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ABSTRACT

Hydrological processes are greatly influenced by the characteristics of the domain through
which the process occurs. It is generally accepted that earth materials have extreme
variations from point to point in space. Consequently this heterogeneity results in high
variation in hydraulic properties of soil. In order to develop areliable predictive model for
transport processes in soil, the effects of this variability must be considered. Soil
heterogeneity due to presence of macropores (micro-) and to spatial variability in hydraulic
properties (macro-heterogeneity) coexists in the real field conditions. The challenge is to

incorporate the effects of both types of soil heterogeneity in simulation models.

This thesis presents development and application of a 2D/3D numerica model for
simulation of advection and diffusion-dispersion contaminant transport considering both
types of soil heterogeneity. Stochastic finite element approach is used to incorporate the
effects of the spatial variability of soil hydraulic properties on contaminant fate. The soil
micro heterogeneity effects are modelled with a dual domain concept in which afirst order
kinetic expression is used to describe the transfer of the solute between the two domains.
Also, the capability of the model in 3D simulation of field problems improves the accuracy
of the results, since it is possible to avoid the generaly applied assumption in 2D
simulations.

From comparison of the model results with experimental and analytical results, it is
concluded that the model performs well in predicting contaminant fate and the
incorporation of the both types of micro- and macro- heterogeneity in the simulation
models improves the accuracy of the prediction. Also, capability of the model in evaluation
of the concentration variation coefficient as an index of reliability of the model outputs
makes it possible to estimate a probable interval (mean concentration minus and plus
standard deviation) for the range of oscillations of possible redlizations of solute
distribution. Moreover, comparison of the results of the proposed method with the results
obtained using the Monte Carlo approach yields a pronounced reduction in the computation

cost while resulting in virtually the same response variability as the Monte Carlo technique.
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Chapter (1) Introduction

CHAPTER 1

INTRODUCTION

1.1 General background

The movement of contaminant through soils to the groundwater is a major cause of
degradation of water resources. Management of lands as a non-renewable resource,
itself, is a crucia requirement for sustainability. Contaminated land management and
selection of appropriate and efficient remedial technologies are strongly dependent on
the accuracy of predictive models for simulation of flow and solute transport in the soil,
and require the understanding of real mechanisms that occur in field conditions. Recent
studies have shown that the current models and methods are not capable of adequately
describing the leaching of contaminants through soils; they often underestimate the risk
of groundwater contamination by surface-applied contaminants and overestimate the
concentration of resident solutes (Stagnitti et al. 2001). Therefore for devel opment of an
appropriate model for simulation of groundwater flow and contaminant transport with
high accuracy, at least the following two issues should be addressed:

1) Selection of comprehensive mathematical models describing physical and
chemical mechanismsinvolved in the processes.
i) Solution of the model for complex problems subjected to different geometry

and boundary conditions.



Chapter (1) Introduction

Transport mechanisms such as advection and dispersion in aquifers are functions of
formation of soil porous matrix, properties of solid and agueous phases and the
interaction between these two phases. Therefore, water flow and contaminant transport
are significantly influenced by the uncertainty and inherent heterogeneity which exists
in the structure and texture of the soil. Analysis of the data obtained from laboratory
experiments using morphological techniques (Bouma 1991; Lu et a. 1994;
Vanderborght et a. 1997, Wang et a. 2006), and from site hydrological properties
investigations and field scale experiments (Bakr, 1976; Sundicky 1986) imply spatial
variability of the hydrologic properties of soil and its high influence on the flow and
solute transport. The results of these investigations show that the field soils exhibit two
different types of spatial heterogeneity which often also coexist; one is referred to as
macro-heterogeneity which is due to as spatial variability in the macroscopic properties
of soil, and another is referred to micro-heterogeneity of the soil which is heterogeneity
due to spatial distribution of macrospores. In principle, both spatial variability in soil
hydraulic properties and structure-induced heterogeneity can contribute to the initiation
of preferential pathways.

For simplicity the classical mathematical governing equations for water flow and
contaminant transport have been developed assuming that the soil is a homogeneous
medium. Accordingly, the parameters which are present in the classica governing
equations and associated with transport mechanisms are defined with average
determined values through the whole aquifer. However, in redlity these parameters are
subject to uncertainty due to variability in soil porosity and porous matrix. The
importance of the consideration of physica heterogeneity in modelling transport
phenomena has been highlighted in the literature (Kabala and Sposito 1991 and Burr et
al. 1994). Therefore, spatia variability and randomness of the hydrological parameters
involved in the flow and contaminant transport should be incorporated in the

mathematical flow and contaminant transport governing egquations.

The source of randomness in physical realizations of the majority of stochastic
problems is related to either an inherent irregularity in the phenomena being observed
and impossibility of exhaustive deterministic description (such as the kinetic theory of
gas), or a generalized lack of knowledge about the processes involved. Uncertainty in
modelling the flow and contaminant transport phenomena in soils is related to the
second category of random sources. The level of uncertainty associated to this class of

2



Chapter (1) Introduction

problems can usualy be reduced by recording more observations of the process.
Hydraulic properties of soils are uniquely defined at a given spatia location within a
medium. It is however impractical to measure them at all points or even at arelatively
large number of points. From a finite number of observations, these properties may be
modelled as random variables or with a higher level of sophistication, as random
processes with the actual medium properties considered as a particular realization of
these processes. As a result, the governing equations for flow and solute transport are
considered as differential equations with random parameters. The solution of partial

differential equations with random parameters is the main impetus of this study.

Following the successful application of the Monte Carlo method (MCM), in simulation
of random processes in various engineering fields, researchers have been encouraged to
use the potential of MCM in solution of the stochastic differential equations (SDES)
governing the flow and contaminant transport. However, as a computational agorithm,
MCMs have their own drawbacks. These methods rely on repeated random sampling to
compute their results. Because of their reliance on repeated computation
of random numbers, which can be a very time consuming procedure, they are not
efficient simulation techniques especially for aquifers with large dimensions. Also,
because of statistical nature of these methods, they do not provide conceptual
understanding of the effects of soil heterogeneity on transport mechanisms, which is
necessary for planning proper and efficient remediation techniques. Analytical methods
are another approach to deal with random processes and provide a closed form equation
presenting the relationship between randomness in hydraulic parameters of soil. With
respect to the physical and conceptual understandings, although analytical stochastic
methods are more useful than MCMs, the effectiveness of these methods is limited to
the ssmulation of simple problems, as they are unable to simulate complicated systems
with complex geometry and boundary conditions.

Thus, the development of a stochastic finite element (SFE) based model as an
analytical-numerical method which can overcome the shortcomings of analytical and
non-efficient MCMs would be of great advantage. The methodology used for the
development of SFE, takes advantage of both analytical and numerical techniques. It

involves the following two steps:
1) Incorporation of spatial variabilities of hydraulic and transport parametersin
the classical governing equations and development of tractable stochastic

3



Chapter (1) Introduction

differential equations (SDES) representing structured and feasible
relationships between the variations of soil hydrological and transport
parameters using analytical stochastic methods.

i) Solution of the developed SDEs, using finite element (FE) technique as an

efficient and versatile numerical approach.

Macrospores (micro-heterogeneity) cause high-permeable zones in different parts of
aquifers. Flow and solute transport in extremely heterogeneous porous media with
macrospores are conceptualized as a dual- domain system. Based on this system, the
aquifer is divided into two distinct transport regions. The region with macrospores is
considered as a second domain with high permeability next to the less permeable

region.

In spite of the efforts made for the incorporation of soil heterogeneity in the simulation
of contaminant transport models, none of the existing models have included the effects
of both types of soil heterogeneity. They have either included the effects of micro-
heterogeneity or macro-heterogeneity. The purpose of this work is to develop an
analytical-numerical model, which considers the potential impacts of both micro-and
macro-heterogeneity, through implementation of SFE method on the mathematical

model of contaminant transport in a dual-domain system.

1.2 Objectives

The stochastic finite element methodology is a theory which has been developed and
tested for the evaluation of probability measures of the occurrence of random processes.
Further investigations of the methodology showed its great performance in other
scientific and engineering fields. Motivated by the capabilities of SFE, the objectives of

thiswork are

e The full description and development of SFE methodology for simulation of
groundwater flow and contaminant transport problem, and incorporation of the

gpatial variability of soil hydraulic properties into the model.
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* Development of a2-D and 3-D computer model, based on SFE methodology, to
find the numerical solution for flow and contaminant transport problems with
complex geometry and boundary conditions, and investigation of the technical
aspects involved in agebraic equations used for evaluation of the statistical
moments of outputs.

* Incorporation of the effects of immobile water in the computer code in order to
consider the effects of macrospores on the flow and transport phenomena.

* Vadlidation of the proposed SFE model through 5 illustrative flow and
contaminant transport examples by comparing the results for different scenarios
to those obtained by deterministic approaches, other stochastic approaches and
experimental data.

» Verifying the applicability of the model to field scale problems subjected to all
the variety of complex boundary conditions through application of the model on
the field-scal e case-studies.

*  Numerica investigation of the effects of soil heterogeneity on advection and
dispersion mechanisms, and adsorption of the solute mass to the soil matrix

using sensitivity analysis on relevant parameters.

1.3 Structure of thethesis

With the above objectives, this thesis is organised in 7 chapters. The main text of each
chapter is intentionally kept as short as possible in favour of easy reading and is written
to include only the fundamenta concepts and the new ideas.

In chapter 2, aliterature review of the efforts that have been made on different methods
developed and used for incorporating the effects of soil heterogeneity in prediction of
flow and transport processes, is provided. This chapter begins with the review of several
works which have been done to prove the importance of considering the effects of soil
heterogeneity in modelling flow and transport processes, followed by an overview of
main published works related to different modelling techniques used to incorporate
uncertainty in this field. Different methods used at each work are studied and the merits
and deficiencies of each work are discussed in detail.
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Chapter 3 gives an insight into the general concept of SFE method. The mathematical
representations and concepts used in this work are discussed briefly, and the analytical
stochastic method used in development of SDEs is illustrated. Following this, the
general concepts of FE method for disceretization of the SDESs in time and space

domains are discussed.

In chapter 4, the governing equations that have been used for the development of the
model are presented and the stochastic methodology which is implemented in the

classical governing equations for flow and solute transport is described.

In chapter 5, SDEs developed and presented in the previous chapter are discertized in
gpace and time domains using finite element and finite difference (FD) methods,

respectively.

Chapter 6 is one of the main chapters of thisthesis, in which the SFE model is validated
through some examples and the applicability of this model is tested through the

simulation of some complex case studies.

Finally in chapter 7, the main conclusion of the thesis and the recommendations for

further research are presented.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Contaminant and chemical sources are usually Idcateunsaturated zones or they
come from the soil surface area to the unsaturatea and pass through it to reach the
saturated zone. The various processes occurringmwihis region, therefore, play a
major role in determining both the quality and ditstnof water recharging into the
saturated zone and may cause subsurface and gratercs@ntamination. Management
of groundwater and contaminated lands as a norwwgrle resource will be a crucial
requirement for sustainability and needs accrueligtiens of contaminant fate and
solute transport in subsurface. As a result, mdfoyte have been made in recent years
to investigate the subsurface hydrological procgsaad different models have been

developed for simulation of flow and transport ails

This chapter is mainly dedicated to a discussionvafious approaches used for

modelling of water flow and contaminant transportsaturated and unsaturated soils.
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After a brief description of the classical approd@hsimulating water flow and solute
transport in porous media, issues related to dalksipproaches for the modelling of
these phenomena are highlighted. It is concludadttie simplified classical models of
the water flow (Richards’ equation) and solute $@ort are not able to describe flow
and transport in heterogeneous soils (Stagniti.€2001). The chapter also contains a
comprehensive discussion of alternative modellipgreaches, which make it possible
to describe the flow and transport processes ierbgéneous soils with higher accuracy
at local and field scales. As weight of heteroggneicreases, modelling approaches
evolve from a purely deterministic description tetachastic analysis. They vary from

the multi-porosity models to the stochastic-contimumodels.

2.2 Classical modédls

2.2.1 Water flow

The water flux in soils is commonly described usibgycy’s law. Through a series of

experiments, Darcy (1856) found that the waterldisge rate into a specified volume
of soil is linearly proportional to the hydrauliccdd gradient through the volume.
Darcy’s law was developed with respect to a satdraporous medium. His

experimental results were used by Buckingham (19073tudy steady-state flow in

unsaturated soils. Darcy’ law has also been appbethe flow of water through an

unsaturated soil (Childs and Collis-George, 195Me well-established Richard’s

equation which is the Darcy’s equation embeddetthénmass conservation equation is

the commonly used mathematical model for water flownsaturated soils.

A major characteristic of flow in the unsaturatezhe is the dependency of hydraulic
conductivity of the medium on the level of satwatiwhich generally becomes a strong
nonlinear function for many soil types (Gunduz, £200In addition to the complexity of
Richards' equation, the complexity of constitutreéationships that link the degree of
saturation to capillary pressure and hydraulic cetigity further complicates the
governing equations and their numerical solutiorRichards' equation is originally

based on the capillary pressure. Numerous resmarchave developed various
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modified forms by changing the dependent varialiléhe equation. Over the years,
three different forms of Richards' equation haverbevidely adopted (AL-Najjar,

2006); there are: (i) Pressure head-based equéijolloisture content-based equation,
(ii) Mixed form of the equation with both the peese head and the water content

explicitly appearing as dependent variables oftipgation.

The original pressure-head based equation is aigido all levels of saturation in the
porous medium. It performs in a superior way ursdgurated conditions when some of
the other forms fail to properly represent the floenditions (Huang et al., 1996). This
behaviour is mostly related to the fact that thespure head is a continuous function,
both in saturated and unsaturated media under dgeteeous soil profiles.
Unfortunately, the pressure head-based equatios doeperform as well as the water
content based equation under significantly dry doos (Huang et al., 1996). In
particular, under conditions of infiltration to &ry dry soil, the pressure-based form
develops large balance errors due to the highlyimeer nature of the specific moisture
capacity and notably underestimates the infiltratiepth. Regardless of the limitations
associated with it, the original form of the eqaathas been tried extensively in solving
both the unsaturated zone and variably saturatedturated zone flow problems (Pan
et al., 1996; Romano et al., 1998; Williams et 2000).

To alleviate the problems associated with the piressead-based form of the governing
equation, water content based form was proposeh adternative formulation of the
unsaturated zone flow. This formulation is foumd ke superior in terms of mass
conservation, particularly in the discrete appraadions of its numerical solution such
as finite element (FE) and finite difference (FDgthods (Hills et al., 1989; Gottardi
and Venutelli, 1993; Pan and Wierenga, 1997). Meeeothe hydraulic functions are
less nonlinear when expressed in terms of moistargent rather than capillary head,
particularly when modelling infiltration into a eglvely dry medium (Williams et al.,
2000). However, the water content-based form of ¢eation is also limited in
application to variably saturated and unsaturaled Since it is not able to properly
simulate the saturated conditions. When the flownaio gets locally or completely

saturated, the equation degenerates since thedimef change of the moisture content
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becomes zero (Celia et al., 1990). In additiomgaisnoisture content as the dependent
variable introduces problems of continuity in th@rgin since it is not a state variable
which is always continuous in space regardlesshef goil non-homogeneities. To
overcome the difficulties associated with both firessure-based and the moisture
content-based forms of Richards' equation, a dedahixed-form has been proposed,
which uses both the moisture content and the pressad as the dependent variables.
Celia et al., (1990) solved Richard’s equation gsanmethod that employs the mixed
form of the equations to guarantee mass conservalioe method has been shown to
be robust and accurate, but requires a fine spatiltemporal discretization and so is
fairly computationally demanding (Binning, 1994)hél mixed form has both the
superior mass conservation characteristics of tbestare content-based equation as
well as the unlimited applicability to both sat@@iand unsaturated regions of flow that
the pressure-based equation offers. In this reghednumerical solution of the mixed
form has found wide applicability in the last deeaahd many researchers used this
form to model the flow in variably saturated-unsated media (e.g. Tocci et al., 1997;
Miller et al., 1998; Williams and Miller, 1999; Zhg and Ewen, 2000; Zhang et al,
2002). Apart from these standard forms of the Bgns, some researchers did not
directly use these three forms of the governingagqo but rather applied certain
transformation functions to smooth the strong rinedrity of the constitutive functions
(e.g. Pan and Wierenga, 1997; Williams and Mill&¥99; Williams et al., 2000). Even
though these transformation techniques provide saiief to the problems associated
with the numerical solution, they did not find widpplicability mainly due to the fact
that they are only an approximation to the origieguation and lack any underlying
physical theory (AL-Najjar, 2006).

Regardless of the form of Richards' equation, omeds to supplement the governing
equation with the auxiliary equations to compldie mathematical representation of
moisture movement in the unsaturated zone. Therefoesearchers developed
numerous empirical formulas to describe the retatiip between capillary pressure
head and soil moisture as well as capillary presséiad and hydraulic conductivity.
The most commonly used relationships were proptse8rooks and Corey (1964),
Mualem (1976) and Van Genuchten (1980). It is irtgod to note that the original

10



Chapter (2) Literature Review

forms of these relations did not consider the phevwon of hysteresis, and pressure

head was considered to be a single valued funofitime moisture content.

Many approaches to solve the unsaturated flow emshave been suggested in the
literature. A number of analytical solutions haveeb developed for transient

infiltration under various boundary conditions (eRhilip and Knight, 1991 and Van

Genuchten, 1980). Unsaturated drainage of a umifowet soil was solved by Sisson

et al., (1980) for gravitational flow, whereas maamplicated solutions for drainage

with capillary suction was derived by Warrick et #1990) and Philip (1992).

Analytical solutions can only be obtained for thegeations under certain assumptions.
This makes their applicability very limited. Howey# the assumptions and limitations
of these solutions are properly understood, ar@@lythodels can be powerful diagnostic
tools that can give great insight into the situagiovhere they are used. This is
exemplified by the model of Johnson and Perrot® 3 9vhich combines a simple user
interface with an analytical model of air flow teeate a tool for the initial evaluation of
a venting scheme. There are many other analytiwadlels of water flow in the
unsaturated zone. They include the numerous sakitike those presented by Milly
(1988) and Sander et al. (1988).

The extreme variability and complexity of geolodiozaterials, dry initial conditions,
varying boundary conditions and the strong nonligdetween the pressure head and
moisture content as well as the pressure head gddadlic conductivity make the
solution of Richards' equation quite a challengetipularly within acceptable limits of
accuracy and computational effort. Since analltscdutions are only possible when
these nonlinear relationships are linearised antplgied (Tracy, 1995), numerical
techniques are the only available method of satut&pecific applications of numerical
models include analysis of complex systems (compiererms of geology, hydrology,
geometry, and boundary conditions), quantifying ugebvater mechanisms and
processes occurring at a site, and assessingéomgitpacts due to natural and human
induced stresses. Numerical models have beeninssyeral groundwater studies. In

numerical solution of Richards' equation, the spatliscretisation is commonly

11
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performed by FD or FE method (e.g. Celia et al9GtHong et al., 1994; Rathfelder
and Abriola, 1994; Pan et al., 1996; Huang et1896; Miller et al., 1998; Van Dam
and Feddes, 2000; Zhang and Ewen, 2000; Zhang 20aR).

2.2.2 Solute transport

Numerous human activities utilize subsurface agaeptor of various contaminants,
which include hazardous waste landfills, ponds #gbons bearing industrial or
domestic wastewater, and on land applicationsextéd or partially treated domestic
and industrial wastewater. These activities haveagd resulted in release of various
pollutants into the subsurface and, consequerdlyheé nearby environment including
groundwater resources. Thus, in recent years, smsearch has been directed
specifically towards establishing better knowledgewhat governs the transport of

contaminants in the subsurface environment (AL-&aR006).

The transport of non-reactive solutes in a porowsliom takes place through two
processes; (1) solute advection defined as theageesolute particle velocity, and (2)
the solute dispersion. The average solute parntielecity defines the centroid of the
solute plume at a given time or the average artiva¢ of solutes at a given depth.
Solute transport was considered only in a verytéthiway in early groundwater
investigations. The generally applied method oflysia was advective calculation.
Further research regarding the problem of transpoporous media, especially in the
groundwater engineering field, showed that the ayerfluid velocity did not describe
the actual motion of individual solute particlesdathat advective calculation could
therefore never give a full description of solutewvement. Statistical theories of
hydrodynamic dispersion were developed by De Jwosdel Jong (1958) and Saffman
(1959) which addressed the difference between #ghebc calculated movement and
observed movement. A number of laboratory and #tema investigations of
dispersion were completed of which those of Dayp@)%nd Rifai et al., (1956) were of
particular significance. The solute dispersion qui@s the dispersion of the solute
plume around the centroid at a certain time. Iropsmmedia, solute dispersion is caused

by two mechanisms: (1) molecular diffusion and (&ydrodynamic dispersion.

12
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Hydrodynamic dispersion is explained by the torsioature of the convective stream
lines resulting from microscopic fluctuations oéthdvection velocity. When the scale
of the macroscopic transport process is much latugen the scale of the microscopic
velocity fluctuations, the effect of these fluctoats on the macroscopic solute transport
can be modelled as a Fickian, gradient-type prosgsslar to molecular diffusion. The
theory of advective-dispersive transport continueddevelop, particularly in the
contributions of Bear (1961) and Bachmat (1967)ngshe continuum approach and
the macroscopic mass conservation, classical audeetispersive solute transport

equation was developed.

