (2010) conducted a numerical study into the
effects of pressure on holes and cracks and coedltitht values of > 1.5 did not have
theoretical justification. The above reported fmgs could be exploited to produce a
more realistic model of leakage and bursts in a VBR&ssigning the most likely values
of pressure exponent to bursts in pipes accordinghéir material and additional

properties.
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2.6 Information Fusion

With the increasing availability of sensors and sueaments, information fusion has
become a popular approach in order to infer maxinmformation from collected data.
Amongst other available techniques, the Dempstafeéghtheory (D-S) of Evidence
(Shafer 1976) represents a suitable mathematieahework to combine uncertain
information. Sentz & Ferson (2002) provided a revad applications of D-S theory in
various disciplines including classification andagnition (Polikar 2006; Oukhelloet
al. 2010), decision-making (Tanaka and Klir 1999), iragring and optimization
(Agarwal et al. 2004), fault detection (Chen and Aickelin 2006ilure diagnostics
(Rakaret al.1999; Basir and Yuan 2007), target tracking (Degtal.2006), etc.

A limited number of applications of evidence the@an also be found in the water
industry. Most frequently, it has been employedvater quality problems or strategic
applications. However, its use on operational pwid has been limited, unlike in other

fields, including, e.g., military applications (D=tet al.2006).

Demotier et al(2003) applied the Transferable Belief Model (TBMyhich is an
extension of D-S theory proposed by Smets and Ke(i#94) to risk analysis of water
treatment processes. No application of the metloggobn a real life case study was

reported by the authors.

Sadiqg and Rodriguez (2005) and SagliGal. (2006) used D-S theory to interpret water
quality data. They explored the potential of foombination rules (i.e., Dempster’s,
Yager's, Dubois-Prade’s and Dezert-Smarandachelesyuand discussed their
limitations, particularly with respect to combiniognflicting evidence. The authors did
not attempt to determine the most suitable comiamnatile for their particular decision-

making context.

Li (2007) used D-S theory and fuzzy logic to agategisk levels in a hierarchical risk
assessment of components, subsystems, and thelloW&S. The proposed
methodology lacked the calibration of fuzzy membagrgunctions representing hazards
in a WDS, however, it was suggested that they cbeldletermined from analysis of
historical data.
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Bai et al. (2008) used Dempster's combination rule in a hamaal aggregation of
evidence to assess the condition of buried pipal; Dempster’'s combination rule was
used by the authors, despite evidence in the titexahat the selection of a particular

combination rule is problem specific.

2.7 Summary & Conclusions

This chapter provided a review of literature raflate risk-based operation of WDS
under failure conditions, particularly when pipersia occur. Given the multi-

disciplinary character of this research a numberaadas were covered, including
decision-making and decision support, risk-basethaumlogies, pipe burst diagnostics,
WDS failure impact assessment including pressurgedr WDS modelling and

information fusion.

In section 2.2 the key publications dealing witltid®n-making and decision support,
with an emphasis on applications of DSS in R-T wengewed. The key conclusions

that can be drawn from the current research arensuised as follows:

Decision support systems have gained popularity mumber of industries and

recently also in the water sector.

* Optimisation algorithms and artificial intelligenceethods are commonly

becoming part of modern DSS.

» The number of applications of R-T DSS in the litara is scarce compared to
R-T ES used to solve structured problems. Thisbmaexplained by difficulties
with the presentation of R-T data to DMs and insight performance of

conventional computers in the past.

* It can be expected that the number of R-T DSS bellincreasing because the
current trend is to support expert judgement rathan trying to replace it

completely by Al (Koutsoyiannist al. 2003).

* High efficiency of DSS in terms of their performanis crucial for any kind of
R-T application and, therefore, off-line pre-compgtof results and the use of

surrogate models have been frequently applied.
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From the review of applications of risk presentedection 2.3 it can be concluded that:

* Risk assessment of WDS has primarily focused ategjic applications. It can
be argued that until recently the computing powenilable prevented

operational applications requiring near R-T perfance.

« The number of applications of risk to water quaptpblems clearly dominates

other research areas.

e The lack of research in the field of risk analysipplied to the failure
management of WDS is apparent, which creates tbengs for the work

addressed in this thesis.

* Frequently, the measure of risk, comprising thebabaity and consequence
components (Kaplan and Garrick 1981), has beenepted to DMs in an
aggregated form. As shown in this work, this caroften avoided and can lead

towards better informed decisions.
Section 2.4 provided a review of model based pigstldiagnostics methods.

e It can be seen that despite the progress achiavddei field of pipe burst
diagnostics there is little evidence that the meésh@viewed, when used on their

own, are ready to be applied in real life condisidor operational decisions.

 The application of transient techniques is seenpasblematic since the
published results are typically not based on restkewdistribution networks that
exhibit much higher noise levels than pipelinesd&td under laboratory

conditions.

« The R-T environment considered in this work alsespnts a significant obstacle

for a number of methods presented in this section.

« Up to now none of the proposed techniques attentptedmbine the outputs of

several models in order to determine the locatioa lsurst pipe within a DMA.

In section 2.5 a review of commonly used perforneainclicators to capture the impact

of failures in WDS was provided. The following da@ observed:
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The performance indicators currently used by retems and practitioners do
not fully satisfy the requirements of operatiomapact assessment. The majority
of them suit best strategic applications, concemigld whole-life cost of assets
and frequently they are unable to capture the wadege of adverse effects

caused by failures, such as pipe bursts.

HMs have been frequently coupled with a GIS in orideinclude customer
information and land use data from the proximityaofailure to quantify its

impact on the principal stakeholders.

As pointed out by many (Wagnet al. 1988b; Gupta and Bhave 1994) the use
of pressure driven HMs is imperative when studyWiS under pressure
deficient conditions, which has not always beenctee in previous research.

The use of complex impact models (e.g., Beudeal. 2008), capturing a wide
range of effects of a failure on stakeholders heenlimited and such models
have not been applied to operational impact assadsriRurthermore, studies
investigating the preferences of water companieseims of significance of
various types of impacts (e.g., supply interruptianadequate pressure,
discolouration, etc.) are lacking.

As stated by many (e.g., Gupta and Bhave 1996; ifrdogh and Tabesh 1997,
etc.), the behaviour of a WDS under pressure agfiatonditions is a complex
phenomena which is not well understood. A particdi#ficulty is caused by an
uneasy collection of sample data from real WDS bseasimulation of such

conditions can affect customers.

The inclusion of HDA has only minimum impact on qauational efficiency
but on the other hand models the behaviour of a WB&r pressure deficient

conditions more realistically (Germanopoulos 1985).

From an operational perspective, bursts should ddetted as pressure sensitive
outflows from a WDS, using emitters. Informationoab the properties of a
burst pipe, such as its material could be usedetalse most likely value of

pressure exponent to more accurately capture thavioeur of a failure.
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Finally section 2.6 provided a brief overview oéthpplication of information fusion,

with an emphasis on D-S theory, from a number @i, including the water industry.

It can be concluded that:

D-S theory has become a popular mathematical toolifformation fusion
across many industries, however, its applicatiothexwater sector has been so

far limited.

The choice of the most suitable combination ruleirformation fusion is
problem specific and no single rule can performlvehll situations. Selection
of a combination rule should, therefore, be cahgfdeétermined as part of the

development of an information fusion model.

D-S theory has been applied in R-T applications ather industries,
predominantly in military applications and patteracognition problems,

however, its operational use in the field of WDS baen so far limited.
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CHAPTER 3 RISK-BASED PIPE BURST
DIAGNOSTICS

3.1 Introduction

Dealing with failure conditions in a WDS is one tbe primary functions of control
room operators. The process of discovering that@SVis not functioning normally,
investigating potential incidents and deciding oowhto deal with them is still
challenging, even with recent progress in monigp@amd communication technologies.
Data coming from sensors and notifications fromt@uers in the form of phone calls
are the two main indicators that a problem thatraves further investigation and
possibly repairs has occurred in a WDS. The opetaen typically has to check and
process information coming from various systemsorder to assess whether the
perceived incident in the network is real, rathen a consequence of malfunctioning
monitoring and communication devices. The invesiga depends strongly on the
internal business processes of a particular wathktywbut frequently requires a field
technician to be sent out to visually inspect theasion at a particular location and
confirm (or not) the potential incident. Furthermoin situations when several alarms
(i.e., detected abnormal events, such as piped)usstur simultaneously in the same
time horizon, the operator usually has to pricgiti®oth investigative and intervention
actions with dynamically changing information abdbe potential incidents. Most
decisions are currently made on an ad-hoc basimmagly based on the experience of

skilled operators.

This chapter presents a methodology to enhanceetision-making of WDS operators
when dealing with abnormal situations (e.g., inseeaDMA inflows) in a WDS caused
by pipe bursts. The chapter is organised as showigure 3.1, which also indicates the
mutual relationships between constituents of thepgsed methodology. First, in
section 3.2 the conceptual development of a rigetaecision-making methodology to
support near R-T diagnostics of burst pipes withilDMA is discussed. Then the
components of a risk metric (i.e., the likelihooddaimpact) used in this work are
described in detail in the following sections. Avaeb method to estimate the likely
location of a burst pipe within a DMA in near R-§ proposed in section 3.3. The

method is based on the fusion of evidence proviogda number of models. The
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combined results, generated using a Dempster-S{{af&) model, form the likelihood
component of the above mentioned risk metric. Apaot model able to capture various
operational aspects of adverse effects causedpipeaburst is described in section 3.4.
The impact model, based on the Multi-Attribute \&llheory (MAVT), completes the
risk metric and provides control room personnelhwan insight about the expected
consequences of a burst in different parts of a DMAeft unattended. Often, multiple
failures can occur in a similar time horizon (eduring 24 hours) in different parts of a
large WDS. Such situations require operators torpise their actions due to limited
resources. A novel ranking methodology is introduoe section 3.5, which is able to
prioritise alarms based on an overall aggregated! lef risk they represent, to help

control room operators deal with the most sevaterés first.

3.2 Risk-Based Burst
Diagnostics

/\

3.3 Likelihood Model 3.4 Impact Model

\/

3.5 Abnormal Event
Prioritisation

Figure 3.1 Structure of the risk-based pipe buesgribstics methodology

3.2 Risk-Based Decision-Making
Nowadays, WDS are typically divided into DMAs tottee account for and reduce
leakage. Within a DMA all water inputs and outpate measured to allow monitoring
of consumption trends of water consumers. The nuroberoperties supplied by a
DMA is usually between 1,000 to 5,000 (Burroetsal. 2000), however, this may vary
depending on topographic and demographic charatteriof an area. Thanks to
technological advances, the cost of pressure awd rihonitoring devices has reached
the level that enables their large scale deploynagnstrategic locations in DMAs
(Kapelanet al. 2005c). The wide availability of pressure and fldata has triggered
research into early warning systems (Moureteal. 2002; Mounceet al. 2003;
Buchberger and Nadimpalli 2004; Romamd al. 2009) and lead towards their
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application in real life WDS to detect leaks andsta (Mounce and Boxall 2010;
Mounceet al.2010).

Currently, the online early warning systems (ipgpe burst detection systems) typically
do not go beyond generating an alarm (see Fig@)et@.notify control room personnel

of possible problems in a particular DMA that extstabnormal flow and/or pressure

patterns.
Failure causes. | én;n}?ol\)/v Is detected Detector generates | Alarm
. > Y by 7 - "
(e.g., pipe burst) increase) (e.g., ANN-FIS)

Figure 3.2 A conceptual diagram of the alarm gelrmrgprocess

Such an alarm, which carries information aboutlitkedy timing of a burst, its size and
ID of the DMA where it occurred (without providingiformation about the exact
location of the burst within a DMA) is a startingipt for the risk-based pipe burst
diagnostics methodology presented in this thesiwak assumed here that the detected
flow anomalies are the result of a single failure.{ a pipe burst within a DMA). This
assumption might not hold every time and it is gwesthat multiple pipe bursts could
occur within a DMA. Given the typical size of DMAfiscussed above (i.e., 1,000 —
5,000 properties) such situations are not very comminalysis of main pipe repair
data of Yorkshire Water in the UK, over a perioceaht years, has shown that multiple
main pipe repairs were carried out in the same Ddditing the same day in 10.2% of
cases (i.e., in total there were 55,641 main reparried out). This analysis was based
on main pipe repair data and not directly on detktiurst times and dates. It is possible
that main repair records could contain some follogv actions (e.g., another burst
occurred as a result of the repair work) and thember of simultaneous bursts that
occurred in one DMA during one day might be sigaifitly lower. This, however, does
not prevent the simultaneous occurrence of failumemultiple DMAs, which is not
uncommon given the size of WDS (e.g., more tha@@2MAs in case of Yorkshire
Water in the UK). Multiple failures are likely tacour particularly under severe weather
conditions (e.g., extended periods of air frostgcdrding to the above mentioned
dataset 89.7% of main repairs were carried outffardnt DMAs during the same day.
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A burst detection system monitoring only flow measoents is typically unable to
distinguish between a pipe burst and an abnormabkdd (e.g., caused by a fire flow,
etc.). If the increased demand is not localisedr{dke case of a burst) the risk analysis
presented here could provide incorrect resultsesbuath, the likelihood component of
risk (i.e., the likely location of a burst pipe) asgll as the impact component would be

based on an erroneous assumption.

Following the above assumptions a one-level (@ely one failure at a time) fault tree
analysis (Veselet al. 1981) of every detected anomaly (i.e., an alasrperformed as
suggested in Figure 3.3. The outcome of the arsmlgsia set of potential incidents,
which typically comprises every pipe segment indffected DMA. Additional types of
failures, such as pump or valve failures couldruided in the analysis as well. The
focus of this thesis is an investigation of pipestsionly and other failure types will not

be discussed here.

| Gisgnostiat r| Likelinood mode |
i H . ikelihood model
! diagnostics Potential |
Burst 1

1 o
trlggeis ) ) {dentifies | Potential Likelihood model
Alarm » Diagnostics > Bursti <
‘| Impact model

1
1 ;
1 . .{ Likelihood model
| Potential <
| Burst N
Impact model
1

roduces | Prioritised
Alarms

Alarm
Prioritisation

Sy

—— o O = = o = =

Figure 3.3 A high level overview of the risk-bagskdgnostics methodology

The diagram in Figure 3.3 provides an overviewhef tisk-based pipe burst diagnostics
methodology. Moreover, it also highlights the keymponents of the whole
methodology (using different colours). These aranigathe models to estimate the
likely location of a burst pipe and its impact aslivas the alarm prioritisation model,
which ranks alarms in the order of their significarbased on the overall level of risk
they represent.

Each potential incident identified during the pmghary diagnostics phase can be
characterised with a certain level of risk as iatkd in Figure 3.3. The definition of risk
used in this work was adopted from Lowrance (19@6)a measure of likelihood and
impact of adverse effects. The risk metric can thasdefined af=f(L,I) whereR
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stands for the risk,. represents the likelihood of burst occurrence langpresents its
impact. The above adopted definition implies thak rof potential incidents is not

aggregated before it is presented to a DecisioneMdiM).

Presenting the risk to a DM in a non-aggregateanfaising risk maps (see, e.g.,
Figure 3.4) brings a number of advantages. Firslldhe spatial distribution of risk can
be fully revealed. Because risk was not aggregatedassumptions about the DM’s
preferences between impact and likelihood were madRlisk-based pipe burst
diagnostics thus leads towards better informedsitmts compared to the state of the art

methods, based primarily on ad-hoc investigationtsexperience of WDS operators.

s
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Figure 3.4 An example risk map of a real pipe burst
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One of the advantages of the use of risk mapsaisthiey allow an easy identification of
important potential incidents, requiring the attemtof a DM. Such potential incidents
have typically low likelihood of occurrence, but tire other hand, very high impact in
comparison to other cases. If the likelihood anddaot components of risk are
aggregated prior to the visualisation it is impbksito immediately differentiate
between potential incidents with high impact ana lixelihood of occurrence and their

counterparts having low impact and high likelihadaccurrence.

During the risk-based diagnostics all elements iwithe set of potential incidents (see
Figure 3.3) undergo a full risk assessment. Theimealent (i.e., cause) which triggered
the alarm and the consequent diagnostics shout@l(yg be a member of this set and
have a higher likelihood of occurrence than othateptial incidents. To visualise the
risks of individual potential incidents, the riskaps can be also rendered in the form of
scatter plots (see e.g., Figure 3.5). The scalbedsplaying the non-aggregated risk of
potential incidents (i.e., likelihood and impactioyides a more intuitive means to
compare overall risk of alarms in order to distisfutheir mutual significance. This
will be investigated further in section 3.5, whexe alarm ranking methodology is

presented.

The likelihood of occurrence will probably be thenpary criteria to drive the field
investigations. The operator, however, may alsmsbdo investigate pipe bursts with
lower likelihood but higher impact. This could e tcase in situations when the impact
of a burst in elevated parts of a DMA would cause pressures, ultimately leading to a
full interruption of water supply. Even if the lilkkeood of pipe burst occurrence in such
parts of the system was lower, the risk might silunacceptable for the water utility.
To clearly identify such pipes (i.e., low likelihd@f occurrence and high impact), it is
vital that the risk of each potential pipe bursplissented in a non-aggregated form. The
key advantage of the proposed approach is thaDkhean make a risk-aware decision
when it is possible to consider the trade-off betvéhe likelihood of burst occurrence

and the impact of the failure at a given location.
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Scatterplot of the Likelihood vs. Impact
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Figure 3.5 A scatter plot showing distribution skrof two alarms

In most applications of strategic risk analysig tfsk of a failure can be managed by
reducing the probability of its occurrence or nmatigg its consequences. In the context
of operational risk analysis presented here, tkediiood component of risk does not
refer to the traditional understanding of prob#pias the frequency of occurrence of a
failure (e.g., return period of a flood, etc.) hustead suggests the fact that the
occurrence of a failure on one element is morelfikban on another. Unlike in

strategic applications, the likelihood componentisi, therefore, cannot be reduced by
the replacement or rehabilitation of assets ingthert term operational horizon, since
the failure has already occurred and only its eratiire is unknown. Moreover, the risk
metric considered here can be dynamic and evolwb tine, depending on new

evidence available (e.g., field measurements oestigations). On the other hand the
consequence component of risk of a failure couldebeced by a fast intervention (e.qg.,
temporary valve manipulation). The possible waymitigate the impact, however, fall

beyond the scope of this thesis and will not bewised here.

Following the general description of the risk-basddcision-making approach
individual models to quantify the likelihood and pactt components of risk are

described in the next two sections.
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3.3 Likelihood Component of Risk

As discussed in the literature review in sectiof, Bocating a burst within an affected
DMA using data and model-based methods is a clafigrtask. A number of emerging
methodologies are available (e.g., Misiueagal. 2006; Wuet al. 2010), however, none
of them seems to be entirely fit for the purposeaofear R-T pipe burst diagnostics
required in this work. In situations of great imfamce, one frequently seeks an opinion
of others before making a final judgement. Consglth number of experts in order to
reach a better informed decision seems to be natur@ecision-making by humans.
However, similar approaches have only recentlytestato be applied in automated
decision-making (Polikar 2006). Given the sevemeeticonstraints, highly uncertain
environment and limited availability of measurenseint the field, it is argued here that
such conditions can benefit from utilising informoat fusion (Nilsson and Ziemke
2007) to combine available evidence from multipdeirses providing an indication of

the likely/unlikely location of a burst pipe.

A methodology for combining outputs of several medencluding a Pipe Burst
Prediction Model (PBPM), a Hydraulic Model (HM) aadCustomer Contacts Model
(CCM) is proposed here to improve the potentialrédiable and rapid identification of
the possible location of a pipe burst. This is B8akto water companies, reflecting a
proactive approach that attempts to detect andiaflures in a WDS before they start
affecting customers. Proactive response to failres, their detection, location and
repair) is not always possible (e.g., due to theetrequired to receive and process data
from the field or dispatch a leakage team) andoimes situations the water utility can

only react after a problem is first reported bytoosers.

In the proposed methodology, information provided ibdividual models is fused
together, using D-S theory of Evidence (Shafer 19Tée combined output, which
encapsulates the varying credibility of the induad models, provides spatial
distribution ofBelief andPlausibility (see e.g., Figure 3.6) of failure of any pipehe t
WDS being studied to support the decision-makirac@ss by an operator in a control
room. This evidential reasoning approach furthduces the information load faced by

operators and increases confidence in the resatsate supported by several models.
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Figure 3.6 An example of spatial distribution ofliBeand Plausibility

The rest of this section is organised as followisstRhe theoretical concepts of D-S
theory necessary to understand the informationofugprocess proposed here are
introduced. Then the individual information sour¢es., models) whose outputs are
combined are described. Finally, the process adrmétion fusion, including a novel

calibration methodology based on multi-objectivéiropsation, are explained.

3.3.1 Dempster-Shafer Theory of Evidence
This sub-section provides a brief introductionhe tinderlying mathematical Theory of
Evidence applied here to combine outputs from mlatinformation sources. The

reader is referred to Appendix A of this thesisdanore detailed explanation.

The D-S theory, also known as Evidence Theory, fwsisformulated in the late 1970’s
by Dempster (1967) and later on extended and fesethby Shafer (1976). D-S theory
can be used for inference in the presence of int&tey@nd uncertain information,
provided by different, independent, sources. Aificgant advantage of D-S theory is its
ability to deal with missing information (i.e., sggmic uncertainty) and to estimate the

imprecision and conflict between different inforimatsources.

The D-S theory operates on a “frame of discernmént’which is a finite set of
mutually exclusive and exhaustive propositions. ikénltraditional Bayesian models
(Bayes 1763), probability mass can be assignedtieets of the frame of discernment

©® using a Basic Probability Assignment (BPA), tyflica@lenotedm(A), whereA is a
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non-empty subset @. D-S theory defines two fundamental functioBslief (Bel) and
Plausibility (PI):

Bel:2° - [01] and Bel(A) =) m(B) (3.1)

BOA

PI:2° - [01] and PI(A)= > m(B) (3.2)

Bn AZ0

Where:B is a non-empty subset 6f

Bel corresponds to the total mass of evidence, whipiparts a proposition and all of its
subsets, whereaP| corresponds to the total mass of evidence, whgmat in
contradiction with a proposition (Shafer 1976). Thetual relationship betweeBel
andPl is shown in Figure 3.7.

Bel(A) . uncertainty BeI(K)

PI(A) '

Figure 3.7 A graphical representation of Belief &ausibility

In this study, a Binary Frame of Discernment (BF@D(Safraneket al. 1990), is used,
comprising two propositions Burst’ and “NoBurst) representing the likelihood of
occurrence / non-occurrence of a burst in a pdaticpipe. The power set®2s thus
formed by the following subsets: (@Bdrst, { NoBurs}, { Burst NoBurs}), where the
subset Burst NoBurs} represents the whole frame of discernméntand any
probability mass assigned to this subset correspdada lack of knowledge (i.e.,
ignorance). The chosen definition of the BFOD iraplthat the process of identifying
the location of a burst pipe is similar to a clasation problem where value of belief is
calculated for every pipe in the WDS indicating thelihood of that pipe being the
true (i.e., Burst) or false (i.e., fNoBurs}) burst location. As suggested by Polikar
(2006) combining outputs of several classifierg.(iensemble classifiers) has been
shown to be an effective approach, to obtain beitet more reliable classification
results, in a number of real-world problems. Othepresentations of the frame of
discernmen® are possible (e.g., containing multiple hypothgskeswever, these are
likely to have negative effect on computational ptewity of algorithms implementing
the D-S theory (see Appendix A.4 for more details).
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Dempster’s rule of combination (Shafer 1976) foramsinherent part of D-S theory,
which allows information from different, independesources of evidence to be

combined. It is defined as follows:

> m(B)m,(C)
m,, (A) = 224 whenA # 0 (3-3)
' 1-K
K= > m(B)m,(C) (3.4)
m,(©) =0 (3.5)

Where: my » is the combined BPAm, m, are the BPAs of independent sources of
evidence K represents the level of conflict amongst the ewideandA, B andC are

non-empty subsets 6f.

Since the introduction of Dempster’s rule varioikeo combination rules have been
developed. Sentz and Ferson (2002) discussed foandaf D-S theory and provided a
review of a number of the available combinatioresubvailable. As argued by many
(Hall and Garga 1999; Polikar 2006) there is noversal combination rule that would
perform well in all situations. In this work, Yageicombination rule (Yager 1987) and
the PCR5 combination rule (Smarandache and Depé@)2wvere used, in addition to
Dempster’s rule, to observe their different behaviand performance in the process of
information fusion. These rules differ in the wéney distribute conflicting probability
massK (Eq. (3.4)) amongst the propositions ©f Dempster’s rule distributes the
conflicting mass equally amongst all propositiorfs@ (e.g., {A} and {B}), while
Yager’s rule (see Eq. (A.13)) attributes confligtimass to® (e.g., {A, B}) and the
PCR5 rule (see Eq. (A.17)) proportionally redigités partial conflicting masses
amongst propositions involved in the partial canflFurther details about the additional
combination rules, including their definition andnamerical example demonstrating

combination of conflicting evidence, can be foundppendix A.2.

3.3.1.1 Decision-Making Using Belief Structures

Although decision-making using Beliefs and PlaUgibs as suggested in Figure 3.6
brings certain advantages, it can be challengindfds. On the one hand, a DM has
the opportunity to fully explore the evidence ditgsupporting a particular hypothesis
(e.g., that a pipe burst is located in some pag WDS) represented by Belief and also

the evidence, which does not contradict a hyposh@s., Plausibility). On the other
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hand, particularly in situations when one operatgs complex frames of discernment
(i.e., comprising a higher number of hypotheses)atiditional complexity of operating
with Beliefs and Plausibilities might be overwhehgi To make decisions based on
belief functions, Smets & Kennes (1994), proposeabdel of transformation, based on
the assumption thabtliefs manifest themselves at two mental levieés!dredal’ level
where beliefs are entertained and the ‘pignistevel where beliefs are used to make
decisions. Based on the principle of insufficient reasormeds & Kennes (1994)
defined the pignistic probability functiddetP, which performs the transformation from

the credal level, as follows:

BetA(§= Y. nf A% (3.6)

The pignistic probability functionBetP) is a measure that can be used to present the
outputs of the information fusion process to DMd arill be later utilised in calibration
of the D-S model (section 3.3.5) and performancduation of the information fusion

methodology (section 5.3.3.2).

On a simple BFOD used in this work, the pignisticlqability function reduces to:

BetR{ Burgd) = Bu}$t+%({m Burst NoBiirs' (3.7)

This effectively distributes the uncertainty, reggeted by the probability mass
m({ Burst, NoBurst), equally between theBurst and {NoBurs} hypotheses.

3.3.2 Information Sources

Due to the flexibility of D-S theory, any kind afformation providing an indication of
the likelihood of a burst in a particular pipe INDS can be combined to reduce the
lack of knowledge about the location of the faif@ple and increase the confidence in its
correct identification. Without any loss of gendsalthis research utilises three
information sources depicted in Figure 3.8 that@mesidered to be independent: (a) a
PBPM output, (b) a CCM output and (c) an HM outptlihis particular set of
information sources was chosen because of its gemeailability to many water
utilities worldwide and does not prevent other mifation sources from being used
(e.g., information from a work management systenperaps transient-based burst

location models). The first source of informatiore.( based on the PBPM output) is
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treated as a static indicator of pipe burst occureewhereas the other two remaining
sources can be dynamic and provide new informa&®nt becomes available (e.qg.,
when another customer complaint is received or wherHM is updated with new R-T

measurements obtained from field sensors).

Output Data Burst Occurence
Layer Likelihood

Dempster-Shafer
Model

Model
Layer
Pipe Burst Hydraulic Customer
Prediction Model Model Contacts Model
Asset type Pressure/flow Customer
In|:|>_uatylie)?ta data data contacts data
(static) (dynamic) (dynamic)

Figure 3.8 Sources of evidence used in the infaomdtision

The focus of this thesis is not on the developnaérihe individual models but instead
to demonstrate that by combining their outputstacerbenefits can be gained as
illustrated later on a case study (section 5.2.Fb)ne of the models (e.g., the PBPM)

have been extensively studied in the literaturewaitichot be discussed here in detail.

3.3.2.1 Pipe Burst Prediction Model

A PBPM is used to obtain expected burst frequeniciegvery pipe in the WDS. The
particular choice of the PBPM depends on the abidiiha of data and is not important
for the methodology shown here as long as the ienlggnce of the model outputs used
in the information fusion holds (Bat al. 2008; Marashet al. 2008).

More specifically, a regression-based PBPM was us&é to obtain expected burst
frequencies for every pipe in the WDS being studiedng the current month. The
burst frequency of a pipe was expressed as a amofiits material, diameter, age, soll
type, land use, and weather conditions. The spe@ipression and the related
coefficients used in this work can be found in Tiyiaech Systems Engineering Ltd.

(2007) and will not be reported here as it fallssale the scope of this thesis.
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3.3.2.2 Customer Contacts Model

The current methods of detection and location pégiursts aim to notify control room
personnel of any abnormal conditions before a failstarts affecting customers.
However, frequently, large pipe bursts are firpoorted by customers (i.e., when leaked
water emerges on the surface). In situations winereexplicit pipe burst detection
mechanisms are in place, customers reporting mtatdf bursts are the only means of
(reactive) response to control leakage. Despitagobaivery strong indicator of a burst
location, Customer Contacts (CC) are imperfect @arthot be entirely trusted. A CCM
was developed under the assumption that a burstipifpcated in the proximity of the
location reported by a customer. The coordinatethefgeocoded location of a burst
(i.e., easting and northing) provided by a customere used in this work. Furthermore,
the CCM used a weighted distance to reduce thednfle of misleading CCs (i.e.,
outliers) in situations when multiple CCs were reed. The fact of whether a CC is
genuine and originated from the proximity of a buan only be verified
retrospectively. Analysis of CC data of a large bemof DMAs confirmed the
existence of misleading contacts. The mathemaftmahulation of the model is as

follows:

CCM, =min(dist(i,CC, < ) (3.8)

. dist(CC, ,C)

| Nf‘dist(CCk ,C) 3:9)

where:i is the index of a pipe, dist is the shortest Eledn distance between the
customer location and the pigeC; is a customer contagtw; corresponds to a relative
distance and is a weight reflecting the signifieapn€a particular CC (i.e., the lower the
value ofw; the more significant a given customer contactNg}); is the total number of

CCs associated with a particular pipe burst @nslthe centroid of all CCs related to the

pipe burst.

The CCM is illustrated in Figure 3.9, which depiatsexample of three CCs associated
with a pipe burst. Two CCs (i.eCC; andCG;) form a cluster and the customer contact

no. 2 (i.e..CC,) was incorrectly assigned to this particular fipest or was misleading.
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Figure 3.9 Weighed distance from customer contactspipe

The CC, andCG;, therefore, receive lower valueswf andw; compared tav, received

by CC; and so will be treated as more important.

3.3.2.3 Hydraulic Model

A HM was used to locate a burst in a WDS by sinmggits effects (i.e., an increase in
flow and drops of pressure) and compare them wathes obtained from pressure and
flow sensors deployed in the field. An estimatedgnituide of the burst flow is first
provided by an early warning pipe burst detectigsteam able to discover abnormally
high inflows into a DMA (e.g., Mounce and Mache00&; Romancet al. 2009). An
extra demand, equal to the estimated burst flowhes added to the centre of every
pipe to model the effects of a burst in that lamatiThe pressure boundary conditions of
the HM are set according to the data obtained frdet pressure sensors at the time
when the burst was first detected. The customeradésiare proportionally scaled so
that they add up to the measured inflow into theADbdbtained from the DMA inlet
flow meters data and all measured exports (Cestomer Demands DMA inflow -
exports- burst flow. The likelihood of any pipe bursting in the systes then indicated
by a Sum of Squared Errors (SSE) between obsenedhadelled pressures calculated

as follows:
HM, =33 (R (1) - B (1)? (3.10)

s=1 t=1
where:i is an index of the burst pipe in the HMs an index of a node where a pressure

sensor is located\s is the total number of pressure sensors in thevar&t T is the
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number of pressure measurements available (ifeereht times) P, (t) is the modelled
pressure at timeat nodes andP; (t) is the measured pressure at tina¢ nodes.

Flow measurements inside a DMA have not been edilsince these are not typically
available in real life systems (at least not in th€) due to the higher cost of flow
meters in comparison to pressure sensors. Mud#i-iliIMAs could also be easily
exploited since depending on the location of thestdifferent amounts of water would

be drawn from each of the DMA inlets.

Only one set of pressure measurements taken dintieeof burst detection was used
here to allow for fast identification of the loaati of the burst. Clearly a trade-off exists
between the response time and quality of the locafifhe method could be further
improved to better utilise multiple measurementsrdime, e.g., by modelling the burst

as pressure sensitive outflow using an emitter §Padd Liggett 1992; Wat al.2010).

A pressure driven modification of EPANET (Morleydafricarico 2008) was used here
instead of a conventional demand driven hydrautitves to obtain more realistic
results. The burst flow added to the network attime of its detection was considered
to be pressure insensitive, unlike the nodal demandhich could be reduced when
pressures in the system dropped below 15 m of h&hd. assumption of pressure
insensitive burst flow in this situation can betifisd since the amount of water
escaping from the WDS was estimated by an ANN. 83temated burst flow, however,
represents an average outflow over a given timedovin which could be seen as a
limitation to the adopted approach. Better resotisld be achieved if the ANN was

able to provide estimated flow for every time shepn the burst detection time.

3.3.3 Information Fusion

This section describes the information fusion psscevhich forms the core of the
newly proposed D-S Model. Each of the informationrses described above provides
a single output (i.e., criterion measurement) fachepotential incident associated with
an alarm, reflecting the likelihood (i.e., a norisetl value of the criterion
measurement) of occurrence of a burst in that pijpe. criterion measurement is the
expected burst frequency, weighted distance fro@Caor SSE for the PBPM, CCM
and HM, respectively. The individual informationusces used are not considered to be

fully reliable and each may be associated with féerdint level of credibility (i.e.,
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trustworthiness of the model, which is reflectesbtigh its mapping curves). In order to
improve the combined confidence in the locatioraddurst pipe, the information from
all available sources is fused using the D-S thégrapplying a suitable combination
rule (i.e., Eq. (3.3), Eqg. (A.13) or Eq. (A.17)).

