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Abstract 

nvestigations into the safety of diagnostic ultrasound and mechanisms of therapeutic 

ultrasound have provided evidence of a number of cellular responses to ultrasound.  

These studies have mainly concentrated on cells in culture, while work on intact tissue 

employed mainly kHz ultrasound fields, although diagnostic and many therapeutic 

procedures are performed using MHz ultrasound.   Vascular tissue is known to respond to 

a variety of physical and chemical signals, and so arteries were used as a model system in 

this thesis to study the effects of MHz ultrasound in vitro.   

Rings of equine carotid and lateral cecal mesenteric artery exhibited reversible, repeatable 

contraction on exposure to both pulsed and continuous wave 3.2 MHz ultrasound at 

acoustic powers up to 145 mW.  Wall stress increased by up to 1.5% in carotid arteries 

and up to 2% in mesenteric arteries during exposure, and returned to basal levels after 

approximately 10 minutes.  Contraction was endothelium independent, and was not 

affected by changes in the pulsing regime.  The magnitude of contraction was dependent 

on the acoustic power, and the change in wall stress increased with increasing acoustic 

power in a linear fashion.  The acoustic power dependence suggested the response was 

thermally mediated and this was confirmed by investigation of the response of arteries to 

non ultrasound generated heating, which also induced contraction.  The effects of 

ultrasound and heating were also investigated in 1st order branches of the lateral cecal 

artery, as a model of a small artery.  No response was observed in either case. 

In order to determine the cellular basis of the response of carotid and mesenteric arteries, 

the involvement of potassium ion channels in the response was investigated using a 

potassium channel blocker. The response of arteries to ultrasound was increased by 

inhibition of inward-rectifier potassium channels, which would otherwise help to return 

the cell membrane potential to the normal level.  The change in wall stress was increased 

by 42% on average, confirming the involvement of these channels in the response.  

Contraction of arteries is mediated by an increase in intracellular calcium.  The ion 

channel activity during non ultrasound generated heating was examined further by 

observation of intracellular calcium concentration using a fluorescent calcium sensitive 

dye.  Increases in intracellular calcium were observed in carotid and large mesenteric 

arteries, which confirmed the thermal influence on ion channel function in these vessels. 

No such effect was observed in the smaller vessels.  
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Glossary of abbreviations 

ΔT  Change in temperature 

AIUM  American Institute of Ultrasound in Medicine 

ATP  Adenosine triphosphate 

BaCl2  Barium chloride 

CW  Continuous wave 

DMSO  Dimethyl sulfoxide 

EDHF  Endothelium derived hyperpolarising factor 

FDA  Food and Drug Administration  

ISPPA  Spatial-peak pulse-average acoustic intensity 

ISPTA  Spatial-peak temporal-average acoustic intensity 

LIPUS  Low intensity pulsed ultrasound 

MI  Mechanical Index 

NEMA  National Electrical Manufacturer’s Association 

NO  Nitric oxide  

Np  Nepers 

p-  Peak negative acoustic pressure 

p+  Peak positive acoustic pressure 

PVDF  Polyvinylidene fluoride  

ROS  Reactive oxygen species  

TI  Thermal Index 

TPx  Polymethylpentene 

TTO  Thermal Test Object 

US  Ultrasound 

VEGF  Vascular endothelial growth factor 
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1 Introduction 

his thesis is concerned with the effects of ultrasound at low MHz frequency and at 

diagnostic acoustic intensity levels on large conducting and small resistance 

blood vessels in vitro.  Preliminary results (R E Ellis, unpublished data, School of 

Physics, University of Exeter) showed evidence of ultrasound induced contraction in a 

carotid artery ring in vitro.  The experiments described in this thesis were designed to 

investigate this effect further, aiming to establish the mechanism of interaction of the 

ultrasound with the tissue and the cellular mechanisms underlying the response.  This 

involved investigation of the effects of varying ultrasound exposure parameters on the 

measured responses and investigations of the ion channel activity during the 

response.  The responses of different types of blood vessels were investigated to 

determine the effects of ultrasound on different parts of the vascular system, where 

structure and function may vary.  In this introduction, the relevance of this 

investigation is outlined in light of the current, widespread use of medical ultrasound 

for diagnostic purposes and the use of ultrasound for an increasing variety of 

therapeutic applications. 

Ultrasound is employed widely for clinical diagnostic uses including obstetrics, 

cardiology and vascular studies and is generally accepted as a safe and versatile 

modality for medical imaging.  It is also widely used for therapeutic applications such 

as physiotherapy. Extracorporeal shock-wave lithotripsy is often the treatment of 

choice for renal calculi, and the use of high intensity focused ultrasound (HIFU) is 

being developed in minimally invasive surgery and for cancer treatment.  Ultrasound 

is increasingly used as an agent to accelerate bone, tendon and soft tissue healing.  

Efforts to assess the safety of these procedures and to understand the mechanisms 

responsible for therapeutic effects have demonstrated a number of non-lethal cellular 

responses to ultrasound in cells in culture, ex vivo tissue models, in vivo animal models 

and clinical models.  At low intensities, these include increased proliferation of some 

cell types, altered gene expression, increased protein synthesis, changes related to cell 

signalling and changes in vascular tone (e.g. Korstjens et al. 2008; Lu et al. 2009).  At 

T 
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the higher acoustic intensities and pressures used for HIFU, sonoporation and drug 

delivery, changes in cell permeability and cell death can be induced (ter Haar 2007). 

Relatively little is known about the effects of low-power ultrasound in intact tissues; 

most of the observations mentioned above have been made on cells in culture.  The 

work presented in this thesis reports such investigations on arteries in vitro, chosen 

for study because the vascular system is known to be responsive to physical and 

chemical signals and is therefore likely to be sensitive to ultrasonic stimuli.  Responses 

of the vascular system could lead directly to therapeutic or pathological effects as 

many processes are regulated by blood flow.  A number of studies have shown that 

ultrasound at low frequencies can cause changes in vascular tone and whole tissue 

effects (e.g. Steffen et al. 1994; Suchkova et al. 2000).  

The effective functioning of the circulation depends critically on changes in vascular 

tone which regulate local and systemic blood flow and tissue nutrition. Vascular tone 

is determined by a complex interplay between the endothelial cells lining the vessel 

wall and the smooth muscle cells of the underlying tissue that facilitate the response.  

The cellular interaction depends on a wide range of signals, including cytokines such 

as nitric oxide and free radicals that can be exchanged between the two cell 

populations, and also on mechanical and fluid mechanical forces that are transduced 

mainly by the endothelial cells.  Studies on isolated cells have already demonstrated 

that ultrasound stimulates the release of cytokines (Saito et al. 2004; Lu et al. 2008).  It 

is also possible that endothelial cells can sense directly the effects of ultrasound-

induced cavitation and streaming and the resulting fluid shear stress (VanBavel 2007).   

Ultrasound bioeffects are mainly classed as thermal (temperature rise ΔT > 1-2 °C) or 

non-thermal (ΔT < 1-2 °C).  Most work on non-thermal bioeffects has focussed on 

cavitation and microbubbles and investigation of the significance of free radicals.  

However, there may also be other non-thermal bioeffects where cavitation is not 

present.  Cells may respond directly to the mechanical forces produced by acoustic 

fields.  Mechanical forces exerted on vascular cells are important in both the short 

term, in producing changes in vessel diameter that regulate blood flow, and the long 

term, in the growth and development of blood vessels and in the development of 

disease.  The influence of small transient thermal changes on the function of cells and 

tissues has not been thoroughly investigated, and in many studies thermal 
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mechanisms are ignored when the temperature rise is less than 1 or 2 ˚C.  There is 

evidence that temperature changes of less than 1 ˚C can elicit a response in cells and 

tissues (e.g. Wang et al. 1991; Morrissey et al. 2009). 

These findings suggest the need for further investigation of the bioeffects of 

ultrasound, especially the more subtle and transient effects, which may be associated 

with ultrasound intensities within the diagnostic range.  The research presented here 

spans some of the areas discussed above, examining the transient effects of low 

acoustic intensity ultrasound at the tissue and cellular level.   

In Chapter 2, the context of this research is described in terms of current literature on 

bioeffects of low acoustic intensity ultrasound for both therapeutic purposes and for 

safety.  This chapter also reviews the theory and literature concerning the underlying 

physics, the mechanisms of interaction of ultrasound and resulting bioeffects and 

safety issues.  Relevant literature and theory from the tissue and cellular perspective, 

which examines the structure and function of blood vessels and the cells within, their 

mechanical properties, and mechanisms of physical force sensing in these cells and the 

transduction of these signals is also reviewed.  In Chapter 3, the experimental design 

process and development of equipment is described, and the ultrasound field 

characterisation and associated measurement techniques are presented.  In Chapter 4, 

the results of the experiments are presented, beginning first with characterisation of 

the response in carotid and lateral cecal mesenteric arteries in terms of the acoustic 

power, pulse regime and endothelial dependence.  The thermal interaction with the 

tissue is also studied.  Chapter 5 describes similar experiments performed on first 

order branches from the lateral cecal artery as a model of a small artery.  Chapter 6 

describes experiments performed on both large and small arteries in order to 

investigate the involvement of ion channel activity in the cell membrane in the 

response to ultrasound.  This is followed in Chapter 7 by a general discussion of all the 

results from this study and conclusions, together with suggestions for further work. 
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2 Background and supporting 

literature 

In this chapter, the theory underlying the aspects of ultrasound and physiology 

relevant to this thesis is discussed.  The literature concerning the bioeffects of 

ultrasound on tissues and cells is then reviewed, along with the cellular basis of the 

interaction between physical stimuli and cells. 

2.1 Ultrasound and its interaction with soft tissue 

Ultrasound is characterised as sound at frequencies above 20 kHz.  Diagnostic 

ultrasound usually employs frequencies from 2 to 15 MHz and above depending on the 

depth of penetration and spatial resolution required.  For therapeutic applications 

both kHz and MHz frequencies are employed.  This chapter will focus on applications 

of MHz ultrasound with brief discussion of relevant literature concerning kHz 

ultrasound and its effects on the vasculature.  First, the underlying physics of 

ultrasound as it relates to this thesis is outlined. 

2.1.1 Physics of ultrasound 

Ultrasound propagates through a medium such as soft tissue as longitudinal waves by 

the displacement of particles, u.  The oscillations of the particles in the wave obey the 

wave equation 

 
������ � 1��

������  , 2.1 

where z is the distance in the direction of wave propagation and c is the wave velocity, 

i.e. the speed of sound.  This has the general solution 

 � � �� sin��� � �� 2.2 
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               � �� sin �2�� ��� � ��� . 2.3 

The displacement of the particles at time t is u, the maximum displacement of particles 

is u0, the angular frequency � � 2��, the phase angle � � ��, and the wave number 

� � ��
� .  During compressions and rarefactions, the particles oscillate about a fixed 

position, and so the pressure oscillates about the ambient pressure.  This is the 

acoustic pressure, p which can be described by 

 � � ���� ���� , 2.4 

where ρ is the density of the medium.  By differentiating Equation 2.3 with respect to 

z, and substituting into Equation 2.4, the acoustic pressure can be written as 

 � � ��                               2.5 

      � �� ��� cos��� � �� . 2.6 

A more complete derivation can be found in Wells (1977).  The peak values of the 

acoustic pressure are of interest in acoustic output measurements and in the context 

of ultrasound safety.  The peak rarefactional pressure or peak negative acoustic 

pressure is the greatest value of acoustic pressure below the ambient level.  The peak 

compression pressure or peak positive pressure is the greatest value above the 

ambient pressure. 

Where plane-wave conditions may be assumed, the acoustic intensity is proportional 

to the pressure squared and can be calculated from the acoustic pressure via the pulse 

intensity integral.  The pulse intensity integral, Φ is calculated by integrating the 

square of the acoustic pressure, p, over a time which spans the whole pulse, T. 

 Φ � 1�� $ ��%
� &� , 2.7 

where ρ is the density of the medium and c is speed of sound in the medium.  For a 

continuous wave beam, the spatial-peak temporal-average intensity,  

 '()%* � ��
2�� . 2.8 
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For pulsed beams, ISPTA is the pulse intensity integral divided by the pulse repetition 

period.  The spatial-peak pulse-average intensity, ISPPA, is calculated from the pulse 

intensity integral divided by the pulse duration, T, and 

 + � 1.25��� � �-� , 2.9 

where t1 and t2 are the times at which the pressure squared integral equals 10% and 

90% of the total value. 

Attenuation of ultrasound 

As ultrasound propagates through tissue it is attenuated by absorption as well as 

scattering, depending on properties of the tissue and the frequency of the ultrasound.  

For a plane single frequency sound wave, the attenuation may also be given in terms of 

the change in acoustic pressure through a medium: 

 �. � ��/01. , 2.10 

where p0 is the initial acoustic pressure amplitude, pz is the acoustic amplitude of the 

wave after it has travelled a distance z through the medium and α is the amplitude 

attenuation coefficient of the medium in Np cm-1.  Attenuation is described in terms of 

the acoustic intensity as 

 ' � '�/0�1. , 2.11 

where I0 is the initial acoustic intensity and I is the acoustic intensity of the wave at 

distance z. 

Attenuation occurs by both absorption of energy along the beam path and by 

scattering of energy out of the beam.  The amplitude attenuation coefficient is the sum 

of the scattering coefficient, αs and the absorption coefficient, αa: 

 2 � 23 4 25 . 2.12 

The attenuation in tissue depends on frequency in an approximately linear fashion and 

attenuation coefficients are often given in terms of dB cm-1 MHz-1 or in nepers cm-1 at a 

particular frequency.  For soft tissue, the attenuation coefficient is often taken as 0.5 

dB cm-1 MHz-1.  For soft tissue, evidence suggests that at frequencies in the low MHz 

range, attenuation is primarily due to absorption, and scattering accounts for a 
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relatively small proportion of the attenuation (Docker and Duck 1991).  On a small 

scale, scatter occurs where reflectors are smaller than the wavelength of the 

ultrasound.  Energy is scattered off the beam axis and the beam is attenuated.  

Absorption occurs by conversion of energy from the ultrasound beam into heat as it 

propagates through a medium.  In fluids, there are frictional forces that act to oppose 

the motion of the particles in the medium due to the ultrasound wave.  On a molecular 

scale, pressure fluctuations can affect tissue; the resulting compression and relaxation 

of molecular structures after the passage of an ultrasonic wave removes energy from 

the beam and converts it to heat. 

The rate of energy deposition or heat production per unit volume is  

 &6&� � 225' , 2.13 

where Q is the energy, t is time, αa is the amplitude absorption coefficient and I is the 

acoustic intensity.  The rate of energy deposition will vary spatially.  The absorption 

coefficient will vary with the tissue properties and with inhomogeneities within 

tissues, ranging from approximately 0.1 nepers cm-1 at 5 MHz in blood, and 0.17 to 

0.57 nepers cm-1 in the liver at 5 MHz (Duck 1990).  The pattern of energy deposition 

also depends on the acoustic intensity profile of the beam; for a tightly focused beam 

with a small, high acoustic intensity focus, energy deposition may be quite localised. 

The acoustic dose rate, i.e. the rate of energy absorption per unit mass of a medium 

has been defined by Duck (2009) as 

 67 � 225'��  , 2.14 

where ρ0 is the density of the medium.  Therefore, the total energy deposited per unit 

mass of a medium in a given time, t, is 

 Φ � 225'���  . 2.15 

The acoustic dose rate is then analogous to the Specific Absorption Rate used to 

quantify exposure to non ionising electromagnetic radiation, and the acoustic dose is 

analogous to radiation dose used for ionising radiation.   



2. Background and supporting literature 

25  

 

The initial rate of temperature increase is dependent only on the heat capacity of the 

medium, C and the acoustic dose rate: 

 &+&� � 225'��8 � 678  . 2.16 

After the initial temperature rise, the heating depends on the beam width; for a given 

acoustic intensity, the rate of heating will be greater in a broader beam.  The steady 

state temperature that is reached depends on the thermal conductivity of the tissue 

and on heat loss due to blood flow, which can have a significant effect on the 

temperature.  The Thermal Index discussed later gives an indication of this 

temperature increase. 

Nonlinear propagation 

In part of this study, relatively high acoustic pressures are employed.  For this reason 

it is important to consider nonlinear effects when discussing ultrasound propagation 

through a medium.  In the range of acoustic pressures encountered in diagnostic 

ultrasound, as a sinusoidal wave propagates through a medium, its shape changes 

possibly producing shock fronts (Duck and Starritt 1984).  The compressions catch up 

with the rarefactions travelling in front of them, eventually forming a shock front or 

discontinuity in acoustic pressure.  Thus, whilst a pulse near to the transducer will 

have sinusoidal type oscillations, as the pulse travels further from the transducer, the 

pulse shape will be distorted and the increases in acoustic pressure will become more 

rapid, eventually forming a discontinuity.  The degree of nonlinearity depends on 

several factors and is described by the nonlinear propagation or shock factor:   

 9 � :;<� , 2.17 

where β is the coefficient of nonlinearity of the medium and z is the distance travelled 

through the medium.  The acoustic Mach number, : � =>?> where  � is particle velocity 

at the source and �� is the wave speed.  Equation 2.5 showed that acoustic pressure is 

proportional to particle velocity, so this term gives a linear dependence of nonlinearity 

on acoustic pressure.  The wave number, ; � ��
� � ��@

?>  so there is also a linear 

dependence on the frequency of the ultrasound wave (Duck 2002). 
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Nonlinear propagation causes a change in the frequency content of the ultrasound as 

energy is transferred to the harmonic frequencies.  Absorption of the ultrasound 

energy increases with frequency so the harmonic components will be more strongly 

absorbed as they propagate through the medium.  This change in absorption has two 

consequences: the amount of energy deposited in the tissue will increase due to 

absorption of the higher frequency components and more energy will be deposited 

along the beam path.  In a situation such as that in this study, where a section of tissue 

is placed in liquid at the focal region, the energy deposited in the water path due to 

nonlinearity will result in a lower acoustic intensity at the tissue.  It is not known 

exactly how these factors will affect the acoustic dose rate; the two effects may cancel 

each other out to a degree.  

2.1.2 Mechanisms of ultrasound interaction 

In this section, the mechanisms of interaction of ultrasound with tissue are outlined.  

They will be discussed in relation to the results of this study and their involvement in 

the responses measured here will be investigated. 

The mechanisms of ultrasound interaction with tissue can be thermal or mechanical in 

nature.  Thermal interaction depends on the acoustic power in the beam, as well as 

acoustic properties of the tissue.  Mechanical interaction depends on acoustic 

pressure.  The principles of these interaction mechanisms are described here.  

Interaction mechanisms classed as non-thermal and non-cavitational are also 

described. 

Thermal effects 

Heating caused by absorption of ultrasound in soft tissue and bone, and the resulting 

thermal bioeffects, are related to the acoustic power and beam width.  The potential 

for thermal bioeffects is represented by the Thermal Index,  

 +' � ABACDE , 2.18 

where Wp is the beam power and Wdeg is the estimated acoustic power needed to raise 

the temperature of the tissue by 1°C under steady state worst case conditions (NCRP 

1992).  The quantity Wdeg depends on acoustic properties of the tissue at a particular 

frequency and the ultrasonic beam structure.  Cell death is likely above 43°C, a 

temperature increase of 6°C above core body temperature (O'Brien 2007).  Increases 
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in temperature will affect cellular biochemistry, causing increased reaction rates.  

When the temperature rise is sufficient, enzymes will begin to break down, proteins in 

the cell will denature and the cell will cease to function normally.  Damage to cells has 

been observed after prolonged periods at temperatures of 39 to 43 ˚C.  Above this 

temperature the time taken to cause damage halves for every degree of temperature 

rise.  Lower temperature rises for sustained periods can also cause damage, especially 

to sensitive tissues such as foetal tissue.  It is possible that smaller temperature rises 

for short periods may cause transient effects in cells and tissues; this possibility will be 

explored further later in this chapter.   

On a larger scale, increases in the core body temperature by several degrees in several 

species of pregnant animals induced brain disorders among other defects in the foetus 

(Miller and Ziskin 1989).  Users of diagnostic ultrasound equipment are provided with 

the Thermal Index as an indicator of the possible temperature rise during exposure.  

The Food and Drug Administration (FDA) (1997) states that a Thermal Index of 6 must 

not be exceeded without justification.  This suggests that diagnostic ultrasound 

equipment may be being used in a way that could produce temperature rises of up to 

6°C. 

Mechanical  effects 

Where a medium is subjected to high acoustic pressures, large mechanical forces act 

on particles in the beam.  The potential for mechanical bioeffects mediated by 

cavitation may be estimated by the Mechanical Index, MI, which is defined as: 

 F' � �0�CDG5HDC�
I�  , 2.19 

where �0�CDG5HDC� is the value of the peak negative acoustic pressure attenuated from 

values measured in water to represent in situ levels and  f  is the centre frequency of 

the transducer (Apfel and Holland 1991).  This quantity is most relevant where there 

is gas present in the field, making cavitation likely, for example when contrast agents 

are used.  Cavitation is unlikely under diagnostic exposure conditions when there is no 

gas present.  The FDA (1997) places a limit of 1.9 on the Mechanical Index for medical 

diagnostic equipment except for ophthalmology where the limit is 0.23. 
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The presence of gas bubbles and high acoustic pressures can lead to cavitation and the 

generation of free radicals due to bubble collapse (Edmonds and Sancier 1983; 

Takahashi et al. 2007).  The peak rarefactional pressure threshold for inertial 

cavitation with spontaneous nucleation in tissue, i.e. with no bubbles present, is of the 

order of 4 MPa (Church 2002).  There are two types of cavitation; inertial (collapse) 

and non-inertial (stable) cavitation.  Non-inertial cavitation is the stable oscillation of 

microbubbles in an acoustic field where the inertia is not high enough to cause bubble 

collapse.  Inertial cavitation is the growth and collapse of bubbles within a few cycles 

of an acoustic wave, where the bubbles are short lived and collapse is violent.  Under 

these conditions, encapsulated microbubble contrast agents and free gas bubbles can 

expand and then collapse, generating high temperatures and free radicals.   

Bioeffects attributed to cavitation have been observed in cells and tissues.  Ultrasound 

exposure in the presence of a microbubble contrast agent caused cell membrane 

damage, which increased with increasing acoustic pressure amplitude (Miller 1998).  

It has been shown by Miller and Qudus (2000) that ultrasound exposure in the 

presence of contrast agents induces petechial haemorrhages (capillary rupture) in 

mouse intestine and abdominal muscle.  It has been observed that the increase in 

extracellular reactive oxygen species production associated with collapse cavitiation, 

caused by exposure to 1.6 MHz ultrasound can lead to DNA laddering i.e. cell damage 

and ultimately cell death (Basta et al. 2003).  There is also evidence that inertial 

cavitation causes damage to vascular endothelial cells (Hwang et al. 2006). 

Non-thermal non-cavitational effects 

Radiation stress is classed as a non-thermal, non-cavitational interaction mechanism 

exerted when an ultrasound beam passes through a medium.  The resulting forces can 

be observed through acoustic streaming.  When an ultrasound beam is incident on an 

absorbing or reflecting solid surface, a force is exerted on that surface.  The magnitude 

of this force depends on the properties of both the surface and the beam.  The local 

stresses depend on the ratio of the acoustic intensity in the beam to the velocity of the 

sound in the medium, i.e. the energy density, 
J
?.     

In a three dimensional medium, a force in the direction of propagation of the 

ultrasound wave is generated as energy is deposited in the medium by absorption.  

Radiation stress is the force per unit area acting at a point in a plane.  For a plane 
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wave, the local radiation stress gradient is 
�1J

? , where α is the absorption coefficient, I 

is the acoustic intensity at the point and c is the speed of sound in the medium.  

Therefore, the local radiation stress gradient varies with these quantities throughout 

the medium.  If the surface is perfectly absorbing then the radiation pressure at a point 

is the ratio of acoustic intensity at that point to the speed of sound in the medium. 

Acoustic streaming is a bulk movement of fluid in the direction of propagation of the 

beam.  It can be generated due to the stress field produced in water as an ultrasound 

beam passes through.  The flow velocity of the stream is proportional to the acoustic 

intensity and radius of the beam and the amplitude attenuation coefficient of the fluid.  

The maximum velocity of the stream is limited by viscous forces in the fluid and by the 

geometrical constraints of the containing vessel.  At the boundary of a fluid stream, 

shear stress will be exerted.  Streaming will be enhanced where there is strong 

nonlinear propagation due to increased absorption of the higher frequency 

components.  Streaming has been observed in water insonated with pulsed diagnostic 

ultrasound fields (ter Haar and Duck 2000).  

In tissue, radiation stresses are exerted by the propagation of an ultrasound beam, but 

streaming is not set up as in fluid.  Radiation stress is likely to be the mechanism by 

which mechanical forces are applied to cell and tissue systems resulting from 

ultrasound exposure (when cavitation is not present).  In terms of the bioeffects of 

radiation stress, these will depend on pulse average intensity and amplitude as forces 

are exerted only during the pulse.  Bioeffects could also be dependent on the 

application of the stress over time so the time averaged acoustic intensity would be 

important as with thermal effects.  These factors cross the divide between the factors 

influencing thermal and mechanical effects. 

2.2 Ultrasound exposure parameters for diagnosis and 

therapy  

In diagnostic systems, exposure parameters vary according to the ultrasound mode 

used.  The lowest temporal average intensities are used during B-mode imaging, with 

higher intensities typically found during pulsed Doppler studies.  User controlled 

settings such as the acoustic output power, field of view and focus depth also alter the 
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Table 2.1 Ultrasound exposure parameters for different diagnostic and therapeutic applications. Exposure parameters taken from Hoskins, Thrush et al. (2003), Duck and 

Martin (1991), Davros, Garra et al. (1991), ter Haar (2007). 

Mode of ultrasound Frequency range 

(MHz) 

Peak negative acoustic 

pressure range   (MPa) 

Ispta range (W/cm2) 
Acoustic power range 

(W) 

B - mode 1.5 - 15 – 40 0.45 – 5.54 3×10-4 – 0.991 3×10-4  – 0.285 

Spectral pulsed 

Doppler 
1.5 - 15 0.67 – 5.32 0.173 – 9.080 0.010 – 0.440 

Doppler imaging 1.5 – 15 0.46 – 4.25 .021 – 2.050 0.015 – 0.440 

Physiotherapy 1 - 3 ~1 ~ 10 Up to 12 

Lithotripsy 0.1 - 1 ~ 10 - 100 ~ 100 – 500 

 

Bone healing 1 

 

Low intensity (Isatp 0.03 -

0.5) 
~ 0.020 

HIFU MHz 

 

1300 – 6500 

 

Sonophoresis kHz, MHz 

 

~0.2 
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beam output characteristics.  Therapeutic ultrasound uses different values for these 

parameters, in order to elicit a particular effect.  For example, physiotherapy 

ultrasound uses much higher acoustic power than diagnostic imaging and may have 

some thermal effect on tissue, however, the mechanisms are not clear.  Lithotripsy 

uses high acoustic pressures to destroy calcifications, but the time averaged acoustic 

intensity is relatively low compared to pulsed Doppler, for example.  Pulse length may 

also vary between applications; short pulse lengths (µs) are employed in ultrasound 

imaging in order to obtain good spatial resolution and longer pulses (ms) are used in 

pulsed therapy beams where this is not important.  Pulse length may still be important 

for other reasons, possibly where cavitation is involved.  High intensity focused 

ultrasound (HIFU) is used to heat and thermally ablate tissue such as uterine fibroids 

and cancerous tumours.  The beam is focused on a small area of tissue within a target 

area and the tissue is heated to at least 56°C for a few seconds bringing about cell 

death and necrosis. Other therapeutic ultrasound applications may depend in non-

thermal effects such as cavitation and streaming.  They include wound healing in both 

soft tissue and bone, and sonophoresis – the use of ultrasound to increase the 

penetration of drugs through the skin.  The therapeutic applications of ultrasound are 

reviewed by ter Haar (2007). 

A summary of exposure parameters for different applications is given in Table 2.1.  

There is considerable variation between applications; peak negative acoustic 

pressures are in the range of 0.5 to 5 MPa for all diagnostic imaging modes and 

physiotherapy and many times greater for lithotripsy.  Spatial-peak time-averaged 

intensities are low for B mode imaging but can be much higher, up to several W/cm2 in 

Doppler imaging applications, while for bone healing low intensities are used.  Data is 

quoted in the table where it is available; different parameters are recorded in the 

literature for different uses, so a complete description cannot be given. 

Safety guidelines 

The thermal and mechanical mechanisms of interaction of ultrasound with tissue have 

been discussed, and it must be noted that there is a possibility of bioeffects under 

diagnostic ultrasound conditions.  Streaming and small temperature rises have been 

observed in diagnostic fields (Starritt et al. 1989) and cavitation is important where 
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ultrasound contrast agents are employed.  Although ultrasound is seen as a safe 

imaging modality, safety is still important.  In diagnostic ultrasound it is good practice 

to keep exposure times and acoustic output as low as possible while obtaining images 

of a high enough quality to facilitate correct diagnosis (BMUS 2009).  Safety 

recommendations are discussed briefly here as the exposure parameters employed 

and the outcomes of this study will be discussed in this context in later chapters. 

The manufacturers of medical ultrasound equipment are required to design and build 

systems that conform to international regulations and standards.  In Europe, 

manufacturers must demonstrate that their equipment meets the requirements for 

safety and performance of the Medical Devices Directive.  Manufacturers refer to IEC 

standards to demonstrate that their products meet the regulatory requirements.  In 

the USA, manufacturers must demonstrate to the FDA that their equipment is safe. 

The FDA requires that values of mechanical and thermal indices are displayed to the 

user during scanning to comply with the Output Display standard set out by 

AIUM/NEMA (American Institute of Ultrasound in Medicine with the National 

Electrical Manufacturers’ Association) (1992).  The upper limits set by the FDA (1997) 

are 720 mW cm-2 for estimated in situ, or derated ISPTA, 190 W cm-2 for derated ISPPA, 1.9 

for Mechanical Index and a value of 6 for Thermal Index that should not be exceeded 

without justification.  These limits prevent manufacturers from making it possible to 

increase acoustic output to potentially harmful levels in order to produce better 

images, which may not be necessary for correct diagnosis.  Other British and European 

standards exist which apply to the general safety of medical electrical equipment.  A 

more comprehensive review of ultrasound safety can be found in ter Haar and Duck 

(2000). 

By the nature of therapeutic ultrasound, exposure is intended to elicit a bioeffect of the 

exposed tissue.  It is important that exposure protocols are optimised and that efforts 

are made to understand the mechanisms involved so that these procedures can also be 

performed safely and effectively.  The IEC standards and European directives that 

apply to medical electrical equipment obviously also apply to therapeutic ultrasound 

systems.  IEC 60601-2-5 (IEC 2009), which applies to physiotherapy ultrasound 

equipment, sets limits on the variation of acoustic output parameters from the 
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nominal values.  It seems reasonable to suggest that this requirement should extend to 

other therapeutic equipment to ensure the safe and effective delivery of treatment. 

2.3 The vascular system 

This section provides some background on the structure, function and biomechanical 

properties of arteries and the cells that form them.  This section will discuss 

ultrasound bioeffects, in many cases where the mechanisms are unknown, of cells and 

tissues and the processes involved at the tissue and cellular level. 

2.3.1 Vascular structure and function 

Arteries throughout the circulation have the same basic structure composed of three 

layers; the intima, media and adventitia; this arrangement is illustrated in Figure 2.1.  

The intima is made up of the glycocalyx, the endothelium, which sits on the 

collagenous basement membrane, and the internal elastic lamella which separates this 

layer from the media.  In large vessels there may be some cells separating the 

basement membrane and internal elastic lamellae, especially in aging or diseased 

tissue.  The media contains layers of smooth muscle cells, elastic lamellae and collagen 

fibres.  The adventitia is the outer layer of the artery which is formed mainly of elastin 

and collagen.  This layer of connective tissue anchors the blood vessel to surrounding 

tissue.  In thicker walled vessels, this layer also contains lymphatic vessels and 

capillaries that supply nutrients to the medial cells.   

The mechanical properties of blood vessels are determined by the composition of the 

media.  Therefore, the size and relative proportions of the different components vary 

from place to place in the circulation, depending on the mechanical stresses placed on 

the vessels by blood flow.  Typical diameters and wall thicknesses for vessels 

throughout the circulation are shown in Figure 2.2.  Elastic arteries are the largest 

diameter arteries, also known as the conducting arteries.  They have a high proportion 

of elastin in the media and their walls are relatively thin compared to their overall 

diameter.  These arteries are found close to the heart where flow is pulsatile; their 

elasticity helps the movement of blood along the vessel, as the walls are stretched and 

then relax. The media of muscular arteries contains a higher proportion of smooth  
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Figure 2.1 Structure of an artery illustrating the intimal region formed of endothelium surrounded 

by basement membrane, elastic lamellae, the medial region formed of smooth muscle, and the 

adventitial region formed of connective tissue. (adapted from diagram 

http://www.sci.sdsu.edu/class/bio590/pictures/lect5/artery-vein.jpeg.)  

muscle and less elastin than elastic arteries.  They have smaller diameters and have a 

greater range of vasoconstriction and dilatation, important for controlling vessel 

diameter and thereby blood flow.   Their function is to distribute blood to parts of the 

body, such as the hand and arm via the brachial and radial arteries.  Arterioles are 

smaller vessels which have a muscular media layer with little elastin.  The wall 

thickness decreases as the vessels make the transition from artery-like arteriole to 

capillary-like arteriole.  Arterioles are the main source of vascular resistance and 

determinants of tissue perfusion, controlling blood flow into the capillaries.  The 

capillaries make up the microcirculation which has a large surface area with which to 

deliver nutrients to tissues and organs in the body and remove their waste products.  

They are composed of a single layer of endothelial cells which allow substances to pass 

through from the blood to the tissue and vice versa.  The proportion of the capillary 

network in which blood flows is dependent on the metabolic activity of the tissue at a 

particular time.  This flow is regulated by contraction of metarterioles at the arteriole 

end of the microcirculation, and by precapillary sphincters which either relax to allow 

blood to flow into the capillary bed, or contract to stop it.  At the end of the capillary 

bed, capillaries join to form venules, which are small veins.  This is the beginning of the 
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Mechanical properties of arteries 

The mechanical properties of arteries enable them to cope with changes in pressure 

during the cardiac cycle, without being damaged.  During the cardiac cycle, large 

arteries experience diameter oscillations of up to 8% (Dobrin 1978)
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which is rich in collagen, gives vessels stiffness and strength, especially at large 

distensions.  At physiological pressures, some arterial stiffness is contributed by 

stretched elastic lamellae and collagen fibres in the media.   

Arteries are viscoelastic; the elastic components of the vessel exhibit strain as soon as 

stress is applied, and the viscous component, in this case the smooth muscle, resists 

strain when stress is applied.  Smooth muscle can contract even when stretched, so 

after stretching, the fibres contract before beginning to relax.  Tension in the smooth 

muscle initially increases after stretching and is followed by a slow decrease. The 

variation of tension with time after sudden loading and the resultant lengthening of 

segments of artery is termed stress relaxation.  After a large increase in tension there 

is a steep decrease to begin with, followed by a slower decline.  Stress relaxation 

curves for arterial tissue samples were plotted by Zatzman et al. (1954) for dog 

carotid arteries and Speden (1960) for sheep mesenteric arteries.  Both sets of data 

show that the behaviour is linear over a couple of orders of magnitude in time.  The 

timescale of stress relaxation to approximately 20% of the maximum for sheep 

mesenteric and canine carotid arteries is 10 to 30s. 