Advances in solute transport simulation have necdgsiepended on advances in flow
simulation. Many analytical (e.g., Govindaraju ket 8996) and numerical (e.g., Bear, et
al., 1993; Istok, 1989; Nwaogazie, 1986; Gunduzp420models developed for
simulation of solute transport in saturated zonmesased on assumption of steady-state
flow. Marshall et al., (2000) concluded that steatbdels can adequately predict solute
movement in regions with small temporal variatiofshe flow rate, but are inaccurate
under highly transient flow (Russo et al., 1994jndrical and conceptual models
developed for saturated flow conditions, such as tleveloped by Bear (1972), have
not been easily adapted to the unsaturated cakde S@nsport models are coupled to
the water flow models in order to simulate the $rant solute transport. Also, as
mentioned earlier, since pollution from the surface subsurface pollution sources
pass through the unsaturated zones to reach thendwater, simulation of solute
transport in unsaturated area plays a significal@ in the prediction of groundwater
pollution risk. So, in the literature of recent y@#here has been a profusion of studies
of the transport equations in the unsaturated zorihe impetus for this rapid
development has been the strict regulatory stanagraundwater pollution (Gee et al.,
1991). Therefore, research on contamination irutieaturated zone has become more
important and the studies for developing reliabledpctive models have been increased.
Each model has different features that tailor tloeleh to the particular application for
which it was designed. The models use a variepbftion techniques. These include:
analytical solutions, FD, FE, particle tracking dfualerian Lagrangian methods. Islas

and lllangasekare, (1992) and Barry et al., (1993)eloped analytical solutions for

13



Chapter (2) Literature Review

simulation of water movement and solute transponrisaturated zones. Smiles et al.,
(1978) developed a quasi-analytical solution fom-neactive solute flow during
unsteady horizontal infiltration under constant@amtration boundary conditions which
has been discussed by Watson and Jones, (198ituaty in relation to assessing the

performance of the solute model.

Lessoff and Indelman (2004) presented an analyticatlel of solute transport by
unsteady unsaturated gravitational infiltration. eTlsolution was developed for
gravitational flow and advective transport was &aplto two scenarios of solute
applications encountered in the applications: atefipulse of solute dissolved in
irrigation water and an instantaneous pulse brastdw#o the soil surface.

Analytical models are typically used in restrictigettings such as for modelling
transport in experimental column studies (Shoemaked., 1990, Jury et al., 1983) to
test the accuracy of numerical approximations ®dquations (e.g., Yeh et al., 1993).
In these settings the exact solution of the gowegreiquations is not possible. However,
for more complex geometries and boundary conditionsnerical solutions must be

sought.

FD techniques are the simplest of the numericdirtiggies to apply and there are a
large number of models using this solution techaigeeks et al., (1982), were some
of the first to use a numerical model to study ¢port in the unsaturated zone. The FD
models range form the simple one dimensional mofldkosenbloom et al., (1993),
through to the comprehensive model of Sleep an&$Yk993). The FD models have
usually used forward (explicit) time stepping. Ben et al., (1993) and Sleep and
Sykes (1993), presented a summary of the argun@antise different forms of temporal
discretization. The implicit method is less congtisnally expensive than the explicit
method. The implicit time stepping scheme is undwothlly stable, so that large time
steps can be taken. However, large time stepsnoape advantageous in an implicit
scheme as the truncation error increases with sty size leading to a loss of accuracy
in the solution. In contrast, the explicit methaltshave a limitation on the time step

14
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size, so that small time steps must be taken. racguof an explicit scheme increases

with increasing time step size.

FE method is another common numerical approachltv@ she transport equations. The
Galerkin FE method was applied by Mendoza and F(i2B0) and Culver et al.,
(1991). The solutions obtained by the method aometo oscillations. Awadallah et
al., (1997), demonstrated a horizontal contamitramsport model through unsaturated
soil analytically and experimentally. The water asmlute transport equations were
solved using the Boltzmann transformation, to contree partial differential equations
to ordinary differential equations. Karkuri and Mpkamp (1997) analyzed the
advection-dispersion of non-reactive pollutant nmoeat through a layered porous
medium domain under the effect of transient groustéwflow. The governing partial
differential equations of the groundwater flow aadvection-dispersion of pollutant
together with their integral formulations were hesd Galerkin's method and Green's
theorem. Li et al.,, (1999), presented a numerkal model to simulate miscible
contaminant transport through unsaturated soitctmunt for the influence of multiple

non-equilibrium sources on the contaminant trartspor

Hazardous waste disposal is increasingly one ofrtbst serious problems confronting
health and the environment. The movement of cha&mithrough the soil to the
groundwater represents a degradation of thesen@souln many cases, serious human
and stock health implications are associated vhith form of pollution. The chemicals
of interest mainly include nutrients, pesticidesliss and industrial wastes (Stagnitti, et
al. 2001). Chemical effects in solute transpomiwdation have continued to evolve
although numerous difficulties still limit this asg of the technology. Ahuja and
Lehman (1983) and Snyder and Woolhiser (1985) ptedethe earliest works in this
area. They presented a set of experimental dath itlticated a more detailed
description of chemical transport in soil and wahas needed. Rubin and James
(1973) provided an early example of a transport ehadth equilibrium controlled
reactions. Rubin (1983), described the mathemateguirements for simulation of
several classes of reaction, and noted the compuaddifficulties presented by various

systems. At the same time, extensive researclhd®s done on the biodegradation of
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organic chemicals in the subsurface, leading tohous of approximating some
biodegradation effects in transport calculatione THmowledge about the mechanism
that dominates the transport of hydrophobic orgastiemicals is essential for the
understanding of pollution processes. Gillham @hérry (1982) reviewed some of the
existing mathematical models for the well estal@gslransport processes in saturated
soils, including molecular diffusion, mechanicadpiersion, and some types of chemical
interactions such as sorption, precipitation, dgoosition and oxidation-reduction. In
many investigations of the contaminant migration groundwater, reactive

contaminants rather than unreactive ones are thes fof the concern.

Biodegradation which is a bacterial mediate chemiezaction has been paid
considerable attention by geochemical researchexsause of the important role that
this type of chemical reactions plays in alleviatiof geo-environmental pollutions.
Three different conceptual frameworks were assuntediescribe bacteria growth
through the biodegradation and chemical utilizafiociuding biofilms, microcolonies
and Monod kinetics (Chen, 1994). Baveye and Valodd®89) evaluated the
mathematical models developed that founded on eftiese conceptual assumptions.
The biofilm concept is discussed in the works dfrRann et al. (1980), Bouwer and Mc
Carty, (1984) and Characklis, (1990). Molz et £§986) explained the microcolony
concept of bacterial growth. Based on this assuwnptihe bacteria do not grow in
continuous fixed films, but in small discrete ungdk 10 to 100 bacterial per colony
attached to particle surfaces. Concepts of biofdamd microcolonies, focus on
mechanisms taking place at the pore scale andr@veeen aimed at modelling large-
scale transport problems. The most extensively wsqatession for describing the
biodegradation process in chemical transport mogelh large-scale is the one based

on the concept of Monod kinetics.

MacQuarrie, et al., (1990) developed a FE modesimulation of biodegradable solute
transport in steady-state condition using dual Mbkimetic model, and the effects of
microbial growth and electron acceptor limitatid@xfgen) were considered in this
model. The accuracy and reliability of this modeérev proved by means of the

simulation of a laboratory column experiment anddjaagreement was observed
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between the simulated and experimental measuradtge®\vailability of electron

acceptor, usually Oxygen, plays an important ral@dcurrence of biodegradation of
organic contaminants. Limitation of supply of Oxgg@ biodegradation process was
investigated through an experimental techniquegmtesl by Huang et al., (2003). They,
also, used numerical codes MT3D/RT3D developeddigment et al., (1998) which is

for simulating multi-species reactive transporsails to simulate their experiments.

With non-dimensionalization of contaminant transmgmverning equation coupled with
Monod kinetic model, Brusseau et al, (1999) studsedne factors controlling the

amount and speed of the biodegradation throughdh&aminant transport process.

Liang et al., (2002) studied the transport mecharo$ hydrophobic organic chemicals
and the energy change in a soil/solvent system. sdN leaching column
chromatographic experiment at an environmental &atpre range of 20—-40C was
carried out; it was found that the transport preaasickens with the increase of column
temperature. Arsene (2000) presented the migrasssessment ofH **C and**!AM)

in unsaturated soils which constitute the emplacgénmeedium for the disposal of
conditioned wastes. Gao et al., (2001) presentaddel for simulating the transport of
chemically reactive components in conjunction wetergy transport in saturated and
unsaturated groundwater systems. McGrail, (20@&Mekbped a numerically based
simulator to assist in the interpretation of compl@boratory experiments examining
transport processes of chemical and biological aoimtants subject to nonlinear
adsorption or source terms. The governing equationthe problem were solved by

the method of FD including any combination of thbeeindary conditions.

In spite of numerous mathematical models that Haeen developed to simulate the
migration of pollutants in soils, still most of tmeodels simulate either geochemical
processes (e.g., Engesgaard and Kip, 1992; Walteal.e 1994) or biological

transformations (Kindred and Celia, 1989; Clemerati.¢ 1996) in soils. Relatively few
models include the interaction between biodegradand inorganic geochemical
reactions in soils (Zysset et al., 1994; Prommeal t1999). Modelling geochemical
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interactions between organic biodegradation andyan@c species is a current research

topic.

Smith et al., (1992), developed a non-equilibriusnpion dispersion-advection model
that involves a convolution integral of the prodatthe rate of change of concentration
and a time dependent sorption coefficient, and Ketrad., (1998) presented a numerical
study of contaminant migration in saturated porowslia by using a finite difference
method for this purpose. The advection-diffusiguation describes the evolution of
contaminant plumes in a vertical cross sectionnch@uifer. At the same time, Dawson
(1998) studied the numerical approximation of almear diffusion equation arising in
contaminant transport. The equation is charaadriby advection, diffusion, and

adsorption assuming the adsorption term is modéNea Freundlich isotherm.

Remesikova (2005) introduced an efficient operaitting scheme for solving two

dimensional convection-diffusion problems with agision. He particularly, considered

a practical problem of soil parameters identifioatusing dual-well tests by using a
general mathematical model including advection, macal dispersion and molecular
diffusion and adsorption in both equilibrium anchrequilibrium modes. However, due
to the transformation, the linear or non-lineamgport problem was reduced to one
dimensional and solved in an analytical form. Thgpersion part was solved using

standard finite volume method.

Kacur et al., (2003), discussed the numerical appration schemes for the solution of
contaminant transport with adsorption. Their mdtinas based on time stepping and
operator splitting for the transport with adsorptiand diffusion. The nonlinear
diffusion was solved using a finite volume methoddaby Newton's type of

linearization.

Most of the studies for evaluation and investigatiof chemical reactions were
concentrated on the problems in saturated areanddet al., (1995) described a model
of the hydro-thermo-mechanical behaviour of unsdad soil, developed in the context

of high level nuclear waste disposal. Then, Thoaras$ He (1997) developed a mass
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transport model for a multi-component solution sgstwhich includes coupled pore
water, pore air and contaminant transport in umaggd soils. A numerical solution of
the governing differential equations was achievesshgt FE method as a spatial
discretisation technique coupled with a FD recureerelationship to describe transient
behaviour. Thomas and Ferguson (1999) presentkdlyacoupled heat and mass
transfer numerical model describing the migratidn ao contaminant gas through
unsaturated porous medium. The model treats tigeation of liquid water, air, and

heat and contaminant gas separately with indepéngestem variables of capillary

potential, temperature, pore air pressure and caraten of the contaminant gas.

Kuechler and Noack, (2002) investigated the trarispbreacting solutes through the
unsaturated zone by presenting and discussing ethdts of numerical calculations
dealing with the flow of water, the chemical reantiat the water mineral interface and
the transport of chemical species caused by swetsfl The source of the water flow
through the soil was solely the rainfall. The wateotion was calculated for two
different soil classes and for typical annual goeation. The transport of chemical
species was described by a set of partial diffeakr@quations, and the chemical
processes, under the assumption of equilibriumgevdescribed by a set of nonlinear
algebraic equations. A description of chemicahgport in the unsaturated zone is
important for the management of potential hazardodusmicals in the ecosystem.
Water flow is much more intricate in the unsatwlatene than in the saturated zone,

besides the high heterogeneity of the unsaturatiéd s

Javadi and AL-Najjar (2007) developed a coupled 2ibnerical model to simulate
chemical reactions through contaminant transpounisaturated soils. In this model, FE
and FD techniques were combined for simulationh& low of air and water and
transient chemical solutes. The model is capablsimiulating various phenomena
governing miscible contaminant transport in sdilsear first-order model was used for
estimation of chemical reaction rate and the mosdat used for simulation of a
laboratory-scale experiment. Comparison of the migakeresults with experimental
measurements showed robustness of the model falagion of these processes. This

work was followed by Mousavi Nezhad and Javadil®0for considering the effect of
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chemical reaction using non-linear Monod kineticdelofor biodegradation and the
results obtained using non-linear Monod kineticdeigradation compared with those
obtained by first-order linear model. It was comlgd that the non-linear model

simulates the chemical fate with higher accuraeyttine linear one.

2.3 Influence of soil texture and structure on hydrological

processes

Solil texture is a soil property used to descrileerddative proportion of different grain
sizes of mineral particles in a soil. The texturkdss of a soil is determined by the
percentage of sand, silt, and clay. Soils can assdied as one of four major textural
classes: (i) sands; (ii) silts; (iii) loams; and)(clays (Smith and Smith, 1998). Soil
structure refers to the arrangement of the solitispaf the soil and of the pore space
located between them. In essence, soil structuaeptsysical condition of soil and is the
product of processes that aggregate, cement, caropamconsolidate soil or of other
processes of soil material formation caused by muagivities or natural atmospheric
condition such as climatically-driven physical peeses, shrinking-swelling, freezing-
thawing, and other physico-chemical processes. ,AliBological processes exert a
particularly strong influence on the formation ofrusture in surface horizons.
Depending on the various processes and their ityethsat constitute the formation of
soil at different locations, soil formation andustiure vary with space either in vertical
or horizontal direction. Figure 2.1 is a cross ieecbf a soil which clearly shows high

variability in formation of soil.
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Figure 2.1 Typical cross section of soil.

From mid 60’s until mid 80’s, much research wagiedrout to investigate the effects
of soil heterogeneity on water flow and solute $gaort in soils. White, (1985) reviewed
the research work which has been done, in ordeintestigate the effects of
macroporosity on steady-state and unsteady-statedbnditions and solute distribution
through either externally applied solutes or indiges solutes such as nitrate and salts.
It has been concluded that macropores can greatisedse the time taken for dissolved
and suspended matter applied to the surface th azsurface drains or groundwater
and the convective-dispersive theory of solutedpant has limitations in predicting the
distribution of solutes and their appearance inditaenage from soils with macropores.

Published experimental data clearly indicate randpatial variability in soil hydraulic
characteristics of soil. Figure (2.2) shows thevgnetric water contentd, ) as a
function of depth measured in intervals of 0.1550mM obtained from a field scale

experimental study on a dimension of 0.64 ha adrdet by Butters, et al. (1989).

Spatial variability of gravitational water conteza@n be seen clearly in this figure.

21



Chapter (2) Literature Review

;?j T {{;Hi{{

-

§ ool . it it g
o

DEPTH (cm)

Figure 2.2 Steady-state gravimetric water content profilenglthe 95% confidence
interval Butter, et al. (1989).

Also, in this experiment, transport of bromide asa-reactive chemical at steady state
condition was studied. Many samples were taken fdifferent locations in depth and
lateral places of area and lateral variability oluge transport was concluded based on
some breakthrough curves presenting minimum andmuam arrival time of solute at
each depth at different sites. The large varighitittransport was evidenced by the very

rapid solute breakthrough at some sites, in cantoathe late arrival and slow passage

of solute at others.

Quantitative observations obtained from laborati@sts of core samples obtained by
Bakr (1976) imply spatial variability of the hydaglic properties of soil. Laboratory
results of this work, presented in Figures 2.3 a2 show the extreme variability of

porosity and permeability of soil in space domain.
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Sundicky (1986) carried out a long-term tracer testhe Borden aquifer. Spatial
variability of hydraulic conductivity in a heteraggous media was investigated by the
results of this experiment. Dagan (1988) discuslsedact that the dispersion of solutes
by groundwater is governed by large-scale spag&trbgeneity of natural formations.
He concluded that the proper setting for relatirangport to aquifer properties is the

stochastic one.

Also, some morphological techniques such as stuflythm soil sections under
microscope, analysis of two or three dimensionagenof soils and dye experiments
were used in order to investigate the macroporéepat and measure soil pore size
distribution (Bouma 1981). Although detailed destion of these techniques is beyond
this work, the results obtained from these mettsldsv strong variability in soil pores
in terms of size, shape, arrangement and contin8ityce, soil pores provide pathways
for flow and solute transport, these processesirdteenced by variability in the
formation of soil voids and pores. Foregoing teghes have been used widely in the
literature (Bouma 1991; Lu et al. 1994; Wildensdhet al. 1994; Vanderborght et al.
1997; Wang et al. 2006) in order to investigate #éfiects of soil formation and
heterogeneity on flow and solute transport.

The results of these investigations have showntkigafield soils exhibit different types
of spatial heterogeneity, such as soil spatialalality and soil structure, which often
also coexist. Within the concept of soil heterogignepatial variability relates to the
spatial distribution of macroscopic model parangtesuch as the hydraulic
conductivity, while in structured soils microscatdfects sometimes become so
dominant that they affect macroscopic scale flowcpss. In principle, both spatial
variability in soil hydraulic properties and struc-induced heterogeneity can
contribute to the initiation of preferential pathysa(Vogel, 2000). An appropriate
model for flow and solute transport must considiérngechanisms governing these
phenomena and must describe the structure and¢exttsoil as surrounding area of the
process. So, classical equations which do not densieterogeneity of domain are not

appropriate for accurate modelling of foregoinggesses. Essential need for having
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accurate and reliable models has led researchersd &lot of effort in order to consider

profound effects of natural heterogeneity of soihydraulic processes.

One way to account for the large spatial variabitit the hydraulic properties of soils
could be to measure the actual three-dimensiosd#iilalition of hydraulic conductivity
in complete detail of the field site, and theseadzdn then be applied to a numerical
model able to capture all of the effects of thaatality. Unfortunately, this approach is

impractical for two reasons:

* Itis a computationally intensive approach.
* The measurement program required to determinedtagled distribution of the
hydraulic conductivity would be totally unworkable.
Therefore, some alternative methods using someliicagions have been proposed for

this purpose.

2.4 Modelling approaches for considering soil heter ogeneity

2.4.1 Dual domain system

Macropores cause high-permeable zones in diffgyaris of aquifers. Flow and solute
transport in extremely heterogeneous porous meiflamacropores are conceptualized
as a dual- domain (dual-permeability or dual-pdyssystem. Based on this system,
the aquifer is divided into two distinct transpoegions. The region with macropores is
considered as a second domain with high permealtiK) next to the less permeable
(LK) region. Water flow and solute transport in Bparmeability models are described
using separate flow and transport equations foln eagion which are coupled together
with an exchange term accounting for the mass fieala$ water and/or solutes between
the regions (Gerke and van Genuchten, 1996; Gertevan Genuchten, 1993a). Figure
2.5 shows the general schematic of dual-domain figstem.
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Figure 2.5 General schematic of dual-domain flow system.

Flow of water in the two regions of the dual-domsystem is described by two coupled

Richard’s equation as (Gerke and van Genuchter8&)99

oH r

C, ath :D'(KhDHh)+D'(KhDZ)_W\;\’ (2.1)
oH r,

C _atl :D.(K,DH|)+D.(KIDz)—W (2.2)

where,H is capillary tension head [LK is hydraulic conductivity [L][T], C is the
specific water capacity [[}, z is the vertical coordinate taken positive upward fLis

time [T] and /", is the transfer term for water exchange betweertwo pore systems

[T]™. The exchange of water between the two regionbaised on their relative

saturationS, differences or pressureadH differences;w, is the relative volumetric
proportion of the HK poresy = -Iw, and subscriptsandh denote the characteristics

of low permeability and high permeability regionsspectively.

Solute transport in dual domain system is predontipadvective through the zones of

high hydraulic conductivity and is largely diffusivin zones of low hydraulic
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conductivity filled with immobile or relatively sggmant water. The early arrival of
solute may be attributed to preferential flow oftevahrough the larger channels of the
wetted pore space (large channels and wetted ®di@tween finer pores in an
aggregated soil) whereas, the water in the fingepds more stagnant and does not
contribute to solute transport, except for diffusexchange. Solute transport equations

in dual-domain system models are given as (Gerlevan Genuchten, 1993a)

9GRG) - 0.(6,0,06,) = 0.(6,G,) ~ XubhG, — (2.3)
ot W,

d(@Rc) _ I

—Lgﬁﬁ—ﬂ(ﬂqﬂqrﬁlm&)-mﬂq+;; (2.4)

where, 8 is volumetric water contentR is retardation coefficientD is dynamic

dispersion transport coefficient [L][] ¢ is solute concentration [M][[], x is the first
order reaction rate coefficient [f]q is water specific discharge [L][f] /~ . Is the

transfer term for solute exchange between the e pystems [M][LF[T] .

Dual-domain solute transport mode is coupled withld¢lomain water flow model in

order to predict solute fate in macroporous saildar transient flow condition. Crucial

components of these types of models are transferste Gerke and van Genuchten
(1993a) developed a model for water flow and sotuwesport in unsaturated soils
assuming that all properties of the bulk mediumammposed of two local properties,
one associated with the fracture and one with tre matrix, and the exchange of water
between two regions is assumed to be proportiomahé pressure head difference

between the two regions as

rWzalw(Hf _Hm) (25)
_, B
T =V 7 K (2.6)
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where, a,, is the first-order water transfer coefficient THT17 r is the characteristic
radius or half-wide of the matrix structure [LJF is the dimensionless coefficient

depending on the geometry of aggregakeshe hydraulic conductivity at or near the

surface of high permeable region [L][fand ¥,,1s a corrective empirical coefficient.

Also, Gerke and van Genuchten (1993b) obtainedall@ving general expressions for
the solute transfer coefficient.

M =+r,c +awf(c,-¢) (2.7)
_B
.=z D (2.8)

where a is the first-order solute mass transfer coeffic[@h™® andD,is the effective

diffusion coefficient [LF[T] ™ at the interface of two regions.