Before the outputs of individual models can be comd, the criterion measurements
(i.e., model outputs) need to be transformed iNRA8 each representing the exact
belief in the given proposition (i.en({Burst}), m({ NoBurst)) as well as the degree of
ignorance (i.e.m({ Burst NoBurs})). For this purpose a two-step procedure has been
adapted from Beynon (2005). The criterion measunénalues are first converted to
confidence factors using a suitable normalisatiancfion and then transformed into

BPAs as shown in Figure 3.10.

a) Normalisation b) Mapping
1
S S
Q Q
S [l: i
© @
(&) I (&)
c c
[} [}
o ©
S Linear 5 :
© —— Sigmoid © i : :
Gaussian N P ? B,
; m.({Burst ,NoBuist}) = y;
Logit : f/
0 : > ol | : . |
—® o 0y Y3 Y2 1
criterion measurement BPA

Figure 3.10 Transformation of measurement critetia BPAs based on Beynon (2005)

Beynon (2005) used a sigmoid normalisation functit;m transform criterion
measurements into confidence factors that were ethpp corresponding BPAS. In
accordance to Safrane&t al. (1990), Beynon (2005) applied simple symmetric
functions defined by two parameté&sandB to map confidence factors to BPAs. On the
other hand, Sadigt al. (2006) used trapezoids, typical for fuzzy setsplitain BPAS
directly from criterion measurements. In this wankwever, the type of normalisation

functions (i.e., linear, sigmoid, one-sided Gaussaad logit function) as well as the
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shape of the mapping functions (defined by 8 patarsgi.e., 4 pointgy, B;, A, andB;

as shown in Figure 3.10) were determined for edcth® input models based on its
performance (i.e., credibility) on a number of brgtal cases during calibration. The
mapping function describingn({ Burs) is a non-decreasing function whereas the
function describingn({ NoBurst) is a non-increasing function. Once the evidefare
every pipe in the network is transformed to BPAsitidividual pieces can be combined
using a combination rule (e.g., Eq. (3.3)). Thauaktule used (i.e., Dempster’s rule,
Yager’'s rule or the PCR5 rule) was determined a$ pka calibration procedure
(described in section 3.3.5) so that the ensemliflehe combination rule, the
normalisation and mapping functions gained the marn benefit according to

calibration objectives described in section 3.3.5.

The information fusion procedure described abovelm summarised in the following

steps:

1. Run each of the considered input models (e.g., PBBGM and HM) tocobtain

criterion measurementof every potential incident.

2. Based on the range of criterion measurements aftecplar model obtained for
every potential incident, perform normalisation (using appropriate
normalisation function) as shown in Figure 3.10otdain value of confidence

factor.

3. For every potential incident compute its BPAs (ima({ Burs$), m({ NoBurs})
and m({Burst NoBurs})) based on the value of its confidence factor by
applying mapping functions corresponding to a particular model as suggested
in Figure 3.10.

4. Once BPAs for every potential incident and evergsidered input model (i.e.,
source of evidence) are obtainegply a suitable combination rule(e.g., Eq.
(3.3)) to obtain the combined BPAs, representing kavel of Belief and
Plausibility as well as BetP of every potentialid®nt as being or not being the
True Burst Location (TBL).
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A data flow diagram of the information fusion metloéogy, described in the four steps

above, is given in Figure 3.11.

Input Data
v Y v
PBPM CCM HM
A
Criterion Criterion Criterion
Measurements Measurements Measurements
A
PBPM CCM HM
Normalisation Normalisation Normalisation
A A A
Confidence Confidence Confidence
Factors Factors Factors
A A A
PBPM CCM HM
Mapping Mapping Mapping
A A A
PBPM CCM HM
Bel, PI Bel, PI Bel, PI
A
D-S Model
Legend:
A Process
Bel, PI, BetP
Data

Figure 3.11 A data flow diagram of the informatfoision process

3.3.3.1 Information Fusion Example
To illustrate the actual process of informationidusas described above a simplified

example of one potential incident (i.e., pipe segmb “OEJILLIL”) and 2 sources of
evidence (i.e., the PBPM and HM only) is preseriect.
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1. PBMP and HM are run for every considered potemmigitlent in a DMA and for
the selected potential incident (“OEJ9LLOL") retuhe following result:

CriterionMeasuremepgpy(“OEJILLIL”) = 481 bursts/1000 km/year (burst rate)
CriterionMeasuremenpiy (‘OEJOLLIL”) = 5.42 nf (SSE)

2. Confidence factor is then obtained after normadjbmiterion Measurement of
every considered model using a suitable normatisdtinction (i.e., sigmoid
function for PBPM and logit function for HM):

ConfidenceFactegpv(“OEJOLLIL”) = 0.998
ConfidenceFactef (“OEJOLLIL”) = 0.635

3. From the value of confidence factor the BPAs araioled using mapping
functions corresponding to each of the consideredets (see, e.g.,
Figure 3.12). The actual mapping curves used ircéise of the PBPM can be
found in Figure 5.13.

mespM({ Burst}) = 0.357
meepm({ NOBurs}) = 0.014
mespm({ Burst, { NoBurs}) = 0.629

According to Egs. (3.1), (3.2) and (3.6) tel, Pl andBetPstructures can be
calculated:

BeIpoM({ BUI’SI}) = mpoM({ BUI’SI}) =0.357

Plpspm({ Burst) = mpgp({ Burst) + mpgp({ Burst, { NoBurs}) = 0.357 +
0.629 =1-0.014 =0.986

BetPepn({ Burs$) = [Plespm({ Burst) + Bebepm({Burst)] / 2 = [0.986 + 0.357]
/2=0.672

The actual mapping curves used in the case of Me&h be found in
Figure 5.14.

muv({ Bursf) = 0.000
mum({ NoBurs}) = 0.130
muv({ Bursg, { NoBurs}) = 0.870

According to Egs. (3.1), (3.2) and (3.6) tel, Pl andBetPstructures can be
calculated:

Bekw({Burst) = 0.000
Plam({ Burs) = 0.000 + 0.870 = 1 - 0.130 = 0.870
BetRuu({ Burst) = [Plam({ Burst) + Bekm({Burst)] / 2 = 0.435
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Steps 1-3 are graphically illustrated in Figure03.1

4. Once the BPAs are obtained Dempster’s combinatitenEgs. (3.3)-(3.5) can
be applied:

K =megpm({ Burs$) x mym({ NoBurs}) + mym({Burst) x megpm({NoBurs}) =
0.357x 0.130 + 0.006< 0.014 = 0.046

Megpm Huv({ Burst) = [muw({ Bursg) x megpp({Burst) + muym({ Burst) x
mespM({ Burst, { NoBurst) + megpm({ Burst) x mym({Burst, { NoBurs})] / (1-
K) = [0.000x 0.014 + 0.00& 0.629 + 0.35% 0.870] / [1 - 0.046] = 0.326

Mpgpm HM({ NoBuUrs}) = [mum({ NoBurs}) x megpm({ NOBurs}) +
mum({NoBurs}) x megpm({ Burst, { NoBurs}) + megpm({ NoBurs}) x

mum({ Bursg, { NoBurs})] / (1 - K) = [0.130x% 0.014 + 0.130< 0.629 + 0.014
0.870] /[1 - 0.0464] = 0.1

Mespm av({ Burst,{ NoBurs}) = 1 - mpgpm um({ Burst) - megpm um({ NoBurs}) =
0.574

The corresponding belief structurBel, Pl and BetP could then be easily calculated
using Egs. (3.1), (3.2) and (3.6), respectivelyeBithe associativity of Dempster’s rule
the combined results obtained above could be agaimbined with evidence from the
CCM. If other combination rules (e.g., Yager's oCHS rules) were applied, their
guasi-associative versions would have to be usecesihe fusion results should be

independent of the order in which evidence is comdbi

3.3.4 Independence Assumption

One of the conditions of using the Dempster’'s coration rule (as well as the other
combination rules introduced here), applied in thwk, is that the evidence coming
from different sources is independent (Dempstef7)19@arashiet al.(2008) explained
the concept of independence assituation when the knowledge of the particulduea
taken by a piece of evidence does not change dief bbout the value that the second
could také. They further noted that the assumption of indefnce may suit domains
such as sensor information fusion but is less sealin the case of human subjective
judgements. Biet al. (2008) discussed the independence of outputs eéreble

classifiers and concluded that the assumptioneif thdependence was sensible.
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In this work, the evidence considered comes froraghdifferent models (i.e., PBPM,
HM and the CCM), which accept different inputs agmploy completely different
methodologies. For example, the PBPM is based enpthysical properties of the
assets, the HM solves a series of continuity amiggnequations to calculate pressures
and flows in a WDS and the CCM calculates distarice® CCs. The assumption of
their independence is hence seen as realistic. \Hawi subjective human judgements
also need to be considered as evidence (e.g.,topsradgement), different families of

combination rules may need to be adopted (Margishi. 2008).

3.3.5 Dempster-Shafer Model Calibration

The D-S model, like any other model, needs to Wibreded before it can be used. As
suggested before, the credibility of the input medesed in the information fusion

process can vary significantly. The calibration gadure explicitly incorporates the

varying credibility of the input models across themtire output range (i.e., the range of
criterion measurements). The D-S theory is equippé#d a mechanism to discount
evidence (see Appendix A.3), to reflect the crdiiybof a particular information source

and avoid situations of absolute conflict betwega information sources. Discounting

was not used in this work and the credibility oparticular information source was

instead indirectly reflected through its mappingves (see e.g., Figure 3.12).

1
0.9
0.8 1 m(Burst)
0.7
— — m(NoBurst)
0.6 + _—— =
< m(Burst,NoBurst) i
o 0.5 4
m
0.4 - |
0.3 | |
0.2 1 |
0.1 \
O T T T A ——
0 0.2 0.4 0.6 0.8 1
Confidence Factor

Figure 3.12 An example of a mapping curve

The maximum value of probability mass that can thebated either to theBursg or

{NoBurs} hypothesis using a mapping curve reflects thalibibty of a particular
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information source. The higher the probability ma#isibuted to either theBurst or
the {NoBurs} hypothesis, the more trustworthy a particular reeuof evidence is and
the better is its capability to determine if a farar potential incident is the cause of
the observed anomaly. On the other hand the hidjieeprobability mass attributed to
the {Burst NoBurs} hypothesis the less specific and credible thesginformation

source is.

The calibration aims to determine the optimal valeé the parameters defining the
mapping functions (i.e., their coordinates) as waslto select the optimal normalisation
function and the most suitable combination rulestéfical cases, where the TBL of an
alarm was known were used to find the optimal deparameter values that yield
maximum benefit during the information fusion pregen terms of identifying the true
cause of a failure (using the three individual migdeThe calibration problem was

formulated as a multi-objective optimisation prableas follows: Find vector

Z =[Z, Z,..., z] such that:

f(Z') =min f (z) = min[f,(2), f,(2),....f, (2)] (3.11)
Without any loss of generality only minimisation assumed here, however, any

maximisation problem can be easily re-formulated asnimisation problem.

The structure of the vectaris given in Table 3.1, which shows all its elenserfthe
meaning of individual components of the vector isaibed as follows. Three
information sources (i.e., the PBPM, the HM and @&M) were considered here, each
requiring two mapping functions (i.em({Burst), m({NoBurs})) and each of the
functions comprising 2 points (i.e., fomandy coordinates). This in total accounted for
24 floating-point variables. The coordinates were in the range [0, 1], however,the
coordinates were in the range [0, 0.9] (to avoidbfgms with saturation, when one of
the information sources reaches absolute certéBajraneket al. 1990)). There were
also 4 additional integer variables, 3 of them. (N, N2 and N3) were used to select a

normalisation function (i.e.a{0,1,2,3}) for each of the three information sources

(models) and the fourth variable (i.e., R) was usedhoose the combination rule (i.e.,

b[{0,1, 2}). Each of the integer values of parameteedb corresponded to one type

of normalisation function or a combination rulespectively.
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Table 3.1 Structure of a vector of decision vaeshl

Mapping curve 1 Mapping curve 2 Mapping curve 3 N1|N2|N3| R
x 1y Ix Iy Ixly Ix Dy Ix Dy [x Jy [xJy [xdly [xJy [xJy Ix Dy Ix [y [a]a]a b

Based on Eq. (3.11), a three objective optimisgtiamiblem was formulated, minimising

functions f,(x), f,(x)andf, & ) defined as follows:

£.(x) = il Rank( BetR, ({ Burkp (3.12)
L=, 3 weel( sy (3.19
B0=2 T Pi(Nosurs) (3.14)
where: |

* N is the number of historical calibration cases,

e TBL is the known True Burst Location (i.e., an indéxa@ipe where the burst

was found) of historical case

» BetR({Burst) is the pignistic probability (see Eq. (3.6)) thpipe x burst,
Rank( BetR ({ Burpf) is a function which returns the rank (see Figule3

for illustration) of the TBL within the set of patgal incidents associated with
case when sorted in descending order of their valuBetR{ Burst),

* Proximity(TBL) is a function that returns a set of 10 pipes #nattopologically
nearest to the TBL of caseThe topological distance is determined by tracing
the networkyw; is a weighting factor proportional to the distade pipe from

the TBL (i.e., the closer a pipe from the TBL, tiigher the weight),

« PI,({NoBurs})) is the Plausibility (see Eq. (3.2)) that pjpetid not burst, and

« Bel ({Burs)) is the Belief (see Eq. (3.1)) that pipes the burst locatiorPl; is

a set of potential incidents (i.e., possible burstations) associated with

historical case.
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Link Id BetP Link Id BetP Rank
0004G38E 0.962 0004G2MM 0.986 0
0004G370 0.945 0004G38E 0.962 1
0004G2MM 0.986 0004G370 0.945 2
OEIII5H 0.826 0004E1IL 0.909 3
OEJ9KAGM 0.869 OEJ9KAGM 0.869 4
0004E1IL 0.909 OEIIII5H 0.826 5
0004G2F0 0.820 0004G2F0 0.820 6

Figure 3.13 An example of the Rank of the TBL (LIdk0004G2MM)

Note that the minus sign in Eq. (3.13) and Eq. 4B.&ffectively changes the
minimisation problem into a maximisation problemheT optimisation produces a
Pareto-front comprising non-dominated (i.e., equgtbod) solutions. The concept of
dominance is graphically illustrated in Figure 3d4 an example of a two-objective
minimisation problem, where the non-dominated sohs are displayed in green.

A
® Legend
non-dominated E ) ) non-dominated
f, | region : dominated region solution
__________________ ,‘""_____"""""""""""" @ dominated
X E . solution
5 ©
non-dominated region

Figure 3.14 An example of a Pareto front

In the case of a two-objective problem, the non-thated solutions are points on a
Pareto curve. In the case of a three-objectivelpmlas defined in this work, the non-
dominated solutions are points on a Pareto surf@tearly, the objective functions
presented in Egs. (3.12), (3.13) and (3.14) ardlicing and the optimisation produces
a trade-off surface. A single solution from thed&aoff surface then has to be selected

based on the DM'’s preferences. The objective foncfi(x) plays the most significant

role in terms of the overall performance of theomiation fusion. The remaining two

objective functions f,(x) and f,(x) are equally important and reaching a balance

between those two objectives is desirable.
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3.4 Impact Component of Risk

As discussed in the literature review impact ofioas failures (e.g., pipe bursts,
segment isolations, pump failures, etc.) in a WIS been studied by a number of
researchers. The adopted approach so far was pyirftam a strategic perspective, to
support rehabilitation of existing networks, andswaot suitable to fully meet the
requirements of operational decisions. Furthermordy in very few cases (e.g.,
Michaud and Apostolakis 2006; Beuken al. 2008; Vamvakeridou-Lyroudi&t al.
2009) was the impact model based on a complex enetsmprising a number of KPIs.

This section describes an impact model, develogestifcally to capture various
adverse effects of pipe bursts (e.g., supply iaotgron, low pressure problems,
discolouration, etc.) in a short term risk horiZerg., 24 hours) before they are located
and repaired. The impact model presented here pittetn utilise data and models
typically available to water utilities and does trgtto cover all aspects associated with
an impact of a failure, which would be beyond thepe of this thesis. The impacts are
evaluated from the perspective of a water utilitgther than of its customers.
Nevertheless, a strong focus on quality of serfmre various water consumers is
incorporated in the impact model. The core of theppsed model is formed by a
pressure-driven hydraulic solver (Morley and Tricar2008) coupled with a GIS. This
ensemble is used to calculate basic performancesures(e.g., system pressures) that
are later utilised by a number of additional modelg., a discolouration model and a
third party damage surrogate model). The outputghef models serve two main

purposes.

1) To provide a DM with a detailed breakdown of vasg@aspects of the impact

of a failure and its development throughout a giuek horizon.

2) As inputs for calculation of an aggregated impaatasure of a failure
allowing comparison of mutual significance of thepiacts in different parts of
a WDS.

The impact model was developed as follows:

1) First major types of customers were identified,

73



Chapter 3 - Risk-Based Pipe Burst Diagnostics

2) A suitable way of failure modelling was established

3) An objective tree using MAVT, based on the requieets of a water utility and

data availability, was constructed,

4) A set of KPIs, which serve as suitable surrogateasuees to quantify the

severity of various types of impacts consideretheobjective tree, was formed.

3.4.1 Customer Categories

The KPIs proposed by OFWAT (2008) focusing on aanty of water supply (i.e., the
DG3 indicator) and pressure adequacy (i.e., the Df@Rator) treat all customers as
equal. A number of publications (Michaud and Aptakis 2006; Liserraet al. 2007;
Beukenet al. 2008) suggested that it was important to take adoount the type of
customers when assessing impact of a failure. €salts of a questionnaire survey
shown later in this thesis (section 5.4.1) alsoficmed that water companies consider
the type of a customer when making operational si@ts. Without any loss of
generality, this research closely follows the costo classification suggested by
Michaud and Apostolakis (2006) and operates wighftilowing customer categories:

» residential (houses, flats, etc.),

« commercial (shops, businesses, etc.),

* industrial (factories, mills, etc.), and

« critical (hospitals, schools and other vulnerable customers

Michaud and Apostolakis (2006) further consideredb-sones, which are typically
modelled as demand nodes in an HM representinggla humber of accumulated
customers of the four types above. Sub-zones watreansidered in this work since
estimating the effects of a failure beyond the lauies of a WDS (i.e., its HM) is
difficult. It is suggested here that the impactsub-zones should only be considered
when a full interruption of water supply occurs déase of the physical disconnection of
an export node. Even in such a case it is unknowsther or not the sub-zone is
supplied from another source. Given the focus sfwork on the impact of pipe bursts

before they are repaired, no demand nodes can bwlely disconnected and
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therefore the exclusion of sub-zones does not septe any limitation to the
methodology.

3.4.2 Failure Modelling

A pressure driven extension of EPANET (Morley arricdrico 2008) was used in this
work to model the effects of a pipe burst in a WD8e pressure-demand relationship
of all demand nodes was considered to be ideraicdldescribed according to Wagner
et al.(1988b) using following equations:

0 if P, <P™
P _ Pmin Un
Qj = ijeq (—P d’es_ ;3 mm] if iji” < FJ? < Fj’jes (3.15)
j i
ereq If P] > F?des
where:

* Qs the real demand supplied at npde
» P is the actual pressure head at npde

. ij‘” is the minimum required pressure to supply anyatem
+ Q" is the required demand at ngde

« P®™is pressure required to fully satisfy the reque:stemand

* nis a parameter, which takes value of 2 accordin@\tagneret al. 1988b)

The values oijm‘” and dees should be ideally obtained from field tests durimgdel
calibration and are likely to differ amongst demaratles (e.g., because of different
type of customers, property height, etc.). It wasuaned here that the minimum

pressurermin was 0 m of head at the water main (although tsssiimption might not be

entirely realistic). The value of pressul‘%?es required to deliver all requested demand

was considered to be 15 m of head following theimrmim level of service requirements
issued by OFWAT (2008). A typical shape of the poes-demand curve, described by
Eq. (3.15), is shown in Figure 3.15. Other pressi@mand relationships as suggested
in the literature review in section 2.5.1 couldused, without any loss of generality.
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Pressure vs. Demand Relationship
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Figure 3.15 A relationship between pressure andadenof nodeg

Pipe bursts can be modelled in a number of waylsasissed in the literature review in
section 2.5.2. The most realistic way chosen irs thvork models bursts using
EPANET's emitters as pressure dependent outflovee (Bigure 3.16) with the

simplifying assumption that their pressure exponemas equal to 0.5, regardless of

pipe material or other factors.

The value of the exponent can vary from 0.5 to Bdayever, as suggested by Cassa
al. (2010) values higher than 1.5 estimated duringdfigials do not have ground
theoretical foundations. The chosen value of thé&temexponent of 0.5 agrees with
Lambert (2002) who suggested that detectable laalisbursts in metal pipes typically
have values of exponent close to 0.5. In this thseemitter coefficient is calculated
based on the estimated burst flow and actual presatithe burst location. This
approach provides more realistic results, howeiterequires an extra steady state
simulation to obtain pressure at the beginninghefitnpact simulation to calculate the

value of the discharge coefficie@f using Eqg. (2.2).
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Outflow profile of a simulated pipe burst

Burst flow [l/s]

Time of burst | | |
detection ! ! !

Figure 3.16 A sample outflow profile from a presssensitive burst

3.4.3 Impact Aggregation

A simplified tree of objectives (see Figure 3.1s)metimes also referred to as a “value
tree” (Michaud and Apostolakis 2006) was establisfidne tree in Figure 3.17 contains
four main impact categories: Supply InterruptiomwL Pressure, Discolouration and
Economic impact. These are discussed in more detaslection 3.4.3, where KPIs
corresponding to the leaves in the objective tneedefined in Egs. (3.18) - (3.28).
Every branch in the objective tree has a weightegor associated with it, which
reflects the importance of a particular type of atipto a water utility. The way specific

values of the weighting factors can be obtaineskgained later in section 5.4.1.
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Wi,1 W2 W3 Wi4
Supply ’ } B
Interruption Low Pressure Discolouration Economic

Duration
(SID)
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Residential Residential Residential Residential

Wsis,3

Wb,2 “Magnitude

(DISCM)

:
:
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i
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Figure 3.17 A tree of objectives

Evaluation of the overall impact represented bydhgctive tree shown in Figure 3.17
falls into the field of Multi-Criteria Decision Amgsis (MCDA). MCDA provides a
number of techniques that can be used to aid DMsotee complex multi-objective
problems. Following Lagken (2007) the available méthcan be broadly classified into
3 categories: (1) value measurement models, (2) gepiration and reference models
and (3) outranking models. None of the above teples is suitable for every
application and selection of a particular technigigpends on a particular decision-
making context. In this work, the MAVT (Keeney aRthiffa 1976), and the AHP
(Saaty 1980) were used. The MAVT is one of the $astpmethods available and is
appropriate for the quantitative objectives userkhtis simplicity can be seen as an
advantage since it can be easily understood areptet by DMs, as opposed to more
complex methods, such as the Multi-Attribute Uyilitheory (MAUT). The principle
behind MAVT is to associate a real numbga) (see Eq. (3.16)) with every considered
alternative (i.e., impact of a potential incidenthe valueV(a) is then used to rank
alternatives. An alternative is preferred (i.e., will have higher impact) toeaitativeb

if and only ifV(a) > V(b) (Leken 2007):

V@)=Y wy(3 (3.16)
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where:w; is a weighting factor associated with criterioi.e., a leaf in the objective
tree shown in Figure 3.174), is a function defining the performance of altewea on

criterioni (i.e., how severe the impact was).

If the scale of each of the criteria is differemthich was the case in this work) then
normalisation has to take place so that the rafhgeitputs of functionv(a) is identical
for every criterion. The weights; need to be elicitated from a DM, which was achieve
here using the AHP as shown later on a case stugBepted in section 5.4.2. The
requirement to normalise criteria might, howevdfed their scale significantly when
outliers are present in the set of alternativesvigtas and Trifillis (2006) suggested
using the fifth and the ninety-fifth percentile imle normalisation procedure instead of
the minimum and maximum to alleviate this problérhe use of percentiles was not
applied in this work, despite outliers being ocoasally encountered within the set of

potential incidents.

The criteria in this work correspond to the leaeéshe objective tree in Figure 3.17
(e.g., Duration of Supply Interruption of Residahttustomers). The weighting factor
w; of criterioni is obtained by multiplying all the weights on thath from the root of

the tree towards a particular leaf as suggestexha@xample in the following formula:

WSDR = Wl,l X WSI,lx WSIDZ (317)

The above Eq. (3.17) represents the weighting facfothe duration of supply
interruption of residential customers and was esg®d as a product of three weights
from the objective tree in Figure 3.17. Other MCi&hniques (e.g., MAUT) could be
used to aggregate the KPIs presented in sectiod 8ib a single impact measure,

without affecting the whole risk-based pipe butagdostics methodology.

3.4.4 Key Performance Indicators

This section describes KPIs to capture the adwedfeets caused by a failure in a WDS.
The KPIs introduced by OFWAT (2008) were extended eefined to better suit the
needs of a near R-T impact assessment requiredutognt customer-oriented water

utilities.

In the UK the minimum level of acceptable servieset by OFWAT (2008) as follows:

“For two properties, a flow of 18 I/min at a pressof 10 m head on the customers' side
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of the main stop tap is appropriate”. Generallyaw@bmpanies use a surrogate measure
of 15 m head in the adjacent main due to the faat measuring the pressure on
customers’ side would be difficult. This impliesatithe minimum required pressure in
the mains has to be higher in order to achievecaaable level of service. Typically,
water utilities try to maintain the pressure ofestst 20 m at the water main in the street
throughout the day to allow sufficient room fordtuations. However, it is not desirable
to keep the pressures in a WDS high, due to inetelevels of leakage and higher burst

rates.

Following the objective-tree presented in FigurE73he KPIs were classified into four
main categories (i.e., supply interruption, low gsure, discolouration and economic

impact), which will be discussed in detail in tlidldwing sections.

3.4.4.1 Supply Interruption

Supply interruption is treated as the disconnectiom the water supply or a situation
when no water is available at the consumers’ ta@., (the pressure is below the
minimum acceptable pressuRg;). For the sake of simplicity, the value Bf: was
assumed constant throughout the whole network, henyven reality it is node specific.
To accommodate the height of properties, the mininpuessurd?,; was taken as 7 m
of head at the water main. The chosen valuB{7 m) might seem to be in contrast
with P™ (0 m) used in Eq. (3.15). Although, the custonees already considered as
being affected by a complete supply interruptidr, pressure driven HM assumes that
some water consumption still occurs at demand naddeng as the pressure is greater
than O m.

The major impact of the supply interruption for theater utility is in the form of
penalties imposed by OFWAT as part of the DG3 perémce indicator. Secondary
losses are also represented by the decreased esderuto no water consumption by
disconnected metered customers and the costs bgledath an increased number of
CCs. Furthermore, significant drops of pressure.,(when pressure reaches 0 m of
head) can lead to intrusion of contaminants inWWRS (Sadiget al. 2006) and cause

water quality problems that might affect the healtld safety of water consumers.
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OFWAT (2008) describes the DG3 indicator as follotMghe aim of this indicator is to
identify the number of properties affected by p&thnand unplanned supply

interruptions lasting longer than 3 hours, 6 hout&, hours and 24 hours.

For the scope of this work, supply interruptionIvie restricted to only unplanned
interruptions caused by failures in a WDS. It isgwsed here to extend the existing
supply interruption KPIs (Mansooet al. 2005; Michaud and Apostolakis 2006;
OFWAT 2008) and express the impact of supply iofgion in a more customer
focused way, using the Supply interruption ScaléSYSand Supply Interruption

Duration (SID) KPIs, as follows:

Ny (CUStoyemype  IFOtO{L,2,..., TH AY< R
5 _ Custrype AT 3.18
Rustrype ;{ 0 otherwise ( :
Nn
21D, XCUSf ¢rype (3.19)

SIDCustTypt[ H =12

where:
SI&ustTypelS the Supply Interruption Scale quantified pestomer type

S I QustType

* Ny is the number of demand nodes in the network
e Tis the total simulation time (with assumed timepsbf 1 hour)

*  CustcusttypelS the number of customers of a particular tyggpsad from node

* Py(t) is the pressure at demand nod time step

*  Piy is the minimum required pressure in m of headwelibich a node is

considered as being without water supply (in tlisec7 m)

*  SlDcustTypelS the weighted average Supply Interruption Doragvaluated per

customer type

* ID;j is the duration of supply interruption measurexhfithe first time when
pressure at demand nodaropped belowPn, until the time when the supply

was fully restored (i.e., excluding any gaps) hsitated in Figure 3.18

81



Chapter 3 - Risk-Based Pipe Burst Diagnostics

Supply interruption duration = 5h

Low pressure duration = 3h

< » < »

| AASSY, | SIS/
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Figure 3.18 Measurement of duration of supply mietion and low pressure impact

3.4.4.2 Low Pressure

Low pressure problems cause a wide range of dimedtindirect impacts affecting the
water utility and its customers. The economic ratpl OFWAT requires low pressure
incidents (i.e., drops of pressure below 15 m @ithat the water main) to be reported as
part of the DG2 performance indicator by a wateltyit Short term failures such as
those caused by pipe bursts are excluded from B2 [2gister. Although short term
pressure problems caused by burst mains are extlirden the DG2 register, all
properties receiving substandard pressure for itiare 1 hour have to be listed together
with the reason for their exclusion. Low pressurebfems caused by pipe bursts thus
should not represent a direct economical impad¢herwater utility in terms of financial

penalties imposed by OFWAT.

Low pressure causes inconvenience to customersaff@cts pressure sensitive water
consumption thus reducing the revenue of a watdityuin the case of metered
customers. From a strategic perspective, inadequassure problems occurring in the

case of fire might even lead to loss of life anoparty (Filionet al. 2007).

OFWAT (2008) describes the DG2 indicator as follow3he register must clearly
identify those properties reported under DG2 andtidguish them from those that
receive low pressure but are excluded from DG2, pravide a verifiable reason for

the exclusion (e.g., as abnormal demand or shamtthn of low pressure).”

The DG2 index is calculated as the total numbeproperties receiving substandard
pressure for more than 1 hour throughout the whlalg. Here an extended version,

which explicitly considers type of customers, waedl

Ny {CuspCusﬂ.ype OO, 2,..., TY: By HY <P () (3.20)

LP =
Sustrype Z 0 otherwise

i=1
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where:
*  LP&ustrypeis the Scale of the Low Pressure impact expreaseitie number of

properties of given type experiencing low presguoblems

*  Preqi(t) is the minimum required pressure at nodetimet (i.e., 15 m of head)
*  Custustrype,is the number of customers of a particular tygspsad from node

To take into account the duration (see Figure 3oi8)e low pressure impact Eq. (3.21)
defines the weighted average Low Pressure DurafidtD) for a given type of

customer.

iNZN{CUSI,CustType If Fr::ﬂn < P|( D < Rem( D}
o 0 otherwise
LPDCustTypl h] = == LPS:

ustType

Indirectly, the water utility also has to deal wéh increased number of customer phone

(3.21)

calls caused by low pressure problems (this, howewas not incorporated due to

insufficient data available).

Similarly to low pressures, high pressure failucesld also cause significant impact in
a WDS. These could be caused by a malfunction eédere Reducing Valves (PRV),
which could lead to an increased burst rate inattiected area. High pressure impacts

were not considered in this work.

3.4.4.3 Discolouration

As reported by Vreeburg and Boxall (2007) discodion can account for
approximately 34% of CCs for a typical UK water qmany. It is, therefore, in the
interest of water companies to be able to quantify effects. The impact of
discolouration caused by a burst pipe (i.e., irm@daflows and velocities and low
pressures) is a complex phenomenon. A simplifiesc@louration Risk Model (DRM)
developed by Dewis and Randall-Smith (2005) basedsi-trees created by a panel of
experts was used in this work. The developmenthef DRM is not a contribution
presented in this thesis. The model provides astske for every pipe, which reflects a
relative susceptibility of the pipe to generatecdisuration. The magnitude (i.e., how
severe the discolouration impact will be) was egpeel here as a sum of the increase in
discolouration risk between normal and failure epieg conditions:
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Ne (Disc, .., .. — Dis if Disc ... > Dis
DISCM =}’ i failure G norm G tature > DISGom
0 otherwise

j=1

(3.22)

where:
* Npis the number of pipes in the network

* DisG norm is discolouration risk score of pip@ender normal conditions
* Disg siure IS discolouration risk score of pip@nder failure conditions

(Note that the discolouration risk score of the sbypipe was excluded from the

analysis)

Furthermore, the scale of discolouration impaet ,(how large an area will be affected)
was expressed as the total length of pipes exménigmn increase in the discolouration

risk score over a given risk horizon (i.e., 24 ®ur

Ne (Lenat if DisG ... . > Disc
{ g r( .D q,fallure 9,norm (323)

DISCS=
z 0 otherwise

j=1
where:

* Length(j)is a function which returns the length of pjpe
An example of a map showing the discolouration icbpg@ased on the increase of
discolouration risk score) caused by a large pipestb(denoted by X) is shown in
Figure 3.19. The figure enables WDS operators tonage abnormal flow pathways
that experience an increase in flow or possiblwfteversals and provides them with an

insight into their discolouration risk.
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Figure 3.19 A map showing the DISCM KPI after agpiurst

The methodology used in the discolouration modelhinnot be the most suitable one
to apply in WDS operation. Other more advancedniegles to model discolouration
are available (e.g., the Resuspension potentighadedr Cohesive transport model) as
suggested by Vreeburg and Boxall (2007).

3.4.4.4 Economic Impact
The following category of impacts represents diegad indirect costs that could affect a
water utility because of a failure in a WDS.

L ost Water
In case of a pipe burst, the water losses are ataby summing up the outflow from a

burst modelled using an emitter over the whole lngkzon (e.g., 24 hours).

.
3600x > BurstFlow(t) (3.24)
LW[ n?] = t=1 '
1000
where:

* BurstFlow(t)is the simulated pressure sensitive burst floWsiat timet

Lost Revenue Due to Undelivered Demand
Low pressures in a WDS could represent a direstflmsa water utility since customers
might not be able to receive all the water that Molbe consumed under normal
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conditions. The amount of undelivered water cargbantified thanks to the use of a
pressure driven hydraulic solver described in sacsi.4.2. In the UK where only 37.3%
of customers were metered in the year 2009/2010M®F 2009) the incurred losses

come only from those customers who have a mettalied.

