THE EFFECTS OF EXERCISE-INDUCED MUSCLE DAMAGE
ON THE HUMAN RESPONSE TO DYNAMIC EXERCISE

Submitted by Rosemary C. Davies to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Sport and Health Sciences (May, 2010).

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

....................................(Signature)
Abstract

Exercise-induced muscle damage (EIMD) is a commonly experienced phenomenon, yet its effect on the human response to dynamic exercise is poorly understood. Therefore the intention of this thesis was to provide empirical evidence to advance the scientific knowledge and understanding of the phenomenon of EIMD; principally by investigating the physiological, perceived exertion and metabolic responses to the performance of dynamic exercise with EIMD. The eccentric, muscle-damaging exercise protocol employed for all four studies involved participants completing 100 squats performed as 10 sets of 10 repetitions with the load on the bar corresponding to 70% of the individual’s body mass. Measures of markers of muscle damage were taken before and after the eccentric exercise protocol in each of the four studies. The markers used were plasma creatine kinase activity, isokinetic peak torque and perceived muscle soreness. Cycling rather than running was used as the dynamic exercise mode in studies 1, 2 and 4 in order to avoid the confounding influence of alterations in gait subsequent to EIMD. The dynamic exercise in study 3 was performed inside a whole body scanner and was therefore limited to knee extension and flexion.

These four studies have provided novel insights into the influence of eccentric, muscle-damaging exercise on the human response to the performance of dynamic exercise. We have demonstrated for the first time that following EIMD, the enhanced ventilatory response to dynamic exercise is provoked by stimuli unrelated to the blood lactate response, and that this enhanced ventilation may provide an important cue to inform the perception of effort. Furthermore, we have shown that the reduced time to exhaustion observed following EIMD is associated with an elevated perception of exertion and increases in [Pi] during dynamic exercise. Finally, we have demonstrated that the \(\dot{\text{VO}}_2 \) kinetic response is unaltered during the transition to high intensity dynamic exercise. Changes in [HHb] kinetics indicate that compensatory mechanisms act to preserve blood-myocyte \(\text{O}_2 \) flux in the face of microvascular dysfunction, resulting in the unaltered \(\dot{\text{VO}}_2 \) observed across the rest-to-exercise transition.
List of contents

List of Figures 8
List of Tables 11

Chapter 1 Introduction
1.1 Introduction 13
1.2 Mechanisms of muscle damage 13
1.3 Muscle function following eccentric exercise 16
1.4 Dynamic exercise 17
1.5 Summary 17

Chapter 2 Review of literature
2.1 Introduction 24
2.2 Changes in skeletal muscle morphology 24
2.3 Indirect markers of muscle damage 26
 2.3.1 Muscle protein efflux 27
 2.3.2 Calcium homeostasis 28
 2.3.3 The inflammatory response 29
 2.3.4 Impaired metabolism 30
 2.3.5 Delayed onset muscle soreness (DOMS) 32
 2.3.6 Changes in strength 34
2.4 Muscle function following exercise-induced muscle damage 35
 2.4.1 Changes in optimal muscle length 36
 2.4.2 Low-frequency fatigue 37
 2.4.3 Alterations to neural control 38
2.5 The Repeated Bout Effect 41
2.6 Dynamic muscle function following exercise-induced muscle damage 44
 2.6.1 Wingate 30 s cycle test 44
 2.6.2 Sprint performance 45
 2.6.3 Vertical jump tests 46
 2.6.4 Endurance exercise 48
2.7 Human response to dynamic exercise 49
2.7.1 Oxygen uptake

2.7.2 Oxygen uptake kinetics and muscle oxygenation

2.7.3 Metabolic responses to dynamic exercise

2.7.4 Ventilatory responses to dynamic exercise

2.7.5 Perception of effort during dynamic exercise

2.8 Conclusions

Chapter 3 Common Methods

3.1 Introduction

3.2 Familiarisation

3.3 Eccentric, muscle-damaging exercise protocol

3.4 Markers of muscle damage

3.4.1 Creatine Kinase activity

3.4.2 Perceived muscle soreness

3.4.3 Isokinetic peak torque

Chapter 4 The effect of exercise-induced muscle damage on ventilatory and perceived exertion responses to moderate and severe intensity cycle exercise

4.1 Abstract

4.2 Introduction

4.3 Methods

4.4 Results

4.5 Discussion

4.6 Conclusion

Chapter 5: The effect of eccentric exercise-induced muscle damage on the gas exchange threshold