Jarvis et al. (1991a) investigated the need to idensa dual-domain system for
modelling of flow and solute transport in macrpaaoils. They used two different
models one based on assumption of single-domaterayand another based on dual-
domain system for simulation of the same problenwater flow and solute transport.
Also, in this work, a set of sensitivity analysisasvcarried out with respect to
parameters of exchange terms related to the siteibdition of aggregates and the
geometry of flow paths. The results of sensitityalysis showed dependency of flow
and solute transport on the structure of soil. i3aev al. (1991b) continued this work
and they used the above model for simulation ofratié transport in soil samples under
field conditions. Their results showed that the mpores constituted the dominant
flow pathway (about 80% of the total water outflaav)d diffusive exchange of chloride
between the two flow domains caused a significarmdtd@ation in the amount of solute

leaching.
Saxena et al. (1994) compared the results obtdmed simulating non-reactive solute

transport through undisturbed soil samples withaibserved experimental results. They

used a model which could be performed in both sigld dual-domains. Their results
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showed that the dual domain model can improve fipecximation of solute transport

compared with classical convective-dispersive model

Sun et al. (1999) extended the code so-called Rd&loped by Clement et al. (1998)
to a dual-domain model in order to investigatedfiect of heterogeneity resulting from
the presence of HK/LK conditions on bioremediaticate. The reaction between
hydrocarbon and Oxygen, catalyzed by the biomass exaressed by dual-substrate
Monod expression. The mathematical model embeddtd this modified code was
based on the two-media approach with diffusive arge between them and in the
water occupying LK region, the advection was assltoebe negligible. Both aqueous
and solid microbes were considered in the HK sulman. The aqueous microbes are
transported like a solute in the HK sub-domain.yCattached biomass was considered
in the LK sub-domain. Results obtained from simatatof a hypothetical case-study
suggest that the biodegradation process is sigmifig slower in the LK subsystem than
in the HK domain. Since hydrocarbon and oxygen temasported faster in the HK
domain than in the LK one, the microbes grow fastethe contamination period and
mediate more rapid contaminant degradation dufiegoure biodegradation period. On
the other hand, the concentration of microbes énLtk system changes slowly. It takes
a long time to contaminate the LK system; it alskes a long time to clean it by natural
biodegradation. The results obtained from dual-domaodel were compared against
those determined by using a single-domain model #@ndvas concluded that
biodegradation efficiency is overestimated in thedystem and under-estimated in the
HK domain, when a single porosity model is usedédscribe the HK/LK system.

Vogel et al. (2000), simulated flow and solute s@ort under an irrigation furrow using
a 2-D model developed by Gerke and van Genucht8@3¢). They considered 5
different scenarios including: a single domain withiformly distributed soil hydraulic
properties (SU), a single domain with randomly gatexl hydraulic conductivities
(SR), a two-domain system with uniformly distribditeydraulic properties (DU), a two-
domain system consisting of a uniform matrix andaature domain having randomly
generated hydraulic conductivities (DRF), and a-tdemain system with a uniform

fracture domain but a randomized matrix domain (DRWhe results obtained from
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scenario SR, showed that the hydraulic connecteiwéen the furrows and the water
table and consequently, the solute concentratmm fmnovement were established much
faster than the scenario SU. Different resultsevabtained for the scenario DU. In this
case, water flow in the fracture domain reacheddstestate relatively soon, while the
water content in the matrix domain was increasingly orelatively slowly,
predominantly through the absorption of water frima fractures. Also, as expected,
solute transport rates were significantly highethe fracture than in the matrix pore
system. Simulation results obtained from scenaf¥-Bhowed the most heterogeneous
distributions, especially for the solute concembrat As compared to DU, the water
content in the fracture domain increased much fadtee randomization apparently
provides high-flux pathways for both water and dissolved solute. The DRM scenario
results were quite similar to those obtained frolh. Dhe pressure head profile in the
matrix system still exhibited a somewhat distinetpreferential flow pattern. However,
the matrix pressure head distributions did not tyesffect solute displacement in the

matrix domain.

Comparison of results obtained from different sciesa demonstrated the importance
of considering macroheterogeneity of soils due triability of soil hydraulic
parameters such as permeability and the usefuloes®mbining dual-permeability
features with a model that considers spatiallyridisted hydraulic properties. However,
their results have not been compared with obsethsdbutions under field conditions
in order to find the proper scenario for this casel randomization of macroscale

parameters.

2.4.2 Stochastic approaches

Simulation of processes with random variation i® @n more inputs can be treated by
stochastic approaches. In these approaches, randoables and consequently the
output are defined in a probabilistic framework digitistical moments like mean and
variance rather than using a certain constant vdbisributions of potential results
which are derived from a stochastic approach reftae random variation in the
input(s). In the stochastic approach, the contisunodels are the most common way of

describing heterogeneity. These models focus drpsmperty or parametric variability
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to describe the local variations of certain pararse{hydraulic conductivity, porosity,
dispersivity, etc.). These types of models areudesdjy used in the field of subsurface
hydrology which is main focus of this work. The mabjective of these approaches is
to derive the stochastic properties of flow andusokransport variables (i.e., pressure
head, water content, water flux, solute concemmatsolute flux) from the stochastic
properties (i.e., mean, variance and spatial caticagl structure) of hydrological
parameters of soil.

2.4.2.1 Monte Carlo method

Monte-Carlo approach is a powerful technique farstdering uncertainties in a system.
In general, Monte Carlo method consists of two pdutes (i) generation of sample
realizations for input parameters from a given piolity distribution, P(X), to
represent the uncertainty present in the procegsEgtimation of expectations of
functions under this distribution by solving thasdical continuum governing equations
for each realization of random fields whether nuoathy or analytically and statistical
analysis of the outputs (MacKay, 1998). The procedaf the method is simple. It
assumes that the probability distribution of theapzeter (e.g., hydraulic conductivity)
and its covariance function are available from roesd field data. However the
probability distribution function and covariancen@ition do not provide information
about the parameter value at a particular poirdpace. In order to obtain the spatial
distribution of the parameter values, many posgiddizations of parameter values that
conform to the assumed probability distribution ate covariance function are
generated by using a random number generator witkcia techniques. The
assumptions of the probability density function tbb model parameters or joint
probability density function for a number of parders in the model are based on some
field tests and/or laboratory tests. Each realratof the parameter values is
subsequently input to classical governing equatmhe procedure of interest which
are then solved by standard numerical or analyticethods. In most cases, numerical
methods are used. Thus, a solution is obtainedefwrh realization of the input
parameters. If there are N realizations of inpuapeeters used for simulation, then N
realization of output are obtained from solving th@verning equations (Shinozuka,
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1972; Mantoglou and Wilson, 1982). It is then, ploesto analyse the statistical

moments of output. The principle of the methodlisirated in Figure 2.6.

N Realizations
of Parameter
Fields

N Realizations of
Ouputs

Figure 2.6 Schematic illustration of Monte Carlo method cqiqgreh 1992).

Sample generation of random fields plays a fundaahenle in results accuracy and
efficiency of stochastic Monte Carlo method. Thare different techniques to generate
realizations for the random parameters based atorarfield variables type in terms of
their spatial correlation. The simplest case oardom field variable is an orthogonal

random field variable, which consists of randomvanate samples at each location.
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This can be implemented easily with any efficieaidom number generator. However,
a particular challenge arises when the random bi@saare dependent and they are
(spatially) correlated and defined through a joiot multivariate distribution.
Hydrological random parameters contributing in ft@v and solute transport are
spatially correlated. Not only do the generateddoam fields have to converge in the
mean to the desired ensemble mean and varianceafanthigher order moments if

appropriate), they also have to converge in thenmt@#he desired correlation structure.

Anderson and Shapiro (1983) used Monte Carlo appréa study steady-state one-
dimensional flow. A drawback of this work is th&w is generally three dimensional
and transient, thus the conclusions based on dysteal one-dimensional theory may

be unrealistic.

Harter and Yeh (1998) used MCM for simulation oéagty-state water flow. They
explained the ability of the stochastic numericaldels for simulation of steady-state
water flow in the aquifers with complex geometryaddan, et al. (1998a) studied the
effects of soil heterogeneity on water flow anduseltransport using Monte-Carlo
method in two-dimensional synthetic conductivitgidis. The flow problem was solved
via a FD scheme, and a random walk approach wasogetpto solve the transport
equation for a conservative tracer. The model veatetl for mass conservation and
convergence of computed statistics and found tlol yaecurate results. Following this,
Hassan et al. (1998b) used Monte Carlo method lfmw fand transport in two-
dimensional random conductivity, porosity, and denuistry fields to explore the
influence of their spatial variability on flow anttansport processes for both
conservative and reactive chemicals. For consew/atansport, the results showed that
when the porosity is correlated to the hydraulindiectivity (which may be expected in
geologic formations); the dispersion process isiiigantly affected. Positive cross
correlation between the porosity and the condugtidiecreases dispersion, while a
negative correlation tends to increase dispersiorthe longitudinal direction. For
reactive transport in physically and chemicallyenejeneous media, the geochemical
variability alone yields results that are signifidg different than when both

33



Chapter (2) Literature Review

geochemistry and porosity are random space vasatderelated to the conductivity
field.

Bruggeman, et al. (1999) developed a FE modelifioulating flow and solute transport
in soils with macropores. The model simulates pesfital movement of water and
solutes and uses Monte Carlo simulation to reptetbenstochastic processes inherent
to the soil-water system. The model was applied tield case-study for the evaluation
of the developed model. The field application ssgge that the model underestimated
the fast leaching of water and solutes from thé zooe. However, the computed results
were substantially better than the results obtaieein no preferential flow component

was included in the model.

To take full advantage of the field data, the inpamnple generation can be conditioned
on the information known about the particular pgiit space, where measurements
were taken. Conditional simulation is a specialdkiof Monte Carlo simulation
technique. The realizations generated by conditiorethods are a subset of generated
unconditional realizations. The conditional subsatsists of all those samples in the
unconditional set that preserves the known datdeatmeasured locations. Then, the
realizations of the hydraulic parameter value whdchnot agree with data at sample
locations are simply eliminated. It is expectedt ttiee variance of output from the
conditional simulation is smaller than that frome tMonte Carlo simulation (Davis
1987; Clifton and Neuman 1982; Gelhar and Axnes&3).9

Conditional simulations with the turning bands noethwere one of the first stochastic
methods in hydrologic applications (Delhomme 197%H)dou and Flury (2004) used
MCM to simulate flow and solute transport througktdrogeneous soils. The main
objective of this work was numerical study of (feteffect of the lower boundary
conditions in two-dimensional heterogeneous salden transient-flow conditions, and
(i) the effect of spatially structured hydraulicoperties on water flow and solute
transport. So, they simulated water flow and sotrg@sport in hypothetical domains
with two different lower boundary conditions; freeainage boundary condition and
semi finite boundary condition. Also, three diffetesoil structures were investigated in

this work; isotropic, horizontal and vertical lagdrstructures. Turning band technique
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was used for generation of random fields (i.e.,rhytic properties) which represent
spatial heterogeneity of soils. Water flow and $gort equations were solved
numerically with the finite element code CHAIN_ 2[@wtloped by Simunek and van
Genuchten (1994). They concluded that the effedbwer boundary condition on the
water flow and solute transport is more pronounicethe case of soil with vertical
structure. The results showed that in the verBodlstructures, water was moving faster
and with larger amounts in some regions and unkereffects of lower boundary

condition solute leaching is retarded for the cail free drainage boundary condition.

The principal advantage of the Turning band metlkdtat it reduces the generation of
a two- or three-dimensional, random, spatially elated process to the generation of
one-dimensional, correlated line processes. Thectemh in dimensionality is made
possible by the fact that the transformation fron3-aor 2-dimensional covariance
function into an equivalent one-dimensional covage@ function can be uniquely
defined (Matheron, 1973; Mantoglou and Wilson, 198&fter determining the
equivalent 1-dimensional covariance, a one-dimerajanultivariate process Y(x) can
be generated along a finite line by using an apjate autoregressive or other proper

algorithms.

Fu and Gomez-Hernandez (2008), used Markov chaintd@arlo (McMC) theory to

develop an algorithm for generation of proper #dions of soil hydrologic parameters
representing uncertainty of hydrologic propertidssoils in simulation of flow and

solute transport. When generation of realizatiorectly from desired conditional

probability distribution function (cpdf) of randoparameters is impossible, a Markov
chain of realizations can be built that will conyerto a series drawn from this cpdf.
According to Markov chain theory, a chain of realians can be built using an
appropriate transition kernel that, eventually,|vdbnverge to a series of random
drawings from a pre-specified probability distriloat function (pdf). Each member of
the chain is conditional to the previous member ithaalue is determined through the
transition kernel as a function of the previousicimember value. The transition kernel
is a probability distribution function, much simpl® draw the realizations from than
the target probability distribution function. Thed problems faced in any McMC
implementation are which transition kernel to used how long it will take for the
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chain to converge (Fu and Gomez-Hernandez, 200&pil® of methods for finding a
proper transition kernel is beyond the scope of tork and can be found in MacKay
(1998).

Gotovac, et al. (2009) used MCM to obtain reliatddsv and travel time statistics in
highly heterogeneous porous media. They simulate@-@ steady, linear and
unidirectional flow in highly heterogeneous domaiith InK variance up to 8. Since
each Monte-Carlo step presents a potentially sergmurce of errors, especially for
highly heterogeneous aquifers in this study, stamturacy and convergence analysis
was performed in order to define which resolutienel for all flow and transport
variables is needed to obtain reliable flow angdrdime statistics. Based on numerical
experiments, they concluded that a high resoluémel is needed to accurately solve

the flow equation due to the large variability ydhaulic properties.

Coppola, et al. (2009) investigated the impact etelogeneity of hydraulic properties
of a structured soil on various soil water flow geeses with different top boundary
conditions (evaporation and infiltration). Usingnamerical solution of the Richards'
equation in a stochastic framework, the ensembégacheristics and flow dynamics
were studied for drying and wetting processes aofeseduring a time interval of ten
days under a series of relatively intense rairda#énts. The results of their predictions
were compared to mean water contents measuredtioverin several sites at field
scale. The contribution of the variability of sstfuctural parameters was studied on the
variance of the water contents obtained as the majout of the stochastic simulations.
The contribution of each parameter depends on émsitsvity of the model to the
parameters and on the flow process being obserVéa@y concluded that the
contribution of the retention parameters to unaetyaincreases during drainage

processes while the opposite occurs with the hydraanductivity parameters.

MCM is a powerful tool in simulating stochastic pleenena while few assumptions are
required and it is very easy to understand. Thenrd@advantage of the MCM is its
computational effort. The probability density fuiloct or the histogram of the input

parameters must be known. A large number of re#diza are necessary in order to get

36



Chapter (2) Literature Review

a meaningful statistical analysis. A conceptuakdimntage of the MCM is that it
provides no theoretical insight into physical phaeoa. Also, for highly nonlinear
stochastic differential equations, there is no gotge that Monte Carlo simulations
have converged to the exact (ensemble) solutioer afome large number of
realizations. Also, there are no well-establishedhputational criteria to predict the
number of realizations required to achieve the rddsiaccuracy. This becomes
especially critical in assessing higher order masen the probability distribution of

state variables of interest (Yeh, 1992).

2.4.2.2 Analytical stochastic method

The analytical stochastic method provides an amprediich explicitly incorporates the

effects of natural heterogeneity of soil in simigdatand prediction of large-scale
behaviour of both the flow and solute transportriby the last three decades rapid
developments have been made in the theoreticanagséeating groundwater flow and
solute transport in an analytical probabilistiofiwvork. Among the different methods,
perturbation and spectral methods are the mostyl us this field. Based on these
methods, soil heterogeneity is represented by derieg hydraulic parameters as
random spatial variables and the resulting premhsti are represented through
probability distributions or/and in terms of thetatistical moments.

Based on the principle of Perturbation method, ittpait parameteX and the output

variableY can be expressed in a power series (usually Tagloes) expansion as,

2.9
X =Xy X +17X .. (29)

Y =Y Y, +5Y, (2.10)

where, s is a small parameter (smaller that unity). Thegseressions are incorporated
into the differential equations of the system tbayeet of equations in terms of zero and
higher-order expressions of the facgtorThe equation that is in terms of zero

corresponds to the mean value of parameter orhlaridhis equation in terms of first-
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order of / corresponds to the perturbation of the parametdr\ariable. In practice

only two or three terms of series are usually est&d. It is very important to notice that
the accuracy of perturbation methods is relatethéomagnitude of the truncation error
and then they are most applicable to problems vétatively small variance (Connel
1995).

Analytical perturbation method was used by Chang &emblowski (1994) for
investigation of the statistical behaviour of botle and three dimensional unsaturated
flow in heterogeneous porous media in steady-statedition. Also, Liedl (1994)
developed a stochastic model for water flow in tunsded soils for transient conditions
using perturbation theory and simulated verticdiltration process into a dry sandy
loam. The simulation results obtained from this slogere compared with the result
obtained with Monte Carlo method for this case. @arison showed excellent
agreement between the results obtained from thesedifferent techniques while

computer time was reduced by more than 90% fohststec perturbation method.

Another type of analytical method is spectral mdtldich was used for the study of
the spatial variation of the stochastic parametersrandom fields. In this method,
random fields are characterized by mean and petiorbvalues and theoretical spatial
covariance in real space. Statistical charactesisif random parameters in real space
are transferred to spectral domain. Then statlstredationships between input
parameters themselves and their relationships auitput variables are evaluated using
spectral representations and their spectral dehsitgtion. Therefore, this method has
the advantage that it provides a physical undedstgrnthrough development of closed
form equations presenting an explicit relationsbgiween statistical characteristics of
the input parameters and system response. Moreigtest of this technique is found

in chapter 4 of this thesis.

One of the distinctive features of stochastic amnzdy methods is that through this
method, a set of structured stochastic governinggons are developed that specify the
relation between statistical moments of inputs aotbut parameters. This feature

makes the analytical method efficient in termsimietand computational cost, since the
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statistical properties of the model outputs canobg&ined through the solution of
developed stochastic governing equations rathem #tatistical computations of the
results of classical conventional governing equetifor different possible realization of
the input parameters. Encouraged by the attraétiatures of the analytical methods,
after exploration of the potential of these methdds incorporation of random

variability of input parameters into classical govag equations of flow and transport;
a large number of analytical stochastic models Hmeen developed. In the following a
detailed review of major published studies on thalyical based stochastic models for

flow and solute transport is presented.

Bakr et al. (1978) applied a combination of peraidn and spectral method to the
classical Richard’s equation and developed two hstsiic models; one for one-
dimensional and another for three-dimensional wé#itew in unsaturated soil. The
comparison of the models developed shows that énence of hydraulic head for the
case of three-dimensional flow is about 5% of thahe case of one-dimensional flow.
This indicates that significant errors could beadticed if a one-dimensional analysis
is used to study the effects of random variabiitysoil hydraulic properties which are
three-dimensional in reality on water flow procebey investigated the influence of
the inherent spatial variability of aquifer propest on water flow in steady-state
condition. They represented the hydraulic conditgtiparameter as a spatial stochastic
process and developed a mathematical relationgtipeen the pressure head variance
and the log hydraulic conductivity. The relationsbbtained in this work shows strong
dependence of the head variance on correlationtHeoglog hydraulic conductivity
field. This demonstrates the essential role of igpadtatistical structure in such
phenomena. However, the models developed in thik were not applied to a real
example or case-study which is necessary to astdltam as reliable models to be
used for practical situations.

Dagan (1979) used perturbation method together batlnds method to consider the
effects of soil heterogeneity in the groundwatentamination problem. The bounds
method establishes upper and lower bounds of thdora variable (e.g. effective

conductivity) of a heterogeneous material when dhly information available is the
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frequency distribution of the variable. These bauade widely separated for materials
of high variability, and a self-consistent model ieth provides an estimate of the
average conductivity is subsequently adopted. ddweantages of this method are (i)
providing simple estimates of statistical flow peojes with no restrictions imposed on
the permeability variance, (ii) relying heavily grhysical models which facilitate
understanding of the phenomena. The main limitabérthis method is that it is

assumed the average properties of the materialskamly in space and time.

Dagan (1982) studied the spread of a solute in dions of random two-and three-
dimensional structures for transport of soluteargé heterogeneous porous media. He
proposed an approximate analytical approach antiedpip to simple cases in order to
verify its applicability. The fundamental case dafiform average flow through an
unbounded formation and of release of small sohddy as initial condition was
investigated. It was explained that in a homogesemuifer the centre of gravity of the
solute body transforms uniformly and solute spresdgoverned by pore scale
dispersion. In a heterogeneous aquifer this is angdr the case since streamlines
become tortuous even if the flow is uniform in #nerage. In his paper, the various
possible paths of solute body were determined abaiilistic terms and subsequently
the distribution of the expectation and varianceaicentration in space and time were

evaluated.

Dagan (1990) studied transport of solute in hetemegus soils. It was assumed that the
advection is the only mechanism of solute transpod local dispersion is negligible. It
was shown that soil heterogeneity causes solutksfgerse with higher rate in porous

media.

Yeh et al. (1985a), developed a mean equation ibesgiarge-scale behaviour of water
flow using stochastic first-order perturbation aggmh and spectral representation
techniques. Also general equations were derivedtingl capillary pressure head
variations in terms of mean capillary pressure higgeld. The model was developed
only for the case of one-dimension vertical inéitton in steady-state condition. Also,

the model was valid when the scale of heterogenegityuch smaller than the overall
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scale of the problem. It was assumed that hydrotdgiroperties of soil are statistically
isotropic i.e., the variation of the related partene in every direction is the same.
However in real conditions these parameters castddestically anisotropic. Therefore
following this work, Yeh et al., (1985b), studidueteffect of statistical anisotropy of
hydraulic properties on head variance and effedtiy@raulic conductivity considering
two different cases. In the first case, the sagardtydraulic conductivity was assumed
to be statistically variable and the pore sizerttigtion parameterd ) constant. The
results from this study showed that the pressurad heariance in a steady state
infiltration in an anisotropic medium depends oe #tatistical parameters of the media
and the mean hydraulic gradient while in the cdssatropic assumption, it was shown
that the variance depends on mean capillary predseiad. They considered another
case in which both saturated hydraulic conductiaitg parameter were considered
to be stochastic processes. The results for tisis showed that the head variance could
be significantly larger depending on the magnitwdethe mean capillary pressure,
especially for the soil with a larger variance lué parameter . It was concluded that in
order to apply the result of the stochastic analisia field situation, it was necessary to
invoke the ergodic hypothesis. The ergodic hypasheaplies that the scale of the
problem under consideration has to be many tinrgefdahat the correlation scale of the
input process. In this way, equivalence betweererabte average and space average

can be achieved.

