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Abstract 

nvestigations into the safety of diagnostic ultrasound and mechanisms of therapeutic 

ultrasound have provided evidence of a number of cellular responses to ultrasound.  

These studies have mainly concentrated on cells in culture, while work on intact tissue 

employed mainly kHz ultrasound fields, although diagnostic and many therapeutic 

procedures are performed using MHz ultrasound.   Vascular tissue is known to respond to 

a variety of physical and chemical signals, and so arteries were used as a model system in 

this thesis to study the effects of MHz ultrasound in vitro.   

Rings of equine carotid and lateral cecal mesenteric artery exhibited reversible, repeatable 

contraction on exposure to both pulsed and continuous wave 3.2 MHz ultrasound at 

acoustic powers up to 145 mW.  Wall stress increased by up to 1.5% in carotid arteries 

and up to 2% in mesenteric arteries during exposure, and returned to basal levels after 

approximately 10 minutes.  Contraction was endothelium independent, and was not 

affected by changes in the pulsing regime.  The magnitude of contraction was dependent 

on the acoustic power, and the change in wall stress increased with increasing acoustic 

power in a linear fashion.  The acoustic power dependence suggested the response was 

thermally mediated and this was confirmed by investigation of the response of arteries to 

non ultrasound generated heating, which also induced contraction.  The effects of 

ultrasound and heating were also investigated in 1st order branches of the lateral cecal 

artery, as a model of a small artery.  No response was observed in either case. 

In order to determine the cellular basis of the response of carotid and mesenteric arteries, 

the involvement of potassium ion channels in the response was investigated using a 

potassium channel blocker. The response of arteries to ultrasound was increased by 

inhibition of inward-rectifier potassium channels, which would otherwise help to return 

the cell membrane potential to the normal level.  The change in wall stress was increased 

by 42% on average, confirming the involvement of these channels in the response.  

Contraction of arteries is mediated by an increase in intracellular calcium.  The ion 

channel activity during non ultrasound generated heating was examined further by 

observation of intracellular calcium concentration using a fluorescent calcium sensitive 

dye.  Increases in intracellular calcium were observed in carotid and large mesenteric 

arteries, which confirmed the thermal influence on ion channel function in these vessels. 

No such effect was observed in the smaller vessels.  
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Glossary of abbreviations 

ΔT  Change in temperature 

AIUM  American Institute of Ultrasound in Medicine 

ATP  Adenosine triphosphate 

BaCl2  Barium chloride 

CW  Continuous wave 

DMSO  Dimethyl sulfoxide 

EDHF  Endothelium derived hyperpolarising factor 

FDA  Food and Drug Administration  

ISPPA  Spatial-peak pulse-average acoustic intensity 

ISPTA  Spatial-peak temporal-average acoustic intensity 

LIPUS  Low intensity pulsed ultrasound 

MI  Mechanical Index 

NEMA  National Electrical Manufacturer’s Association 

NO  Nitric oxide  

Np  Nepers 

p-  Peak negative acoustic pressure 

p+  Peak positive acoustic pressure 

PVDF  Polyvinylidene fluoride  

ROS  Reactive oxygen species  

TI  Thermal Index 

TPx  Polymethylpentene 

TTO  Thermal Test Object 

US  Ultrasound 

VEGF  Vascular endothelial growth factor 