5.1 Abstract

5.2 Introduction

5.3 Methods

5.4 Results

5.5 Discussion

5.6 Conclusion
Appendices

Appendix A Exemplar application for ethical approval
Appendix B Exemplar participant information sheet
Appendix C Exemplar participant consent form
Appendix D Exemplar ethical approval certificate
Appendix E Exemplar risk analysis: squatting protocol
Appendix F Borg (6-20) RPE scale
Appendix G Visual analogue scale (VAS)
Appendix H Statistical assumptions
Appendix I 31P-MRS muscle metabolic responses
Appendix J Schematic demonstrating the reduced diffusing capacity of muscle following eccentric muscle damaging exercise
List of Figures

Figure 1.1 Postulated series of events leading to muscle damage from eccentric exercise (Proske & Morgan, 2001, p. 334).

Figure 1.2 The relationship between length and tension in skeletal muscle. Adapted from Gordon et al. (1966), p.185.

Figure 1.3 Critical stages in the increase of myofilament overlap corresponding to key points (1–6) labelled on the length-tension curve in figure 2.1. Adapted from Gordon et al. (1966), p.186.

Figure 2.1 Longitudinal sections of fast-twitch (FT) fibres in A) triceps brachii muscle of a sedentary control rat, and B) rat triceps brachii muscle 1 day after exercise downhill running (DH). Scale bars, 1μm. Adapted from Takekura et al. (2001).

Figure 2.2 Hamstrings angle-torque curves before eccentric exercise (Control) (○) and immediately post exercise (●). Gaussian curves have been fitted to the top 10% of each curve. Adapted from Brockett et al., (2001). Note the immediate right shift of the angle-torque relationship following eccentric exercise.

Figure 3.1 A participant being guided in the correct and safe squatting technique prior to completion of 100 (Smith) squats.

Figure 3.2 The assessment of isokinetic peak torque, using a Biodex B-2000 isokinetic dynamometer (Biodex Corp, Shirley, NY).

Figure 4.1 A participant reporting his RPE during cycle exercise using the Borg 6-20 RPE Scale.

Figure 4.2 Minute values (severe intensity exercise). Minute-by-minute changes in a: breathing frequency (f_b), b: minute ventilation (\dot{V}_E), c: oxygen uptake ($\dot{V}O_2$), d: HR, e: $\dot{V}_E/\dot{V}O_2$ and f: RPE during cycling at 70%Δ pre- and 48h post-eccentric exercise. Values are mean (± SEM).

Figure 4.3 Percentage time values (severe intensity exercise). Changes in a: breathing frequency (f_b), b: minute ventilation (\dot{V}_E), c: oxygen uptake ($\dot{V}O_2$), d: HR, e: $\dot{V}_E/\dot{V}O_2$ and f: RPE during cycling at 70%Δ pre- and 48h post-eccentric exercise set against % time to volitional exhaustion. Values are mean (± SEM).

Figure 5.1 A participant performing a ramp incremental cycle exercise test.

Figure 5.2 Representative response of $\dot{V}CO_2$ vs $\dot{V}O_2$ (panel A) and blood [lactate] (panel B) showing the region of interest, pre- (●) and 48 h post- (○) eccentric exercise respectively. Best-fit S1 slopes and vertical arrows indicating the gas exchange threshold (GET, panel A) and lactate threshold (Tlac, panel B).
illustrate changes in the GET but not the Tlac response, pre- (solid line) and post- (dashed line) eccentric exercise.

Figure 5.3 Changes in ratings of perceived exertion (RPE) as a function of $\dot{V}O_2$, pre- (●) and 48 h post- (○) eccentric exercise respectively. The vertical arrow indicates the gas exchange threshold (GET) pre-eccentric exercise. There is a 7% increase ($P < 0.05$) in RPE 48 h post eccentric exercise at the $\dot{V}O_2$ value of the pre-eccentric exercise GET.

Figure 5.4 Percentage changes in minute ventilation (VE), expired CO$_2$ ($\dot{V}CO_2$), respiratory exchange ratio (RER), ventilatory equivalent for O$_2$ ($\dot{V}E/\dot{V}O_2$), ventilatory equivalent for CO$_2$ ($\dot{V}E/\dot{V}CO_2$), breathing frequency (f_R) and tidal volume (V_T) at the $\dot{V}O_2$ value of the pre-eccentric exercise GET. Values are mean (± SD).