The contribution of smooth muscle to the mechanical properties of arteries is to 

increase circumferential stiffness and resist stretching, and to create active tension to 

constrict arteries.  The mechanics and physiology of smooth muscle is a very wide 

field, a thorough discussion is given in The Handbook of Physiology (Bohr et al. 1980).  

The creation of active tension is especially important in small arteries and arterioles, 

where muscle cells are spontaneously active in vasomotion.  For a given strain, a high 

stress is generated, and they resist distension better than large arteries.  Changes in 

smooth muscle tone can be induced by a wide range of pharmacological agents, such 

as noradrenaline and potassium ions (Aziba and Okpako 2003); this will be discussed 

further later in this Chapter. 

Small arteries respond differently to changes in stretch, pressure and flow.  Increased 

flow induces vasodilatation; stretching opens stretch-dependent ion channels which 

affect muscle tone.  Increases in pressure stimulate the endothelium to secrete a 

vasoconstrictor.  Mulvany and Aalkjaer (1990) reported that observations of arterioles 

showed that an increase in pressure stimulated a reduction in diameter sufficient to 
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maintain a constant wall tension. We can see from Laplace’s law, assuming a thin 

walled vessel, that tension, T, varies with pressure, P, and radius, R: 

 + � KL . 2.20 

Under isobaric conditions, contraction of the vessel (a decrease in R) by activation of 

the smooth muscle causes a reduction in wall tension, by decreasing passive tension 

(tension in the elastic and collagenous components).  In a thin walled vessel, this 

decrease compensates for the increase in active tension in the smooth muscle.   

Fluid mechanics of blood flow 

Making many assumptions, blood flow, Q, can be described by Poiseuille’s law 

 6 � �8N LO ∆KQ  , 2.21 

where µ is viscosity, R is vessel radius, 
∆)
R  is the pressure gradient.  Poiseuille’s law 

applies to steady laminar flow of a Newtonian fluid in a long straight rigid tube.  These 

assumptions do not hold for blood, which is a non Newtonian fluid.  Furthermore 

blood vessels branch after short distances and are distensible.  At high flow rates, such 

as those experienced in the aorta, flow is not steady; it is disturbed by the pulsatile 

nature of the flow.  However, as a simple approximation, flow is proportional to the 

fourth power of the radius of the blood vessel.  So it can be seen that small changes to 

the radius of a blood vessel will have a larger effect on blood flow; for a 10% decrease 

in radius, a 35% reduction in flow would be induced.  Shear stresses are exerted by 

blood flowing through a vessel.  The peak shear stresses are exerted at the vessel wall; 

this maximum shear stress, τmax is described by 

 S75T � � 4N6�LV  . 2.22 

From this it can also be seen that small changes in vessel diameter also have a larger 

effect on the level of shear stress experienced by the endothelium of a blood vessel.  



 

2.3.3 Cells of the vascular system

The main functional components of blood vessels are the endothelial and smooth 

muscle cells.  In order to understand how physical and chemical stimuli can influence 

arterial function we must first understand the physiology of these cells.  We begin with 

a brief general overview of the cell, concentrating on the components important in t

context of this research.

and Grabowski (2000)

The Cell  

Cells are formed of a nucl

contains organelles such as the cytoskeleton, mitochondria and endoplasmic reticulum 

floating in the cytosol.  For the purposes of this thesis we are mainly interested in 

vascular smooth muscle

animal cells are described;

functions of the cells important to

Figure 2.3 Schematic diagram of the cell membrane; transmembrane lipids acting as ion channels 

float within the lipid bilayer formed of phospholipids, cholesterol and glycolipids.  Cytoskeleton and 

extracellular matrix filaments are anchored to proteins and the membrane.  The 

diffusion through the membrane, through passive and facilitated diffusion channels, active 

transporters and gated channels are shown.
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The plasma membrane 

Cells are bordered by the plasma membrane, a lipid bilayer with proteins floating 

within, which are either anchored or free to diffuse through the membrane.  The 

membrane prevents charged or polar substances from passing in and out of the cell.  

These substances can instead pass selectively through channels formed by the floating 

proteins (see Figure 2.3).  The lipid bilayer is permeable to most uncharged non-polar 

molecules and water passes through aquapores.  The bilayer lipids are arranged with 

their polar heads on the outside, forming a hydrophobic central region which excludes 

the extracellular fluid on one side and the cytosol on the other.  The majority of the 

lipids are phospholipids, with smaller proportions of cholesterol and glycolipid 

molecules.  The bilayer is a fluid structure, allowing the lipid and non anchored 

proteins to rotate and move past each other.  The stiffness is affected by the 

proportions of the different lipids; increased amounts of cholesterol leads to a stiffer 

membrane.  Membrane proteins float in the lipid bilayer, either spanning the entire 

thickness (transmembrane proteins), or reaching halfway across the bilayer.  There 

are also peripheral proteins which attach to lipids or other proteins at the surface of 

the membrane.  The proteins found in the plasma membrane can vary greatly between 

one cell type and another; it is these proteins that determine many of the functions 

that can be performed by the cell membrane.  Some common functions of the 

membrane proteins are as channels, transporters, receptors and linkers.  Channels are 

formed by proteins that have a pore running through them, which allows a specific 

substance, for example, a particular ion, to flow in and out of the cell.  Transporters are 

proteins that have binding sites for polar substances, which they move through the 

membrane by conformational changes.  Receptor proteins bind to specific molecules 

which affect cellular function, such as hormones or nutrients.  Both integral and 

peripheral proteins can also act as linkers; they attach to proteins in membranes of 

nearby cells, and to internal and external filaments in the extracellular matrix. 

For a cell to function correctly it must maintain a balance between concentration 

gradients of different substances and electrical gradients due to charged ions and 

molecules.  The selective permeability of the membrane makes this possible and 

different concentrations of substances can be maintained inside and outside the cell.  

For example, sodium ions have a higher concentration outside the cell than inside, 
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while potassium ions have a higher concentration inside.  The concentration gradients 

also create electrical gradients due to the distribution of charged ions and molecules.  

The interior of the cell is more negatively charged when the cell is in a resting state. 

Ions and molecules can diffuse down a concentration gradient by passive transport 

through the lipid bilayer, either directly or via a channel, or by facilitated diffusion 

through other channels which mediate the process.  Substances can move against a 

concentration gradient by active transport through a transporter protein, a process 

which requires energy.  Transporters may move a single substance or two substances 

either in the same direction or in opposite directions depending on the type of 

transporter and its intended function. 

Molecules that can diffuse through the lipid bilayer are nonpolar and hydrophobic 

such as oxygen and carbon dioxide.  Molecules that cannot pass through the bilayer 

must instead diffuse through ion channels in the membrane.  Molecules can only move 

through channels that specifically allow them to pass.  The most common ion channels 

are potassium ion channels and chloride ion channels, with smaller numbers of 

sodium and calcium ion channels.  Some of these channels are gated and so can be 

either open or closed depending on chemical gradients or cell potential.  Others are 

opened and closed in response to chemical (ligand gated) and mechanical (stretch, 

shear activated) stimuli.  Different cell types may have different ion channel 

populations, resulting in the cell having different permeability to different ions. 

Facilitated diffusion occurs when substances such as glucose, which are too large to fit 

through ion channels, are transported down the concentration gradient by binding to 

a transporter protein, which then undergoes a conformational change.  Once 

equilibrium has been reached, transport takes place in each direction at the same rate 

so there is no net movement.   

Substances including sodium, potassium and calcium ions, that must move across the 

membrane against a concentration gradient, do so by active transport which uses 

energy from one of two sources.  The first of these is primary active transport, which 

derives its energy from the hydrolysis of adenosine triphosphate (ATP).  The energy is 

used to induce a conformational change in a transporter protein, which pumps an ion 
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or molecule across the membrane.  The most common active transport protein is the 

Na+/K+ ATPase, or the Na+/K+ pump, which moves sodium ions out of the cell and 

brings potassium ions in to maintain a low intracellular Na+ concentration and a high 

intracellular K+ concentration.  These ions will slowly diffuse back across the 

membrane through other ion channels, so this pump works continuously to keep the 

cell in a steady state. Secondary active transport makes use of energy stored in the 

concentration gradient of sodium and hydrogen ions.  Secondary active transport 

proteins allow sodium ions to enter the cell by moving down their concentration 

gradient.  The channel simultaneously binds another substance and transports it using 

the energy released from movement of a Na+ ion down the concentration gradient.  

This energy source drives many biological functions in the cell. 

Cytoplasm 

The cytoplasm contains the cytosol and organelles.  The cytosol is mainly water with 

ions, lipids, proteins, amino acids and other substances, both dissolved and suspended 

in it.  The organelles sit within the cytosol; they are the sites of cellular growth, 

maintenance and reproduction.  Some of the structures most relevant to the 

background of this study are described here. 

The cytoskeleton forms a sort of scaffolding inside the cell made up of protein 

filaments that stretch through the cytosol.  The cytoskeleton helps to shape the cell 

and is involved in cell movements.  The cytoskeleton is formed of three types of 

structure: microfilaments, intermediate filaments and microtubules.  Microfilaments 

are thin strands of the protein actin, found mainly around the edge of the cell.  They 

provide mechanical support to the cell, attach the cytoskeleton to membrane proteins 

and are involved in cell functions such as muscle contraction, cell division and 

movement.  The intermediate filaments are made of different proteins.  They provide 

strength to parts of the cell which are placed under mechanical stress.  The 

microtubules are hollow structures formed of the protein tubulin; it is the 

microtubules that help to form the shape of the cell.  The cytoskeleton can play a part 

in the transduction of physical forces by the cell. 

The ribosomes are the sites of protein synthesis within the cell.  Some ribosomes 

manufacture proteins for use within the cell; this type of ribosome normally floats 
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within the cytosol.  Other ribosomes manufacture proteins which are used in the cell 

membrane or exported from the cell.  These are bound to either the cell membrane or 

the membrane of the endoplasmic reticulum. 

The endoplasmic reticulum is made up of a network of membranes forming flat sac-

like structures around the nucleus of the cell.  There are two types of endoplasmic 

reticulum, rough and smooth.  The rough endoplasmic reticulum is where ribosomes 

attach and the proteins manufactured there are processed further.  The proteins are 

used to form glycoproteins, or attached to phospholipids, for example. The smooth 

endoplasmic reticulum is an extension of the rough endoplasmic reticulum; it 

synthesises phospholipids, fats and steroids.  It also performs other functions such as 

the storage of calcium ions released from the sarcoplasmic reticulum, a form of the 

endoplasmic reticulum.  In muscle cells the release of calcium ions from this site starts 

the process of muscle contraction. 

The nucleus 

The cell nucleus contains most of the cell’s genes, which control the structure and 

function of the cell.  The genes are arranged along chromosomes which are each 

formed of a long DNA molecule.  The nucleus is spherical or ovoid in shape and is 

surrounded by the nuclear envelope.  This structure contains pores, through which 

proteins are selectively transported from the cytosol to the nucleus, and RNAs are 

transported in the other direction.  The RNA molecules contain a copy of information 

contained within the nuclear DNA which instructs protein synthesis. 

Physiology of  the cel l  

Cells such as muscle fibres, which can be electrically excited, normally exist in a resting 

state that depends on a balance between electrical and chemical gradients.  In this 

resting state, the interior of the cell is negatively charged.  In smooth muscle, 

contraction can be stimulated by an action potential in the muscle or a local graded 

potential.  When an action potential is stimulated, the membrane becomes 

depolarised, i.e. the interior becomes more positive before returning to a negative 

potential, overshooting the resting potential before returning to the rest state.  An 

action potential always has the same amplitude, as long as the initial depolarisation is 

large enough to stimulate the action potential; once it reaches the threshold, then 
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depolarisation will always be to the same degree.  A graded potential is a small 

depolarisation, or a small hyperpolarisation of the membrane potential, the magnitude 

and direction depend on the strength of the stimulus and the resulting ion channel 

activity. 

The changes in membrane potential described are caused by the action of ion channels 

in response to nerve, neurotransmitter or hormonal stimulation.  During an action 

potential, voltage gated Na+ channels begin to open once the threshold has been 

reached.  The resting concentration of Na+ in the cell is low and the cell interior is 

negative, so when the channels open, sodium ions flow in causing depolarisation.  

These channels remain open for a few hundred microseconds before they are 

inactivated and the constant action of the Na+/K+ pump expels the sodium ions.  

Depolarisation also causes voltage-gated potassium channels to open; these open 

more slowly and begin to take effect as the sodium channels are inactivated.  

Potassium ions flow out of the cell as the rate of flow of sodium ions into the cell slows, 

inducing repolarisation.  As potassium ions continue to flow out of the cell, the 

membrane potential becomes hyperpolarised (more negative than the resting 

potential).  The K+ channels begin to close and the potential returns to the resting level 

(Tortora and Grabowski 2000). 

There are different types of ion channels, which are either always open (leakage 

channels) or can be opened or closed by electrical, chemical or mechanical stimuli.  

Voltage-gated ion channels open and close in response to changes in the membrane 

potential of the cell; these channels are important in the generation and propagation of 

action potentials and graded potentials.  Ligand-gated ion channels open and close in 

response to chemical stimuli, or ligands, such as neurotransmitters, hormones and 

other ions.  The ligand may bind directly to the channel in order to open or close it, or 

may operate indirectly through a second messenger pathway, by binding to a 

membrane protein to activate another molecule.  Mechanically-gated ion channels 

open or close due to mechanical stimulation such as stretching, vibration or pressure.  

When a force acts on the channel it is physically distorted, opening the channel. 
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Smooth muscle 

Smooth muscle is non-striated involuntary muscle, and as such is different from 

skeletal muscle.  The function of this type of muscle is regulated by the autonomic 

nervous system, by chemical stimuli and by mechanical forces.  The muscle cells can 

function when stretched and have elastic properties so they can return to their 

original length after contraction or stretching.  The diameter of blood vessels, and 

therefore the blood pressure, is determined by contraction and relaxation of smooth 

muscle in the vessel wall.   

There are two types of smooth muscle, visceral and multiunit.  In visceral tissue, the 

fibres are joined in such a way that action potentials generated in one fibre spread to 

neighbouring fibres, so they all contract as one.  In multiunit tissue, an action potential 

will cause contraction of the fibre in which it was generated only; each fibre has its 

own nerve terminals.  In the vascular system, visceral smooth muscle is found in the 

walls of small arteries and veins, while multiunit smooth muscle is found in the walls 

of large arteries.  Most smooth muscle fibres are controlled by the autonomic nervous 

system, but many can also respond to stimuli such as hormones, stretching and local 

changes in pH, ion concentrations, temperature, and carbon dioxide and oxygen levels.  

The type of smooth muscle found in the vasculature is tonic; it contracts slowly for 

prolonged periods in contrast to the phasic smooth muscle found in the 

gastrointestinal tract, which contracts quickly and rhythmically to perform peristalsis.  

Tonic smooth muscle usually responds to stimuli by graded potential rather than by 

generating an action potential (Somlyo and Somlyo 1994).   

The mechanism of contraction of smooth muscle involves the contractile proteins 

actin and myosin, as in skeletal muscle.  Thick filaments are formed of many myosin 

molecules, each with two myosin head groups.  The myosin head groups can attach to 

binding sites on thin filaments, which are formed of actin.  To achieve contraction of 

the muscle fibre, the myosin head groups bind to the actin and the head moves pulling 

the thin filament along.  The myosin head then binds ATP and detaches from the actin, 

the ATP is hydrolysed and the process can be repeated (Figure 2.5).   

In striated muscle, the thick and thin filaments are arranged in a regular pattern which 

produces striations; there is no such regular arrangement in smooth muscle.  The  
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points which are pulled together during contraction.
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intermediate filaments, which form a network joined by structures called dense 

bodies, distributed through the cytoplasm and plasma membrane of the fibre.  The 

force transferred to the intermediate filaments acts to pull together the dense bodies, 

causing contraction of the fibre (see Figure 2.4).   
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intracellular calcium concentration.  Calcium ions enter the cell from the extracellular 
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leave the cell slowly.  Following an increase in intracellular calcium concentration, the 
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Once this has taken place the myosin can bind to actin and contraction can begin

2. Background and supporting literature 

45  
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As in other types of muscle, contraction is stimulated by an increase in the 

intracellular calcium concentration.  Calcium ions enter the cell from the extracellular 

fluid and from the sarcoplasmic reticulum within the cell (of which there is much less 

in smooth muscle than in striated muscle).  Because of differences in the signalling 

pathways and structure of smooth muscle cells compared to striated muscle cells, 

contraction happens more slowly and is more prolonged.  Once the calcium ions have 

it takes longer for them to reach the muscle filaments and trigger 

contraction.  This is also the reason for prolonged contraction as the calcium ions also 

leave the cell slowly.  Following an increase in intracellular calcium concentration, the 
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which phosphorylates part of the myosin head group. 

Once this has taken place the myosin can bind to actin and contraction can begin 
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Figure 2.5 Diagram of the pathway leading to smooth muscle contraction: during membrane 

depolarisation calcium ions enter through voltage-gated channels, and bind to calmodulin creating 

a complex, which activates the enzyme myosin light chain kinase (MLCK).  The enzyme 

phosphorylates the myosin head group enabling binding to actin, the head group moves, pulling 

along the actin filament, it then binds to ATP and releases from the actin, the ATP hydrolyses and 

the process can begin again. 

Smooth muscles can maintain tone in the long term; this is possible because of the 

balance between entry and exit of calcium ions.  Transmural pressure in arteries has 

the effect of depolarising the membrane potential slightly.  This increases the 

probability of voltage-dependent calcium channels being in the open state, so more 

Ca2+ can flow in to the cell.  A small number of open voltage-dependent calcium 

channels is sufficient to maintain steady contraction or tone.  From this state, small 
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hyperpolarisations of the membrane potential act to decrease tone, and small 

depolarisations act to increase tone.  This may be due to the action of 

neurotransmitters, which can act on voltage-independent calcium channels in the 

membrane or sarcoplasmic reticulum to increase [Ca2+]i.  Release of calcium from the 

sarcoplasmic reticulum can also be stimulated by the increased [Ca2+]i, termed 

calcium-induced calcium release.  Some agents for example, may cause contraction by 

decreasing the rate at which Ca2+ is pumped out of the cell by Na+/Ca2+ exchange, and 

by increasing entry, which will depolarise the membrane potential further, increasing 

the number of open voltage-dependent channels.  Dilation can also be stimulated by 

inhibition of voltage-dependent calcium channels, and for example by stimulation of 

the pump that transports Ca2+ into the sarcoplasmic reticulum for storage.  Potassium 

channels may also be opened by chemical stimuli, allowing potassium ions to flow out 

of the cell, causing hyperpolarisation and relaxation.  Other potassium channels will 

open due to membrane depolarisation, returning the membrane potential back 

towards the rest state, and others are activated by [Ca2+]i. These processes are 

discussed in further detail by (Nelson et al. 1990).   

Four types of potassium channel have been found in smooth muscle: voltage-gated 

channels, Ca2+-activated channels, ATP-sensitive channels and inward rectifier 

channels (Nelson and Quayle 1995).  Voltage-gated potassium channels open during 

depolarisation and allow K+ to flow out of the cell, causing repolarisation and return to 

the rest potential.  They help to maintain resting tone, but deactivate due to prolonged 

depolarisation.  Calcium-activated potassium channels open due to increased [Ca2+]i 

and depolarisation; they counteract this and the resulting vasoconstriction.  ATP-

sensitive potassium channels are associated with pathophysiological responses; 

inhibition leads to depolarisation and vasoconstriction.  Inward rectifier potassium 

channels allow small outward potassium currents and help to maintain resting tone.  

Some vasoconstricting agonists function by inhibiting potassium ion channels, causing 

depolarisation of the membrane.  The membrane also contains the Na+/K+ ATPase 

pump and calcium-gated chloride channels, the opening of which can cause 

depolarisation. 
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There are many different types of ion channels that can be found in the membranes of 

smooth muscle, with varying distributions and properties.  The ion channel population 

varies between different tissues, such as large and small blood vessels (Somlyo and 

Somlyo 1994). 

The role of smooth muscle in contraction has been investigated using drugs to induce 

vasodilatation or constriction (Dobrin and Rovick 1969; Dobrin 1973).  Data of this 

sort are useful in establishing the properties of the blood vessels under normal 

physiological conditions, at extremes and under conditions which may simulate 

disease.  These may include loss of elasticity due to atherosclerosis, or the effects of 

high blood pressure due to diabetes or other disease. 

Vascular endothelial  cells  

All blood vessels are lined with a layer of endothelial cells.  These are normally the 

only part of the vessel which comes into contact with the blood.  They are involved in 

several processes including control of blood pressure by vasomotion, blood clotting, 

inflammation, barrier function and formation of new blood vessels. 

The endothelium forms a barrier between the blood and underlying tissue, controlling 

the passage of molecules and white blood cells into tissue.  It also influences the 

underlying smooth muscle cells, as well as elements of the blood by secreting 

hormones and vasoactive chemicals such as prostacyclin and nitric oxide.  These 

agonists act on the smooth muscle to alter vessel tone and inhibit platelet aggregation, 

which would cause clotting.  Endothelial cells can be stimulated to release these 

substances by mechanical stimuli, such as changes in blood pressure, as well as 

chemical stimuli.  Other agonists can stimulate the endothelial cells to produce 

substances which promote clotting, by inducing adhesion of platelets and white blood 

cells to the endothelium.  Endothelial cells also release vascular endothelial growth 

factor to promote growth and formation of new blood vessels.  Endothelial cell 

dysfunction is a factor in many pathologies, such as atherosclerosis, sepsis and 

congestive heart failure.  These cells therefore play a very important role in the 

function of the vascular system.   
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As already discussed, vascular tone can be controlled either by direct interaction with 

the smooth muscle cells of the vascular wall, or by endothelium dependent means.  For 

instance, blood vessels can be stimulated to relax by acetylcholine, providing that the 

endothelial layer is intact; in the absence of endothelium, contraction is instead 

induced.  Acetylcholine binds to receptors on the endothelial cell surface, which 

initiates a signal pathway that stimulates release of Ca2+ from the endoplasmic 

reticulum.  The Ca2+ binds to calmodulin, then this complex stimulates the enzyme 

nitric oxide synthase to produce nitric oxide (NO) (Zecchin et al. 2007).  The NO 

diffuses through the plasma membrane into the smooth muscle cells, where it initiates 

a second messenger pathway, which induces muscle relaxation by catalysing 

phosphorylation of the contractile proteins.  Substances such as the endothelium-

dependent vasodilator, bradykinin, can induce the release of NO and prostacyclin, and 

cause hyperpolarisation of the smooth muscle cells, causing vasodilation (Selemidis 

and Cocks 2007).  Other substances that can induce endothelium-dependent 

relaxation include histamine and insulin.  Changes in shear stress that occur during 

increases in blood flow also induce endothelium-dependent relaxation. 

2.4 Biological effects of ultrasound in cells and tissues 

Further to the initial discussion of ultrasound bioeffects of thermal, mechanical and 

non-thermal, non-cavitational nature, evidence of bioeffects specific to the vascular 

system is now discussed.  In many cases, bioeffects have been observed but the 

physical mechanisms are not known.  As important as discovering the physical 

mechanisms of ultrasound bioeffects, is discovering the associated cellular 

mechanisms.  The experiments presented in this thesis employ MHz ultrasound at 

relatively low acoustic powers and mainly at low acoustic pressures.  Many bioeffects 

associated with techniques such as HIFU and physiotherapy are therefore unlikely.  In 

this context, the bioeffects of low intensity ultrasound at a cellular level are discussed, 

including many cell types, in order to build a general picture. 

2.4.1 Bioeffects on the vasculature 

In vascular tissue, important bioeffects would be those changes that affect blood flow, 

such as changes in smooth muscle tone with changes in diameter or blood pressure.  
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As outlined previously, these effects could operate directly on the smooth muscle or 

take effect via the endothelium.  Other more long term effects may include changes in 

growth and proliferation of cells; this type of effect will be discussed later.  Here the 

short term effects of ultrasound on the vasculature are concentrated upon. A summary 

of the effects is presented in Table 2.2. 

Several research groups have demonstrated that dilation of blood vessels can be 

induced with kHz ultrasound by both endothelium dependent and independent 

mechanisms.  Catheter delivered high acoustic power (25 W), low frequency (19.5 

kHz) pulsed ultrasound was found to cause reversible endothelium-independent 

vasodilatation in canine coronary arteries and human femoropopliteal arteries 

(Steffen et al. 1994).  Vessel diameter increased by an average of 20% in canine 

arteries and by an average of 14% in human arteries after exposure to ultrasound.  

The investigators discussed the possibility of disruption of actin-actin bonds in the 

smooth muscle, which can realign after exposure causing recontraction, and the 

involvement of NO produced by the smooth muscle cells.  Fischell et al. (1991) 

demonstrated that exposure of sections of rabbit aorta to 20 kHz ultrasound from a 

ball tipped probe (0.7 to 5.5 W for 60 s) induced dose-dependent relaxation of the 

vessels when precontracted by phenylephrine and by KCl, also by an endothelium-

independent mechanism.  Similar relaxation was observed in canine internal 

mammary arteries on exposure to an ultrasonic scalpel at 55 kHz (p- 4 kPa at 10 cm) 

(Maruo, et al., 2004).  This time the response was increased in samples with intact 

endothelium (50.4% cf. 10.5% relaxation for denuded samples). The response was 

shown to be caused by a combination of NO release during the initial response and 

prostacyclin release during the longer term response over a 5 minute period after 

exposure.   

Similar effects have also been demonstrated in vivo.  Iida et al. (2006) showed that 29 

kHz transcutaneous ultrasound (1.4 W cm-2, 2-5 min) caused vasodilation in human 

brachial arteries, as measured by ultrasound in the range of 5-12 MHz.  Vasodilatation 

continued to increase 5 minutes after exposure was ceased, returning to normal after 

21 minutes.  Vasodilation was also induced in canine coronary arteries, due to NO 

release by exposure to 27 kHz ultrasound (Miyamoto et al. 2003).  After 5 minute  
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Table 2.2 Summary of conditions and results from the reported studies on bioeffects of the vasculature. Duty cycle = ratio of the pulse duration to the pulse period 

Tissue type and 

preparation 

Exposure Process observed and proposed mechanism Reference 

Rabbit aorta in vitro 20 kHz, 50% duty cycle, 30 ms pulse, 

0.7-5.5 W, 60s, ball tipped probe 

Endothelium independent, dose dependent relaxation in precontracted vessels, ΔT < 1°C, 

imaged with 10 MHz ultrasound 

Fischell at al. 

1991 

Canine mammary artery in 

vitro 

55 kHz, p- 40 kPa at tissue, 50 mWcm-2, 

3s 

Partially endothelium dependent relaxation, enhanced in intact vessels (50% vs. 10.5%); 

initial response – NO, longer term response – prostaglandin, ΔT = 0.3-0.4 °C 

Maruo et al. 

2004 

Canine coronary artery, 

human femoropopliteal artery 

in vivo 

19.5 kHz, 50% duty cycle, 30ms pulse, 

25 W, catheter delivered 

Endothelium independent vasodilatation, NO related; diameter increase 21% canine, 

14% human 

Steffen et al. 

1994 

Human brachial artery in vivo 29 kHz, Imax 1.4 W/cm2, ISATA 0.12 

W/cm2, 30% duty cycle, 25 Hz, 1-5 min 

Vasodilatation with 2-5 min exposure, for 5 mins after, diameter increase 6% max, 

returned to baseline after 20 mins, measured by 12 MHz ultrasound, skin ΔT = 0.2 °C 

Iida et al. 2006 

Canine coronary artery in vivo 27 kHz, 30% duty cycle, 1.4 W/cm2, 

170kPa at 4cm, 5,-90 min 

Vasodilatation, luminal area increase 21% after 5 min exposure, returned to baseline 

during longer exposures, NO release, measured with 30 or 40 MHz ultrasound 

Miyamoto et al. 

2003 

Rabbit gracilis muscle 

ischemic muscle tissue model 

40 kHz, 0.75 w/cm2, CW Improved perfusion, increased flow measured with laser Doppler, capillaries more 

prominent in histological analysis, NO dependent, ΔT = 0.9 °C 

Suchkova et al. 

2002 

Hamster arterioles in vivo 2.5 MHz, 0.4µs pulse, p- 2 MPa, MI 1.3, 
15 min 

Vasodilatation, increased permeability, reduction in production of ROS after ischemic 
period 

Bertuglia et al. 
2004 

Human forearm clinical 1 MHz, 1.5 W/cm2, 5 min, 

physiotherapy 

No effect on blood flow in muscle, skin, forearm measured with laser Doppler Robinson and 

Buono 1995 

Human skin clinical 3 MHz, 1 W/cm2, Pulsed and CW 

physiotherapy, 6 min 

Increases in cutaneous blood flow at 2, 4, 6 min Noble et al. 

2007 

Frog heart 1.2 MHz, 5 ms pulse, ISPPA 390-2400 

W/cm2, p- 2.7-5.1 MPa 

Altered cardiac rhythm – premature ventricular contraction, decrease in aortic pressure 

above p+ 10 MPa (p- 4.4MPa), ultrasonic pacing 

Dalecki et al. 

1993 

Rat heart 1.2 MHz, 5 ms pulse. ISPPA 25-800 

W/cm2, p- 0.9-3 MPa 

Altered cardiac rhythm for 2+ MPa with 5 ms pulse, for 10 MPa with 1-2 ms pulse  McRobbie et al. 

1997 

Human heart Diagnostic cardiac US, MI 1.1, 1.5 Premature ventricular contraction in presence of UCA with MI 1.5 with end systolic 

triggered imaging 

Van der Wouw 

et al. 2000 
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exposures, vessel diameter increased by 21% and returned to baseline after 60 

minutes.  Longer exposure periods of 30 and 60 minutes did not induce as much 

vasodilatation.  The diameter returned to baseline during exposure, suggesting that 

the vasodilatory effect decreased over time. 

In a clinical application, exposure to low acoustic intensity 40 kHz ultrasound was 

found to improve perfusion in ischemic muscle tissue, by a nitric oxide dependent 

mechanism.  Capillaries appeared more prominent in exposed tissue under 

histological analysis and increased flow was measured with laser doppler (Suchkova 

et al. 2002).  Exposure to ultrasound with cardiac imaging parameters (2.5 MHz, MI 

1.3, p- 2 MPa) induced vasodilatation in hamster arterioles in vivo, acompanied by a 

reduction in the production of reactive oxygen species (ROS) under normal conditions 

and following a period of ischemia (Bertuglia et al. 2004).  The investigations just 

discussed are mainly concerned with kHz ultrasound; there is less evidence of effects 

of MHz ultrasound on blood vessels.   

The effects of physiotherapy ultrasound on the vasculature have also been examined 

in vivo.  Continuous wave 1 MHz ultrasound at an acoustic intensity of 1.5 W cm-2, 

applied to the forearm for 5 minutes, was found to have no effect on blood flow in the 

muscle, skin and forearm, measured using laser Doppler flowmetry (Robinson and 

Buono 1995).  This evidence suggests that increased blood flow is not the primary 

mechanism involved with physiotherapy ultrasound, but another group (Noble et al. 

2007) found that pulsed and continuous wave therapeutic ultrasound did stimulate 

blood flow in the skin.  These studies demonstrate that bioeffects and mechanisms 

linked with physiotherapy ultrasound are not well defined or understood and further 

work is required in this area. 

The effect of MHz ultrasound observed by Bertuglia et al. (2004) seemed similar to the 

effects of kHz ultrasound in the other studies, but the mechanisms are likely to be 

different.  No thorough investigation of the effect of ultrasound exposure parameters 

on the response of blood vessels was conducted during any of these investigations.  

Between these studies there were variations in frequency, acoustic power, acoustic 

intensity and peak acoustic pressure.  This may account for the different magnitudes 

and signal pathways reported, as the magnitude and type of bioeffect may depend on 

these quantities. 
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Other effects of ultrasound related to the vascular system have been observed.  

Exposure to 1.2 MHz (5 ms pulse) ultrasound altered cardiac rhythm in frogs above a 

threshold of 10 MPa peak negative acoustic pressure (Dalecki et al. 1993).  A similar 

effect was observed in rats, also using 1.2 MHz (5 ms pulse) ultrasound; this time with 

a lower acoustic pressure threshold of 2 MPa (MacRobbie et al. 1997).  It has also been 

reported that in some cases premature ventricular contraction can occur in humans as 

a result of diagnostic cardiac ultrasound in the presence of contrast agents (van der 

Wouw et al. 2000). 

2.5 Bioeffects on the cellular level 

It has been observed that ultrasound exposure has effects on many cell types, ranging 

from subtle, transient modification of metabolic patterns, to cell death.  Efforts have 

been made to understand these, both in order to minimise side effects of 

ultrasonography and to exploit them therapeutically and even surgically.  Research in 

this area will also help to inform the cellular mechanisms of tissue bioeffects, which 

may be induced during diagnostic exposures.  In this section we focus on the non-

lethal cellular effects of low acoustic intensity (30 – 1000 mW cm-2) ultrasound, where 

it is probable that the mechanisms are non cavitational and where the processes 

involved are not well understood.   

The effects of low acoustic intensity exposures have been studied in vivo, on ex vivo 

preparations and on cells in culture.  These studies have revealed a wide range of 

responses at the whole tissue and cellular level.  The outcomes of these studies and 

their limitations are discussed first, followed by a summary of the current 

understanding of the processes involved in the interaction between cells and 

ultrasound, in the light of recent work on mechanical and thermal effects and cell 

signal transduction undertaken in other contexts. 

2.5.1 Effects on cells in culture and animal models 

Studies have been performed on a range of cell types, usually employing cultures of a 

single cell type taken to be representative of those involved in soft tissue and bone 

healing processes.  A summary of the exposure parameters and findings for each of the 

reported studies is given in Table 2.3.  Many of these studies have used very similar 
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exposure parameters and experimental designs, incorporating ‘low intensity pulsed 

ultrasound’ (LIPUS) systems, either adapted from clinical bone and tissue healing 

systems, or specially designed to be used with cell culture plates.  The frequency and 

pulse regime in most of these LIPUS studies is very similar, usually employing 1 or 1.5 

MHz ultrasound with a 200µs pulse duration, pulse repetition frequency of 1 kHz and 

free-field spatial-average temporal-average intensities (ISATA) ranging from 30 mW  

cm-2 to about 100 mW cm-2, delivered with a transducer of a few cm in diameter with a 

non-scanned beam.   

The experimental set up in cell culture studies is extremely different from clinical 

therapy delivery.  Ultrasound transducers are coupled directly to the bottom of cell 

culture plates, or sometimes with a water filled gap of up to 15cm to place the cells just 

in the far field of the ultrasound beam.  In most cases a layer of cells and medium a few 

millimetres thick is the target, sometimes with an absorber placed on top of the cells 

to stop reflections.  These arrangements make heating of the transducer, petri dish 

and cells likely in many cases.  However, hardly any of the studies include estimates of 

possible temperature rises during exposure.  Few groups made independent acoustic 

output measurements in the beam, or tried to quantify losses through the culture 

plates.  Most of those that did, found significantly lower intensities at the position of 

the cells than in the open field.  Standing waves are also likely, making it difficult to 

predict the acoustic intensity distribution at the target.  Temperature rises of a similar 

magnitude and standing waves are less likely in animal models and clinical treatment, 

where the transducer is coupled to the skin and there is blood flow in the tissue.  The 

ultrasound set up and lack of independent acoustic output measurement in some of 

the cell culture studies, creates difficulties in relating effects measured in cells in 

culture, to those observed in animal models and in a clinical setting. This limitation 

also creates problems in determining the mechanism of ultrasound interaction.  In 

general, the cell functions used as indicators of the effects of ultrasound on cells, and of 

healing processes, are not the same in the two types of studies.   