Yeh et al. (1985c) applied their previous resultsatfield situation where relatively
large amounts of soil hydrologic data were colldte that the stochastic results could
be tested. The theory developed earlier indicatead the capillary head variance
increases with its mean value. This means thav#n@ance becomes large as the soll
becomes dryer. It was also found that the effeainsaturated hydraulic conductivity
depends on the mean gradient, the orientation ratifstation, and the correlation
scales, and its anisotropy varies substantiallynsthe mean capillary pressure changes
if the variance of the parameteris large. The results also showed that the horaont
unsaturated hydraulic conductivity of a stratifemll formation could be several orders
of magnitude greater than the vertical saturatedtdnylic conductivity and the vertical

conductivity decreases considerably as mean capitleessure increases. As the soil
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becomes drier, horizontal hydraulic conductivityctkmes more important than the

vertical conductivity causing the migration of waite the horizontal direction.

Gelhar and Axness (1983) presented an analytioghastic theory for evaluation of
dispersion due to complex flow in a large-scalengprt problem which is called
macrodispersion. The developed theory was used tudysthe solute transport
mechanisems in two specific aquifers. They showed dispersivities predicted from
the stochastic theory are consistent with the tesfl controlled field experiments and
numerical simulations. Also, they concluded thatlusion of three-dimensionality is
important in analyzing the macroscopic dispersiomcess and important features are
lost when the flow is considered to be two-dimenaloHowever, the proposed theory
was applied only to the steady state flow and partsequations and transient condition

was not considered which is common situation ih peablems.

Later on, Gelhar (1986) investigated the applicgbidf above theory on field-scale
problems through comparing some results obtaingtiisfmethod with those obtained
by Monte-Carlo method. The importance of finding #ppropriate value for correlation
scale and variation of hydraulic conductivity fqresific aquifer was illustrated. Also
range of values for correlation scale and pertishafor different aquifers was

presented.

Following exploration of strong capability and paiel of spectral method in

incorporation of the effects of spatial variabiliof random hydraulic parameters in
transport phenomena, this probabilistic framewodswsed by Mantoglou and Gelhar
(1987a) for modelling of large-scale transient tmsded flow systems. In this work,

effects of sinks/sources of water such as vapauv Were ignored. The most important
advantage of this method is that the effective patars of the large-scale model
depend on only a few parameters describing thestitatof local variability (i.e., mean,

variances, and correlation lengths) rather tharattieal local soil properties which are
infinite. However, the general stochastic theoryaleped requires evaluation of several
three-dimensional integrals. These integrals amegdy very complex and are not

analytically tractable.
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Mantoglou and Gelhar (1987b) solved the above roratl integrals for stratified soll.
Field observations show that natural soil formatiane often stratified. The hydrologic
properties of stratified soil formations can beuaized as realizations of three-
dimensional, statistically anisotropic random fglavith the correlation lengths in the
directions parallel to stratification being sigodntly larger than the correlation length
in the direction perpendicular to stratificationh€ly presented analytically tractable
expressions for capillary tension head variancearmsoil moisture content, and
effective specific soil moisture capacity of trargi unsaturated flow in soils.
Consequently, they tried to make these equatiamplsr through implementation of
some constrains related to some specific casesetifrngg or drying condition. They
considered the conditions that in which the randpamameters and variables are
correlated or uncorrelated and developed some sirapt transparent relationships
between capillary tension head variance, mean rsoilsture content and effective
specific soil moisture capacity with statisticatg@eters of hydraulic properties of soil.
The attractive feature of these expressions is tihay provide a conceptual
understanding of the effects of variability andaygf distribution of input parameters

on statistical values of output.

Mantoglou and Gelhar (1987c) simplified the genetalchastic equations derived in
Mantoglou and Gelhar (1987a) and presented a ggradric expressions for evaluation
of the effective hydraulic conductivities for theils with stratified formation. However,
these simple expressions are valid at particuleageaf soil property. They showed that
effective hydraulic conductivities show significamgsteresis and are anisotropic with
the degree of anisotropy depending on the mean domdition (wetting and drying).
Such hysteresis and anisotropy are produced bggagal variability of the hydraulic

soil properties rather than hysteresis or anisgtadghe local parameters.

Vomvoris and Gelhar (1990) used spectrally basetugmtion approach to evaluate
the concentration fluctuations for a steady-stdtev ffield in a three-dimensional
statistically homogeneous and anisotropic aquifée theoretical model developed in
this work, was used for numerical study of the @fevariance of saturated hydraulic

conductivity and concentration gradient on the arage of solute concentration. They
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concluded that increase of both the variance airatgd hydraulic conductivity and
solute concentration gradient causes increase fiange of solute concentration. In
spite of very good numerical results obtained frthe mathematical model developed
in this work, it has a complex structure that Igrtite application of this model since the

model can not be easily solved with analytical teghes.

Van Kooten, (1994) used analytical perturbatiorhtegue for developing a model to
predict mean travelling time and rate of contamimaavement in the confined aquifer.
The effects of linear non-equilibrium sorption afit-order decay were taken into
account in this model. He developed asymptotic @sgion for two different 2D flow
patterns including flow parallel to the boundarydaimain and flow towered pumping
wells. The performance of the model developed i work depends on the ratio of the
advection and dispersion. Accuracy of predictiacréases as the ratio of advection and

dispersion increases.

Kapoor and Gelhar (1994a) studied the movementuofarninants and concentration
fluctuations in heterogeneous porous media. Theyded on the transport mechanisms
that occur in the saturated zone and consideredriwendwater velocity as a spatially
variable instead of considering a uniform mean c&igjo It was concluded that the
variability in concentrations in this conditionrisore than when only local dispersion is
considered in uniform velocity. Also, they showedthtt the mean and variance of
concentration field undergo a translation with thean velocity field and the rate of
creation of fluctuations increases with the meamceatration gradient and it decreases

with an increase in the plume scale.

Kapoor and Gelhar (1994b) presented an analytichltien to the equation for
concentration variance developed in Kapoor and @&¢glh994a) for a special case of
multi-dimensional finite-size impulse input. The efficient of variation that was
estimated from a bromide tracer test data was coedpavith their theoretical
predictions. The coefficient of variation of thencentration was defined as the standard
deviation of concentration divided by its mean mstwork. Both theoretical and

experimental results showed that the coefficientasfation of concentration decreases

44



Chapter (2) Literature Review

with time. Also, they noticed that the regions ihi@h the coefficient of variation is
small were the regions for which the mean concéatravas a good predictor of the
actual concentration levels in a sample realizatioa hydraulic conductivity field.

Russo (1993) used stochastic method for modellingsport coupled with flow in
unsaturated zone. He combined the Lagrangian fatiounl developed by Dagan (1984)
for modelling of solute transport with stochastieedry developed with Yeh et al.
(1985a, b) for steady-state water flow. Therefdhe statistical moments of solute
transport were related to hydrological propertiethe heterogeneous unsaturated soils.
Then, though a numerical investigation, they showet solute spread increases as

water saturation decreases.

Russo (1995a, b) developed a model based on Lagrestpchastic method for
transient solute transport in vados-zone. He et@tua macrodispersion coefficient for
the saturated case and applied this coefficientiferunsaturated case with employing
the assumption that for a given mean capillary saness head, water saturation is a
deterministic constant and log conductivity is althaariate normal, stationary random
space function. The proposed approach is applicablados zone flow and transport as
long as, the scale of heterogeneity in the directb the mean flow is smaller than
approximately one tenth of the characteristic langt unsaturated flow. Effects of
water saturation on solute transport, was invetgtyaHe concluded that for a soil with
a specific formation, the magnitude of macrodisjpersn unsaturated flow is larger
than that in saturated flow, and increases as vsateration decreases.

Yang et al. (1996) derived an analytical solutidnnacrodispersivity for adsorbing
solute transported in physically and chemicallyeh@jeneous unsaturated soils under
the condition of gravity dominated flow and expexbsas a function of statistical
properties of the unsaturated soil and chemicakrbgeneities. The unsaturated
hydraulic conductivity and water content were teelaas spatial random functions. The
chemical adsorption, described as linear equilibritsotherm, and the adsorption
coefficient were represented as a spatial randaorctifon.
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Miralles-Wilhelm and Gelhar (1996) carried out ackiastic analysis of transient
characteristics of sorption at field scale and stawhat sorption macro-kinetics arises
as a result of physical and chemical heterogesseiifeaquifer. They developed an
analytical expression for the time evaluation o field scale retardation factor and
longitudinal macrodispersivity for a reactive seluthey presented a stochastic analysis
of solute transport and first-order decay for thsecof spatially varying porous media
(hydraulic conductivity), flow (groundwater velogjt and decay rate.

Miralles-Wilheim et al. (1997) developed a thresidnsional analytical model to
guantify the process of oxygen-limited biodegramiatas it occurs at field scales. The
model incorporated the effects of chemical and oli@logical heterogeneities inherent
to the biodegradation process in a stochastic aisatf coupled transport equations for
a system consisting of a contaminant and an oxidiagent (oxygen) in heterogeneous
and anisotropic aquifers. Natural aquifer variapiliequilibrium linear sorption and
Monod-type kinetics for the microbial population netitute the sources of these
heterogeneities. Their results showed that in omygeited biodegradation, the
presence of heterogeneities has strong effectseolohgitudinal macrodispersivities for
contaminant and the dissolved oxygen. But this moddes not consider the effects
interaction between oxygen and hydrocarbon conagotr fluctuations. Following this,
Kemblowski et al. (1997) developed a methodologyphtain a clear understanding of
mixing-limited biodegradation processes in hetenegels geologic formations. They
showed that, their model and particularly the difec biodegradation rate, depend
strongly on the cross correlation between the omyged hydrocarbon concentration

fluctuations.

Xin and Zhang (1998) presented a close form salutts a one-dimensional transport
model coupled with biodegradation in heterogengmrsus media. The model consists
of two reaction-advection equations for nutrientl gollution and a rate equation for
biomass. The hydrodynamic dispersion was ignoreateddainty and spatial variability

in geochemical and biological parameters were nosidered and spatial variability of
porosity was considered as the only source of nam&ss in process. Statistics of

degradation fronts were studied via representationgerms of the travel time
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probability density function and travelling frontgfiles. In all above studies, it was

assumed biomass does not move in the domain.

Miralles-Wilheim et al. (2000) expanded the modelsented in Miralles-Wilheim et al.

(1997) in order to consider transient microbial ayrics. Comparing their results in this
paper with Miralles-Wilheim et al. (1997) assumiag established active biomass at
steady state, shows that, the effects of trangwotobial growth dynamics on the

effective retardation factor and macrodispersisitiee minor, while modest effects are
produced in the effective decay rate. Advantagethisf model are that it capture the
most important large-scale system characteristia$ l@as few effective parameters
which are identifiable from a realistic data sebwever, solution of this stochastic
partial differential equation needs to a proper adoal method due to complex nature

of these equations.

Zhang and Brusseau (2004) used a stochastic approachutty she effects of

uncertainty in dissolution and sorption/desorptiate due to soil heterogeneity on
transport of immiscible organic liquid constituemswater-saturated porous media. In
this approach a probability density function wasdigo describe a continuous
distribution of sorption domains and associated catefficients. The initial dissolution

rate coefficient and the sorption/desorption ratefficient were considered as random
parameters and Log-normal probability density fiord were used to describe their
distributions. They concluded that both heterogese@te-limited sorption/desorption
and heterogeneous rate-limited dissolution canifsigntly increase the time required

to elute immiscible-liquid constituents from a caminated porous medium.

Chaudhuri and Sekhar (2005) used a stochastic tanslynethod similar to that of
Gelhar and Axness (1983) in order to evaluate @efit of macrodispersivity in three-
dimensional heterogeneous porous media. Both hldrawwnductivity and local

dispersion coefficient were considered as randorabigs, while, in the mathematical
model developed by Gelhar and Axness (1983), latigpersion coefficient was

considered as deterministic parameter.
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From study of the documents presented in this section, it can be concluded that the
analytical stochastic approaches can be used to provide valuable insight about the
effects of soil heterogeneity on the behaviour of large-scale unsaturated flow and solute
transport in soils. However, these approaches are not capable of simulating complicated
problems; particularly problems related to aquifers with the complex boundary
conditions. In the case of simulating particular domains of an aguifer, numerical
approaches are more appropriate than anaytical methods. Therefore, the combination of
analytical methods, for incorporating the uncertainty present in the problem, with
numerical techniques, for simulating the complex geometry and boundary conditions of
the aquifer, can be used to overcome the limitations of analytical approaches and to take
advantage of both analytical and numerical methods.

2.4.2.3 Alternative methods

Polmann et a. (1991) used FD technique to solve the analytical-based partial
differential equations developed by Mantouglou and Gelhar (19874, b, ¢) for modelling
of transient water flow through unsaturated soils. The results obtained from their mean
flow method were compared with those obtained using turning band method (Ababou,
1988 and Ababou and Gelhar, 1988). Good agreement between the results of these two
different methods indicates that, the assumptions and simplifications applied for the
development of mean flow equations from the spectral based method are not critical in
simulating of water flow. However, in this work, the effects of the spatial gradient of
mean capillary tension head in evaluation of hydraulic conductivity were ignored. The
same problem was solved by Aguirre and Haghighi (2002) using a numerical FE
technique and they obtained different results from those gained by Polmann et al.
(1991). In this work, the effects of the spatia gradient of mean capillary tension were
considered. Following this, Aguirre and Haghighi (2003) worked on further
development of their model and tried to consider heterogeneity in their FE model.
However their model had the shortcomings of not considering some of the critical
mechanisms affecting the fate of solute, such as chemica reaction and molecular
diffusion. Additional drawback of their model could also be that it could not be applied
to some practical problems, because it lacks having a versatile top boundary condition

and considering the effects of atmospheric evaporation.

48



Chapter (3) Stochastic finiterakent method

CHAPTER 3

STOCHASTIC FINITE ELEMENT
METHOD

3.1 Introduction

From a geo-environmental perspective, the most comstochastic problem involves
one or more differential equations with random Gorints. These coefficients
represent the properties of the system under iigat&in. They can be thought of as
random variables or more accurately and with ameesing level of complexity, as
random processes with a specified probability stmec Mathematically the problem
can be formulated as

Au= f (3.1)

where A is a stochastic differential operator, u is thed@n response, andl is the

possibly random excitation.
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The problem in dealing with stochastic equationgwse-fold. Firstly, the random
properties of the system must be modelled adequasetandom variables or processes,
with a realistic probability distribution. A goodetitment of this modelling phase is
presented by Gelhar and Axness (1983), Gelhar (1898 Russo et al. (1994).
Secondly, the resulting differential equation miostsolved and response quantities of
interest obtained, usually as determined by tremiosd order statistics. The solutions to
most of such differential equations are too comdiax analytical methods and are

commonly obtained using approximate numerical tephes.

The problems dealt with in this study involve cqptseof mathematics and probability.
It is both necessary and instructive to introduoe mathematical concepts which are
used in the sequel. So the primary focus of thegptdr is on stochastic processes and
random fields that provide the tools needed toesgmt the continuous variation of
parameters in space. Then, it is explained that $toshastic spectral method is applied
to mathematical models of stochastic processes bi@iro the related stochastic
differential equations (SDEs). Finally, a descoptiof finite element and finite
difference procedures for finding numerical solntiof resulted stochastic partial

differential equations is presented.

3.2 Probability and random variables

A random variableX is defined in terms of its cumulative probabilidystribution

function (cdf) as

Fy (x)=P[ X< (3.2)

which denotes the probability that the random \deiX is less than some specified
value x. In this section, Capital letters are used to termandom quantities and
lowercase letters to identify deterministic numakivalues. In an applied sense,

probability is usually thought of as the relativecuency of occurrence, expressed as

number of occurence withX
total number of occurences

P[X< = (3.3)
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The cdf is a non-decreasing function, ranging fto 1 as X goes fromeo toco. For

a continuous random variable the probability dgrfsihction (pdf) is

fy (x) =% (3.4)

which can be expressed in terms of the probalitidy x is in some small intervak

f,(x)dx=P[ x< X< x+0 % (3.5)

By integrating Equation (3.4),

Fy (%) =_f f, (u)du (3.6)

which the area under probability density functisrLi(F, («) =1).

Random variables are often characterized by themants; for example, the expected

value, or mean oX is found by taking the first moment

H, =E[X]= T xf, ( X) dx (3.7)

which is a measure of central tendency of randonabke. The second moment about

the mean, the variance, is

oo

J§=E[(X—,ux)2}5j(x—/,1x)2 f(X) dx (3.8)

—00

When more than one random variable is analysesl iiecessary to consider how the
variables are interrelated probabilistically. Feample, if X; and X, are two random

variables, then their joint distribution functios i

F(x.%)=P[ X < xand X,< x| (3.9)
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and the joint probability density function is

0°F (%, %)

A
axx, (3.10)

f(x,%)=

For continuous random variables, the conditionalbpbility density function ofXj,

given X=Xy, is defined by

Fx%)  _ (% %)

f(x1%)=5 =
f (%, %)dx f. () (3.11)
where f, (xz) denotes the marginal probability density functiéiXe defined as
f,(%) =_Iw (%, %) dx (3.12)

The covariance function of a stochastic processiagibn of time, X(f) and X(b), is
COV(tl ’tz) = E[( X (tl) - :u(tl))( X( tz) _,u( tz))] = Rr) (3.13)

When {=t;, Equation (3.13) gives the variance the process.cblariance function is a

measure of the degree of linear relationship betwée) and X¢.).

If a process is stationary, it is virtually alwaysssible to describe the process in terms

of a kind of Fourier representation. A stationarsogess is one in which the
probabilistic descriptions become independent dafimrof independent variable (time

or space). Consider a zero-mean stationary proce@(st); then, the spectral

representation of the process is

X (1) =_£ék'f dz( Y (3.14)
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where, k represents wave number vector. This is a Fouriettis integral in which Z

is a stochastic process having the properties that

con(i] -
e[ dz(k) a2 (k)]=o0; LS (3.15)
Eldz(k)dZ(k)|= gk o ke ke

where,Z" is conjugate oF andSis spectral density function of random procgss

In this work, the spectral representation theorsmadécepted as a well-established
mathematical theorem and the concept and detailhisftheorem can be found in
Priestley (1981) and Lumley and Panofsky (1964).

For a zero-mean stationary stochastic process X{€),covariance function can be

written as (Lumley and Panofsky, 1964)

R(r)= E[ X(t+7) X (1]
- Eﬁ 1 az( Y | & dz(*ﬂ

—00

[ [t Ief ) (o

(3.16)

The first line on the right side of Equation (3.163ults because X is real, so that it is
equal to its complex conjugate. The second lineimsply a substitution of the
representation in Equation (3.14). The third lindofek from the interchange of the
order of expectation and integration, noting thatéxponential terms are deterministic.
When X is stationary process, its covariance fumctinust be independent of t, as a
result, the term involving t and the last line ofugtjon (3.16) must cancel out as a
result of the integration. This can be expressddl@mley and Panofsky, 1964)

efaz(R) o §)]= ¢ ho( ek 61n
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where d is a Dirac delta function. The covariance functionEquation (3.16) then

reduces to

R(r)= ]; &gy di (3.18)

which shows covariance function can be writterhasinverse Fourier transform of the
spectrum. The corresponding transform relationstipphfe spectrum is then

S(Q)ZLT ¢ Rr) d (3.19)

Equations (3.18) and (3.19) are classical resultsti&tionary stochastic processes that
show that the covariance and spectrum contain galgnequivalent information.
These mathematical relationships are used for soludf stochastic partial differential
equations using spectral method that is explaimgeflyp in the following section in

general case and in chapter 4 in the case of flahsalute transport.

3.3 Stochastic differential equation

In order to illustrate the approach that has besaduo treat SDESs, consider a simple
SDE of the form

G T TAXHY (3.20)

If A is a constant, then this is a stochastic défgial equation with a random non-
homogeneous part. The second-moment solution oktjuation can be approached by

expressing X and Y as their expected values phey@mean perturbation, that is,

(3.21)
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By using this decompositions in Equation (3.9),

OI—X+Q(:—A>_<— Ax+ Y+ (3.22)
dt dt

and by taking the expected value of this equatibae, equation describing the mean

becomes

2= AX+Y (3.23)
dt

and when the mean equation is subtracted from EmqudB.22), it results in the

following equation for the zero-mean perturbations:

dx
—+ AX= 3.24
ot y (3.24)

Note that no approximations have been introducearder to decompose the problem

into this form involving differential equations ftre mean and perturbation.

The perturbation equation, considers, first, thesimility of a stationary solution for X,

given that Y is stationary process. Then, usingsgiextral representation for x and vy,

00

[ €] ikdz + AdZ - dz]=0 (3.25)

—00

Then, by the uniqueness of the spectral representatifollows that (Gelhar 1993)

dz

dz, = (A+)i/IZ) (3.26)

and multiplyingdZ, by its complex conjugate, it follows that the dpeof x and y are

related by
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Sxx(k)z(syy(k)

A2+ kz) (3-27)

where, S, and S, are the spectral density functions of x and yeetipely.

The perturbation equation is treated analyticallgeéwelop a set of algebraic equations
for evaluation of variance of response variablese Tiean equation can be solved
directly as a deterministic ordinary differentigjuation, given the expected value of Y.

Finite element method can be used to solve the regaation.

3.4 Finite d ement method

The finite element method is a numerical analysibrigue for obtaining approximate
solutions to a wide variety of engineering problgiidaebner et al. 2001). This method
was designed to study stresses in airframe stegtumd then adapted to a wider field of
mechanics. Finite elements are used to solve a leammoblem by dividing the
problem into smaller problems and solving them sspdy. Thus this method looks at a
model as made up of small inter-connected sub-nsgar elements. The idea of the
finite element method is that a “solution regiong.j a model can be analysed or
approximated by replacing the region with a fimtember of distinct elements. These
elements can then be placed in different ways toenuig complex problems.

3.4.1 Finite element procedure
In general the solution procedure for a continuwobjem using the finite element
method involves the following basic steps (Cheurg.€1996):

)] Discretising the problem domain into a number db-segions known as
finite elements. The field variables are assignetienodes of each element
with the nodal values of these field variables bdime unknown parameters
of the problem.

i) Selection of element interpolation functions toresent variation of the
field variables over the element.

1)) Evaluation of individual element properties. Thisalwes approximating the
governing differential equations using a simplerstegn of algebraic
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equations over the element domain. The approximatsrcommonly
achieved using either variational techniques or ghteid residual
approaches. Galerkin's weighted residual approachadopted in this
research for its simplicity and accuracy.

iv) Formation of elements stiffness matrix.