The loss of revenue due to undelivered water (lserad low pressure or complete
supply interruption) assuming equal distribution aédmand between metered and

unmetered customers can be defined as follows:

T Ny ( |req(t) D(t))xCUStM
UMD = 2222« Y" 3 Cust,, + Cust,

t=1 i=1

i RO< Py © .29

0 otherwise

where:
* Direqt) is the requested demand of naodel/s

* Di(t) is the delivered demand of nodia I/s
* Custy is the number of metered customers supplied froden
* Custywm is the number of unetered customers supplied from node

Third Party Damage
Failure in a WDS, such as a burst pipe, can leadrids traffic disruption and a number

of indirect impacts affecting the water utility aitsl customers. The focus of this KPI is
to estimate the likely damage to roads and railweayd the social impact associated
with their repairs. The model could be further exiied to account for possible damage

to properties (i.e., buildings), however, theseensst considered here.

Land use data and the flow in a pipe were usedis work to develop a surrogate
measure for third party damage caused by a pip&t.bline model considers the length
of the intersection of a pipe with various typessoffaces (of defined importance)
above the pipe as well as the flow in the piperoheoto calculate the potential damage
and inconvenience caused by a burst. The outptiti®inodel can be to a large extent
pre-computed offline (e.g., the spatial analysigha land above a pipe) and applied

online by including information about the actuavil through the pipe. By assuming a
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linear relationship between the criticality of th&face above a pipe (referred to here as
the “Priority”) and the flow in the pipe, the mod=n be defined as follows:

T

2.Q()

TPD(i) = ANormPriority(i) + (1- 1) L= (3.26)

max (i Q )j

t=1

where:
* TPD(i) is the model output reflecting the damage causeditd parties by burst

of pipei

* NormPriority(i) is a normalized measure indicating the importan€ethe

surface(s) above pipe

» ] is a coefficient of relative importance of thevilon a pipe compared to the

type of the land above
e Q(t)is the flow in pipe at time ste

The “Priority” of the surface above a pipe was oidd as follows. A vector dataset
with all surface elements (e.g., roads, railwaysldings, etc.) represented as polygons
was utilised. In particular, the Ordnance SurveystdeMap (Ordnance Survey 2010)
dataset was used. The dataset was reclassifieddaogdo Table 3.2 and corresponding
Category was assigned to its elements. The mdstatrsurface type (i.e., Category 4)
was identified as a railway since a pipe bursttsnproximity might potentially cause
damage to the rails and lead to reduced safety. sBeend most critical Category
comprised roads and roadsides (i.e., Categoryri®esihese might be damaged by a
pipe burst underneath them. The polygons fallirig ithe road or roadside category
were further split into 9 sub-categories as indidain Table 3.3, to reflect the
importance of a particular type of road. The petage of the pipe length intersecting a
particular polygon was calculated and used as ghtiag factor. The priority class of a

pipe was calculated according to the following fatm

Priority (i) = Z (LOxCategory(9+ SubCategofy)xx Weidht ¥ (3.27)
sisn iz0
where:
» Priority is a measure of importance of the surface abgipea
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sis the index of a surface on the land

Categorys) is a lookup function which returns a value fromble 3.2 according

to the type of the surface

SubCategorfs) is a lookup function which returns a value fronable 3.3

according to the type of road above / in close pnity of the pipe

Weight(s,i)returns the fraction of the intersecting lengttpipfei with surfaces

relative to the total length of the pipe

i is the index of a pipe in an HM

The value of Category in Eq. (3.27) was multiplieg factor of 10 to represent a

hierarchical structure between categories and atdgories. Should the number of sub-

categories considered be higher than 9 (see TaR)el®n a different constant would

have to be selected to achieve the desired effect.

The normalised Priority can be computed using tflewing equation:

NormPriority(i) =

where:

Priority (i) - min (Priority k))
IQahx(Priority 0)- min (Priority k )

(3.28)

NormPriority is the normalised measure of importance of théasarabove a
pipe

I, kandl are indices of a pipe in an HM
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Table 3.2 Available types of surfaces, their resifasation and category

Description Reclassified|Category
Building Building 0
Glasshouse Building 0
Building; Rail Building 0
General Feature; General Surface Land 1
General Surface Land 1
Landform Land 1
Natural Environment Land 1
Unclassified Land 1
Landform; Rail Rail 4
Natural Environment; Rail Rail 4
General Feature; Road Or Track Land-Road 2
General Surface; Road Or Track Land-Road 2
Landform; Path Land-Road 2
Landform; Road Or Track Land-Road 2
Natural Environment; Road Or Track| Land-Road 2
General Surface; Inland Water Water 0
Inland Water; Natural Environment Water 0
Rail Rail 4
Rail; Road Or Track Rail 4
Path Path 2
Road Or Track Road 3
Roadside Roadside 3
Path; Structure Path 2
Road Or Track; Structure Structure 0
Structure Structure 0
Inland Water; Structure Structure 0
Inland Water Water 0

Table 3.3 Types of roads and their sub-category

Description

Sub-Category

Motorway

9

A Road

B Road

Minor Road

Local Street

Pedestrianised Street

Private Road - Publicly Accessible

Private Road - Restricted Access

Alley

R IN|W|A~ 01O | |0

An example output from the TPD model is shown igufe 3.20. The “Third Party

Damage” (displayed using a red-blue colour graflieras calculated using Eq. (3.26)
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by assuming. = 0.5. The flow in the pipes at 8:00AM is displdyé&sing different line
thickness.

dociy
/
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Figure 3.20 An example output from the third paléynage model

The values of the Categories and Sub-categoriat als@ve were assumed to be linear
although it might be necessary to further adjusséhvalues as well as the coefficignt
depending on the preferences of a DM. The curretting of the values might pose a
potential threat in situations where long pipesssroailways since, the intersection
length with the railway is relatively small (howeyso is the likelihood that the pipe
burst would occur in the proximity of the rails)dathus the final priority of such pipe

might be relatively small.

3.5 Abnormal Event Prioritisation

In the case of large WDS several pipe bursts ardifpes of failures can occur more or
less simultaneously in different DMASs in a simif&sk horizon (e.g., during 24 hours).
Extreme weather conditions, such as extended eabttost, are also likely to lead to
an increased occurrence of bursts and consequalatins (i.e., detected anomalies)
across the whole WDS. When alarms from multiple DiVeke generated in a similar
risk horizon, WDS operators frequently have to ptige their actions, based on limited
information (e.g., affected DMA, magnitude of abmat flow, etc.) and their

experience, since resources to deal with contingefitaations are typically limited.
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The decision about which alarms should be deah fist has to be reached promptly
to avoid unnecessary customer impact. As discubgedaffey et al. (1987) humans

making decisions in Real-Time (R-T) tend to ovekloelevant information and respond
inconsistently or too slowly if the rate of infortian flow is too great (e.g., an

increased number of alarms received in a contah)o

Unlike in other fields, such as the power and clvamindustries (Foongt al. 2009),
operational prioritisation of failures in WDS istnwell established. Current research
has been mostly concerned with strategic applicatguch as prioritisation of existing
infrastructure for renewal (Giustolisi and Bera2@09) using evolutionary optimisation
methods. The majority of the existing methods dfifa detection and prioritisation in
process control are based on rule-based Experer@gs(ES) (Foonget al. 2009) or
model based techniques (Isermann 2005). Fuzzy IGfaceh 1975) has also been
frequently used in conjunction with the rule-basgdtem to encompass uncertainty by
operating with linguistic terms rather than crisplues. The severity of an abnormal
event in process control is typically derived frdhe state of a number of sensors
related to a particular process. A rule-based systan contain rules in the following

form:

IF Temperature >50°C AND Pressure > 300 kPa THEN
priority = 10

IF Temperature >50°C AND Pressure <300 kPa THEN
priority = 5

On the other hand a fuzzy rule-based system waydtlice the critical thresholds using
linguistic variables to incorporate the vaguenesthe definition of a particular alarm

state. An example of a fuzzy-rule is shown below:

IF Temperature 1S* High” AND Pressure IS “High” THEN
priority = “Very High”

IF Temperature IS "High” AND Pressure IS “Normal” THEN

priority = “Medium”
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The rule-based prioritisation shown above utilides observed symptoms caused by a
failure, rather than the outcomes of diagnostichefobserved anomaly, to perform the
prioritisation. Even model based methods, whichicglfy generate residuals, i.e.
differences between observations and model outppesate in a similar fashion. The
suitability of application of such techniques taoptise flow alarms (i.e., detected
abnormal flows) in a WDS is questionable as willilhestrated later on case studies in

section 5.5.

A methodology for an initial automated screeningabdrms to help control room
personnel better prioritise their actions when stigmting several alarms occurring in
the same time horizon in different DMAs was develbplhe conceptual foundations of
this work were laid in section 3.2. Alarms can bespnted to operators ranked in the
order of their significance, which was determinezhf the outcomes of a near R-T risk
analysis (described in sections 3.3 and 3.4). Adamepresenting the highest overall risk
to a water utility and customers can then be deitit first.

3.5.1 Alarm Ranking

The aim of the alarm prioritisation methodologytasdetermine mutual significance of
multiple alarms (i.e., to rank them) rather than attempt to classify them into
predefined categories (e.g., high risk, medium,riskv risk, etc.) The methodology
comprises the following steps:

1. Burst Detection- Detection of a burst (e.g., using an ANN-FIShjetr does not

form part of this thesis.

2. Diagnostics & Risk Assessment Identification of potential incidents of an
anomaly and estimation of their likelihood of oaeurce as well as their impact.

3. Pipe Burst Risk Aggregation - Calculation of risk of failure of individual

potential incidents.

4. Overall Risk Aggregation - Calculation of an overall risk represented by al
potential incidents.

5. Anomaly Ordering - Sorting of abnormal events according to thelle¥eheir

overall aggregated risk.
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The individual steps defined above are describetetail in the following sub-sections.

3.5.2 Diagnostics and Risk Assessment

In this work it is assumed that an automated pistidetection system (Mouneg al.
2010) or similar is already in place, providing flelowing information: (1) date and
time of burst occurrence, (2) ID of the affected AMnd (3) estimated burst flow. It is
further assumed here that the detected anomaly &nealarm) is a result of a single
pipe burst only within the reported DMA. This falties not restrict the potential of the
methodology to handle different types of failures.g(, pump/valve failures) or

alternatively handling of multiple failures withinDMA.

Under the above assumptions a one-level faultdi@gnostics, mentioned previously in
Figure 3.3, for every active alarm can be perfornasdshown in Figure 3.21 in a

simplified form.

Alarm 1 Alarm i Alarm m

Plyy || Plyy || Plog|[= || Plig |- Pl [-+| PI, Pl APL || PI

ij i,n ma|"’ m,j m,n

Figure 3.21 A hierarchical representation of alaamg potential incidents

Typically, the set of potential incidents deterntirfer every active alarm as shown in
Figure 3.21 contains all pipe segments within theestigated DMA. For the purpose of
prioritisation of alarms working with the completet might not be necessary and only a
representative number of pipe segments could Beded. This was not investigated as

part of this research and the risk of all potentialdents was used here.

Once the set of potential incidents is determinédlaisk assessment of all its elements
can be carried out. This involves evaluation of ltieelihood of occurrence of a burst
on every pipe segment (see section 3.3) and eshimat its aggregatetmpact (see

section 3.4) over a given risk horizon.

3.5.3 Pipe Burst Risk Aggregation

For the purpose of decision-making it is importdnat the risk metric is preserved in a
non-aggregated form and as such also presented®hd. &lowever, as the first step in
ranking of multiple alarms, the risk of individupbtential incidents was aggregated.
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The most commonly applied risk aggregation opemnaao represent risk as a product
of likelihood and impact (i.e.R= Lx I). Such a formulation could well suit problems
where the likelihood component of risk reflects treaditional frequentists’ probability.
However, the likelihood used in this context iscaimalised measure indicating, which
potential incidents are more likely than otherdéothe cause of the observed anomaly
(i.e., the likelihood normalisation is carried quer alarm) and, therefore, a simple
multiplication could completely eradicate potentiatidents with very low likelihood
and high impact, which might still be interestingr fa DM as highly unlikely but
disastrous events. To overcome the above issiestiggested to use the concept of
reference poin{see Figure 3.22) used, e.g., by Zeleny (1973gpvesent a risk of a
potential incident. The aggregated risk can thenekpressed as a distance metric

defined as follows:

R, =| 2 W(R- Pl,jk)“} (3.29)

KL 1}
where:R;; is the aggregated risk of a potential incidebeing the cause of an alaim
(note: the lower the value of this metric the higtiee risk of a particular pipe bursg,
is the index corresponding to the likelihood or aopw is a weighting factor reflecting

the DM’s preference between likelihood and impadiject tow, + wy = 1, B is a

coordinate of thereference point(see Figure 3.22) corresponding to the maximum
likelihood (per alarm) or maximum impact (amongdstaéarms),Pl;; is the coordinate
representing the likelihood or impact componentisi of potential incident, andh is

the distance metric exponent, which typically takekieh = 2 to represent Euclidean
distance.
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associated with alarm

0 Pl P"=1 Likelihood
Figure 3.22 Distance metric used to represent ggded risk of a pipe burst

Thereferencepoint (see the poinP” in Figure 3.22) does not have to exist in theofet
considered potential incidents, as in the casectigpin Figure 3.22, and is typically a
fictitious point. In a situation when the potentiacident with the highest impact
amongst all considered alarms should also be tet hkely burst candidate (as part of
the alarm it belongs to), it would become tke&rencepoint and its value oR;; would

be zero.

It is important to note that the normalisation loé fikelihood of a burst occurrence is

carried out on all potential pipe bursts associatigd a single alarm whereas the impact
is normalised on all potential incidents of all smiered alarms. Only such an approach
enables the comparison of the overall risk of atarm

3.5.4 Overall Risk Aggregation

To represent the overall risk of alainthe individual risks of all its potential incident
R, need to be aggregated. There are three main typemggregation operators:
intersection operators, union operators and awvegagperators (Makropoulos and
Butler 2006). In this work the Ordered Weighted raging (OWA) proposed by Yager
(1988) was used. OWA is a flexible aggregation afmer which encompasses operators
from minimum to maximum including various averagimgerators such as the
arithmetic mean. Another interesting property e @WA is that during the process of
generation of the weights applied in the aggregatibis possible to incorporate the
DM’s attitude towards risk (e.g., neutral, optindsipessimistic, etc.) based on his/her

degree of risk aversion (Makropoulos and Butler&)00
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The application of OWA to calculate the overalkrR of an alarm is carried out as
follows. First a vectow;, comprising risksR;; of all potential pipe burstsassociated
with alarmi is formed and its elements are sorted in an asegratder of theirR;;
values, such ag[Xx] < Vvi[y] wherex <y. The overall measure of rigk is then obtained
by multiplying vector; with the transposed vector of weightsof the same dimension

using following equation:

R:i\([l]w\{],suchthath[vy,...,w,...,\(y] WI( 0)1 ani W= (3.30)

As in the case of any aggregation, some informatmss inevitably occurs. To
maximise the degree of information used from the-aggregated risk vector a set of
maximum entropy (Shannon 1948) weigliwa is generated given DM’s attitude
towards riske according to O’Hagan (1988). Calculation of thexmam entropy

weights requires solving the following constraimah-linear problem (O’Hagan 1988):

Maximise) | win w

i=1

subject to =ilz 0-i I (3.31)
n—-173

_n w =1, w0O[0,1],i=(1,..n)

Makropoulos (2003) solved the optimisation probleefined in Eqg. (3.31) using
Sequential Quadratic Programming implemented in |&bat However, Fullér and

Majlender (2001) proposed an analytic solutiorh problem defined as follows:

1) If n=2, then w=a, w,=1 —a

2) If a = 0 ora = 1, then the associated weighting vectors arguaty defined as

w =[0,0,...,1] and w = [1,0,...,0], respectivelyith value of dispersion equal to zero.

3)Ifn>3and 0 < <1, then

w, ="w T w (3.32)

96



Chapter 3 - Risk-Based Pipe Burst Diagnostics

W = (n-Da-nmw+1
" (n-Da+1-nw

(3.33)

w(n-D)a +1-nw]" = ((n=1)a)™[(+Da - 1) w+1] (3.34)

The maximum entropy weights were calculated heiaguthe analytic solution of
Fuller and Majlender (2001). The implicit Eq. (3)3Was solved iteratively using

arbitrary precision numbers.

The parameten defines the level of optimism or pessimism of a .De effect of
parameter on the number of elements effectively considenaiihg the aggregation is
shown in Figure 3.23. It can be observed that aitlincreasing level of pessimism only
a small number of potential incidents with the leigirisk of failure contribute towards
the overall aggregated risk representing an alé&rpurely pessimistic attitudex(= 1)
would mean that the overall risk of an alarm wobkdrepresented by only one potential
pipe burst with the highest risk (i.e., the maximaperator). On the other hand purely
optimistic attitude ¢ = 0) would select the least risky pipe burst a&srdpresentative of
an alarm (i.e., the minimum operator). A neutréitiade where ¢ = 1/h), wheren is the
number of potential incidents associated with aarmal would perform aggregation

using the arithmetic mean.

In the case of an optimistic attitude towards riskjch does not seem to be appropriate
in this decision-making context, the X-axis in Figa.23 would be reversed and the
less risky pipe bursts would contribute most.
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Relative importance

_ | |
0.2 0.3 . . . 0.9 1
Elements ordered in descending order of risk Rij (i.e., high risk elements are in the left)

Figure 3.23 The effect of DM'’s attitude towardkrison maximum entropy OWA
weights

3.5.5 Anomaly Ordering

The above approach, used to calculate the overgdisore of riskR, is repeated for
every active alarm (i.e., an alarm that has notogetn completely resolved). The lower
the value oR the higher the overall risk associated with aipaldr alarm. The ranking
of an alarm should also reflect the state in whaohalarm is. Clearly a confirmed alarm
has a higher priority than an unconfirmed one, whion the other hand, is more
important than an alarm that is believed to belsefalarm. This work considers the
following alarm statesactive investigated modified real andfalse that were derived
based on an input from a water utility and acadgmaitners in the NEPTUNE project
(Savi et al. 2008). Figure 3.24 shows the states of an alarmvels as possible
transitions between them. The alarm states preddme are not a direct contribution

of the author unlike the rest of the methodologgspnted herein.
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Figure 3.24 An alarm state diagram

An activealarm represents a fresh alarm that has just Geteetted and presented to an
operator. The alarm can remain in this state uinid either marked afalsein which
case it was not genuine or gl in which case it was a real event. If new evidence
becomes available, which affects the priority ofadarm (e.g., a customer call moves
the most likely location of the burst to a high meppart of a DMA), while the alarm is
in the alarm list, the state of an alarm changesadifiedto raise the attention of an
operator. Alternatively, an alarm can change itgestoinvestigated(i.e., from the
activeandmodifiedstates), which indicates that it is being handled further explored
by an operator (e.g., using an interactive alaragmbstics user interface discussed in
Chapter 4). Thdalse andreal states are only set once the true nature of amak
determined (e.g., by a field technician). The alasmains in theeal or false states

until it is manually deleted by an operator as ke=m or specific period of time elapses
(e.g., 1 week).

To incorporate the alarm state in the rankingabalable states were reclassified into 3
classesunconfirmed(i.e., active, investigated, modifiedpnfirmed realandconfirmed
false It was desirable that a confirmed real alarm gbMaad a higher priority than an

unconfirmed one, which in turn had a higher pniotitan a confirmed false alarm. This
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was achieved by assigning a Base Priority levekvtery alarm according to the

following rules:

IF State(  1)IN( active, investigated, modified ) THEN
Base_Priority = 1000
ELSE
IF State( 1)IN( real ) THEN
Base_priority = 2000
ELSE
Base_priority =0

The final sorting criterion, which encompassesdherall risk of an alarm as well as its
state, can then be defined as follows:

Sort _ Priority(i) = Base_Priorify) + 18 Raf(i} (3.35)
where:i is the index of an alarm, Base_Priority is a fiorctdefined using the above
rules and Rank is a function, which returns theepaf an alarm in an alarm list sorted
in descending order & so that the alarms with high risk (i.e., low vau#R) obtain

high ranks.

The Base_Priority levels of 1,000, 2,000 and Gtier unconfirmed, confirmed real and
confirmed false alarms, respectively were derivednfthe assumption that at no point
in time there will be more than 100 alarms in eatthe categories. The Base_Priorities
could be increased (e.g., by multiplying them by &Bould the values above be too

restrictive.

The alarms can then be presented to a WDS opeénatioe form of an alarm list that is
sorted in descending order of Sort_Priority (see B(B5)) of the considered alarms.
This ensures that the most severe alarms appetiiedop of the list and receive more
attention from the control room operators. The Rahkn alarm was multiplied by the
factor of 10 since it was believed that higher ealwill generally receive more
attention from the operators. This subjective aggion, however, has no scientific

grounds.

3.6 Summary
This chapter presented a methodology for a near riRkFbased diagnostics of flow
anomalies in a WDS. Its key constituents, nametyltikelihood model, Impact model

and Alarm prioritisation model, were discussed.
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After the introduction in section 3.1, the conceptioundations of risk-based decision-
making in diagnostics of pipe bursts in a WDS wai@ in section 3.2. It was suggested
that burst investigation within a DMA should bewdm by risk maps presenting risk of
a failure (i.e., its likely location and impact) amnon-aggregated form. The likelihood
component of risk plays a dominant role when ddpag field technicians to
investigate potential pipe bursts. On the othedhé#re impact can be also considered as
a secondary criterion by an operator when a buarst particular part of a DMA has

significant consequences.

Section 3.3 presented a methodology, based on rdiati@easoning, to estimate the

likely location of a burst pipe within an affect€dA. The outputs of several models

(i.e., a PBPM, an HM and a CCM) were combined oteoto increase the confidence in

the likely location of a burst pipe. A novel cabtion procedure, based on multi-

objective optimisation was developed, to deterntieenecessary parameters of the D-S
model.

In section 3.4 the development of an impact modskld on a pressure driven hydraulic
solver and a GIS was described. A number of KPlsewdeveloped to assess the
performance of a WDS under failure conditions. MA\ATtechnique from the field of
MCDA, was used to obtain an aggregated impact f#ilare based on a number of
criteria and preferences of a DM.

A method for prioritisation of alarms (i.e., detattabnormal events) was proposed in
section 3.5. Its application enables the mutuahiB@ance of anomalies in situations
when multiple failures are detected in a similaxdihorizon (e.g., 24 hours) in different
parts of a WDS to be determined. Aggregated ris& @xaressed using the concept of a
reference point and the DM’'s preferences between ltkelihood and impact
components of risk. The OWA operator was appliedaiculate an overall aggregated
risk of an alarm, which together with the stateaof alarm reflected its significance.
Based on the outcomes of the alarm prioritisat\®f)S operators can pay more

attention to the most severe incidents first.
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CHAPTER 4 DSS IMPLEMENTATION

4.1 Introduction

This chapter aims to put the methodologies propoas&hapter 3 into a broader context
of a near Real-Time (R-T) DSS for the operation\i®S under abnormal conditions.
More specifically the overall architecture of tid&S will be described and details of
the implementation of the main DSS modules, ari$iogn the work presented in this
thesis, will be discussed. Additional componentshaf DSS, such as an intervention
management module (Vamvakeridou-Lyroudit al. 2009) or an interactive User
Interface (Ul) described in Morlegt al. (2009), which were not directly implemented
by the author, will not be described here.

First an overview of the whole architecture of th8S is provided followed by a
discussion on the design of a Database (DB), wfoaims the core of the entire DSS.
Then the functionality of background modules, whichplement the risk-based
diagnostics methodology proposed in Chapter 3,esciibed. Distributed computing,
one of possible solutions to achieve a near R-Topmance required in WDS operation
and failure management, will be discussed in secig}.3.1. The process of R-T
visualisation of GIS data as implemented by thé@uin one of the Uls of the DSS will
be briefly mentioned here as well.

4.2 Architecture Overview

As discussed by Morlegt al. (2009) the DSS was designed in a modular fastoon t
maximise its extensibility in the future. Figurd frovides a high level overview of a
possible architecture of a near R-T DSS for opematof WDS under abnormal
conditions. Off-line modules utilised by the DSS fune-off data import or model
calibration are not included in the figure. A lodsem of coupling between individual
modules (i.e., mostly via a DB) was chosen to itaté their integration within the DSS.
All inter-process communication is achieved indieby polling information stored in
a DB or alternatively through Hypertext Transfept®ecol (HTTP) requests (e.g., the
interaction between the “System Overview” and tAdafm Diagnostics” Ul modules
of the DSS front-end).
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The entire DSS can be divided into several maickdo(1) Back-end, (2) Front-end
and (3) External modules as highlighted in Figufeusing different colours. The focus
of this work is on the back-end part, which corgaimn implementation of the

methodologies presented in this thesis.

To maximise the ease of integration of various DB8&lules, Microsoft .NET was
chosen as the main implementation platform. Theorntgj of the source code was
written in the C# programming language. The welebdaapplication providing the
“System Overview” was implemented in Personal Hdrage (PHP), a server-side

scripting language, and JavaScript.
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Figure 4.1 A simplified overview of DSS architeaur
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4.3 Database Management System

A Database Management System (DBMS) was employedhbyDSS to provide
concurrent access to data utilised by a numberarfgsses that form the DSS as shown
in Figure 4.1. Most of the DBMS nowadays are Refal Database Management
Systems (RDBMS), which are built upon strong thecaéfoundations of relations laid
by Edgar F. Codd (1970). Despite the popularityth&f object oriented programming
paradigm, which was applied in the DSS implementatipurely Object Oriented
Database Management Systems (OODBMS) have not leeeanely used and are
typically only deployed in specialised applicatiofte primary reason for this was the
lack of theoretical foundations underlying the OQW® The Object-Relational
Database Management Systems (ORDBMS) attempt-ia fihe divide between purely
RDBMS and OODBMS, exploiting the advantages of laygproaches.

ORDBMS were built upon the strong theoretical foatwhs of RDMBS, however, they
offer a number of appealing object oriented feaurecluding user defined types,
methods and inheritance that can be found in OODB®I® of the main advantages of
an ORDBMS is that it can store complex user defilygoes, such as geometries
containing spatial information associated with atipalar record. This allows the
storage of GIS data in a relational DB and spaiedries to be performed on the data in

an efficient manner thanks to special index stmastu

The PostgreSQL (Worsley and Drake 2002) ORDBMS ettogr with its spatial
extension PostGIS (Refractions Research 2009) hwasen as a DBMS platform in this
work. This combination allows easy storage andenei of relational as well as spatial
data. A simplified structure of the DB used by IS is shown in Figure 4.2. Only the
main tables, out of 54 tables used by the DSS laoavis in the figure. The colour
coding indicates which datasets were directly mtedi by a water utility and which
were generated or derived during the developmetit@DSS. The border of the tables

in Figure 4.2 identifies whether a particular tabdatained spatial information or not.
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Figure 4.2 An entity-relationship diagram capturthg main tables used by the DSS

The key tables in Figure 4.2 are the “Links” andoti¢s” tables that were imported
from an HM of the WDS. A number of associations evédren constructed, typically
using spatial analysis, representing the mutuahtiogiship between the HM and
additional data sources (e.g., Customers, DMAsy&&letc.). The second main group
of tables (e.g., Source_Alarms, Alarms, Evidencgeftial _Incidents, Impact_Results,
etc.) is responsible for the management of alamasshorage of the results of the risk

analysis described in Chapter 3.

To maximise the portability of the whole DSS andidweliance on a particular type of
DBMS used (e.g., PostgreSQL), the Open Databasadctwity (ODBC) standard was
employed. ODBC provides a standardised ApplicaBoogramming Interface (API) to
communicate with a DBMS. Every module, which istpzfrthe DSS, uses ODBC to
access the PostgreSQL DBMS.
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4.4 The Back-End

The back-end part of the DSS comprises a numbemootinteractive background

processes that are primarily responsible for:
* Import of near R-T data received from a water tytilnto a DB and its filtering
* Monitoring of newly received alarm&karm Monitor )
« Distributed evaluation of the impact of a failurepact Evaluator)

* Evaluation of the likelihood of pipe failure withima DMA (Likelihood

Evaluator)
* Prioritisation of alarmsAlarm Ranking)

The data import and filtering modules are respdaditr processing and importing near
R-T pressure and flow data (received every 30 mgj)utCustomer Contact (CC) data
and information from a Work Management Systems (WM@eceived twice per day).
The data is transferred from a water utility using File Transfer Protocol (FTP).

The remaining four back-end processes form the abtiee implementation of the risk-
based anomaly diagnostics methodology presentéthapter 3. Figure 4.3 shows an
activity diagram in Unified Modelling Language (UMIcapturing the interaction of
those processes.
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Figure 4.3 The interaction of processes involvednamaly diagnostics

At first the presence of new alarms generated lgy eékternal pipe burst detection
module (see section 4.6) is periodically checkedtly Alarm Monitor, which is
described in more detail in section 4.4.1. Onceew m@larm is identified, the risk
assessment can commence. This is achieved by centlyrevaluating thé.ikelihood
andImpactof all potential incidents (i.e., possible causean alarm). Finally, after the
risk assessment is completed, the aggregated immpaossible causes can be computed
and all active alarms can Banked and Prioritisetb determine the significance of the

most recent event relative to the other activenadar

4.4.1 Alarm Monitor

An activity diagram, which is similar to a flow djgam, of the Alarm Monitor is shown

in Figure 4.4. The process periodically checksdbetents of the “source alarm” table
in the DB (see DB schema in Figure 4.2) and in @asew (fresh) alarm is discovered,
it performs necessary initialisation steps beftwe risk assessment can be started. The
initialisation stage involves generating a set ofeptial incidents associated with an
alarm. This set by default comprises all pipe segmwithin a DMA from where the
alarm originated. The current implementation of tm®dule is only limited to
diagnostics of pipe bursts. As previously discussatension to include other types of
failures is possible. Furthermore, a new HM (ias,EPANET input file) of the whole
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system (i.e., not necessarily only the investigfd®th\) is generated for every alarm, as
part of the initialisation stage. The new custom H¥htains forecasted boundary
conditions and is used in the next Impact Evalmapbase. Should R-T information
about active devices (such as valves, pumps, k&.available at the time that the

custom model is created, it could also be incotigoréo provide a more realistic picture

of the WDS.

>(Check New "Source" AIarms)

- Sleep N seconds
New "Source Alarm" -
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Generate Potential Incidents
Generates new EPANET

input file with predicted
(Generate Hydraulic ModeD -

demands and boundary
conditions
Write Alarm to DB |~~~
Terminate?
No {// -7

Stores information about
an alarm inlcluding its
Yes

potential causes

Figure 4.4 An activity diagram describing the Alakfonitor module

Setting the boundary conditions in the new modeblves the calculation of pattern
multipliers for all demand nodes and reservoirsvary time step over the next 24 hours
(i.e., the default risk horizon). Pre-computed tax®s (i.e., using the external
forecasting module shown in Figure 4.1) of relewaantiables, i.e., DMA inflows and
outflows, exports from the WDS and reservoir leyale retrieved from a DB. Ideally,
the forecasted boundary conditions should be ugdatery time new measurements are
obtained from the field. This would allow a re-awation of the impacts of potential
incidents using real observations. In the curremplémentation forecasting is carried

out only once in 24 hours. The forecasted boundangitions are imposed in the new
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custom model either directly in case of reservewels or exports by modifying their
diurnal patterns, or indirectly in case of DMA derda. It is assumed that the increase
or decrease of water consumption by all consuméttinva DMA is proportional to
their average water consumption. On this assumptienaverage base demands of
individual demand nodes at every time step areedc@ip or down) to match the
forecasted consumption of the whole DMA at giveneti

When a prediction of DMA inflow or outflow is notvailable (e.g., long term sensor
failure preventing the prediction of future demgniii® average nodal demands of this
particular DMA, stored in the default EPANET inpiiie, are used instead. Should
cascading DMAs be present in the system (i.e., aAD8lipplies another DMA
downstream) and forecasts were not available fgradrthe downstream DMAS, then
average demands are used in all upstream DMAs #dstavavoid any flow balance

problems.

For the sake of simplicity, pressure measuremeats the field were not considered as
additional boundary conditions when redistributimgdal demands since this would
require the adoption of a more sophisticated dstienation technique (e.g., Machetl
al. 2009; Preiet al.2009).

Once the new HM is generated, a new alarm recorcuding a set of potential
incidents associated with this alarm, are thenestan a DB. The presence of the new
alarm consequently triggers the risk assessmenedaut separately by the Likelihood

and Impact Evaluators described below.

4.4.2 Likelihood Evaluator

Figure 4.5 shows an activity diagram of the Likebd evaluator, which is a process
responsible for determining the likelihood of ogemce of every potential incident
within a DMA where an alarm was generated. Thelillk®d evaluator periodically
checks for new alarms, whose likely cause needie timlentified. Once a new alarm is
recognised, the individual models (i.e., a PBPM,GM and an HM) are initialised and
a set of all potential incidents associated withakmm (i.e., those previously generated

by the Alarm Monitor) are loaded.
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Figure 4.5 An activity diagram describing the Likelod Evaluator module

The model initialisation stage involves the retakof CCs from the affected DMA that
were recorded 24 hours before the detection obthist and during the same day. For
the PBPM pipe properties (e.g., age, material, dieam etc.), the characteristics of the
surrounding soil, type of the land above the pigeerage weather conditions and
historical burst rates are loaded from a DB. Thaalsation of the HM requires the
loading of an EPANET model of a given DMA (i.e.,traomodel of the whole WDS as
in the case of the Impact Evaluator) and the neditief pressure and flow measurements
associated with the DMA (e.g., inflows, outflowsdgoressures) at the time of the burst
detection. The DMA EPANET model is then dynamicadigjusted, as described in
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section 3.3.2.3, to impose inlet pressure boundanglitions and establish flow balance

between the model and flow measurements from éhe. fi

Three different models that are capable of progdimidence about the likely / unlikely
location of the burst within a DMA are then execlut&ach of the available models
(e.g., CCM can be excluded in situations when ng @€re recorded) provides a value
of criterion measurement for every potential inaidé’he model outputs then undergo
the information fusion process in the D-S Modelascribed in section 3.3. Once the
information fusion is completed, the combined likebd (i.e.,BetP as well as the
underlying evidence provided by the individual misd&re stored into a DB for future
visualisation using the interactive Alarm DiagnostUl, which is part of the DSS front-
end (see Figure 4.1).