Given these caveats, LIPUS exposure has been found to influence osteoblasts, 

fibroblasts, chondrocytes and a number of other cell types in culture.  Iwabuchi et al. 

(2005) found that LIPUS increased resorption of herniated rat intervertebral discs co-

cultured with activated peritoneal macrophages, believed to be associated with disc 

resorption processes.  Increases in proteoglycan and DNA synthesis were recorded in 
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human intervertebral disc cells, after exposure with a similar US regime (Kobayashi et 

al. 2009).  LIPUS exposure increased proliferation and migration (Raz et al. 2005; 

Mizrahi et al. 2007)  of aortic endothelial cells, and increased leukocyte adhesion when 

they were incubated together after exposure (Maxwell et al. 1994).  Increased 

proliferation of Schwann cells (the coating of nerve axons) was reported after 4 to 10 

days of exposure (Zhang et al. 2009), and there is further evidence that ultrasound 

enhances nerve regeneration (Crisci and Ferreira 2002; Raso et al. 2005).  In an in vivo 

LIPUS exposed rabbit skin graft model, an increase in cell proliferation and formation 

of new blood vessels in the dermis were observed (da Costa Gonçalves et al. 2007). 

Fibroblasts are a primitive and ubiquitous cell type found in connective tissue; their 

function is to produce components of the extracellular matrix such as collagen.  They 

have been used as a cell type representative of bone and connective tissue cells in 

many ultrasound studies.  Increases in alkaline phosphatase, an enzyme involved in 

bone mineralisation, were measured in human gingival fibroblasts after exposure to 

ultrasound (LIPUS) (Mostafa et al. 2009).  Responses were more significant in the 

group treated with 5 minute exposures.  Osteopontin, an extracellular matrix protein 

involved in the early stages of mineralisation was also increased in this group.  It has 

also been found that ultrasound can increase DNA synthesis at lower intensities 

compared to higher intensities (Kondo and Yoshii 1985), possibly due to stable 

cavitation, and can increase intracellular calcium levels in fibroblasts (Mortimer and 

Dyson 1988).  In this study, calcium levels returned to normal about 10 minutes after 

exposure, showing that calcium pumps were still functioning and that no permanent 

membrane damage was caused.  It has also been observed that continuous wave 

ultrasound exposure increases proliferation in fibroblasts, as observed in other cell 

types (Ramirez et al. 1997).  This has been linked to integrins (Zhou et al. 2004), which 

act as mechanosensors in cells and also couple cells to the extracellular matrix.  In vivo, 

ultrasound treatment for tendon repair increased mean collagen fibril diameter 

relative to a control group (Ng and Fung 2007); varying the beam intensity had no 

significant effect.   

Chondrocytes are the cells of cartilage, producing type II collagen and proteoglycans, 

which form the cartilaginous matrix.  Increases in aggrecan expression and type II 

collagen synthesis have been observed after daily 10 or 20 minute LIPUS exposures  
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Table 2.3 Summary of conditions and results from the reported studies on cellular bioeffects of low intensity ultrasound.  Intensities are spatial-average temporal-average 

unless otherwise specified.  τ = pulse duration. Duty cycle = ratio of the pulse duration to the pulse period. 

Cell type and 

preparation 

Exposure Process observed and proposed mechanism Reference 

Co cultured herniated rat 

intervertebral disk/ peritoneal 

macrophages 

1.5 MHz, τ = 200µs at 1kHz, 30 mW cm-2, 20 min, 4 days Increased disc resorption Iwabuchi et al. 2005 

Human intervertebral disc cells 

alginate bead culture 

1.5 MHz, τ =200µs at 1kHz, 7.5-120 mW cm-2, 20 min, 5 or 

12 days 

Increased DNA synthesis after 5 days at 60 or 120 mW cm-2; 

increased proteoglycan synthesis max at 30 mW cm-2. 

Kobayashi et al. 2009 

Bovine aortic endothelial 

monolayer culture 

0.5-5MHz, τ = 0.1-5 ms, 10-100% duty cycle, 0.8-2 W cm-2, 

0.5-30 min 

Increased proliferation, greater for CW exposure and at 1MHz 

Increased migration, greater at 1MHz  than 3.5MHz, and for CW 
exposure; not thermal or cavitational, transmission of acoustic 

pressure  

Raz et al. 2005 

Bovine aortic endothelial cells 

monolayer and 3D culture 

1 MHz, 20% duty cycle, up to 2.2 W cm-2, 15/30 min Increased proliferation, migration, promotion of angiogenesis. Mizrahi et al. 2007 

Bovine aortic endothelial cells 

monolayer culture 

1MHz CW, up to 1.6 W cm-2, 15 min Increase in leucocyte adhesion on incubation after exposure, 

morphological changes; possibly thermal 

Maxwell et al. 1994 

Rat sciatic nerve Schwann cells 

in suspension 

1 MHz, τ = 200µs at 1.5kHz, 100 mW cm-2, 5 min, 14 days Increased proliferation Zhang et al. 2009 

Rat sciatic nerve injury 1 MHz, 20% duty cycle, 0.4W cm-2, 10 min, 10 days Improved function after 2 or 3 weeks, higher number of Schwann 

cells in treated group 

Raso et al. 2005 

Rat sciatic nerve injury 1.5 MHz, τ = 200 µs, 1 kHz, 16 mW cm-2,  20 min, 12 days More myelin fibres, thicker  myelin sheath, larger axon area after 

US  

Crisci and Ferreira 
2002 

Rabbit skin graft in vivo 3 MHz, 50% duty cycle, 500 mW cm-2, 5 min, 7 days Increased cell proliferation, new blood vessels da Costa Gonçalves et 
al. 2007 

Human gingival fibroblasts in 

layer culture 

1.5 MHz pulsed, 30 mW cm-2, 5 or 10 min, 28 days Increased alkaline phosphatase, greater for 5min than 10 min 

exposures after 21 days, increased osteopontin 

Mostafa et al. 2009 

Mouse L cells (fibroblasts) 

monolayer culture 

1.2 MHz  CW, 0.5-3.1W cm-2 Increased DNA synthesis at lower intensities; stable cavitation Kondo and Yoshi 1985 

3T3 fibroblasts in suspension 1MHz, τ = 2ms, 2:8 duty cycle, 0.25-1.5W cm-2ISPPA, 1-20 

min 

Increased intracellular Ca2+, max at 0.75 W/cm2; no cavitation, 

fluid motion at cell surface 

Mortimer and Dyson 
1988 
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Rat Achilles tendon fibroblasts 

monolayer culture 

1MHz CW or τ = 2ms at 100 Hz, 400 mW cm-2, 3 min, 1-9 

days 

PW: matrix damage. CW: Increased proliferation after 3,5 days, 

increased collagen synthesis after collagenase digestion of matrix 

Ramirez et al. 1997 

Human foreskin fibroblast 

culture 

1.5 MHz, τ = 200µs at 1kHz, 30 mW cm-2, 6 or 11 min, 7 

days 

Increased DNA synthesis and cell proliferation, mediated by 

integrins  - mechanosensors 

Zhou et al. 2004 

Rat Achilles tendon in vivo 1MHz CW, 0.5-2 W/cm2, 4 min, 30 days Increase mean collagen fibril diameter, intensity had no effect Ng and Fung 2007 

Rat chondrocytes in culture 1 MHz, τ = 200µs at 1kHz, 50 or 100 mW cm-2, 10 min Aggrecan expression increase; mechanical, possibly cavitation or 

streaming, pressure at membrane mechanoreceptors 

Parvizi et al. 1999 

Human articular chondrocytes 

3D Agarose gel culture 

1 MHz, τ = 200µs at 1kHz, 18-98mW cm-2, 20 min, 14 days Aggrecan expression increase, collagen synthesis increase; 

greater at 48 mW cm-2 

Tien et al. 2008 

Murine chondrocytes culture 1 MHz, τ = 200µs at 1kHz, 50 mW cm-2, 10 min, 3 days Increased intracellular Ca2+, increased proteoglycan synthesis, 

inhibited by depletion of extracellular Ca2+, internal Ca2+ stores; 

mechanical 

Parvizi et al. 2002 

Human articular chondrocytes 

monolayer culture, explants 

culture 

1.5 MHz, 30 mW cm-2, 20 min, 6 days Increased proliferation and matrix production Korstjens et al. 2008 

Porcine articular cartilage 3D 

sponge/gel culture 

1.5 MHz, τ = 200µs at 1kHz, 30 mW cm-2, 20 min, 14 days Increased proliferation and collagen accumulation; mechanical 

signal transduction 

Takeuchi et al. 2008 

Human articular chondrocytes 

alginate bead culture 

1 MHz CW, 100-300mW cm-2, 10 min, 2, 7 or 15 days Increased type II collagen & proteoglycan synthesis, max at 200 

mW cm-2, no change in proliferation 

Choi et al. 2006 

Rabbit shoulder joint 

chondrocytes atelecollagen gel 
culture 

1.5 MHz, τ = 200µs at 1kHz, 30mW cm-2, 20 min, 6 days out 

of 21 

Increased chondroitin sulphate content, increased stiffness of 

culture composite, no change in proliferation 

Nishikori et al. 2002 

Rat bone marrow stromal cell 

(osteoblasts) culture 

1.5 MHz, τ = 200µs at 1kHz, 30 mW cm-2, 20 min Altered expression of early response and bone differentiation 

genes,  peak at 3hrs after exposure 

Sena et al. 2005 

Murine bone marrow stromal 

cell culture 

1.5 MHz, pulsed, 20 min Osteocalcin increase and early gene expression Naruse et al. 2003 

Human  osteoblastic 
osteocarcoma culture 

1.5 MHz, τ = 200µs at 1kHz, 30 mW cm-2, 20 min Regulation of 165 genes; many related to sensing of mechanical 
signals 

Lu et al. 2009 

MC3T3-E1 subclone 14 cells 

(osteoblasts) Culture 

1.5 MHz, 1kHz, 20% duty cycle, 30 mW cm-2, 20 min, 10 

days 

Increased alkaline phosphatase and mineralization Unsworth et al. 2007 

Murine MC3T3-E1 osteoblasts 

multilayer culture with type 1 

collagen 

1.5 MHz, τ = 200µs at 1kHz, 30 or 120 mW cm-2, 20 min, 4 

days 

Increased prostaglandin, cyloooxygenase-2, lysil oxidase 

expression and no. of cross links, significant at low intensity 

Saito et al. 2004 
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Rat femora bone defect tissue 

culture 

1.5MHz, τ = 2 ms at 250Hz, 320 or 770mW cm-2, 15 min, 7 

or 14 days 

Increased speed of defect healing, trabecular regeneration, 

decreased PGE2 secretion after 2 weeks; not thermal, non 

cavitational mechanical 

Sun et al. 1999 

Murine tibia in vivo bone injury 1.5 MHz, τ = 200µs at 1kHz, 30mW cm-2, 20 min, 3-14 days Healing delayed by cyclooxygenase inhibition Huang et al. 2008 

MG63 osteoblasts, human 

periodontal ligament cells 
culture 

3MHz CW, 125-1000mW cm-2, 5 min Increased fibronectin at 140 mW cm-2in MG63, decreased in PDL, 

changes in osteopontin, osteonectin etc, no change in 
proliferation; non thermal 

Korstjens et al. 2004 

Cultured mouse embryonic bone 

rudiments 

1.5MHz, 30mW cm-2, 20 min, 3 or 6 days Increased calcified cartilage, osteoblast differentiation, matrix 

production, no increase in proliferation 

Harle et al. 2001 

Human fibula in vivo delayed 

union (biopsy) 

1.5 MHz, τ = 200µs at 1kHz, 30 mW cm-2, 20 min, 87 days Increased bone volume and mineralized volume in bony callus 

and trabecular bone 

Rutten et al. 2008 

Rabbit chondrocytes, 

osteoblasts, in vivo bone-tendon 

junction 

1.5 MHz, τ = 200µs, 30 mW cm-2, 20 min, 5 days/week, 2-

16 weeks 

Increased expression of VEGF (2-4 wks) and cartilage formation, 

remodeling Non thermal, 

Lu et al. 2008 

Rabbit fibula in vivo bone injury 1.5MHz, τ = 2ms at 250Hz, 500mW cm-2, 15 min Increased bone formation, increased tortional stiffness with US 
not with equivalent temp rise (~10 °C) delivered by microwave 

exposure; probably not thermal 

Chang et al. 2002 

Frog skin ex vivo 1MHz, CW or τ = 2ms at 100Hz, 60-2000mW cm-2 nominal, 

up to 20 min 

Decreased membrane potential and resistance with intensity, 

reversible. Increased ionic conductance greater with pulsed than 

continuous exposure; non thermal, cavitation 

Dinno et al. 1989 

Frog skin ex vivo 1MHz CW, 300mW cm-2 nominal, 10 min Increased ionic conductance with US in presence of Ca2+ ions; 

cavitation 

Al-Karmi et al. 1994 

Human hepatocarcinoma cells 
suspension 

0.4-1.7 MHz CW or pulsed 10-90% duty cycle, 170-430mW 
cm-2 

Increased rhodamine 123 uptake and retention, max with 0.8 
MHz, increased with increasing energy density, max at 60% duty 

cycle 

Zhai et al. 2008 

Human metastatic lung 

carcinoma, epidermoid 

carcinoma and MDR variants 

culture 

1MHz, 50-100% duty cycle, 400mW cm-2, 20 min US and non US induced hyperthermia (41 °C, 20 min) increased 

cellular rhodamine 123 and DOX accumulation; thermal 

Liu et al. 2001 

HeLa cells in suspension 0.8 MHz CW, 50-500 mW cm-2 (SA), 5 or 10 min Inhibited proliferation, cells in M and S phases of cell cycle Hrazdira et al. 1998 

SaOS-2 osteoblasts, HUVEC 

monocultures, co-culture 

1.5 MHz, τ = 200µs at 1kHz, 30 mW cm-2, 20 min Increase in PDGF secretion in co-culture, not seen/significant in 

monocultures; mechanical 

Ito et al. 2000 
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(Parvizi et al. 1999; Tien et al. 2008).  Aggrecan expression and collagen synthesis 

were higher at an acoustic intensity of 48 mW cm-2 than at lesser or greater intensities 

(in the range 18 – 98 mW cm-2).  Increased proteoglycan synthesis was inhibited by 

depleting extracellular calcium or internal cellular calcium stores (Parvizi et al. 2002).  

Increases in chondrocyte proliferation after LIPUS exposure were also observed in 

some studies (Korstjens et al. 2008; Takeuchi et al. 2008), but not in others (Nishikori 

et al. 2002; Choi et al. 2006). 

Osteoblasts are bone forming cells, which synthesise type I collagen and other 

components of bone matrix and initiate calcification.  Exposure of osteoblasts to 

ultrasound alters expression of early response genes, bone differentiation genes (Sena 

et al. 2005) and osteocalcin, a protein involved in bone mineralisation (Naruse et al. 

2003).  Another study found that ultrasound exposure regulated 165 genes, including 

those involved in sensing mechanical forces, inhibition of osteoblast proliferation, 

extracellular matrix production and bone remodelling (Lu et al. 2009).  Ultrasound 

exposure also increased expression and activity of alkaline phosphatase (Unsworth et 

al. 2007), as noted above for fibroblasts.  Levels of prostaglandin and cyclooxygenase-

2, which is involved in production of prostaglandin, were increased in murine 

osteoblasts after ultrasound exposure (Saito et al. 2004).  Levels of prostaglandin-E2, a 

chemical messenger involved in inflammation, were also found to accumulate with 

increasing ultrasound intensity.  Decreases in prostaglandin-E2 secretion, compared 

to control levels in a bone defect model, were observed after exposure to ultrasound at 

a higher acoustic intensity (300 or 770 mW cm-2) (Sun et al. 1999).  The biological 

effect of prostaglandin-E2 is biphasic; low concentrations increase mineralisation, 

while high concentrations decrease it.  This may explain why studies on intact bone 

showed that lower intensity ultrasound treatment proved to be more beneficial to 

bone healing.  When cyclooxygenase-2 was inhibited in an in vivo bone healing model, 

ultrasound induced healing was delayed, but not totally stopped (Huang et al. 2008). 

Low intensity ultrasound is used for bone healing treatment clinically; it has been 

reviewed in detail by e.g. Claes and Willie (2007) and Malizos (2006).  Many studies 

have been performed to clarify the processes involved.  Studies have recorded that 

ultrasound exposure increased osteoblast differentiation and matrix production 
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(Korstjens et al. 2004), but did not affect osteoblast proliferation (Harle et al. 2001; 

Korstjens et al. 2004); this is contrary to observations of other cell types.  Rutten et al. 

(2008) found that exposure of human fibula in vivo, increased bone volume and 

mineralised volume in newly formed bony callus and trabecular bone.  No differences 

were observed in cortical bone.  The study found that bone healing was accelerated by 

increased osteoblastic activity.  This study investigated differences in the bone matrix 

after treatment, but other studies provide more of a link between cell culture and in 

vivo studies by examining messenger responses in diverse cell populations.  

Ultrasound exposure was found to increase the rate of cartilage formation, 

remodelling and expression of vascular endothelial growth factor (VEGF) in 

chondrocytes and osteoblasts in a rabbit bone-tendon junction model (Lu et al. 2008). 

There is some evidence that non-thermal mechanisms are involved in bone healing.  

Ultrasound exposure was found to increase torsional bone stiffness, which was not 

observed after an equal non-ultrasound-induced temperature rise (ΔT~10 °C) (Chang 

et al. 2002). 

One consistent conclusion from these studies is that ultrasound produces some effect 

at lower intensities, which is not seen at higher intensities.  This indicates a need for 

exploration of exposure parameters to optimise treatments.  It is also apparent that 

ultrasound can accelerate processes involved in the early stages of healing, so the 

timing of application of these therapies should also be optimised.  

2.5.2 Cellular mechanisms of sensing external forces 

An important part of understanding physiological responses to ultrasound is 

establishing how the cell senses ultrasound and how this is transduced into a 

metabolic response.  It is likely that the process of signal transduction starts at the cell 

membrane.  As set out earlier, there are many proteins in the lipid membrane of a cell 

that transport ions and signal molecules across the cell membrane, or act as binding 

sites for chemical messengers, provoking a response inside the cell.  

Ion channels are vital in maintaining the electrical potential across the cell membrane, 

the cell volume and other parameters important in cell homeostasis.  There is evidence 

that ion channel activity is sensitive to ultrasound.  The effect of 1 MHz ultrasound 
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(0.06-2 W/cm2, pulsed, up to 20 min) on ionic conductance has been investigated 

using frog skin as a biological model (Dinno et al. 1989).  The role of calcium ions in 

the response of cells to ultrasound was also investigated using this model (Al-Karmi et 

al. 1994).  Exposure to ultrasound was shown to reversibly increase ionic 

conductance; the mechanism in this case was thought to involve cavitation and 

microstreaming.  As mentioned previously, calcium uptake in fibroblasts was 

increased by exposure to ultrasound (Mortimer and Dyson 1988). No significant 

increase in temperature was measured, but the authors suggested that small 

temperature changes at the cell surface could be responsible, as these ion channels are 

known to be temperature sensitive (Schatzmann and Vincenzi 1969).  Changes in 

intracellular calcium levels lead to a variety of cellular responses, such as changes in 

smooth muscle tone and the processes of cell growth, proliferation and differentiation. 

Exposure to ultrasound can alter the permeability of the cell to drugs, which is 

exploited in combatting multidrug resistance (MDR) in cancer cells, which is a major 

limitation in chemotherapy.  This concept has been demonstrated by a study showing 

that cellular retention of rhodamine 123 in human hepatocarcinoma cells in 

suspension was increased by exposure to ultrasound (Zhai et al. 2008).  Uptake was 

maximised in samples exposed to 0.8 MHz ultrasound and also increased with 

increasing acoustic intensity while the energy density was kept constant (exposure 

duration and duty cycle, and intensity were varied).  Retention increased with 

increasing % duty cycle until 60%, then began to decline.  Another study found that 

the mechanism for ultrasound induced drug uptake changes in human metastatic lung 

carcinoma and MDR variant in culture, and human epidermoid carcinoma and MDR 

variant in culture was thermal.  Similar benefits were produced by non-ultrasound 

induced hyperthermia (41 °C, 20 min) (Liu et al. 2001). 

2.5.3 Ultrasound interaction mechanisms 

In this section, studies on the influence of thermal and non-cavitational mechanical 

effects of ultrasound on cells are outlined.  Thermal effects, as a mechanism of 

ultrasound interaction, are often dismissed when the temperature rise is known to be 

small (ΔT < 1-2 °C).  In many of the studies mentioned above, heating was not 

measured, although the experimental design makes it likely that some temperature 
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elevation did occur.  Temperatures of 56°C or more are employed to kill cells.  As 

temperature increases, cell death by apoptosis becomes likely at about 43°C, proteins 

begin to denature, and above this temperature, the exposure time needed to induce 

thermal death halves for each degree the temperature is increased (Miller and Ziskin 

1989).  Non-lethal cellular effects can occur at lower temperatures.  For example, 

temperature elevations of 1 or 2 °C can influence the growth of cells (Morrissey et al. 

2009) and cause heat shock proteins to be released (Park et al. 2005).  Mild 

hyperthermia is used in combination with chemotherapy or radiotherapy in cancer 

treatment, as it can increase the effectiveness of treatment by increasing tumour 

oxygenation (Song et al. 2009). 

More transient effects of mild hyperthermia of a fraction of a degree have also been 

noted at the cellular level, such as in the sensitivity of ion channels (Schatzmann and 

Vincenzi 1969) and whole-tissue level effects such as artery constriction, mediated by 

potassium ion channel activation, leading to changes in intracellular calcium (Mustafa 

and Thulesius 2005; Mustafa et al. 2007).  Potassium channels are universal in cell 

membranes, so if vascular smooth muscle cells are affected, then heating could elicit 

similar responses in other cell types.  Other groups have investigated the effect of 

cooling on vascular tone, Herrera et al (2000) reported opposite effects due to cooling 

in two vessel types.  Cooling induced relaxation in rat aorta, while inducing 

contraction in pig renal artery.  Contraction was inhibited by calcium depletion; it was 

therefore proposed to be related to intracellular calcium stores and was associated 

with a metabolic mechanism.  Relaxation was independent of calcium levels, and was 

associated with structural factors.  Another group (Oo et al. 2007) reported differences 

between the effects of rapid and slow cooling on tone in human radial artery sections.  

Rapid cooling induced rapid transient contraction, with an accompanying increase in 

intracellular calcium, due to release of calcium from intracellular stores.  Slow cooling 

over a period of 20 to 30 minutes induced relaxation and a corresponding reduction in 

intracellular calcium.  Re-warming of these artery rings after cooling, stimulated 

contraction and increased intracellular calcium.  This was partly due to activity of L-

type calcium ion channels in the cell membrane.  Wang et al (1991) explored the 

temperature dependence of this type of calcium channel, reporting that the calcium 

current increased as temperature increased from 22 ˚C, peaking at 35 ˚C before 
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decreasing slowly by a small fraction of the increase.  The timescale of activation and 

inactivation of the channels was also shortened by increased temperature.  These 

studies suggest that temperature changes may affect different parts of the cell 

differently and that the time course of temperature change may be important in 

producing these varied outcomes.  It is also clear from these studies that temperature 

affects the function of vascular smooth muscle.  The cellular effects of hyperthermia 

are reviewed by Hildebrant et al. (2002). Sensing of thermal signals by the cell 

membrane and related intracellular signal pathways are reviewed by e.g. Park et al. 

(2005). 

The mechanisms responsible for changes in protein function and therefore ion channel 

activity are not clear.  However, it is becoming apparent that membrane protein 

function depends on the physical state of the surrounding phospholipid molecules.  

Membrane lipids are in a state very close to phase transition, and as such they are very 

sensitive to temperature.  Small changes in temperature could therefore have a large 

effect on membrane function.  Mechanical effects such as cavitation and 

microstreaming could interact with the cell membrane via the lipid bilayer or by 

exerting forces directly on membrane proteins, altering their function.  Both thermal 

and mechanical bioeffects mechanisms are discussed in more detail by O’Brien (2007). 

On present evidence, it seems possible that non-lethal cellular responses to ultrasound 

may depend on both mechanical and thermal effects.  To determine the relative 

importance of interactions, exploration of the effect of ultrasound exposure 

parameters on cellular effects is needed.  There are a limited number of studies which 

address this need thoroughly and systematically.   

2.5.4 Physical mediators of vascular tone 

It is known that fluid shear stress affects endothelial cells and that ultrasound is 

capable of generating shear stresses.  The source of fluid shear stress generated by 

ultrasound is acoustic streaming, which is more substantial when propagation of 

ultrasound is nonlinear and harmonics are generated.  For a 3.5 MHz ultrasound beam 

with an acoustic intensity of 1 W/cm2, a pressure gradient of 4 Pa/mm was predicted 

(Starritt et al. 1991) if propagation of the wave in water was linear, and a pressure 
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gradient of 700 Pa/mm if propagation was nonlinear.  Van Bavel (2007) calculated 

from this that transient shear stresses of 8 Pa and 1500 Pa could be generated in a 

vessel of 8mm diameter in the direction of the beam, with linear propagation and with 

nonlinear propagation respectively.  The real level is likely to be much lower in 

smaller vessels at other angles of insonation.  However, both of these estimates are 

above normal physiological levels of steady shear stress, which are of the order of 2-4 

Pa in large arteries away from bifurcations.   

Shear stress alters many aspects of endothelial function including the release of nitric 

oxide, a smooth muscle relaxant, causing flow dependent dilatation on the scale of 

minutes.  The mechanisms responsible for sensing physiological shear stresses may be 

the same as the mechanisms related to the higher levels, associated with the stresses 

created by ultrasound exposure.  There may also be some further mechanisms that 

sense these higher levels.  It is suggested that some ion channels act as stress sensors.  

For example, the opening of potassium channels in the endothelial cell membrane due 

to stress, causes calcium channels to open, causing an influx of calcium, which 

activates nitric oxide synthase, causing the production of nitric oxide (Geiger et al. 

1992; e.g. James et al. 1995).  Nitric oxide can also be produced without the 

involvement of calcium.   

The time-course of the shear stress can also affect the release of vasoactive substances.  

Frangos et al. (1996) demonstrated that nitric oxide production occurs in response to 

shear stress by two independent mechanisms, depending on the nature of the shear 

stress.  Cells were exposed to shear stress that was either stepped or ramped from 0 to 

2 Pa and followed by steady flow for several hours.  The increase in NO production due 

to stepped shear stress was greater than that due to ramped shear stress.  The rate of 

production then decreased during the period of steady flow.  These levels were several 

times higher than those measured in the control.  Cells were also exposed to a pulse of 

shear stress, which caused a high rate of NO production straight away, but not in the 

long term.  This response to a change in shear stress was shown to be G protein-

dependent, while the NO production produced by steady flow occurred through a G 

protein-independent mechanism. 
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Nitric oxide and endothelin-1 production in response to steady laminar shear stresses, 

periodic step changes (square wave), oscillating (sinusoidal) and turbulent shear 

stresses has also been investigated (Noris et al. 1995).  Periodic shear stresses caused 

large increases in NO production, while oscillating shear stresses caused smaller 

increases.  Turbulent flow had no significant effect on NO production.   Turbulent flow 

occurs around sights of vessel narrowing and occlusion, so NO production may be 

decreased in these areas.  This fact seems to agree with evidence suggesting that NO 

has a protective effect against atherosclerotic plaque formation.  Periodic shear stress 

caused a slight increase in the release of the vasoconstrictor endothelin-1 and there 

was a decrease in its release under the other conditions.  A decrease in the production 

of endothelin-1 was also measured by Malek and Izumo (1992) in response to 

pulsatile and turbulent shear stress.  This complex pattern will require careful 

consideration in establishing the transduction mechanisms for ultrasound. 

The dependence of shear stress induced vascular constrictions on the endothelium 

was investigated by Bryan et al. (2001), in rat cerebral arteries with and without intact 

endothelium.  Arteries with intact endothelium showed a smaller response to shear 

stress, which was not due to release of NO, prostacyclin or EDHF from endothelial 

cells.  They claim that the reduction in response may therefore be due an unknown 

dilating mechanism involving the endothelium or by attenuation of mechanical forces 

across the endothelium.  Reactive oxygen species (ROS) generated by smooth muscle 

seemed to be involved in the response; scavengers of ROS attenuated the 

constrictions.   

Shear stresses acting on the cell membrane due to oscillation of microbubbles in an 

acoustic field and microstreaming around them, is thought to be the mechanism by 

which changes in cell permeability are induced in sonoporation (Wu and Nyborg 

2008).  Shear stress can also affect endothelial cell viability.  It has been shown (Dunn, 

1985) that shear stresses equivalent to those generated by acoustic streaming in a 

beam with an acoustic intensity of 3 W cm-2, decreased the time taken for the cell 

population to fall to a survivng fraction of 
10
1  in a temperature dependent manner.  At 

37 °C shear stress did not affect the cell survival curve.  At 41.5°C the surviving 

fraction was not decreased by heat only, but the addition of shear stress did decrease 
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the surviving fraction.  The experiment was performed using a cell suspension so it is 

difficult to relate the results to in vivo conditions.   

2.5.5 Mechanotransduction in cells 

The ability of cells to sense and respond to mechanical forces is essential to normal 

growth and development.  Impaired responses are implicated in diseases ranging from 

atherosclerosis to arthritis.  Recognition of this importance has stimulated increasing 

efforts to establish the underlying mechanisms.  For example, endothelial cells act as 

sensors of pressure and shear stress from blood flow (Dunn 1985; Bryan et al. 2001).  

These forces are sensed at the cell membrane by shear-activated potassium channels 

and stretch-activated channels.  Other cells, such as those in soft tissue and bones, may 

sense forces transmitted from deformation of proteins in the extracellular matrix, for 

example, bone cells sense flow in the canaliculi.  These strains are transduced by the 

cell membrane and coupled into the cell cytoskeleton and cytoplasm, where they 

initiate intracellular signalling cascades.  These signal cascades can in turn influence 

cell functions, such as proliferation and gene expression, which are the type of 

responses initiated by exposure to ultrasound.  These signal transduction mechanisms, 

and the resulting intracellular signals, are reviewed in more detail by Lehoux and 

Tedgui (2003) and Huang et al. (2004).   

Clearly, cells can respond to physical forces by producing chemical signals.  The forces 

must therefore interact with some structure in the cells in order to produce a 

response.  Current thinking on mechanotransduction in cells is reviewed by Huang et 

al. (2004).  Transducers of mechanical forces in cells include mechanosensitive ion 

channels, which may be controlled by membrane tension transmitted by the 

extracellular matrix or cell cytoskeleton.  Mechanosensitive ion channels and 

signalling in endothelial cells related to the response to shear stress, have been 

studied by Malek and Izumo (1996).  Membrane and intracellular signal transduction 

in vascular cells is also discussed by Lehoux and Tedgui (2003).  Force transduction in 

vascular endothelial cells and related vascular responses are reviewed by Davies 

(1995) and also discussed by VanBavel (2007). 
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Other proteins within cells may also act as mechanosensors, undergoing 

conformational changes caused by forces transduced through the cytoskeleton.  

Effects on gene expression may be caused by forces transmitted through the 

cytoskeleton to the nucleus of the cell (Lehoux and Tedgui 2003).  In the long run it 

will be necessary to investigate the effects of ultrasound at this level. 

2.5.6 Discussion and Conclusions 

The literature concerning cellular bioeffects reviewed here demonstrates a wide 

variety of cellular responses to ultrasound.  A summary is provided in Table 2.3.  An 

increase in cell proliferation after ultrasound exposure was measured in several cell 

types, but other than this, few recurring observations were noted.  A systematic 

investigation of cellular effects and dose response is needed.  The radiobiology of cells 

is known to be different throughout the cell cycle; it may therefore be likely that cells 

in different states will respond differently to ultrasound.  This has been briefly 

discussed by Hrazdira et al. (1998). 

Cell culture conditions are far from the normal environment of the cell.  Physiological 

and pathological processes of growth and remodelling result from symbioses between 

different cell types and interactions with the extracellular matrix, that depend on the 

exchange of a variety of chemical and physical signals.  The studies reported here 

employ only monoculture cells.  Co-culture systems, in which these interactions can be 

simulated, are only slowly being developed and few have been applied to ultrasound 

studies.  Differences were found in one such study between the response to ultrasound 

of monoculture osteoblasts and endothelial cells and those in co-culture (Ito et al. 

2000), demonstrating that interactions between cell types are important.  Cells in 

suspension, or in culture plates will be metabolically abnormal and feel many more 

fluid mechanical forces than they would in vivo, in contact with the extracellular 

matrix and other cells.  These problems are not unique to ultrasound studies, but are a 

problem in all cell culture studies.  Cells grown in more tissue like structures such as 

gels or cartilaginous matrices, may prove a more realistic model and may enable the 

use of improved ultrasound exposure conditions.  Combined with improved acoustic 

output measurement, it should then be possible to link cell culture and in vivo studies.  

There is also some gap between conditions in in vitro tissue studies and in vivo models.  
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In vitro tissue samples are not connected to nervous feedback systems and there is the 

possibility of damage on excision.  There are other differences, such as lack of 

perfusion and surrounding tissue, which would dissipate heat in vivo.  These factors 

mean that even in tissue models, we must be careful in extrapolating effects measured 

in vitro to in vivo models.  However, this review has presented some cases where 

similar effects were observed in both in vitro and in vivo studies.  

There is also a lack of systematic investigation of the effects of ultrasound exposure 

parameters on cell function and also on in vitro tissue and in vivo bioeffects.  This is 

essential in order to determine mechanisms of ultrasound interaction.  A few of the 

reported studies mention processes involved in inflammation, but further work is 

needed to clarify the effects of ultrasound in this context with relevance to 

physiotherapy.  Further work is essential in order to optimise treatment protocols for 

the therapeutic applications discussed here, and may produce evidence for new 

applications in therapeutic ultrasound.   
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3 Experimental design 

The first section of this chapter gives a description of the ultrasound equipment, force 

measurement system, perfusion myograph and the experimental design process.  The 

second half of this chapter gives details of the measurements and processes used to 

characterise the acoustic field. 

3.1 Ultrasound system description  

This section describes the ultrasound system used throughout this study.  The 

transducer was a nominal 3 MHz narrow bandwidth transducer, with a single circular 

damped lead zirconate titanate (PZT) element, and was weakly focused.  The 

transducer was manufactured by Diagnostic Sonar, Livingston, UK, model number 

MD3483.  The radiating area was 3.8 cm2 and the diameter was 2.2 cm. Further details 

of the acoustic field are given in the following sections. 

The input signal was generated by an Agilent 33220A signal generator (Agilent, 

Wokingham, UK).  This was used to create continuous wave and pulsed wave input 

signals of variable amplitude, pulse length and pulse repetition frequency.  The signal 

was amplified by a 150A100B radio frequency power amplifier (Amplifier Research, 

Souderton, PA, USA), before being fed to the transducer. 