V) Assembling the element properties to obtain théegsysquations that will
represent the overall system.

Vi) Imposing boundary conditions to modify the globgktem of equations
using the known values of the nodal variables atcttmtinuum boundary.

vi)  Solving the system of equations for the unknown ahodhriables using
conventional numerical analysis techniques.

viii)  Finally, further computations to evaluate secomteormoment of system
response and additional important parameters sgchm@an soil water
content and other physically meaningful quantifresn the computed nodal
variables and element properties.

3.4.2 General formulation

Basics of FE Formulation

The basic idea behind the finite element methodislivide the structure, body or
region being analysed into a suitable number ahelds with associated nodes and to
choose the most appropriate element type to modasi riosely the actual physical
behaviour. The number of elements used and theiatian in size and type within a
given region are primarily matters of engineeringgment. These elements may be
one, two or three dimensional. Discretisation ltssin the specification of the finite
element mesh and involves two distinct but relatasks: nodes definitions and
elements definitions. The nodes are always nundbeoasecutively from one to the
total number of nodes present. The nodal numberattgrn has a strong influence on
execution time in a computer program (for largebpgms). Usually the nodes are
numbered in such a way so as to minimise the batidwif the assemblage matrix.
Node definition completes when the coordinatesaocheof the nodes are also specified.
The element numbering scheme is completely arbitrdrg define the elements, one
needs to number them consecutively from one tortaeimum number of the elements

present.
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The nodes associated with each element must befisdeciln addition, the material
property data to be used for each element shoukpeeified (Stasa 1985). The choice
of appropriate element for a particular problenone of the major tasks that must be
carried out by analyst. However, the elements rbessmall enough to give usable
results and yet large enough to reduce computdtiefiart. Small elements are
generally desirable where the results are changipglly, such as where changes in
geometry occur; large elements can be used whsuoéisare relatively constant (Daryl
2002). Figure 3.1 shows three-node triangular eldnand four-node tetrahedral
element with their nodal coordinate, which haverbesed in the developed FE
programs for this work.

i (Xi(e),Zi(e))

z

[

i
(Xj (e)q Zj (e))
(Xk(e)»Zk(e))

k
(@)

(xl(e)’ yi(e),zi(e))

1

z
ﬁ x
y (xm(e)’ ym(e)’zm(e))

j m
(x/(e)’ y/(e)’ Z/(C’))
’ ’ ’ k (Xk(e), yk(e),zk(t’))

(b)
Figure 3.1 (a) Linear triangular element with global coordas (b) lineatetrahedral element
with global coordinates.
For the finite element procedure a set of so calepe functions has to be considered
so that they exclusively define the state of unknaariable of the problem within each
element in terms of its nodal values. The shapetiume for a typical three-node

element are given as (Stasa 1985)

58



Chapter (3) Stochastic finiteralent method

e 1
N, ( z)=2A(e)(a+ bx- ¥
o 1
Nj()(X'Z)ZZA(e)("’}J’ b x- F)
e 1
Nk()(x,z)=2A(e)(q(+ R ¢
where
a=xUz00-x97) az P aro PEF R Q
b =2~ 20 b= Z4- & p= - &
q:)&(e)_)%(e) q:)lée)_?(((ﬁ) a= %<(§3_ i)@?

andA® is the area of the element which is evaluated as

|t x
Ad=lln x5

The derivatives of the interpolation functions are

oN© _ oN® b ON® _ h
ox 2A) 0Xx 29 X 2A9
N® _ g oN® ¢ NG _ ¢
0z 2A) 0z 29 dz 2A9

The shape functions for a typical tetrahedral foode element are given as (Stasa

1985)

NI (xyd=m+m* my q

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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N (xyd=m+m* my m (3.35)
NO(xyd=m+mx my m (3.36)
N.7(%y.2=m+m* my m (3.37)
where
X Y 3 1y z
1 1
mn—@det X % % n@l——&de 1y ¢
X Y Zn 1y 7
- (3.38)
R R
my =g det 1x 3 M= det 1y y
_1Xm Zm 1 Xn ym

and so forthv© is the volume of the tetrahedron which is evaldae

(e) (¢ (9
g 111 X Y. .
v 5 @ %(ea (3:39)
1 X% Yk Z
1 ox@ oy 20

The unknown variable of the problem, x, at any poamthin an element can be

aproximated in terms of their nodal values.

{4 =[N]{% ... (3.40)

The approximation of the unknown of the problenHayation (3.40) makes it possible
to formulate the equilibrium equation for each etamnwhich can then be used to
describe the characteristic of the element sueiessent’s hydrological behaviour. The
element characteristic matrices extracted by foatmh of the equilibrium equation
over each linear triangular element can be readdynputed using the following

integration formula (Stasa, 1984)
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LN (0 (N0 o e @4

and it can be computed over each linear tetrahegleahent using the following

integration formula (Stasa, 1984)

LT () e B G e

A single governing equation with only one indepertdariable can be considered as:
f[T(x]=0 in Q (3.43)
where,

T :the function sought, which is function of only
Q :the domain region governed by Equation (3.43).

In addition, the boundary conditions can be spedifn the form:

g[T®]=0 i r
g.[T]=0  in r, (3.44)

where, I, I,, include only those parts of2 that are on the boundary. An

approximation solution to Equation (3.43) with bdary conditions (3.44) can be

presented as an approximate function

T'=T'(% ¢, C,.iC) = D CN(X) (3.45)
i=1
which, has one or more unknown parametersc,....., ¢ and that satisfies the

boundary conditions given by Equation (3.44) exactThe major requirement placed
on the trial functions is that they should be adibie functions: that is, the trial

functions are continuous over the domain of inteaesl satisfy the boundary conditions
exactly. In addition, the trial functions should belected to satisfy the physics of the
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problem in general sense (Hutton 2004). If thpgraximation solutionT' is

substituted into Equation (3.43) bfx , )t should not be surprising that it will not
necessarily satisfy this equation exactly; thereyni@e some residual error

R(X; ¢, ¢c,,...,c,). Therefore it can be written as follows:
f[T'(x; ¢, ¢,...,.c,)]=R(X c, C,,..,C,) (3.46)

The method of weighted residual requires that #v@meters(x; c¢,, c,,...,C,), be

determined by satisfying:

jvvi(x)R(x; ¢, C,,...,C,)dx=0 i= 1 2,.,n (3.47)

where, the functionw, (x gre then arbitrary weighting functions. The method of

weighted residuals is useful for developing thereet equations and allows the finite
element method to be applied directly to any déifdial equation (Daryl 2002).
However, there are four particular methods whiahlba used. These are:

Point collocation.
Subdomain collocation.

Least squares.

h wDp e

Galerkin.

Galerkin’s method is most widely used in finite rment analysis (Stasa 1985). The
success of the Galerkin finite element method rigelly due to the best approximation
result (Brooks and Hughes 1982). In the Galerkeighted residual method, the trial

functions N, (x ) themselves are used as weighting functions or:
W () = N; (%) (3.48)
So that Equation (3.47) then becomes:
jNi (®YR(X, ¢, C,,...,c,)dx=0 fori=1ton (3.49)
)
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Because there is one trial function for each unkmguarameter, Equation (3.49)
generatesn such equations that, when solved, yield the valokghe unknown

parameterse;, ¢,..., G. Obviously, the values obtained for thes are dependent on
the choice of trial functions. In this work, G&er method has been used in

conjunction with the finite element model

3.4.3 Deter mination of thelocal element characteristics

Element characteristics mean the element stiffmestsices and nodal unknown vectors.
The word “local” refers to the fact that the elernelmaracteristics are derived in a local
reference system, which usually change from elen®miement and are determined
numerically for each element. The element charaties, the local stiffness matrices
and nodal unknown vectors may be determined nualbrifor each element (Stasa
1985).

3.4.4 Transfor mation of the element characteristics

The element characteristics are transformed froenltical coordinate system to the
global system. The transformation of the localmedat characteristics needs to be
performed only when the unknown parameter funcison vector such as the (nodal)
pore water pressure, and then only when the losatdinate system is used (Stasa
1985).

3.4.5 Assemblage of the global element characteristics

The global element stiffness matrices and globameiht nodal force vectors must be
assembled to form the assemblage element stifimassx and nodal unknown vector
to find the properties of the overall system maetelby the network of elements. The
matrix equations for the system have the same fsrthe equations for an individual
element except that they contain many more terrcause they include all nodes. The
unknown parameters functions have the same valaayagiven node regardless of the

element containing (Stasa 1985).

3.4.6 Imposition of the boundary conditions
The boundary conditions of the problem must be idemed to modify the system of
equations and prepare them for the solution phiisthis stage, known nodal values of

the dependent variables are imposed (Huebner 20@1.).
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3.4.7 Solution

The assembly process gives a set of simultaneouatieqs that must be solved to
obtain the unknown nodal values of the problem. &wngineering applications of the
finite element formulation, the material behaviczan be assumed to be linear or
nonlinear depending on the material parameters insing assembly of stiffness matrix.
For each case the solution may be obtained by &ttyeamethods suitable to a system
of algebraic equations.

In linear finite element analysis, one of the mmsbular methods to solve the system of
algebraic equations is direct Gauss elimination haekt However for nonlinear
problems a direct solution of the system of equeatics generally impossible and an
iterative scheme must be adopted (Owen and Hind&0)1

3.4.7.1 Gaussian elimination and back substitution

Gaussian elimination is the name given to a welbvkm method of solving
simultaneous equations by successively eliminatimgnowns. In this work, Gaussian
elimination and back substitution method of solutivas been used to find the final
values of unknown nodal vectors for linear probleihbas also been used to solve the
system of equations at every iteration, for nordmgroblems. The general concept of
Gaussian elimination and back substitution can bend in Chandrupatla and
Belegundu (1991) and Klaus (1996).

3.5 Finite difference method

In this work, both the finite element and finitdfdience methods are used to solve a
time dependent contaminant transport problem. Hihige difference method is another
numerical technique frequently used to obtain axpmate solutions of problems
governed by differential equations. The finitefelience method is based on the

definition of the derivative of a functiofi(t that is:

df (@) _ . f(t+At) - (1)
S =i, 25 (3.50)

64



Chapter (3) Stochastic finiteralent method

where, t is the independent variable. In the dimifference method, as implied by its
name, derivatives are calculated by an equation Eguation (3.50) using small, but
finite values ofAt. So an approximation to the first derivative itasned by omitting

the limiting process (Neylon 1994).

df (t) _ f(t+a0) - f (1)

3.51
dt At ( )
A differential equation such as:

%+x:0 O<t<1 (3.52)
is expressed as:

f(t+At)—f(t)+X:0 (3.53)

At

In the finite difference method, Equation (3.53) ¢e written as:

f(t+At) = f(t) — x(At) (3.54)

The solution of a first order differential equatioontains one constant of integration.
The constant of integration must be determined gheh one condition (a boundary
condition or an initial condition) is satisfied.f it is assumed that the specified
condition is §=A = constant and an integration st&p is chosen to be a small constant

value (the integration step is not required to dastant) therefore it can be written as:

t, =t +At i =0,n (3.55)

where, n is the total number of steps requiredotcec the domain. Equation (3.54) is

then:
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f.=f+x(@t) f,=A i=0n (3.56)

The above equation is known as a recurrence ralato provides an approximation to
the values of unknown functiof(t gt a number of discrete points in the domain ef th
problem (Hutton 2004). In the finite difference thhad, approximations such as that
presented by Equation (3.56) are applied to difféaéequation at each grid point, with
At being the time increment (in this study). Thisulés in an equation for each node,
involving the approximation to the solution varieblat all nodes. Approximation

presented by Equation (3.51) is known as a forvd#ifdrence. Other finite difference

approximations are the backward difference

df®) _ f)-ft-Aay

3.57
dt At ( )
and the central difference

df (t) - f(t+At) - f(t-At) (3.58)

dt 2/t

In fact, one somewhat practical way to assessdberacy of the solution is to compare
the results for two different steps and if the hessfor the two different steps are within

some acceptable tolerance, a good approximatitimettrue solution has been obtained.
The error in the approximation (i.e., Equations333%54, 3.55) is termed the truncation
error. An expression for this is calculated byfpening a Taylor series expansion on
the f(t + At )term about t (Neylon 1994).

66



Chapter (4) Stodmas/ethodology

CHAPTER 4

STOCHASTIC METHODOLOGY

4.1 Introduction

Choosing an appropriate model is essential in strar of water flow and solute
transport in soils. The model must comprehensidgcribe physical and chemical
behaviours of the system. Also, it must represdintieferent characteristics of the
system. Hence, water flow and solute transport tsode the soil must include all
mechanisms of flow, and consider heterogeneithefstructure and formation of soils.

In this chapter, the classical mathematical mofitelsvater flow and solute transport in
unsaturated soils are presented. These classigatieqs include the mechanisms of
flow and solute transport, and they are applicabléocal scale processes in which
variations of hydraulic parameters are negligibMariations of hydraulic parameters

due to heterogeneous nature of soil are incorpdriateheses models using analytical
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stochastic methodology, and then related largeesaabthematical models are
developed. Hydraulic conductivity, moisture retentparameters and macrodispersion
coefficient are defined as effective coefficients the large-scale models. Finally,
spectral method used to evaluate these effectiefficients and the variance of water

pressure head and solute concentration is explained

4.2 Classical governing equation for water flow

The driving potential for flow of water is relatedd three primary components of
energy, namely gravitational, pressure, and vefodibtal energy of an arbitrary point

A, in the water phase, for flow of water is writtas (Fredlund and Rahardjo, 1993)

E= ngz+m+ M.V 4.1)

P

where E is total energy at point A [M] []]T]?, M, is mass of water at point A [M],

g is gravitational acceleration [L][F] z is elevation of point A above an arbitrary
datum [L], u,, is pore water pressure at point A [M]{T]1? p, is density of water

[M][L] 3, andyv,, is the velocity of water at point A LM

In Equation (4.1), the ternvl ,gz is the gravitational energy'\,M is the component

M 2
of energy due to the water pressure at point Aaﬁégﬂ is the part of energy due to the
velocity of water at the point A.
Total hydraulic head at a certain point is defirredthe total driving energy per unit

weight of water at that point. Therefore, total dhe&@mn be obtained through dividing

Equation (4.1) by the weight of watel¥(,g ) at the point under consideration as
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u V2
hw =7+ W 4 W 4.2
A9 29 (4-2)

where h,, is the hydraulic head or total head [L].

Since the velocity head in the soil is negligiblecomparison with the gravitational and
pressure heads, the expression for the hydraudid Aeany point in the soil mass can be

presented as

h, = 2+ (4.3)

It is the gradient of hydraulic head that causew fin soil. Darcy (1856) postulated the

following equation to express the rate of watewftbhrough a mass of soil

oY +2)
0x

o = K@) (4.4)

where g is the specific discharge in directiofL][T] "L is the capillary tension head

[L], K is the unsaturated hydraulic conductivity [L][T]

Darcy’s equation is mainly applicable for saturasmils. However Equation (4.4) is
used for soils in unsaturated condition as welledkind and Rahardjo (1993)
investigated the validity and applicability of Dgix equation in unsaturated soils,
based on the findings of Childs (1969) and expenmtadeesults presented by Childs and
Collis-George, (1950).

The conservation of mass law for the soil moistlg@ds to the governing partial
differential equation for water movement in unsated medium presented as Equation
(4.5). In derivation of Equation (4.5), it has bessssumed that the soil matrix is rigid

(i.e., incompressible) and sink-source terms haenhgnored.
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36 _dq .
v % i=1,2,3
o ox (4.5)

where @ is the soil volumetric moisture content ang x,, x, are coordinates in a

Cartesian system.

Substituting Equation (4.4) into Equation (4.5)lggethe unsaturated flow equation as

0 _ a(w z)]

5t [ ) (4.6)

Equation (4.6) is applicable to small-scale prolsemwhich the spatial variability is

negligible.

The coefficient of permeability which is a functiaf volume-mass properties of the
soil is obtained at each point of the domain urdersideration based on parameters
such as degree of saturation or matric suctionfef@iht functional forms have been
proposed for coefficient of permeability relationsh in unsaturated soils. Gardner
(1958) has proposed the following simple parameation for the coefficient of

permeability
INnK@@)=InK,-ay 4.7)

where K| is saturated hydraulic conductivity [L][T and a is a scaling parameter

[L]™, equals to the slope of curve lofK () versusy .

The coefficient of permeability with respect to eaphase is a measure of the space
available for water to flow through the soil. Theetficient of permeability depends on
the properties of the fluid and the propertieshaf porous medium. Different types of
fluid (e.g., water and oil) or different types a@ilil§e.g., sand and clay) produce different
values for the coefficient of permeability. Also,ater flow is controlled by soll
moisture capacity coefficient. This coefficientle slope of retention curve of the soil.
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The soil moisture retention curve presents relatigm between soil moisture content
and the capillary tension head. This curve is aataristic for different types of soil.
This can be used to predict soil water storage lmatya The water holding capacity of
any soil is due to the porosity and the naturehef honding in the soil. Then spatial
variability of soil type and consequently spatiariability of soil characteristic in
natural soil cause significant variation in the féogents of permeability and moisture
capacity. These result in non-applicability of Egma (4.6) for large-scale problems
and consequently show essential need to incorptinateffects of these variations in
the related governing equation. In the followingts®, the method which has been
proposed by Mantoglou and Gelhar (1987a), for ipomating variability in hydraulic
properties of soil into governing equation of wdtew in a stochastic framework, will

be explained.

4.3 L ar ge-scale gover ning equation for water flow

Basic hydraulic parameters of soil (i.&,, @ and soil specific moisture capaciB)

vary randomly in space domain. These parameters beardefined by stochastic
representations. They are considered as realizatibrandom fields. Realization is the
profile of random variable through dimension whigrearies. This dimension could be
time or space. It is assumed that these randomisfiate three-dimensional, spatially

cross-correlated, and are composed of two compsner@an and fluctuations

INnK,=F +f (4.8)
a=A+a (4.9)
C=l+y (4.10)

The first terms on right hand-side of Equation8)4(4.9) and (4.10) are assumed to be
deterministic, while the second terms are threeediional zero mean second-order

stationary random fields. A stationary random fieddone in which the probabilistic
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descriptions become independent of time origin &y are invariant under shifts of
the time origin. These random variables are inmitgoverning partial deferential

equation of flow. Classical differential equationttwrandom parameters, coefficients,
boundaries and initial values is called stochadtierential equation (SDE). The output

of a SDE (here)/), is random. Therefore it is possible to exprgsas

@ =H+h (4.11)

where, H is the mean of¢y and h is fluctuations around the mean. The basic
assumptions are: (i) the fluctuatiorisa, y and h are relatively small, and (ii) the scale
of variations of the mean valuels, A, and H is much larger than the scale of

variations of the fluctuation$ ,a, y andh.

The large-scale model of transient unsaturated #oabtained by averaging the small-
scale governing equation over the ensemble of plessealizations of the stochastic
processesf ,a andy. Therefore, expected value of small-scale equatibim respect to

fluctuations is calculated. Taking the expectedugabf Equation (4.6) with respect to

f,a, andy, yields

_oH4}
ot

_0 Qy+y
_ax{E[ KT]} (4.12)

Substituting Equations (4.8), (4.9) and (4.11) iBtpation (4.7) yields,

K =K, exp(f - Ah— Ha- ah) (4.13)
where
K,=e"e™ = K, e (4.14)
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and substituting Equation (4.11) into the termteslato spatial rate of head pressure

yields
ow+z) _o(H+h+ 2 doh
= =J +—
ox ox Pt ox (4.15)

where J, =d(H +2)/0xis the mean hydraulic gradient in the direction Using

Equations (4.4), (4.13) and (4.15), the expectédevin the right-hand side of Equation
(4.12) can be written as follows

E[q] = K, E| exp( f- Ah- Ha- af)( g+%ﬂ (4.16)
In order to expand the exponential terms, Taylaeseran be used as
exp( f -~ Ah—-Ha- ah = 1+( f- Ah- Ha ab1+%( £ AR Ha gh+-  (4.17)

As it is assumed that fluctuations are small, ttiied- and higher-order terms can be

neglected. Substituting Equation (4.17) into Ecpraé4.16) yields

E[q]:Km{Ji[l— E(ah+% B( - AR Hﬂ} %( £ Ah H)a;mﬂ (4.18)

)ﬁ

where expected values due to fluctuations of thad-higher-order terms have been
neglected. Effective hydraulic conductivity is defd as having the following property
Mantoglou and Gelhar (1987a)

E[q]=K;J i=1,2,3 no sum on (4.19)
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This definition of effective hydraulic conductivitiielps to express the mean flow
Equation (4.12) in a form similar to the small-gcajoverning Equation (4.6).
Incorporating Equation (4.18) into Equation (4.@B)es

- o’ T :
Ki = Kp, {1— E(ah)+?f +J—'} i=1,2,3 (4.20)

where

o?=E|(f ~Ah-Ha’ |

=07 +A’E[ h*|+ H0-2AE[f-2H H fa+2AH § af

I = E{( f — Ah- Ha)g—ﬂz E{ fg—:}— H E{ a%} (4.22)

where, o7 is the variance ofn K_and ¢? is variance ofa .

(4.21)

It is assumed that terms inside the parenthedtgjuration (4.20) are essentially the first
two terms of a Taylor series expansion of an expbaleterm. By converting these

terms to the exponential term, Equation (4.20) give
2
¢ — g, 1 :
Ki =Ky exp(7+J—j no sum on (4.23)

whereK,, =K, exp{-E[ah]} .