4.4.3 Impact Evaluator

A high level activity diagram of the Impact Evalaats shown in Figure 4.6. The figure
describes a distributed implementation of the Infa@luator, which can be run on a
number of computers simultaneously. Similarly te thkelihood Evaluator described
above, the process also monitors the alarms tabledwly generated alarms. If a new
alarm, which requires impact assessment, is resednthe process attempts to load an
EPANET model of the whole WDS, which was generabgdthe Alarm Monitor
(described in section 4.4.1) and includes forecabtaindary conditions for this new
alarm. Should the custom model be not availablesfune reason (e.g., the Alarm
Monitor process failed to generate an input file impact assessment reverts to use the

base model of the WDS, with average demands only.
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Figure 4.6 An activity diagram describing the Imp@&galuator module

Once the HM is loaded and initialised, first a biase scenario, representing the state of
the WDS under normal conditions is evaluated. Tlasebne scenario serves to
determine normal flows and pressures in the WDSclwlare used to calculate the
discolouration potential of every pipe in the systeunder such conditions.

Consequently, the Impact Evaluator starts retrg\atches of potential incidents (the
number of potential incidents retrieved at a tineeds to be selected according to the
number of instances of the Impact Evaluator). Qihlyse potential incidents whose
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impacts have not yet been evaluated (e.g., by anatbtance of the Impact Evaluator)
are loaded at this stage. For every potential ertidits impact on the whole WDS is
evaluated by running an HM, discolouration risk mlogand calculating KPIs proposed
in section 3.4.4. The results are then stored afdB and the potential incidents are
marked as evaluated. In case there are no uneedlpatential incidents available in
the DB and no other instances of the impact evatuae processing potential incidents
associated with an alarm, the alarm can be flaggedorocessed and its impact
evaluation is completed. This final step is reqiiioaly in the distributed version of the
Impact Evaluator and assures that an alarm is éldg processed only after all other
instances of the Impact Evaluator (e.g., runningddferent computers) finished its

processing.

Ideally, the pressure driven hydraulic solver sbcag able to reach a solution for every
configuration of a WDS. The gradient algorithm pyeed by Todini and Pilati (1988)
might be unable to converge under certain circunteta (e.g., when pipe resistances
are too high or velocities in the system are tawm)ldf the pressure driven hydraulic
solver used (i.e., Morley and Tricarico 2008) fadsconverge when simulating a pipe
burst, an exception is generated. The potentiaflémt whose impact evaluation failed
is then flagged in the DB so that its impact carkauded from further risk analysis.

4.4.3.1 Distributed Computing

The primary focus of the methodology presentedhia thesis is to support near R-T
decision-making. Evaluating the impact of all pot@rfailures within a DMA at system
level (rather than DMA level only) requires hundsexf runs of a hydraulic solver on a
large network, typically containing thousands ofde® and pipes. Therefore, it is
computationally demanding as those runs cannot dxéonmned off-line (i.e., pre-
computed). This is a consequence of the need tsidemthe current state of the system
based on information from: (i) pressure and flownmaring devices, (ii)) magnitude of
abnormal burst flow and also (iii) predictions adndands and reservoir levels. Even
with the high-performance personal computers alkElaowadays impact evaluation of
a single failure can take up to several secondg;hwinakes its application in the near
R-T domain difficult. To increase the speed of ictpavaluation, a database-centric

distributed architecture was implemented (see Eigur).
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Figure 4.7 A database-centric architecture forrithsted impact evaluation

The proposed distributed computing architectureldsuiupon strong transaction

processing capabilities of modern RDBMS. A RDBM®vss as a mediator between a
client application and a computer cluster compgsseveral nodes. The distributed
impact evaluation is carried out in following stefls the client application inserts a set
of impact scenarios into the DB; (2) each of thecpsses running on the computing
nodes in the cluster periodically attempts to estinew scenario(s) from the DB; (3) if
a new failure scenario(s) is/are retrieved from@i® their impact is evaluated; (4) the

results are stored back into the DB; and (5) thentlpplication retrieves the results of

evaluated impact scenarios.

4.4.3.2 Performance Evaluation

The architecture presented above has proved taiiteble for the given application

since the time required to retrieve failure sces(ajiand to store the results into a DB
was negligible compared to the time needed to ewalthe impact of one potential
incident. Implementation of this distributed apption was conceptually simple and the
solution should be well scalable.

Evaluation of the performance gains using distedutomputing was carried out on a 4
node computing cluster. All the machines in theswu had identical hardware
configuration and were connected using 1Gb/s E#temmetwork (to minimise

communication latency). The hardware configurabbthe nodes was as follows: Intel
Core 2 Quad Central Processing Unit (CPU) Q8300 .8%5Hz and 4GB of RAM.

Different versions of the operating system werdaillesd on each of the computing
nodes, which had only a minimum impact on the d#ifiee in overall performance of
the individual nodes. One of the computing nodethexcluster acted as a DB server
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and its load was always balanced in such a wayttieaDBMS had sufficient resources
available to handle client requests.

The scalability of the current implementation oé ttistributed impact evaluation is

shown in Figure 4.8.

Performance of Distributed Impact Evaluation
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Figure 4.8 Speedup achieved using distributed cdimgpu

The figure shows the approximate total time in sesorequired to perform a complete
impact evaluation of 469 pipe bursts in an urbanfO&4 well as the speedup achieved
(i.e., a ratio of time required by a sequentialoathm and the distributed one) as
defined in Eq. (4.1).

Sp =— (41)

where: p is the number of processor$; is the execution time of the sequential
algorithm andT,, is the execution time of the parallel algorithmiw processors

The impact assessment was carried out using ayoeedsven HM that comprised over

9,000 pipes and 8,700 nodes (i.e., impact of thetli a DMA was evaluated at system
level). The loading of the processes on the nodesdene in such way that the number
of processes per node was minimised. Moreoverag attempted to avoid running any

processes on the node with the DB server wherealpes3he polling frequency (i.e.,
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how often the client nodes access the DBMS) as agelhe number of impact scenarios
retrieved at a time (i.e., one at a time in therenir setup) can influence the total
duration of the impact evaluation. The influencehadse parameters was not studied in
detail. It is believed that it is marginal and dam easily tailored to best suit a given

distributed environment (i.e., a computing cluster)

As can be seen from Figure 4.8, the solution saaealmost linearly up to 4 processors
(i.e., 1 instance of Impact Evaluator running drdatomputing nodes). When multiple
instances of the impact evaluator were created simgle node the performance has
dropped significantly. This can be observed in ades with 6 (i.e., 2 processes on
each of the 3 nodes used), 8 (i.e., 2 processedl drcomputing nodes) and 12 (i.e., 4

processes on each of the 3 nodes used).

Figure 4.9 shows the difference in speedup wheniphelinstances were launched on a
single multi-core computer and when the instanceewlistributed across a number of
physical machines. This figure suggests that thalabdity issue in current

implementation is not caused by communication ce®dls when impact scenarios are
retrieved from and stored into the DB (see the atnimear speedup curve of the

configuration with N nodes).

Performance of Distributed Impact Evaluation on 1 node /N nodes
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Figure 4.9 Speedup achieved using distributed céimpon 1 node vs. N nodes
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Profiling of the source code revealed that the dmmn apparent when multiple
processes (i.e., instances of the Impact Evaluaterg run on a single computer was
most likely caused by an inefficient memory managenof the Impact Evaluator. This
could be either due to improper use of data strastoffered by the Microsoft .NET
Framework or possibly by the garbage collectionmetsm (i.e., an automatic freeing
of unused memory). Table 4.1 shows the time iniseitlonds required to perform
selected actions as shown in Figure 4.6 to evaiogtact of a single potential incident.
The timings of the part of the code responsibleaimressing the DB are highlighted in
green and it can be observed from the table tleaD® access did not vary significantly
amongst the different scenarios. On the other hémel time required to complete
memory and CPU intensive operations (i.e., the Hivh,RKPI Evaluation and Results
Generation), which comprise the Evaluate Pipe Burgtact block, as shown in

Figure 4.6, deteriorated significantly.

Table 4.1 Results of profiling of the distributeddact Evaluator

Load Evaluate Pipe Burst Impact S
. . tore
Scenario Potential HM KPI Results
) ) i Results
Incident Run Evaluation | Generation
Single process 5.3 ms 1742.8 ms 116.3 ms 297.7 ms 8.4 ms
2 Processes 2 machines 4.4 ms 1757.6 ms 116.3 ms 297.3 ms 7.1 ms
2 Processes 1 machine 5.2 ms 2088.6 ms 126.8 ms 361.2 ms 7.7 ms
4 Processes 1 machine 5.1 ms 3467.4 ms 196.1 ms 589.2 ms 7.9 ms

The slowdown when multi-core computers are usedbeaseen as an obstacle in large
scale deployment of the application given the wedeilability of multi-core CPUs
nowadays. Nevertheless, the distributed impactuew@n as proposed in this work is
generally a well scalable problem. The sequental pf the algorithm, which includes
mostly loading of required data and initialisatiohthe HM takes approx. 10s (i.e.,
0.5% of the overall sequential runtime on 469 pod&knncidents) on the hardware
described above.

4.4.4 Alarm Ranking

Figure 4.10 depicts an activity diagram of the AlaRanking process. This process
concludes the risk-based methodology by performimgact aggregation and alarm
prioritisation. Similarly to the Likelihood and Imapt Evaluators, the process also
monitors the alarms table in the DB. Once an aldrat underwent the complete risk
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analysis (i.e., the likelihood and impact of adl fiotential incidents were evaluated) is
found, then the ranking process is initiated. Adtfiall active alarms that need to be re-
prioritised are loaded. Next, the process retri@lepotential incidents, including their
non-aggregated impact metrics at a given risk baori@.e., 24 hours), associated with
those alarms. The aggregation of impacts of pakmitidents can only take place once
the KPIs off all considered potential incidents &mwn since the normalisation of
impact KPIs (described in section 3.4) takes placess all active alarms. Once the
aggregated impacts of all potential incidents agecamputed, the alarm ranking

methodology (see section 3.5) can be applied.

Check Alarms

Alarms have to be re-prioritised? ﬁ

Sleep N seconds

Yes
Load Active Alarms
Loads all potential
incidents associated
_| with active alarms
Load Potential Incidents |—

\

(Re—CaIculate Aggregated Impacts)

Calculate Alarm Ranks

the overall level of risk

~ =~ Ranks alarms according to
they represent

(Store Potential Incident Impacts)

Store Alarm Ranking
Marks alarms as ranked ﬁ

and updates the time of
last ranking

-

(Alarm Ranking Completed)/ -

=~ ~
<
Yes Terminate?

Figure 4.10 An activity diagram describing the AfaRanking module

No
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A caching mechanism was implemented to improveetiieiency of calculating the
maximum entropy weights. The weights for a parcwalue of parametersandn are
stored in a DB and can be efficiently retrieved wineeded. When a desirable value of
parametew is determined by the DM, the cache could be seedtdall weights for
common values af (i.e., the number of potential incidents withiD®A) and given a
level of attitude towards ris&. The structure of the tables used to store thghtiis

shown in Figure 4.11.

owa_cache owa_weights
PK |id PK |id
<+
alpha weight
n FK1 | fid

Figure 4.11 Table structure of the cache usedoi@ shaximum entropy weights

Once the alarm ranking is completed, results, oholy the newly computed aggregated
impacts and alarm priorities, are stored into tli® Dhe alarm can then be flagged as
ranked and only at this point it is presented toogerator through the “System

Overview” Ul, described further in section 4.5.1.

4.5 The Front-End

The processes that form part of the front-end (Segire 4.1) are responsible for
presenting the outcomes of the risk-analysis akagehdditional relevant information to
the end user (i.e., a control room operator) ofRES. At any time, an overview of the
near R-T state of the entire WDS is available ®dperator through a prioritised list of
all alarms (i.e., detected anomalies) as well asutyh using a GIS interface. This is
achieved by a multi-user web-based applicationclvins introduced in the following
section. Detailed results of the risk analysis thien made available to the end user
through the “Alarm Diagnostics” Ul, which has naedn developed as part of this thesis

and will not be described here.

4.5.1 System Overview User Interface
This section discusses the development of a webdbapplication that provides the
DSS user with a near R-T overview of alarms in aSMrough a GIS and an alarm

list. The GIS visualisation comprises several layeverlaid on top of a background
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map as illustrated in Figure 4.12. The GIS layenstain information about sensors that
were in an alarm state (note the red dots in Figut2) over a specified period of time
(e.g., 7 days), DMA boundaries, topology of the WBt8.
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s y 7 _y. ~ - = 7 s Owverlays
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Figure 4.12 A screen capture of GIS layers progeotetop of a background map

A number of approaches to visualise data stored gpatial DB (e.g., sensors in an
alarm state) can be adopted. Figure 4.13 showssilpe setup used to serve GIS layers
to end users using a MapServer (Kropla 2005). MamBeprovides a number of

interfaces to access spatial data (e.g., storedRostgreSQL DB with PostGIS spatial
extensions). The most commonly used protocols tes GIS data nowadays are the
Web Map Service (WMS) and Web Features Service (VgEBdards developed by the
Open Geospatial Consortium (OGC). The WMS and WlaBdairds are supported by

all major GIS software packages, including ArcGIS.
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Figure 4.13 Online generation of GIS layers frospatial DB

MapServer can be accessed by end users (or othezgzes such as a Tile cache) as a
web application hosted on a HTTP server (e.g., ApddTTP server). Users are thus
allowed to retrieve layers using HTTP requests inumber of formats. GIS layers
rendered in raster format can be retrieved usimgWHMS protocol or alternatively
vector data can be requested using the WFS protécotase of WMS, the most
commonly used format to render GIS data is theaPtetNetwork Graphics (PNG)

format thanks to its suitable compression.

To request a GIS layer, a MapServer needs to peréospatial query on a DB, then
retrieve and process the results. Such an approaigit represent a potential
performance bottle neck when the number of requesiso high. It is frequently the
case that web-based GIS visualisation frameworlgs, (©penLayers) split an image
into a number of smaller tiles to allow smooth gagrand navigation over a GIS map.
Since information in some of the layers presentetthé user does not change frequently
(e.g., DMA boundaries) it is possible to store siayers in the form of cached tiles
(i.,e., images of fixed size, typically 256x256 p&econtaining the graphical
representation of a particular area at given zoarel). The tiles that are rendered off-
line can then be efficiently served to the end usghout requiring any additional
resources of the DBMS as well as the MapServer. Tileecache can be periodically
refreshed when needed (e.g., during night hourgkflect long term changes in the

underlying data.
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4.5.1.1 Alarm List

Information about sensors in an alarm state is alsilable through an alarm list (see
Figure 4.14), which lets the user perform furthetiams. The alarm list contains
information such as (1) the time when an alarm veaeived; (2) Alarm ID (in the

“Investigate” column) in case further investigatie possible; (3) Alarm state; (4)
Alarm priority; (5) ID of a sensor, which triggerdde alarm; (6) ID of an affected
DMA; (7) estimated burst flow; (8) Control buttcemd (9) additional information about
the alarm.

Operators can start the investigation of an alamhich allows the exploration of

detailed results of risk-based diagnostics of fmsscauses of an alarm, using the
interactive Alarm Diagnostics Ul. The interactioatlween the web application and the
Alarm Diagnostics Ul is achieved by sending an HT&guest. The HTTP request acts
as a message and carries information about an atadpe investigated. This allows

asynchronous communication between the two mamt-&ad applications.

The alarm list also allows users to invoke a trdmgplay to visualise data associated
with a particular sensor in an interactive way. Tiead display contains 2 panes, where
the bottom pane provides an overview of the trevel the past 2 weeks and the main

top pane provides the trend of a dynamically setbgteriod of time using the bottom

pane.
Time Investigate State Priority Sensor | DMA Eﬁ:j} Update Notice
16. 03. 2010 . Processing . FULL DATA FOR
01E 3234 | Active v (00%) 3105_02|E021| 2.7 1fs TRAINING
14.03. 2010 : FULL DATA FOR
2917 Active v - 3278_02|EQ70| 1.0U/s TRAINING
13. 03. 2010 . Processing FULL DATA FOR
sy 3232 | Active v 00 [3108.02|E054| 07U TRAINING
13.03. 2010 . FULL DATA FOR
1718 Active v - 3389 01|E140| - TRAINING
13.03. 2010 ] FULL DATA FOR
16-19 Queued 7 3581 01| 7 TRAINING
13.03. 2010 . FULL DATA FOR
e Active v - 3193 01|E159| - TRAINING

Figure 4.14 An example of an alarm list

When the nature of an alarm is verified (e.qg., bfyeld technician dispatched to the
field) it is also possible to change the stateroflarm (e.g., to Real or False) and thus
affect its overall priority. Should the automatiagpitisation performed by the DSS
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(using methodology described in chapter 3.5) prevgtiorities that are not in
agreement with the judgement of the operatorsethaa be manually overridden. In the
current implementation the manually overridden fityohas only a temporary effect

and is reset when alarm re-prioritisation takeseaith the arrival of a new alarm.

3284 02 - flow (I/s): 25.8
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Figure 4.15 An interactive trend display

The alarm list could be easily extended to captheeexact cause of real alarms by
associating them with main pipe repairs from a WMSvch feedback could then be
used by the DSS to re-calibrate the D-S model bsethe Likelihood Evaluator. The
functionality to carry out the automatic re-califtoa was not implemented since it
represents a number of challenges and is suggastpdrt of future research in section
6.3.1.

4.6 External Modules

The DSS utilises two external modules responsinienéar R-T detection of pipe bursts
and forecasting of trend data. These modules wereided by academic partners as
part of the NEPTUNE project (S&wet al.2008).
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The Pipe Burst Detection Modulevas developed by the University of Sheffield
(Mounce et al. 2010). An ANN was trained on continually updatedtdric data to
predict future flow profiles. The flow data measievery 15 minutes and provided by
a water company once per hour is then comparedthtpredicted flows over a given
time window using a Fuzzy Inference System (FIS).aarm to notify control room
personnel is generated and stored in a DB in casigraficant discrepancy between

observed and predicted data is discovered.

A Forecasting Modulg to predict future water DMA demands, export floasd
reservoir levels was developed by De-Montfort Ursity. The module was part of an
optimal pump scheduling software package FINESSENn¢R et al. 2001). The
prediction is done in three stages: (1) screeni@gsmoothing and (3) forecasting. At
first outliers in the data set are removed. Fastrieo transform is then applied to reveal
trends in the historical data. Finally, the Trigixponential Smoothing is used to
extrapolate the smoothed trend into the future.

4.7 Summary

This chapter provided details about the possiblplementation of the risk-based
decision support methodology for near R-T WDS ofp@naunder abnormal conditions
presented in Chapter 3. The focus of the descriptyas on the implementation of
processes responsible for the background risk-amsalyhat were designed and

implemented by the author.

A loosely coupled design of the risk-analysis aladma prioritisation modules was used
here to facilitate their integration. The methodpl@resented in Chapter 3 was broken
down to 4 main modules, namely the Alarm Monitoikelihood Evaluator, Impact
Evaluator and the Alarm Ranking and Prioritisatondule. The functionality as well
as implementation details of each of the aforeroeeti modules were discussed.

It was demonstrated that distributed computing banexploited to speed up risk
assessment of potential incidents. Given the rediasf impact evaluation on the use of
an HM and the requirement to run an EPS, any owaerhef inter-process

communication is negligible compared to the comipanal time required to evaluate a

single impact scenario. A database-centric distedbiarchitecture was designed and
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implemented. The theoretical scalability of suckotution should be very good (i.e.,
almost linear), however, the current implementatsarfifered serious slow down on

multi-core CPUSs.

The use of ORDBMS with spatial extensions has ptoas beneficial since it
significantly facilitated operating with GIS dafBhanks to the adopted approach, GIS
data was effortlessly made available and visualised number of formats including
WMS, WFS and PNG, using a MapServer. A web-baseticapion, utilising the WMS
technology, providing an overview of the near Rtate of a WDS (i.e., alarms) was
implemented. To ensure scalability of the visualsasolution, its performance can be

further improved by caching the static contenthaform of graphic tiles.
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CHAPTER 5 CASE STUDIES

5.1 Introduction

This chapter illustrates the application of the lsdand methodologies presented in
Chapter 3 on a number of real life and semi-readecatudies. The software
implementation of the back-end modules describe@hapter 4 was used to perform
the testing. The availability of required data uffigient quality and quantity was in

some cases limited, which prevented the entire-baded pipe burst diagnostics

methodology being demonstrated on data collected & real WDS.

This chapter is organised as follows. First, the aba Hydraulic Model (HM) as a
Real-Time (R-T) source of evidence suggesting tkelyl location of a burst pipe is
demonstrated on real life Engineered Events (EEeition 5.2. Second, the potential
of applying information fusion, using the Demps&rafer (D-S) model presented in
section 3.3, to locate a burst pipe is shown ini@e®&.3 on a number of historical pipe
bursts with synthetic noisy pressure and flow mesments. Section 5.4 provides
details of the calibration of the impact model agmced in Chapter 3.4. Results of an
online questionnaire survey were analysed to deaiveumber of weighting factors
reflecting the preferences of a water company. I§intnhe automated prioritisation of
alarms (i.e., detected abnormal events) is destiibesection 5.5 on a number of real

life alarms detected over a period of two years.

The case studies presented in this thesis are loasddta from a real life WDS located
in the Harrogate and Dales area in North YorksHii€, as shown in Figure 5.1. The
WDS in question supplied water to almost 25,000ppriees with an average daily
water consumption of 37 Ml/d (in March 2010).
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Figure 5.1 Location of the case study area in tHe U

5.2 Hydraulic Model Evidence

The aim of this case study is to demonstrate tlssipiity of using calibrated HMs
together with near R-T pressure and flow measur&nienestimate the location of a
burst pipe within a DMA. HMs were previously usedtie attempts to locate leakage /
bursts in a WDS and a number of methods similéinécone used here were proposed in
the literature. Their validation using real fieléditd was lacking and, therefore, the
potential of the HM is demonstrated here. Hydrgrgrongs were used in the past (e.g.,
Mounceet al. 2003) to simulate effects of pipe bursts. Simylai this case study data
collected during a set of EEs, when fire hydrangsenflushed at different locations

within a DMA to simulate bursts, was used.

In EEs the application of the whole information ifurs methodology as described in
section 3.3 does not make sense since the locatithre hydrant opening has, unlike a
real burst, no correlation with the results prodidey a Pipe Burst Prediction Model
(PBPM). The abnormal flows introduced during EEs aithin safe thresholds so that

customers are not affected by low pressures. AwtEtherefore, not be reported by
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customers since it is supervised by a field tecghniand, therefore, the use of a
Customer Contacts Model (CCM) cannot yield any hen€herefore, the Likelihood
Evaluator process, whose implementation was dexstiib section 4.4.2 was modified,
to exclude the information fusion portion and tdpaua only the criterion measurements
(i.e., the Sum of Squared Errors (SSE)) producedryM in this case.

First, results from two sets of EEs carried ou4 irelatively simple, tree-like DMA (see
Figure 5.2) in a predominantly rural area will beegented here followed by an
application of the HM in a more complex DMA (sealiie 5.7) with only a small
number of pressure sensors. The first set of EEBssimple DMA (section 5.2.1) was
based on large burst flow simulations (i.e., app®&% of an average peak DMA
inflow or 63% of an average inflow in April 2010)hereas the second set of EEs
(section 5.2.2) was based on medium burst flowes, @pprox. 10% of an average peak
DMA inflow or 18% of an average inflow in April 20). Section 5.2.3 presents the
results achieved on medium burst flow simulatiares,(approx. 6% of an average peak
DMA inflow or 10% of an average inflow in April 20} conducted in a highly looped
urban DMA.

5.2.1 Large Burst Flow Simulations (EE1)

Figure 5.2 shows the layout of a predominantly déedDMA comprising 390 demand
nodes and 373 pipes where the first set of large madium burst flow simulations
were conducted. The total mains length was 17.8Tkm.DMA had 1 inlet, shown as a
reservoir in Figure 5.2, and 2 metered exportsgheroDMAS in the northern part of the
DMA at the location of sensors 3276 and 3277. TiMADsupplied water to 897
domestic and 28 commercial properties (annual watsrsumption greater than
400 nT). There were no tanks, pumps or PRVs installetthismDMA. The real location

of the hydrant opening is denoted usingXasymbol and a number corresponding to a

particular event. The large burst flow simulatiéosk place on 7 August 2008.

128



Chapter 5 - Case Studies

359¢"

DL1 001

Legend
DL1:003
X  Open Hydrants 3589
m  DMA Inlet pL1 008
Loggers
O Cellos
@ DL1s
P t DL1.007 3111
0] ermanen °
Water Main
0 250 500 1,000 Meters

| 1 1 1 | 1 1 1 ]

© Crown Copyright/database right 2010.
An Ordnance Survey/EDINA supplied service. @

Figure 5.2 An overview of the case study area t6t Bnd EE2

Under normal conditions, there are only 4 loggealled in the DMA (denoted as
“Permanent” in Figure 5.2). One logger is at thietimf the DMA (pressure + flow),
two loggers are at the exports to other DMAs (aress flow) and the fourth logger
(pressure only) is located at the highest elevapiomt of the DMA (i.e., the highest
DMA elevation DG2 point). Before the EEs were coctéd, 19 additional loggers were
installed in the DMA at locations shown in Figur@,5o achieve an even coverage of

the whole DMA (without taking optimal sampling dgsiinto consideration). There
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were two types of loggers deployed in the fieldn@mal Cello loggers (Technolog
2010), and 10 high speed (i.e., 100Hz) loggers éHachnology 2010) denoted as DL1
in Figure 5.2 that were equipped with pressuresttaners supplied by SensorsOne Ltd
(2010). The accuracy of the Cello loggers, the Midgers and the Permanent loggers
was +/- 0.5 m (i.e., +/- 0.5% on 100 m range), :64 m (i.e., +/- 0.25% on 255 m
range) and +/- 1 m (i.e., +/- 1% on 100 m rangd)ezd, respectively.

Due to equipment failures only 9 out of the 10 hégleed loggers were operational. The
existing (i.e., “Permanent”) Cello logger 3308 & (i.e., high elevation) point was
malfunctioning during the EEs and was not usedeeitkurther analysis of the data
recorded by the loggers revealed unexpected readnogn loggers 3583 and 3587,
which lead to their exclusion from the analysis.cas be seen from Figure 5.3 the data
from sensors 3583 and 3587 seemed to be delayedmparison with the data from
other sensors (e.g., 3588, 3590 and 3589). Theopaot the trend highlighted in green
indicates the return of the majority of the loggereiormal (i.e., a hydrant was shut off)
whereas the parts of the trend highlighted in yelkhow when the excluded sensors
3583 and 3587 returned to normal.

Erroneous Trend Comparison
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Figure 5.3 Erroneous data from sensors 3583 and 358

One of the Cello loggers (i.e., 3585) was used wasure pressure at the inlet to
establish boundary conditions of the DMA. In totdhta from 15 newly installed
loggers and two existing loggers at DMA exports wsed in the analysis.
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The quality of the HM, which was not recalibratetpto the EEs, was tested on field
data recorded under normal conditions (i.e., bethee EEs were conducted). The
Table 5.1 shows differences of pressures obtainedubning the HM with updated

boundary conditions (i.e., DMA inflows, outflows dninlet pressure) and field

observations. The rows highlighted in red correspinthe two loggers (i.e., 3583 and
3587) excluded from the analysis.

Table 5.1 Difference between pressure measureraadtthe HM in m of head

Pressure Difference (m)
Node Id Cello 06/08 07/08 07/08 07/08 AVG Offset
18:00 00:00 07:00 08:00
5JYT466T2U 3581 -1.89 -2.05 -2.12 -2.33 | -2.1 2.1
5JA10688K4 3584 -3.93 -4.5 -4.39 -4.23 | -4.3 4.3
5LMBK6DIBA 3586 -1.88 -3.42 -2.9 -0.79 | -2.2 2.2
5IBNO6CRID 3588 1.79 0.17 0.68 3.1 14 -1.4
5LRX2681QL 3589 2.12 1.62 1.75 2.13 1.9 -1.9
5H9CQ6CTQY 3590 0.8 -0.85 -0.17 1.77 0.4 -0.4
5JPYD690DW | DL1 001 4.96 4.55 4.45 4.35 4.6 -4.6
5MDFP6DERE | DL1 002 1.37 0.03 04 2.28 1.0 -1
5KRGF68AIV DL1 003 -0.51 -0.71 -0.32 -0.27 | -0.5 0.5
5MEMV6DF8F | DL1 004 2.92 1.59 2.21 4.1 2.7 -2.7
5LH486CE8V DL1 005 4.19 2.57 2.99 5.1 3.7 -3.7
5L1IXM66MJI2 DL1 007 5.99 6.7 6.09 4.41 5.8 -5.8
5KG7R66M2K | DL1 008 -1.17 -0.71 -1.14 -1.35| -1.1 11
5LYDR67UPL | DL1 009 5.86 5.49 5.43 5.73 5.6 -5.6
5KU4F67AHI DL1 BIG -10.85 -11.98 -11.83 -10.35 | -11.3 11.3
5MFXU6DGYP 3276 2.55 2.12 2.07 5.9 3.2 -3.2
5MHCX6DF7U 3277 1.55 1.12 1.08 4.9 2.2 -2.2

The table further shows that some of the loggehsbéed a systematic discrepancy that
could be either caused by incorrect calibratiortihef HM (e.g., node elevation error),
calibration of the pressure transducers or nois¢h€ than recalibrating the HM of the
studied DMA to match the observed pressures, winMgbld be the most appropriate
approach, it was assumed that the pressure meastsemiere not entirely correct and
were either increased or decreased by applyingnatant offset to match the HM

results (under normal operating conditions) aseatioas possible. The actual value of
the applied adjustment is reported in the “Offg®iumn in Table 5.1. It was calculated
as an average discrepancy between model resultdieddddmeasurements computed

over 4 randomly chosen time steps.
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5.2.1.1 Data Pre-Processing

It was discovered that the data collected durireg Eits was in different time zones.
Typically, all measurements are recorded in Greenwilean Time (GMT), however,
the newly deployed loggers, due to incorrect sgitrecorded time in British Summer
Time (BST), which is equal to GMT+1. Given the facat the EEs took place in the
summer, failure to synchronise the time zones wouédd erroneous results. The
common time base used needs to consider the lmoal df a particular country to
reflect the current water consumption trends amerefore, the time base of all
measurements was converted to BST to correspoictiatHM.

The transient DL1 loggers recorded pressures atHrOflequency, whereas the Cello
loggers recorded data every 5 seconds. So a higblisg rate is unrealistic for long
term deployment of battery-only powered sensorsesih would lead to fast battery
depletion. Moreover, given the 15 minute time stefpthe HM, all pressure data had to
be down sampled to 15 minute time step using a ingoaverage to reduce the effect of
noise (the averaging window was 2 minutes). Presatithe ' minute was calculated
by averaging pressure readings in the (R-and the N minute. Detailed analysis of
the influence of the size of the averaging wind@gdiwas not carried out. The average
difference of pressures aggregated over a 1-mitine window was approx. 0.52%,

which seemed insignificant compared to the drogs@ssure observed during the EEs.

5.2.1.2 Event Detection

As stated in section 3.3.2.3 the HM requires thedmn time of a burst as well as the
estimated magnitude of burst flow as inputs. Thiegeit parameters are normally
provided by an automated pipe burst detection sygiounceet al. 2010). In case of
EE1 and EE2 the aforementioned system could ndlilyedetect consecutive hydrant
openings carried out within one day. The bursta&te times were determined in this
particular case manually by visual inspection afgsure data from a selected pressure
sensor, whose trend during two consecutive daghasvn in Figure 5.4. The hydrant
openings correspond to pressure drops lasting appately 1 hour and could be easily
recognised in the trends.
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Figure 5.4 Pressure data of a selected loggenvemtaletection on 6 and 7 August 2008

The manually detected and actual hydrant openmgdiare shown in Table 5.2. The

table suggests that the manually detected hydyaeniongs closely corresponded to the

actual times when the hydrants were opened.
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5.2.1.3 Abnormal Flow Estimation

Under normal conditions an automated pipe burgdiien system (Mounce and Boxall

2010) is able to provide a good estimate of theoabal flow. As discussed in the

previous section, the system was not used duriegetrEEs and it was therefore

necessary to estimate the burst flow manually. $iimate the flow from the open

133



Chapter 5 - Case Studies

hydrants during the first set of EEs the differebeéwveen an average demand over the
past 3 days (i.e., from 4 to 6 August) and theaaemand on 7 August was taken. The

estimated abnormal flow was required as one oirnpets to the HM.