For measurement of the acoustic field and positioning of tissue samples, a Precision 

Acoustics 0.2 mm PVDF (polyvinylidene fluoride) needle hydrophone and preamplifier 

was used; this is described in more detail in Section 3.6.2.  The signal from the 

hydrophone was visualised on a Hameg HM504-2 oscilloscope (Hameg, Mainhausen, 

Germany) for positioning and peak acoustic pressure measurement. A PicoLog ADC-20 

High Resolution Data Logger unit (Pico Technology, Cambridgeshire, UK) and 

PicoScope PC oscilloscope software were used for acoustic intensity calculation. 
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3.2 Isometric force measurement system 

A high sensitivity FORT25 force transducer (World Precision Instruments Inc., 

Sarasota, FL, USA) was used to make isometric force measurements up to 25g.  A 

stainless steel hook was attached to the force transducer.  The tissue was mounted 

between this and another stainless steel rod, the position of which could be fixed.  The 

stainless steel rods were cushioned with PVC tubing to reduce damage to the 

endothelium of the tissue sections. The force transducer was connected to a WPI 

TBM4M bridge amplifier (World Precision Instruments Inc, as previously).  This signal 

was detected by an ADC-20 High Resolution Data Logger connected to a computer and 

displayed in real time using PicoLog Data Acquisition software (Pico Technology).  The 

signal was sampled at 1 second intervals; this provided adequate temporal resolution 

for measurement of tension changes and enabled data acquisition over long time 

periods.   The data files were saved and exported to Microsoft excel for processing. 

3.3 Design of apparatus – stage 1 

A system was designed to incorporate the elements and requirements of the 

ultrasound system with the isometric force measurement system and the tissue 

support system.  This section details the considerations of different aspects of the 

design process.  The complete initial set up is shown in Figure 3.1. 

Coupling of  the transducer 

The ultrasound transducer was coupled with ultrasound gel to the bath via a TPx 

(polymethylpentene) membrane window (Goodfellow, Huntingdon, UK) in the side of 

the tank.   The acoustic properties of TPx provide good coupling of the beam with the 

water tank; the acoustic impedance is well matched so that there was very little 

disturbance of the field.  The transducer was held using a clamp stand and coupled to 

the side of the tank so that the beam axis was horizontal and perpendicular to the 

tissue supports.  The use of an acoustic window enabled easy removal and positioning 

of the transducer.  This allowed the transducer to be removed and coupled to the 

power balance so that measurements could be made before each set of experiments.  

However, coupling the transducer in this way may have increased positioning errors.  
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To minimise these errors, hydrophone measurements were used to determine the 

position and amplitude of the focal region for positioning of the tissue.  The transducer 

was not moved once the system had been set up for each set of experiments.  

Absorber 

The acoustic impedance of materials along the beam path must be considered during 

the experimental design process.  The transducer was coupled either to a TPx 

membrane or directly into the solution.  Under later experimental conditions there 

was an additional thin polythene membrane.  These barriers along the path of the 

beam between the transducer and tissue must be closely matched in terms of 

impedance to avoid reflections of the beam which would cause difficulty in 

establishing the properties of the acoustic field at the point of interest.  Another major 

consideration is the reduction of reflections.  This is important at the end of the beam 

path and around the sides of the ultrasonic bath, so that consistent measurements can 

be performed, and in order to simulate free-field conditions. 

Reflections from impedance mismatches at the tank boundaries could give rise to 

interference effects and produce areas of high acoustic intensity and elevated heating.  

To eliminate these problems the tank was lined with Aptflex 28 acoustic absorber 

obtained from Precision Acoustic Ltd., Dorchester, UK.  The absorber consists of a 

single homogeneous layer of a polyurethane rubber type material.  The density is 1.01 

kg m-3 which is well matched to the density of water. 

Ultrasound bath dimensions 

Because of the requirements of the tissue support system, it was advantageous to 

create a bath in which experiments could be performed that was of a relatively small 

size.  In order to determine the minimum size of the ultrasound bath, the following 

considerations were made.  The focal depth of the transducer was approximately 

8.5cm.  The needle hydrophone would be placed with its tip at this point during 

measurements.  The hydrophone is 10 cm in length in total including the needle and 

preamplifier.  A further 3.5 cm was added to allow for the hydrophone cable, for 

movement and for measurement of points in the field beyond the focal region; this 

amounted to a length of 22 cm in total.  The width of the tank had to be enough to 
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allow several cm on either side of the tissue, which was 7cm in total.  The depth of the 

tank had to be enough so that the focal region was a few cm from the bottom of the 

tank and several cm deep in the water to reduce reflections from the water surface; at 

least 7 cm.  The tank would be lined on all sides with the acoustic absorber which is 

acquired in 1cm thick tiles, which were cut into sections to fit the bath.  An extra 2 cm 

was added to the width and length of the tank and 1 cm to the depth to accommodate 

this.  In the event, a Perspex tank of a greater depth and slightly larger area was 

acquired.  This was cut down to size in the workshop and a circular window was cut 

into one end. The internal dimensions were 12 cm x 24 cm x 13.5cm.  A mechanism 

was manufactured with which to clamp a disc of TPx across the window.  This 

consisted of two Perspex rings, one of which was bonded to the tank and contained a 

circular groove in which a rubber ‘O’ ring as placed. The second ring was screwed into 

the first ring with 6 Perspex thumb screws, clamping the TPX disc in between.  This 

method provided a secure watertight seal and easy removal of the membrane for 

cleaning and replacement. 

Ultrasound bath fluid 

A volume of fluid is required for propagation of the ultrasound beam because the 

impedance of the transducer is matched to that of soft tissue/water.  Ideally, for 

measurement purposes this would be filtered degassed deionised water.  In this 

system, this was not possible as the tissue was immersed in the water bath; the fluid 

had to be a buffer which supported the function of the tissue.  Krebs-Ringer buffer was 

used as the tissue support medium.  Originally a commercially available bicarbonate 

Krebs-Ringer buffer solution was used (in g/L: 0.1 MgCl2·6H2O, 0.34 KCl, 7.0 NaCl, 0.1 

Na2HPO4 (anhyd), 0.18 NaH2PO4 (anhyd), 1.8 D-glucose, plus 1.26 NaHCO3) (Sigma 

Aldrich).  To achieve the correct pH, the solution was bubbled with a 95% O2 5% CO2 

mixture.  This was impractical during experiments and the introduction of gas into the 

solution in this way was undesirable in the context of ideal ultrasound measurement 

conditions.  Another formulation was obtained for a buffer solution containing HEPES 

which did not require bubbling with O2/CO2 mixture during experiments.  The formula 

was as follows: 119 mM NaCl, 5 mM HEPES, 2.3 mM CaCl2, 5 mM KCl, 1 mM KH2PO4, 25 

mM NaHCO3, 5 mM D-Glucose.  This buffer was made up the day before experiments, 

stirred and stored at 4 °C until used.  The pH of the solution was measured and 
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adjusted to pH 7.4 at 37°C using HCl and NaOH before use.  The size of the ultrasound 

bath decided upon in the first instance required 1.5 l to 2 l of buffer for each set of 

experiments.   

Heating system 

In order to support function of the tissue and replicate physiological conditions, the 

experiments were performed at body temperature.  A heating system was therefore 

incorporated into the water bath.  This consisted of an external temperature 

controlled water bath held at a temperature several degrees above 37°C.  This water 

bath was fitted with a pump to circulate the water through a tube positioned in the 

ultrasound water bath.  The buffer solution in the bath was heated by the water 

circulating through the tube and the temperature of the external water bath was 

adjusted until the correct buffer temperature was achieved.  In the first iteration the 

water was pumped through a plastic tube from the water bath into a coiled copper 

tube which was immersed in the ultrasound water bath.  This provided good heat 

exchange with the buffer solution but produced several major problems.  The coil was 

quite large and was positioned in the path of the ultrasound beam.  The coil was likely 

to act as a source of reflections, affecting the acoustic intensity at the focal region in a 

non reproducible manner.  The copper of the tube was not stable when immersed in 

warm salt solution and the pH of the buffer solution was affected.  As an alternative to 

the copper coil, a long piece of plastic tubing was connected to the water bath pump 

and coiled around the inside edge of the base of the bath several times.  Although the 

plastic tubing was not as good a heat exchanger as the copper, it was inert, could be 

positioned easily on the periphery of the ultrasonic field and was less likely to cause 

strong reflections.  By using a sufficient length of tubing to form several loops around 

the tank, the required heating was achieved. The temperature was held consistently at 

an average of 37.7 ± 0.44 °C [mean ± sd] over all experiments. 

 



 

Figure 3.1 Schematic diagram of experimental set up

ultrasound beam on stainless steel hooks attached to the force transducer, the signal is rec
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the acoustic window which is driven by a signal amplified by an RF amplifier.  The expanded 

section shows the orientation of the tissue relative to the ultrasound.

Positioning system

A system to enable precise and reproducible positioning of the tissue sample with 

respect to the focal region was required.  A micromanipulator system was used to 

allow small adjustments independently in 3 orthogonal directions.  In order to ensure 

reproducible positioning of the tissue sample with respect to the focal zone, a holder 

was built that would geometrically fix the position of the hydrophone tip relative to 

the tissue.   A holder was made for the hydrophone in the form of a Perspex ring which 

fitted tightly over the hydrophone preamplifier.  This was attached by a vertical rod to 

a connecting block from which another rod extended vertically; this was mounted in 

the holder attached to the micromanipulator system.  Once the acoustic pressure was 

recorded, the hydrophone was removed and the force transducer was inserted into 

another hole at a distance of 

was then positioned in the focal plane, just above the 
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Positioning system 

stem to enable precise and reproducible positioning of the tissue sample with 

respect to the focal region was required.  A micromanipulator system was used to 

allow small adjustments independently in 3 orthogonal directions.  In order to ensure 

e positioning of the tissue sample with respect to the focal zone, a holder 

was built that would geometrically fix the position of the hydrophone tip relative to 

the tissue.   A holder was made for the hydrophone in the form of a Perspex ring which 

tightly over the hydrophone preamplifier.  This was attached by a vertical rod to 

a connecting block from which another rod extended vertically; this was mounted in 

the holder attached to the micromanipulator system.  Once the acoustic pressure was 

d, the hydrophone was removed and the force transducer was inserted into 

another hole at a distance of 6 cm away.  The hook attached to the force transducer 
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was built that would geometrically fix the position of the hydrophone tip relative to 

the tissue.   A holder was made for the hydrophone in the form of a Perspex ring which 

tightly over the hydrophone preamplifier.  This was attached by a vertical rod to 

a connecting block from which another rod extended vertically; this was mounted in 

the holder attached to the micromanipulator system.  Once the acoustic pressure was 

d, the hydrophone was removed and the force transducer was inserted into 

cm away.  The hook attached to the force transducer 

beam, so that the tissue was 
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stretched through the beam axis when in position.  The other stainless steel support 

was held in another micromanipulator to allow careful adjustment of the vertical 

position for stretching of the tissue.  This was fixed to a base plate that moved along 

the beam axis with the force transducer.  The distance perpendicular to the beam axis 

was variable. 

3.4 Design of apparatus – stage 2 

In a later set of experiments it was necessary to add vasoactive chemicals to the buffer 

for ion channel experiments and endothelial function tests.  For safety reasons it was 

important to reduce the volume of buffer so that a lower chemical concentration could 

be used.  It was also important to ensure that these chemicals were removed from the 

bath after testing and that this was done with minimal disturbance of the tissue.  With 

this aim, a system was developed to flush the bath with fresh buffer.  It was obvious 

that a smaller container would be required for the tissue bath.  The size constraints on 

the system due to the ultrasound field dimensions and measurement requirements 

obviously remained unchanged.  Therefore an inner chamber was developed that 

would fit within the original bath with the following constraints.  It had to be possible 

to hold the container in place without interfering with the isometric force 

measurement and tissue mounting.  The walls of the container had to be transparent 

to the acoustic beam and cause minimal disturbance of the field.  The container had to 

be easy to slot into place after acoustic pressure measurements were made for tissue 

positioning. 

A container was made of a thin polythene tube sealed at one end and clamped through 

a 6cm diameter circular hole in a sheet of Perspex, against a Perspex ring using 4 

plastic thumbscrews.  The sheet of Perspex had clips at either side to secure it over the 

sides of the tank for stable positioning.  The stainless steel rods for tissue mounting 

were passed through the circular opening in the Perspex sheet into the polythene 

tube.  The tube was then filled with buffer and the tissue was mounted in the normal 

way.  The rest of the bath was filled with degassed distilled water.  The arrangement is 

shown in Figure 3.2. 
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The thickness of polythene used was 62.5 µm; this was strong enough for the purpose 

and the attenuation was a few percent, which was an acceptable loss.  The polythene 

was bought as a roll of continuous 10 cm wide flat tubing (medium duty layflat tubing, 

Key Industrial Equipment Ltd., Dorset, UK).  Sections were cut from the roll and sealed 

at one end using a plastic welder.  The sections were washed before use to remove any 

chemicals which may affect the tissue (although the tubing was sold as food grade) 

and disposed of after use.  Bubbles were carefully removed from the surfaces of the 

polythene membrane during experiments by gentle wiping with a cotton bud. 

 

Figure 3.2 Schematic diagram of water filled ultrasound bath lined with acoustic absorber with 

buffer filled polyethylene tube insert clamped between a Perspex sheet and ring within the bath in 

order to contain and enable flushing of the buffer.  Tissue was positioned within the polythene 

container, mounted and insonated as previously. 

Flushing system 

A system of tubes was designed to flush fresh buffer into the bath insert and remove 

waste buffer to a container for later disposal.  Approximately 1.5 times the volume of 

fluid in the tissue bath was used for flushing.  Fluid was preheated to 38°C and 

pumped from a beaker through a plastic tube by a peristaltic pump.  The tube was 

threaded through a plastic T-piece which was clamped to the Perspex sheet using a 

hose clip.  The tube ran down one side of the polythene container with the tip 
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positioned at the bottom.  The waste tube was held in a similar manner, threaded 

through a plastic T-piece, this time with the tip positioned at the normal level of the 

fluid surface.  The fluid was pumped through this tube by siphoning the fluid using a 

syringe inserted into a 3 way tap at a lower height than the fluid level in the bath.  A 

waste bottle was situated on the floor beneath the work bench; fluid continued to 

drain into it until the surface level dropped below the end of the drainage tube. 

This system enabled exchange of fluid without draining the container and exposing the 

tissue to the air.  This was used for processes such as endothelial function tests where 

the tension was measured as two vasoactive drugs were added.  The medium was then 

refreshed so that the tissue could return to normal and further experiments could be 

performed.  The waste fluid was contained within a bottle which could be safely 

removed for disposal.  The bottle had a lid with two holes, one for the drainage tube to 

enter, the other for air to escape.  This helped to minimise risk of spillage and 

exposure to chemicals during experiments. 

3.5 Design of perfusion myograph system 

The next stage of experiments required the design and construction of a new 

apparatus suitable for mounting much smaller vessels than those used previously.  For 

these small vessels with diameters of the order of 1 mm, a perfusion myograph was 

constructed, departing from the wire myograph system used previously.  The wire 

myograph system as used for making isometric force measurements on large vessels.  

The mounting system was too large for mounting of small vessels.  The perfusion 

myograph system was intended for examination of small vessels under more 

physiological conditions, this system was not large enough to accommodate the large 

vessels.  The requirements for design of the perfusion myograph system were to 

integrate a vessel mounting rig and pressurisation system, optical imaging system for 

diameter measurement, buffer flushing system and bath heating with the acoustic 

field. 

The vessels were tied on to small glass pipettes connected to a pressurising system.  

The pipettes were mounted in a small bath with an optical window in the bottom, 
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which was placed over the objective of an inverted microscope for imaging of the 

vessels.  The vessel diameter was recorded during exposure to ultrasound.  The 

system is shown in Figure 3.3. 

 

Figure 3.3 Schematic diagram of perfusion myograph system showing the ultrasound transducer 

coupled into the fluid with the artery in the focal region of the ultrasound and microscope.  The two 

halves of the bath are separated by a membrane; the flushing tubes and pressure system are placed 

within the small section of the bath. 

The same ultrasound transducer was used as described previously.  Again the 

properties of the acoustic field placed constraints on the dimensions of the myograph 

bath.   The mounted vessel had to be located at the focus of the acoustic field so the 

bath had to be big enough to allow the correct separation between transducer and 

tissue.  Another constraint was placed on the position of the tissue due to the focal 

length of the optical microscope objective used for imaging of the blood vessel.  

For ease of mounting the vessels, the bath had to be fairly shallow and the volume kept 

relatively small to keep concentrations of drugs low.  For these reasons it was not 

possible to accommodate the hydrophone in the bath for measurement and set up of 

the system.  As the hydrophone could not be used to find the focal zone in this 

configuration, it was decided that the relative positions of the transducer and tissue 
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should be carefully calculated and fixed.  The transducer was sealed into a Perspex 

holder in the side of the bath and coupled directly into the fluid. 

The transducer was held at an angle of 20° to the horizontal to reduce the length of the 

bath.  This also created space around the beam in the near field and enabled 

positioning of the beam focus very close to the bottom of the tank, at a suitable 

position for optical imaging.  The shallow depth of the tissue bath was created by 

splitting the tank into two sections separated by a TPx membrane.  A polyethylene 

food storage box was purchased (Lock & Lock), with dimensions 6 cm by 11 cm by 8 

cm deep.   A rectangular section was cut out of the top corner of one end to make the 

shallow tissue bath section with a depth of 3.5 cm.  The depth of the section into which 

the transducer was coupled was greater than that of the tissue bath.  Both sections 

were filled with the same buffer to avoid refraction at the boundary caused by a 

difference in sound speed between the buffer and water.  

After some trials with methods of attaching the membrane to the tank, it was decided 

that it should be glued directly to the wall to ensure a good watertight fit.  This raised 

an issue in that it is very difficult to strongly bond anything to polyolefins, such as 

polythene.  These are plastics that are inherently non-stick; most glues and epoxies are 

unsuitable for bonding to this type of plastic.  A specialist superglue for bonding 

plastics was sourced (Loctite All Plastics super glue, Loctite, Henkel Ltd, Hemel 

Hempstead, UK).  The plastic was cleaned with hot soapy water then ethanol.  A 

primer was applied to the surfaces that were to be bonded, then the glue was applied 

and the surfaces brought together.  Another problem was that these glues may not 

produce a lasting bond when not used in dry conditions.  During experiments, the 

bond would normally be in contact with warm salt solution.  In an attempt to protect 

the bond from water, the join between the TPx film and the plastic of the box was 

sealed with silicone sealant.  Reapplication was necessary at regular intervals as the 

silicone easily peeled off.  It provided a good enough seal however as the silicone was 

not under strain. 

The bath was lined with absorber to stop reflections, which was especially important 

in this small bath.  The Aptflex absorber was again used to line the bath; it was cut 

roughly to shape with a band saw then sculpted with a scalpel to fit the tank.  Some 
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sections were cut to half thickness with a scalpel to conserve space in the bath.  It was 

important to place absorber on the beam axis, deeper than the focal region as the walls 

of the bath were close to the focus. 

Vessel mounting – pipette tips 

The blood vessels were mounted at each end on glass pipette tips held in place by 

holders anchored in the absorber layer of the tank base.  To help hold the vessels on to 

the pipettes, the tips had to be of a slightly larger diameter than the vessels so they 

would be stretched slightly when pulled over the tips.  The pipettes were sharply 

tapered to a tip that was narrow enough to fit inside the vessel easily, so that the 

vessel could be pulled over the tip in a similar manner to putting a sock on.  Once the 

narrow tip opened out, the diameter of the tube had to remain fairly constant for a 

small distance to provide a flat section to tie the vessel onto.  The pipette tips were 

pulled using a P-87 Flaming/Brown Micropipette Puller (Sutter Instrument, CA, USA).  

This is designed to make pipette tips for a number of applications which require much 

smaller tips than required here.  Because of this, the normal method of operation of 

the device was not suitable.  Instead the device was used in ‘ramp test’ mode to create 

a narrow diameter section at the centre of a 1.5 mm (outer diameter) borosilicate 

glass capillary tube (Part no. 30-0054, Harvard Apparatus, Kent, UK).  This mode is 

normally used for finding the temperature of the element at which the glass melts 

enough to allow the two ends of the capillary tube to start moving apart from one 

another.  The temperature of the element is increased until this point is reached, then 

the element is cooled down and the glass solidifies.  This process was repeated twice 

to produce a section of smaller diameter of a few mm in length.  The pipette was then 

pulled using one of the default programs to create two pipette tips.  These were 

trimmed under a microscope using a glass cutting blade to produce a small clean 

tapered tip. 

The vessels were tied on with 5 gauge (0.1 mm) Ethilon monofilament polyamide 

suture thread (Ethicon, Livingston, UK); this size and type was chosen after 

experimenting with other (finer) threads.  Two loops were made and threaded over 

each pipette tip.  The vessel was pulled onto the tip then one loop was pulled over the 

end of the vessel and secured.  The second loop was then pulled over and secured also.  
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It was found that it was easier to tie half a reef knot in the first loop and to tie half a 

reef knot with an extra half hitch (a surgeon’s knot) in the second.  The mounting 

procedure and knots are depicted in Figure 3.4.  The loop with the surgeon’s knot held 

more securely but was harder to tighten.  It was easier to tighten once the vessel was 

held in place loosely by the first knot.   

 

Figure 3.4 Diagram showing knots and procedure for mounting vessels on the pipette tips. One knot 

of each type is threaded over each pipette tip. The vessel is pulled over the tip then the first knot is 

pulled over the vessel and tightened; the second knot then secures the vessel. 

It was found that it was quite difficult to tie the vessel on to the pipette tips as 

described in such a way that it would hold when stretched.  This was a consistent 

problem so an alteration to the pipettes was necessary.  To solve this problem, a raised 

band was added to the tip just on the tapered part.  The vessel was pulled onto the tip 

and over this part, and then secured with the ties behind it.  When the vessel was 

stretched, the ties pulled against this raised band but were not able to slip off over it. 
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The major problem encountered in manufacturing these tips, was in finding a 

substance to create the raised band that would stay attached to the glass during 

several hours of immersion in warm salt solution, while under strain.  Several 

methods were attempted.  The first and seemingly most simple solution was to try and 

pull the pipette tips in such a way that a bulge was created in the tube that would act 

as a stop.  This was attempted but it was not possible to change the diameter of the 

tube rapidly enough in a short enough length of the pipette.  The next step was to use 

soda glass to create a raised band around the pipette tip.  This involved melting soda 

glass crystals onto a wire filament then bringing the glass tube up to the filament to 

touch the melted soda glass.  The tube was then rotated to pick up glass in a ring 

around the tip.  A coarse surface would damage the vessel, but it was very difficult to 

produce an even ring around the tube and extremely difficult to create a smooth 

surface.  The next possibility that was investigated, was to make a ring around the tip 

using epoxy resin.  A two part epoxy (Stick 2 Rapid Epoxy Tube, Everbuild Building 

Products Ltd., Leeds, UK) was mixed and applied to the pipette using a needle.  This 

was quite an easy and reproducible method for creating a raised ring around the 

pipette tips.  However, when the pipettes were tested it was found that the epoxy resin 

came away from the glass after several hours when immersed in water so was not 

suitable for use in experiments.  This method of creating the ring was successful so an 

alternative glue was tested to see if it would hold for a longer period of time.  An 

optical adhesive (NOA68, Tech Optics Ltd., Kent, UK) cured by exposure to UV light 

was applied to the pipettes in a similar manner. This stayed attached to the pipette for 

longer but ultimately still came away from the glass.   

 

Figure 3.5 Diagram of pipette tips with vessel mounted; the vessel is pulled over the raised band 

and secured behind it with two knots. 

To achieve a better bond with the glass, the pipettes were cleaned thoroughly before 

application of the glues.  The pipettes were first washed in hot soapy water with lens 
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tissue to avoid linting.  They were rinsed in distilled water and then washed in ethanol. 

They were then soaked in aqua regia (3 parts HCl, 1 part HNO3) for 10 to 15 minutes.  

The pipettes were then very carefully removed and soaked in a beaker of distilled 

water.  The aqua regia was neutralised by the addition of aqueous NaHCO3.  The 

pipettes were carefully removed and placed in a large petri dish to dry in an oven over 

night.  Some pipettes were then treated with two part epoxy resin, some with optical 

adhesive.  All pipettes were then placed in an oven at a temperature of 50 °C for at 

least 24 hours to aid the curing process.  The two types of pipette tips were tested and 

it was found that the baked epoxy resin bands would hold reliably enough to be used 

for several hours during experiments.  The vessels were easily mounted and securely 

fastened to these tips. 

Pressure system 

A system of tubes was used to pressurise the vessel to physiological levels during 

experiments and to vary pressure to establish pressure-diameter relations.  The vessel 

was securely tied onto the pipette tips during mounting to form a watertight seal 

between the vessel and pipette tip.  Small plastic tubes were connected to the ends of 

the pipettes.  A three way tap was connected to the end of each tube.  This was used to 

close the end of one tube and to connect the other to a long tube and an open syringe 

to form the pressure tower.  The syringe was held in a clamp, which could be moved 

up and down a long pole to change the height of the liquid in the column and thus the 

pressure.  The tubes were filled with Krebs-Ringer buffer in a particular order during 

mounting of the vessel to eliminate bubbles from the system, which would have 

damaged the endothelium.  The procedure for pressurising the vessels is described 

later in Section 5.2.3. 

Heating 

Experiments in this system were again performed at 37 °C so a heating system was 

required.  The simple solution of a plastic tubing heat exchanger fed from a separate 

temperature controlled water bath as used previously was too cumbersome to work 

with this bath.  The heating system was still formed of a hot water heat exchanger but 

the radiating part had to be more compact and rigid so it could be positioned securely 

out of the way of the tissue.  Ideally, the radiating part would have been made of 



3. Experimental design 

84  

 

stainless steel or other metal tubing that would be inert in the salt solution.  After 

discussion with the workshop, it was clear that it would be difficult to bend metal 

tubing into shape to create a radiator that would fit in the bath without the tube 

collapsing.  An alternative solution was to wind thin plastic tubing backwards and 

forwards between sets of pins anchored to a sheet of metal.  It was then decided that 

the simplest solution was to make a winding groove in the surface of a rectangle of 

Perspex, then bond it to another thin sheet to create a small solid radiator.  Water was 

pumped through from the external temperature controlled bath as with the previous 

system.  Perspex was chosen because of machining practicalities and because it can be 

strongly bonded to itself.  Two radiators were made, one to fit in each section of the 

bath.  They were 5 mm thick and filled the available area against the side of the bath. 

The radiator dimensions were 4cm by 5 cm for the large bath section and 3 cm by 2 

cm for the small bath section.  

Flushing system 

A flushing system similar to the one described previously was incorporated into this 

bath.  The inlet and outlet tubes were held in place with blutac at opposite corners of 

the tank.  The tip of the inlet tube was placed at the bottom of the tank, while the tip of 

the drainage tube was placed at the normal surface level of the fluid.  The fluid was 

flushed as described previously with a volume of fluid approximately twice the 

capacity of the bath.  

3.5.1 Imaging system 

The system used to image the blood vessels was a Leica DM IL inverted microscope 

(Leica Microsystems GmbH, Wetzlar, Germany).   Incident light was provided by an 

external LED light source positioned above the tissue bath.  A CCD video camera (KY-

F55B, JVC, NJ, USA) was used to capture images from the microscope.  A video capture 

card (194003-USB Live, Hauppauge Computer Works UK Inc., London, UK) was used 

with Ulead DVD Movie Factory (Ulead Systems, Torrance, CA, USA) video capture 

software to record and display images in real time.  The video was captured at a rate of 

one frame per second, which was frequent enough to observe changes in vessel 

diameter and matched the sampling rate used in the previous isometric force 
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measurements.  A low sampling rate was also necessary due to constraints on the size 

of video files that could be stored and processed. 

An objective with 5x magnification (506087, Leica Microsystems GmbH, Wetzlar, 

Germany) was used as this was found to be sufficient to include the whole diameter of 

the vessel in the field of view.  The distance of the focal plane from the objective was 

15 mm.   Because of the thickness of the absorbing layer on the base of the tank and 

the need to place the tissue a small distance away from this surface, it was necessary 

to add an insert to the tank that raised the optical window away from the base of the 

tank.  The objective could be moved up inside the Perspex insert, closer to the tissue; it 

gathered light through a small window covered by a circular glass cover slip.  To 

accommodate this set up, a new stage was fabricated for the microscope from a sheet 

of aluminium. 

3.5.2 Image processing   

After capturing of video files, pre-processing was performed using VirtualDub 

software (released under GNU General Public License (GPL)).  The files were 

decompressed, rotated so that the vessel walls were close to the horizontal (necessary 

for later analysis) and in some cases cropped.  The files were then saved and imported 

to Matlab (The Mathworks Ltd., Cambridge, UK) where they were saved as structural 

arrays in *.mat files.  The rest of the processing and analysis was performed in Octave 

(GNU Octave, released under GNU GPL), an analogue of Matlab.  The aim was to trace 

the edges of the vessel and measure their separation for each frame of the video using 

edge based segmentation.  Processing was performed frame by frame and the vessel 

diameter and edge positions were stored in matrices.    

The processing algorithm began with the input of a set of points by the user, defining a 

straight line along each edge of the vessel.  Two sets of coordinates were input for each 

line, these were transformed into a vector with a point at each x value in the image and 

a corresponding y value.  These lines acted as the starting position for the contours 

that would trace the vessel edges.  
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The 3 dimensional rgb data was converted into a single grey value for each point on 

the image.  Sobel edge detection filters were created for filtering of the image in both 

the x and y directions to create an edge image, these are shown below:   

W�1 �2 �1   0    0   0   1    2    1Y        W�1    0    1�2    0    2�1    0    1Y . 
These filters were convolved with the image, producing a value for each pixel in the 

image.  Where there is no change in grey level in the region covered by the filter, the 

filter will sum to zero and the edge image at the central pixel will have a zero value.  

Where there is a change in grey level over the region covered by the filter, the sum will 

be non zero and the edge image at the central pixel will be non zero, with the 

magnitude increasing according the gradient of the edge.  In the edge image shown in 

Figure 3.6b, the edges appear white and areas with little or no change in grey level 

appear dark.  There is one filter for horizontal edges and another for vertical edges, 

the results are combined and normalised to form a complete edge image.  The gradient 

of this image was then calculated as the change in grey value between adjacent points 

in the x and y directions.  This produced two sets of points: the gradient in the x 

direction and the gradient in the y direction.  These gradients were used in the 

optimisation of the straight lines previously defined to fit the vessel edges on the 

image.  Images showing the steps in the processing procedure are shown in Figure 3.6. 

The vessel edges were traced using an active contour method (Kass et al. 1988).  The 

contour was initialised by user input (lines defined along the vessel edges), then 

optimised using energy minimisation to find a solution which traced the vessel edges 

properly.  Three component forces acted on the contour to evolve its shape: the image 

gradient force and internal spring and curve forces.  In this algorithm, the points were 

constrained in the x direction; there was one point on the line at each x value in the 

image, so forces acted only in the y direction.  The image gradient force acted to move 

the contour over the image.  The spring force acted to control the distance between the 

points; it prevented the points from separating too far and helped to create an even 

contour.  The curve force acts on the gradient of the contour, opposing large changes 

in gradient to smooth the line.   

b
) 



3. Experimental design 

87  

 

 

  

  

Figure 3.6 Steps in the image processing procedure: (a) original image of the vessel; (b) Sobel 

filtered edge image, strong edges appear white; (c) original image with contour starting points (red 

lines); (d) original image with evolved contour tracing the vessel edges.  

c) d) 

a) b) 
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If the contour is described as  �Z� � [\�Z�, ]�Z�^ then the energy functional of the 

contour is 

 _?`aH`bGc � $ d_eaH� �Z�4_e75ED� �Z�f &Z .-
�  3.1 

Eint is the internal energy of the curve originating from the spring and curve forces: 

 _eaH � 12 g2�Z� h� �Zh� 4 <�Z� i�� �Z�i�j , 3.2 

where α and β are constants and control the tension and the curvature of the curve 

respectively.  Increasing α will move the points on the contour closer together, pulling 

out irregularities; increasing β will make the contour more rigid which will have a 

smoothing effect.  Eimage is the energy associated with the image; it is derived from the 

image intensity and image gradient as described. 

The contour will evolve until the energy functional is minimised, the solution can be 

found by solving the Euler-Lagrange equation: 

 &�
&Z� k �l� mmn � &&Z k �l� mn 4 �l�Z � 0 . 3.3 

By writing the Euler equations separately for x and y and making the equations 

discrete, they can be solved numerically; this is described by Kass et al. (1988).  The 

expressions for stepping the positions of the points on the contour are derived from 

this treatment. 

Each point on the contour is fixed in the x direction and moved as follows in the y 

direction: 

 ] � ] 4 �e  o&] 4 �3 Z&] � �? �&] 3.4 

where ki, ks and kc are constants which control the magnitude of the three forces; idy is 

the change due to the image gradient force, sdy due to the spring force and cdy due to 

the curve force.   
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o &] � �p�o� 3.5 

Z &] � ��2]e � ]e0- � ]eq-� 3.6 

� &] � �]e � 2]e0- 4 ]e0�� � 2�]e0- � 2]e 4 ]eq-� 4 �] � 2]eq- 4 ]eq�� 3.7 

The points of the contour were moved by this much then moved again, with a new 

value of image gradient force due to the change in position.  This process was repeated 

for 500 iterations which were sufficient for the contour to evolve to fit the vessel edge. 

Once the contours had evolved, the distance between each point on one edge and the 

corresponding x location on the other edge was found and averaged.  A straight line 

was fitted to each contour.   The angle of the best fit lines to the horizontal was found 

and the separation of the edges in this direction was calculated.  This eliminated errors 

in vessel diameter introduced by the positioning of the vessels during imaging. This 

separation was stored and the process was repeated for the next frame using the 

evolved contour from the last frame as the initial value.  This was repeated until all 

frames had been processed and a complete trace of vessel diameter versus time was 

produced. 

3.6 Beam characterisation 

3.6.1 Beam calibrator measurements 

An NPL ultrasound beam calibrator (National Physical Laboratory, Teddington, UK) 

(Preston 1988) at the medical physics department, Royal United Hospital, Bath, was 

used to perform preliminary measurements for the characterisation of the acoustic 

field.  Beam calibrator measurements were performed to investigate the beam shape 

and focus position, rather than to obtain quantitative information about the acoustic 

exposure conditions.  The measurements were performed during the early part of the 

investigation before all equipment was present.  A different driving system was 

therefore used for these measurements, and the pulse regime and acoustic power 

were significantly different from the conditions used during experiments.  The beam 

was later characterised in terms of peak negative acoustic pressure and acoustic 
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intensity under experimental exposure conditions using a needle hydrophone, which 

is described in Section 3.6.2. 

The beam calibrator system consisted of a 21 element PVDF membrane hydrophone 

submerged in a glass water tank filled with degassed, deionised water.  The elements 

of the hydrophone were 0.4 mm in diameter with a centre to centre spacing of 0.6 mm.  

The transducer was clamped with its face submerged in the water.  The bottom of the 

tank was lined with a sheet of absorbing material.  The position of the transducer was 

adjusted using micrometer screw gauges in two perpendicular directions 

(perpendicular to the beam axis) and rotated about the beam axis.  The hydrophone 

could be moved along the beam axis to vary the measurement depth.   For the 

measurements described here, the hydrophone was stepped along the beam axis in 2 

mm steps.  The transducer was driven in pulsed mode, so a pick up coil was placed 

close to the transducer to collect a trigger signal to start the data acquisition for each 

pulse. 

The beam profile made up of the signal from each hydrophone element was displayed 

on a computer screen.  This was used for alignment of the central element of the 

hydrophone with the beam axis.  The acoustic pulse waveform and peak negative 

acoustic pressure from the central element were also shown.  The software computed 

the pressure squared integral from the peak negative acoustic pressure, from which 

other quantities such as the pulse duration, spatial-peak time-averaged intensity 

(ISPTA), spatial-peak pulse-average intensity (ISPPA), total acoustic power and 6 dB beam 

width were calculated and displayed under a post processing menu.  