Equation (4.23) calculates the effective hydradenductivity for large scale flow
governing equation.
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Now left-hand side of Equation (4.12) is examindthe expected vaIueE[H]

represents the mean soil moisture congatE[d]. For small fluctuationsh, it holds

Mantoglou and Gelhar (1987b)

6=6(y)=6(H)-Ch (4.24)
where
-2, (4.25)
oy

Substituting Equations (4.10) and (4.11) into Emume(4.24) and taking the expected

value yields
©=E[6(H)]-E[yh] (4.26)
The effective specific moisture capacity is defilgdviantoglou and Gelhar (1987b)

o[ E[e(H)] - E[yH]
oH

C=-00/0H =- (4.27)
where E[@(H)} is assumed to be a known characteristic of spatslability

of 6(H). Substituting Equations (4.19) into Equation (3.48d using Equations (4.26)

and (4.27) yield large-scale governing equatiorfltaw in unsaturated soils as

00 _ _a0H (H+2)

== ———(

P p ox ) (4.28)
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4.4 Calculation of expected values

Equation (4.28) presents large-scale governing temquaf water flow in soil. This
equation is in the similar form of the related drsahle governing equation. The

effective moisture capacity and effective hydrautionductivity coefficients (i.e,
CandK are calculated by Equations (4.27) and (4.23peetsvely. Then according to
Equations (4.21), (4.22), (4.23) and (4.27), evadma of the effective hydraulic

conductivity, mean soil moisture conte@t and the effective specific moisture capacity

A

C has now been reduced to the evaluation of the atege values E[yh],

E[ i ],E[ fh], E[aH], E[ fatydx]and E[adhd].

4.4.1 Calculation of expected values by spectral method
The foregoing expected values are evaluated ugpegtsl analysis. The following
spectral representation properties are used in ahniglysis. Two cross-correlated

stationary random fieldsi(X) andv(X) can be expressed in the spectral domain as

(Gelhar 1993)

(4.29)

where,k =k, k,, k) is the wave number vector = (x, %, %) is the position vector.

The cross-spectral density functionwandyv, called Shv(f() is given by (Lumley and

Panofsky, 1964)

Elaz, (k) a2 (¥)]= 8} & e

0 : otherwise

(4.30)
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where dZU(R) and dZV(R) are random Fourier-Steltjes amplitudesi %) and v(%)

respectively. Z is a complex-value and asterisk d&notes complex conjugate of

complex number. The expected valueudfx) andv(X) can be represented as function

of the cross-spectral density functifap( R)

E[u= € [ ] exo{ ) az (][ ] ex{- i} az(}|=]]] sk

In this way, the following expected values are aatdd as (Mantoglou and Gelhar
1987a)

e[]=or=][]5.(¥ o (432
e[ =e[n]=][]s(} d (39
elan= [ nd=[[] () @ (4.34
Ell=[]]s(¥ o (439)
R BRI E

e ade =1 Jw)s.() 4 ) @37

Then evaluation of these expected values has Bxhrced to the evaluation of cross

spectral density functions emerged in Equation32(4to (4.37). In Section (4.4.2), a
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linearized perturbation partial differential eqoatiis extracted. This equation presents a
relation between capillary tension head fluctuati@nd soil properties fluctuations.
This equation is used to evaluate the cross spadtrasity function relationships of

fluctuations of soil properties.

4.4.2 Linearized fluctuation equation
A linearized perturbation equation relating theidagy tension head fluctuations to

the soil property fluctuation$, a, andyis derived using the local flow equation.

Substituting Equation (4.7) and (4.25) into the &tpn (4.6) and expanding derivatives

yield
Eexp(aw)alﬂ:a(ln Ks_aw)a(w+2)+|]2w (4 38)
K, ot 0x, 0% '

Substituting Equations (4.9) and (4.11) into tHeand side of Equation (4.38) yields

_C o
L=y exp(ay) 5

S

3(H +h) (4.39)

=(r +y)exp(AH - F) ex{ Ah+ Ha- f - ah) 5

where,L represents the left-hand side of equation (4.38).

The second exponential term in Equation (4.39)xpaaded using a Taylor series

representation

exp(Ah+ Ha- f+ ah = 1+( Ah+ Ha- f+ ap+

4.40
%(Ah+ Ha— f+ah’ +-- (4.40)

Rewriting gives
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exp(Ah+ Ha- f+ah =1+ Ah+ Ha- f+ ak T

(4.41)

where, T, contains second- and higher-order terms. Subsgtiquation (4.41) into

Equation (4.39) yields

L =exp(AH - F)(I‘a—H+ A+ Hra—rf+yja_H+
ot ot
F%+(I‘ah+ Avht+ Hya-y f+yai)aa—|:+

(Arh+ Hra-Tf+Catty+ Arhr Hay f+y abl%+

o(H +h)

TH(r+y) at

Rewriting Equation (4.42) gives
L = LO + I‘1 + I‘H

where L, is independent of the fluctuations (zero-ordemer
L, =exp( AH - F)(F‘Z—Tj

L, is linear in the fluctuations (first-order terms)

L, =(Arh+ Hl'a—l'f+y)a—+l'—

and L, contains the remaining second and higher-ordersterm

(4.42)

(4.43)

(4.44)

(4.45)

Substituting Equations (4.8), (4.9), (4.10) and.{4.in the first component of the first

term in right-hand side of Equation (4.38) yields
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o(InK, -ay) d(InK,~AH -Ah- Ha- ah)

O0X. oX.

_ of oH oh c‘ah_H aa_a(ah)
X, 0X; (o) 0X% ox 0X

(4.46)

The termsdF/dx and 0A/dx are negligible because the spatial variatiofr@nd A is

assumed to be very slow. Substituting Equation8),(44.9), (4.10), and (4.11) in the
right-hand side of Equation (4.38) yields

R=a(|nKs_aw)a(w+Z)+DZ¢/= -J PUAINCEITIR
0X 0x% 0x
of oh . oH da_ ,0H oh
J—-3A—-]J—a JH—-A——+0°h+
( tox | ox Tox &7 oX 0xOx j (4.47)

ox 0% 0%

2
{_J.a(a“hi@_{ahj oH on_ |, 0a0h_o(ah) 62}

& _a_x 0 X 0Xx0x 0X

Rewriting equation (4.47) gives
R=R+ R+ R (4.48)

where R, is independent of the fluctuations (zero-ordemt®r

oH
R=-J A&+DZH (4.49)

R is linear in the fluctuations (first-order terms)

of oh oH da Hoh _,
=l -JA—-J)— R0 QHON e

R, contains the remaining second and higher-orderser

Rewriting Equation (4.38) using Equations (4.43) &h48) gives

80



Chapter (4) Stodmas/ethodology

L+L+L, =R,+R+R (4.51)

Taking the expected value of Equation (4.51) wébpect tof, a, y and remembering

that the expected value of the linear term is z@sids

L+E[L]=R+ER] (4.52)
Subtracting (4.52) from (4.51) produces
L+L, -E[L,]=R+R - § R] (4.53)

Assuming that fluctuationsf,a,y andhare small, the higher order terms can be
approximated by their expected valués; = E[L,] andR, = E| R] (Mantoglou and
Gelhar 1987a). Substituting these in Equation (4ab@l rewriting it yields

L=R (4.54)

Then, according to the Equations (4.45) and (4. EQyation (4.54) is rewritten as

exp( AH - F)[(Al’ h+ HM a-T f+y)aa—'?+r%j =
(4.55)
AR LN R PN Ry kL
0% 0% 0x ox 0x0x
Defining two new terms
- 10H 4.56
K, ot (4.56)
and
oH
L=J+—,
B~ (4.57)
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substituting Equations (4.56) and (4.57) into Emquma(4.55) and rearranging yields

o, Kal oh+ arghe Al_r@ =
ot T 0X
(4.58)

Ji+FGf JH%+ba—(3/

I' 6>q ox

where

oH

b=J—+HIG
a>q (4.59)

4.4.3 Spectral density functionsrelationships
Spectral method is used to solve the fluctuationaggn (i.e., Equation 4.58). This
equation is written in the spectral domain and gansolution of the resulted equation

is obtained in the spectral domain as (Mantoglali@alhar, 1987a)

y(k)=dZ (k9=W(k)dZ( k+ W Kt dd & W .QtdZ) (4.60)
where
Wﬁ(k,t)z[ﬁ gﬁ(r)exp(j:) a( 9 dﬂ exr(—J'; d F ()f (4.61)
K
0,(t) == (kK + K+ IS+ A GriALK) (4.62)
K . oH
g(t)= T{(lere) dz (qu k+ ,]a—)g+ H Gj dz- Gd;} (4.63)
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where, S = f,a, or y, In transient case functioigg andg depend on t since the mean

flow propertiesH, etc., depend on t.

The solution is a linear function relating spectmiplitudes of capillary tension head to

spectral amplitudes of soil properties fluctuatiobsing Equations (4.60) and (4.30)
S, (K is evaluated as (Mantoglou and Gelhar, 1987a)

Sw(k k= B (W o7+ W dze W gd( W gz W e w47
=(Wf °s +[w|® s+ \MZ gt WW.sSs WWw,S (4.64)
WW,'S +WW §+ WW S+ WW, 5 dk

Equation (4.64) determines cross-spectral densitgtion S, as function of those of

soil propertied , yanda, which are known in the problems. Also, by defgqin

g2=Y% (4.65)
Jf
and
0.2
n?="r (4.66)
ot

the relationships between the spectral densitytiome of f,aandy are written as

(Mantoglou 1984)

if f,aandy are uncorrelated

S.=&5 (4.67)

83



Chapter (4) Stodmas/ethodology

S,=n"S (4.68)
S.=0 (4.69)
S, =0 (4.70)
S, =0 (4.71)

if f,aandy are correlated

S.=&°S, (4.72)
S, =n"S; (4.73)
S.=¢ S (4.74)
S, =¢nS (4.75)
S =1 (4.76)

From Equations (4.67) to (4.76), the following telaship can be derived
s(K=xs(¥Y p=E&,n%0,0,0820%¢ &n (4.77)
Cross spectral density functions in Equations (4t82(4.37) are substituted by their

related equivalence as function ef through Equations (4.67) to (4.76). After these

substitutions, evaluation of integrals in Equatiofs32) to (4.37) is still very

complicated. But, they can be evaluated in somticecases. Mantoglou and Gelhar
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(1987b, 1987c), evaluated them for stratified sbhey assumed soils are stratified
which is an acceptable assumption for soil strigciarreal condition. Their resulted
equations have been employed in this work. A surgrofithe results in the case of a

stratified soil is presented here.

4.4.4 Evaluation of E [hz]

E[b]=0; = 205;]1 , (4.78)
where, A is correlation scale of random parameters [L].
and

R
where

a,=2A G+ KL (4.80)

a, = AT*G? (4.81)

a; = A; (4.82)
and if f,aandy are uncorrelated

a = (1+&2H?)+ )7 (4.83)

8, =(r*+7°)G*+¢%b (4.84)

if f,aandy are fully correlated
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a =(1-&H?)J7 (4.85)

a,=(F'G-¢b-nG) (4.86)
where

b= Jig—:+ HI G (4.87)

Defining A=al-4a,= AL+4A G.

If A >0, evaluating the integral in Equation (4.79) anbssiluting in Equation (4.78)
gives (Mantoglou and Gelhar, 1985)

._ o, | &/ataaa-Jaaar 3- 3ag_ a-3,3a
O, =04 2 > (4.88)
AG(1+a,4-aa) /4 A G+ AL (l+az-aa)l,
andifA<O
2oy @/a-aaar/aaa- av aaz  a-aa (4.89)
ATG(1+ 3,4 - aa)( Al) (1+ a3~ a g4,
4.4.5 Evaluation of E[ fh]
2
E[ fh] =2 7h A (4.90)
7T

The integral is given by Equation (4.79). The termsa,, a, are given by Equations
(4.80), (4.81) and (4.82) arg}, a, are different for each case, as follows

if f,aandy are uncorrelated
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a =G+ ALJ (4.91)

a, = AT°G (4.92)

if f,aandy are fully correlated

alzre—g(‘llg—;u HI’GJ—/]G+ AL J(1-¢ H (4.93)
a, :(FG—E(J,‘;—Q+ HIr Gj—/]G] A C (4.94)

The result for the integrdl, depends ifA =ai -4a, = A2+ 4A Gis a negative or a

positive value.

Evaluating the integral in Equation (4.79) and sitioting in Equation (4.90) gives
(Mantoglou and Gelhar, 1985)

ForA>0,
e[ f-024| A/a*aaa-Jaaar a- 333 a-as (4.95)
ArG(1+ad-aa) i A9+ AL (I+ax-aa)l,
and if A<O
e[ =02y /a-aaaraaa- at aaa ,  a-aa | o0
ATG(1+ 8,4 - aa)( AL) (1+ a4- ag4,
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4.4.6 Evaluation of E[ah]

aih

E[ah =2 (4.97)

Il

The integrall, is given by Equation (4.79). Substituting Equat{érv9) in Equation
(4.97) gives (Mantoglou and Gelhar, 1985)

ForA>0

elaf=ozy| 22 *a3a-Jaaat a- 333 . a-aa
AG(1+ag-aa) /4 £ G+ AL (l+aa-aa)l,

] (4.98)

and if A<O

E[ah]zo_%l[—aiﬁ-alanaﬁﬁaz%- 9+t 883, a-aa | o0

AT G(1+a,& - aa)( AL) “(1+ a4- agd/,

The termsa,, a,, & are given by Equations (4.80), (4.81) and (4.88)1 a,, a, are as

follows

if f,aandy are uncorrelated
a, ==& (b+ AL H) (4.100)
a, =-&°bAT G (4.101)
if f,aandy are fully correlated

a =¢[b+ AL J(1-¢ H)] (4.102)
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a, = EbAr G (4.103)

4.4.7 Evaluation of E[ foh/ox]

E[ foh/ox] = 20;:1 B (4.104)
where
|2:j°°(aik1 +az)k1 ! dk, (4.105)

O ki' +agky +a, 1+ak]
Substituting Equation (4.105) in Equation (4.104) gives (Mantoglou and Gelhar, 1985)
For A>0

E[f ﬂ} =07 A
0%,

a,\a, +a,3,8 +/a,a8,a +aaa, -aa,
ATG(1+ 8,2 - 2,8, ) \J4( AT G) + A2L2

(4.106)
3 - 3,8,
(1+a4a52 _asas)/h
andif A<0
E{f@} _oa | 22 —2aa - Jaaan raaa raa, |
x| ATG(1+3,& ~aa)(AL)
(4.107)

& ~ %
(1+ a4a§ _aSaS)/‘l

Theterms a,,a,,8, are given by Equations (4.80), (4.81) and (4.82) and a,,a, areas

follows
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a =-J, (4.108)

a,= A G(L~-J) (4.109)

if f,aandy are fully correlated

a,=(-J)(1-¢H) (4.110)

8, =~ ATG(1-¢H) - ALb] (4.111)
Fori=2, 3,

E[ f@} =0 (4.112)
0x

4.4.8 Evaluation of E [adh/ox;]

aih

E[adhox] =2 A (4.113)

T
Substituting Equation (4.105) in Equation (4.118eg (Mantoglou and Gelhar, 1985)

ForA>0

a/a, +aaa+ aaaa+ 3a a- asg
AI'G(1+a45§— %%)\/4( A Qg+ AL

. B33
(1+ a4a§ - asas)/]l

E [ a@} =02
0%,

(4.114)

and ifA<O
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E{aﬁ} =07,
0%,

-a,\/a,-a,3,a-Ja3aar ga/ a+t ag
AT G(1+ a4 - aa)( Al)

L A-3a

(1+a4a§_3385)/]1

(4.115)

The termsa,, a,, & are given by Equations (4.80), (4.81) and (4.8@) @, a, are as

follows

if f,aandy are uncorrelated

a =J&°H (4.116)

a, =¢&*(HJ, AT G- ALY (4.117)

if f,aandy are fully correlated

a, =(-¢J,)(1-¢H) (4.118)
a, = —E[N’ G(1-&H) J - AL q] (4.119)
Fori=2, 3
oh | _
E{aa—&} =0 (4.120)

4.4.9 Evaluation of E[yh|

aih

E[yh]=2 (4.121)

I
T 1

The termsa,, a,, &, are given by Equations (4.80), (4.81) and (4.82) @, a, are as

follows:
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if f,aandy are uncorrelated
a=-7"G
8, =~"AT G

if f,aandy are fully correlated

alzn[re E(JIZ—;+ HI'Gj nG+ AL J(1-¢ roj

32:’7£FG 5[Jg—2+ HFG] OG]A_G

(4.122)

(4.123)

(4.124)

(4.125)

Substituting Equation (4.79) in Equation (4.12Megi (Mantoglou and Gelhar, 1985)

ForA>0

E[yh aa+aaa-Jaaar 3- 333
yh=aiA
AI'G(1+a43§ %Q)\/4 AQ+ AL
8 -2,
+ag
(1+a4a§_asas)/]1

and if A<O

-a/a,-aaa+Jaaa- ar aaq
A G(1+ a4 - aa)( AL)

PO 1. ]

EWW=ﬁ4[

(1+ a4a§ - asas)/]l

(4.126)

(4.127)
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4.5 L ocal governing equation for solutetransport

The transport of solute in soil is carried out livection, dispersion and diffusion
mechanisms. In what follows, these mechanisms areflyb described and the

associated mathematical models are presented.

4.5.1 Advection

Advection is the transport of material caused by et flow of the fluid in which the
material is suspended. Whenever a fluid is in nmtall contaminants in the flowing
fluid, including both molecules and particles, advected along with the fluid
(Nazaroff and Alvarez-Cohen, 2001). The rate aftaminant transport that occurs by
advection, in a rigid domain, is given by the pradof contaminant concentrati@and
the component of groundwater specific dischaygeor three-dimensional case, the rate

of contaminant transport due to advection is (Jaaad AL-Najjar, 2007).

Fx,advection: q >Q (4128)
I:y,advection: q 3P (4129)
I:z, advection: q p (4130)
where, F, .qecion Fy.aovecior @10 F, aqiecion @re advection fluxes ir, y and z directions

respectively [M][LT[T]™, ax ay, andg, are groundwater specific dischargexjty andz

directions, respectively [L][T} andc is the solute concentration [M][£]

4.5.2 Diffusion

The process by which contaminants are transpornyethd random thermal motion of
contaminant molecules is called diffusion (Yongkt 1992). The rate of contaminant
transport that occurs by diffusion is given by Fsclaw. The equations for evaluation of

components of diffusive flux are expressed as @ieatad AL-Najjar, 2007)

oc
F. girusion = —D m— 4.131
X, diffusion max ( )
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ac
I:y, diffusion — -D ma_y (4132)
ac
F,. ditusion = "D mzz 4.133
z, diffusion maz ( )
where, F iusion Fy, difuson @Nd F, gision @re diffusion fluxes i, y and z directions

respectively [M][L]’[T] ™, and D,, is the molecular diffusion coefficient in the pas

medium [MF[T]

4.5.3 Mechanical dispersion

Mechanical dispersion is a mixing or spreading pssc caused by small scale
fluctuations in groundwater velocity along the tois flow paths within individual
pores (Zheng and Bennett 2002). The rate of cangm transport by mechanical

dispersion is given by (Javadi and AL-Najjar, 2007)

Fx dispersion: _D xx@ - D xya_c - D xza_c
’ ox oy 0z

ac ac oc
I:y, dispersion: -D yx& -D yya/ -D yza_Z (4135)

oc oc oc
F i oo.=-D —-D —-D —
z, dispersion ZXaX zyay za 7 (4 136)

(4.134)

where, F F and F

x , dispersion?

|, dispersior , aspersior IMI[L] 2[T]™ are dispersion fluxes ir, y

b, b,, D, D,, D,, D

XX ! Xy ! Xz ! yx ! yy ! yz? zx!

andz directions, respectively and D, andD,,

are the tensor of coefficients of dispersivity [C][-

Based on mass balance law, solute concentratioergiog equation is given as

0t - advection dispersion diffusion
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and OF

dispersion- diffusior

where, n is porosity, OF,, are concentration change due to

vection
movement of solute by advection and diffusion-disfge mechanisms respectively in

the specified area and time duration, &@presents the solute sink-source terms.

Substituting Equations (4.128) to (4.136) into Euation (4.137) leads to (Javadi et
al., 2006)

0 oc .
n = . +&{E“ E}L F iI=XYV,Zz (4.138)

where,Ej is local Bulk dispersion equal toD; (Dj is dispersion coefficient including

dispersion and molecular diffusion).

In the transport Equation (4.138), the left-handesterm describes the change of
contaminant mass in time. In the right-hand sitefirst term represents the movement
of contaminant due to advection and the second tepmesents the effects of dispersion
and diffusion.

In the steady-state condition when the change lites@oncentration with time is zero,

local solute transport equation becomes

0(cq), 9| oc |, o _ _

4.5.4 Dual-domain transport model
Immobile or stagnant water regions may exist wittiie porous medium due to the

water occupying dead-end macropores, or local zengsvery low permeability. In
unsaturated flow this may also occur in pendulagsiof drained pores as can be seen
in Figure 4.1. So, for the area subjected to thisctural form, the contaminant
transport system can be viewed in terms of a daalain model, which divides the

aquifer into two distinct transport domains, ternmeobile and immobile domains.
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Immobile or stagnant water regions may exist within the porous medium due to the
water occupying dead-end macropores, or local zones with very low permeability. In
unsaturated flow this may also occur in pendular rings of drained pores as can be seen
in Figure 4.1. So, for the area subjected to this structural form, the contaminant
transport system can be viewed in terms of a dua-domain model, which divides the

aquifer into two distinct transport domains, termed mobile and immobile domains.

Pendular rings

Water

r

Figure 4.1 Transport mechanisms. mobile and immobile phases (AL-Nagjjar 2006).

Transport is predominantly advective in the mobile domain but largely diffusive in the
immobile domain. The early arrival of solute may be attributed to preferential flow of
water through the larger channels of the wetted pore space (large channels and wetted
regions between finer pores in an aggregated soil) whereas, the water in the finer pores
is more stagnant and does not contribute to solute transport, except for diffusion
exchange. In the mobile region, solute is transported by an advection-dispersion
process whereas, in the immobile region, a rate-limited diffusion process exchanges
solute with the mobile region. It is common to assume that neither hydrodynamic
dispersion nor advection of a pollutant can take place in a body of immobile water.
However, there is a pollutant exchange process between immobile and mobile water
responsible for the transport. The governing equation for solute transport in dual-

domain sail is
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where, subscriptsn and im represent the characteristics of mobile and imieobi
domains, and'is the rate coefficient of the mass transfer betwaobile and immobile

domains [T]' modelled as a first-order, reversible kinetic tiac

In above equations groundwater specific dischaggas a function of hydraulic
conductivity varies randomly in spatial domain. Tdféect of this spatial variability is
profound in the case of large scale problems angesa unsuitability of local-scale
governing equations for simulation of large scalebfems. An appropriate model for
solute transport can be found by incorporationhef ¢ffect of this spatial variability in
the related governing equations. In the followingcten, the stochastic method
proposed by Gelhar (1986) and Vomvoris and Gelbh@8(@) for incorporating spatial
variability of hydraulic properties of soil into eéhclassical Equations (4.138) and
(4.139) is explained.