EE1 -7 August 2008 E013 - Estimation of Burst Flow

| |
******************** —— AVG Demand | —

,,,,,,,,,,,,,,,,, —— 7Aug Demand |- -
—— Difference
T

Flow (I/s)

Time (BST)

Figure 5.5 Comparison of flow data on 7 August 20@® an average demand

Table 5.3 provides a summary of abnormal flowsnestied by comparing flow patterns
under normal and abnormal conditions in the netwasing Figure 5.5. The column
“Difference” corresponds to the estimated flow rased by the HM whereas the “Real
Flow” column contains observed flow measurements;lased after the analysis. The
flow rate from the hydrant was measured using ardmntdpipe flow meter which,
although digital, is prone to error. The five malhudetected events (i.e., the assumed
burst detection times) are highlighted in yellowTiable 5.3.
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Table 5.3 Summary of times and abnormal flows usethe HM

e e e 7RG Difference Real
Date Outflow Inflow | Demand | Demand (I/s) Flow (I/s)
(I/s) (I/s) (I/s) (I/s)
07/08/2008 08:00 9.75 16.93 7.18 8.13 0.94
07/08/2008 08:15 10.03 17.25 7.22 7.74 0.52
07/08/2008 08:30 9.95 17.19 7.24 9.23 1.99
07/08/2008 08:45 10.03 16.76 6.73 12.69 5.96 6.6
07/08/2008 09:00 9.90 16.80 6.90 13.20 6.30
07/08/2008 09:15 9.49 16.46 6.97 12.91 5.93
07/08/2008 09:30 8.80 15.77 6.97 11.22 4.25
07/08/2008 09:45 8.82 15.57 6.75 11.80 5.05
07/08/2008 10:00 10.16 16.42 6.26 12.84 6.58 6.2
07/08/2008 10:15 8.93 15.19 6.26 11.69 5.43
07/08/2008 10:30 8.00 13.69 5.68 11.65 5.97
07/08/2008 10:45 7.44 12.78 5.34 8.72 3.38
07/08/2008 11:00 7.30 12.21 4.90 7.49 2.58
07/08/2008 11:15 6.37 12.41 6.03 11.47 5.44 7.3
07/08/2008 11:30 6.15 11.68 5.53 11.51 5.97
07/08/2008 11:45 5.96 11.35 5.40 11.12 5.72
07/08/2008 12:00 5.70 10.96 5.27 11.17 5.90
07/08/2008 12:15 5.77 10.64 4.87 9.17 4.30
07/08/2008 12:30 5.44 10.27 4.83 11.62 6.79* 7.3
07/08/2008 12:45 418 9.44 5.26 11.79 6.52
07/08/2008 13:00 4.89 12.00 7.11 10.78 3.66
07/08/2008 13:15 6.19 10.87 4.68 7.52 2.84
07/08/2008 13:30 6.00 9.54 3.54 8.19 4.65 7.5
07/08/2008 13:45 5.98 9.38 3.40 7.87 4.47
07/08/2008 14:00 5.85 10.14 4.28 8.18 3.89

*) The estimated hydrant flow of 6.79 I/s at 1288emed too high (without knowing
the real flow) and the HM identified the same buesttion as was the case at 11:15.
Therefore, the burst flow was reduced by 1 I/s i®%s. This globally reduced the
SSE, which suggested it was likely that the inibafst flow had not been estimated
correctly. After the locations of hydrant openintigir times and the measured hydrant
outflows were revealed, it was found out that tbieial hydrant outflow was higher than
the estimated one. This might indicate an incoroadibration of the hydraulic model.
The actual measurement (i.e., Real Flow) recordadgua digital hydrant pipe flow
meter could also be subject to errors.

5.2.1.4 Results and Discussion
The results obtained for locating the open hydematsummarised in Table 5.4, which
reports a topological distance of the pipe idestifby the HM as a burst location from
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the actual hydrant opening. The topological distawas measured here as the shortest
path between two points in the network by tracimg network connectivity schematics.
The column “All loggers” corresponds to a scenavleen all (15+2) loggers were used
to determine the location using an HM. In the “Gadnly” scenario only (6+2) Cello
loggers were used. The “DL1” scenario considerely @ DL1 loggers and Cello
loggers at exports. In the “Selection” scenario sneaments from only 2 additional
loggers (i.e., 3590 and 3584) were used.

Table 5.4 HM hydrant opening results for EE1

: Distance from an open hydrant (m)

EEL | Time All loggers Cello only DL1 only Selection
1 08:45 346 346 346 346
2 10:00 42 42 85 85
3 11:15 157 157 45 157
4 12:30 194 194 194 194
5 13:30 603 603 1,140 1,210

Table 5.4 shows that the increased number of pressensors used in a relatively
simple DMA did not necessarily yield an extra bé&nefidentifying the location of the
open hydrant more accurately. In the majority adesavery similar results could be
obtained just by using 2 additional loggers depiogé suitable locations sensitive to
changes in pressure. Where only a small numberosensere used (e.g., the
“Selection” scenario) a higher number of pipes ingm very similar value of criterion

measurement and the method would be more prone&asumement errors.

Detailed results of the analysis are shown in Agpe€.1 in the form of GIS maps,
showing the spatial distribution of SSE for each tbé “All loggers” scenario
considered in Table 5.4. From the figures preseimtdgppendix C.1, it can be observed
that the HM in the majority of cases (i.e., excEfl-5) managed to identify a burst
hotspot (i.e., a group of pipes having a similaES&lue). EE1-5 was conducted at
13:30 (see Figure C.5) and it can be observedttieatiM did not manage to identify a
burst hotspot in the proximity of the open hydrarttis can also be seen in Table 5.4,
where the distance from the open hydrant was sogmifly higher (i.e., 603 m) than
other EEs. The most likely explanation for thidudee could be the poor calibration of

the HM, which was over predicting head losses pegpiin the top part of the DMA.
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5.2.1.5 Summary

The above case study was carried out as a blindates the actual locations of the
hydrant openings as well as the opening times laisti flow rates were unknown to the
author before submitting the results. From the Itespresented in Table 5.4 and
Appendix C it can be concluded that the adoptedhatehas the potential to provide an
estimated location of a large pipe burst within edatively simple DMA where a
reasonably calibrated HM exists and a sufficieninbar of suitably located pressure
monitoring points are available. The combined maddibration and burst location as
suggested by Wt al. (2010) as well as the use of multiple measuremehkisn at
different times (ideally during minimum night flohours) is likely to lead to further
improved results. However, if multiple measuremeamtsnight flow values had been
used, it would have caused a delay to the invdstigaTherefore, these were not
considered in this work, which required near R-Tsblocation.

5.2.2 Medium Burst Flow Simulations (EE2)

Similarly to the first set of EEs presented in gett5.2.1, another hydrant flushing
exercise took place in the same DMA on 8 AugustB2dis time the flow rates were
significantly reduced. The same set of sensorseasrilbed above (see Figure 5.2) was
used. The pressure data was pre-processed inrieegay as in the case of EE1 (e.g.,
time shift, moving average applied, etc.). The gues measurements from the field
were corrected in the same way as in EE1 by applgonstant offsets as shown in
Table 5.1.

On 8 August 2008 the flow data of the exports ,(lleggers 3276 and 3277) was
corrupted (see Figure 5.6). In order to utilisedh&aset it was necessary to synthetically
generate the outflows. Average values over theogdrom 4 - 7 August 2008 (Monday
to Friday) were used to fill-in the missing dat&isI might have affected the results to

some extent.
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Figure 5.6 Corrupt flow data of logger 3276

5.2.2.1 Event Detection & Abnormal Flow Estimation

Detecting the time of the hydrant opening and esiimy the flow would be difficult in
this case since the magnitude of abnormal flow mvash lower than in case of the large
burst flow simulations. Such situations would ceftabenefit from a more advanced
automated approach (Mounetal.2010). Unlike in the previous case, here the known
hydrant opening times and measured flush flow rate® used. The actual considered
input parameters can be found in Table 5.5. Thanasd conditions might represent a
significant challenge for an online pipe burst dat system and could be seen as
ideal, however, they were partially compensatedti®gy unknown outflows from the
DMA exports.

Table 5.5 Time schedule and hydrant flow rate 02 EE

EE2 Time Abnormal flow
5 09:00 21/s
4 11:00 21/s
1 12:30 21/s
2 14:30 21/s

The ID of an EE corresponds to the location of Bydiopening as shown in Figure 5.2.
In case of EE2, only four hydrant openings wereriedrout and their order was
different to that in EE1.
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5.2.2.2 Results & Discussion

Similarly to the previous set of EEs (i.e., EE1Jliierent number of pressure sensors
were used in the attempt to determine the locaifcem open hydrant. The distances of
the most likely burst location from the actual hamlr opening are presented in
Table 5.6.

Table 5.6 HM hydrant opening results for EE2

: Distance from an open hydrant (m)

EEZ | Time All loggers Cello only DL1 only Selection
5 109:00 340 1,940 340 1,090
4 |11:00 25 25 25 25
1 |12:30 324 395 324 376
2 |14:30 270 270 270 270

Table 5.6 shows that the performance of the HMhis DMA was similarly to EE1 still
acceptable even when a smaller number of sensaes wged. Detailed results of the
analysis of EE2 are presented in Appendix C.2 enfdrm of GIS maps, showing the
spatial distribution of SSE for each of the “Allglgers” scenarios considered in
Table 5.6. The most likely hydrant opening locasiaatentified by the HM were slightly
different in case of EE2 compared to EE1. Wherkadifferences in the values of SSE
between differently colour coded classes in tharBg presented in Appendix C.1 (i.e.,
EE1) were significant, the lower hydrant flush sagenerated smaller drops in pressure
and the values of SSE in case of EE2 (see Appe@dx were much more similar
across a number of pipes. Similarly to the scenBid-5 discussed above, even the
scenario EE2-5 (i.e., the same location of an dmpgrant) generated much higher
values of SSE. This further supports the hypothelsisadequate calibration of the HM
(i.e., at least in the top part of the DMA).

5.2.2.3 Summary

This set of EEs was not a blind test and the looatiof open hydrants as well the
opening times and flows used during the flushingewknown a priori. Even the
significantly lower abnormal flows (i.e., 2 I/s) mgrated in the DMA sufficient head
losses, which were picked up by the sensors. Thverethe methodology performed
similarly to the large burst flow simulations preted in section 5.2.1. In this case the

estimated abnormal flow was considered as knowighwiepresented an ideal case. On
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the other hand, the measured outflows from the DMbAe only approximated based on
average values, which to some extent compensatedadvantage of the known
abnormal flows. Similarly to EE1 even in this cdse., a simple DMA) an increased
number of pressure monitoring points did not ymldstantial benefit that would justify

the additional investment.

5.2.3 Engineered Events in a Typical DMA (EE3)

This section provides details of the performancéhefHM in the attempt to locate an
open hydrant in a highly looped urban DMA (see FeghL7). The studied DMA
contained 698 demand nodes and 738 pipes. Thenatials length was 19.2 km. The
DMA had 1 inlet shown as a reservoir in Figure &d 1 metered export to other DMA
in the eastern part of the network at the locatbrsensor 3122. The DMA supplied
water to 2,640 domestic and 122 commercial proggerfannual water consumption
greater than 400 #h There was one major metered consumer (i.e., tovesi by a
dedicated logger) in the DMA, having demand gretitan 10,000 rityear or 5% of the
total DMA inflow. No tanks, pumps or PRVs were gild in this DMA.
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Figure 5.7 An overview of the case study area 168 E

The number of pressure sensors deployed in the D& relatively small (i.e., only 2
additional loggers) compared to the previous EEsvéVer, the additional sensors (see
the yellow dots in Figure 5.7) were deployed aatstjic locations as identified by
Farleyet al.(2008). The EE was a part of validation tests efithole DSS described in
Chapter 4. Unlike in the case of EE1 and EEZ2, timse the hydrant opening was
automatically detected by the ANN-FIS (Mounekal. 2010), denoted as an external

Pipe Burst Detection module in Figure 4.1. All regd inputs, such as the affected
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DMA, detection time and the estimated burst flowersv stored in the DB (see
Table 5.7) and marked as a fresh alarm. After bdirgj processed by the Alarm
Monitor (see section 4.4.1), the alarm was passedhe Likelihood Evaluator

(described in section 4.4.2), where the evidencéhefHM was computed. The time
considered for burst location is highlighted inlgel in Table 5.7 and corresponds to
the end of the time window used by the ANN-FIS lbarst detection. Ideally, a much
narrower time window should be used for burst deiecas well as estimation of the
abnormal flow. This should be possible as Romanal. (2009) reported successful

burst detections with only a 30 minute time window.

Table 5.7 Alarm information provided by a pipe lustection module

EE3| Alarm Received |ANN-FIS Window Start/ANN-FIS Window End Bﬂ‘g\;t DMA
1 | 02/03/2010 15:15 01/03/2010 17:30 02/03/2010 05:30 | 1.7Vs | EO021

The estimated burst flow of the EE3 was 1.7 I/ ($able 5.7) and corresponded to
approx. 15% of DMA inflow at 7AM (i.e., peak demand@he automatically estimated
flow was close to the actual flow used during tigdrnt flushing (i.e., 2 I/s). As in the
previous EEs, offsets to pressure measurementsul@@d under normal operating
conditions) had to be applied to achieve a closatcmbetween the HM and field
observations. Table 5.8 provides details of theactalues of constant pressure offsets
used.

Table 5.8 Pressure measurement corrections for EE3

Logger Pressure measurement corrections (m) on 01/03/2010 AVG Offset (m)
00:00 | 04:00 | 05:00 | 05:15 | 05:30 | 05:45 | 06:00
3610 0.55| -0.31 0.16f -0.43 0.5 -0.08 0.69 0.06
3584 1.14 0.79 0.75 1.16 1.09 0.51 1.28 0.91
3300 0.9 1.25 1.23 2.18 2.14 1.09 1.97 1.47
3122 1.65 1.39 2.28 2.21 2.11 2.04 2.74 1.95
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Figure 5.8 A map showing the most likely locatidrhgdrant opening of EE3

Figure 5.8 shows the performance of the HM aftgilyapg pressure offsets presented
in Table 5.8. The distance from the location withvést SSE (i.e., the most likely

location of the open hydrant), identified by the Htd the actual location of the open

hydrant was 165 m. However, the hydrant flushingsea pressure drops across the

DMA in the range from 0 - 0.55 m. The abnormal fleiv 1.7 I/s did not generate

pressure drops above 0.5 m at the location of #vdyndeployed sensors (i.e., 3610,
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3584) and nor at the location of the permanent ®en§3300, 3122) with a 1 m
accuracy. The HM in this case, therefore, could provide a sensible answer. The
promising result shown in Figure 5.7 was, therefol#ained only by chance. If the HM
had been run at a different time (i.e., other tbBe&80AM) during the EE an entirely
different location could be identified.

5.2.3.1 Summary

EE3 shows that the use of HM as a source of evalenggesting the likely location of

a burst pipe might be problematic in situations mvbiee abnormal flow escaping from
the system does not generate sufficient presswpsdat the locations of pressure
sensors. Moreover, the accuracy of the pressurseoseran play an important role,
particularly in highly looped urban DMAs where thiéects of a burst will be mitigated

since the additional flow can reach the burst tgloa number of alternative paths.

The number of accurate pressure sensors (i.e.ndgpacdcuracy of 0.1 m) that would
have to be deployed in an urban DMA in order t@ble to locate a burst pipe might be
uneconomical, at least at current price levels. abeuracy necessary to locate such
bursts might furthermore impose significant chadles on the quality of calibration of
the HM.

5.3 Dempster-Shafer Model: Semi-Real Case Study

This section provides the results of an applicatibthe D-S model presented in section
3.3 of this thesis on a number of semi-real casdies$ in a large urban DMA in the
Harrogate & Dales area in North Yorkshire, UK ($@gure 5.1). The aim of the case
study is to show that combining realistic evidenadich can be obtained from a
number of models in an effort to locate a bursepngthin a DMA, yields additional
benefits.

The layout of the highly looped urban DMA, whichsasubject of this study, is shown
in Figure 5.9. The DMA had two inlets and no expoA total of 10 pressure sensors
were used in this case study. The DG2 pressur@isemsich was located at the critical
point of the DMA (i.e., location with the highedeeation), and 9 additional sensors
were placed according to an optimal sampling medlomy developed by Farlest al.
(2008).
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Figure 5.9 An overview of DMA E022

The selected case study area was one of the |dbf§4as in the Harrogate and Dales
area, supplying water to over 4,500 properties ¢ain69% unmetered). The DMA
comprised 998 demand nodes and 1,052 pipes (@&nfml burst locations). The total
length of water mains in this DMA was 33.5 km. Thewere only 6 commercial
properties with an annual water consumption grea 400 mand 1 major consumer
(i.e., demand > 10,000 %gear or 5% of the total DMA inflow), which was nitored

by a standalone logger.
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5.3.1 Individual Model Screening

Before attempting to apply the information fusiorethodology, the performance of
individual models was evaluated first. The findirgistained during the application of
the individual models (i.e., the HM, CCM and PBPBI) a selection of calibration

cases in the DMA E022 are summarised in the folgvaub-sections.

5.3.1.1 Hydraulic Model

By modelling artificial bursts in the DMA it was sérved that the HM was generally
not very sensitive to noise added to nodal dem&edsuse these were substantially
lower than the outflows from the simulated pipedtsir Variation of nodal demands of

20% (i.e., +/- 10% uniformly distributed) did naiuse any major errors in determining
the location of a burst pipe, since there were ordgy few major customers in the

DMA.

On the other hand, it was observed that the presseasurements were very sensitive
to the added noise. In the DMA, pressures generatiged from 40 m up to 90 m due
to the differences in elevation. A 2% error (i:€- 1% uniformly distributed) added to
pressure measurements for a 5 I/s burst (i.e.9d25baverage peak demand or 20% of
average DMA inflow) was still found acceptable. THigl performed reasonably well in
most tested scenarios. The accuracy of the HM reduy this method might be very
difficult to achieve in real life conditions sindeis close to the threshold of acceptable
level of calibration (for this type of modellingds discussed by Walskt al. (2003).
Also the accuracy of commonly available pressuaesducers is approx. +/- 0.5% of
their full range, which might be insufficient undsgme conditions.

5.3.1.2 Customer Contacts Model

Two main data sources, provided by a water utilgre used during the development
of the CCM. The first dataset contained classifiddis received by phone, containing
the date and time of the complaint, its nature gedgraphic coordinates associated
with the contact (i.e., either the coordinateshef property or geo-referenced location of
a burst provided by a customer). The second datase¢dined information from a Work
Management System (WMSY), which contained a datermanmains repair was carried

out as well as coordinates where it took place.
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It was assumed here that a burst was repaired gltine same day it was detected.
Under such an assumption, the time window over WIE€s were considered to be
related to a particular burst event was establigtyegerforming spatial analysis of CCs
and WMSY data of 15 DMAs collected over the peradds years (2002 - 2007). The
size of the window was chosen according to Tal8eaS.the best trade-off maximising
the number of CCs associated with pipe bursts, he “Bursts with CC” row) and
minimising the distance of those contacts from lthetion of a burst pipe (i.e., the
“AVG Dist” row).

Table 5.9 An average distance of CCs from a bupst p

Same Same Same 36h 24h 12h 24h
Criterion Same Day & | Day & | Day & | Before | Before | Before | Before
Day 12h 24h 36h +12h +12h +12h +24h
Before | Before | Before After After After After
Bursts with CC 143 171 183 192 199 190 178 193
AVG CC Count / Burst 1.0 1.1 1.2 1.3 1.4 1.3 1.2 1.4
AVG Dist (m) 233.9 240.2 239.3 277.8 307.6 272.0 275.2 284.5

The “AVG CC Count / Burst” row provides informati@bout the average number of
CCs per burst given a particular size of time windand is correlated to the “Bursts
with CC” row. The typical number of CCs per buist & particular time window is then
shown in detail in Table 5.10. It can be obsenyed tor the chosen time window of 24
hours before the repair and during the same dayepar took place, the majority of
the bursts were not reported by any customer aadiirst was reported it was mainly

by 1 or 2 customers.

Table 5.10 A histogram showing frequency of CCspee burst

Same Same Same 36h 24h 12h 24h
Customer | Same Day & | Day & | Day & | Before | Before | Before | Before
Contacts Day 12h 24h 36h +12h +12h +12h +24h
Before | Before | Before | After After After After
0 214 186 174 165 159 167 179 164
1 60 75 80 81 84 83 78 80
2 39 44 49 47 48 51 45 53
3 20 24 24 32 31 23 23 25
4 10 11 10 12 11 9 11 9
More 14 17 20 20 24 24 21 26

Figure 5.10 shows that most of the CCs (i.e., 70.6®&re typically within 200 m from

the True Burst Location (TBL) for the time window 4 hours before the WMSY
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order creation date and the same day. Moreovensild40% of the CCs lay within 50 m
from the TBL. However, almost 13% of the contaetg further than 500 m from the
TBL, which might indicate either incorrect assoi@atwith a WMSY record or an error

in WMSY or CC data (e.g., a misleading report).

An average distance of a CC from a burst location
0,
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35
30 16.5% 16.5%
14.7%
14.1%
o 25
o
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S 2
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— 0,
I 15 8.2%
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Figure 5.10 A histogram of an average distancausfamer contact from a burst

location

The CCM seemed to perform relatively well in the BM ypically the CCs associated
with a burst event originated almost exactly frdme &area where a burst occurred or
were misleading (i.e., came from a different pdrthe DMA). The time window (i.e.,
the CCs reporting Burst / Leak during the 24 hcuefore and during the same day
when a WMSY entry was created were considered latedeto a burst) identified in
Table 5.9 seemed to be appropriate for this cas#y dtecause only less than 30% of

CCs were more than 200 m from the TBL.

An attempt was made to combine multiple CCs hiéiiaatly (see Appendix A.1 for
additional details). This, however, brought certdifficulties related to an increased
influence of the combined result, compared to othfarmation sources (i.e., HM and
PBPM). Also some performance issues related ta@dnebination of many information
sources (in some cases) were encountered, whicld @®uovercome using a more

efficient implementation of the D-S model.
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5.3.1.3 Pipe Burst Prediction Model

PBPMs are typically used for strategic planningdentify the most suitable assets for
rehabilitation or replacement. Their predictions generally not of a very high quality
for operational use. The PBPM used in this workjcWwhwas built by a consultancy
company, was treated as a black box and was niotatedl prior to use. As shown later,

even such a model can bring certain benefits, teegpidifferent primary use.

5.3.2 Dempster-Shafer Model Calibration

To calibrate the D-S model a number of historicaes are required so that its various
parameters (e.g., the type of the normalisationctians, shape of the mapping
functions, etc.) can be set to achieve the besssdabm the information fusion. Since it
was not possible to use real life examples dueissing or insufficient data, a number
of semi-real case studies were created. In ordengke these as realistic as possible,
historical pipe burst events were first obtaineashfra WMSY. Where applicable, the
CC DB was queried to retrieve CCs reporting bunse jor a leak.

Poor calibration of the available HM of the studgaas well as missing historical
pressure and flow records prevented the use ofdatalfrom pressure and flow sensors
deployed in the field. Synthetic pressure measunésneere generated by simulating a
medium sized burst (i.e., 5I/s = 12.5% of peak DMAow or 20% of average DMA
inflow) as a fixed (i.e., pressure insensitive) @ewch added to the centre of the burst
pipe at the location and date obtained from a WMBMNessures in the studied DMA
were generally high due to significant differengeglevation and ranged from 40 m to
90 m of head during minimum night flow hours (i.4:00 AM). The chosen value of
burst flow of 5 I/s, which seemed to generate sigfit pressure drops in the DMA,
could be seen as representative for medium to laumggts. The time of burst detection /
occurrence was randomly chosen between 0 and 2¢s.hBressures in the network
obtained at demand nodes closest to the real dmsaif sensors in the WDS were
recorded and used as reference pressures repngsenpiipe burst. White noise was
added to the reference pressure values (d.% uniformly distributed) as well as
nodal demands (i.e.x7.5% uniformly distributed). The base values werthee
increased or decreased by a given percentage, te ulosely reflect the reality.
Without adding the noise the HM would always filn tright location of the burst and

would significantly outperform the remaining infaatiron sources. In fact, there would
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be no need to use information fusion to includeorimfation from additional data
sources. The chosen values of added noise weretestlaccording to observations
during preliminary screening of the HM to allow tm@del to provide imperfect but still

acceptable results.

5.3.2.1 Calibration and Validation Data Sets

A dataset comprising 54 historical pipe burstshie DMA (see Figure 5.9) was formed
and split into a calibration set comprising 41 saaed a validation set comprising 13
cases (approx. ratio 75% calibration / 25% valw@ti The split between calibration and
validation data was done in such a way that botasg#s had similar properties (e.g., in
terms of number of CCs received and the performaricedividual models). Both
calibration and validation sets contained similambers of CCs, i.e., 27 (66%) and 8
(62%), respectively. The performance of the modeds measured using the average
likelihood attributed to the 10 nearest pipes ia fmoximity of the TBL (see section
3.3.5). The pipes included in the “10 nearest” gatg are represented by the “Inner”

region shown in Figure 5.11

Figure 5.11 lllustration of the Proximity function

The split of data into calibration and validatiogiss was performed using GANetXL
(Bicik et al. 2008), an optimization add-in for Microsoft Exteby applying a single

objective GA (Goldberg 1989) where the objectivesww@ minimize the difference in

150



Chapter 5 - Case Studies

performance of individual models (i.e., the PBPNe HM and the CCM) between the
calibration and validation sets while maintainihg thosen size of the calibration and
validation sets (i.e., 41/13) and ensuring thatdhses where CCs were present were
proportionally split between the two sets. Decistanables in this case formed a vector
of binary numbers, where the value of O indicatedt ta particular case should be
included in the calibration dataset, whereas tHaevaf 1 suggested including a case

into the validation dataset. The objective functiaas defined by following equations:

f =|Performanc(a calibrations¢t- Performar{ce idaltion se)|

(5.1)
Performancé X:ﬁ > ( Perf PBPY+ Peff HM+

1 [Ocase&l X (5.2)
+— > (Perf(CCM))

|Z| Ocasesl Z
where:

» fis the objective function,

» Performances the function representing the overall perforoganf a given set
X,

» Xrepresents the chosen set, i.e., calibrationrsetlmation set,

« Perfis a function returning the average likelihoodtlod 10 nearest pipes from
the True Burst Location (TBL), which represents pleeformance of a particular

individual model on a given case, and

e Zis a subset oKX (Z 0O X) representing only those cases where CCs were

available.

Even though some of the calibration and validatases were located close to each
other in Figure 5.9, the bursts were simulatedrdudifferent times of day and different
sources of evidence, such as CCs, were availaldeh Bf the models, therefore,
performed differently, despite their geographidaseness. The above procedure was
applied prior to any attempts to calibrate the D¥®del, purely to determine
representative calibration and validation data.sEke calibration of the D-S model

presented in the following section was carriedanly on the calibration dataset.
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5.3.2.2 Multi-Objective Optimisation of the D-S Model

The calibration of the D-S model defined in sect®f.5 was solved using a multi-
objective GA (Goldberg 1989). GAs are populatiosdzh heuristic search algorithms,
particularly suitable to solve complex non-lineaolgems, which was the case in this
work. The particular type of multi-objective GA aséere was the Non-dominated
Sorting Genetic Algorithm (NSGA-I11) proposed by Debal. (2002). The optimisation
problem comprised 24 real decision variables, dget variables and 3 objectives. The
population size was set at between 100-240 sokiticnossover type: Simulated Binary
Crossover (SBX) (Deb and Agrawal 1995), real cressagate: 0.95n. = 1-3, real
mutation type: polynomial mutation, mutation raté24 andn, = 1-3, binary crossover
rate: 0.9 and binary mutation rate: 0.1-0.25. Tiitable ranges of parameters of the GA
shown above were determined manually by trial amdre A number of runs were
conducted prior to the main optimisation to essbin understanding of the influence

of the parameters on the convergence and divarsgglutions produced by the GA.

Given the stochastic nature of GAs it is not gutrad that they converge to a global
optimum (i.e., a Pareto front in the case of a rabjective problem). Their strength
lies in their ability to produce a good approximatiof the Pareto front. The
convergence can be influenced by the randomly géeerinitial population and,
therefore, multiple runs were conducted. Figur@5shows the final Pareto Front
produced by combining the frontiers obtained fronndependent optimisation runs

with different initial populations (i.e., randomesks) and parameters of the GA.

5.3.2.3 Calibration Results

The algorithm produced an approximation of a Pafi@tot of non-dominated solutions
from which a single set of parameters was seldatséd on subjective criteria outlined
in section 3.3.5. The selected solution (see tlaekbtircle in Figure 5.12) contained
sigmoid normalisation function for the PBPM andilagprmalisation function for the

HM and the CCM. The preferred combination rule whe original Dempster’s

combination rule in this instance.
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Figure 5.12 A 2D View of the 3D Pareto front shogvthe chosen solution

The shapes of the mapping functions as shown ir€i§.13, Figure 5.14 and

Figure 5.15 were suggested for the PBPM, the HMthadCCM, respectively.

a) Pipe Burst Prediction Model
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Figure 5.13 Mapping functions of the PBPM
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b) Hydraulic Model
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Figure 5.14 Mapping functions of the HM
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Figure 5.15 Mapping functions of the CCM

The above curves capture information about theadvperformance of the individual
models on calibration cases. The fact that the mgpgurves are available and can be
analysed by a DM can be seen as a benefit of thhoaelogy over, e.g., ANNs
(Haykin 1999), which behave as a “black box” andirthnternal structure remains

hidden.

From the mapping curves presented in Figure 5.103r&5.14 and Figure 5.15, it can
be concluded that the PBPM (see Figure 5.13) playleds significant role in terms of
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contributing to the fact that a particular elemeras the TBL (because of its lower
credibility). It also did not provide much “negagiv evidence suggesting that a
particular pipe was not the TBL, which suggestst ttiee PBPM would normally

generate a high number of false positive locations.

Both the CCM and the HM were capable of narrowiogid the search area where the
TBL might be. Interestingly, in the case of theds¢éd DMA the HM (see Figure 5.14)
attributed equal level of belief (i.em({Burs$)) to a number of potential incidents
whose value of the normalised confidence factor gsater than 0.78. This might
suggest that the model was typically unable toirdisish the TBL within those
potential incidents (e.g., because of the noisea@do pressure measurements and nodal
demands) and only perceived potential incidents witigh value of confidence factor

as more plausible.

On the other hand, the CCM (see Figure 5.15) glesimdwed that belief attributed to a
potential incident was decreasing with an increasgistance of a pipe from CCs. The
mapping curves of the CCM reflect the fact thatah be in some cases significantly
wrong, which can be explained by the generallyddeayel of epistemic uncertainty in
the range of a confidence factor from 0.56 to 0Al6 potential incidents within this
range are still entirely plausible burst locatio@sly potential incidents whose value of
confidence factor was below 0.56 were deemed asfisgntly less plausible burst

locations.

The mapping curves presented above are likely teabé for a single DMA only and a
different set of curves needs to be obtained fdreltDMAs depending on the
performance of the three individual models in th@¥dAs. The calibration of the
curves for other DMAs might be difficult when ondy short burst record history is
available. The D-S model could be recalibrated a® rhistorical cases become
available. Such a process was not fully automasegaat of this work since no rules
were created to select a solution from the Pametat foroduced during the calibration.
For future calibration / re-calibration of the Da%del it is, therefore, vital to capture as
much information about every burst pipe as posgibée, at least the exact date and

time of burst detection and the location of thesbur
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The mapping curves also justify the adoption of Bk€ory, compared to a traditional
Bayesian approach. As discussed in section 3.3inamore detail in Appendix A, one
of the distinguishing features of D-S theory isatslity to assign probability mass to
subsets of the frame of discernme®t The mapping functions in Figure 5.13,
Figure 5.14 and Figure 5.15 show that in all casaggnificant amount of probability
mass was attributed to the whole frame of discem®erepresenting complete lack of
knowledge. The adopted calibration approach cdubdvever, converge to a solution,
where no or very little probability mass was assijto®. This was not the case, which
leads to the conclusion that the D-S theory wathig context a better mathematical
framework than the traditional Bayesian approach.

5.3.3 Results and Discussion

The main aim of information fusion applied in trentext of pipe burst diagnostics is to
identify hotspots, comprising a small number ofgsipwhere the burst is most likely to
be located. Table 5.11 gives detailed results abmitperformance of the individual
models as well as the D-S model on all of the Sbidion and validation cases
considered in this case study. Besides providifymmation about a particular historical
burst, such as its WMSY ID, date when it was regghilD of a burst pipe (i.e., the
TBL) it also reports Belief (Bel), Plausibility (Plnd pignistic probability (BetP)
attributed to the TBL by the D-S model. Most impotly the last four columns (i.e.,
the D-S M, PBPM, HM and CCM) show the rank of tH&LTprovided by each of the
individual models as well as the D-S model. Thedpothe value of the rank, the better
Is the performance of a particular model. It igrédiore, possible to assess the scale of
improvement (or deterioration of performance) iantifying the TBL for every case in
Table 5.11.