In the near field, the beam was wide and relatively flat in the centre with low side 

lobes at the edges.  As the distance from the transducer face increased, these peaks 

became closer together and a third peak emerged.  This increased in amplitude as the 

beam focus was approached, while the amplitude of the other peaks decreased to zero.  

In the far field the beam began to diverge and the amplitude of the single peak 

decreased.  These measurements were made in a pulsed wave beam, but the bulk of 

experimental exposures were continuous wave.  The near field of the continuous wave 

beam will be more complex than the pulsed wave beam, exhibiting more fine 

structure.  More side lobes will be seen and more extreme maxima and zeros in the 
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field.  The near field of a pulsed beam with long pulse duration will also be more 

complex than that of a short pulse duration beam.  The field shape at the focal region 

and in the main lobe of the far field will not differ significantly however.   

The minimum -6 dB beam width of approximately 3.5 mm was observed at the depth 

of maximum peak negative acoustic pressure and acoustic intensity. This was between 

80 and 85 mm deep.  There was an error of approximately 2 mm associated with the 

depth, due to uncertainty in the relative positions of the hydrophone and transducer in 

the beam calibrator system.  The beam width along the beam axis is shown in Figure 

3.7. 

The observed shape of the pulses showed that propagation was linear in the near field 

and then became nonlinear as the focus was approached.  In this region a shock front 

was observed in the pulse.   

 

Figure 3.7 -6dB beam width profile, the minimum beam width is between 80 and 85mm deep, this 

is at the same depth as the maximum peak negative acoustic pressure and ISPTA. 

The measurements described above were made at a considerably lower acoustic 

power than that used during experiments.  An acoustic power of 3.8 mW was 

measured with the power balance, which agreed with values of total acoustic power 

measured with the beam calibrator close to the transducer face.  The transducer was 

driven in a pulsed regime with very short pulses and a low pulse repetition frequency.  
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The peak negative acoustic pressure amplitude measured was of a similar magnitude 

to that measured for the diagnostic type pulse regime used for experiments.  It was 

considerably higher than that measured during continuous wave exposure under the 

experimental conditions.  Because of nonlinear propagation effects, at higher acoustic 

pressures, the position of the maximum peak negative acoustic pressure may be closer 

to the transducer by up to 1cm compared to the position during the continuous wave 

experimental conditions (Duck and Starritt 1986).  

3.6.2 Hydrophone measurements 

For beam characterisation and experimental set up, peak negative and positive 

acoustic pressure were measured at the beam focus (assumed to be the point of 

highest peak negative acoustic pressure) using a 0.2mm diameter PVDF needle 

hydrophone (Precision Acoustics Ltd., Dorchester, UK), the configuration is shown in 

Figure 3.8.  For measurement, the hydrophone was mounted in a purpose built holder 

in the tank.  The hydrophone position was manipulated in 3 dimensions by 

micrometer screw gauges.   

 

Figure 3.8 Schematic diagram of hydrophone measurement set up; the hydrophone position is 

manipulated with micromanipulators to find the position of maximum peak negative acoustic 

pressure, the position is fixed relative to the mounting position of the force transducer to enable 

positioning of the tissue in the focal region.  
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The needle hydrophone consisted of a disc shaped 0.2 mm diameter element made of 

PVDF, a piezoelectric polymer.  The small element enabled precise measurement of 

spatial variations in the field, so the position of highest peak acoustic pressure could 

be found accurately.  Because of the size of the element, the hydrophone does not have 

a highly directional response as a larger element would.  PVDF is thought to have a 

linear response up to acoustic pressures of about 10 MPa.  Needle hydrophones do not 

have a flat frequency response; a calibration document was supplied.  The sensitivity 

of the hydrophone and amplifier was stated as 68.22 mV/MPa at 3.2 MHz.  This value 

was used throughout for calculation of acoustic pressure from oscilloscope 

measurements of voltage. 

The PVDF element was positioned on the end of a needle (several cm long) which was 

mounted onto the integrated submersible preamplifier, which had 50 Ω output 

impedance.  This was connected to a DC coupler for power and coupling of the signal 

from the hydrophone to an oscilloscope or computer for measurement.  The 

transmission line was terminated with a 50 Ω terminator piece. 

During this study, three different acoustic fields were used: a continuous wave field 

and two pulsed ultrasound fields. One of these regimes was similar to a typical 

diagnostic ultrasound field with 1µs pulse duration and 2 kHz PRF.  The other was 

intended to be more similar to a therapy type pulsing regime with a longer 1 ms pulse 

duration and 10 Hz PRF.  The same time averaged acoustic power was used for both 

pulsed and continuous wave fields.  The acoustic power was lower than would be used 

for physiotherapy ultrasound for example, and was not intended to replicate these 

exposure conditions.  The peak negative acoustic pressures measured at the focal 

region of each of the fields are given in Table 3.1.  These measurements were used to 

calculate spatial-peak time-average and spatial-peak pulse-average intensities, which 

are presented in Table 3.1.  In order to make a comparison with the Mechanical Index 

as defined by the IEC (2007), values of 
BrI@ were calculated, where f is the centre 

frequency of the transducer and pr is the free-field rarefaction pressure in water at the 

position of the arterial segment.  This quantity was calculated rather than the 

Mechanical Index, as the acoustic pressure was measured directly at the point of 
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interest rather than calculated from derated acoustic pressure measurements, as is 

normal when calculating the Mechanical Index in tissue.  

 

Figure 3.9 Perpendicular peak acoustic pressure profiles measured in the focal plane of the 

continuous wave ultrasound field; solid lines show peak negative acoustic pressure, dashed lines 

show peak positive acoustic pressure. 

 

Further measurements of both peak positive and peak negative acoustic pressure 

were made in the focal plane in order to produce sets of perpendicular transverse 

beam profiles for each of the fields.  The profiles are shown in Figure 3.9 to Figure 

3.11.  The slight differences between the two perpendicular profiles are likely to 

originate from slight asymmetries in measurement position on either side of the beam 

axis.  As expected, the continuous wave field (Figure 3.9) had the most complex profile 

with strong side lobes.  The peak negative and peak positive acoustic pressures are 

similar, indicating a linear field.  The diagnostic type pulsed field (Figure 3.10) exhibits 

a greater difference between peak positive and negative acoustic pressures.  The 

profiles are relatively simple with one small side lobe with no strong zeros, then a 

relatively smooth decrease as distance from the beam axis increases.  The therapy type 

pulsed field (Figure 3.11) is much more complex, exhibiting several low amplitude 

side lobes which continue as the acoustic pressure diminishes.  There is also a large 

difference in amplitude between the peak positive and peak negative acoustic 

pressure close to the beam axis, which may not be expected.  The -6 dB beam width is 
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similar for all fields, varying from approximately 3 mm for the continuous wave field 

to approximately 5 mm for the diagnostic pulsed field and approximately 3.5 mm for 

the long pulsed field. 

 

Figure 3.10 Perpendicular peak acoustic pressure profiles measured in the focal plane of the 

diagnostic type pulsed ultrasound field (pulse duration 1 µs, PRF 2 kHz); solid lines show peak 

negative acoustic pressure, dashed lines show peak positive acoustic pressure. 

 

Figure 3.11 Perpendicular peak acoustic pressure profiles measured in the focal plane of the 

therapy type pulsed ultrasound field (pulse duration 1 ms, PRF 10 Hz); solid lines show peak 

negative acoustic pressure, dashed lines show peak positive acoustic pressure. 
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Acoustic intensity calculation 

Measurements of the peak negative acoustic pressure were used to calculate the 

intensity in the acoustic field using the pulse intensity integral, defined in Section 

2.1.1.  In practical terms, the pulse was imaged with an oscilloscope, acoustic pressure 

was calculated from the voltage trace, the pulse was squared and the pressure squared 

integral was calculated by finding the area under the curve.  The pressure squared 

integral was then divided by the acoustic impedance of water, ρc. 

Table 3.1 Peak acoustic pressures from needle hydrophone measurements made under 

experimental exposure conditions and resulting values of calculated intensities and local 

Mechanical Index.  The overall uncertainty at the 95% confidence interval in these calculations was 

assumed to be about 30% and 36% for the ISPTA and ISPPA respectively and about 15% for the peak 

negative acoustic pressure; for sources of error see Preston (1988). 

Exposure 

type 

Peak 

positive 

acoustic 

pressure 

Peak 

negative 

acoustic 

pressure 

Acoustic 

power 
ISPTA ISPPA 

stIu 

 (MPa) (MPa) (mW) (W cm-2) (W cm-2) (MPa/MHz½) 

Continuous 

Wave 

0.14 0.12 72 0.52  0.07 

0.17 0.15 100 0.78  0.08 

0.20 0.18 145 1.07  0.10 

Diagnostic 

pulse 
4.68 2.00 145 0.46 190 1.12 

Therapy 

pulse 
3.95 1.20 145 1.18 118 0.67 

 

3.6.3 Power balance measurements 

The beam power was measured before each experiment using a radiation force 

balance with a reflecting target (Perkins 1989).  The power balance makes use of the 

radiation force exerted on a target by an ultrasound beam to make measurements of 

the acoustic power in the ultrasound beam.  The force exerted on the target is 

proportional to the acoustic power in the beam if the whole beam area is incident 

within the target. 
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The radiation force,  

l � vA�  , 
where W is the acoustic power, c is the sound speed in the fluid and h is a quantity 

depending on the geometry and reflection or absorption properties of the target.  This 

is equal to 1 if the target is perfectly absorbing and theoretically equal to 2 for a 

perfectly reflecting target perpendicular to the tissue.  In practice it would be very 

difficult to create a perfectly absorbing or reflecting target.  This would require perfect 

impedance matching or mismatching in order to enable either total transmission of 

the ultrasound into the target or total reflection from the target.  Another factor is 

contained within h to allow for differences in angle of incidence of the beam for 

focused, phased array or sector scanners.  The transducer used in this study was 

weakly focused.  So for a reflecting target, v � 2 �wZ�x, where θ is the angle between 

the angle of incidence of the beam and the normal to the surface of the target. 

The bath balance has a 90° cone reflecting target with an effective diameter of 70 mm 

suspended with the cone axis positioned horizontally.  The target consists of 2 thin 

metal cones set 2mm apart and sealed together to create an air filled cavity, producing 

an air backed target which reflects approximately 90-95% of the incident ultrasound.  

The reflected ultrasound is directed into a cylinder of absorbing material around the 

target chamber.  The chamber is filled with water and the transducer is coupled to a 

TPx membrane with ultrasound gel. 

When the incident beam exerts a force on the target a restoring force is generated by a 

magnet and coil behind the target.  When the target is deflected, a current is induced in 

the coil which causes a force to oppose the movement of the target.  The magnitude of 

the restoring current indicates the beam power.   

Power balance calibration 

Before measurements were made with the power balance, it was calibrated against 

the NPL continuous wave ultrasound check source (NPL, Teddington, UK).  The check 

source operated at 3.5MHz at acoustic powers of 10 mW, 100 mW and 1 W. 
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The check source was switched on and left to warm up for 30 minutes before use.  

Before measurements were made using the check source at a particular acoustic 

power, the source was switched on at this power four times for periods of about 30s as 

specified in the protocol supplied by the manufacturer.  The check source was coupled 

to the power balance and measurements were made with each sensitivity range 

appropriate for the radiated power.  The power balance has sensitivity ranges of 1, 3, 

10, 30, 100 and 300 mW and 1, 3, 10 and 30 W.  Sets of 6 measurements were 

performed for each of the sensitivity ranges, ensuring that the instrument was zeroed 

before measurement.  The indicated acoustic powers during and after exposure were 

recorded.  

A first check of measured acoustic power showed that the balance was reading about 

5% low on the 10 and 30 mW, and 1 and 3 W ranges, and about 1% low on the 100 

and 300 mW ranges.  The balance was adjusted slightly and measurements were 

repeated.  Results are shown in Table 3.2. 

Table 3.2 Results of measurements made for calibration of the power balance against the NPL check 

source. 

Nominal radiated 

power 

(NPL checksource) 

Sensitivity 

range 

Measured 

power (power 

balance) 

Percentage 

difference 

1    W 
3 W 1 W 0 

1 W 1 W 0 

100 mW 
300 mW 104 mW 4 

100 mW 104 mW 4 

10 mW 
30 mW 10 mW 0 

10 mW 9.95 mW 0.5 

 

The measured acoustic powers were consistently 4% high for the 100 mW output for 

both the 100 and 300 mW ranges.  A correction factor could be applied when these 

ranges were in use. The calibration certificate supplied with the check source shows 

that the radiated acoustic power for the 100 mW nominal power setting is 2% high.   

Taking this into account, the error for these ranges would be more like 2%.   The 
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measured acoustic power was 0.5% low for the 10 mW output on the 10 mW 

sensitivity range.  This range is very sensitive and picks up a lot of background noise. 

The check source is calibrated for radiation into a free field.  Here, the difference in 

measurement conditions introduces an uncertainty of 5%.  Some measurements were 

performed to try and estimate the set up error involved in the measurements.  The x, y 

position of the transducer should not have affected the readings, as long as the beam 

was incident completely within the target area.  However, angular positioning errors 

will have an effect on the measured acoustic power.  The coefficient of variance of 

these measurements was about 2% for each of the nominal acoustic powers tested.  

Perkins (1989) quotes axial and small angular positioning errors of up to 5% error in 

the power balance reading.  This produces a total error of between 5.5% and 7%.  All 

differences found between the measured and radiated acoustic powers were within 

this uncertainty. 

There is only one point of adjustment on the power balance.  The 100 mW range can 

be adjusted; the other ranges are mathematically derived from this.  For this reason, it 

is not possible to achieve perfect set up of the balance so that all ranges read the exact 

radiated acoustic power. 

 

Frequency response measurements 

In order to determine the optimum driving frequency of the transducer, the frequency 

response was tested.  The transducer was driven over a range of frequencies, with a 

constant amplitude input signal, and measurements of the acoustic output power were 

made using the power balance.  As shown in Figure 3.12, there was a clear peak in 

acoustic output power when the transducer was driven at frequencies between 3 and 

3.5 MHz.  The maximum was at 3.2MHz; therefore the transducer was therefore driven 

at this frequency during experiments. 
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Figure 3.12 Frequency response of the transducer driven with a constant amplitude signal, peak 

acoustic output power is observed between 3 and 3.5 MHz. 

3.6.4 Thermal effects – Thermal Test Object and thermocouple 

measurements 

As previously stated, energy is deposited in a medium when an ultrasound beam 

passes through it, due to absorption, and this acoustic energy may be converted to 

heat.  The acoustic dose and dose rate, defined in Section 2.1.1, depend on the acoustic 

intensity profile and properties of the medium.  The acoustic dose rate, dose per pulse 

(for the pulsed exposures) and dose per exposure were calculated from these 

expressions for each of the exposure conditions employed in these experiments.  The 

density of the medium was taken as 1000 kg m-3 and the intensity absorption 

coefficient �225� was taken as 0.3 nepers cm-1.  The values calculated for each of the 

exposure conditions used in the study are shown in Table 3.3.  The acoustic dose per 

exposure is also calculated for FDA ISPTA limit of 720 mW cm-2.  The acoustic dose is 

lower in this case than all but the lowest acoustic power continuous wave exposure 

and the diagnostic type pulse exposure. 
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The initial rate of temperature rise associated with the acoustic energy deposited in 

the medium, is dependent on the acoustic dose rate and the heat capacity of the 

medium (see Section 2.1.1).  After this, heating depends on the beam width.  The final 

steady temperature reached when the tissue reaches thermal equilibrium will depend 

on the thermal conductivity of the tissue and other sources of heat loss, such as 

perfusion.  In this study, the tissue was not perfused, so there was no heat loss 

generated in this way.  In vivo, there will be increased heating at sites which are more 

strongly absorbing such as calcified bone surface and foetal bones.  Soft tissues close 

to these sites can be heated by conduction.   

Some heating will also be generated at the surface of the transducer due to inefficiency 

in the conversion of electrical energy to acoustic energy in the piezoelectric element.  

When coupled to a medium, this heat will be dissipated and may cause some local 

heating.  In this study, the transducer face was about 8 cm from the tissue so this effect 

was unlikely to be important.  

Table 3.3 Table of values of acoustic dose-rate and acoustic dose calculated from values of ISPTA and 

ISPPA shown in Table 3.2 and assuming a mass density of 1000 kg m-3 (1 g cm-3) and absorption 

coefficient of 0.3 nepers cm-1. 

Exposure 

conditions 

ISPTA ISPPA Acoustic 

dose-rate 

Acoustic dose 

per pulse 
per 

exposure 

 (W cm-2) (W cm-2) (W g-1) (J g-1) (J g-1) 

Continuous wave 0.52  0.16   38.4 

 0.78  0.23   55.2 

 1.07  0.32   76.8 

Diagnostic type 

pulse 
0.46 190 0.14 57 6.8 ×10-5 33.6 

Therapy type pulse 1.18 118 0.35 35.4 3.5 × 10-2 84 

FDA limit 0.72  0.22   51.8 

 

The potential for thermal bioeffects was estimated by measuring heating in the beam.  

It was possible to obtain an estimate of heating at the tissue directly, so Thermal Index 
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was not used as an estimate of the potential for heating.  Measurements were 

performed to confirm the order of magnitude of the temperature rise only.  There 

were problems associated with both methods of temperature measurement used here.  

When using a wire thermocouple, there may be increased heating due to viscous 

heating (Morris et al. 2008) and possibly thermal conduction along the thermocouple 

wires.  The use of a thin film thermocouple would eliminate these problems; this 

solution was not available during this study.   

The temperature profile around the focus of the continuous wave acoustic field was 

also measured using a soft-tissue thermal test object (NPL, Teddington, UK), (Shaw et 

al. 1999) which was scanned across the beam and stepped along the beam axis.  Again 

these measurements were intended to confirm the order of magnitude of the 

temperature rise and to provide some idea of the pattern of heating the tissue.  The 

test object did not perfectly represent the experimental conditions.  Another way to 

obtain information about the expected temperature rise in the tissue during exposure 

to ultrasound would be to construct a mathematical model of the heating.  There are 

difficulties in doing this in this situation.  Methods of modelling temperature rise 

including finite element modelling and the bioheat transfer equation are evaluated by 

Doody et al. (2000) and the required assumptions are discussed.  The bioheat transfer 

equation can only include one set of parameters such as thermal conductivity, heat 

capacity, absorption coefficient and the acoustic impedance.  This would require 

simplification of the thermal properties of the tissue in this case which is made up of 

layers which have different structural properties and therefore, possibly differing 

thermal properties.  The tissue is situated within the buffer fluid which would also 

have different thermal properties.  Finite element modelling could include different 

thermal properties for different layers of the tissue and can model convection at the 

boundaries of the tissue, but estimation of the thermal parameters is still required.  A 

model can be simplified if the subject has axial symmetry.  In this case, the tissue does 

not possess such symmetry, so the model would have to be 3 dimensional, making it 

more computationally demanding.  A comprehensive model of this type is beyond the 

scope of this project and it was not deemed necessary to quantify the temperature rise 

precisely for the remaining part of the study.    
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In preliminary experiments, a small thermocouple was sewn onto the inside wall of a 

section of artery for measurement of changes in tissue temperature during insonation.  

The tissue was then mounted on the stainless steel supports at the beam focus in the 

usual manner.  The tissue and thermocouple were insonated for 4 minute periods at 

an acoustic power of 145 mW, with an off time of at least 15 minutes between 

exposures, to mimic the exposure protocol during experiments. The measurements 

showed that the temperature did not increase by more than 0.3 °C during any 4 

minute exposure to ultrasound.  The attenuation through the artery wall (thickness 

1.75 mm) was calculated as 0.28 dB (α = 0.5 dB cm-1 MHz-1) at 3.2 MHz, so 94% of the 

beam is transmitted through the vessel wall.  The temperature rise will therefore be 

similar on the front and back walls of the vessel (within ± 0.02 ˚C). 

 

Figure 3.13 Orthogonal profiles centred on the beam axis showing ultrasound induced temperature 

elevation in the NPL thermal test object in the focal plane of the field; the temperature elevation is 

the peak value induced by a 4 minute exposure. 

An NPL thermal test object was used to build up a profile of heating in the plane 

perpendicular to the beam axis at the focus depth.  The test object contained a thin 

film thermocouple embedded 6 mm deep in tissue mimicking material, with another 6 

mm of tissue mimicking material below it, on top of a layer of absorber.  The test 

object was set up horizontally in a large water bath (the beam calibrator tank) and the 
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transducer was mounted with the radiating face immersed in the water.  Short 

exposures were made and adjustments to the position of the transducer in the x and y 

directions and the test object in the z direction were made until the focus depth and 

beam axis were found (the position of maximum heating).  Once this position had been 

established the transducer position was changed in 1 mm steps in either the x or y 

direction to build up profiles of heating in the focal plane. 

Thermal test object measurements showed that the maximum temperature rise over a 

4 minute exposure was approximately 0.2°C.  Two perpendicular temperature profiles 

are shown in Figure 3.13.  The maximum temperature rise occurred over a width of 2 

to 3 mm centred on the beam axis.  The temperature rise reduced to less than 0.1 °C at 

a distance of approximately 5 mm from the beam axis.  The highest temperature rise 

was found at the point of highest acoustic intensity, i.e. on the beam axis. It then 

decreased slowly over a distance of several millimetres.  Some heating was therefore 

generated by the ultrasound energy deposited over this area.  During the course of the 

exposure, heat was also conducted through the tissue from the regions of maximum 

heating out to more peripheral regions.  This is illustrated by the time course of 

heating observed; an example is displayed in Figure 3.14.   The temperature increased 

rapidly for the first 40 seconds to reach about 60 % of the maximum until heat began 

to dissipate.  Temperature then continued to rise at a slower rate until the beam was 

turned off.  The temperature increase was slower at later times because the ‘tissue’ 

was closer to thermal equilibrium.  The increase in temperature caused by deposited 

ultrasound energy was more closely balanced by heat loss due to conduction of heat 

through the tissue.  It would be expected that differences in the time course of heating 

would be seen as the distance from the beam axis increases.  On the beam axis a rapid 

temperature increase will be seen when the beam is switched on.  Further from the 

beam axis the initial rise will be much slower as the heating is produced mainly by 

dissipation of heat. 
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Figure 3.14 Time course of temperature rise during ultrasound exposure (period between dashed 

lines) and subsequent cooling. 

These temperature profiles provide us with some idea of the expected heating 

patterns in the tissue during experiments.  Although the cross sectional area of the 

beam only covers a few square mm, the measurements show that there was still some 

degree of heating in the tissue outside this area.  The asymmetries observed in the 

profiles may be accounted for by a slight misalignment of the beam axis, which would 

mean that the measurement plane would not be exactly perpendicular to the beam 

axis, and by a small degree of asymmetry in the beam.  Obtaining these measurements 

was time consuming and they were difficult to reproduce, which added an extra 

source of uncertainty.  The variation of the profile in planes both deeper and more 

superficial than the focus depth was not investigated due to time constraints and the 

limited stability of the measurement system.  

3.6.5 Non thermal effects  

The previous section presented measurements and calculations related to thermal 

effects in this study.  In this section investigations into the possibility of mechanical 

and non-thermal non-mechanical effects are presented. 
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Streaming 

The transducer used throughout this study was used in an earlier study on 

measurement of streaming using MRI by Starritt et al. (2000).  Streaming in a water 

filled Perspex tube was measured during exposure to a diagnostic type pulsed 

ultrasound field.  At an acoustic power of 39 mW and peak negative acoustic pressure 

of 0.96 MPa, a streaming velocity of 3.2 mm s-1 was measured.  At higher acoustic 

powers and acoustic pressures the velocity could not be measured due to flow 

instability.  This acoustic pressure is much higher than the acoustic pressure during 

continuous wave exposure in this study and lower than that during diagnostic type 

pulsed exposure in this study.  For continuous wave exposure, although the conditions 

are different, it may be expected that streaming velocities would be very small, less 

than 1 mm s-1.  Flow instability may be present during diagnostic pulsed ultrasound 

exposure in this study.  The measured streaming velocities are insignificant relative to 

the velocity of blood flow which is of the order of 100 cm s-1.  

A brief investigation of streaming around the artery under the experimental 

conditions was conducted here.  The artery preparation was mounted in the normal 

configuration and a small drop (1 µl) of Evans blue solution (1% w/v in buffer) was 

placed close to the artery on the side at which the beam was incident; the beam was 

switched on for 4 minutes.  The position of the dye was observed using a digital 

camera, while the beam was switched on and for several minutes after it was switched 

off. 

When the beam was switched on, the dye droplet migrated around the artery ring and 

moved along the tank in the direction of the beam axis.  The mean velocity of the dye 

was 3-4 cm per minute.  The dye continued to migrate for a short time after the beam 

was switched off.   In the absence of ultrasound the dye dispersed diffusively with a 

slight density-driven convection towards the bottom of the tank.  Because of the 

difficulty of introducing the droplet reproducibly, no attempt was made to quantify its 

behaviour. 
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Cavitation 

At the acoustic pressures used during continuous wave insonation of the tissue, 

cavitation is unlikely.  It may be possible at higher acoustic pressures such as those 

present during pulsed wave exposure.  The influence of the pulsing regime on the 

response of artery rings to ultrasound was tested and the results are presented in 

Chapter 4.  The pulsing regimes employed provided different levels of acoustic 

pressure.  If cavitation was involved in the response, it may be evident in the response 

of the artery to the different pulse regimes.  No attempt was made to detect cavitation 

directly in this study as it did not seem to be a major factor in the response. 
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4 Response of large arteries 

4.1 Introduction 

This section details the methods and results of experiments performed on large 

conducting arteries to investigate the effects of ultrasound on vascular tone. 

The first series of experiments was performed on sections of equine carotid arteries.  

This type of artery was chosen as an example of a large, muscular artery.  The arteries 

were obtained from horses as they provide a suitable large mammal model and were 

readily available.  The carotid arteries were easy to remove from the animal after 

death due to their superficial position.  A further set of experiments was performed on 

a large artery taken from the equine mesentery, acting as another example of a 

relatively muscular artery.  The aim of repeating the experiments in this second type 

of artery was to confirm earlier findings and to explore whether or not the response is 

limited to the carotid artery and to explore the dependence on vessel structure and 

mechanics. 

The series of experiments performed on each type of artery were designed to first 

confirm and quantify the effect of ultrasound on the vessel tension, then to investigate 

the effects on this response of changing the exposure protocols, ultimately to identify 

the mechanism of interaction of the ultrasound with the cells.   

4.2 Experimental methods 

4.2.1 Tissue acquisition and dissection 

Carotid arteries 

Equine carotid arteries were collected at a local abattoir (Potters, Taunton, UK) 

immediately after death.  They were excised from the animal by an abattoir worker a 
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few minutes after exsanguination and placed in cold (4 °C) Krebs-Ringer buffer for 

transport to the laboratory.  Tissue was available from animals of all ages slaughtered 

for various reasons not limited to old age.  In this study, very old horses were excluded 

and tissue was obtained from horses mainly under approximately 15 years old. 

The dissection was performed under buffer at 4 °C to minimise shock and endothelial 

damage.  The surrounding muscle, fat and loose adventitia was gently dissected free 

and the vessel was cut with a scalpel into segments of length 12.7 mm (mean), 

avoiding side branches.  The cut sections were transferred to fresh buffer and stored 

at 4 ˚C until needed. 

Mesenteric arteries 

Sections of the lateral cecal mesenteric artery were collected from the fatty envelope 

which runs along the large intestine of the horse; this was accessible approximately 10 

minutes after death and the tissue remained warm and blood filled.  Sections of the 

artery within the fatty envelope were removed and placed in warm Krebs-Ringer 

buffer for transport back to the laboratory.  Warm buffer was used for transport as it 

kept the fatty tissue around the artery soft, aiding dissection.  The fatty tissue around 

the carotid artery did not solidify in the same way when cooled. 

The tissue was pinned out in a container with a rubber base, submerged in buffer.  The 

large artery was carefully dissected away from the surrounding tissue and cut into 

sections of approximately 13 mm in length with a scalpel.  The artery sections were 

stored in buffer at 4 °C until needed. 

4.2.2 Mounting procedure 

The large water bath was lined with the acoustic absorber tiles and filled with warm 

(~37 °C) Krebs-Ringer buffer and the heat exchange coil was placed in the bath.  

Hydrophone measurements were made to determine the position of the focal region 

as described in Section 3.6.2.  The force transducer and mounting rods were then 

positioned accordingly.  A section of artery was taken from the fridge and placed into 

the water bath.    The wire supports were aligned closely parallel to one another and 

the artery ring was carefully placed over them.  The vessels were left to equilibrate for 

approximately 5 minutes before a wall stress of 3.9 ± 0.5 mN/mm2 (mean ± sd) was 
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applied by extending the fixed wire support.  This level of wall stress was chosen after 

preliminary experiments, as reproducible results with relatively low noise levels were 

consistently achieved.  The artery was held at constant strain and was left to 

equilibrate for approximately one hour before exposures to ultrasound were made.  

Before exposure, a small syringe was used to gently flush fluid across the outer surface 

of the vessel to remove small bubbles, both visible and microscopic, which may have 

collected and acted to screen the tissue from the beam.  The TPx membrane was 

carefully wiped with a cotton bud before exposures, also for this reason.  

4.2.3 Tissue characterisation 

To enable useful comparison of results obtained from the two types of large arteries, 

their physical and mechanical properties were investigated.  Force extension curves 

were produced for sections of both types of artery.  Vessel sections of 11 to 12 mm in 

length were mounted over two stainless steel supports, one of which was attached to 

the force transducer and the other to a micromanipulator and displacement 

transducer.  The vessels were immersed in a beaker of Krebs-ringer buffer at 37 ˚C.  

Three stretch-relaxation cycles were performed on each vessel section.  Stress and 

strain were calculated from these curves; stress, σ is given by 

 9 � ly � l2�z , 4.1 

where F = force applied on the transducer, t = wall thickness measured in the relaxed 

state and l = length of vessel section.  Wall stress was calculated in this manner for all 

experiments.  Strain, ε is given by 

 : � Q � Q�Q�  , 4.2 

where L = length of tissue, in this case distance between mounting rods and L0 = length 

of tissue at which the force first deviates from zero.  The incremental elastic modulus, 

Einc at the level of wall stress exerted during experiments was calculated also: 

 _ea? � ∆9∆: . 4.3 
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The density and orientation of smooth muscle cells was determined for both vessels.  

Cross sectional and longitudinal histological sections of 20 µm thickness were 

prepared from fixed frozen tissue blocks.  The sections were stained with 

haematoxylin and eosin (Drury and Wallington 1967) and examined under a 

microscope.  The number of smooth muscle cells per square millimetre was counted 

on the cross sectional sections.  The orientation of the smooth muscle cell nuclei was 

observed from both the cross sectional and longitudinal sections. 

4.3 Experiments on carotid artery 

4.3.1 Exposure of carotid arteries to ultrasound 

The following experiments were performed using sections of carotid artery mounted 

as described in Section 4.2.2, in the large water bath in the configuration shown in 

Figure 3.1.  Endothelial function tests were not performed due to the large volumes of 

buffer required.  Instead the presence of endothelium was examined histologically at a 

later time.  Measurements of the effect of noradrenaline (Sigma Aldrich) on vessel 

tension were performed on vessels mounted in a smaller bath.  Concentrations 

ranging from 10-7 – 10-3 M were used.  The results were used to assess the 

physiological significance of the effects of ultrasound and for comparison of the 

response of different types of vessels. 

Establishing presence of a response 

A series of experiments were performed to determine the response to ultrasound in 

general.  After mounting and equilibration as described in the previous section, the 

vessels were exposed to continuous wave ultrasound at an acoustic power of 145 mW 

for 4 minute periods.  After each exposure there was a gap of at least 10 minutes 

before the next.  Some vessels were also exposed to pulsed ultrasound to determine 

whether a response was also provoked in this way.  Artery sections that had been 

previously frozen and metabolically inhibited with sodium azide, were mounted and 

exposed to ultrasound to eliminate the possibility of radiation pressure artefacts or a 

passive response. 
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Endothelial  dependence of the response 

In order to test the dependence of the response on the endothelium, some vessels 

were de-endothelialised before mounting by brushing the endothelial surface with a 

soft brush.  The vessels were then exposed to 4 minute periods of continuous wave 

ultrasound at an acoustic power of 145 mW.  The response of these vessels was 

compared to the response of paired segments from the same vessel that had intact 

endothelium. 

Power dependence 

To investigate the mechanisms of interaction of ultrasound involved in the response, 

the dependence of the response on acoustic power was tested.  A dependence on 

acoustic power would suggest the involvement of a thermal mechanism.  Vessels were 

exposed to continuous wave ultrasound for 4 minute periods with a gap of at least 15 

minutes between exposures.  The acoustic power was alternated from one exposure to 

the next between 145 mW and 100 mW in half of the experiments, and 145 mW and 

72 mW in the other half of experiments.  The responses to ultrasound at these three 

levels were then compared; these levels represented 50%, 69% and 100% of the 

maximum acoustic power used.   

Dependence on pulse regime 

To investigate the dependence of the response on the acoustic pressure and pulse 

duration, the responses to two different pulsing regimes were used and compared to 

the response to continuous wave ultrasound exposure.  The total acoustic power was 

kept constant at 145 mW throughout.  One of the pulsing regimes was analogous to a 

diagnostic pulsed Doppler ultrasound beam, and the other was more similar to a 

therapeutic pulsed ultrasound beam with a longer pulse duration and lower pulse 

repetition frequency.  The diagnostic type pulsing regime employed a pulse duration 

of 1 µs and a pulse repetition frequency of 2 kHz.  The therapy type pulsing regime 

employed a pulse duration of 1 ms and a pulse repetition frequency of 10 Hz.  The 

peak negative acoustic pressure was greater in the diagnostic pulsed field (2.00 MPa) 

than in the therapy pulsed field (1.20 MPa) and much greater than in the continuous 

wave field (0.18 MPa).  The spatial peak time averaged intensity was 0.46 W cm-2 in 
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the diagnostic pulsed field, 1.18 W cm-2 in the therapy pulsed field and 1.07 W cm-2 in 

the continuous wave field.  

Sustainability of  response and recovery 

The sustainability of the response was examined by exposing vessel segments to 

continuous wave ultrasound for periods of time up to 15 minutes.  The aim was to 

determine if there was a point after which the vessel would be ‘saturated’ and would 

not contract further or whether contraction would decrease despite continued 

exposure.  There is a limit to the contraction that can be induced by vasoactive drugs, 

such as noradrenaline; a similar limit may be observed here. 

In the experiments described above, a recovery period of 15 minutes was allowed 

during which time the vessel tension returned to baseline.  A series of exposures were 

performed to investigate the effects of shorter recovery periods on the vessel.  Vessels 

were exposed to continuous wave ultrasound at an acoustic power of 145 mW for 

periods of between 60 minutes with recovery periods ranging from 2 seconds to 15 

minutes.   

Power threshold of  response  

A set of low acoustic power continuous wave ultrasound exposures was performed to 

investigate the possibility an acoustic power threshold for the response.  Vessels were 

exposed for 4 minute periods to acoustic powers of 30 mW and below.   

Histological examination 

At the end of the exposure cycle the artery sections were fixed in 10% formol saline.  

They were later stained with haematoxylin and examined en face under a low power 

microscope to establish the integrity of the endothelium.  Frozen 20 µm thick cross 

sections were also prepared, stained with haematoxylin and eosin and examined 

under the microscope.   

4.3.2 Response of carotid arteries to temperature changes 

The results obtained from experiments on the exposure of artery sections to 

ultrasound suggested that the response was thermally mediated.  In order to test 
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whether a similar response could be provoked purely by thermal means, the effect of 

temperature changes on the arterial wall tension was investigated.   