4.6 L arge-scale gover ning equation for solute transport

Local specific discharge), has been considered as random parameter in tielnamd

as a result the output of the model, (i.e., thautsokoncentrationg) is a random
variable. These parameters can be defined by stbcheepresentations. They are
considered as realizations of random fields. kssumed that theses random fields are
three-dimensional, spatially cross-correlated, athy are composed of two

components, mean and fluctuations
q=g+q i=X Yz (4.142)
c=C+cC (4.143)

The first terms in the right hand-side of Equati¢hd42) and (4.143) are assumed to be
deterministic, while the second terms are threeetdsional zero mean second-order

stationary random fields.
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c=C+cC (4.143)

The first terms in the right hand-side of Equati¢hd42) and (4.143) are assumed to be
deterministic, while the second terms are threeedsional zero mean second-order

stationary random fields.

The basic assumptions are: (i) the fluctuatighsand ¢’ are relatively small, and (i)
the scale of variations of the mean valigsand € is much larger than the scale of

variations of the fluctuationq' andc'.

The large-scale model of steady-state solute tahgpobtained by averaging the local-
scale governing equation over the ensemble of Iplessealizations of the stochastic

processes . In this way, expected value of small-scale equativith respect to

fluctuations is calculated. Taking the expectedigaf Equation (4.138) with respect to

g, yields
0E[c] __aE[cqi] a 0E|c] .
n ot ax + 6>g {E” —ax,. +F i=x2 (4.144)

Substituting Equations (4.142) and (4.143) into &opun (4.144), the first term on the

right-hand side of this equation (i.€€[ (cq ) |) can be rewritten as

E[(ac)]=E[(a +a)(c+c)]=cq +E[qc] (4.145)

In Equation (4.145)cq represents the advective flux alEc[qi’c'] represents macro-

dispersive flux. Macro-dispersive flux is a dispeesflux due to spatial variation of
groundwater discharge in large-scale problems.

In this work, it is assumed that dispersion is Kok Fick's law postulates that

dispersive flux goes from region of high concemndratto region of low concentration,
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D,, =a.q (4.147)
D,, =a.q (4.148)
D,, =0 (4.149)
D, =0 (4.150)
D,, =0 (4.151)
D, =0 (4.152)
D,, =0 (4.153)
D, =0 (4.154)

where a, and a; are the local longitudinal and transversal dispéies, respectively,

andq is a mean specific discharge equal to

q=vkadi+k,J (4.155)

A A

where Kk, and k,,are effective hydraulic conductivities ix and z directions,

respectively, given by Equation (4.23) adfand J, are mean gradients in directions

x' andz' given by Equation (4.15).
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Figure 4.2 Coordinate systemz corresponds to the mean flow direction and coartein
systemx'z' corresponds to mean hydraulic conductivity (MatdadlL984).

Also, based on Fick’s law, macro-dispersive flur && written as

E[(c¢d)]=-F 376 (4.156)

i

where Ej is the effective bulk macrodispersion coefficidehsor. By defining a

macrodispersion tensor as

A =" (4.157)

Equation (4.156) can be written as

E[dq]:—A”q:% (4.158)
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and substituting Equations (4.158) and (4.145) Btwation (4.144) and rearranging,
yields

oc _ 0 gc | d(cq

Equation (4.159) is the relationship for large-scainsteady-state solute transport
problem. In steady-state condition in which concagidn in a certain point is constant

along the time, the first term in the Equation BO)lis equal to zero (i.e.a—C:O).

ot
Therefore, the large-scale solute transport gowgreguation for steady-state condition

can be presented as

o(ca)_ o
ox 0%

{(Ej A q)a—E} (4.160)

Comparing Equations (4.159) and (4.160) to thetedldocal transport Equations
(4.138) and (4.139), it is noticed that they hawnailar form. The termg; + A q is the

total large-scale dispersion coefficient. The dgfece between local-scale and large-

scale dispersivity is the effective Bulk macrodispen (A q). This difference is due to

the variations in the groundwater specific disckafg ) or equivalent groundwater

seepage,%).
n

In this work, the following expressions developgd Mantoglou (1984) are used for
evaluation of macrodispersivtied;). Two assumptions were considered in order to get
the following analytical expression: (i) the s@lassumed to be horizontally stratified,

and (ii) the lateral head gradients are considaydsk small.

OAA, , .
= (T, +28°T,,+ &1, (4.161)

A(X 77y2b
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_OAA 3

A, -?XO B (£°,) (4.162)
A I, (o
A, = Jﬂyzo J_Zz(f Tzs) (4.163)
A=A =—03M2i€2(T +ET,) (4.164)
X z 77y20 \]X 23 33 '
Ay = A= A= A=0 (4.165)
where
_ 9
y' = Ak (4.166)
0 :\/)IX2 (sing)” + A2 (cosp)” (4.167)
& :%(sinw)2 +(cosp)’ (4.168)

A

where ¢ = arctg{ lfz'i‘]i} defines direction of the axes x and z with respeeixesx’
XX X

andy' (see Figure 4.2).

If f anda are uncorrelated, then

ﬁz :1+£2H (4169)

If f anda are perfectly correlated, then

[ =1-&H (4.170)
and
J, = J, cosp+ J, sing (4.171)
J, =-Jsing+ J,coxp (4.172)
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T2z, T2z and Tsare evaluated by the following integrals

7 2 2
¢ 1 & C
T, = 4.!; 8(32 _ C2) {ﬂ_ a2 — &2 |n{?H(COS¢)4 dg

2
|n(cj
7 2 2 2
_ c a’) i, 2 2
T23—2£ i(a-2d)| - 4 [1 2(sing)” ( cog) quo

where
a? =(cosp)’ +( sing)’”
and

c? = A’L2b*(cosp)’

4.7 Evaluation of concentration variability o’

In this section, the concentration variance is @eatd as

(4.173)

(4.174)

(4.175)

(4.176)

(4.177)

(4.178)
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where o’is the solute concentration variance arRl, is the covariance of
concentration if¢=0. The relationship between variance and covaridm been

explained in Chapter 3. The covariance functiorsfidute concentration is presented as

R.(¢)=[ e<s.(§ o (4.179)

According to Equation (4.179), evaluation of tleva&riance of solute concentration is
reduced to evaluation of spectrum of solute comaéinh. Assuming the spectrum of
hydraulic conductivity is known, the spectrum ofude concentration is evaluated using
its relationship with the spectrum of hydraulic dontivity. Linear solute perturbation

equation is used for this purpose. The linear @lattobn equation relates the
concentration fluctuations to the specific discleaftuctuations and is obtained by
subtracting Equation (4.159) from Equation (4.188)

oc’ oc ,_odc 0 oc oc oc
" +q' + - ] —El d—|-d—=00 .
ot Fox % ox ax 5 X {qax} q0),( (4.180)

Equation (4.180) is solved using spectral method. Usingatitqu (4.29), the
concentration and specific discharge, pressure head and natural logarithme of t

saturated hydraulic conductivity perturbations can be written as

¢=| T [exp(ik %) dz, (k) (4.181)
q=] z [exp(ik ) dz, (k) (4.182)
h=| T [ exp(ik X) dz, (k) (4.183)
f=| T [exp(ik %) dz, (k) (4.184)

wherek is the wave number vector, ankl is the position vector.
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Substituting Equations (4.181) and (4.182) into EquatidlB(@) leads to

Gdz, =G dz =( § k- kg dz (4.185)

where, k? = k* + K2 + K.

Multiplying both sides of Equation (4.185), once by commplconjugate Fourier

amplitude qui* and another time bgZ~ and taking the mean values, and using the

spectral relationship presented at Equation (4.30), lead to

G,S,, =( 5 K- k) § (4.186)
and
GS, =(§ k- iky) 8 (4.187)
where
__0c
G = ~ (4.188)

Substituting Equation (4.187) into Equation (4.186) yields

GG S, (¥ )
-S|k 4.189
(Eij K~ i Tl) ( ) ( )

where, S (k) is the spectrum of the concentration perturbatiy, (k) is the

spectrum of the specific discharge along tkeand x; . Also, the relationship

betweerfsqjq (k) andS; (k) the spectrum of the hydraulic conductivity, is determined
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using Darcy’s equation (Gelhar and Axness 1983). Darcy's equutfithn locally
isotropic hydraulic conductivity, is written as

oy
= —-K=—=
G ox (4.190)
Substituting Equations (4.8) and (4.11) into Equation @).18nd using Taylor
expansion yields

2
=—e ¢ (';):h) é{1+ f+f7+ j(g_;IJr%j (4.191)

Assuming small perturbations and dropping products of pertuybaudtities, the mean

removed form of Equation (4.191) is

q =—e e o(H +h)

(4.192)

and using spectral representationsifand ¢

dz, =€ (Jdz - ikdg) (4.193)
Perturbed flow equation is given as (Bakr et al., 1978)

0°h of

—=J —
x> ' ox

(4.194)

Substituting spectral representations tioandf (i.e., Equations (4.183) and (4.184)),
into Equation (4.194) yields

-id k dz,

% (4.195)

dz, =
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Combining Equations (4.193) and (4.195), produces the follpwelationship between
complex Fourier amplitudes of specific discharge and hydraulic uotindy
perturbations

dz, = ep( J- J"leﬁ j dz (4.196)
With similar procedure used for producing relationship between #&rsp of solute
concentration and the spectrum of the specific discharge, (i.elug@ng Equation
(4.189) from Equation (4.185)), the relationship between spectrupeoifie discharge
and spectrum of hydraulic conductivity is obtained from Equa#oi96) and spectral
representations presented at Equations (4.30) and (4.31) as

K. .
Sya (K= KZJM{%-;(—IZ“](%-%] S ( & (4.197)

Note that summation oven andn is implied.

Substituting Equations (4.197), (4.189) and (4.179), irqaaion (4.178) and taking

& =0 produces the following equation for evaluation of solute concemtrairiance

(Vomvoris and Gelhar 1990).

«| GiG K|2Jm‘]n(5jm_ kzmj(din_ L jsf ( k) (4.198)

The integration presented in Equation (4.198) was solved analytiga¥omvoris and
Gelhar (1990). Their resulted equations are used in this work for evalwéisolute

concentration. The equations is presented bellow
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0.2 =T, (P, P V) OPAG? (4.199)
where,
7 -t2111 (4.200)
“ Yy 3vep p '
11 1 1 1 1)1 R+ R
T, =T,=>= 4| S+ | _
w = n y26{2p12 R? (2 RZJ R R—ZFJ (4.201)
and p, =72, p, == e=d =0 R*=1-p?
1 ) ’ 2 /]y ’ AZ ’ aL ’ 1"

4.8 Summary and conclusion

In order to develop a reliable model for water fland solute transport it is essential to
consider the effects of spatial variability of si@itmation on water seepage rate in soils
and its frequent effects on solute transport. Basethe literaturéPolmann et al., 1990
and Mantoglou and Gelhar, 1987), spectral apprasdmown as appropriate method
for dealing with random processes (in order to ipocate spatial variability of random
parameters existed in the processes into the detateerning equations). This approach
has been selected in this work. The procedure pfamentation of spectral method to
the classical governing equations for developmentiaoge-scale mean governing

eqguations for these processes were describedsichiapter.

The large-scale partial differential governing egues include some terms which are
called effective parameters. These effective patarmeare produced by fluctuations of
random hydraulic parameters due to natural heteeige of soils. Perturbation

equations for flow and solute transport are use@riter to evaluate these effective
parameters. They were also employed to evaluate #iod concentration variances.
Perturbation partial differential equations werealeped by removing mean flow and
transport partial differential equations from tHassical governing partial differential

equations. Analytical spectral method used for isglthe perturbation equations and

108



Chapter (4) Stocthadlethodology

developing algebraic equations for evaluation éative parameters was described. In
the developed algebraic equations, some complegrals appear that could not be
solved by simple analytical methods. However, thasegrals have been solved using
some assumptions which are consistent with rel iendition by Mantoglou and his

co-workers (Mantoglou and Gelhar, 1987a, 1987b,/t3d Mantoglou, 1984). These

solutions were used in this work.

The resulting stochastic partial and algebraic ggna predict large-scale flow and
solute transport characteristics rather than |loedhils of flow. The advantage of the
resulted equations is that they depend on few petens describing the statistics of
local variability (i.e., mean, variance, correlatitengths) which are finite rather than
depending to the actual soil properties which arnite. The formation of these

equations which show the relationship between mdéaw and perturbation

characteristics with statistic of local variabiliprovides a better understanding of the
probabilistic nature of this process and effectpm@sent uncertainty in soil properties

on relevant phenomena.

As the large-scale models representations wereigied in partial differential equation
form, they can be evaluated by numerical techniglreshe next chapter (Chapter 5),
numerical finite element and finite difference tejues that have been used to solve

these stochastic partial differential equationsdaseussed in detail (see Figure 5.1).
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CHAPTER 5

NUMERICAL SOLUTION

5.1 Introduction

The transport of pollutants in the unsaturated zenenodelled using two sets of
equations. The first set of equations describes glroundwater flow through the
problem domain. These equations include a stochastitial differential relationship
expressing temporal variability of mean capillagpdion head through the domain and
mathematical algebraic equations for evaluationimportant parameters such as
effective hydraulic conductivity, second-order mamévariance) of capillary tension
head, mean hydraulic gradient and mean groundwagiecity. The second set of
equations describes the ways that the fluid phasesports a miscible contaminant that
include a stochastic partial differential equatexpressing movement of solute through
the domain with time and algebraic equations faal@ation of important parameters
such as effective diffusion of the area and seamdér moment of solute concentration

through the domain.

The solutions of these equations are too complexarfialytical methods; however they
can be obtained using approximate numerical metHaodée model developed in this

work, the governing equations of these proceduressalved using a finite element
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method in the space domain and a finite differesateeme in the time domain. In this
chapter, the procedure for generating finite elenfermulations for the prescribed
governing differential equations and implementatara finite difference scheme on
them are presented. Possible various types of l@wyndonditions influencing on
hydrologic procedures and commonly present to comated lands and aquifers are

discussed.

5.2 Finite element for mulation for groundwater flow

In this section, finite element formulations arerided for stochastic mathematical
model of unsteady-state (transient) groundwatev flounsaturated soil. The stochastic
partial differential equation for unsteady-stateugrdwater flow through an unsaturated

soil is

00 _ a0H __ 9 [K M} =%y, 2 (5.1)

ot ot ox| ' ox

The three-dimensional form of equation (5.1) is

Aa_H:i[Rxa_H}+i R a_H +i RZ(G_H+1J (52)
ot ox ox | oyl Yoy| o 0z

Mean capillary tension head is the unknown varialéhe equation. An approximate
solution of this variable is defined in terms of nodal values and associated nodal

shape function as

n

Hxy.29=> N(xy3 H} (5.3)

i=1

where H(x,y,z,1) is the approximated value of capillary tensioachat any location

of the problem,N, is the interpolation function at node H, is the mean capillary

tension head value at node i, and n is the numhsodes in the element.
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When the approximate solution for hydraulic headuisstituted into the equation (5.2),

the equation is not satisfied exactly. Then

9 KXO—H +i K oH +i K, a—H+1 —éa—H:Rio (5.4)
ox x| ay| Yay| o 0z t

where R is the residual or error due to the appnake solution. The residual at each
point in the problem domain is a measure of therekego which the head does not
satisfy the governing equation. Based on the pbgbg behind the weighted residual
method, the weighted average of residuals at nodessthe solution domain is forced to

be zero.

[ el e R K R LA T (5.5)
S | OX X | oy y| 0 0z ot

After some mathematical manipulation this equatieads to a system of algebraic
equations to solve the governing differential eguradf transient water flow and work
out its unknown variable (mean capillary tensioadjeapproximately. According to the
basic theory behind the finite element method Equoaf5.5) is formulated for each
finite number of distinct elements that togethegytiorm the problem domain. The
system of algebraic equations is generated by suimmaf element equations over the
domain. Generation of these algebraic formulatisnsarried out through four steps
including: (i) determination of contribution of ehents in weighted residual (ii)
determination of element characteristics, (iii) soaion of element residual
formulation over the problem domain and (iv) emjohgythe weighted residual method.

In the following sections these four steps areudised in details.

5.2.1 Element weighted residual for groundwater flow

Equation (5.3) is used to approximate the capiltansion head over an element. In this
case, parameter n, is the number of nodes in daamert. Then, the contribution of
every element, e, to the residual at node i, tactvkine element is connected, is obtained

by substituting the approximated capillary tendiead of each element.
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{RO) = we CANIC oH | o K(MH(E) AT N
v 0x ox ay oy 07 0z

2 OH® o ol ] al . yoRt
eC dv =- 97| k9 +—| k(9 5.6
ot } V(LV\/ {OX_KX 0x | ay_K’ ay (5.6)
n ] <@ . (9
b IR HK_sedH gy
0z 0z 0z at

where vv,(e) Is the element’'s weighting function for node i atiee limits of the

integration are chosen to represent the area ofegiee.

In this work, Galerkin’s method is employed; theref the weighting function for each
node in the element is taken as the element’spatation function for that node (i.e.,

w = N(e)). Then, Equation (5.6) is written as

(5.7)
NE A PRIl A PR TR
Ylax| Y ax | ay| Y ay
_[4+9 Az(e)aH LK a9 0H" qv
Jo 0z 0z 0z ot
. o . 0°H  0°H
Because the approximate solution is a linear fonctf x,y and z, T o and
X

dy

P

Py are not defined. However, the approximate solutioas have a continuous first
z

derivative; therefore, Equation (5.7) can be eualdiaf it is rewritten in terms (%ﬂ
X
oH oH

— and—.
oy 0z

Using integration by parts to the second ordenaégiterms of Equation (5.7) yields

113



Chapter (5) Numerical Solution

Green’s Theorem is applied to the second-ordewative terms of Equation (5.8);

therefore,

- SCEARNC oH" +RO2 N0 oH AR (pH e
o (04 (o) ay oy 0 0z

_n@g @oHY )k (30H® p~ g poH "
r'[ZNi K, ™ dydz- J' I\f oy ddeLrJ:y N K 37 dxdy

(5.9

where, /" ,, I",, and /", are projections of element boundary surface orptaesyz,

xz andxy respectively.

Equation (5.9) represents the groundwater flowsectbe element’s surface. Thereatfter,

this term is denoted ty'®

aH oH ~ppoH®
J' N —— dydz—j N® KT Yy dxdz [ N f(*’? dxc (5.10)
My

Qi(e) is zero for the internal elements and is definedoaundary condition for the

elements that are on the boundary of domain.

Then, substituting the Equations (5.8), (5.9), (bititd the residual equation yields
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L aN© (R e L G (5.11)
+R (9 [OH J}dv—j NO XK gy [ de)a';t dv
V(e)

Over each element, the following variables are exiprated by polynomial shape
functions relating them to their nodal values:

A =[N ) (5.12)
6H(;t(e) - [N 9) (5.13)

If equivalent set of approximated capillary tensio@ad and time derivative of the
approximated capillary tension head are substitutéd the Equation (5.11), the

residual equation can be written as

(e) N (
{R(e)}=j N (@ yON' | oN© ye)aN K (9ON {Hi”?} qv
Jo (L 0X oX ay ay az 0z

+ [ NFIEONGLHO} av- | N NTLL S ¢

Ve Ve 0z

(5.14)

Equation (5.14) is written in the matrix form as
SRR CEEENCERLY 619

where[ f)(e)} is the effective capacitance matrix which is edaal

[7]= [ [N )N av (5.16)

[R(e)] is the effective permeability matrix which is efjtea
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. o[ N AeaN(aTaN(e AEGNHT

[K()}:VL [ax }{KX()} [ax} [ay }{Kyu} [ay}
A . (5.17)
0 Ni(e):| O[Ni(e)]

and{Fi(e)} is the force vector which include gravitationalde and Neumann boundary

condition

2 (@)
[Ni(eqT @dp& QU (5.18)

Evaluation of the effective permeability and effegtcapacitance matrices and force
vector necessitates the determination of the intatipn function for each node of
every element. In the following section, the tydeelment and related interpolation

functions that have been used in this work arerdsst.

5.2.2 Element effective per meability and capacitance matrices

Linear triangular 3-node element and linear tetdadle4-node element are used in this
work. They are the commonly used two-dimensiona timmee-dimensional elements.
The interpolations for this type of elements werespnted in the chapter 3. The
element matrices for linear triangular and tetrahlkeelements can be readily computed

using equations (3.41) and (3.42) respectively.
Two-dimensional element matrix

The element effective conductivity matrix for tiveot dimensional problems is written

in an expanded matrix form as
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_algll(e) al;l(E) l aNl(e) AN
X z > (e e
[Rﬁa}::jj : : {KJ) 0 “ af@ afa dxdy (5.19)
Al ON (e) oN (9 0 Kz aNl aNn
I a:( a“Z | 0z 0z

where,n is number of nodes per element.

Then, using the interpolation functions and Equat{8.41) the first array of the

effective conductivity matrix for each element ¢anevaluated as

ON

- ON, - (g ON
K® |= LK L dxdz+ L dxdz
[ ] J(J') ox o H 0z K, 0z £ 20
v . - (5.20)
- i K (e) C1 K (¢
PPCRRERPYNC

Other arrays of the matrix can be evaluated imalai way. The final result is

h b bb| _ | € £ Ge
297 K K @
K } 2@ | PR B+ ¢c £ oc (5.21)
bh kb § qw?it

A similar procedure can be used to compute the&ffe capacitance matrix. The result

I 211
[p }- Lo|t2t
112

(5.22)

Three-dimensional element matrix
The element effective conductivity matrix for thréienensional problems is written in

an expanded matrix form as
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Fon : [oN© aN (9 ]
oNS? N aNS ] ’ o
G IR I
0] = : : : < (9 . ON,
[K }‘”(I) : - - 0 KO0 oy dxdydz (5.23)
v aNn(e) oN n(e) ON n(@ o o0 KU 9 "
I NICH N
0X oy 0z .2 n
) - | 0z 0z |

Using the interpolatio

conductivity matrix for

[HH

v(©

n functions and Equation 23.the first array of the effective

each element can be evadats

9

6N1 —2L dxdydz

(3
(0 0N, dxdyd
0z

IHaN

(9 (5.24)
—dxdydz

and so on for each array of the matrix. The fieslit is

_mji my
[0 K
6V m, m
| Mim M;
m,m,
K, | mgm,
ov'@ | mem,
MM,
m,m,
K,© | mym,
ev(@| m,m,
My,

My W
mH  p|m
mmp m;m
m. | Wy
m M|
mn mw
MM MM
M My My M
mm mm |
m | mm
M My Mhe M
My My My Mg

(5.25)

A similar procedure can be used to compute theife capacitance matrix. The result

is
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2111

. ceyidl1 2 11

p(e) - .