Table 5.11 Detailed results of the performancéef@-S model

Burst ID Order Date Link Id Bel | Pl |BetP|D-SM|PBPM| HM | CCM
6038359| 13/04/2004 12:00[0004G302 | 0.90| 0.93| 0.91 85 1049 47| -
6588773|16/12/2004 05:00|0004(339H 0.92| 0.94| 0.93 22 149 77 -
7701432|24/04/2006 07:00|0004(330E 0.92| 0.94| 0.93 23 104 50| -

7719426|02/05/2006 08:OO|OOO4G30A 0.92/ 0.95| 0.93 6 104 13| -
4998859/10/01/2003 O7:00|OEJ9KBBF 0.92/ 0.94| 0.93 27| 287 62 -
5600831 30/09/2003 03:00|0004G37I 0.92/0.93] 0.92 3| 167 50 -

calibration cases
no CC

5710918 18/11/2003 05:00|0004E1IL 0.90]0.92| 0.91 74 1049 63 -
9540594| 28/04/2008 17:OO|OEJ9KAGM 0.90]/ 0.94] 0.92 15| 305 11 -

156



Chapter 5 - Case Studies

Burst ID Order Date Link Id Bel | Pl |BetP|D-SM|PBPM| HM | CCM
8640654|23/05/2007 12:00/0004EI11G | 0.90| 0.94| 0.92 4| 588 5 -
8681541|05/06/2007 02:00|OEJ9KB36 0.92| 0.93| 0.92 1 24 37 -
5468788|04/08/2003 01:00|OEJ9KB36 0.90| 0.94| 0.92 80| 287 70, -
4398117 23/04/2002 O3:00|OEIIJ3F3 0.92/ 0.93] 0.92 21 244 163 -
4533556/ 19/06/2002 11:OO|OOO4639H 0.92| 0.94| 0.93 10 149 94, -
5571373|17/09/2003 06:00|OOO4GZFO 0.90| 0.94| 0.92 74 406 6| -
4651377/06/08/2002 07:00|0EJ9KDNN 0.81)0.84| 0.83 10 167 81 1036
8230257|11/12/2006 10:OO|OOO4E1I9 0.78/0.80] 0.79] 105/ 655 126/ 562
5523071|27/08/2003 12:OO|OOO4G3AI 0.90/0.92| 0.91 63 975 57| 410
8343335|31/01/2007 01:00|0004628G 0.92/0.93| 0.92 11 26| 197 346
8120373|22/10/2006 17:00|0004E9G5 0.90] 0.94| 0.92 3] 765 7| 304
8375245|13/02/2007 05:OO|OEIIII5H 0.90/ 0.94| 0.92 8 764 4 284
5003372 13/01/2003 15:OO|OOO4E1G2 0.90] 0.94| 0.92 58 616 18] 224
8044356|17/09/2006 17:00|00046393 0.90/0.93| 0.92 39| 631 48] 153
9085548|08/11/2007 01:00|0004E1M5 0.20/0.89] 0.55] 106] 605 181 93
7575245|02/03/2006 14:00|OOO4G36G 0.93/0.95| 0.94 7 232 81 7
5773552|17/12/2003 03:OO|OEJ9KC14 0.91) 0.95| 0.93 4, 512 1 4
6004593|29/03/2004 09:00|0004E1EK 0.99/0.99| 0.99 0 144 10 0
6565521|04/12/2004 01:00|0004628G 0.99/0.99] 0.99 0 672 7 0
8 7435423|03/01/2006 08:OO|OOO4E1II 0.99/0.99| 0.99 0 21 0 0
9298957|30/01/2008 21:OO|OOO4G2MM 0.990.99| 0.99 0 16 2 0
8914690|03/09/2007 07:00|0004G370 0.99/0.99| 0.99 0 490] 119 0
4953310/18/12/2002 01:00|0EJ9LH1N 0.99/0.99] 0.99 0 616 115 0
5000220|11/01/2003 11:00|OOO4G283 0.99/0.99| 0.99 0| 565 19 0
5871806|01/02/2004 08:OO|OOO4G38H 0.990.99| 0.99 0| 406 46 0
7879730[09/07/2006 21:00|0004638I 0.99/0.99] 0.99 0 406 15 0
8284538|07/01/2007 15:00|0004GZN6 0.99/0.99| 0.99 0 948 26 0
8732007|24/06/2007 02:00|OOO4G38E 0.91/0.98| 0.95 0f 451 121 0
5251001|01/05/2003 05:OO|OOO4E1J3 0.990.99| 0.99 0f 636 49 0
6911300] 11/05/2005 23:00|0004G2DG 0.99/0.99] 0.99 0 708 17 0
7180113|09/09/2005 22:00|0004G2MM 0.99/0.99] 0.99 0 261 0 0
7354905|26/11/2005 20:OO|OOO4G37I 0.99/0.99| 0.99 0 167 5 0
5553615|09/09/2003 22:OO‘OOO4E1IL 0.99/0.99| 0.99 0 1049 46 0
4396152/ 22/04/2002 17:00|0004GS7A 0.90/0.92| 0.91 35 548 20 -
O | 4396389 22/04/2002 08:00|0004G3AB 0.90/ 0.94| 0.92 93 416] 108 -
g 8005667|31/08/2006 04:00|0004G38E 0.19/0.89| 0.54| 500 406| 458 -
" < | 8606121|09/05/2007 19:00|0004GZFE 0.90/0.93] 0.91 36 179 38 -
Q 4639990/ 01/08/2002 21:00|0004E1KJ 0.90/ 0.93| 0.91 66| 512 87 -
S 6283602|28/07/2004 09:OO|OEJ9LGSE 0.81] 0.84| 0.83 9 232 6| 694
_5 7080348|26/07/2005 O6:00|OEJ9LZBD 0.79| 0.82| 0.80 97| 287 25| 575
§ 9315021|05/02/2008 13:00|0EIIII5H 0.90| 0.94| 0.92 7 742 0 10
Eﬁ O | 8905881|31/08/2007 05:00|0EJ9LZBF 0.93| 0.95| 0.94 9 291 54 9
© | 8583704| 30/04/2007 10:OO|OOO4G2FE 0.98/ 0.99| 0.98 3 179 9 3
5957590|09/03/2004 09:OO|OEJ9LHHD 0.99| 0.99| 0.99 1 672 1 2
6657966|22/01/2005 19:00|0EJ9LHHD 0.99| 0.99| 0.99 2| 672 7 2
5086020| 19/02/2003 22:00|0004GB7I 0.99| 0.99| 0.99 0 167] 197 0
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If the combined results were compared to the belividual model (i.e., based on the
results presented in Table 5.11), it can be seanthie D-S model results were equal or
better than the best individual models in 61% aBeéb of validation and calibration
cases, respectively. It should be noted, howekiat,duch information (i.e., which is the
“best” individual model) would not be priori known in real decision-making
situations. The D-S model provided better resudintlany of the individual models in

23% and 34% of validation and calibration casespeetively.

5.3.3.1 D-S Model Example Application
Figure 5.16 illustrates the performance of the Da8del on a historical pipe burst
selected from the calibration dataset. In this cdke burst was reported by two

customers and, therefore, all three sources oftece were available.
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Figure 5.16 An example output from the a) PBPMKIN), c) CCM and d) the D-S
model:BetR{Burst)

The accuracy of the PBPM was limited and a largaber of pipes received the same

value of confidence factor (see Figure 5.16a). HM performed poorly in this

particular case and identified two possible pipesbiotspots, with the most likely

location being far from the burst pipe (see Fidudbhb). One of the CCs was received

from a location in close proximity to the burst @iwhereas the other one was more than

250 m away from the burst location (see Figure &.1@ostly based on the input of the
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CCM, the D-S model attributed higher levelsB&tR{Burst) (see Figure 5.16d) to the
pipes in the proximity of the second pipe bursshot previously identified by the HM,
supporting the proposition that this was the TBE.(iaccording to a record in WMSY
that a burst was repaired there). The pipes closket second customer contact, which
was further away from the TBL, received a lowerelesf BetR{Burst). Therefore, a
field investigation, based on the results of thes Dnodel, could focus on the first
customer contact and thus reduce the time needédc#te the burst, decrease the
amount of water lost from the system and the ptsdililow-on (socio-economic)

impact on customers.

Figure 5.17 shows spatial distributionBélief andPlausibility. It can be observed that
after the information fusion high levels of belat typically attributed to only a small
number of potential incidents. On the other harfdgh number of potential incidents
typically receive a high level of plausibility, syesting that no evidence exists,
supporting the fact that those pipes could nohleelBL.
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Figure 5.17 Belief and Plausibility maps producgdhe D-S model

Additional detailed examples of four cases selefrt@u the validation dataset shown in
Table 5.11 are given in Appendix D. The examplesvigled aim to demonstrate the

properties of the D-S model in situations when en from some data sources (e.g.,
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the CCM) was conflicting or missing entirely. Thegortance of considering both,
Belief and Plausibility by the DM under certainatimstances is also illustrated.

5.3.3.2 Performance Comparison

Table 5.12 shows the performance of the D-S moddl the individual models on
calibration and validation cases. These were furspét depending on the presence of
CCs. The comparison was based on the ranking (setors 3.3.5) of the TBL
according to the output of the D-S model (i.e., BetR{Bursf)) and the ranking
assigned by individual models (i.e., based on thmiterion measurement). The
performance of any model was considered good ifTtBe was amongst the top 10
burst candidates identified by the respective modslcan be seen from Table 5.12
none of the individual input models, i.e., the PBRWM and CCM, was able to achieve
the above goal in all of the situations (i.e., %gdrical pipe bursts) considered in the
case study. The degree of success in identifyiregldlcation of a burst pipe varied
significantly amongst the models. According to thssessment criterion the overall
performance of the D-S model was on average inyes@nario either equally good or
better than the performance of any of the individoadels. Similar performance can be
observed when the number of potential burst camesdaas increased from 10 to 50

(i.e., the area of the burst hotspot was expanded).

Table 5.12 An overview of the performance of th& Drodel

Scenario Rank of TBL < 10 Rank of TBL <50

D-S Model |PBPM | HM CCM | D-S Model| PBPM| HM CCM
Calibration (No CC) 28.6% 0.0%| 14.3% 0.0%| 71.4% 7.1%| 42.9% 0.0%
Calibration (CC) 74.1% 0.09 29.6p66.7%| 85.2% 11.1%| 66.7% 66.7%
Validation (No CC) 0.0% 0.0% 0.0% 0.0%| 40.0% 0.0%| 40.0% 0.0%
Validation (CC) 87.5% 0.0% 62.59062.5%| 87.5% 0.0%| 75.0% 75.0%

The D-S Model, however, as well as the HM and C@iviiicantly outperform random
identification of the TBL, which would yield leskan 1% and less than 5% for the
‘Rank of TBL < 10” and the “Rank of TBL < 50" scewmas, respectively. The
performance of the PBPM might in this sense be ssedisappointing. This can be
explained by the fact that a relatively high numbgmpotential incidents receive the
same value of criterion measurement from the PBPM. TBL, therefore, does not fall

within the top 10 or 50 potential incidents (i@ue to the way the rank was calculated),
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despite having the highest value of criterion meament (i.e., likelihood of failure

occurrence).

Evaluating the benefits of information fusion aigfams is not simple and using only
the measure above would not reflect the additi@hlantages of this approach. A
particular model might fail to identify the corrdmiirst location according to the criteria
used above but can, on the other hand, still ileatinumber of locations where the
burst pipe is unlikely to be located. To take flaist into the account and to compare the
quality of the output of the D-S model and the wlial models, the following set of

performance indicators was established:

Likelihood concentrationk-or the method to be useful operationally, itngportant that
the likelihood of burst occurrence assigned tophmes near the TBL is significantly
higher than the likelihood assigned to pipes furéngay. This can be expressed using
the ratio of the average likelihood of occurrent¢he burst assigned to pipes close to
the TBL over the average likelihood of burst ocenae assigned to all remaining pipes.
The higher this ratio, the better the overall perfance of a particular model. The set of
pipes in the proximity of the TBL was assumed hasethe 10 topologically nearest
pipes. Given that the average length of pipes énciise study area was 30 m and that
the network was highly looped, such resolution stht»e considered acceptable.

Certainty. According to Yager (2004), Shannon entropy (Sbanh948) was used to
characterise the certainty of the outputs of thividual models and the D-S model.
The entropy of an information source (i.e., outplua particular model) was calculated
using Eq. (5.3) and its certainty can be expresssdg Eq. (5.4). The higher the
certainty of a particular model the better its parfance was.

H= —% P, (Burs)In( p( Burs)) (5.3)
... H
Certainty=1 in(N) (5.4)

where: H is Shannon entropypx is either the normalised@etR({Burst) or the
normalised value of confidence factor of a poténtieident (pipe)k in the case of the
D-S model and the individual models, respectiveaig Blp is the number of potential

incidents (i.e., pipes) in the DMA.
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The results of the comparison based on the twotiaddl criteria suggested above are
shown in Table 5.13. The table indicates in how ynaalibration and validation cases
the D-S model was better than the individual mo@eddues above 50% indicate that
the D-S model on average improved over the pradictif an individual model and

100% means that the D-S model was better in alsidened cases than a particular
individual model). Again, cases were further spiib scenarios where CCs were and

were not available.

Table 5.13 Performance of the D-S model comparéhd RBPM, HM and CCM based
on spatial distribution of the likelihood of pot&itincidents

S . Likelihood concentration Certainty
cenario

D-S > PBPMD-S > HM |D-S > CCM| D-S > PBPID-S > HM |D-S > CCM
Calibration (No CC) 100.0% 100.0% - 85.7% 28.6% -
Calibration (CC) 96.3% 100.0% 100.0% 96.3% 44.4%  0.0%
Validation (No CC) 80.0% 80.0% - 80.0% 0.0% -
Validation (CC) 100.0% 100.0% 100.0% 100.0% 75.0% 00.0%

Table 5.13 shows that the D-S model yields betsults (e.g., D-S > PBPM) in terms
of the Likelihood concentration in a higher numloércases when compared to the
individual models. The D-S model was significariibtter than the PBPM and CCM in
view of the Certainty criterion, however, in soni@ations, it performed worse than the
HM. This fact is most apparent in scenarios where€C&s were received and only the
outputs of the HM and PBPM were combined. In suithagons the most likely
locations of the burst pipe typically form a numioérscattered hotspots rather than a
relatively well confined area as shown in Figureesl. Despite this fact the use of the
PBPM as an information source still yields certdoanefits as demonstrated in
Table 5.12.

5.3.4 Sensitivity Analysis

To investigate the sensitivity of individual modalitputs as well as the D-S model
output to noisy inputs, a global sensitivity anayssing Monte Carlo simulation (1,000
samples) was performed on the example presentédgiure D.5. The selected case
represented a suitable scenario from the validatiaia set since at least two of the
individual models (i.e., the HM and the CCM) perf@d acceptably and, therefore, the
effect of the added noise could be observed. Varieuels of uniformly distributed
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noise as indicated in Table 5.14 were added toirthats of the individual models,
namely the HM (observed pressures, demands andagst burst flow) and the CCM
(Easting and Northing). Adding noise to the PBPMulddoe problematic (e.g., because
it uses a number of non-numerical inputs, suchips material, etc.) and given its
relatively low credibility it would not make a sificant difference in this case. The
AVG rank of the PBPM was, therefore, the same fos@enarios and had the value of

742.0 out of 1,052 potential incidents (i.e., pperformance in this case).

Table 5.14 Results of a global sensitivity analysase 9315021)

ScenarigBurst PressureDemandsBurst Flow|CC  |AVG D-S|AVG HM [AVG CCM
Flow |Noise |Noise |Noise Noise |Rank Rank Rank
A 5 1.0% 5.0%| 0.5% 0.01% 6.4 4.8 10.2
B 5 2.0%| 10.0%| 1.0% 0.01% 7.2 5.4 10.2
C 3 2.0%| 7.5%| 1.0% 0.01% 62.6 84.0 10.2
D 5 | 3.0% 100%| 2.0% |002% 248| 165 14.4
E 5 4.0%| 10.0%| 2.0% 0.02% 429 52.5 14.4
F 7 3.0%| 10.0%| 5.0% 0.03% 8.1 5.2 20.1
G 5 | 20w 75%| 20% |003% 84 5.5 20.1
H 5 2.0% 7.5%| 4.0% 0.03% 9.9 5.6 20.1
| 5 3.0%| 7.5%| 1.0% 0.03% 26.4 16.3 20.1
J 3 2.0%| 7.5%| 1.0% 0.03% 66.9 84.0 20.1
K 5 1.0% 7.5%| 0.5% 0.05% 8.1 4.8 37.5
L 5 2.0%| 10.0%| 1.0% 0.05% 8.9 54 37.5
M 3 2.0%| 10.0%| 1.0% 0.05% 78.0 84.0 37.5
N 7 2.0%| 10.0%| 2.0% 0.08% 8.2 4.9 70.1
O 7 5.0%| 10.0%| 2.0% 0.08% 26.5 9.8 70.1

The “AVG Rank” shown in Table 5.14 is the rank assdibed in section 3.3.5,
averaged over 1,000 samples. The lower the valueeofAVG Rank” the better the
performance of a particular model was. Table 5udgests that the combined results
were in all scenarios (for this particular casegly worse than those of the best model
(such information is, however, unknown until thedtus located by a field technician).
On the other hand, the D-S model outputs were resextent less sensitive to the noise
added to the inputs of individual models. If thefpenance of only one of the models
degraded significantly, the two remaining modete (ECM or HM in particular) would
still influence the combined results so that théy ot degrade as fast as the worst
model. However, in cases where the quality of ewigeof the most influential input

models (i.e., the HM and the CCM) deterioratedhat same time (e.g., because of the
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amount of noise present in the data or due to lowtiflow; illustrated in scenarios D
and | in Table 5.14), then the combined resultsewesrse than those of any of the two

key input models.

5.3.5 Comparison with Other Methods

The performance of the newly proposed D-S model egaspared with other simple
information fusion methods, such as Mean, Weightegrage (WA), Product and
Generalised Mean (GM) (Polikar 2006). The comparisbthe performance was again
based on the rank of the TBL when all potentialdents were sorted in a descending
order according to their likelihood of occurrence.(BetR{Burst) in case of the D-S
model or criterion measurement in case of the iddal models). In the case of the WA
and GM methods the values of required parameters a@imised to achieve the best
possible results in all 54 cases (i.e., not onlytloa calibration data set). Table 5.15
shows that the combination of the model outputagugividence theory dominates the

other methods’ outputs in majority of the casedysea.

Table 5.15 Comparison of the performance of the the®ry with other combination

functions

Mean WA Product GM
D-S equal or better [%)] 94.4 75.9 96.3 83.3
D-S better [%] 87.0 64.8 96.3 55.6

The relatively high number of cases where the Delehperformed equally well with
the WA and GM functions can be explained by the faat in these cases all methods
managed to correctly identify the burst pipe ameérefore, there was no potential for

further improvement.

5.4 Impact Model

This section describes the calibration of the impacdel developed in Chapter 3.4, by
conducting a quantitative questionnaire survey.alled outputs of the impact model
are not presented here due to the amount of datluped by the model and difficult
visualisation of its outputs in a non-interactivayw Instead, the aggregated outputs of
the impact model are presented as part of sectidonvéhich discusses the automated
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alarm prioritisation, where the impact model wasdugo provide one part of the risk

metric.

5.4.1 Impact Importance Survey

To determine the preferences of a water utilityeirms of importance of different types
of impacts a questionnaire survey (see AppendixvB3 conducted in two UK water
utilities. For confidentiality reasons, the resyitesented here do not refer to a specific
company.

The questionnaire comprised four main sectionsluektgy an introduction. First, the

purpose of the survey was explained to the respuadeand guidance on how to answer
the questions used in the survey was provided. &brdetails of the author were
available to allow the respondents to get supportcase of any problems. The
respondents were asked to answer all 9 questiotigeisurvey from the perspective of
an employee of a particular water company rathan tits customers. The four main

sections of the questionnaire were as follows:

Customer Importance (1 question) — to determine the mutual importaote

different customer types

* Types of Impact(5 questions) — to determine the mutual importafatfferent

types of impact, their duration and scale

* Personal Information (2 questions) — to determine the role of the redpat

within a company
e Other (1 question) — to allow respondents to providéhier comments

Table 5.16 provides a summary of the questionsuded in the survey for each of the

above categories.
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Table 5.16 A summary of questions included in thine survey

Group Id | Question

Please, indicate the mutual importance of the falg types of
Customer 1 customers according to their vulnerability in caga failure in a
Importance water distribution system (e.g., a pipe burst cagifow pressure or

supply interruption).

Please, indicate the importance of the followingreamic impacts,
having equal scale (i.e., financial losses), whaftfbct the water
utility (company). Bear in mind that the impactgyiti negatively
affect the public image of the company.

Please, indicate the importance of the duratiosupply interruption
3 | affecting the same number of customers of the sgpee(e.g.,
residential).

Please, indicate the importance of the duratidowfpressure

ITypes of problems affecting the same number of custometiseofame type
mpact 4 : .
(e.q., residential).
Please, indicate the importance of the scale ofanee impact (e.qg.,
5 | supply interruption) on the customers of the saype te.qg.,
residential) for the same period of time.
Please, indicate the mutual importance of the Walg types of
6 | impacts affecting the same number of propertieshfersame period
of time (where applicable).
Personal 7 | Please, select the company / organisation yol oor
Information| 8 | Please, select your occupation
Other 9 | Please, provide additional comments

The questions were set up in a way that would abbasy extraction of the preferences
in form of a vector of weights using the AHP dewsd by Saaty (1980). AHP is a well
established method for solving complex decisionimglproblems using a number of
pairwise comparisons between a set of criteria. @ribe advantages of AHP is also its

capability to determine consistency of the respsnse

The respondents were asked to indicate the mutopbritance of two criteria (e.g.,
Supply Interruption and Discolouration) accordirmg their preferences. A 9-point
linguistic scale adapted from Saaty (1980) shownhahle 5.17 was used.
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Table 5.17 Arithmetic scale used in AHP (adaptedif(Saaty (1980))

Linguistic Preference (ar:m%(zartti?:nscceale)
Unquestionably more important 9
Much more important 7
More important 5
Rather more important 3
Equally important 1
Rather less important 1/3
Less important 1/5
Much less important 1/7
Unquestionably less important 1/9

Apart from the arithmetic scale, other scales saghhe exponential and fuzzy scale
exist (Vamvakeridou-Lyroudiat al. 2006) but these were not applied in this work. One
of the disadvantages of applying AHP is that thenber of criteria to be compared
needs to be small (e.g., less than 5) otherwisentlmber of pairwise comparisons
required from a respondent would be too high. Tiemeine preference weights bf

criteria w pairwise comparisons are required. Thereforentiraber of criteria

used in this survey was a maximum of four, reqgimh most six pairwise comparisons

to be entered by a respondent.

An online form of delivery of the questionnaire wassen to facilitate its creation and
analysis of the results. The questionnaire was tedeaand deployed using the
LimeSurvey (2010) software package. A printed copthe questionnaire is included in

Appendix B.

To ensure that the questionnaire was designedtagltovide answers to the unknown
impact preferences of water companies, a smaleguiédt study was first carried out
within the Centre for Water Systems at the Univwgrsif Exeter. The very specific
target group for the pilot was particularly chogenresemble the highly skilled and
experienced employees of a water company. The gilaty revealed a small number of
issues in the questionnaire that were correctedhpyove the clarity of the questions
before the survey was conducted at selected wétities, which were participating in
the aforementioned NEPTUNE project (Sawi al.2008).
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In total 26 responses were received from Compamgnd only 6 responses from
Company 2. Out of the 26 responses (approx. 25atireate) of Company 1, two were
incomplete and an additional five questionnaired t@ be discarded due to highly
inconsistent answers or misunderstanding of thgulstic scale used. For the analysis
considered here, 19 questionnaires from Compamdlal 6 responses from Company
2 were used. Figure 5.18 shows the distributiothefrespondents depending on their
role in the company. Due to the small sample ofpoadents in this survey, a
comparison of responses from people of differersitioms in the companies could not

be carried out.

Distribution of respondents depending on their role within acompany
60.0%
O Company 1
05
50.0% m Company 2
40.0% -
30.0% -
20.0% -
10.0% -
0.0% ‘ ‘ ‘
Other Manager Field Technician Researcher Control Room
Operator

Figure 5.18 Distribution of respondents dependingheir role within a company

5.4.2 Questionnaire Survey Analysis Methodology

The responses collected were analysed separatelgafth of the two companies to
allow a comparison of the preferences. The ainhefsurvey was to derive preferences
of the company as a whole (i.e., a group decisiaking context) rather than of the

individual participants of the survey. Given theosbn mode of delivery of the survey
(i.e., an online questionnaire), consensus votvigch requires direct involvement of

the DMs to reach agreement for each pairwise casgar could not be used. As

discussed by Mikhailov (2004) a number of groupislen-making methods exist to

aggregate the opinions of a group. The aggregatortake place at two different levels
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(Forman and Peniwati 1998) depending on how thegwants to act, i.e., as a unit or
as individuals. In the first case, referred to agwegation of Individual Judgements
(AlJ), the individual pairwise comparisons are tfieygregated before the AHP is
applied. The second method, sometimes also caledAgggregation of Individual

Priorities (AIP), applies AHP separately to therp#@e comparisons of every group
member and then aggregates the weights derived @édilf*. The arithmetic mean and
the geometric mean are commonly applied to aggeegedup preferences for both
aggregation levels (i.e., AlJ and AIP) (Mikhailo@@). As suggested by Forman and
Peniwati (1998) the geometric mean is more suitédiléhe AlJ aggregation, whereas
both the arithmetic mean and the geometric meaiddo@ used in case of the AIP
aggregation. Forman and Peniwati (1998) furthegestgd that in situations when the
importance of the DMs is not equal then weightddrahtives of the means could be

used.

It was decided here to follow the AIJ approach dimst aggregate the pairwise
comparisons of individuals within a group befor@lgmg AHP only once. The chosen
approach not only emphasises that the group é.eater company) acts as a unit but
also overcomes problems of slightly inconsistespomses of some individuals, which
were softened during the aggregation of judgemévitseover, by aggregating the
individual judgements first, AHP only has to be kg once, which could save
computational time if it was necessary to derive phorities in R-T. However, this was
not needed in the work presented here since thadtmreferences were derived only
once. The influence of individuals within the gromas considered equal, whereas in
reality it is likely that the managers would havehigher decision-making power
compared to other employees of a water utility. Geemetric mean (Eq. (5.5)) was

used to aggregate the individual judgements.

Ne 1/Ng
a ; :( ) ar,jkj (5.5)

where:g;; is the preference of a group with respect to pagveomparison of criteria
andj, &k is the numerical representation (see Table 5.1 Paowise comparison of
criteriai andj of respondenk andNg is the number of respondents considered in the

survey.
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Table 5.18 shows an example of a pairwise comparisatrix A built based on

aggregated responsasg (i.e., Eqg. (5.5)) of survey participants.

Table 5.18 A pairwise comparison matéx for Customer importance (Company 1)

Critical Residential | Commercial Industrial
Critical 1.00 6.81 7.28 5.48
Residential 0.15 1.00 1.57 0.95
Commercial 0.14 0.64 1.00 0.41
Industrial 0.18 1.05 2.45 1.00

Every element in the pairwise comparison matrixgests the mutual importance of
criteria in a row of the element compared to thtega in the column of the element.
E.g., the value of 7.28 in the second row and theth column of Table 5.18 (i.e., the
first row and the third column of matriXA ) suggests that the impact on Ciritical
customers is perceived by a company as “much nrmopeitant” (i.e., according to the

linguistic scale in Table 5.17) than the impactGommercial customers.

The values of elements of the lower triangular he# pairwise comparison mata,
generated from the questions included in the syre@yespond to the inverse values of
the elements in the upper triangular of the ma#sixi.e.,a; = 1 /a;;). This is the result
of the formulation of the pairwise comparisons Ine tquestionnaire survey and the
above relationship does not have to hold every .tiituations wherg;; # 1 / a;

typically indicate inconsistency in the pairwiserquarisons.

Once the opinion of a group of DMs regarding alhwee comparisons was expressed
using the pairwise comparison matrix above, the AM& applied. A number of
prioritisation methods can be used within AHP (ekagenvalue Method, Logarithmic
Least Squares Method, Least Squares Method, &adty and Vargas 1984; Srdjevic
2005). Here the Eigenvalue Method (EM) method agirally proposed by Saaty
(1980) was used to derive a vector of preferencegivte w from the pairwise
comparison matrixA . The preference (priority) weights can be expreésseng the EM

method as follows:

n

Zaﬁv\/j =AW, i=12,...n (5.6)

j=1
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where:lnax IS the principal eigenvector amdis the number of criteria in the pairwise

comparison matrixA , g is an element of matriA .

As noted by Srdjevic (2005) the EM gives a reasbngbod approximation of the
preference weights when inconsistency is small. ddvesistency of the preferences of
the pairwise comparisons provided by a DM can bantfied using the Consistency
Index (CI) (Saaty 1980). If the EM method was us$edderive weights from the

pairwise comparison matrix, the Cl is defined udimg following equation:

Cl =Zma — 5.7
— (5.7)

Consistency can be also expressed using the CemsysRatio (CR), which is shown in
Eq. (5.8) as a fraction of Cl and the Random In@¥. RI is the average CI of
randomly generated pairwise comparisons. ValueRlofor a particular number of
criteria are given in Table 5.19. (Saaty 1980)

Cl

CR:ﬁ (5.8)

Table 5.19 Values of Random Index for a given nunaberiteria

n 1 2 3 4 5 6 7 8 9 10

Rl, 0 0 0.58 0.9 1.12 1.24 1.32 141 1.45 1.49

Generally, values of CR < 0.1 are considered asistamt. Higher values indicate
inconsistencies in the pairwise comparison matng eight require the collection of

new data or additional corrections of the pairvdissparison matrix.

5.4.3 Questionnaire Survey Results

The analysis of the data collected revealed thatctinsistency of answers to all three
questions 3, 4 and 5 that tried to determine ingpme of different duration or scale of
supply interruption or low pressure impact, wasyview. Given the poor results
obtained from questions 3, 4 and 5, question 5, the duration and scale of impact)
was excluded from the questionnaire given to Comparsince the questionnaires were
not distributed at the same time. As can be seem ffable 5.20, the CR index for

guestions 3, 4 and 5 exceeded the 0.1 threshattbst cases, which is an indication of
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poor consistency. The aim of those questions wafintb out whether the effect of
duration or scale of the impact had a linear refeghip or could be described by some
other mathematical function. It seems that thosstions were either misunderstood by
the survey participants or the chosen type of guegt.e., the 9-point preference scale)
was not suitable to determine such information.sehguestions were discarded and not
considered further in this work. Equal importanedeen the duration and scale of an
impact was assumed. Similarly, no preference betwle scale of an impact and its
magnitude in the case of discolouration impact pr@sumed. The assumption of equal
importance between the above criteria was choseause of its simplicity and because
it could be adjusted if more data was available.

The responses to the remaining questions were wgmnsistent (see Table 5.20) and
almost all of them had CR < 0.1. Responses from iamy 1 to question no. 6 were

slightly less consistent (i.e., having CR = 0.1@lh)jch was still considered acceptable.

Table 5.20 An overview of consistency of the regasn

Id Question CR
Company 1 Company 2

1 |Customer Importance 0.016 0.022

2 |Economic Impact Type 0.000 0.065

3 |Duration of Supply Interruption 0.321 0.174

4  |Duration of Low Pressure Impact 0.285 0.049

5 |Scale of Impact 0.326 N/A

6 |Impact Type 0.101 0.041

The outcomes of the questionnaire analysis are showvrigure 5.19, Figure 5.20 and
Figure 5.21. The importance of different customgres from the point of view of a
water utility is shown in Figure 5.19. Critical ¢comers (e.g., hospitals, schools, etc.)
ranked highest, whereas commercial customers @uatathe lowest priority. Both

companies in this case seemed to have very siprigderences.
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Importance of different types of customers
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Figure 5.19 The relative importance of various s/pecustomers

Figure 5.20 displays the importance of differenpact categories (i.e., objectives) from
a hierarchy shown in Figure 3.17. Both companieked the impact categories in the
same order of significance, however, attributetedsnt levels of priority particularly to
Supply Interruption and Discolouration. The simiatue of weighting factor attributed
to Supply Interruption and Discolouration by Compan(i.e., in contrast to Company
1) could be explained by the fact that, in neitbethe cases the consumers can use

water (i.e., people would not drink discoloured evat

Importance of different types of impact
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Figure 5.20 The relative importance of differengeayg of impact
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The preferences related to different types of esoaampact are shown in Figure 5.21.
The weights obtained do not differ too significgnbetween the two companies.
Company 2 put much more emphasis on Third Party dg@mmpact, perhaps since it

can be associated with negative public image.

Importance of different types of Economic impact

1.00

0.90 -
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0.60 -

@ Company 1
B Company 2

0.50 +

0.40 -

Relative importance

0.30 ~
0.20 ~
0.10 -

0.00

Third party damage Lost water Undelivered water

Type of economic impact

Figure 5.21 The relative importance of differenggy of Economic impact

Based on the above results, the preferences obtasre be put into the objective tree
from Figure 3.17. An updated objective tree witle@fic values for water Company 1

is illustrated in Figure 5.22.
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Figure 5.22 An objective tree used in impact agatieg with determined weights
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To calculate the overall impact of a failure, tladues of KPIs proposed in section 3.4.3
are substituted in the leaves in Figure 5.22 arapggated through a hierarchy of
weights as suggested in Eqg. (3.17).

5.5 Alarm Prioritisation Case Study

The alarm ranking methodology proposed in sectiénagas tested on a number of real-
world alarms detected by an automated pipe burdctien system (Mouncet al.
2010) applied to the Harrogate & Dales case studg.g0nly 11 out of all 15 DMAs
were considered here (e.g., because of missindfiimetioning sensors). Every DMA
had its inflow monitored in the period from Novemb2008 to January 2010.
Figure 5.23 shows the layout of the WDS, including DMA boundaries and location

of the flow meters as well as the number of algperssensor.

The primary purpose of the alarm prioritisation hogelology is to rank alarms occurring
more or less simultaneously in a similar time hamizThe number of simultaneous
alarms generated in the small number of DMAs wassigmificant. To demonstrate the
full potential of the methodology, all 50 alarmstet#ed throughout the above study
period were prioritised regardless of their dateétiof occurrence. Nevertheless, the
exact date and time of burst detection affected likedihood of potential incidents

occurring as well as their impact. The state ofdbesidered alarms (e.g., real or false)
as well as their true nature (i.e., location of thest pipe in case of a real alarm)
remained unknown. It was assumed that all alarmre Wweanactivestate and, therefore,

their priority was purely determined by the outcenoé the risk-based ranking (i.e., the

rules presented in section 3.5.5 played no effect).
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Figure 5.23 Case study area overview with locatamfrislet flow meters and alarms

The riskR;; of failure of every pipe segment within a DMA asisded with an alarm
was first evaluated using a number of back-endgs®es described in Chapter 4 of this
thesis. A ‘neutral’ preference between likelihoatlampact components of risk was
chosen (i.e.w. = w; = 0.5). For the purpose of ranking, a DM’s pesstmiattitude
towards risk (i.e.p. = 0.8) was selected here so that the riskiestnpiatepipe bursts

contribute most to the overall risk of an alarm.

5.5.1 Main Results

Table 5.21 provides an overview of the rankinglb5@ alarms. Four different rankings
are presented in the table, where the first onenKiRg o = 0.8) corresponds to the
parameter set as described above. The highlighted lin the table correspond to

alarms that are discussed in more detail below.

The “Ranking Histogram” and “AVG ranking” were bdsen the outcomes of

sensitivity analysis described below in section®.9he ranking based on a histogram
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chose the most frequent rank of an alarm evaluateoss a range of parameter values,
whereas the average ranking was obtained by averadji possible ranking outcomes

produced during the sensitivity analysis as illaistd in Figure 5.24 on an example.

a | w, | w, |8603|8644]|8933 Alarm ID | Ranking Hist. | Ranking AVG
Scenario1 ] 0.72] 0.5 ] 05 ] 3 2 4 |:> 8603 3 3.33
Scenario 2 | 0.72] 0.48] 0.52] 3 2 4 8644 2 2.00
Scenario 310.72]10.46{0.54] 4 2 3 8933 4 3.67

Figure 5.24 An example of ranking based on histograd an average

The last column of Table 5.21 (i.e., “Pairwise camgon”) was obtained by performing
N x(N-1) pairwise rankings of all 50 alarms and countingeweery alarm the number
of times it ranked higher than the other alarmsgmvbompared mutually). The purpose
of this ranking technique was to observe the efdéglobal (i.e., across all alarms) and

local (i.e., pairwise) impact normalisation on #iarm ranking.