Segments of artery were mounted as described in Section 4.2.2.  The vessel was left to 

equilibrate for 60 minutes before being exposed to a series of changes in temperature 

of 1 to 2 °C above the normal bath temperature (37.5 °C).  Tension was recorded as the 

temperature was slowly increased then lowered back to normal. 

4.4 Results: Carotid artery 

In total, 40 artery rings taken from 17 carotid arteries were used in the following 

experiments.  From these 40 experiments, a total of 32 usable data sets were obtained.  

The remaining data sets were discarded for reasons including a lack of response to 

ultrasound, failure of the vessel to relax and reach the required state, or large 

amplitude noise in the data.  On average the vessels had an internal diameter of 4.5 

mm, an external diameter of 8.0 mm and a length of approximately 12 mm. 

4.4.1 Vessel characterisation 

Force extension curves 

Force extension curves were plotted for 4 sections of carotid artery.  A typical set of 

curves is shown in Figure 4.1.  Three stretch relaxation cycles are shown with arrows 

indicating the time sequence of data acquisition.  Hysteresis is observed in all three 

cycles, to a lesser extent in each subsequent cycle.  On the initial cycle, increase in 

force begins at a low extension.  In later cycles, greater extension is needed to apply 

the same level of force.  This behaviour is commonly observed during mechanical 

testing of blood vessels as described by Dobrin (1978) who links the hysteresis to 

changes in active stress levels during stretching.  

Stress and strain were calculated for the artery rings, a typical curve is shown in 

Figure 4.2.  The mean wall stress during the period when arteries were exposed to 

ultrasound was 2.3 ± 0.7 mN/mm2.  The incremental elastic modulus at this level of 

stress was 14.1 ± 3.9 mN/mm2. 
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Figure 4.1 Force extension curves obtained from a section of carotid artery; 3 stretch-relaxation 

cycles are shown:  1st cycle, 2nd cycle, 3rd cycle. The arrows indicate the time sequence of 

data acquisition and show which legs were acquired during stretch and which were acquired 

during relaxation. 

 

Figure 4.2 Typical stress-strain curve for carotid artery ring; the mean level of wall stress during 

exposures to ultrasound is marked by the dotted line.  The incremental elastic modulus was 

calculated at this value. 
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Histological characterisation 

Figure 4.3 shows the results of histological examination of carotid artery sections.  The 

cell nuclei stained with haematoxylin are dark purple, the cytoplasm and other 

material is stained light purple or pink.  The basement membrane can be seen, it 

appears as a brownish layer in the tissue.  Figure 4.3 a) shows a tissue section under 

low magnification.  The endothelium can be seen at the top of the picture, the 

basement membrane below this and then a regular structure of smooth muscle 

making up the bulk of the wall area. In b), which shows a similar section under higher 

magnification, the endothelial cell nuclei can be seen clearly along the top of the photo.  

The basement membrane is again visible as a layer beneath the endothelium. This 

section appears to be in a state of contraction as can be seen by the folding of the 

endothelium and basement membrane.  The smooth muscle nuclei in this section also 

look contracted; they look slightly folded or crumpled.  Photo c) shows a similar 

section, this time from the mid media.  The smooth muscle nuclei are all aligned with 

similar orientations, stretching around the vessel wall circumferentially.  This section 

appears to be more relaxed than the previous sections, as can be seen from the 

straighter smooth muscle nuclei and elastic lamellae.  Photo d) shows a longitudinal 

section through the wall of a carotid artery section.  The smooth muscle nuclei again 

appear dark pink purple but this time appear as dots.  This indicates that the smooth 

muscle nuclei are aligned perpendicularly to the plane of the section, i.e. 

circumferentially. 

The number of smooth muscle cells per unit area in the mid media was counted from 

similar images of histological sections, the carotid artery sections were found to 

contain 2830 ± 40 nuclei per mm2.  

Histological examination of sections of artery fixed after mounting and exposure to 

ultrasound, revealed that in most preparations, the endothelium was intact except in 

regions in direct contact with the supporting rods.  The structure of the vessels was 

otherwise unaffected. 
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Figure 4.3 Histological sections of carotid artery stained with haematoxylin and eosin, cell nuclei 

are stained dark purple; a) endothelium, basement membrane and smooth muscle in the vessel wall 

under lower magnification; b) transverse cross section showing endothelial cells on the luminal 

edge and basement membrane over smooth muscle cells; c) smooth muscle cells stretching around 

the vessel wall in the mid media; d) longitudinal section: smooth muscle cell nuclei appear as dots 

confirming circumferential ring like orientation of cells around the vessel.  Bar = 100 µm. 

Response to vasoactive drugs 

In order to relate the magnitude of the response to ultrasound to maximal muscular 

contraction, tension was induced by doses of noradrenaline (0.1 µM - 0.1 mM) added 

to the tissue bath in 6 artery rings.  On average, the wall stress increased by 0.7 

mN/mm2, with a maximum increase of 1.4 mN/mm2 in one vessel.  Two typical dose 

response curves are shown in Figure 4.4; both are shown as they exhibit slightly 

a) 

d) c) 

b) 
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different behaviour.  One curve shows a slow increase in tension at low doses, 

followed by a steeper rise at higher doses.  In the other curve, there is a more rapid 

increase in wall stress at low doses followed by a slight levelling off of the surve at 

higher doses.  Other rings tested exhibited similar behaviour either of these curves.  

The variation in magnitude between the responses of the sections tested was very 

large, but the behaviour was similar in each.  The variation may be due to the initial 

state of the vessels and differences in tension during administration of the 

noradrenaline.  These values are not intended to be absolutely quantitative, but 

instead provide some insight into the level of increase in wall stress induced by 

vasoactive drug, so that comparisons can be made with the change in wall stress 

induced by ultrasound.  When the vessel was exposed to ultrasound immediately 

following maximal contraction by noradrenaline, no response was observed.   

 

 

Figure 4.4 Typical noradrenaline dose response curves: cumulative increases in wall stress induced 

by doses of noradrenaline (0.1-100 µM) in carotid artery rings held under constant strain.  The two 

curves exhibit slightly different behaviour, the behaviour of other rings tested was similar to one of 

these curves. 
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4.4.2 Response to ultrasound 

Vascular Response 

The artery sections were held at constant strain throughout each experiment.  An 

initial wall stress of approximately 3.9 mN/mm2 was applied; after this the basal wall 

stress generally decreased by approximately 60% over a period of 45 min. It then 

began to rise at a slow, almost linear rate.  In some samples, during the initial decrease 

in wall stress, spasming of the vessel was observed.  During this period, the wall stress 

oscillated as it decreased; the magnitude of the oscillations ranged from 

approximately 0.15 to 1.3 mN/mm2 in different samples.  The oscillations generally 

decreased in magnitude as the baseline wall stress decreased, and ceased by the time 

it reached a minimum.  The artery wall stress was allowed to decay and enter the later 

phase of steady increase before all exposures to ultrasound or temperature changes.  

For analysis of results, this steady increase in wall stress was fitted with polynomial 

functions and subtracted from the data, to bring the baseline to zero.  Therefore, the 

reported changes in wall stress are above baseline values. 

The effect of the initial tension in the vessel on the magnitude of the response was 

investigated by making measurements at different levels of the initial tension by 

changing the separation of the support rods.  It was found that the initial tension had 

no consistent effect on the response.  The initial tension used throughout the 

experiments was chosen after some experimentation, to be one at which it was shown 

that reliable and consistent results could be obtained, with relatively low levels of 

background noise.  However, variation in the magnitude of the response between 

artery sections may in part be due to a dependence of the response on the basal 

tension, which varied during the experiment.   

Exposure of artery sections to ultrasound induced an increase in wall stress above the 

baseline, which began when the beam was turned on and continued until it was turned 

off.  Figure 4.5 shows a typical response of a carotid artery segment to a 4 minute 

exposure to 145 mW ultrasound at a frequency of 3.2 MHz.  Contraction began within 

a few seconds of the start of insonation and tension rose rapidly and almost linearly 

over approximately 2 minutes. The increase in tension then continued at a slower rate 

until the acoustic field was turned off.  When the field was switched off, tension 
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decayed fairly rapidly at first and then gradually slowed as it returned to baseline over 

a period of approximately 10 minutes.  When the ultrasound exposure was repeated 

after a recovery period of at least 10 minutes, the second response was 

indistinguishable from the first.  With a recovery period of this length, the response 

could be continually reproduced over a 2 hour period.  Also shown in this figure is the 

response of a section of artery, which had been metabolically inhibited; a small change 

in wall stress was observed during exposure to ultrasound.  The change was a small 

fraction of the change observed in a fresh artery ring, and so significant passive effects 

on the tissue during exposure were ruled out.   

 

Figure 4.5 Typical response curves for carotid artery rings exposed to ultrasound for a 4 minute 

period at an acoustic power of 145 mW.  shows the response of a ring of fresh tissue;  shows 

the response of an artery ring after metabolic inhibition with sodium azide.  Increase in wall stress 

above baseline which has been set to zero is shown; the dotted lines indicate the beginning and end 

of the exposure.  In the live section, wall stress increases during the period of exposure, slowly 

returning to baseline afterwards.  There is a very slight increase in the wall stress measured for the 

dead ring. 

The mean response of artery rings to ultrasound at an acoustic power of 145 mW was 

0.020 ± 0.018 mN/mm2 (mean ± s.d, n = 77).  This was about 4% of the mean maximal 

response to noradrenaline and approximately 8% of the increase in wall stress 
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induced by a 1 µM dose of noradrenaline. The response was qualitatively similar in all 

specimens, but quantitatively the response varied by approximately 35% between 

exposures for a single segment, approximately 45% between segments of the same 

vessel and by approximately 75% between vessels.     

Endothelial  dependence of the response 

 
Figure 4.6 The graph shows mean change in wall stress due to ultrasound exposure from 3 sets of 

paired segments with intact  and denuded endothelium; error bars show the standard deviation 

of the means. 

The dependence of the effect on the endothelium was investigated by comparing the 

responses of arterial segments that were de-endothelialised prior to mounting, to the 

response of paired segments with intact endothelium (n = 26 measurements on 3 

pairs of artery rings taken from two equine vessels; the data from a further pair of 

rings was discarded due to high levels of noise).  The mean change in wall stress for 

each of the artery rings grouped in their pairs is shown in Figure 4.6; the standard 

deviations of these means are shown as error bars on the graph.  As can be seen from 

this figure, for two out of the three pairs, the mean response was slightly smaller in the 

denuded sections than in the intact sections and was slightly larger in the remaining 

case.  There was no significant difference between the response of intact and denuded 

samples in any case as verified by a Student’s T test.  No differences were observed in 
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the time-course of the response, or recovery after exposure, between groups.  The 

ultrasound induced contraction is therefore considered to be endothelium 

independent.  

Power dependence 

 

Figure 4.7 Typical responses to 4 minute ultrasound exposures at different acoustic power levels of 

two different samples of carotid artery ring; a) exposure to ultrasound at 145 mW,  exposure 

to ultrasound at 100 mW; b) exposure to ultrasound at 145 mW,  exposure to ultrasound at 72 

mW; the dotted lines show the times at which the exposure began and ended. The wall stress is 

shown as an increase above baseline, which is set to zero. 

The effects of beam power were investigated by exposing artery rings to continuous 

wave ultrasound at different acoustic powers.  A difference in magnitude of the 

increase in tension due to ultrasound was clearly observed between exposures to 

different acoustic powers in each artery ring.  The mean amplitude of the ultrasound-

induced tension increase for each sample decreased with decreasing beam power.  As 

shown in Figure 4.7, the time course of the response was unaffected by the acoustic 

power of the beam.     

Experiments were performed on 14 artery rings in total, from which ten useful data 

sets were obtained.  The remaining data was discarded for reasons stated at the 

beginning of Section 4.4.  Figure 4.8 shows the results obtained for artery rings 

exposed to ultrasound at 145 mW and 100 mW (69% of the maximum acoustic 

power).  The mean increase in wall stress during exposure at both acoustic power  

 

a) b) 
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Figure 4.8 Results from experiments performed on 6 artery rings (numbered 1 – 6 on horizontal 

axis) exposed to ultrasound at 100% and 69% acoustic power levels.  The top graph shows the 

mean change in wall stress due to exposure at the 100% acoustic power level  ; and the 69% 

acoustic power level  ; the error bars show ± 1 standard deviation of the mean.  shows a P-value 

of ≤0.1,  shows a P-value of ≤0.05.  The bottom graph shows the ratio of the means for each data 

set. Error bars show error computed from the standard deviation of the means shown in the top 

graph.   shows the mean of the ratios over all data sets;  shows ± 1 standard deviation of the 

mean. 
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Figure 4.9 Results from experiments performed on 4 artery rings (numbered 1 – 4 on horizontal 

axis) exposed to ultrasound at 100% and 50% acoustic power levels.  The top graph shows the 

mean change in wall stress due to exposure at the 100% acoustic power level  ; and the 50% 

acoustic power level  ; the error bars show ± 1 standard deviation of the mean.  shows a P-value 

of ≤0.1,  shows a P-value of ≤0.05.  The bottom graph shows the ratio of the means for each data 

set. Error bars show error computed from the standard deviation of the means shown in the top 

graph.   shows the mean of the ratios over all data sets;  shows ± 1 standard deviation of the 

mean. 
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levels is shown for each artery ring.  Figure 4.9 shows the results for the case when the 

ultrasound exposures were at 145 mW and 72 mW (50% of the maximum acoustic 

power level).  As can be seen, the increase in wall stress due to exposure to the lower 

acoustic power level is smaller in each case.  The standard deviations of these means 

are shown as error bars on the graphs.  In some cases, these are large as there was a 

high degree of variability between responses to ultrasound, as observed in the 

previous results presented in this chapter.  A Student’s T test showed that the 

differences were in fact significant in 9 out of 10 cases (p-value ≤0.05 in 7 cases and 

≤0.1 in the other 2 cases).  There was also a high degree of variability in the magnitude 

of the responses from one artery ring to another, up to a factor of 10 in some cases.  

However, the ratio of the responses was relatively consistent, regardless of their 

magnitudes.  The lower graph in each of these figures shows the ratio of the response 

induced by exposure to the two acoustic power levels for each artery ring.  The solid 

line shows the mean ratio of the responses across all rings.  The uncertainty on these 

values was computed from the standard deviation of the means; they are large and 

encompass the mean ratio in all cases. 

Normalising the response at 145 mW to unity, the response at 100 mW was 68 ± 7% 

and at 72 mW was 53 ± 5% of the maximum.  These acoustic power levels represent 

69% and 50% of maximum acoustic power respectively; it appears that the increase in 

tension induced by exposure to ultrasound is related to the acoustic power in an 

approximately linear fashion. 

Dependence on pulse regime  

In a series of six experiments, a comparison was made of the effects of continuous 

wave and diagnostic and therapeutic pulsed ultrasound at the same time averaged 

acoustic power.  Five useful data sets were obtained from these experiments; the 

remaining data set was discarded for reasons given at the beginning of Section 4.4.   

The mean responses to each of the pulse regimes for each experiment are shown in 

Figure 4.10.  The response to therapy type pulsed ultrasound is slightly larger than for 

continuous wave ultrasound in 3 out of 4 cases.  The response to diagnostic ultrasound 

is smaller than for continuous wave ultrasound in 2 out of 3 cases.  These slight 

differences may show some consistent behaviour, but a Student’s T test used to test 
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the significance of these differences gave p-values ranging from 0.25 to 0.7 suggesting 

that the differences were not significant. 

 

Figure 4.10 The graph shows results from experiments on 5 artery rings (numbered 1 – 5 on the 

horizontal axis) exposed to at least 2 out of 3 different pulse regimes. The columns show the mean 

response to  continuous wave ultrasound,  therapy pulsed ultrasound,  diagnostic pulsed 

ultrasound. Error bars show the standard deviation of the means. 

If there was any real difference between the response to the continuous wave 

ultrasound and the diagnostic pulsing regime, it may be explained at least partially by 

acoustic power loss at the focal region due to nonlinear propagation associated with 

the high peak negative acoustic pressure during the pulses.  This would be difficult to 

quantify.  However, it is clear that any dependence on pulse regime is not as strong as 

that on beam power.  No evidence was found that the ultrasound induced increase in 

wall stress was dependent on the pulsing regime in these cases.  A more thorough 

investigation of the dependence of the response on different pulsing regimes would be 

required to fully eliminate dependences on acoustic pressure, pulse duration and 

pulse repetition frequency. 

Sustainability of  the response and acoustic power threshold 

The sustainability of the ultrasound induced increase in wall stress was investigated 

by exposing artery rings to ultrasound for extended periods of time.  When exposure 
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was prolonged for up to 15 minutes, the increase in wall stress continued throughout, 

though at a decreasing rate.  A typical example is shown in Figure 4.11.  After a 

recovery period of at least 10 minutes, one response was similar in magnitude to the 

next and the following response was not affected.  After shorter recovery periods the 

response was attenuated.  For recovery periods of less than a minute, the response 

was on average 50% of that initially.  For very short ‘off’ periods of only a few seconds, 

the increase in tension continued as if the tissue had been exposed continuously. 

 

Figure 4.11 Typical response of wall stress in a ring of carotid artery to an extended period of 

exposure to ultrasound, the dotted lines show the beginning and end of the period of ultrasound 

exposure.  Wall stress continues to increase during the period of exposure although at a decreasing 

rate; wall stress slowly returned to baseline after exposure. 

Acoustic power threshold 

Three sections of artery were exposed to ultrasound at decreasing acoustic powers.  

The magnitude of wall stress increase appeared to follow the linear dependence 

discovered previously.  At acoustic powers below 30 mW, the response could no 

longer be resolved against the background noise.  It was concluded that there was no 

observable threshold for the response in this system; the measurement of the 

response to small acoustic powers was limited by system noise.  
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4.4.3 Response of carotid arteries to temperature changes 

To investigate the possible involvement of a thermal mechanism in the response to 

ultrasound, as may be suggested by the dependence on acoustic power, artery rings 

were exposed to increases in temperature of 2 to 4 degrees above 37 ˚C. 

As the bath temperature was increased, wall stress increased in an approximately 

linear fashion at a rate of 0.18 ± 0.07 mN/mm °C (n = 6).  An associated decrease in 

wall stress was seen during decreases in temperature back to baseline levels.  These 

data suggest that only a very small change in temperature is required to cause an 

increase in wall stress of a similar magnitude to that induced by exposure to 

ultrasound.  It has been shown in Section 3.6.4 that the temperature rise in the focal 

region of the ultrasound beam was no more than 0.3 ˚C after a four minute exposure to 

ultrasound at 145 mW.  It is estimated that a temperature rise of 0.3°C would produce 

an increase in wall stress of approximately 0.05 mN/mm2.  This is more than twice the 

mean increase in wall stress measured in response to ultrasound exposure.  There is 

some difficulty in comparing these two results, as the conditions differ significantly.  

The results described here were obtained by changing the ambient bath temperature, 

so the whole tissue volume would be heated to the same temperature.  The heating 

caused by the ultrasound beam would be localised in the tissue, as the beam area at 

the focal region is smaller than the tissue.  Therefore, there would be a temperature 

gradient across the tissue and heating would take place at different rates depending 

on the location relative to the beam axis.  It is difficult to estimate the spatial patterns 

of temperature increase in the tissues during the exposure.  At the end of the exposure 

there was a temperature increase over an area larger than the focal region, although it 

was lower than on the beam axis (see Section 3.6.4).  This profile was measured using 

a thermal test object with homogeneous thermal properties; the temperature profile 

in the tissue may vary from this.  

It is not known exactly how these differences in heating would affect the cellular 

response, and as such, we can not draw direct comparison between these results.  

However, we can conclude that heating from a source other than the ultrasound beam 

influences wall stress in a similar manner to ultrasonic heating.  The cellular 

mechanisms of this response are pursued further in Chapter 6.  
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4.5 Experiments on mesenteric arteries 

4.5.1 Exposure of mesenteric arteries to ultrasound 

A series of experiments was performed to compare the response of vascular tone to 

ultrasound exposure in mesenteric arteries which differ in physiological function, 

extracellular matrix and cellular structure from carotid arteries.   

The artery sections were mounted in the same manner as the carotid arteries.  All 

experiments were performed in the configuration shown in Figure 3.2 with the 

polythene container in place.  The container was filled with 150 ml of Krebs-Ringer 

buffer as a standard amount.   This configuration was used so that vessel function tests 

could be performed on each section before ultrasound exposure. 

Vessel function tests 

The artery sections were mounted, stretched and left to equilibrate for 45 minutes.  

Vasoconstriction was induced with a 1 µM dose of noradrenaline (Sigma Aldrich).  

When the tension had reached a maximum level, which happened approximately 1 

minute later, a 1 µM dose of acetylcholine was added to the bath.  In artery sections 

with intact endothelium this induced vasodilatation; in artery sections where the 

endothelium was not intact, an increase in tension was induced (Furchgott and 

Zawadzki 1980).  Once the function test had been performed, the buffer contained 

within the polythene container was refreshed with 300 ml of fresh buffer; the final 

fluid volume in the container was 150 ml.   After the medium was refreshed, the vessel 

was again allowed to equilibrate until the tension had returned to a stable level and 

the temperature of the bath had stabilised.  

Vascular response,  endothelium and acoustic power dependences  

The response of mesenteric artery rings to ultrasound was investigated using the 

same methods as for the carotid artery rings.  Experiments were performed to 

establish the presence and magnitude of the response to ultrasound at 145 mW.  The 

endothelium dependence and acoustic power dependence was also tested. 
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4.6 Mesenteric artery results 

The following results were obtained from experiments on a total of 26 artery rings 

taken from 13 mesenteric arteries.  Twelve of these arteries either failed to respond to 

either noradrenaline or ultrasound, did not relax to the correct state after stretching 

or exhibited highly fluctuating tension.  It was presumed that these vessels were either 

dead, or were severely affected by damage sustained during initial handling.  The rings 

used in these experiments had a length of 13.2 ± 1.1 mm (mean ± sd), an internal 

diameter of 3.4 ± 0.8 mm (mean ± sd), an external diameter of 6.7 ± 1.1 mm (mean ± 

sd) and a wall thickness of 1.5 ± 0.1 mm (mean ± sd). 

4.6.1 Vessel characterisation 

Force extension curves 

 

Figure 4.12 Force extension curves obtained from a section of carotid artery; 3 stretch-relaxation 

cycles are shown,  1st cycle, 2nd cycle, 3rd cycle.  There is a large degree of hysteresis in the 

first cycle, it then decreases with each subsequent cycle. 

Force extension curves were plotted for a group of mesenteric artery sections.  A 

typical set of curves is shown in Figure 4.12.  Three stretch relaxation cycles are 

shown with arrows indicating the time course of data acquisition, showing which legs 

were acquired during stretching and which during relaxation.  The curves take the 
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form of hysteresis loops, the degree of which decreases between each cycle and the 

next.  A much larger force is generated for a given extension in the first stretch cycle 

than in later ones. Stress and strain were calculated from these curves, a typical stress 

strain curve is shown in Figure 4.13.   The mean wall stress during exposure of the 

arteries to ultrasound was 1.4 ± 1.2 mN/mm2.  The incremental elastic modulus at this 

stress was 18.1 ± 2.9 mN/mm2, 25% higher than for the carotid arteries. 

 

Figure 4.13 Typical stress-strain curve for mesenteric artery ring; the mean level of wall stress 

during exposures to ultrasound is marked by the dotted line.  The incremental elastic modulus was 

calculated at this value. 

Histological  characterisation 

Figure 4.14 shows images of 20 µm thick histological sections of mesenteric artery, 

stained with haematoxylin and eosin.  Smooth muscle nuclei are stained dark purple 

or pink, the remaining tissue is stained lighter pink or purple and the elastic layers 

appear brownish. Photo a) shows a section of the vessel wall under low magnification.  

The luminal surface of the vessel is at the top of the photo.  The endothelium and 

basement membrane can be seen running along this edge, and below them is the 

vessel wall made up mainly of smooth muscle nuclei. At the lower edge of the tissue, 

the adventitia can be seen; this tissue is tearing away from the outside of the vessel.  

Photo b) shows a similar section under higher magnification.  The luminal surface is at  
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Figure 4.14 20 µm thick histological sections of mesenteric artery stained with haematoxylin and 

eosin, cell nuclei are stained dark purple; a) endothelium, basement membrane and smooth muscle 

in the vessel wall under lower magnification; b) transverse cross section showing endothelial cells 

on the luminal edge and basement membrane over smooth muscle cells; c) smooth muscle cells 

stretching around the vessel wall; d) longitudinal section, smooth muscle cell nuclei appear as dots 

confirming circumferential ring like orientation of cells around the vessel. Bar = 100 µm. 

the upper edge of the tissue and endothelial cells can be seen lining it.  A thin layer of 

basement membrane is also visible.  Below this lies the medial region where smooth 

muscle nuclei can be seen running circumferentially around the vessel wall.  The 

section appears to be contracted, as can be seen by the folding of the endothelium.  c) 

shows an area from the mid media of the vessel wall from a similar segment.  Smooth 

muscle cell nuclei can be seen as lines running through the wall aligned with one 

a) b) 

c) d) 

Smooth muscle 

cell nuclei 
Smooth muscle 
cell nuclei 

Endothelial 
cell nuclei 
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another.  Photo d) shows a longitudinal section through the vessel wall of another 

segment of mesenteric artery.  The smooth muscle nuclei appear as dots confirming 

the perpendicular orientation to the cross section and their circumferential 

arrangement around the vessel wall.  This also confirms that there is no significant 

spiral arrangement of the cells along the vessel wall. 

The smooth muscle cell density in this tissue was estimated by counting the number of 

cell nuclei per unit area on similar images of histological sections. The mesenteric 

artery sections were found to have a cell density of 4080 ± 340 nuclei per square 

millimetre, which is 44% more than the carotid artery. 

Vessel function tests  

 

Figure 4.15 Typical curve showing time course of changes in wall stress induced by noradrenaline 

(1 µM) added at time a, and acetylcholine (1 µM) added at time b, in a mesenteric artery section 

with intact endothelium. 

The presence of endothelium was confirmed in all samples used, except for those 

where the endothelium was purposely removed.  Noradrenaline (1 µM) induced 

vasoconstriction increased the tension by approximately 0.4 mN/mm2 on average.  

This was 60% higher than the average increase in tension induced in carotid artery 

rings by the same concentration of noradrenaline.  Vasodilatation induced by 

acetylcholine (1 µM) in intact segments had the effect of relaxing the vessel.  In 
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denuded segments, acetylcholine had the effect of increasing the tension.  Figure 4.15 

shows a typical tension curve during function testing. 

4.6.2 Response to ultrasound 

Vascular response 

As was observed in the carotid artery experiments, after the artery rings were 

stretched to an initial wall stress of 4.1 ± 0.7 mN/mm2, wall stress decreased by 

approximately 80 % over approximately 60 minutes while strain was kept constant.  

Once the wall stress had reached a minimum, it began a steady increase.  It was during 

this period that all exposures to ultrasound were performed.  Again, the steady tension 

increase was fitted with polynomial functions and subtracted from the data set to 

provide a zero baseline.  Results are quoted as the change in wall stress above the 

baseline. 

 

Figure 4.16 A typical response of a mesenteric artery section during a 4 minute exposure to 

ultrasound at 145 mW; the dotted lines indicate the beginning and end of the exposure.  Wall stress 

increases during the period of insonation, rapidly at first, then at a decreasing rate, before slowly 

returning to baseline after the exposure. 

Exposure of mesenteric artery sections to ultrasound induced reversible 

vasoconstriction.  The wall stress of the artery rings increased during the period of 

exposure with a similar time course to that seen during exposure of carotid artery 
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sections to ultrasound.  The initial tension increase on exposure to ultrasound was 

rapid.  After approximately 45 s, the rate of vasoconstriction decreased but continued 

until the end of the exposure period.  After this point, the tension began to decay, 

rapidly at first then more slowly until it reached baseline level after approximately 10 

minutes.  A typical response is shown in Figure 4.16.  The response was consistently 

repeated during a period of several hours, as long as a recovery period of at least 15 

minutes was allowed between exposures.  

The mean increase in wall stress was 0.020 ± 0.017 mN/mm2 (mean ± sd, n = 34).  This 

was approximately 5% of the mean increase in wall stress induced by a 1 µM dose of 

noradrenaline.  This is lower than for the carotid artery, where the mean increase in 

wall stress was approximately 8% of the increase induced by the same concentration 

of noradrenaline.  The magnitude of the response varied by approximately 30 % 

between exposures of the same artery ring, by approximately 56% between exposures 

of rings taken from the same vessel and by approximately 80% between exposures of 

rings different vessels. 

Dependence on acoustic power 

 

Figure 4.17 Typical responses to 4 minute ultrasound exposures at different acoustic power levels; 

a) exposure to ultrasound at 145 mW,  exposure to ultrasound at 100 mW; b) exposure to 

ultrasound at 145 mW,  exposure to ultrasound at 72 mW; the dotted lines show the times at 

which the exposure began and ended. 

Exposure of mesenteric artery rings to ultrasound at different acoustic power levels 

demonstrated that as in the carotid artery, ultrasound induced contraction was  

a) b) 
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Figure 4.18 Results from experiments performed on 5 vessel sections (numbered 1 – 5 on 

horizontal axis) exposed to ultrasound at 100% and 69% acoustic power levels.  The top graph 

shows the mean change in wall stress due to exposure at the 100% acoustic power level  ; and the 

69% acoustic power level  ; the error bars show ± 1 standard deviation of the mean.  shows a P-

value of ≤0.1,  shows a P-value of ≤0.05.  The bottom graph shows the ratio of the means for each 

data set.  Error bars show error computed from the standard deviation of the means shown in the 

top graph.   shows the mean of the ratios over all data sets;  shows ± 1 standard deviation of 

the mean. 
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Figure 4.19 Results from experiments performed on 3 vessel sections (numbered 1 – 3 on 

horizontal axis) exposed to ultrasound at 100% and 50% acoustic power levels.  The top graph 

shows the mean change in wall stress due to exposure at the 100% acoustic power level  ; and the 

50% acoustic power level  ; the error bars show ± 1 standard deviation of the mean.  shows a P-

value of ≤0.1,  shows a P-value of ≤0.05.  The bottom graph shows the ratio of the means for each 

data set. Error bars show error computed from the standard deviation of the means shown in the 

top graph.   shows the mean of the ratios over all data sets;  shows ± 1 standard deviation of 

the mean. 
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dependent on acoustic power.  The mean change in tension induced by exposure to 

each acoustic power level was compared for each artery ring used.  The ratios of the 

tension increase induced by either the 50% or 69% acoustic power level to the tension 

increase induced by the reference acoustic power level (100%) were calculated for 

each artery ring used.  14 experiments were performed in total, and from these 8 

useful data sets were obtained.  Data was discarded for the reasons given in Section 

4.6.  For each data set, a difference was seen in the magnitude of the response between 

exposures at the higher and lower acoustic power levels.  The magnitude of the 

response decreased with decreasing acoustic power, but the time course did not 

appear to differ otherwise.  For all exposures, a high initial rate of tension increase was 

observed, followed by further increase at decreasing rates for the duration of the 

exposure.  A set of typical responses is shown in Figure 4.17, illustrating the 

differences in wall stress increase between exposures to different acoustic powers.  

Results are shown in Figure 4.18 for each ring exposed to ultrasound at acoustic 

powers of 145 mW and 100 mW.  Results are shown in Figure 4.19 for artery rings 

exposed to ultrasound at acoustic powers of at 145 mW and 72 mW.  The mean 

increase in wall tension for each acoustic power is shown for each ring; the standard 

deviations of these means are plotted as error bars.  In each case, the mean response 

to the lower acoustic power was smallest.  The standard deviations are large in some 

cases reflecting the high degree of variability between responses.  A Student’s T test 

showed that the differences between the means were significant in 7 out of 8 cases, 

with a p-value of 0.1 (≤0.05 in 5 of these cases). 

The mean ratios of the responses for each artery ring and across all experiments in 

this series were then found; the results are shown in the lower graphs of these figures.  

Again, the ratios were fairly consistent across all experiments, although there were 

large variations in the magnitude of responses from ring to ring.  The mean ratio of the 

responses to those at the maximum acoustic power level was 0.71 ± 0.14 for the 69% 

acoustic power level and 0.48 ± 0.11 for the 50% acoustic power level.   The changes in 

tension are proportional to acoustic power in an approximately linear fashion. 
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Dependence on endothelium 

Experiments were performed on 6 pairs of artery rings.  Each pair included one ring 

with intact endothelium and another with denuded endothelium.  Of these 6 pairs, 

usable results were obtained from only two pairs, again for reasons given in Section 

4.6; these results are displayed in Figure 4.20.  In one pair, the denuded sample 

exhibited a larger increase in wall tension on exposure to ultrasound, while in the 

other pair the denuded ring exhibited a slightly smaller response.  A Student’s T test 

showed that the first result showed a significant difference between the mean 

responses, while the second result showed no significant difference.  These results are 

inconclusive; a much larger number of data sets would be required in order to confirm 

the behaviour.  This particular investigation is relatively difficult to perform 

consistently as the variation between different sections of the same artery can be so 

large (56 % on average). 

 

Figure 4.20 Mean changes in wall stress due to ultrasound exposure recorded in two sets (of 6 sets 

in total) of paired segments with intact  and denuded  endothelium; error bars show standard 

deviation of the means. 
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4.7 Discussion and Summary 

General comparison of response 

It has been demonstrated that exposure to ultrasound at 3.2 MHz caused contraction 

in the carotid artery and also in the large lateral cecal mesenteric artery in vitro. The 

response was reversible and reproducible from sample to sample and over a period of 

several hours for each sample.  The observed responses were qualitatively consistent 

and reproducible between vessels, but there were quite large quantitative variations 

between exposures, from sample to sample and between the two different vessel 

types.  A similar response was established in both vessel types.  The time course was 

indistinguishable between the two vessels and the response was of the same 

magnitude on average.  On average, responses were larger in carotid artery rings in 

proportion to the vasoconstriction induced by a 1µM dose of noradrenaline.  In the 

carotid artery, the mean change in wall stress was approximately 8% of the change in 

wall stress induced by 1 µM noradrenaline.  In mesenteric arteries, it was 5% of this 

change.  Histological analysis showed that the two types of vessels were structurally 

similar.  The orientation of smooth muscle nuclei was the same in both types of vessel, 

but they differed in terms of smooth muscle cell density.  The number of nuclei per 

mm2 was 44% higher in the mesenteric arteries than the carotid arteries.  The two 

vessel types also appeared to differ in their mechanical properties.  The mesenteric 

arteries were stiffer.  The incremental elastic modulus at the mean level of wall stress 

during the ultrasound exposure period was 25% higher in the mesenteric arteries 

than the carotid arteries.  The overall average response of the vessels was of the same 

magnitude for both types.  These structural and mechanical differences appear to 

compensate for each other to create a similar response.  However, it must be noted 

that the average responses were calculated from a far larger data set than the elastic 

modulus and smooth muscle density.  

Although their response to ultrasound was similar to the carotid artery, data obtained 

from mesenteric arteries generally had a greater level of noise and a greater 

proportion of the data sets were discarded.  Vessel function tests were successful in 

most vessels, confirming that the endothelium was intact.  This was not the case in the 

carotid artery rings where it was difficult to establish this response.  Some of the 
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differences may arise from the different histories of the vessels at the abattoir.  The 

mesenteric arteries were possibly better preserved when they were acquired from the 

animal.  The tissue was still warm, intact and the vessels were still filled with blood.  

The carotid arteries were obtained after exsanguination of the animal from the neck.  

They were therefore almost completely drained of blood when they were acquired.  