Figure 6.1 The MRS knee extensor ergometer showing pulley system and load basket

Figure 6.2 [PCr] response of a representative participant, pre- and post-eccentric, muscle damaging exercise. Vertical arrows in indicate time to exhaustion in the two exercise conditions. The solid line represents time to exhaustion pre-eccentric exercise; the dashed line represents time to exhaustion post-eccentric exercise.

Figure 6.3 [Pi]:[PCr] response of a representative participant, pre- and post-eccentric, muscle damaging exercise. Vertical arrows indicate time to exhaustion in the two exercise conditions. The solid line represents time to exhaustion pre-eccentric exercise; the dashed line represents time to exhaustion post-eccentric exercise.

Figure 6.4 pH response of a representative participant, pre- and post-eccentric, muscle damaging exercise. Vertical arrows in indicate time to exhaustion in the two exercise conditions. The solid line represents time to exhaustion pre-eccentric exercise; the dashed line represents time to exhaustion post-eccentric exercise.

Figure 7.1 Schematic overview of experimental procedures. $\dot{V}O_2$ max, Maximal oxygen uptake.

Figure 7.2 Measurement principle and probe structure of the NIRO 300 (Hamamatsu, Hamamatsu Photonics KK, Japan)

Figure 7.3 Attachment of the NIRS probes. The NIRS probe holder is secured by means of a double-sided adhesive (a). The thigh with attached NIRS probe holder is wrapped in an elastic bandage (b).

Figure 7.4 A representative subject’s $\dot{V}O_2$ response to severe cycle exercise pre- (●) and 48 h post- (○) eccentric exercise. The vertical line represents the transition from ‘unloaded’ to ‘loaded’ cycling.
Figure 7.5 Deoxygenated Hb ([HHb]) response to severe cycle exercise pre- (●) and 48 h post- (○) eccentric exercise in a representative subject. The vertical line represents the transition from unloaded to loaded cycling. Note the slower overall [HHb] kinetics following eccentric exercise. AU, arbitrary units.

Figure 7.6 Mean initial [HHb] response to severe cycle exercise pre- (●) and 48 h post- (○) eccentric exercise. The vertical line represents the transition from ‘unloaded’ to ‘loaded’ cycling. The data are normalized for amplitude of the response at baseline. Values are mean (± SE). AU, arbitrary units.

Figure 7.7 Mean difference in the initial [HHb] response to severe intensity exercise pre- and 48 h post eccentric exercise (i.e. pre- minus post-eccentric exercise data). AU, arbitrary units.

Figure 7.8 Total haemoglobin response to severe cycle exercise pre- (●) and 48 h post- (○) eccentric exercise. AU, arbitrary units.
List of Tables

Table 4.1 Participant characteristics ($N = 10$).

Table 4.2 Changes in markers of muscle damage. Mean (\pm SD) values before (pre) and 30min and 48h after eccentric exercise.

Table 4.3 Changes in f_R, V_e, \dot{VO}_2, HR, \dot{V}_E/\dot{VO}_2 and RPE during moderate intensity exercise. Mean (\pm SD) values before (pre) and 48h after (post) eccentric exercise.

Table 5.1 Changes in indicators of muscle damage. Mean ± SD values before (pre) and at 30 min, 24 h and 48 h after eccentric exercise.

Table 5.2 Peak values attained during ramp exercise tests. Mean ± SD values before (pre) and 48 h after (post) eccentric exercise.

Table 5.3 Values attained at the gas exchange threshold (GET) during ramp exercise tests. Mean ± SD values before (pre) and 48 h after (post) eccentric exercise.

Table 6.1 Changes in indicators of muscle damage. Mean ± SD values and (range) before and 24 h and 48 h after eccentric exercise.

Table 6.2 Changes in muscle metabolic responses before and 48 h after eccentric exercise. Values are mean ± SD.

Table 7.1 Changes in markers of muscle damage. Mean ± SD values before (pre) and at 24 h and 48 h after eccentric exercise.

Table 7.2 Pulmonary O_2 uptake responses to severe intensity exercise before and after eccentric muscle damaging exercise.

Table 7.3 Ratings of Perceived Exertion (RPE), Heart Rate (HR) and blood lactate concentration ([La]) during severe intensity exercise pre- and 48 h post-eccentric exercise.

Table 7.4 [HHb] response to severe intensity constant-load exercise pre- and 48 h post-eccentric exercise.