Table 5.21 A list of 50 alarms considered in tlasecstudy

Rankin Rankin Rankin Pairwise
Alarm ID Created Data DMA |Flow a:0.89 Histogragm AVG 9 comparison
8581 14/12/2008 12:100 EO057 20.2 50 50 43.98 50
9036 06/06/2009 18:100 EO11 10.3 49 49 47.25 49
8836 04/01/2010 12:42 EO11 6.6 48 48 47.72 48
8802 19/11/2009 12:59 EO11 5.4 47 47 45.19 46
8660 14/12/2008 07:12 E026 14.4 46 46 43.63 47
8738 18/12/2008 10:12 E024 7.2 45 45 43.28 45
8815 10/09/2009 13:05 E024 9.4 44 44 42.43 44
9032 02/07/2009 21:15| E024 7.8 43 43 41.34 43
9009 11/01/2010 08:41] EO055 2.1 42 31 35.54 42
8695 26/09/2009 21:05| E024 6 41 42 39.64 41
8591 20/04/2009 00:100 EO011 3.1 40 40 37.43 40
8777 01/06/2009 07:100 E023 1.4 39 39 38.34 33
9038 09/06/2009 08:13 E024 4.4 38 38 35.82 39
8997 23/04/2009 01:12| E026 4.1 37 35 32.61 38
9031 12/02/2009 17:13 E026 5.2 36 34 32.91 36
8702 15/11/2008 22:13 E026 5 35 33 30.82 35
8565 11/01/2010 01:400 E023 1.7 34 50 36.06 32
8653 24/12/2009 19:400 E023 1.1 33 47 35.09 30
8700 16/09/2009 09:04] E026 4.1 32 31 27.52 28
8756 12/12/2008 19:100 EO011 1.7 31 32 29.67 25
8783 24/07/2009 04:100 E023 0.9 30 30 30.77 23
8966 15/08/2009 02:04) E093 0.6 29 27 26.68 37
8931 27/08/2009 09:57| E021 2.4 28 29 24.49 18
9030 07/11/2008 04:16f E093 0.4 27 26 21.21 24
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Rankin Rankin Rankin Pairwise
Alarm ID Created Data DMA |Flow a:O.89 Histogragm AVG 9 comparison
8563 11/01/2010 00:41] E026 4.9 26 28 23.49 17
8996 22/04/2009 12:12| EO055 3.9 25 25 28.52 29
8888 04/10/2009 18:05| E022 5.4 24 29 32.15 34
8771 19/03/2009 18:14) E093 0.4 23 16 22.41 26
8610 18/04/2009 08:13 E093 0.5 22 14 19.36 20
8819 16/09/2009 06:59 E204 5.8 21 17 19.81 15
8638 05/01/2010 12:41] EO022 2.3 20 19 20.71 22
8936 04/09/2009 18:06| E022 5.1 19 28 29.35 31
8906 05/01/2010 13:400 E022 1.2 18 11 13.90 13
8772 30/05/2009 22:13 E093 0.8 17 12 22.55 27
8611 19/04/2009 23:100 EO057 1.1 16 20 15.30 11
8609 07/01/2009 15:100 EO054 1.2 15 11 12.74 16
8781 14/06/2009 03:15 E093 0.7 14 10 15.87 19
8778 01/06/2009 13:100 EO057 1.4 13 13 19.39 10
8854 23/12/2009 13:41] EO026 5.6 12 24 21.21 21
8869 07/01/2009 08:11] E022 0.5 11 11 19.33 14
8701 16/09/2009 23:59 E022 1.2 10 12 16.29 9
8841 20/12/2009 10:41] E093 0.4 9 1 13.04 12
8965 14/08/2009 04:31] EO054 0.7 8 9 8.40 5
8588 08/01/2010 18:45| E054 1 7 8 7.78 8
8840 20/12/2009 11:400 E054 0.7 6 7 7.13 6
8780 13/06/2009 22:100 EO054 1 5 5 5.40 7
8933 29/08/2009 21:57| E054 0.7 4 4 2.96 1
8644 23/05/2009 07:100 E054 0.5 3 3 2.88 3
8603 07/11/2008 09:16| E054 0.5 2 4 3.64 4
8555 11/12/2008 14:10, E054 0.4 1 1 1.99 2

Detailed results of the initial risk analyses aresented in form of risk maps (see e.g.,

Figure 5.25). The thickness of the pipes reflects hkely it is that a burst has occurred

in that part of the network, based on the outpuhefD-S model, and the colour (i.e.,

red = high impact and blue = low impact) corresmotwthe aggregated impact that a

burst of a given magnitude would cause at thattiocaover a 24h risk horizon. The

identification of impact and likelihood classes(j.breaks) used in the risk maps was

done using the Natural Breaks algorithm (Jenks ),9@Mich tries to group similar

values in the attempt to maximise the differenaesvben the classes.
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Alarmld: 8777, DMA: E023, Burst flow: 1.4, Date: 01/06/2009 07:10:13, Rank: 390
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Figure 5.25 A risk map of alarm 8777

Certain pipes were excluded from the impact aggi@gdand thus also from the alarm
ranking). Pipes excluded from the ranking are shaging a light grey dashed line on
the risk maps. There were several reasons why @ wgs excluded from the ranking
process. Sometimes, it was not possible to evalh@empact of a burst on that pipe
(e.g., the system was hydraulically unbalancediawas not possible to find a solution
to the governing mass and energy conservation ieqsat Also, on several occasions
the evaluation of likelihood of failure of that eilid not succeed for some reason (e.g.,

no evidence was available).

5.5.2 Detailed Alarm Prioritisation Results

As discussed in section 3.5 the impact of a pipestbiias to be compared across all
potential incidents of all active alarms to estsibla common scale. This fact was
reflected in Table 5.21, however, the detailed ms&ps presented below were re-

normalised in pairs (i.e., only the two alarms weoasidered as active) to emphasise
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the differences only between the impacts of podéimicidents associated with the two
alarms. The alarm ranking examples described belere included to demonstrate

following:

« Alarms 8966 & 9030- to show that the methodology produces an exgecte
ranking in case of similar alarms that differ pretioantly in the magnitude of

abnormal flow.

« Alarms 8802 & 8660- to illustrate the advantages of the alarm ramkin
methodology to take into account the usually complevelopment of the
impact of potential incidents associated with aral

* Alarms 8854 & 8563- to highlight alimitation of the methodology when
dealing with outliers caused by potential incidemtish very high values of

impact or likelihood of occurrence.

5.5.2.1 Alarms 8966 & 9030

As discussed in section 3.5.2, the alarm rankinthaumlogy assumes only one failure
at a time from the same DMA. The majority of tharals presented in Table 5.21
originating from the same DMA at a similar time dd&y, show a strong positive
correlation between their ranking and the magnitidabnormal flow. Such behaviour
is typically caused by the impact component of ékpotential incidents associated
with an alarm and does not have to hold every finee, because of the likelihood of
occurrence of potential incidents). Figure 5.26 &iglre 5.27 show risk maps of two
alarms 8966 and 9030 respectively that originatedmf the same DMA at
approximately the same time, but at different dafdse likelihood component of
potential incidents associated with each of thenadais very similar. This fact can be
explained by an incorrect calibration of the HM disevhich affected both alarms in a
similar way. In terms of impact, it can be obserfredn the risk maps and a scatter plot
in Figure 5.28 that the higher burst flow increasi®el impact level of alarm 8966. This

alarm consequently received a higher ranking arglpeaceived as more important.
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Alarmld: 8966, DMA: E093, Burst flow: 0.6, Date: 15/08/2009 02:04:06, Rank: 280

Low Impact  Low Likelihood

High Impact ~ High Likelihood

Figure 5.26 A risk map of alarm 8966

Alarmld: 9030, DMA: E093, Burst flow: 0.4, Date: 07/11/2008 04:16:00, Rank: 260
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Figure 5.27 A risk map of alarm 9030
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Alarm Scatter Plot Comparison
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Figure 5.28 A scatter plot of alarms 8966 and 9030

5.5.2.2 Alarms 8802 & 8660

The following example demonstrates the advantagbeofisk-based approach to alarm
prioritisation, in comparison to simply relying ¢ime abnormal flow of an event, which

could serve as a good indicator of alarm sevenitg humber of situations. In this case,
the alarms 8802 (see Figure 5.29) and 8660 (seed-30) originated from different

DMAs. As can be seen in Figure 5.29 and Figure,5i8®oth cases the most likely
location of the burst coincided with the part of DMA where the burst would have the

highest impact.

Despite the fact that the burst flow of the alar803 (5.4 I/s = 25% of max. DMA
inflow) was lower than in the case of alarm 8668.41/s = 30% of max. DMA inflow),

it obtained higher priority than the alarm 8660 doe higher impact on customers in
the north-west part of the DMA. If, however, at titae of the risk analysis there had
been evidence available suggesting that the al&®2 8vas most likely to have been
caused by a burst pipe in the southern part oD@, then ranking results would have
been the opposite, since that burst would haveechosich lower impact there (e.g.,
due to different topography and elevation).
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o
Alarmld: 8802, DMA: EO11, Bu —
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Figure 5.29 A risk map of alarm 8802
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Alarmid: 8660, DMA: E06, Burst flow: 14.4, Date: 14/12/2008 07:12:14, Rank: 460 —
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» —
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Figure 5.30 A risk map of alarm 8660

5.5.2.3 Alarms 8854 & 8563

This example shows one of the weaknesses of thenalanking methodology in
situations when outliers are present in the sgiabéntial incidents associated with an
alarm. Outliers typically manifest themselves aseptal incidents with very high
values of likelihood, impact or both. A group oftleers with high values of likelihood
(compared to the rest of potential incidents) ghhghted in Figure 5.31. Those four
outliers, associated with alarm 8854 affected ikelihood scale of that alarm and
caused it to be ranked lower (i.e., less riskynthiee alarm 8563. The presence of the
outliers can be explained by an incorrectly catddaHM, whose evidence was

dominant in this case.
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Alarm Scatter Plot Comparison

A group of
outliers

O 8854
x 8563

Impact

Valid potential | -
incidents

Likelihood

Figure 5.31 An original (un-filtered) scatter pédtalarms 8854 and 8563

After the outliers were excluded from the alarmkiag, the alarms were then ranked in
a different order to the one shown in Table 5.24.(ialarm 8854 ranked higher than
alarm 8563). This fact can be seen from an updstatier plot in Figure 5.32 where the
potential incidents represented by red circles., (iadarm 8854) dominate the blue

crosses representing potential incidents assocvetbdalarm 8563.

Alarm Scatter Plot Comparison

Valid potential
incidents

O 8854
X 8563

Impact

Likelihood

Figure 5.32 A filtered scatter plot of alarms 8&sWl 8563
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The presence of outliers can affect the entireesoélimpacts and likelihoods of the
alarms being considered and could cause a ranksadve a situation when a less
significant alarm is treated as a more importane.o@urrently, the impact and

likelihood components are normalised using Eq.)(5.9

X—=min(x)
max(X)— min(x)

Norm( X = (5.9)

where: Norm(x) is normalised value of attribute min(x) is the minimum value of

attributex and maxx) is the maximum value of attribute

The influence of outliers could be reduced by amgpta different normalisation
procedure. Mavrotas and Trifillis (2006) suggestesing the fifth and ninety-fifth
percentile in the normalisation procedure as showriEq. (5.10) instead of the

minimum and maximum to alleviate this problem.

NormP( ) = max(min( , P g5 (X)), Po.os (X))~ Po.os(X)
po.95( X) - po.os( X)

where:po.os is the fifth percentile of attribut& andpg g5 is the ninety-fifth percentile of

(5.10)

attributex

The use of percentiles was not applied in this walthough it might potentially reduce

the risk of an incorrect prioritisation of alarms.

5.5.3 Sensitivity Analysis

A sensitivity analysis was carried out to investiggéne influence of parameters used by
the alarm ranking methodology (i.e., the operata#itude towards riska and
likelihood and impact preference weights andw, respectively). Ranking of all 50
alarms presented in this case study was done \aitingeter values varied across their
entire feasible range. The results of sensitivihalgsis are plotted in the form of a
contour map (see Figure 5.33), where every pointhenmap represents a particular
ranking obtained using a corresponding value oamatera and likelihood weight w
(note that the weight is given byw; + w. = 1). The colour of every point corresponds
to the distance of the rankings of alarms fromfaresce solutiono(= 0.8 andwv_ = 0.5)

presented in Table 5.21.
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Figure 5.33 Influence of parameter values on dggdrom a reference solution

The distance between the reference solution andnguobtained using different values

of parametera andw; was expressed using the following equation:

N

RankingDistancg)i= \/Z( Rapk()+ Ragh)

i=1

i (5.11)
where:N, is the number of alarms considered (in this c&@yeRanke(i) is the ranking
of thei-th alarm of the reference solution aRdnKi) is the ranking of thé-th alarm

obtained using different parameter valaesndw,

The reference solution itself at coordinates 0.8 andw. = 0.5 clearly has a ranking
distance equal to 0. As can be further seen fragnrgi5.33, the ranking methodology
provides very similar rankings for a wide rangevalues of input parametessandw, .

A significantly different ranking of alarms woule lbtained for values of close to its
limits (i.e., 0 and 1). Similar phenomenon couldoserved in cases when the value of
the likelihood weighiv, drops below 0.3 or exceeds the value of 0.7.1t tdaerefore,
be concluded that the method is likely to producesgpected alarm ranking across a
wide range of parameter inputs, which can be sesen positive feature since high
sensitivity could make the calibration difficult.
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5.5.4 Discussion

Prioritisation of alarms is a complex process, Wheeds to consider multiple criteria.
An expert's judgement based only on limited infotima such as the time of detection
of an alarm, DMA characteristics and estimated ntada of the burst flow might be

insufficient to assess thoroughly the severityrobkarm. Alarm priority depends on the
state of a WDS as a whole and might vary signifigamdepending on water

consumption and pressures in the system.

Manual ranking of alarms by visual comparison afkrimaps has proved to be
subjective and also difficult since both the likelod and impact components of risk
have to be considered simultaneously. An attemgtmade to rank alarms manually by
a visual comparison of their risk maps. This mamaaking seemed to lack consistency
and put more emphasis on the impact componensiafwihich might be also caused by
the way the risk maps were visualised (i.e., vigule line colour seems to dominate

its thickness).

In situations where the likely location of the Hussconfined to a small area, the overall
risk of such an alarm is reduced since a higherbmurof less likely burst locations play
a more important role during the aggregation. Timight produce counterintuitive
ranking in some cases when a high impact, welltemtdurst would have lower rank
than an average impact burst, whose location wighDMA is unknown (i.e., a large
number of pipes have a high likelihood of burstifglich behaviour could be reduced
to a certain extent by increasing the level of peissn of the DM (i.e., increasing the

value ofa or reducing the likelihood weighting factar).

5.6 Summary

This chapter has demonstrated the applicationefrttlividual constituents of the risk-

based pipe burst diagnostics methodology propasechapter 3 on a number of real
life and semi-real case studies. The results pteden this chapter were obtained using
the background processes (i.e., the Alarm Monitokelihood Evaluator, Impact

Evaluator and the Ranking module) described ineeet.4.
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Section 5.1 provided a brief introduction to thesecastudies presented here and
explained the obstacles, which prevented the agpdic of some of the methodologies,

namely the D-S model on real life data.

The possibility of using an HM and near R-T pressamd flow measurements from the
field to locate a burst within a DMA was demonstthin section 5.2. It was concluded
that the magnitude of burst flow, calibration okthiM as well as the number of
measurement points and their location (i.e., seftgito changes in pressure in a DMA)
play an important role in the successful locatibradurst. Small pipe bursts do not
generate sufficient pressure drops and, therefar@ot be located using measurements
of current commonly used pressure transducershénag typical accuracy of +/- 0.5 m
of head. On the other hand, such bursts are uplikekignificantly impact customers

and do not require an immediate attention.

Section 5.3 presented results of an applicatioth@fD-S model (see section 3.3) on a
number of historical pipe bursts. It was shown tha long term credibility of
individual information sources (i.e., the PBPM, CG@¥d HM) can be captured in the
form of mapping curves during a multi-objectiveilbedtion procedure. Validation of
the D-S model showed better performance than arieofndividual models achieved
on a high number of unseen validation cases (néerms of certainty in identifying the
correct burst location and likelihood concentrafion

A possible way to determine weights used by theaitchpnodel was presented in section
5.4. To gather data required to calibrate the immpacdel, an online questionnaire
survey was conducted in two water utilities. Fiestgroup decision-making approach
was used to aggregate outcomes of the questionsaivey within a company. The
aggregated results were then analysed using the, AhiRh was applied to derive
preference weights from comparison matrices forafest the aggregation of individual
judgements. Consequently, these weights were pigt &m objective tree, which
reflected an overall aggregated impact of a faibmea water utility.

The alarm ranking methodology, which combines thieelihood and impact
components of the risk of potential incidents agged with an alarm to determine its
severity, was demonstrated in section 5.5. The ogetlogy produced intuitive ranking
of real life alarms with only a small humber of plisable cases (e.g., caused by the
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presence of outliers). Based on the results actijeitecan be concluded that the
measure of risk used in this work provides a sietahdicator for systematic alarm
prioritisation. The newly proposed alarm prioritiea methodology enables control
room personnel to identify and then pay more attento the most severe failures first,

leading to an improved response time and bettditgué service.
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CHAPTER 6 CONCLUSIONS

6.1 Summary

The concept of risk has been widely applied acrbes water industry, however,
primarily from a strategic perspective. The maijeobive of this thesis was to introduce
risk-based decision-making into the near Real-T{R€l') operational management of
WDS under failure conditions. In particular the awas to support the process of

diagnostics and prioritisation of abnormal flow ddions typically caused by burst

pipes.

A novel methodology for diagnostics of WDS failur@®., pipe bursts) based on the
measure of risk associated with a failure was dagped. The methodology allows better
informed decisions to be made about where to dibpéield crews to investigate

possible problems, not only based on informatioaualthe likelihood of a suspected
failure occurring, but also according to the estadampact such failure would have on
the water utility and its customers.

Suitable models to quantify the fundamental comptnef the risk metric, i.e., the
likelihood of adverse effects occurring and thempact on the stakeholders concerned
were first developed and implemented. The likelgalion of the burst pipe was
estimated using a novel Dempster-Shafer (D-S) mbgietombining evidence from
multiple information sources (i.e., a Pipe Burstdiction Model (PBPM), a Customer
Contact Model (CCM) and a Hydraulic Model (HM)) tacrease confidence in the
results. An impact model based on the Multi-Atttdbialue Theory (MAVT), capable
of incorporating Decision-Makers’ (DM) preferencesyas created to capture
operational aspects of a failure in a WDS durimigla horizon.

The full potential of the risk-based approach talgaiailure diagnostics was exploited
in a novel alarm ranking methodology. The proposedhod is able to suggest mutual
significance of multiple alarms (i.e., detected @ipmal events), occurring more or less
simultaneously during similar time horizon, basedtbe DM's attitude towards risk
and the level of aggregated risk they represerartms are presented to a human DM in
order of their importance and therefore the moserefailures can be dealt with first.

In severe weather conditions, such as extendeddsenf frost, when multiple pipe
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bursts are most likely to occur more or less siamdbusly, the cognitive load of the
operators can be effectively reduced using thiscgu.

A possible implementation of individual constituenof the risk-based pipe burst
diagnostics methodology was suggested in Chapt@ihd. methodology presented in
this thesis was then also put into a broader comtiea Decision Support System (DSS)
for near R-T WDS operation under abnormal condgioA simplified design of a
relational Database (DB) (with spatial extensiowhich formed the core of the
proposed DSS, was presented. The possibility eigudistributed computing in order to
increase the computational efficiency of the impawaluation, to gain the requested
near R-T performance, was demonstrated. A scakdilgion for the visualisation of
GIS data, representing the current state of a WiD8c¢tly from a spatial DB was also

suggested.

The risk-based decision support methodology wasiexppo a number of real life as
well as semi-real case studies, which show itsriatieto improve the current practices
of failure management in WDS, when pipe bursts nctlie control room operators can
make better informed decisions, which are likelgtsure an improved level of service

of delivery of potable water.

6.1.1 Summary of the Contributions
The main contributions of the work presented i thiesis are:

* A novel D-S model, inspired by ensemble classifievsprovide an estimate of
the likelihood of burst occurrence at a particdtzzation within a DMA by
combining outputs from multiple information sour¢es., a PBPM, a CCM and
an HM).

* A novel multi-objective calibration methodology determine input parameters
used by the D-S model, including a suitable contimnarule, in order to learn
the credibility of the individual information sows and achieve maximum

benefits from the information fusion process.

« A novel tree-like impact model based on the MAV€&dhy, which aggregates a

number of KPIs computed using a pressure drivemawig solver coupled with
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a GIS in order to estimate the relative importarofe failure impact in

accordance with preferences of a water utility espnted by a group of DMs.

A novel risk-based pipe burst investigation methad, drive the burst
diagnostics not only by the likelihood of burstdtion but also the impact of a
burst in different parts of a DMA to enhance theisien-making of control

room operators.

A novel alarm prioritisation methodology, which asn overall aggregated risk
of all potential incidents (i.e., causes) of anrralgi.e., a detected anomaly),
capable of determining mutual significance of a bamof simultaneously

occurring alarms according to the DM’s attitude &o8\s risk.

6.2 Main Conclusions
The main conclusions are given here with respet¢haoindividual constituents of the

overall risk-based pipe burst diagnostics methagiploresented in this thesis.

6.2.1 Risk-Based Pipe Burst Diagnostics

From the risk-based pipe burst diagnostics predeimeChapter 3.2, the following

conclusions can be drawn:

Presenting risk in an aggregated form (e.g., bytiplying likelihood and

impact) is a misapprehension frequently held bygfgraners. It is important that
the risk metric is presented in a non-aggregated {ae., the likelihood and the
impact measures are treated separately where fsdihis was achieved here
using risk maps, which use varying line thicknessl @olour to separately

present both components of risk.

Investigation of burst pipes is most likely to bevdn primarily by the
likelihood component of risk, whereas the impaclyaserves as a secondary
indicator. On the other hand, impact plays a dontineole in alarm
prioritisation, where it represents the primarytdea that enables DMs to

determine the mutual significance of several alarms
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6.2.2 Dempster-Shafer Model

The Dempster-Shafer model presented in Chapterv&h provides an estimated
likelihood of burst occurrence at a particular koma within a DMA, shows:

e Locating a pipe burst within a DMA using data driver conventional model-
based methods is a challenging problem. The maistrint of such methods is
typically the lack of data or insufficient calibi@t of the models used. Under
such conditions of uncertainty, when no single nhadeable to provide a
satisfactory answer, it is beneficial to combine dutputs from several models,
in order to improve confidence in the overall résdlhis thesis presented a
methodology based on the D-S Theory which combewdence from several
independent sources/models (i.e., a PBPM, an HMaa@&€M) to locate a pipe
burst within a DMA. It is argued that this methoalyy is able to fully exploit all
the information sources available in a WDS controbm, reduce the
information load faced by a human operator andlifam@ targeted field

investigations.

* A limiting factor to a wider application of HMs imear R-T burst diagnostics is
the unavailability of pressure and flow data infisitgnt quantity and quality. In
certain WDS deployment of a sufficient number ofnses might be
uneconomical since the potential benefits from lynrairst identification would
not justify the cost of the sensors and their nesahce. However, stringent
requirements on delivered levels of service andocoer satisfaction might
support more investment into monitoring technolagythe not-too-distant
future, which, coupled with the availability of &per sensors, due to
technological advances, may tip the balance ottis¢ benefit analysis in favour

of more sensors.

e« The performance of the information sources usedthis work varies
significantly, which makes information fusion ddtilt. Such phenomena can be
observed for example in the case of the CCM whiehd$ to be either
completely correct or completely wrong. Ideallyl #ile information sources

should perform similarly. Furthermore, the PBPM |athhas significantly lower

195



Chapter 6 - Conclusions

credibility than the other remaining informationusces, does not contribute
much when the HM and CCM are in conflict.

A major strength of the proposed methodology ipdgential to learn from the
performance of the individual models during the ibration stage and
successfully apply this knowledge to unseen casssnformation about new
pipe bursts becomes progressively available, tt& edel can be recalibrated
in order to better reflect the evolving performance the input models.
Moreover, additional models suggesting the locatiba burst pipe (e.g., based
on the information of third parties working in tegstem, weather information,
etc.) can be readily incorporated acting as aduafianformation sources, to

further improve the performance and benefits anmfation fusion.

The novel multiple-objective calibration proceduteveloped, allows the D-S
model to learn the credibility of the underlyingarmation sources based on a
set of historical events. However, criteria fores#ing the most suitable non-
dominated solution from the Pareto front need toeb®blished to allow for

automation of the learning process.

Importantly, the calibration procedure selectsriust suitable combination rule
since, as stated by many, the choice of a particula for information fusion is
problem specific and no single combination rule gehd optimal results in all

decision-making contexts.

The results of calibration of the D-S model suggéstt the D-S theory of
Evidence is a suitable mathematical framework fié@rimation fusion applied in
the context discussed in this work. In contraghtraditional Bayesian theory,
the ability of the D-S theory to handle epistemicertainty seems to yield

certain advantages.

The initial calibration and maintenance of the maggurves, which reflect the
credibility of the input models, is not straightf@ard and represents a challenge

that needs to be addressed.
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* The results obtained by running the D-S model onuaber of semi-real

historical cases suggest that the methodologypalia of:

o ldentifying parts of the network where the proble&reast likely to be
located rather than providing an increased resoiutif burst location.
This could possibly help exclude areas where thrstbmay not have

occurred from expensive field investigations.

0 Suggesting that conflicts exist between individudibrmation sources,
which might influence the decision-making processékis would,
however, require the “likelihood” to be presentesing Belief and
Plausibility instead of the pignistic probabilityBétP, which might be

impractical for WDS operators.

o Providing an insight into the performance of indival models using the
“mapping curves”, which reflect their credibilityd specificity, presents

an advantage over “black box” models such as ANNSs.

* No conclusions can be drawn about the performandesaitability of different
combination rules since the solutions in the nomighated set obtained during
the calibration procedure contained all the thremlwnation rules considered
(i.e., Dempster’s rule, Yager's rule and PCR5 ruldpwever, Yager's rule
seemed to generate results impractical for decisiaking due to large
differences between Belief and Plausibility, whighs not observed in the case

of the other two combination rules.

6.2.3 Impact Model

An impact model was developed (see Chapter 3.4)rapttmented, based on an HM
(i.e., a pressure driven modification of EPANET®upled with a GIS, in order to
assess the impact of failures (i.e., pipe burstshfan operational, rather than strategic

perspective.

* A set of KPIs capturing the impact of a pipe bunsta water utility, as well as

its customers, was developed. The proposed KPIsahte to model the

197



Chapter 6 - Conclusions

following impact categories: supply interruptioow pressure, discolouration,

and economic impacts.

The KPIs reflecting impact on customers explictijfferentiate the following
types of customers: residential, industrial, conuadr and critical. This is not
the case of the KPIs used by OFWAT to monitor Iéegn performance of

water utilities.

It is suggested that the impact of pipe bursts si¢ede evaluated on a system
level, rather than within a single DMA since phemwoa such as discolouration
can affect much larger parts of the network (petside of the boundaries of an
affected DMA) depending on the network topology.

A questionnaire survey was conducted in two UK waikities in order to
determine their perception of the impact of varidagures in a WDS. The
results identified very similar preferences in thwe participating water utilities

in terms of significance of different aspects ofisidered impacts.

0 Regarding the significance of different impacts aofpipe burst, full
supply interruption was perceived as the most sewmepact, followed by

discolouration, low pressure and economic impacts.

o Impact on critical customers (e.g., hospitals, sthcetc.) was perceived
as being significantly more serious in comparisoithie other customer
categories (i.e., residential, commercial and itdklsusers) considered

in this thesis.

o In terms of economic impact, damage to third par(eeg., damage to a
road caused by a burst) was identified as the reegere economic
impact, followed by undelivered demand and lostewat

Distributed computing was successfully applied irden to increase the
performance of the impact evaluation of potentigidents, associated with an
alarm in a particular DMA in order to reach a né&T character of the

methodology.
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6.2.4 Alarm Prioritisation & Ranking
Prioritisation of abnormal flow events (i.e., al&)nhas received only a little attention

by the water sector. The following conclusions dsn drawn regarding the alarm

prioritisation methodology proposed in Chapter 3.5.

A novel methodology for automatic prioritisation ftdw alarms (i.e., detected
flow anomalies) was developed. The methodology ipess a DM with the
means to determine mutual significance of multipdarms occurring
simultaneously in different parts of a WDS (e.guridg periods of abnormal
frost). The risk of individual possible causes of @arm was used here to
calculate an overall aggregated risk associateld tvét alarm, depending on the

DM’s preferences and attitude towards risk (e.gsspmistic / optimistic).

Prioritisation of flow alarms in a WDS was foundkie a complex and a highly
subjective task. The information currently avaiéabio the control room
operators might not be sufficient to assess theripriof an alarm. Estimating
the alarm priority based on the magnitude of abmbrflow (or its fraction

compared to the total DMA inflow only) might lead incorrect conclusions.
The risk-based alarm ranking methodology offersystesnatic approach to

alarm prioritisation.

The performance of the method can be negativelgcedti by the presence of
outliers (i.e., potential incidents associated widn alarm that have
unrealistically high impact or likelihood of occance compared to
neighbouring pipes in the same DMA). Possible wafsovercoming this

problem were suggested in section 6.3.3. Countetivee ranking might be also
produced in situations when the likely locatiortlod burst is confined to a small
area since the aggregated risk of such an alarrhtrbigy lower than when the

location of the burst is completely unknown.

The alarm ranking methodology on its own is a comajenally efficient
algorithm, where the calculation of the maximunmrepy weights takes most of
the time. These were stored in a cache for a gixdne of parameten to
improve the performance. The major computationatiéu lies in the pipe burst
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risk analysis (primarily in the impact evaluationyhich typically involves
running hundreds of extended period simulationsmnoHM.

6.3 Future Research

This section suggests possible directions of furteeearch to extend and improve the
methodologies presented in this thesis. Genenaily, the exception of the D-S model,
uncertainty was not thoroughly considered in thirky The majority of the models
developed here were deterministic (e.g., the impaadel). Incorporating methods of
uncertainty handling into near R-T environment espnts an intriguing challenge that

certainly deserves more attention in the future.

Specific recommendations for further research akeng separately for each key

constituent of the risk-based pipe burst diagnsstiethodology.

6.3.1 Dempster-Shafer Model
It is recommended that future research into the Reflel (see chapter 3.3), utilised to
estimate the likelihood of burst occurrence atvegipipe within a DMA, might include

the following:

* A method for automatic selection of the most suéawlution from the Pareto
front produced during the calibration stage shduéddeveloped. This would
facilitate automated re-training of the D-S modédienw new feedback about
historical pipe bursts becomes available.

« The mapping curves generated for each source ofleege should be
parameterised to account for specific factors (enggnitude of abnormal flow
in case of the HM) temporarily affecting the penfi@nce of a particular

information source (i.e., an input model).

* To better utilise the uncertain output of the D-8del at credal level (i.e.,
Beliefs and Plausibilities) in the decision-makpr@cess. Methods for intuitive
visualisation of such information to a DM in congion with risk-maps should
be researched.
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» Additional information sources or new models capatifl suggesting the likely
location of a burst pipe within a WDS could be isél to strengthen the
synergetic effect of information fusion. These ntighe based on information
from a WMSY containing details about third party rk® models using
transient analysis or turbidity measurements. AHgvely, subjective human
judgement could be also incorporated, together név combination rules that

take the inter-dependencies of such type of eviel@mno account.

 The CCM could be further extended to take into aotdlifferent types of CCs
(e.g., low pressure problems, discolouration repagtc.). In the case of such
reports, the relationship between distance fromdbation of the caller and the
actual location of the burst pipe is likely to bighty non-linear and the use of

an HM would be required to incorporate this kincdeoidence.

* A number of enhancements could be implemented @ HiM. First, flow
measurements within a DMA as well as flow imbalan€anulti-inlet DMAs
should be incorporated in the error function (sep €.10)). Multiple field
measurements taken at different time steps, dfeburst detection, should be
utilised. Pressure measurements recorded duringmmm night flow hours
could be particularly suitable when variation calskby regular water
consumption during day time is significant. A comdtion of burst location
together with automatic re-calibration of an HM sigygested by Wt al.
(2010) should be taken into account and furthetcegd together with the use

of emitters to model the pressure sensitive outfimm a burst.

6.3.2 Impact Model
The functionality of the Impact model proposed hgter 3.4 could be enhanced as
follows:

* The set of KPIs proposed in section 3.4.3 couldurther extended to better
account for social aspects of the impact causediaibyres. Moreover, better
ways of quantification of water quality problemsald be explored. In the case
of discolouration risk state of the art models,dobhen shear stress (Boxall and
Saul 2005), should be applied.
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A more detailed quantitative as well as qualitatbeevey on a wider sample
including both key stakeholders (i.e., the watdrtyitand its customers) should
be conducted to gain better understanding of reiferences regarding various

aspects of failure impact.

Possible ways to speed-up the impact evaluatiomchmvas identified as the
main bottleneck affecting the application of thekfbased burst diagnostics in
near R-T, should be explored. Such techniques nimgthide the use of ANNs
to capture the knowledge of an HM (Salomoas al. 2007), dynamic
skeletonisation (Shamir and Salomons 2008) or ssgye-based methods
(Burrows et al. 2000), that would have to be extended to accoompobssible

topological changes in the network.

Explore the use of fuzzy logic to quantify the irapan linguistic terms, rather
than using crisp values, which give a DM a fals@ression of certainty and

confidence in the accuracy of the results.

6.3.3 Alarm Prioritisation & Ranking
The alarm ranking methodology presented in chaptercould be further extended and

improved in the following directions:

Better handling of possible outliers in the sepofential incidents, which could
negatively affect the scale of impact and likelid@nd, therefore, the priority of
alarms. This could be achieved by introducing défe normalisation schemes

or intelligent filtering of potential incidents.