The differences in position and function of the two types of vessels may also be 

involved in the differences seen in the data.  The mesenteric artery is positioned along 

the large intestine and is placed under varying strain during peristalsis.  This tissue is 

deep within the animal and so is held at a fairly constant core temperature.  The 

carotid arteries are relatively superficial.  Temperature may vary more, and although 

the arteries will experience movement along with movements of the animal’s neck, 

these are likely to be more uniform than the movements associated with peristalsis.  

These physiological differences may account for some variation between results from 

the two vessel types, but there may also be many other factors.  It was established that 

the effect was independent of endothelial integrity in the carotid artery.  Although the 

data obtained from mesenteric arteries was inconclusive, it seems likely that the effect 

would also be endothelium independent in this tissue, as the response was similar 

otherwise.  The response is therefore assumed to be a direct effect on the smooth 

muscle.  Whether other factors affecting the response were associated with biological 

variations between arteries, cellular viability, muscle tone or physical variation in, for 

example, positioning the vessel at the focus of the ultrasound beam could not be 

established.  Errors in positioning of the vessel of 1-2 mm from the beam axis may be 

likely.  The profiles of heating in the focal plane (Figure 3.13) show that heating 

decreased to about 75% of the peak value at this distance from the beam axis.  If the 

increase in wall stress was proportional to the temperature elevation then this may 

account for variations in wall stress of up to 25%.  However, the artery rings were 

large compared to this, so if the tissue was positioned a few millimetres off axis, the 

focal region would still fall within the tissue. 

Exposure to prolonged periods of ultrasound showed that the vessel continued to 

contract over longer periods of time, although the rate at which it did so decreased.  It 

is possible that after some length of time, the wall stress may cease to increase and 
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instead remain at a steady elevated level.  This may correspond with stabilisation of 

the temperature.  If the heat added by ultrasound exposure was balanced by the heat 

loss from the tissue and then the tank, then the tissue would reach a stable 

temperature and vessel tone may remain constant.  The recovery period obviously 

also had some influence on the amplitude of the response.  Very short recovery 

periods, where the wall stress barely had time to change before increasing again, 

seemed to have little effect.  Where the recovery periods were slightly longer and the 

wall stress began to decay, there seemed to be more influence.  The response was only 

reproducible over several exposures if a long recovery period was allowed.  

The carotid artery was selected for study as a relatively muscular, large artery in 

which resistance is tightly controlled to maintain brain perfusion.  The mesenteric 

artery was also chosen as a reasonably large muscular artery, in which the resistance 

is known to vary.  This artery was studied to verify that the response is not specific to 

the carotid artery and is present in other locations in the circulation.  However, it can 

not be concluded from these results whether or not the response could be induced in 

all large arteries.  Further investigation would be required to establish whether or not 

this would be the case. 

 The ultrasound exposures employed generated up to 1.5% increase in wall stress in 

the carotid artery and up to 2% in the mesenteric artery.  A commensurate change in 

diameter in a vessel at constant pressure would cause a substantial change in 

haemodynamic resistance, which varies as the 4th power of the radius.  Assuming all 

larger arteries respond in a similar manner, the physiological effects would depend on 

the position of the vessel in the vasculature.  The responsiveness of different vessels 

requires further study.  One might speculate that arterioles and small muscular 

arteries might be more responsive, because their primary function is to control local 

blood flow by adjusting wall tension and they have a higher proportion of smooth 

muscle in their walls.  This could have implications for the therapeutic application of 

ultrasound.  One of the next stages in this study will be an investigation of this 

response in smaller arteries so that these questions can begin to be answered. 

In exploring the mechanisms of transduction of the ultrasonic wave to a change in 

vascular tone, three factors require consideration: fluid streaming, radiation forces 
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and local heating.  Blood vessels are exquisitely sensitive to fluid mechanical shear 

stress, sensed by the endothelial cells (Davies 1995).  The fact that the response was 

unaffected by endothelial coverage renders this mechanism unlikely.  Furthermore, 

the streaming velocity observed here and the values quoted by Starritt et al. (2000), 

whilst consistent with measurements in diagnostic pulsed Doppler fields (Starritt et al. 

1989) were an order of magnitude lower than blood velocity.  The possibility that 

smooth muscle cells respond to ultrasound-generated flow through the extracellular 

matrix cannot be totally excluded. 

Radiation force on the intact tissue was negligibly small.  The similarity of the 

responses of carotid artery to continuous wave and pulsed ultrasound also suggests 

that acoustic pressure effects are not involved in the response.  The time-averaged 

acoustic power in the two pulsing regimes employed and the continuous wave field 

was the same, but there was a large difference in pulse duration and a 10 fold 

difference in peak negative acoustic pressure.  There was also the possibility of 

nonlinearity in the diagnostic type pulsed field, which would alter absorption in tissue.  

This may be responsible for small differences in response between different pulsing 

regimes which did not reach statistical significance in this study.  The 
BrI@ at the focus 

was 0.10 MPa/MHz½ for the continuous wave field; the likelihood of cavitation is 

therefore very low.  However, the values of 
BrI@ were 1.12 MPa/MHz½ and 0.67 

MPa/MHz½ for the diagnostic and therapeutic pulse regimes respectively, but no 

differences were observed in the response under these conditions.  It seems therefore 

that the effects of cavitation on the cells, or the associated generation of free radicals 

or other reactive species, were not factors in the vascular response.  If significant 

differences had been observed in the responses to these pulse regimes, then a more 

thorough systematic investigation of the dependence on these factors would have 

been performed. 

The most probable mechanisms of transduction were therefore thermal.  A consistent 

linear dependence on acoustic power was established for responses in both types of 

artery.  This, along with the similarity of the time course of heating to that of 

contraction, is consistent with this hypothesis.  The time course of the response was 
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similar for each acoustic power; the initial increase in tension was faster and gradually 

slowed until the end of exposure.  As mentioned previously, it seems that after some 

time the heat loss from the tank will balance the heat deposited by the ultrasound.  As 

the time course of wall stress was similar for each acoustic power, it seems that the 

temperature rise does not have to reach a certain level before dissipation.   

Increases in bath temperature affected vascular tone.  The resulting increases in wall 

stress were of an order of magnitude consistent with the changes in wall stress 

measured in response to ultrasound exposure and the temperature rise of 0.3 °C 

measured in the focal region of the beam.  As previously mentioned, the effect of local 

changes in temperature in the tissue could be different to the bulk changes caused by 

raised bath temperature.  A thermal mechanism would also be consistent with the 

differences in effect of MHz frequencies observed here and kHz frequencies reported 

in the literature, since absorption characteristics would be different in the two 

frequency ranges.  The responses to kHz ultrasound presented in the literature 

suggest that blood vessels are also capable of responding to non thermal stimuli.  The 

responses to kHz ultrasound were much larger than the responses measured here.  It 

would be interesting to investigate where the boundary falls between the two 

opposite effects measured in response to kHz and MHz ultrasound.  As the ultrasound 

frequency decreases, the absorption coefficient will decrease, therefore absorption 

and heating in the tissue will also decrease.  At low frequencies, the temperature rise 

would be too low to induce contraction.  As the frequency continues to decrease, it 

may be that some other mechanism instead becomes dominant and will induce 

relaxation. 

Also consistent with our hypothesis are recent studies on the effects of temperature on 

tension in the carotid artery (Mustafa and Thulesius 2005). In this case, the effect is 

mediated by a potassium channel in the membrane of the smooth muscle cell.  Studies 

on isolated cells have shown that the activity of such channels is affected by 

ultrasound (Mortimer and Dyson 1988; Liu et al. 2006).  A further step in this study 

will therefore be to investigate this possibility in these tissues.  
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5 Response of small arteries 

5.1 Introduction 

The experiments described in this section were conducted on small mesenteric 

arteries obtained from the same general location as those used in the previous section.  

These arteries were branches from the large artery and were selected to have a 

diameter of approximately 0.5 to 1 mm.  The aim of these experiments was to 

investigate whether the response established in large arteries was also present in 

smaller arteries.  These small arteries are the resistance arteries and should have a 

larger influence over local blood flow than the large arteries previously tested.  It may 

be postulated that for this reason a response may be of greater physiological 

importance and could be larger in magnitude.  

The experiments in this section follow a similar pattern to those described in the 

previous section, but the myograph system is of a different design. 

5.2 Experimental methods 

5.2.1 Tissue acquisition 

The blood vessels used in these experiments were first or second order branches from 

the lateral cecal mesenteric artery.  The tissue was collected from horses, post mortem 

at a local abattoir.  Large sections of tissue were cut from the fatty envelope which 

runs along the large intestine; this contains the large mesenteric artery used in the 

previous experiments as well as the large vein, many smaller blood vessels, lymphatics 

and connective tissue.  These sections were transferred to a flask of warm Krebs-

Ringer buffer (temperature around 37°C) and transported back to the lab for 

dissection. 
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5.2.2 Dissection 

Sections of tissue were pinned out on a cork mat submerged in buffer.  The large 

artery and some of the fatty tissue were carefully removed, leaving the ends of the first 

order branches from this vessel exposed, but under buffer.  Smaller sections were cut 

containing up to three branches and transferred to a Petri dish with a rubber base.  

The sections were pinned out and placed under a dissecting microscope.  Arteries have 

stiffer walls than veins and so maintain their tubular shape, while veins collapse when 

not under pressure.  Arteries were identified by this shape and their wall thickness 

and were pinned out for dissection.  The fatty tissue was carefully removed from 

around the vessel using fine vannas type dissection scissors and watchmakers forceps. 

Once cleaned, small sections of approximately 4 to 5 mm in length were cut from the 

vessel; the vessels were carefully inspected to avoid side branches.  The sections were 

transferred to a beaker of fresh Krebs-Ringer buffer and stored at 4 °C until needed.  

The dissection process was repeated until 5 to 10 vessel sections were obtained.  

Several vessel sections were used for experiments; a surplus was required in case of 

difficulty in mounting or leakage through undetected side branches.  

5.2.3 Mounting procedure 

The small tissue bath was lined with the absorber sections, pipette tips were mounted 

in the holder in the base of the bath and the small plastic tubes were attached.  The 

bath was half filled with cold Krebs-Ringer buffer (from the fridge).  Before mounting 

the vessel, the pressure system was filled.  The configuration of the pressure tubing 

and taps is shown in Figure 5.1.  The three way tap on the pressure tower side of the 

bath was opened from input [2] to [3] and the tap was filled from a syringe.  The 

pressure tower tube was attached to input [3] and buffer was pushed through until it 

leaked from input [2] of the syringe tap.  This input was screwed shut and fluid was 

pushed through into the syringe ensuring there were no bubbles.  The syringe was 

removed from input [2] of the pressure side 3 way tap, fluid was allowed to leak and 

then the input was screwed shut.  The tap was opened from the tower [3] to the bath 

[1] and the tube was filled, pushing the air out into the bath.  The tube was carefully 

checked for bubbles as they would cause damage to the endothelium if allowed to pass 
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into the vessel.  The bath was then closed off from the tower at this tap and the tube 

was closed off at the syringe tap.  The tower tube was removed from input [3].  Next 

the other side of the system was filled.  The syringe was connected to input [3] of the 

stop tap, fluid was pushed through to input [2] and this was screwed shut.  The tap 

was opened to the bath [1] and fluid was pushed through the tube, again pushing the 

air into the bath.  The tube was carefully inspected for bubbles.  The syringe was 

removed and the tap closed off. 

 

Figure 5.1 Schematic diagram showing the configuration of the pressure tubing and taps.  The 

vessel is mounted on the pipettes and pressurised using the system of tubing and taps filled with 

buffer.  When under pressure, the ‘stop side tap’ is closed off and the pressure syringe is raised and 

open to the vessel. 

The bath was carefully transferred to another bench for mounting of the vessel under 

a magnifying lens.  A vessel was selected and placed in the bath.  Loops of suture 

thread (described in Section 3.5) were placed over the pipette tips.  The vessel was 
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manipulated using two pairs of watchmaker’s forceps, one straight and one with 

curved tips.  The vessel was carefully placed over the tip of the stop side pipette and 

pulled up over the raised band.  The first knot was brought over and loosely secured 

around the vessel.  The second knot was then used to secure the vessel more tightly.  

The stop tap was opened to allow fluid to pass through the vessel, removing blood 

from the endothelium.  This tap was left open until the pressure system was 

reconnected.  The other end of the vessel was mounted by moving the tip of the other 

pipette until the tip was level with the end of the vessel.  The forceps were used to 

move the end of the vessel over the very end of the pipette tip.  The pipette was moved 

further inside the vessel until the vessel could be pulled over the raised band on the 

pipette.  This end of the vessel was secured with two knots in the same manner as the 

other end.  The pipette was then moved to stretch the vessel slightly. 

Once the vessel was mounted, the tissue bath was transferred to the microscope stage.  

The pressure system was reconnected to the bath.  Input [3] of the tower tap was filled 

with buffer with a needle and syringe to avoid the introduction of bubbles to the 

system.  The syringe tap was opened and fluid allowed to leak from the end of the 

tube, it was then connected to input [3] of the tower side tap.  The tap was opened 

from the tower [3] to the bath [1] and the stop tap was closed.  The tower was raised 

and the pipette tips were moved apart to take up the slack in the vessel.  The vessel 

was pressurised to approximately 45 mm Hg during experiments. 

The heating system was placed in the bath and both sections of the bath were filled 

with warm Krebs-Ringer buffer and slowly brought up to temperature.  The inflow and 

outflow tubes of the flushing system were put in place.  The microscope was focused 

on the vessel and an image was displayed in the video capture window. 

5.2.4 Vessel characterisation 

Pressure-radius curves 

Pressure-radius curves were determined for several vessels for investigation of their 

mechanical properties and to help compare the results of experiments on the different 

types of vessel.  The vessels were mounted as normal, but the pressure tower was not 

raised.  The vessel was stretched between the pipettes and left to warm up to 37.5 °C 
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and equilibrate.  Video capture was started several minutes before the pressure was 

altered.  The tower was raised in 5cm increments, starting with the column height 

equal to the height of the vessel, up to a height difference of 80cm.  The tower was left 

in each position for 20 seconds before being raised again.  The exact height of each 

position and the time (video capture time) was recorded.  The pressure tower was 

raised and lowered 3 times for each vessel.  The video file was analysed as described 

in Section 3.5.2 to yield the time course of the vessel diameter.  The diameter at each 

pressure was then determined. 

Histological characterisation 

Arteries were examined histologically to determine the orientation and density of 

smooth muscle cells.  Cross sectional histological sections of 20 µm thickness were 

prepared from frozen blocks of embedding medium containing fixed arteries.  The 

sections were stained with haematoxylin and eosin and examined under a microscope 

and the number of smooth muscle cell nuclei was found. 

Vessel function test  

Once the vessel had reached the correct temperature and was correctly pressurised 

and stretched, it was left to equilibrate for 30 minutes.   The function of the vessels 

was tested with vasoactive drugs before further experiments were performed.  Doses 

of noradrenaline (1 µM) and acetylcholine (1 µM) were used to check endothelial 

function and to provide a measure of the responsiveness of the vessel.  Video capture 

was initiated about 10 minutes before the introduction of the drugs.   

The drugs were made up into stock solutions prior to the experiment and stored on ice 

in the fridge, shielded from light.  A 1µM dose of noradrenaline was administered to 

the bath using a micropipette, to induce contraction.  The vessel was observed in the 

video capture window; when the vessel diameter appeared to have reached a 

minimum (usually after approximately one minute) a 1µM dose of acetylcholine was 

administered in the same way.  If the endothelium of the vessel was intact then the 

acetylcholine would induce relaxation.  After a few minutes, the medium in the bath 

was refreshed with fresh Krebs-Ringer buffer adjusted to pH 7.4 at 37 °C.  Video 
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capture was continued throughout this process.  The vessel was left to equilibrate for 

30 to 60 minutes before experiments were begun. 

5.2.5 Exposure of vessels to ultrasound 

A series of experiments was performed to investigate the response of small arteries to 

ultrasound. 

In open field 

Video capture was started and was left to run for approximately 15 minutes before 

exposure to ultrasound.  The vessels were exposed for 4 minute periods with a gap of 

at least 15 minutes between exposures to mimic the regime used in large vessel 

experiments.  Video capture was run throughout and the films were analysed to 

extract vessel diameter afterwards. 

With absorber in place 

A further set of ultrasound exposure experiments were performed on 3 vessels, this 

time with a square of Aptflex absorber (Precision Acoustic Ltd., Dorchester, UK) 

(dimensions 25 mm x 22 mm x 5 mm) positioned vertically a few mm from the vessel.  

This was intended to provide some heating by convection during exposure, to mimic 

blood vessels close to bone and replicate the temperature rise measured in the large 

vessel experiments. 

Several more exposures were made, during which the temperature rise at the vessel 

was measured both with and without the absorber section in place using a 

thermocouple positioned to touch the vessel. 

5.2.6 Response of small arteries to temperature changes 

A series of experiments was performed in order to investigate the response of small 

mesenteric arteries to changes in temperature.   

Experiments were performed on vessels mounted on the myograph and pressurised to 

45 mmHg.  An endothelial function test was performed on each vessel before the 

temperature was varied.  One vessel was de-endothelialised by passing a bubble 

through the lumen during mounting.  Each vessel was exposed to four temperature 



5. Response of small arteries 

151  

 

increases of approximately 1 °C above the baseline temperature of 37.5 °C.  The bath 

temperature was increased by the introduction of a stainless steel mass previously 

heated in hot water.  The water bath was allowed to return to baseline temperature 

and stabilise before another temperature rise was induced.  Temperature was 

measured and recorded using a thermocouple placed in the bath linked to a PicoLog 

recorder as previously.  Video capture was run throughout, the films were analysed to 

extract vessel diameter at a later time as described previously. 

5.3 Results 

5.3.1 Vessel characterisation 

Pressure-radius curves 

 

Figure 5.2 Pressure radius curves for 2nd order mesenteric artery; 3 pressure cycles are shown,  

1st cycle, 2nd cycle, 3rd cycle.  Hysteresis is observed in the first cycle, which diminishes in 

further cycles.  The vessel dose not return to the starting diameter after the initial pressure increase 

suggest that it is stretched. 

A typical set of pressure-radius curves for a 1st order branch from the lateral cecal 

mesenteric artery is shown in Figure 5.2.  The vessels showed some hysteresis and in 

the second and third cycles did not return to the starting radius, although the 
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maximum radius remained the same throughout.  Stress and strain were calculated 

from these curves; a typical example of the stress-strain curve is shown in Figure 5.3.  

During experiments, the arteries were pressurised to approximately 45 mmHg; the 

incremental elastic modulus at this pressure was 260 ± 46 mN/mm2.  This is much 

higher than for the large vessels, which had incremental elastic moduli a factor of 10 

smaller than this. 

 

Figure 5.3 Typical stress-strain curve for a 1st order branch mesenteric artery section; the mean 

level of wall stress during exposures to ultrasound is marked by the dotted line.  The incremental 

elastic modulus was calculated at this value. 

Histological characterisation 

Figure 5.4 shows images of 20 µm thick histological sections of small mesenteric 

arteries of the type used in these experiments.  The sections are stained with 

haematoxylin and eosin, cell nuclei appear dark pink or purple.  Photo a) shows a 

complete section under low magnification, the vessel wall is approximately 0.2 mm 

thick and the vessel appears to be in state of contraction as shown by the corrugations 

in the luminal surface.  Photo b) shows part of this section under higher magnification.  

The luminal surface is at the top of the image; folding of the endothelium can be seen, 

indicating contraction.  A thin layer of basement membrane can be seen below this, 
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then a regular arrangement of smooth muscle cell nuclei running circumferentially 

around the vessel wall.   

The number of smooth muscle cell nuclei per unit area was counted from images of 

histological sections to quantify the cell density in this tissue.  These arteries were 

found to have a cell density of 4810 ± 130 nuclei per mm2. 

  

Figure 5.4 20 µm histological sections of small mesenteric artery stained with haematoxylin and 

eosin, cell nuclei are stained dark purple; a) cross section through the vessel; b) section of vessel 

wall under higher magnification, cell nuclei can be seen stretching around the vessel wall. Bar = 100 

µm 

Vessel function tests 

Figure 5.5 shows a typical time course of vessel diameter induced by noradrenaline 

and acetylcholine.  The noradrenaline (1 µM) was added at time a marked on the axis; 

this induced vasoconstriction, causing a reduction in diameter of approximately 10% 

in this case.  Acetylcholine (1 µM) was added at time b marked on the axis; this 

induced vasodilatation which increased the vessel diameter quickly at first and then 

brought it slowly back towards the original diameter.  The time course of these 

responses was similar to the equivalent response in the carotid and large mesenteric 

arteries.  The change in wall stress was approximately 2.8 mN/mm2; this is an order of 

magnitude larger than the change in tension induced by the same test in the large 

arteries. 

b) a) 

Smooth muscle 
cell nuclei 

Endothelial 

cell nuclei 
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In this case, some spasming of the vessel was observed during relaxation, similar in 

time course and magnitude to that observed during relaxation of carotid and large 

mesenteric arteries. 

 

Figure 5.5 Typical time course of vessel diameter during vessel function test; noradrenaline was 

added to induce vasoconstriction at time a, acetylcholine was added to induce relaxation at time b.  

5.3.2 Response of small arteries to ultrasound 

Eight vessels were exposed to ultrasound for four minute periods at an acoustic power 

of 145 mW (exposure parameters as previously) in the open field configuration.  The 

vessel diameter showed no consistent changes during ultrasound exposure in either 

de-endothelialised or intact samples.  Some fluctuations were observed in the time 

course of the vessel diameter, but did not correlate with periods of ultrasound 

exposure and were mainly of a magnitude of less than the size of a pixel in the image.  

Changes in diameter of a few percent would be larger than the size of one pixel.   The 

results suggest that vessels from this location in this particular preparation either do 

not respond to ultrasound, or if they do the response was too small to be measured by 

this system.  Any response too small to measure here would be less than a 1% change 

in diameter. 

It was hypothesised that the lack of response in the vessels exposed to ultrasound 

without an absorbing layer in place may have been due to a lack of heating in the 
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vessel.  The vessels were approximately 1 mm in diameter with a wall thickness of a 

fraction of this.  Energy deposited in the tissue from the ultrasound beam would be 

able to escape easily and would be lost quickly from the thin wall, so heating to the 

same degree as that within the large arteries was unlikely.  It was hypothesised that 

introducing an absorbing mass close to the vessel could help replicate the heating 

conditions present in the large arteries.   

 

Figure 5.6 Typical response of vessel diameter during exposure to ultrasound for a period of 4 

minutes denoted by the dotted lines where a section of absorbing material was placed close to the 

vessel to increase heating; the vertical black line illustrates the size which corresponds to 1 pixel on 

the images of the vessel. 

Three vessels were exposed to ultrasound for four minute periods at an acoustic 

power of 145 mW with a section of absorbing material placed next to them.   A section 

of the Aptflex absorber (Precision Acoustic Ltd., Dorchester, UK) used to line the water 

bath was used as it is designed to be an effective absorber of ultrasound.  Again the 

vessel diameter showed no consistent changes during ultrasound exposure; increasing 

the temperature in this way had no measureable effect on the vessel diameter.  A 

typical trace of vessel diameter with time is shown in Figure 5.6.  Again some 

fluctuations were observed in vessel diameter, but they did not coincide with periods 

of ultrasound exposure.  The temperature rise measured with a thermocouple placed 
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at the vessel during ultrasound exposure was less than 0.1 °C in the open field and 

approximately 0.2 °C with the absorbing mass in place. 

5.3.3 Response of small arteries to temperature changes 

 

Figure 5.7 Typical response of vessel diameter during a period of rapid temperature increase of 

approximately 1 ˚C followed by cooling back to baseline temperature. On the top graph the vertical 

black line illustrates the size which corresponds to 1 pixel on the images of the vessel. 

Three vessels were mounted in the myograph and exposed to temperature changes of 

approximately 1 ˚C.  The vessel diameter extracted from the video capture files 

showed no consistent changes correlating with periods of increased temperature in 

either intact or de-endothelialised vessels.  Again fluctuations did not correlate with 

periods of increased temperature and were in most cases not of a magnitude large  

enough to be anything other than noise and artefact, i.e. they were not larger than the 

size of one pixel.  This can be observed on the trace of vessel diameter during a period 
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of temperature elevation and cooling shown in Figure 5.7; the accompanying 

temperature trace is also shown. 

The temperature changes induced here were larger than those measured during 

ultrasound exposure.  If a similar response to temperature was found in these vessels 

as in the large arteries then the corresponding diameter change would be easily 

measureable with this system.  No response was observed in these experiments 

suggesting that any response to temperature would be very small indeed. 

5.4 Discussion 

Experiments on small mesenteric arteries (diameter 0.5 ― 1mm) have shown no 

evidence that exposure to either MHz ultrasound or temperature changes of 

approximately 1˚C above baseline caused changes in vessel diameter.  These results 

are contrary to the findings in the large mesenteric arteries that these small arteries 

branch from and carotid arteries, in which exposure to ultrasound and temperature 

changes induced contraction.  The activity of all vessels used in these experiments was 

tested with noradrenaline and acetylcholine and were found to function in the 

expected manner.  The lack of response was therefore not caused by inactive tissue. 

Exposures of vessels to ultrasound in the myograph with an open field first showed no 

response.  The wall thickness of these vessels is small, approximately 0.2 mm, 

compared to the 1.5 to 2 mm wall thickness of the large vessels.  For this reason there 

would be little absorption of ultrasound in the wall so therefore little heating.  If a 

thermal response was to be generated then this would be unlikely under these 

conditions.  To increase heating around the vessel and help provoke a thermal 

response, a mass of absorbing material was placed in the beam, close to the vessel.  

This would absorb energy from the ultrasound beam and heat the vessel by 

convection during ultrasound exposure.  The temperature elevation at the vessel 

during ultrasound exposure in this configuration was comparable to the temperature 

rise measured at the tissue surface for a carotid artery ring in the focal region of the 

acoustic field.  A response was still not induced in this configuration.   
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In the carotid artery, relatively large changes in wall stress were induced by 

temperature changes of 1 to 2 ˚C.  Small vessels were exposed to temperature 

increases of this magnitude above baseline temperature to try to induce a more 

pronounced response.  No response was observed in this case either.  

Initially it was hypothesised that if a response was measured in these arteries that it 

may well be of greater magnitude than the response measured in large arteries.  

Indeed the density of smooth muscle cells was observed to be greater in these arteries 

than in the large mesenteric and carotid arteries.  The incremental elastic modulus of 

these vessels at the pressure they were under during these experiments was a factor 

of ten greater than for the large vessels tested in the previous chapter.  The vessels 

therefore have a greater stiffness, which may play a part in preventing diameter 

changes in the vessel, preventing a response to ultrasound or temperature changes 

appearing in this way.   

The myograph system designed for this study was capable of measuring diameter 

changes of equivalent magnitude.  The resolution of the system was approximately 7 

µm; if the change in artery diameter induced by ultrasound exposure or temperature 

changes was smaller than this then it would not be measured by this system.  This 

would represent a change in diameter of less than 1%, which is smaller than the 

equivalent change in wall stress measured in the carotid and large mesenteric arteries.  

It was expected that if these vessels did respond to ultrasound that their response 

would be of a greater magnitude and physiological significance. 

One possible reason for a lack of response in these vessels is the experimental 

preparation.  The vessels are dissected away from the surrounding fatty tissue.  The 

smooth muscle in this type of vessel is innervated and signals are transmitted between 

the cells to control vessel diameter.  Signals may be transmitted from the brain to 

increase blood flow in a particular vascular bed or organ for example.  When the tissue 

is dissected, clearly these nerves are severed.  The nerves will not be present in this 

preparation and the vessel may be unable to respond directly to ultrasound or 

temperature changes if there are no local sensors.  This seems an unlikely explanation 

as this preparation is widely employed successfully for a variety of applications.   
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Small arteries branching from the lateral cecal mesenteric artery were found not to 

respond to MHz ultrasound or temperature changes above the baseline.  As discussed 

previously, a lack of response in the vessels tested here does not rule out the 

possibility that vessels of a similar size from different vascular beds could respond to 

ultrasound and temperature changes.  Again a detailed investigation would be 

required to answer this question and it would be possible to extend this investigation 

to smaller vessels, the true resistance arteries and arterioles where the response may 

be different. 



 

160 

 

6 Ion channel experiments 

6.1 Introduction 

The response of the carotid and mesenteric arteries to ultrasound was associated with 

thermal effects, but the cellular sensing mechanisms involved in the response required 

clarification.  The cells must respond in some way to the small temperature elevation 

produced during ultrasound exposure and a signalling pathway is initiated which 

results in a contraction of the artery.  

The literature suggests that a temperature induced vasoactive effect is mediated by 

the action of potassium ion channels (inward rectifier, Ca2+-activated, ATP-sensitive) 

in the cell membrane (Mustafa and Thulesius 2005).  A series of experiments was 

therefore performed to ascertain the involvement of potassium ion channels in the 

response of these arteries to ultrasound in this study, as a first step towards 

understanding the cellular processes involved in the response. 

The signalling pathways within cells that lead to vasoconstriction involve calcium ions, 

as was discussed in Chapter 2 (Section 2.3.3).  When depolarisation of the cell 

membrane occurs, either during stimulation of an action potential or a graded 

depolarisation, voltage-gated sodium channels open to allow sodium ions to flow into 

the cell, causing further depolarisation.  Voltage-gated calcium channels also open and 

allow calcium ions to flow into the cell.  Potassium ion channels open in response to 

depolarisation and allow flow of potassium ions out of the cell, causing repolarisation.  

The increase in intracellular calcium concentration during depolarisation leads to 

vasoconstriction.  Intracellular calcium levels can also be raised by release of calcium 

ions from intracellular stores in the endoplasmic reticulum (calcium-induced calcium 

release).  During repolarisation, the voltage-gated channels will close again and 

calcium flow into the cell will cease.  The calcium ions will either be pumped back into 
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the sarcoplasmic reticulum for storage, or be pumped out of the cell causing reversal 

of the vasoconstriction.  It can be seen that inhibiting the function of the potassium 

channels would prevent repolarisation of the membrane and allow calcium ions to 

continue to flow into the cell, increasing the degree of vasoconstriction induced by a 

given stimulus.  Potassium ion channels also help to maintain resting tone; blocking 

them can also cause depolarisation from the resting state. 

To obtain more insight into the ion channel activity during the response of blood 

vessels to ultrasound and temperature changes, two groups of experiments were 

performed.  Mustafa and Thulesius showed that the vasoconstriction induced by a 

small degree of temperature elevation above body temperature was enhanced by a 

range of potassium channel blockers.  They concluded that the inhibition of potassium 

channel activity was therefore the mechanism.  In the first group of experiments 

presented in this chapter, this possibility was explored by investigation of the effect of 

potassium ion channel blocking on the response to ultrasound.  In the second group of 

experiments presented here, changes in intracellular calcium concentration associated 

with temperature changes were investigated using calcium sensitive fluorescent dyes.  

As stated above, vasoconstriction is induced by increases in intracellular calcium, so 

increases would be expected during periods of elevated temperature which induce 

vasoconstriction.  This observation would provide further confirmation of ion channel 

inhibition and membrane depolarisation. 

6.2 Effects of potassium ion channel blocking on response 

to ultrasound 

Experiments were performed on rings of equine carotid artery to explore the 

possibility that the vasoconstriction induced in them by ultrasound, is mediated by the 

inhibition of potassium ion channels.  Barium chloride, a potassium channel blocker 

that is specific to potassium inward rectifier channels at low concentrations, was used 

in these experiments.   

The function of the inward rectifier channels is to help maintain resting vessel tone 

and to help return the cell to resting potential following membrane depolarisation.  
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Inhibition of the inward rectifier channels prevents this function, promoting 

depolarisation of the membrane, which allows more calcium to flow into the cell.  If 

the response to ultrasound was mediated by inhibition of inward rectifier potassium 

channels, then inhibition of these channels by a chemical blocker will serve to enhance 

the response.  If the response to ultrasound was not mediated by these ion channels 

then blocking them would provide no change in the response.  At the concentration 

used, barium chloride should have no effect on the basal tone of the vessels. 

6.2.1 Experimental methods 

Tissue acquisition 

Two groups of experiments were performed in this part of the study; one using 12 

sections taken from 5 equine carotid arteries.  A second group of 4 experiments was 

performed using sections from 2 equine mesenteric arteries.  The arteries were 

acquired from a local abattoir and dissected as described in Section 4.2.1.  

Vessel mounting and set up 

Artery rings were mounted on two stainless steel rods within a thin polythene 

container inside the main water bath, which was filled with Krebs-Ringer buffer as 

described previously (see Figure 3.2).  The polythene container was necessary to 

contain the potassium channel blocker and to enable flushing of the medium.  The 

artery rings were mounted and left to equilibrate for 5 minutes before an initial wall 

stress was applied by moving the steel supports apart.  The rings were left for 

approximately one hour to equilibrate under constant strain. 

Ultrasound exposure protocol  

After equilibration, each artery section was subject to a minimum of 3 periods of 

ultrasound exposure lasting 4 minutes each, with a recovery period of at least 15 

minutes between exposures.  Continuous wave ultrasound at an acoustic power of 145 

mW was used.  Following this set of exposures, a 4 µM dose of BaCl2 (Sigma Aldrich) 

was added to the bath.  A further set of at least three exposures to ultrasound was 

made.  Increases in tension during ultrasound exposure before and after the addition 

of BaCl2 were compared. 
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6.2.2 Results 

Carotid arteries 

Experiments were performed on 12 artery rings from 5 carotid arteries; of the 12 data 

sets obtained one was discarded as the tissue failed to respond to ultrasound.  An 

initial wall stress of 4.0 ± 1.8 mN/mm2 was applied to the vessels, wall stress then 

decreased by 79 ± 13 % over a period of approximately 45 minutes, before steadily 

increasing while under constant strain, as described for artery rings in Chapter 4.  

Again all exposures were performed during the steady increase in wall stress. 

 

Figure 6.1 Typical response to 4 minute ultrasound exposure before ( ) and after ( ) the 

addition of BaCl2 to a concentration of 4 µM in the bath, the dotted lines show the beginning and 

end of the period of ultrasound exposure.  Wall stress increased during ultrasound exposure both 

before and after the addition of BaCl2; the magnitude of the change was increased in the presence of 

BaCl2.  

Exposure to ultrasound induced reversible contraction of carotid artery, both before 

and after the addition of barium chloride to the medium.  The addition of barium 

chloride had no effect on basal vessel tone in the absence of ultrasound exposure.  The 

time course of the response to ultrasound and recovery after exposure were not 

affected by the addition of barium chloride, but the magnitude of the response was 

increased as can be seen from the set of typical response shown in Figure 6.1.  The 
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increase in tension induced by ultrasound after the addition of 4 µM barium chloride 

was larger than the tension increase before; the data are shown in Figure 6.2.   

 

Figure 6.2 Results are shown from 11 out of 12 experiments performed on carotid artery sections; 

the top graph shows mean response to ultrasound before , and after  the addition of barium 

chloride for each section; error bars show the standard deviation of the means,  shows a P-value of 

≤0.1,  shows a P-value of ≤0.05.  The bottom graph shows the ratio of the mean wall stress before 

and after BaCl2 addition for each data set; error bars show error computed from the standard 

deviation of the means shown in the top graph.   shows the mean of the ratios over all data sets; 

 shows ± 1 standard deviation of the mean 
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The increase was 42 % on average, with increases of more than 125% observed in 

some cases.  An increase in the mean response to ultrasound was observed after the 

addition of BaCl2 in 9 out 11 cases, in 3 of these 9 the increase was not significant.  