Currently, the alarm ranking methodology produceselative rather than an
absolute priority. By providing reference examptdsalarm severity, alarms
could then be classified to fall into several ptiorcategories (e.g., high,
medium and low risk), which would immediately telh operator that urgent

action (i.e., intervention) is required.

The feedback from an operator (e.g., manual ovegidf alarm priority)
currently only has a temporary effect and is nasprved when alarms are re-
prioritised (e.g., when a new alarm arrives). Aremgpor’'s feedback could be
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better incorporated into the alarm ranking methoggl Various parameters
(e.g., attitude towards risk, impact and likelihquéferences, etc.) could be re-
calibrated in order to find a ranking that best mkad the one of a human

expert.

Suitable methodology should be developed to detexran optimal sample of
potential incidents that could reliably reflect tbeerall aggregated risk of an
alarm. This could reduce the number of potentieid@nts that need to undergo
the complete risk analysis and improve the perfoigealramatically, allowing a

truly near R-T application even without the usealistributed computing.
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APPENDIX A EVIDENCE THEORY

Most decisions in real life have to be made withocminplete knowledge of the given
problem. To reduce the uncertainty and thus maketir decision a Decision Maker
(DM) typically tries to find various information aaces that would either increase or
decrease confidence in a particular hypothesisklifac the uncertainty and the
combination of evidence coming from several sousteskey features of the Theory of
Evidence which forms the mathematical foundatioadus this work. This appendix
provides a more detailed overview of the theorgltow the reader to better understand

the information fusion methodology presented irtisac3.3.

The mathematical Evidence Theory also known as B&mshafer theory was founded
in the late 70’s by Dempster (1967) and later edéeinby Shafer (1976). The Evidence
Theory stemmed from Bayesian probability theoryy@al763) by extending it to take
into account epistemic uncertainty. The Bayesiaobability theory can be thus

considered as a special case of the Evidence Theory

The Evidence Theory operates on tfi@rhe of discernmehi® which is a finite set of

mutually exclusive and exhaustive hypotheses. Waserne classic probability theory
where probabilityp is assigned to an event andbd) is automatically assigned to its
negation, in the Evidence Theory, the remainingbphbility can be “unassigned”

reflecting the lack of knowledge about a given gimanon (i.e., ignorance).

The number of all subsets in a fra@di.e., the number of elements in its power set) is

2% since each element is either included in the sulrsiéis not.

In Evidence Theory the evidence is distributed agsbnsets of hypotheses
(propositions) by attributing probability mass tbese subsets of the frame of

discernmen® using the Basic Probability Assignment (BPA). TBIRA is a function

m:2° _ [01] complying with following conditions:

m(@) =0

m(A) = 0 foreveryAl ©
> m(A) =1

AT2°

where:

(A.1)
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e Alis a non-empty subset &f
It is important to note thato probability mass can be assigned to the emptyi.set
m(0) =0).

“m(A) measures the total portion of belief that is aoed to A yet none of which is
confined to any proper subset 8f” (Shafer 1976) According to Klir (1994) the
guantitym(A) “represents the degree of evidential support éhgpecific element ad
belongs to the seA but not to any particular subset oA”. A BPA m is said to be
vacuous ifm(®)=1 andm(A)=0 for all A+ ®.

We call all subseta [0 ©, for whichm(A) > 0, “focal sets” or “focal elements”.

BeliefandPlausibility are functions associated with the BPA.

Bel:2° - [01] and Bel(A) =) m(B) (A.2)
where:

* Bis a non-empty subset 6f
Belief corresponds to the total probability massatsupportsA and all of its subsets.

PI:2° - [01] and PI(A)= > m(B) (A.3)

Bn AZ0
Plausibility corresponds to the total mass of ewa#ewhich is not in contradiction with
hypothesisA. From the definitions above it is apparent thatrdlationship betweeBel

andPl is as follows:

PI(A) =1-Bel(A) (A.4)

Our belief inA can be considered to be somewhere betwBel@), PI(A)] where the
Bel function is the lower bound whereBkrepresents the upper bound. The difference
between th&el andPI functions is depicted in Figure A.1.

‘. 2, 4 }
D Bel(A) 1" Uncertainty | Dou(A)=Bel(A) |

PI(A)

Figure A.1 A relationship betwedel andPI functions (Agarwakt al. 2004)

A belief function on2°is said to be a Bayesian belief function if:
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PI(A) =Bel(A) forall A O
This implies tham takes non-zero values only for singletons (Ya@&3).

Other functions also used in Evidence TheoryRoebt and Commonality These are

defined as:

Doubt: Dou(A) =1- PI(A) = Bel(A) (A.5)
Doubt represents the probability mass in contraxhatvith hypothesig\.

Commonality:Q(A) = > m(B) (A.6)

BOA
The commonality function represents the mass afende equally in support of all the
elements oA, i.e., the evidence focused on superset. dthe use of the commonality
function will be demonstrated later in relation tile computation of Dempster’s
combination rule. The relationship betweBgrl and Q functions is described in Eq.
(A.7) and Eq. (A.8).

Bel(A) = > (-1)°Q(B) forall AL® (A7)

Q(A) =Y (-1)® Bel(B) forall ALU® (A.8)

BOA
An inverse relationship exists between BPAs anduhetions presented in this section
(i.e., Bel, Pl,and Q). So, the BPA can be calculated from, e.g., aebdlinction in the

following way:

m(A) = (-1)*"Bel(B) forall AD® (A.9)

BOA
A.1 Combining the Evidence
Making judgements about a particular hypothesigsisally not easy given the rather
scarce and scattered information available. Thewuarpieces of evidence can thus be
combined to facilitate the decision-making. Theuiegment of the bodies of evidence
to be independent has to be stressed, since iityréails very difficult to achieve as
noted by Dempster (1967). The term “body of evi@ddrand “source of evidence” will
be used interchangeably in this work. The problérdependencies between bodies of
evidence has been thoroughly studied by Fergoal. (2004). Marashet al. (2008)

stated that “The assumption of independence ardbraness may well suit the problem
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domains like pattern recognition and sensors in&tion fusion, but it seems to be less
realistic in the case of human subjective judgesiériven the similarities of this
work and sensors information fusion, all the bodiEsvidence used in this work were

considered as probabilistically independent.

The combination of evidence coming froh independent bodies of evidence is
depicted in Figure A.2 . The combined evidence ®amew BPA which can again be

combined with other evidence and thus form a hidwiaal structure as shown in

Figure A.3.
Combined
Evidence
W1 W2 3
Body of Body of Body of
Evidence 1 Evidence 2 Evidence 3

Figure A.2 Combination of N independent bodieswoflence

.

Figure A.3 A hierarchical structure of evidence

WN
Body of
Evidence N

There are several combination rules, each haviffgreint properties, which can be used
in the Evidence Theory. The original rule was idtroed by Dempster (1967) and
formed a fundamental part of the Evidence Theory.

A.1.1 Dempster’'s Rule of Combination
This combination rule can be seen as an orthogsumal followed by a normalisation
process, which has to be performed in case theeeo@provided contains some level

of conflict.
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> m,(B)m, (C)
my, (A) =255 — whenA # 0 (A.10)
K= > m(B)m,(C) A1D)
m,, (@) =0 (A.12)
where:

* myis the combined BPA
* My, mp are BPAs
* A, BandC are non-empty subsets ®f

In the case of conflicting evidence whef# 0, without normalising the combined
BPA my A) by the factor 1 / (1 K), some probability mass would be assigned to the
empty set, which violates the condition in Eq. (A.In(0) =0. Dempster (1967)
avoided this by scaling the combined BPA and disting the conflicting mass

amongst the focal sets 6t
Definition:

Let us denotel]l a binary operation on a s& We say that the operation is
associative if:d 0 b) 0 c=a l (b O c¢) foralla,bcOS

In particular associativity in terms of the Evidentheory is defined as: Lefl be a
combination rule (e.g., Dempster’s rule, etc.) dnaane of discernmer®. We say that
the operation] is associative itA 0 B) 0 C=A0 (BO C) forall AB,CO®

The distinguishing feature of Dempster’s rule iatth is associative and thus allows
evidence to be updated. Its major drawback, howesehat it can produce unexpected
results under certain circumstances of conflictewidence as pointed out by Zadeh
(1984).

The following example demonstrates this countetiivel behaviour. Let us assume
following situation of two engineers providing egitte about a particular failure. The

frame of discernmer® = { pipe burst, valve blockage, pump failbre

Engineer 1:
mu({ pipe burs}) = 0.90
my({ valve blockagp = 0.1

Engineer 2:
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my({ pump failurd) = 0.90
my({ valve blockagp = 0.10

K =m,,(0)=m({ pipeburg} Onf{ pump failtre+
m ({ valveblockadge U ff pump failjre+
m({ pipeburd) Onf{ valveblockiged.9 0.9 40.1x0.9+0.9% 0.1= 0.9¢

Combining the available evidence using Dempstells gives a single result:
my »({ valve blockagg = 0.1 x0.1/(1-0.99) =1

Dempster’s rule is also unsuitable to combine cetepy conflicting evidence because
in those situations the denominator of EquatioB)(@ould be equal to zero. To prevent
situations like this and to yield more intuitivesudts the conflicting evidence can be
either discounted as described later in section tA.3educe the level of conflict,
completely discarded by not considering it in thggragation, or some other
combination rules can be applied which handle tdlict in a different way. A review

of additional combination rules can be found int3emd Ferson (2002).

A.2 Combining Conflicting Evidence

Aggregation of conflicting evidence has been suid®y several researchers, for
example, (Murphy 2000; Lefeviet al. 2002). Murphy (2000) pointed out the problems
related to Dempster's combination rule when cotifiz evidence is aggregated and
suggested the use of averaging, which avoids nideegroblems related to conflicting
evidence. Amongst the main advantages of averagiegidentification of possible
combination problems, preservation of ignoranceagsigned belief) and distribution of
belief. Murphy (2000) also noted that the prob&pithass assigned to the empty set can
be used as a warning indicator, however, settiegthiheshold level determining when
the conflict is high enough to warn a DM, was d#it. In situations where the level of
conflict is greater than 90% it can be considered good indicator of some problems.

The Evidence Theory is based on the “close-workBuanption which requires that
exactly one of the hypotheses in the frame of disoent is true. This assumption can
be questionable when the evidence is contradiciimg a significant amount of the
probability mass is assigned to the empty set. Tidgates a high level of conflict,

which might stem from the fact that it is likelyaththe truth lies outside of the frame of
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discernment in a hypothesis which had not beemallyitconsidered. Smets (1990) in
his Transferable Belief Model (TBM) introduced thdea of the “open-world”

assumption, allowing the probability mass to beigagsl to the empty set and
eliminating the need to normalise belief functidoslike in the case of Dempster’s

combination rule).

A.2.1 Yager's Combination Rule

Yager’'s rule of combination stems from the originebrk of Dempster, however,

conceptualises the conflicting mass as part ofutieertainty pertaining to the problem
and assigns it to the whole frame of discernn@&nin Yager's approach the combined

basic probability assignment can be computed as:

m(A=dA (A.13)
m, (©) = «©) + D) (A.14)
q(A) = Z_ml(B)mz (®) (A.15)
a@) =K = > m(B)m,(C) (A.16)
where:

* myis the combined BPA

* My, Np are BPAs

* qis aground probability assignment which is défgrfrom the BPA obtained
by Dempster’s combination rule in a way that thalows q(0) = 0. It is
consequently transformed to BPA by attributingg) to the frame of

discernment.

Applying Yager's combination rule on the example tofo engineers yields the

following results:

my ({ valve blockagp = m({ valve blockagp x my({valve blockagp = 0.01
my(©) = my({ pipe burstpump failure valve blockagé) = 0.99

The result obtained using Yager's combination nglemore intuitive since conflict
reinforces uncertainty rather than one of the a#teves. Unfortunately, Yager's rule is
not associative and thus cannot be applied for tinglaf evidence. However, as its

quasi-associative form exists, the evidence camfm®mbined to overcome this issue.
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A.2.2 PCR5 Combination Rule

A detailed description of the PCR5 combination risl®eyond the scope of this thesis
and readers are referred to Smarandache and §2268R) for exhaustive information.
Only a version of the PCR5 combination rule thadpsurts two information sources will
be discussed here. According to Smarandache anertQ@906) the simplified version

of the PCRS5 rule can be defined as follows:

Mee(A=q A+ Y (A M, m(A q”:g

B\ A m(A+m(B nm( A+ nf (A.17)

where:
*  MpcrsiS the combined BPA

* my, m are BPASs of the individual information sources
* qis aground probability assignment defined in &q15)

If the denominators in Eq. (A.17) are zero, thatfion is discarded.

The application of the PCR5 combination rule on themple of two Engineers
illustrated above yields following results:

mpecr{{ valve blockagp = 0.01 + 0.009 + 0.009 = 0.028
Mecrs ({ pump failur@) = mecrs ({ pipe burs}) = 0 + 0.405 + 0.081 = 0.486
Mecrs ({ pipe burstpump failure valve blockagé) = 0

The result obtained using the PCR5 combination milguite different from Yager’'s

and Dempster’'s combination rules and certainlyaoainter-intuitive (as in the case of
Dempster’s rule). Similarly to Yager's combinatiaile, PCR5 is not associative and
thus cannot be directly applied for updating thelence. However, its quasi-associative

form also exists.

A.3 Discounting of Evidence

As confidence in the reliability of a certain infoation source can vary, it is also
possible to take this into account and applydascounting operation to reduce the
credibility of a particular source of evidence.dituations where there is a significant
conflict in evidence, discounting reduces the lewélconflict. The application of
discounting to tackle conflicting evidence is amaygested in Lefevret al. (2002),
who further noted that the conflict amongst sourgeserally increases with their

number. Discounting by a coefficient (k)}was defined by Shafer (1976) as follows:
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m(A) =a m(A) for alla [0 [0, 1] (A.18)
m(®) =a m(®) + (1 -a) (A.19)
For:

* o =0 discounting renders the source as completalgliable and effectively
discards all the evidence by assigning all the abdly mass to the frame of
discernmen®,

* o =1represents a full confidence in the sourcetasdno effect on the BPAs

A.4 Computational Complexity of Dempster's Combination
Rule

Let us begin with two fundamental definitions white essential in order to assess the
complexity of an algorithm. Complexity of an algbm is typically measured in terms
of computational time and memory used. If not enifli stated otherwise, by
complexity we mean the time complexity equivaleot the number of basic

computational steps.
Definition:

Let us say that a functioifn) is O(g(n)) whenever there exist constaestand ny such

that| f (n) < cOig(n) for alln = n, (Knuth 1976)

where:
* nis the length of the input (size of the problem)

The functionO(g(n)) thus represents an asymptotic upper bound atifumf(n).
Definition:

A polynomial time algorithmis defined as one whose time complexity functien i

O(p(n)) for some polynomial functiop (e.g.,n° whereb > 1)

The computational complexity of Dempster's comhbratrule belongs to the class of
#P-Complete problems as proven by Orponen (199f))ialent to NP-Complete for
decision problems). The class of NP-CompletGarey and Johnson 1979) is

characterised by the fact that no polynomial-tifgoathm is known to exist to solve

! NP stands foNon-deterministidolynomial time
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any of the problems belonging to this class. Themexity of the combination rule can
be considered as one of the major barriers prawgmtide spread application of the

Evidence Theory.

Haenni and Lehmann (2003) showed that for smallblpros, an efficient
implementation of Dempster's combination rule maké® computation time
acceptable. In situations where an exact solutemmot be obtained in a reasonable
time, approximate methods have to be applied. Aevevand comparison of some

approximate methods can be found, for exampleegssém (1993) and Bauer (1996).

Xu and Kennes (1994) proposed three techniquespéedsip the computation of
Dempster’'s combination rule. They suggested the afséocal computation using
Markov chains, implementation of belief functionsing bit-arrays (used in this work)
and finally using the commonality functions and Mébtransformation (which is in
fact generalised Fourier transformation used toptethe commonality functioQ(A)
defined in Eq. (A.8) from BPAY)). The major advantage of the commonality function
is shown in Eq. (A.20). The orthogonal sum can dlewated simply by multiplying

two commonality functions instead of by computinguan every time.

Qnom, (A) =Q, (AR, (A) (A.20)

Similarly, Denoeux and Yaghlane (2002) proposedaaproximation algorithm to
combine evidence based on fast Mdbius transformatrbich can be computed in
O(n*[2"). They also manipulated the size of the frameiséatnmen® to reduce the

computational complexity.

Kreinovichet al. (1994) developed an approximation algorithm emiplgyionte-Carlo
simulation in order to avoid the computational céemjty of combining evidence. They

also pointed out that their approach can be epsitgllelised.
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APPENDIX B FAILURE IMPACT SURVEY

Dear Participant,

This survey was designed to determine the severity of various types of impacts caused
by failures (e.g., pipe bursts) in a water distribution system. You are going to be asked
to indicate mutual importance of several criteria from the perspective of an employee of
a water utility (i.e., NOT from the perspective of a customer).

The questionnaire is anonymous and the information provided will be confidential and
used only for the purposes of this study carried out as part of the NEPTUNE project.
There are 9 questions in the survey and it should not take more than 10 minutes to
complete. Thank you very much for your time and kind support of this research. In case
of any questions please do not hesitate and contact Josef Bicik (E-mail:
j.bicik@exeter.ac.uk, phone: 01392 263730).

Below is an answer to an imaginary question indicating that Quality is much more
important than Price.

Much Rather Rather Much
Unquestionably — more More more  Equally less Less less  Unquestionably
more important important important important important important important important less important
Quality * O @ ) () @ ) () * Price

To indicate the opposite, i.e., that Quality is much less important than Price select an
option on the right-hand side from the Equally important answer as shown in the
following figure:

Much Rather Rather Much
Unquestionably — more More more  Equally less Less less  Unquestionably
more important important important important important important important important less important
Quality * * @ ) () @ ) O * Price

Please try to answer all questions in the survey and be consistent in your answers as
much as possible (i.e., AVOID situations where Price>Quality, Quality>Design and
Price<Design).

Customers

1. Please, indicate the mutual importance of following types of customers according to their vulnerability in case of
a failure in a water distribution system (e.qg., a pipe burst causing low pressure or supply interruption).

*  critical (e.g., hospitals, schools and other vulnerable customers, etc.),
. residential (e.g., flats, houses, etc.),

* commercial (e.g., shops, businesses, etc.),

. industrial (e.g., factories, mills, etc.)

Much Rather Rather Much
Unquestionabl  more More more  Equally less Less less  Unquestionabl No
y more importa importa importa importa importa importa importa y less answe
important nt nt nt nt nt nt nt important r

Critical E E E E E E E E E Residential E
citical [ i i i [ [ i O i Commerci [

al

Critical E E E E E E E E E Industrial E‘:
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Residential E

E B
Residential E E E E
C E C

Commerci E
al

E E ;:lommerci E
E E Industrial E':
E E Industrial E':

Types of Impact

2. Please, indicate the importance of following economic impacts, having equal scale (i.e., financial losses), which
affect the water utility (company). Bear in mind that the impacts might negatively affect the public image of the
company.

Much Rather Rather Much
Unqguestionabl  more More more  Equally less Less less  Unquestionabl No
y more importan importan importan importan importan importan importan y less answe
important t t t t t t t important r
Third
art
damay L E B B E B E B e Lostwater [
e
Third
party Undelivere [y
damay L C B B B BE BE E C G
e

WI;?Z: C e e e e e E i [ ;JIJ\?;Z\:ere =
C E B C (B B B B C =

Third party damage represents the estimated damage to third parties (e.g., damage to the road, flooding of
basements, etc.).

Lost water represents the amount of water escaped from the system due to a leak or pipe burst.

Undelivered water represents loss of revenue of the water company due to pressure sensitive demand that was
not delivered because of low pressure at consumers' taps (e.g., a garden hose).

3. Please, indicate the importance of the duration of supply interruption affecting the same number of customers of
the same type (e.g., residential):

Much Rather Rather Much

Unqguestionably ~ more More more Equally less Less less Unguestionably No

more important important important important important important important important less important answer
>2an - [0 E B B B B (B B C vl O
>2an [ C C e e C e e e Izh =
>2an [ e e e e E e e e Sh =
A & CE B BE BE B B B e on B
Sy & C £ B B B B B C O

o C & BE B B B B C o

O

>24h represents interruption of water supply of the same number of customers lasting more than 24 hours.

4. Please, indicate the importance of the duration of low pressure problems affecting the same number of
customers of the same type (e.g., residential):

Much Rather Rather Much
Unquestionab more More more Equally less Less less  Unquestionab No
ly more importa importa importa importa importa importa importa ly less answe
important nt nt nt nt nt nt nt important r

2 oD oD C B B C B B ORE
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"
2 m p o C &b C & & C E_z E
SOl 'R YT YT v I T * B T * B ©
L m p C C C C C E O g'z =
¥ p o o C b0 & B B %E

S . ©BE B B o Ccc e ©o &

O

>24h represents low pressure problems affecting the same number of customers for more than 24 hours.

5. Please, indicate the importance of the scale of the same impact (e.g., supply interruption) on the customers of
the same type (e.g., residential) for the same period of time:

Much Rather Rather Much
Unquestionab more More more Equally less Less less  Unquestionab No
ly more importa importa importa importa importa importa importa ly less answe
important nt nt nt nt nt nt nt important r
>100 201-
o K C O (B B B B DB C 100 [
0
100 51-
P00 o E E & B B BE C o
100
% B E B BE E B B E e <50 [%
201- 51-
200 o E E & B B BE C o
200 0 L C & & & B ¢ L <o [5
S o E E £CE B &£ £ C L < [

<50 represents less than 50 customers of the same type affected for the same period of time.
>1000 represents more than 1000 customers of the same type affected for the same period of time.

6. Please, indicate the mutual importance of following types of impacts affecting the same number of properties for
the same period of time (where applicable):

Much Rather Rather Much
Unquestion more More more Equally less Less less Unquestion No
ably more import import import import import import import ably less answ
important  ant ant ant ant ant ant ant important er
Supply .
interruptio [ C E C B B E O [T Dscoloura
n
_ SHniE Low s
interruptio E E E E E E E E E pressure E
n
Supply Economic
interruptio E Ej E E Ej Ej Ej E E (company) E
n losses
Discoloura Low
tion E E E E E E E E E pressure E
Discoloura Economic
A E & B B B B OB £ (company) [£
losses
Low Economic
pressure E E E E E E E E E (company) E
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losses

Supply interruption represents a situation when pressure in the water distribution system drops below 7 m of
head.

Low pressure is defined as situation when pressure in the water distribution system drops below 15 m of head
(but is still above 7 m).

Discolouration is characteristic by increased turbidity of water due to high levels of suspended patrticles.
Economic losses represent direct or indirect financial losses sustained by the water company (e.g., lost water,
third party damage, etc.)

Personal Information

7. *Please, select the company / organisation you work for:
Choose one of the following answers

Please choose... - |

8. Please, select your occupation:
Choose one of the following answers

Please choose... - |

Other

9. Please provide additional comments:

Kl
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APPENDIX C HYDRAULIC MODEL
RESULTS

This Appendix contains detailed results of locasiah open hydrants identified by the
Hydraulic Model. The pipe with the lowest valueSBE (i.e., the most likely location

of the hydrant opening was highlighted in cyan)e Bletual location of the open hydrant
is denoted using symbdX. Remaining pipes are colour coded using a redue bl
gradient in an ascending order of their Sum of Spi&rrors (SSE) (i.e., red refers to

the likely hydrant opening locations with low SSE).
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C.1 Large Burst Flow Simulations EE1 (All Sensors)
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Figure C.1 The most likely location of hydrant openfor EE1-1
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Legend
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Figure C.2 The most likely location of hydrant openfor EE1-2
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Legend
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Figure C.3 The most likely location of hydrant openfor EE1-3
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Legend
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Figure C.4 The most likely location of hydrant openfor EE1-4
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Figure C.5 The most likely location of hydrant openfor EE1-5
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C.2 Medium Burst Flow Simulations EE2 (All Sensors)
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Figure C.6 The most likely location of hydrant openfor EE2-5
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The Mires Farm
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APPENDIX D D-S MODEL PERFORMANCE

This appendix contains detailed results and disocnssf the application of the
Dempster-Shafer (D-S) model on several cases sdldotm Table 5.11. The colour
coding used in the figures (i.e., “likelihood” mapgsesented here was chosen so that
the pipes in red are the most likely potential decits whereas those in dark blue are
less likely to be the True Burst Location (TBL)pE$ whose level of likelihood was
below 0.5 were shown in light gray to suggest thase were unlikely to be the TBL.
Labels were added only to those pipes whose liketihwas greater than 0.7 in order to
preserve the clarity of the figures. All the distas reported in the appendix were

estimated by tracing the pipe network rather thandiculating the Euclidean distance.

D.1 Detailed results for case #7080348

This example was taken from the validation data mesented in Table 5.11. The
historical burst occurred on 26 July 2005. One @ustr contact was received in the
time window being considered (i.e., 24 hours beftbre burst repair took place or
during the same day). The burst report in this casght have been incorrectly
associated with this burst event since it was kxtdar from the location where the

burst was later found and repaired.

The Pipe Burst Prediction Model (PBPM) (see Fidnrea) failed to provide a good
indication of the most likely location of the TBIOn the other hand the Hydraulic
Model (HM) (see Figure D.1b) in this particular eagiven the added levels of noise to
pressure measurements and magnitude of abnormgl il@anaged to locate the likely
burst location accurately (i.e., the TBL was appr2%0 m from the pipe identified as
the most likely burst location by the HM). Aparbifn identifying a relatively well
confined pipe burst hotspot in the proximity of thBL, the HM also identified a
number of pipes in the south east part of the DMAikely burst candidates (note the
pipes with Confidence factor around 0.71 in FigDréb). The Customer Contacts
Model (CCM) shown in Figure D.1c identified the rmbkely burst location, which was
more than 1,250 m from the TBL.

The combined results from the D-S Model presente&figure D.1d were worse than

those provided by the HM. Such information wouldwever, be unknown in a real
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decision-making situation until the TBL was foufithe most likely pipe burst location
would be where the Customer Contact (CC) originafidte second most likely pipe
burst area would be 350 m from the TBL. One ofdatieantages of the combined result
could be seen in the fact that the secondary hatsipot in the south east part of the
DMA identified originally by the HM, received sidmaantly lower level of likelihood
from the D-S Model and could be excluded from fieldestigations.
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Figure D.1 a) PBPM, b) HM, c) CCM and d) D-S Modesults for case #7080348
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Figure D.2 provides an overview of the spatial ribsition of Belief and Plausibility
returned by the D-S model. Figure D.2b suggests plogential incidents in a large
portion of the DMA are not very plausible burst dmlates and, therefore, the
investigation could be better focused, startinghwpipes with the highest levels of
Belief.
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Figure D.2 a) Belief and b) Plausibility of the DM®del for case #7080348

No evidence was available in this case for a smathber of potential incidents. Such
potential incidents are, therefore, entirely plalesipipe burst candidates for the D-S
model. As can be seen in Figure D.2b a pipe imthréh part of the DMA has maximum
plausibility (i.e., Plypd{Burst) = 1) and minimum belief (i.e.Beb{{Bursg) = 0)

implying that the D-S model was unable to make jalgement about such pipe. It is

left up to a human Decision Maker (DM) to handlelspotential incidents.

D.2 Detailed results for case #8905881

Figure D.3 presents results of the individual medet well as the D-S model on a
historical pipe burst taken from the validation seffable 5.11. The burst occurred on
31 August 2007 and was reported by one customecafisbe seen from Figure D.3a
the PBPM performed very strangely in this case lagtlighted only very few pipes as
potential burst candidates. Both, the HM (see Kdgw3b) and the CCM (see

Figure D.3c) identified locations in very close xiroity of the TBL. The HM again
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highlighted the south west part of the DMA as @llklocation of the burst, which
could be due to limited pressure sensor coveragthaif area (see Figure 5.9). The
combined results of the D-S model in Figure D.3d lass specific than those of the
CCM, however, better than the results providedhgyHM.
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Figure D.3 a) PBPM, b) HM, c¢) CCM and d) D-S Modedults for case #8905881

The Belief and Plausibility maps shown in Figurd@®and Figure D.4b, respectively,
are similar to the previous case, which can beaetl by the closeness of the TBL in
both cases and, therefore, a similar performan¢leeoHM (despite the different time of
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day, pressure measurements and demands). Unlikeeiprevious case, the levels of
Belief and Plausibility of potential incidents ihet proximity of the TBL are very

similar, which suggests that the individual modeé¢se in an agreement.
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Figure D.4 a) Belief and b) Plausibility of the DM®del for case #8905881

D.3 Detailed results for case #9315021

Figure D.5 shows the results of another validateeample from Table 5.11. The

historical burst occurred on 5 February 2008 and reaorted by three customers. The
origin of the CCs (see, e.g., Figure D.5c) did facour the fact that when a customer
reports a burst, the actual coordinates of a gemttatation provided by the customer
were stored in the CC database. In this case me@ehat the location of the caller was
recorded rather than the location of the burstciviwould explain why the CCs formed

a triangle surrounding the TBL (which was not a owon situation in the CC dataset).

The HM (see Figure D.5b) managed to identify theatmn of the burst pipe precisely,

since it was in close proximity of a pressure sensbhe PBPM (see Figure D.5a) did

not perform very well in this case. The combineduie shown in Figure D.5d was

negatively affected by the CCM, which overweighkd HM and the most likely burst

location was 650 m from the TBL. To facilitate tdecision-making process (i.e., to
avoid the need to use both Belief and Plausibitigps) only the pignistic probability

BetP generated by the D-S model was primarily presembed DM. The inevitable
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information loss caused by the aggregation of Bedied Plausibility brings some
disadvantages and represents a trade-off betwesitycpnd quantity of information.
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Figure D.5 a) PBPM, b) HM, ¢) CCM and d) D-S Modedults for case #9315021

Although the most likely location identified by tlleS model had the higheBetP (see
Figure D.5d), it did not have the highest levelB#lief as shown in Figure D.6a. The
pignistic probabilityBetP provides a quick overview of the likely locatiohtbe burst

and can be sufficient to make an informed decisitormost cases. However, some
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situations (e.g., as shown in Figure D.6) warrantexte detailed inspection using the

Belief and Plausibility maps.
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Figure D.6 a) Belief and b) Plausibility of the DM®del for case #9315021

The advantage of the results provided by the D-8ehoould be also seen in the fact
that one of the CCs (i.e., the one located in thrthneast part of the DMA) received a
significantly lower level oBetPas well as Belief and would be probably invesagdads
the last one after the other two pipe burst hotsptentified by the D-S model.

D.4 Detailed results for case #4639990

This example shows a historical pipe burst repasred August 2002, which was taken
from the validation dataset. The burst was not nteyloby any customers and, therefore,
only evidence from the PBPM and the HM was avadalbligure D.7 provides the
outputs of the PBPM (see Figure D.7a), the HM (Sigeire D.7b) and the D-S model
(see Figure D.7c). As can be seen from the figuhesPBPM highlighted a number of
likely locations, however, also identified possilpipes, which were unlikely to burst.
The HM identified two large pipe burst hotspotseTdombined results in this particular
case (see Figure D.7c) significantly reduced tlea af the two hotspots and as can be
seen from Table 5.11 even managed to improve tileng of the TBL compared to the
rankings of the other two models. The pipe burgspat in the south east part of the
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DMA received only a slightly higher level of BetPrmpared to the other hotspot
located in the south central part of the DMA.
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Figure D.7 a) PBPM, b) HM and c) D-S Model restdiscase #4639990

The spatial distribution of Belief (see Figure D.peovided by the D-S Model was well
confined, which was not the case of Plausibility sileown in Figure D.8b. The
plausibility map depicted below represents a typisiduation, when the HM s
combined only with the PBPM. This usually results little “negative” evidence
supporting the hypothesis that certain potentieidients were unlikely the TBL.
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Figure D.8 a) Belief and b) Plausibility of the DM®del for case #4639990
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GLOSSARY

Background leakageis typically caused by a number of small leakst e very
difficult to detect. (van Zyl and Clayton 2007)

Belief corresponds to the total probability mass whighpsuts a proposition and all of
its subsets. (Shafer 1976) It can be seen as a [mwbability bound.

Burst is a large individual leak that emerges on tosiisdace or is found through active

leakage initiatives. (van Zyl and Clayton 2007)

Decision Support Systemis an interactive computer-based system, which shelp
decision makers utilise data and models to solv&ructured problems. (Gorry and
Scott-Morton 1971)

Expert Systemis a decision-making and/or problem solving packafjecomputer
hardware and software that can reach a level dbpeance comparable to - or even
exceeding that of - a human expert in some spseiland usually narrow problem
area. (Turban 1995)

Failure can be defined as the inability to achieve a @efitevel of performance.
(Sayerset al.2003)

Hazard is defined as a situation with the potential teutein harm, however, it does

not necessarily lead to harm. (Sayetral. 2003).

Intervention is a planned activity designed to achieve an img@meent in an existing
system. (Sayerst al. 2003)

Likelihood is a general concept relating to the chance avamt occurring. (Sayeet
al. 2003).

Plausibility corresponds to the total probability mass whichasin contradiction with
a proposition. (Shafer 1976) It can be seen agperyprobability bound.

Potential Incident refers to a suspected failure, which has not loeafirmed.

Risk is a measure of the probability and severity ofeaske effects. (Lowrance 1976)
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Risk analysisis part of the risk assessment procedure and dsespthe identification

of hazards and estimation of the risks.

Risk assessmenis defined as a process of identifying hazards emasequences,
estimating the magnitude and probability of conseges and assessing the

significance of the risk(s). (Kaplan and Garricl819

Risk managementis following the IEC60300-3-9 standard defined assystematic
application of management policies, proceduresmadtices to the tasks of analysing,

evaluating and controlling risk.” (Tuhovcak al. 2006)

Uncertainty refers to randomness, which cannot be explainedg@i 1921). It can be
broadly classified intaaleatory uncertainty, which refers to natural variability, or
stochastic uncertainty, arapistemic uncertainty, representing knowledge uncertainty

or incompleteness.
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