Again there were large variations in the magnitude of the response of individual 

samples with standard deviations up to 50% of the mean in some cases.  Student’s T-

tests were performed on all data sets to confirm the significance of the increases in 

response; p-values of less than 0.1 were obtained in 8 out of 11 cases (≤0.05 in 4 of 

these).   

Mesenteric arteries 

Experiments were performed on four artery rings from two mesenteric arteries; of 

these four data sets three were discarded due to high levels of noise in the data, failure 

of the artery to relax and reach the required state for exposures or failure of the vessel 

to respond to ultrasound.  In the experiment that yielded useful data, an initial wall 

stress of 2.7 mN/mm2 was applied.  The wall stress then decayed by 95% over a 

period of 100 minutes, before steadily increasing while held under constant strain.  

Exposures to ultrasound were performed during the steady increase in wall stress. 

 

Figure 6.3 Typical response to 4 minute ultrasound exposure before ( ) and after ( ) the 

addition of BaCl2 to a bath concentration of 4 µM, the dotted lines show the beginning and end of 

the period of ultrasound exposure. Wall stress increased during ultrasound exposure both before 

and after the addition of BaCl2; the magnitude of the change was increased in the presence of BaCl2.  
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Exposure to ultrasound induced contraction of the mesenteric artery ring both before 

and after the addition of the ion channel blocker; typical responses are shown in 

Figure 6.3.  The addition of BaCl2 had no effect on vessel tone and the behaviour was 

similar to that of the carotid artery rings.  The data obtained from this sample had a 

much greater level of noise than seen in the carotid artery data; this was characteristic 

of the data obtained during all of these experiments on mesenteric artery and was one 

of the reasons that most of the data was not useful.   

The data from this experiment is shown in Figure 6.4.  On average the increase in 

response was 47 ± 60 % over all exposures of this artery ring; the error in this figure is 

very large but a Student’s T test showed that the difference between the two groups 

was significant (p ≤ 0.1).  This result agrees with the results obtained with carotid 

artery rings, but further data is needed in order to confirm this finding.   

 

 

Figure 6.4 Results are shown from 1 out of 4 experiments performed on mesenteric artery sections; 

the graph shows mean response to ultrasound before , and after  the addition of barium 

chloride; error bars show the standard deviation of the means. 
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6.2.3 Discussion 

It has been demonstrated that inhibition of inward rectifier channels increased 

ultrasound induced contraction in the carotid artery.  Preliminary results also 

indicated this effect may be present in the lateral cecal mesenteric artery. 

The major effect of ion channel inhibition was to increase the magnitude of the 

response due to increased flow of calcium into the cell during depolarisation of the cell 

membrane.  The inward rectifier channels help to maintain resting membrane 

potential; by blocking them with BaCl2, the cell was prevented from returning to the 

rest state by a greater extent than during ultrasound exposure alone.  The basal wall 

stress was not affected by the addition of the ion channel blocker; inhibition of ion 

channels elicited an effect only in conjunction with ultrasound exposure. 

The results presented here agree with the findings of Mustafa and Thulesius (2005).  

In their study, vasoconstriction was induced by temperature changes and was found to 

be mediated by inhibition of potassium channel activity in the cell membrane.  

Inhibition of other potassium ion channels also affected the response in their study; 

this effect could be explored in further work on the involvement of ion channel activity 

on the response of artery rings to ultrasound.  These results provide further evidence 

that the response of carotid arteries to ultrasound is thermally mediated.  It seems 

likely that this result will follow in large mesenteric arteries but further investigation 

is required to confirm this.  The results presented for mesenteric arteries here are 

preliminary and no solid conclusions can be drawn from them.  The response of 

carotid and large mesenteric arteries to ultrasound was similar (Chapter 4); it seems 

likely that the cellular mechanism would be the same.  However, ion channel 

populations are known to vary between tissue types, and so it is possible that there 

may be some differences between the ion channel activity involved in the response in 

the two vessels.  Several types of potassium ion channel were implicated in 

vasoconstriction due to hyperthermia (Mustafa and Thulesius 2005); their relative 

contributions to the response could differ between vessel types.  Further investigation 

would be required to confirm this effect in other types of blood vessels, from other 

large conducting arteries down to the resistance arterioles and capillaries.   
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Further work would be required to investigate the influence of activity of other types 

of ion channels on the response.  This result suggests that it is possible that responses 

to ultrasound may occur in many cell and tissue types, as potassium ion channels are 

present in most cells.  These responses could manifest themselves in a variety of ways 

not limited to contraction of smooth muscle.  As discussed in Chapter 2, it has been 

observed in many studies on isolated cells that ultrasound exposure can elicit 

responses ranging from altered gene expression to increased cell proliferation.  The 

response to ultrasound in this study was thermally mediated, so responses of this type 

could be similarly induced by heating from sources other than ultrasound, such as 

microwave and RF radiation.  It is not known exactly how temperature influences ion 

channel activity.  One possibility is that the temperature change causes changes in the 

lipid bilayer of the cell membrane.  The membrane lipids exist in a state close to the 

phase change between liquid and solid under normal conditions.  The liquid crystal 

nature of the lipid bilayer allows movement of the transmembrane proteins and 

different lipids.  The lipids are important in regulation of the functions and 

conformational changes of the ion channel proteins, which take place during transport 

of substances and opening and closing of gated channels.  If the lipid bilayer were to 

undergo a phase change then it seems likely that ion channel activity could be affected. 

6.3 Experiments on intracellular calcium activity 

In order to investigate further the involvement of ion channels in the response of 

arteries to ultrasound exposure and temperature changes, experiments were 

performed using a calcium sensitive fluorescent dye.  Contraction of blood vessels is 

instigated by increases in intracellular calcium levels.  Using a calcium sensitive 

fluorescent dye, which became more fluorescent in the presence of calcium, these 

changes were visualised and recorded.  The increases in intracellular calcium 

concentration associated with contraction of the vessel were expected to result in 

increased fluorescence intensity. 

While ultrasound induced contraction was confirmed in the carotid and large 

mesenteric arteries, no response was measured in the small mesenteric arteries.  The 

experiments described in this section were performed to help confirm whether the 
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lack of response was due to lack of heating by ultrasound absorption in these small 

vessels or because the ion channel population which mediated the response was not 

present.  Intracellular calcium concentration during temperature changes was 

investigated in the carotid, large lateral cecal mesenteric artery and small 1st order 

branches of this artery.   

For practical reasons, including the short working distance of the microscope lenses, it 

was not feasible to expose the vessels to ultrasound and perform fluorescent imaging 

simultaneously.  Time constraints prevented the development of more specialised 

equipment that would have enabled this procedure; this could be achieved using long 

working distance lenses and a suitable water bath and tissue support system.   For this 

reason, blood vessels were instead exposed to temperature changes since it has been 

shown in this thesis that the response of blood vessels to ultrasound was thermally 

mediated. 

6.3.1 Experimental set up and methods 

Blood vessels were collected as described for the previous experiments.  Large blood 

vessels were dissected away from the surrounding tissue and cut into sections of 

approximately 1.5 cm in length.  Once dissection was complete, the vessels were 

stored in Krebs-Ringer buffer at 4 ˚C until needed.   

The dye used in these experiments was Fluo-4 (AM form, cell permeant; Invitrogen 

Ltd. Paisley, UK).  This dye was chosen as the excitation and emission wavelengths 

were well matched to one of the filters available on the microscope which was used 

here and the fluorescence intensity of the dye was relatively high compared to other 

available dyes at a given concentration or excitation intensity (Molecular-Probes 

2010).  The dye also did not require calibration; it could be used to obtain relative 

changes in calcium concentration.  Aliquots of Fluo-4 (50 µg) were removed from the 

freezer and dissolved in a small amount of DMSO which was then diluted with Krebs-

Ringer buffer to make a 5 µM solution.  Sections of large artery were incubated in this 

solution for 3.5 hours at room temperature, then transferred to fresh buffer and left 

for 30 minutes before use.  Small vessels were incubated for 1.5 hours at room 

temperature in Fluo-4 solution then transferred to fresh buffer and left for 30 minutes 
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before use.   A shorter incubation time was sufficient for these vessels due to the much 

smaller thickness of the vessel wall.  This protocol was based on those used by other 

investigators using this type of dye, such as Lamont et al. (2003; 2006). 

Ring sections of carotid and large mesenteric artery with a thickness of approximately 

2mm were cut using a razor blade and pinned out on a small cork mount attached to 

the base of a large Petri dish.  Some square sections were cut from the vessel and 

mounted so the endothelium could be viewed en face.  It was found that the 

fluorescence intensity decreased very rapidly in these sections, which may have been 

due to leaching of the dye from the tissue.  For this reason, only ring sections were 

used in these experiments.  Sections of small mesenteric arteries of approximately 4 

mm in length were positioned on the cork mount and held in place with pins. 

 
Figure 6.5 Schematic diagram of apparatus used for fluorescent calcium imaging experiments; 

artery sections were pinned out on a cork mount in a large Petri dish heated by an immersed 

radiator.  Tissue was imaged with a fluorescent microscope and temperature was recorded with a 

thermocouple placed close to the tissue. A heated metal block was added to the bath to increase 

temperature rapidly. 

The Petri dish was filled with Krebs-Ringer buffer and heated to 37 ˚C by exchange 

with a radiator and plastic tubing fed by an external water bath.  This assembly was 

placed on a thermally insulating panel under a Leica fluorescent microscope (DM LFS, 

Leica Microsystems Wetzlar GmbH, Wetzlar, Germany); a diagram of the apparatus is 

shown in Figure 6.5.  Imaging was performed under a x20 magnification lens with 
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filters allowing excitation at 450 - 490 nm and emission at 515 nm and above; the 

absorption and emission wavelengths of Fluo-4 were 488 nm and 520 nm 

respectively.  Images were recorded every 5 seconds with a Moticam 2000 digital 

microscopy camera and Motic Images Plus digital microscopy software suite (Motic, 

Barcelona, Spain).     

Image capture was initiated once the sections were mounted and visualised; it 

continued for approximately 10 minutes with a constant temperature before a brass 

block sealed in clingfilm of approximately 1cm x 1cm x 3cm, heated in boiling water, 

was added to the dish to induce a temperature increase.  Temperature was recorded 

throughout by a thermocouple placed close to the tissue in the bath.  Image capture 

was continued until the temperature returned to baseline over a period of 

approximately 15 minutes.  After a further few minutes noradrenaline was added to a 

dish concentration of 1 µM, to check the activity of the vessel and provide a reference 

change in fluorescence related to calcium concentration.  Image capture was ceased 

approximately 5 minutes after this.  

After each experiment, images were post processed using Octave (GNU Octave, 

released under GNU GPL).  The images were imported and stored as a stack in a 

structured array.  Five square regions of interest were defined, a central region and 

one towards each corner of the image.  These regions provided a sample of different 

regions across the tissue, separated by approximately 100 µm.  The average intensity 

level from each region of interest, from each image was calculated and stored.  The 

mean intensity value over the whole of each image was also calculated and stored.  

The time course of the mean fluorescence intensity levels was then examined.   

This procedure was repeated on 8 carotid artery sections, 8 large mesenteric artery 

sections and 6 small mesenteric arteries.  The procedure was also repeated on undyed 

tissue to examine the possibility of artefacts in the time course of fluorescence; the 

time course of fluorescence was observed in tissue held at a constant temperature. 
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6.3.2 Results 

Carotid and large mesenteric arteries  

Image capture was initiated soon after the Fluo-4 loaded tissue was mounted and the 

vessel wall was brought into focus.  Fluorescence intensity was initially high but 

decayed in a logarithmic fashion, rapidly decreasing at first before continuing to fall 

more slowly.  Fluorescence intensity fell by half over the first 5-7 minutes of recording.  

In control tissue, this decrease in intensity continued throughout recording.  Artery 

rings that were not loaded with Fluo-4 exhibited auto-fluorescence from the elastic 

tissue, although at a lower level than loaded tissue.  The decreases were probably due 

to photo-bleaching of the Fluo-4 and elastin in the vessels and leaching of the dye from 

the tissue, which could be significant at these temperatures.  

Comparison of the intensities from each region of interest and the image as a whole 

showed that the time course and magnitude of fluorescence intensity was in most 

cases similar over the whole image.  This confirmed that increases in fluorescence 

intensity were true, not due to movement of the tissue and the introduction of 

unbleached areas into the image.  This also showed that there were no major 

differences between calcium activity in different regions of the media of the artery 

wall within the image (image size approximately 350 x 250 µm). 

After the initial fall in intensity at constant temperature, the temperature was raised 

rapidly by 2.1 ± 0.9 ˚C in carotid arteries and 2.7 ± 0.9 ˚C in large mesenteric arteries, 

which induced a slight increase in fluorescence in most cases, which began at 

approximately the time when the temperature was at a maximum.  When the response 

had stabilised, noradrenaline was added which caused a much larger increase in 

fluorescence intensity.  The data from an experiment on a carotid artery ring which 

exhibits this behaviour is displayed in Figure 6.6. 

In order to extract a value for the increase in intensity due to each event, a log function 

was fitted to the initial fluorescence decay.  The function was then subtracted from the 

whole data set to provide a baseline; this would also remove any effect of auto-

fluorescence and bleaching on the data.  The fluorescence ratio, f/f0 was then 

calculated; f is the measured fluorescence intensity at a particular time and f0 is the 
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intensity predicted by fitting the initial section of the curve, i.e. the predicted value of 

intensity if no temperature elevation or noradrenaline induced contraction took place.   

 

 

Figure 6.6 Typical time course of fluorescence intensity for Fluo-4 loaded mesenteric artery ring 

during temperature elevation and noradrenaline induced contraction.  Temperature increase of 

approximately 1.5 ˚C (in this case) was initiated at time a, noradrenaline (1 µM) was added at time 

b; the dotted line shows the baseline logarithmic decay.  The time course of the temperature rise is 

shown in the lower graph. 

Increases in fluorescence induced by temperature elevation and noradrenaline are 

then shown by values of f/f0 greater than 1.  Figure 6.7 shows the time course of f/f0 

for the data shown in Figure 6.6; the time course of the bath temperature is also 

shown here.  After the rapid temperature increase, the temperature tended to fall 

slowly to a lower level than the initial stable temperature.  It was extremely difficult to 
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maintain a very stable temperature in the bath and once the metal block had been 

added to produce a temperature rise, it could not be removed until the experiment had 

finished.  The presence of the metal block, which would act as a heat sink affected the 

bath temperature.  Any changes in temperature during the periods of ‘stable’ 

temperature were much smaller than the large temperature increase created by the 

metal block. 

  

 

Figure 6.7 Typical time course of changes in fluorescence intensity in Fluo-4 loaded mesenteric 

artery ring during temperature elevation by approximately 1.5 ˚C and noradrenaline induced 

contraction.  The time course of the ratio of measured fluorescence intensity to predicted baseline 

intensity is shown.  Temperature increase of approximately 1.5 ˚C was initiated at time a, 

noradrenaline (1 µM) was added at time b.  The time course of the bath temperature is also shown 

(lower graph). 

From the figure, an increase in fluorescence intensity can be observed following 

temperature elevation. The temperature reached its peak value about 1 minute after 

the hot metal block was added to the bath.  The increase in fluorescence intensity 
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began at approximately this point and was steady over the next four minutes, during 

which time the temperature was rapidly changing.  Following this, the intensity 

continued to increase at a slightly lower rate.  This period corresponded with cooling 

of the bath back to the baseline temperature.  Noradrenaline (1 µM) was then added 

(at time b in the figure), inducing a rapid increase in fluorescence intensity, which 

lasted for approximately 2.5 minutes before levelling off. 

For carotid artery rings, f/f0 increased from 1 to 1.4 ± 0.3 on average due to the rise in 

temperature of 2.1 ± 0.9 °C.  Noradrenaline induced a further rise of 0.1 in f/f0 bringing 

it to 1.5 ± 0.5 on average.  On average, for mesenteric artery rings, f/f0 increased from 

1 to 1.3 ± 0.2 due to the rise in temperature of 2.7 ± 0.9 °C, and by a further 0.8 to 2.1 ± 

0.8 on average after noradrenaline induced contraction.  The increase in fluorescence 

due to temperature elevation was similar for carotid and mesenteric arteries.  In the 

mesenteric artery rings the increase in intensity due to noradrenaline was much larger 

than the increase due to temperature rise, although the results in Chapter 3 indicate 

that the change in force was similar in both cases.   

Small mesenteric arteries 

Similarly to experiments on the large arteries, image capture was initiated soon after 

mounting of Fluo-4 loaded tissue.  The fluorescence intensity had a similar time 

course, with rapid initial decay in a logarithmic fashion.  Fluo-4 loaded control curves 

also exhibited the same time course of fluorescence intensity; un-dyed tissue exhibited 

auto-fluorescence which also decreased with time.   

During the first 10 minutes of image capture, the temperature was held at a constant 

level, before being increased by 2.6 ± 1.3 ˚C, then allowed to cool slowly back to 

baseline temperature.  During this period the intensity continued to decrease.  A dose 

of noradrenaline (1µM) added to the bath induced an increase in fluorescence 

intensity.  A typical time course of fluorescence intensity is shown in Figure 6.8.   
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Figure 6.8 Typical time course of fluorescence intensity for Fluo-4 loaded length of small 

mesenteric artery during temperature elevation and noradrenaline induced contraction.  

Temperature increase of approximately 1.5 ˚C was initiated at time a, noradrenaline (1 µM) was 

added at time b; the dotted line shows the baseline logarithmic decay.  The time course of the bath 

temperature is also shown (lower graph). 

As for the large arteries, a log function was fitted to the initial section of the curve and 

subtracted from the data to set a baseline.  The fluorescence ratio, f/f0, was calculated 

as described earlier; the data shown in Figure 6.8 was processed this way and is 

displayed in Figure 6.9.  The temperature during the experiment is shown in the lower 

graph in the figure.  The temperature rise (initiated at time a) elicited no change in 

intensity.  The data did not deviate from the function fitted to the initial section of the 

data.  When noradrenaline (1 µM) was added (at time b) an increase in fluorescence 

was observed, from f/f0 = 1 to 1.3 ± 0.2 on average.  Each of the vessels tested 
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responded to noradrenaline, so their activity was confirmed, but none exhibited 

changes due to the increase in temperature. 

 

Figure 6.9 Typical time course of changes in fluorescence intensity in Fluo-4 loaded length of small 

mesenteric artery during temperature elevation by approximately 1.5 ˚C and noradrenaline 

induced contraction.  The time course of the ratio of measured fluorescence intensity to predicted 

baseline intensity is shown.  Temperature increase of approximately 1.5 ˚C was initiated at time a, 

noradrenaline (1 µM) was added at time b.  The time course of the bath temperature is also shown 

(lower graph). 

These results suggest that ion channel activity is not modified by changes in 

temperature in these small arteries.  This agrees with previous results which showed 

that the diameter of these vessels is not affected by exposure to ultrasound or 

temperature changes.  
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6.3.3 Discussion 

Large carotid and mesenteric artery rings exposed to temperature increases exhibited 

similar increases in intracellular calcium concentration.  Calcium concentration 

measured by fluorescence intensity of a calcium sensitive dye increased during a rapid 

temperature change and continued slowly following this.  The time course was similar 

in both types of blood vessel and was characterised by a more rapid increase during 

the first few minutes, as the temperature was increasing, followed by slower increase 

as the temperature returned to baseline.  The magnitude of the changes was similar in 

both types of vessel on average.  As was outlined in the introduction to this chapter, an 

increase in intracellular calcium ion concentration is associated with contraction of 

blood vessels.  This increase is induced by opening and closing of several types of ion 

channels in the cell membrane in response to a stimulus.  In this case the stimulus was 

a change in temperature, which affected the activity of some of these ion channels, 

leading to an influx of calcium into the cells.  The results presented in this section 

therefore provide further evidence that ion channel activity is influenced by changes 

in temperature, leading to vasoconstriction.  In these experiments a relatively large 

temperature change was employed, mainly to ensure an easily measureable response 

was elicited.  It seems likely that similar changes but on a smaller scale could be 

induced by smaller temperature changes, of the sort induced by exposure to 

ultrasound.  

There were large variations between the responses of different artery rings, which 

were expected in light of the variation in previous results.  Some variation may have 

been due to differences in the location of the imaged area with respect to the luminal 

surface; however, no large differences were observed between locations.  For some 

rings, this region may have been further into the media than for others.  Movements of 

the vessel wall after mounting, as the rings acclimatised to the bath temperature 

prevented observation of regions very close to the luminal surface and also made 

precise positioning difficult.  There were also difficulties in focusing, as at the 

magnification used it was difficult to find recognisable features.  Other variations 

originated from differences in the state of the rings, for example, the length of time 

between harvesting the tissue, dissection, Fluo-4 loading and mounting.  The Fluo-4 
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loading procedure was standardised as much as possible to reduce differences and the 

data was processed in a way that would eliminate dependence on background 

fluorescence intensity. 

The images were analysed using five regions of interest, as well as the whole image.  

The time course of intensity from each region and the whole image was compared and 

found to be very similar.  Errors in the results due to significant movement of the 

vessel were therefore unlikely as the introduction of unbleached areas into the image 

would affect the time course of each region differently. 

No significant changes in intracellular calcium concentration were detected in small 

vessels during a temperature change, but an increase was induced by noradrenaline, 

demonstrating cellular viability.  The temperature change was of a similar magnitude 

to that used in the myograph experiments in Chapter 5.  The preparation used here 

was also the same but mounting was different, in this case the vessels were not 

pressurised.  The factors which may underlie the lack of response of these vessels 

discussed in relation to the experiments in Chapter 5, such as the preparation, wall 

stiffness and ion channel populations, also apply here.  If the ion channel population 

that is sensitive to temperature changes is not present, then there would be no effect 

on intracellular calcium concentration.  In Section 6.2.2, results were presented that 

showed that the response of large arteries to ultrasound was mediated by inhibition of 

inward rectifier potassium channels.  It is possible that these ion channels do not exist 

in these smaller vessels.  These ion channels help the cell membrane to return to 

resting potential after depolarisation.  They are inhibited during exposure to 

ultrasound, by some thermal mechanism.  This leads to an influx of calcium into the 

cell, hence we can measure increased intracellular calcium concentration.  If these ion 

channels are not present then ultrasound exposure or thermal stimulation may not 

lead to an influx of calcium into the cell.    

It was shown in this chapter that the response of carotid and large mesenteric arteries 

to ultrasound was mediated by inhibition of inward rectifier potassium channels.  In 

carotid and large mesenteric arteries it was also found that an increase in temperature 

caused changes in ion channel activity that led to increases in intracellular calcium 

concentration.  In smaller mesenteric arteries, no such change in intracellular calcium 
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was observed during periods of elevated temperature.  This finding agreed with the 

results obtained using these vessels in Chapter 5, which showed that exposure to 

ultrasound and temperature changes did not induce vasoconstriction.   
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7 Discussion, conclusions and 

further work 

he results presented in this thesis have shown that in rings of carotid and large 

lateral cecal mesenteric artery in vitro, exposure to both pulsed and continuous 

wave 3.2 MHz ultrasound at acoustic powers up to 145 mW induced contraction.  Wall 

stress in the arteries increased by up to 1.5% in carotid arteries, by up to 2% in 

mesenteric arteries during the exposure and returned to baseline approximately 10 

minutes after the exposure period.  The response was reproducible over a period of 

several hours.  The response was not endothelium-dependent and was not 

significantly different when induced by pulsed ultrasound at the same total acoustic 

power.  The mechanism of this response was thermal in nature and was associated 

with inhibition of inward-rectifier potassium ion channels in the cell membrane, 

channels that would otherwise help to return the cell to resting membrane potential.  

The thermal nature of the response was confirmed by investigation of the response of 

artery rings to increases in temperature above baseline; this also induced contraction.  

Intracellular calcium activity was observed during temperature increases; increases in 

intracellular calcium corresponding with these temperature elevations were observed.  

This confirmed that increases in temperature stimulated changes in ion channel 

activity, which led to increased intracellular calcium and contraction of the muscle 

fibres. 

The response of smaller arteries to ultrasound exposure was investigated using 1st 

order branches of the lateral cecal mesenteric artery.  These arteries were selected to 

have diameters of between 0.5 and 1 mm, as such they were perhaps slightly larger 

than the true resistance arteries.  Exposure to continuous wave 3.2 MHz ultrasound at 

an acoustic power of 145 mW did not induce contraction in an open field.  Neither was 

a response induced when an absorbing panel was situated close to the vessel to 

T 
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increase heating during exposure, to a level comparable with that during exposure of 

large arteries.  The response of these arteries to increases in bath temperature above 

baseline was also investigated; no change in diameter was observed during the 

periods of temperature increase.  Intracellular calcium activity was observed during 

increases in temperature; no significant increases were observed corresponding with 

periods of elevated temperature.  It therefore appears that these small arteries do not 

respond to ultrasound, or changes in temperature, in the same way as the carotid and 

large mesenteric arteries.  

In this section, these results will be discussed in several different contexts and further 

research possibilities will be highlighted.  First, the thermal nature of the response and 

the interaction with tissue function will be discussed.  This will be followed by a 

discussion of the cellular processes involved in the response, mainly ion channel 

activity in the cell membrane.  The presence of the response in different arteries in 

vitro, the possibility of in vivo effects and the likelihood of a similar response occurring 

during diagnostic ultrasound examinations will be discussed.  

Thermal nature of  the response 

The response of the large arteries to ultrasound was thermal in nature.  The exact 

mechanism of the thermal interaction with the cells is not known, other than that the 

increase in temperature affects the activity of the ion channels.  Increases in 

temperature will increase the rate of diffusion of substances and the rate of 

biochemical reactions, which could alter ion channel activity.  As the temperature 

increases further, biochemical reactions will be impaired as enzymes and other 

molecules begin to break down.  The action of vasoactive drugs is temperature 

dependent, as their function depends on binding of ligands to receptors and other 

chemical reactions.  So at slightly elevated temperatures, normal physiological 

functions may become exaggerated.  Changes in temperature may also affect the cell 

membrane, altering the mechanical properties of the lipid bilayer and the function of 

proteins with it.  

During exposure of arteries to ultrasound in this study, the cross section of the 

ultrasound beam at the focal region was smaller than the tissue cross section.  The 

whole tissue sample was not insonated.  From the heating profiles measured using the 

thermal test object in Chapter 3, it can be seen that there was some heating for a few 



7. Discussion, conclusions and further work 

183  

 

millimetres either side of the beam axis, which could have provoked a response.  It is 

not known whether only the insonated or heated parts of the artery ring produced a 

response during ultrasound exposure and whether the response in each area was 

proportional to the temperature rise there, or whether stimulation in one area caused 

a signal cascade to produce a response in the whole tissue.  It is known that the cells in 

visceral smooth muscle tissue can communicate with each other; they transmit nerve 

signals between them, so could transmit other signals.  It is also possible in this 

isometric configuration that contraction of some parts of the tissue could place other 

parts under strain, inducing further changes in tone due to a stretch-activated 

response.  This may be more likely in small arteries and arterioles which exhibit 

myogenic tone, where stretching caused by increased blood pressure induces 

increased muscle tone and contraction.  The spatial pattern of the response could be 

examined by mapping the intracellular calcium activity over the tissue during 

exposure to ultrasound, where the beam area is contained within the tissue.  If the 

response was localised, then the calcium concentration would be higher close to the 

beam axis.  If a response was induced in the whole tissue by a second signal 

transmitted from the insonated area, the intracellular calcium concentration would 

appear constant over the whole tissue. 

Involvement of  ion channels 

It was shown that exposure to ultrasound caused inhibition of the inward rectifier 

potassium channels, but it is not known which other channels, if any, are also affected.  

Mustafa and Thulesius (2005) showed that the activity of other types of potassium 

channels were also affected during contraction of the carotid artery by mild 

hyperthermia.  It therefore seems likely that other potassium ion channel populations 

would be involved in the response to ultrasound.  Further investigation is required to 

determine which ion channel populations are affected and how this affects the 

resulting membrane potential.   

All cell membranes contain ion channels, which are necessary for cell function.  

Potassium ion channels are common to all cells, but the populations are likely to vary 

in type and proportion.  In Chapter 2, evidence from the literature was presented on 

the effects of ultrasound on many different cell types; some of these were related to 

ion channel activity.  Although the mechanisms were not specified as thermal in many 
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of these studies, small temperature rises may have been possible.  It is therefore 

possible that ultrasound may interact with cell types other than smooth muscle and 

tissue types other than arteries, to produce responses by similar pathways.  These 

responses could be many and varied and would require wide ranging investigation.  

The response of smooth muscle to ultrasound was relatively easy to measure, as the 

cell functions to control vascular tone.  Other cell types may not exhibit such obvious 

and easily measurable transient changes.  In many cases, more subtle and longer term 

changes may be of interest, the nature of which may not be immediately obvious.  It 

could however, be argued that important responses to ultrasound would be changes in 

the function of cells that have a specific purpose, such as osteoblasts in bone 

formation, or cells from organs such as the liver, and that investigations should focus 

on these.  A range of intracellular signalling pathways are instigated by ion channel 

activity and the activity of other membrane proteins.  One example of this is the 

calcium pathway leading to smooth muscle contraction.  In different cell types, 

changes in membrane protein activity could lead to a variety of different signalling 

cascades and there is much scope for investigation of these pathways. 

Response in different arteries 

Although it may be possible that some of the effects observed in cells due to 

ultrasound have similar mechanisms to the responses measured in this study, no 

response to ultrasound was observed in this study in small arteries, which were 

branches of the large lateral cecal mesenteric artery.  There are physiological 

differences between the large elastic arteries, conducting arteries and small arteries.  

The flow in small arteries, resistance arteries and arterioles is more tightly controlled, 

to regulate local blood flow, than the flow in the large conducting arteries.  The 

response of the true resistance arteries and arterioles may also be different to the 

response of the 1st order branches from the lateral cecal artery used here.  Different 

responses to some vasoactive substances have been observed between the two vessel 

populations; this provides evidence that they may respond differently to the same 

stimuli.  The response measured in large arteries was shown to be related to the 

activity of inward rectifier potassium channels in the cell membrane.  If the ion 

channel population differs in these small vessels, then the mechanism which mediates 

the response may be absent and no change in diameter would be induced.  It is known 

that vessels from different locations in the circulation have different functions and 
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have varying amounts of control over local blood flow.  These vessels may simply not 

have the sensors which provoke the response.  Arteries of different sizes may be 

controlled differently by nerves, neurotransmitters and hormones.  It may therefore 

be interesting to investigate the response of small arteries in a small animal in vivo 

preparation, where these control systems are intact.   

The results shown here really relate only to the preparations used in these 

experiments; other vessels may behave similarly, but further investigation is required 

to confirm this.  The two large artery preparations used in this study exhibited similar 

responses to ultrasound.  Herrera et al. (2000) observed different responses due to 

cooling in the aorta and the renal artery, so it may also be possible that some arteries 

will respond differently to ultrasound than others.  It is also known that smooth 

muscle found in different tissues can react differently to a given agonist; a substance 

which induces relaxation in vascular tissue may produce contraction in gastric tissue.  

Smooth muscle cells in different vascular beds, vessels of different sizes, or even 

different parts of the same vessel may also respond differently to a particular stimulus.  

The reason for these differences could be related to ion channel populations, agonist 

receptors or other components of signal transduction further along the pathway 

(Somlyo and Somlyo 1994).  Because of these differences between tissues, it would be 

interesting to conduct a wide ranging investigation into the effect of ultrasound on 

arteries of different sizes and types, from different locations and from different 

animals.  This may be especially interesting and relevant in the arterioles and capillary 

beds, where changes in vascular tone could have greater physiological significance; a 

response in these tissues would be important where highly vascularised tissue is 

exposed to ultrasound.  The thermal nature of the response also makes it important to 

investigate the effects on tissue which is poorly perfused, where heat may not be 

dissipated effectively.  

Clinical implications 

It has been shown here that ultrasound in the diagnostic frequency and acoustic 

power range can cause contraction of blood vessels in vitro.  Further investigation is 

required to establish whether this effect would occur in vivo, during examinations 

such as peripheral vascular Doppler flow studies, in which blood vessels are placed at 

the focus of the beam.  The reversible nature of the contractions produced in this 



7. Discussion, conclusions and further work 

186  

 

study, suggest that the effect does not cause lasting damage to insonated blood vessels.  

As the increase in tension continues over several minutes, this may be another 

indication that exposure to ultrasound in diagnostic applications should be kept to a 

minimum and that the probe should not be held still for long periods of time.  

However, as the effect was found to be thermal in origin, heat dissipation by perfusion 

will diminish or prevent the response.  Conversely, vessels situated close to a strong 

absorber such as bone may be affected.  Temperature rises induced by exposure to 

ultrasound in this case are small and would be quickly dissipated in the body without 

raising the temperature of the body or organs within it.  Core body temperature is 

controlled remotely by the brain; it seems unlikely that the feedback mechanisms 

involved in this would be capable of responding to temperature changes on such small 

scales.  However, the effects of this response in vivo, where feedback systems are intact 

can not be determined from these results.  As previously mentioned, some insight into 

the effect of nervous control and hormones on the response may be gained from 

investigation of the response in an in vivo small animal preparation.  Another in vivo 

investigation that would be easy to perform, would be to measure blood flow in the 

capillaries in the nail bed.  The capillaries could be easily imaged using a long working 

distance light microscope.  For other in vivo studies, a method of measuring vascular 

tone and blood flow that wouldn’t affect the response is required; laser Doppler is a 

possibility. 

Large variations in the magnitude of the response were seen between artery rings.  

There were many factors that may have contributed to this variation, as discussed in 

Section 4.7.  Another factor which may have contributed could have been the age of 

the animal, which was not controlled in this study.  It is known that the arteries 

become stiffer with age; the tension applied by the connective tissue will be higher, so 

for a given change in smooth muscle tone, the vessel will contract less.  This factor 

would be important if a response was observed in vivo; the effects in a foetus where 

the blood vessels have a lower stiffness may be different to the effects in the elderly. 

The response of arteries to ultrasound was dependent on acoustic power and in this 

study, was within the range of acoustic powers used for diagnostic ultrasound.  If a 

response was to occur in vivo, in theory it could be induced by diagnostic exposures.  

However, in this study the positions of the tissue and focal region were fixed with 
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respect to each other and exposures lasted for 4 minutes.  In most diagnostic 

examinations, the transducer would not be stationary for long periods in this way, so 

contraction would not continue to any significant level.   

As discussed in Chapter 2, the FDA states that during diagnostic ultrasound 

examinations, the Thermal Index should not exceed 6 without justification.  

Theoretically, at this limit the acoustic power would be enough to raise the 

temperature of the tissue by 6 °C.  This is much larger than the temperature rise 

measured in the focal region in this study and it is possible that ultrasound equipment 

is being used in this way.  From measurements of the time course of heating and of the 

response in this study, it can be seen that the initial rate of temperature rise is high 

and the time over which this initial rate occurs is not dependent on the final 

temperature.  Where equipment is used with a TI of 6, the initial temperature rise 

could be of the order created in these experiments even when exposure time is short. 

7.1 Novel outcomes from this thesis 

This thesis has presented evidence of an effect of ultrasound on carotid and 

mesenteric arteries that was previously unknown.  Exposure to both continuous and 

pulsed wave ultrasound induced reversible vasoconstriction, the magnitude of which 

was dependent on acoustic power and was due to a thermal mechanism.  The response 

occurred by an endothelium-independent mechanism and was due to changes in ion 

channel activity in the cell membrane.  Inhibition of inward-rectifier potassium ion 

channels played a part in the response; fluorescent imaging of intracellular calcium 

confirmed that small temperature rises could influence ion channel activity.   Increases 

in intracellular calcium levels were induced leading to contraction of the arteries. 
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