[ ] 20 |11 21 (5.26)
1112

5.2.3 Global effective per meability and capacitance matrices
Summing up the weighted residuals of elements theedomain and minimising them

to zero yield

aNi(e) 2 aNi(e) +6N(@ ¢ (e)aN(‘i) {H,(e}+
ox * ox oz 7 0z |

2]

A (5.27)
Ni(e)é(e) N(@{ H(f)} _ N( ?aKx(E)} dv- Q ?j =0

0x

Equation (5.27) can be written in the matrix forsn a
X[ { RO} {r1} =0 (5.29

Thus, the general finite element formulation fopgrdwater flow is

[B){ i} +[ K]{H} ~{F} ={9} (5.29)

Where[f)] is the global effective capacitance matrix a{r}a] is the global effective

permeability matrix over the problem domain.

5.2.4 Imposition of the boundary conditions
The boundary conditions of the problem can be asifpd flow (Neumann boundary
conditions) or specified head (Dirichlet boundargnditions). Dirichlet boundary

conditions are directly introduced in the final tgya of equations.

H(x,y,z,1). = H (5.30)
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Neumann boundary conditions are imposed by theadjlBbrce vectqu}. The force
vector term is associated with gravitational foesel water flow quin(e). For the

adjacent elements on the interior of the m@ﬁ will have opposite signs cancelling

the contribution of this term for the two elemefusthe node(s) they share. But, for the
elements on the exterior of the mesh this term ballused to represent specific rates of

groundwater flow as

a(x,y.z.9)_=q, (3.31)

5.3 Finite difference formulation for groundwater flow

Numerical evaluation of transient equation is caetgd using time descretisation of
effective matrices in time domain. Applying the itin difference approach to the
equation yields the final form of the equation systfor evaluation of pressure heads in
the problem domain as

([B]+ At R M} =[ B HE +2H 7}, (5.32)

where, subscrigtandt + At represent time level anflt is time increment.

5.4 Hydraulic gradient

In this section, vertical and horizontal hydradiadients for the triangular element are
evaluated. According to the shape function appratiom, the partial derivative of

hydraulic head with respect to the x directioniiseg by

N
OH _-, oN

- i 5.33
ox < ' ox ( )

Spatial derivatives of interpolation functions cda@a written with respect to the area
coordinates of the element as
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ON, _(0N dL,  ONdL, ONdL

ox (OL1 ox aL2 ax OL3 axj (5:34)
o _ oL oL,

ox ax 0X (5-39)
o _(, -

™ (z-2)/2A (5.36)
o, _,_

a—(zs z)/2A (5.37)

Substituting Equations (5.35) to (5.37) into theu&iipn (5.34) yields

[O_Hj(e’_iH ON_oN1aL, (0N _ON)aL,
ox) 4 '|lay oL oL, dL,) ox

| [ON_aNy oL (ON, aN)aL,

“oYlaL oL, )ox oL, aL, ) ox
(N, _9N, )AL, (9N, _aN,)aL,
oL, oL, )Jox (oL, aL,)ox (5.38)
(ONg Ny )AL, (9N, 9N\,
oL oL, Jox (oL, oL, ) ox

oL

0
:[H1_H3]a_|;(1+[H2_H3 0_)(2

=[H1‘H3](Z§;<e>z3j+[H2_H3](%j

+H

N

+H

w

Following a similar procedure, the vertical hydregradient is evaluated as

oH\® ) oL
() el

0z (5.39)
[l ol
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5.5 Groundwater velocity

The parameters appearing in the contaminant trangpoation include groundwater
velocity and the coefficient of dispersion. Alse ttoefficient of dispersion is a function
of velocity. This implies that the groundwater @ty is a crucial variable in

contaminant transport modelling in an aquifer. Tweger flow velocity is calculated

based on the hydraulic gradient and hydraulic cotidty. The mathematical equation
for the estimation of water flow velocity in porooeedia is based on Darcy’s law

K, oH
V==t
n

N i:X,y,Z 5.40
x (5.40)

Therefore, groundwater velocity for each elementhie problem domain is evaluated
by substituting the effective hydraulic conductvidand hydraulic gradient of each

element in Darcy’s equation as

__KR" -2 2- 2

e D G RO ) o
__KY X~ % X~ %

v, =-—= {[Hl—Hs]( G j+[H2—H3]( e ” (5.42)

5.6 FE formulation for steady-state solutetransport

The stochastic partial differential equation forashg-state solute transport through an

unsaturated soil is

o(cq) _ 0 {5 GC} (5.43)

ox  ox| 'ox

whereD; =E; + A Q.
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The three-dimensional form of the Equation (5.43) is

a(qxé) + a(qyé) + a(ﬁz_C)} ZGiXI: I:’jxxg_é-'- Ifjxy? * [sz?j|
X Yy V4

9
+ —
6y{

0
+—
62{

Mean solute concentration is the unknown variabldhe Equation (5.44). A procedure

similar to the one used for the flow, is employed éxtracting finite element equation

+D

(W

9€,p ¢ (5.44)
Yoy oz
+B, 5540,

oy 0z

O

ac
Y ax
ac
ZX aX

for solute transport. An approximate solution asthariable is defined in terms of its

nodal values and associated nodal shape funct®ons a

Slwzd=d NOxy Fdx (5.45)

where T(x,y,z,1) is the approximated value of solute concentrativany location of

the problem, N, is the interpolation function at node T is the mean solute
concentration value at node i, and n is the numifenodes in the mesh. The

approximated value does not exactly satisfy Equaftoa5). Based on the weighting
residual method, weighted average of residuals oales, produced by substituting

approximated solution into Equation (5.44) over fidution domain is forced to be

zero. Then,

(5.46)
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5.6.1 Element weighted residual for steady-state solute transport

The contribution of any element, e, to the resicatahode i to which the element is
jointed is acquired by substituting the approxirdateean solute concentration and
other related hydraulic parameters of each elemémthe Equation (5.46).

RO = [ W - o(a%) ; o(47¢) ; o(d"9

5 ox ay 0z

x| “ox Yoy Yoz
_ 0[5, 599C , 539C
ay\ ™ox Yoy oz

_9[ %, 599 , 549C |l gy
0z X Yoy 0z

_0[pe% , zeIT, 5(@@]
(5.47)

Using Galerkin’s method, Equation (5.47) can betemitas

+
5 0X oy 0z

(5.48)

o o 0c 9%
Because of linearity of solute concentration wispect to x ,y or 2’6_2 R and
X y
0% . : : .
7 are not defined. However, the approximate solutloas have a continuous first
z

derivative; therefore Equation (5.48) can be evaldt it is rewritten in terms (%f—
X

ac
oy

[«3]
SIJT-OD

an
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By integration by parts, the second-order deriatarms can be written as

N© )9 | padt
I XX ax_

- o
0X

i{[}(e)a_c

zX aX
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NS Jac

ay
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5199
Y ox

“ax

(5.49)
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Applying Green’s theorem to Equation (5.49) and stligg the resulted equation into
the residual Equation (5.48), yields

R© :_J' _N(e)[a(qie%)J_ N(e{a(qge)%)}_ N(e)[a(:;{:ic)}_l_
0 0

\Vi (@

5[ N 5_54,[3(@( N.(e)jEJ,f)(e( N(e)j@
XX Xy Xz
0X | OX ox |oy oXx |0z (5.50)
Ij(e) aNi(e) 06 2(¢ aNl(e) a—6+ 2 (e) 6Ni(e) E
“ay Jox Pl ay Joy | oay |oz
Bl N 19T | 5o NP V0T sy ON'Y0E| iy
“l o0z Jox | 0z Jox ® az o '
where,
(0 = (d_ 1% 9C 2% 0C
fi _I Ni (_Dxx)_+ é)_+ N (_ DE(z)j_ dydz
C ox 0z
ac ac ~n OC
+ D e) D! N(¥(- D == | dxdz
j( 0+ NIOB) = 5y N D5, (5.51)

= { (Db‘g‘; N (- D%gi Ni”’(—b‘zbg—jdydx

My

Equation (5.51) represent the solute sink/sourcesadhe element’s surface. This term
in equation (5.50) is equal to zero for the intéelements and applied as solute flux for

the boundary elements.

Over each element, the element mean solute comatientris approximated by

polynomial shape functions relating it to its nodalues as

£ = Ni(e)] {E} (5.52)

Substituting Equation (5.52) into the Equation (5,%¥lds
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v

OIN] 56N, g Ni 5ed N +<v NF 5 NP

ox ox ax ¥ oy ax ¥ 0z
AN 59N , ANY 50d NI, @ NT 590 N (5.53)
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Equation (5.53) is written in the matrix form as

{rRO}=[D1{d-{ 1} (5.54)

Where[f)‘e’] is the effective advective-dispersive matrix whis equal to

o ox ay 0z
a_Nf)_ ) ‘N<e)‘ a‘N@‘ ) a_NW ol Nw‘ ) a[ Nk}
L _D(e) L 4+ L _D(e) L =+ L I (@ +
ox 0 ax dx Y0y ox ¥ 09z
oI N T a‘N(e)‘ a‘N(e‘ NCT ol N a[N(e‘ (5.55)
L _6(6‘) L J4_L —6(6) L J4_L I —6(6) 4 4
ay Yo ox ay 7 oy ay 7 oz
@ @ (4 (3 (} b
3| N, d d d a| N a| N
[ ' }5(;) [N }+ [N Lﬁ(ze) [N J+ [' Lﬁ(i [' } dv
0z ax 0z Yooy 0z 0z

5.6.2 Element effective advective-dispersive matrix

Two-dimensional element matrix
The element effective advective-dispersive matok fwo dimensional problems is

written in the expanded form as
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oN,@  aNJe N g
2(e) ox 0z D, D, 0; 6—:(
De - — ‘ ‘ XX Xz
[ J % B @ B |l anG  aN (8
A aNn(e) aNn(e) zx 2z alz a;
. ox 0z | (5.56)
NG NG “ oN  oN
2 O o .
5 {qﬂ 5 (@) aia aia dxdz
NG@ @ |0 Gz JJONTT ON,T
. n 0z 0z

Using interpolation functions and Equation (3.41g airrays of the effective advective-

dispersive matrix for each element can be evaluaged

sw|T BB bR 16 ep e
[D@]:Zf@.qp ohp |+ ugl e Booecl
bh b § | | ¢¢ ¢ £
5 0|06 BG bE] L [ eb b g
4X(e) bc he be +4Z\(e) gb cb @ |+ (5.57)
bc bg he| Gh qb ¢h
0B R ¢ ¢ ¢
b b R |+ c ¢ ¢
b bR ¢ G ¢

Three-dimensional element matrix
The element effective advective-dispersive matox fwo dimensional problems is

written in the expanded form as
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_ _ [ ang (8) (9 ]
NG NG aNG T [N N,
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0X X 0z 6’31 ---agn
- - zZ Z
) - ~ (5.58)
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Do : 0 qzz(e) 0 r ..~ dxdydz
@ n (9 N (8 @l ¥
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Then, using interpolation functions and Equatior423 the arrays of the effective

advective-dispersive matrix for each element caavatuated as
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5.6.3 Global effective characteristics of domain

Summing up the weighted residuals of elements therdomain and minimising it to

zero yield
_ o9 NI ) o = ANy~ NY
2( V&{([Ni Jq? = Jmﬁcé 5 L NIEE

LNy s AN AN 5 aNT LB NT 5 B NT
ox ox ax Yay 0
AN - AN AN = aNT PN < p N
+( oy Dy =+ oy D,y oy T oy Dy, (5.60)
(&7 . (¢ (4 . ( (¢ . (1k
LNl ANG ANG 5 N B NT 5 PN j{_}}dv
0z 0X 0z oy 0z 0z
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Equation (5.60) in a matrix form is

3| [69 e} {19} =0 5.61)

[61{c} -{ 1} ={o} (5.62)
where [[3] is the global effective advective-dispersive mataver the problem

domain.

5.7 FE formulation for unsteady-state solute transport

The stochastic partial differential equation fost@ady-state solute transport through an

unsaturated soil is

% _ oG, o[ g0
n~ o ax {(D”)ax} (5.63)

The weighted average of residuals at nodes, pradogesubstituting the approximated
solution into the Equation (5.63), over the solntdomain is forced to be zero. Then,

— —+
Xy Xz
ax_ an a}/ 0z (5.64)
L9]p 9C,pn 0C p OC
ay| Yox Yoy ‘oz
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5.7.1 Element weighted residual for unsteady-state solute transport

The contribution of any element, e, to the residatahode i, to which the element is
jointed, is acquired by substituting the approxedasolute concentration and other

related hydraulic parameters of each element ineoEquation (5.64) and using the

Galerkin’s method, as

@2) a(g93) a9
RO = [ w9 - o(a’) o9 °)+a(‘£ 9
J ox ay 0z
_0 5(;@@(;@ 5(2‘3_%
ox ax Yoy 0z
. 5 ) (5.65)
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-2 o0 oy 52t
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e (9% 9=
q%) NE ‘9(%‘3)_,\|e>‘9(0£c)+
ox ay ' 0z
ac, 5 N o, 54 oN"aT
ax Y| ox Joy | 90x Joz (5.66)
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0Xx 0z )oX 0z )0z 0

Over each element, the following variables are exiprated by polynomial shape

functions relating them to their nodal values:

2@ :[Ni(e)]{c(e)}

(5.67)
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9=© . a_(e)
€ =[N} ’]{ 5 (5.68)

ot ot
Substituting Equations (5.67) and (5.68) in to Eouma(5.66) yields:

(e) (¢ (
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Equation (5.69) is written in a matrix form as
{RO}=1P{g+ DI{d - 9} (5.70)
where the element effective capacitance me{l?i(i)] IS:

(PO =~[ [N { ) N9 ar (5.71)

5.7.2 Deter mination of element effective capacitance matrix
The element effective capacitance matrix for twoehsional problems is written in the

expanded form as

CRVC

) N
P-1g)
Ve N(e) N(@

n n

(9

N© .. N
[n(e)] ! " |dxdyd: (5.72)
Nl(e)---N(e)

n

Using interpolation functions and Equation (3.41¢ arrays of the effective capacitance

matrix for each element is evaluated as
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2 1 1
1 2 1
11 2

(e) A(8
n’ A
(5.73)

[Pf] =

and with similar procedure the effective capacieamatrix for each tetrahedral element

(three-dimensional element) is evaluated as

(5.74)

2 1
- neyvEi1 2
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11

PN R e
N B R R

5.7.3 Global effective characteristics of domain
Summing up the weighted residuals of elements therdomain and minimising it to

zero yield

g{‘f){(['\li(]qx AN J+[N&’]0V6[ N N‘HMGNZ‘?

v

H[ ho
NG ) ox ¥ oy ax ¥ 0z
+(a[N)Da[M dN?yﬂN? LONT 5 BN (5.75)
ay 0x ay ay dy 0z
LN ANT ANY 5 aNT oM?ipN%}@
0z ax 0z Yoy 0z 0z

Arhneael} ov{ £7}) =0

Equation (5.75) can be written in the matrix forsn a

L G R G R ARE (5.76)

e
Then the general finite element formulation for ttensient solute transport is
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(PI{e -+ a{g-{ =0} (5.77)

where [[3] is the global effective advective-dispersive matrﬁlf’] is the global

capacitance matrix ar{df} solute flux vector over the problem domain.

5.8 Finite difference formulation for transient solute transport

5.8.1 Single domain solute transport

Numerical evaluation of transient solute transpegtiation is completed using time
descretisation of effective matrices in time domakpplying the finite difference
approach to Equation (5.77) yields the final forfrequation system for evaluation of

mean solute concentration in the single domainlprolas

([ﬂ +At[6}){5}m =[P[{g, +a{ 1., (5.78)

5.8.2 Dual domain solute transport

Dual domain solute transport equation is written as
o(n,C,) +a(n Con)

8. 20 679
w =¢(Cp=Cp) (5:80)
where,

L(c,) is the operator representing the advection, disper and solute sink/source

terms in the mobile domain and this term is solusthg Finite element method with
similar procedure applied for advection, dispersierms in single domain equation.

Applying finite element method to Equations (5.a84 (5.80) yields
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[P [ P {Gd +[ DI et -{ #={9 (5.82)
B (&} =¢ ({ed () (5.83)
where,
2 1 1 1
(eh(9
b =S pe 597 Nm V7|1 2 11
[F')’“]_g[ 2 [R)= 20 (112 1 (5.84)
11 1 2
and
2 11 1
(eh/(9
5= e ~97_ny vl 2 1 1
[’”]_;[ S L 20 |11 2 1 (5.85)
11 1 2
Substituting Equation (5.83) into Equation (5.8@¢l aearranging it yields
[ & +[Dled -{ B-¢(fed {ed)=(9 (5.86)
Applying the finite difference algorithm to Equati¢5.86) yields
[ﬁm]{cm}tm;‘t—{cm}t :[b]{Em}HA ~{ f} _Z({T%}M —{T;W}M) (5.87)

Equation (5.87) contains two primary dependantaldeis, c.'* and ¢, the solute

concentration in the mobile and immobile domairspeetively. Therefore, one must be
expressed in terms of the other. This can be aclisimed by applying finite difference
algorithm to Equation (5.83).

[ﬁm}{a“}“‘;,{{ﬁm}t =¢ (G s ~{Gba) (5.88)

Equation (5.88) can be arranged to yield
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{Cnbiia =§{fm}t+m +m{@m}t (5.89)

o Sha o o]0y, -10-{c+€ e, L

49

{c., (6.90)

Equations (5.89) and (5.90) represent final sofutd solute transport equation in dual

domain systems.

5.9 Solution procedure

A computer code was written in Compaq Visual FORTNR2000 (© 2000 Compaq
Compute Corporation) to solve the equations presergbove for evaluation of
stochastic properties of water flow and solute gpamt problems. The solution
procedure and the algorithm used in the developechastic finite element code are

summarized in Figure (5.1).

The first step of the solution procedure involvesfing the input data and the
geometry of the problem. The expected values atermeed using the related
equations presented in chapter 4, and consequedh#ygeffective permeability and
capacitance matrices for each element are evaluétexy are assembled to create the
global matrices. The boundary conditions are imgleted and the global system of
equations is solved using finite difference schémihe time domain. The results df
and o’ are evaluated for each node. The solution proeeftur evaluation oH is
repeated to satisfy the convergence criteria ofptiedlem. The convergence criteria of
the results in this model is satisfied if the diffiece between two successive iterations
at each point of the domain is smaller than 1%he Tonvergence of mean pressure
head is checked and if the nodal values convehgetransport equation can be solved,

otherwise, the flow equation is solved. Once theveogence of pressure head for each
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Figure 5.1 General structure of developed model.
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node is achieved, then the field water velocity eigaluated and the arrays of
macrodispersion coefficient are numerically detewdi; thereafter the advective-
dispersive transport and capacitance matricesangpuated. The boundary conditions of
transport problems are implemented. The systengaditéeons for transport problems is
solved using a finite difference scheme in time donand mean and variance of solute
concentration are evaluated. The solution procedurepeated for the next time steps
up to the total duration of the problem under study
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CHAPTER ©

NUMERICAL EXAMPLES AND CASE
STUDIES

6.1 Introduction

Stochastic FE model was used to simulate 7 diffeseanarios. The first case consists
of simulating a one-dimensional transient unsasarfiow through a vertical column of
soil. Analytical solution was used to verify thecaracy of the model. The second case
consists of simulating a one-dimensional transiergaturated flow through a layered
soil. The results from stochastic FE analysis wemapared to deterministic FE results
and experimental data. The stochastic FE theorgdtute transport was verified in the
next case through simulation of a one-dimensioteddy-state unsaturated flow and
transient contaminant transport. The stochastic f€Sults were compared to
deterministic and Monte Carlo results. In thetliarase, the capability of the developed
model for simulation of three-dimensional problemserified. The ability of the model
in considering the effects of immobile water wasified in the fifth case. This case
consists of simulation of solute transport in aucmh of soil with high density of
macropores. The results of the developed modet¢ wempared with those obtained

using an analytical solution and experimental measents.
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Applicability and performance of the developed nmdde simulation of real problems

was verified with simulation of two different castidies; (i) a steady-state flow and
transient solute transport case-study, (ii) a temsflow and contaminant transport
case-study. Stochastic and deterministic resulte wempared to each other. Details of

these 7 cases are presented in the following sexctio

6.2 Numerical examples

6.2.1 Example 1

This example has been selected to verify the mbgalomparing the results obtained
from the developed model with those obtained fraralgical equations presented by
Tracy (1995) for 1-D horizontal and vertical unstgastate groundwater flow in
unsaturated soil samples. Effect of gravitationatcé on seepage potential of
groundwater in vertical direction distinguishes ihontal and vertical groundwater

flow.

Problem definition for horizontal groundwater flow

The problem, as shown in Figure 6.1, consists oizbotal, unsaturated groundwater
seepage in a dry soil sample of length L. The flgdrid boundary of the sample is kept
as dry as possible, so pressure head is set wWuakdiead. The residual head is the
largest (in absolute value) negative pressure tadldved for the soil which is a
function of type and properties of soil (FredlunddaRahardjo 1993). Irrigation is
applied to the left-hand side of the soil sampls.aresult, water seepage occurs from
left to the right through the soil sample. This seaithe water pressure head at x=0 to
gradually increase from a negative value (as thleisansaturated) to zero (saturated
pressure head). Figure 6.1 (a) and (b) show theng@ dimensions and the element
discretisation employed in the solution, respetyiv@hree-node triangular elements
have been used in the discretisation of the area.FE (finite element) mesh generated
for this example consists of 80 triangular elemeartd 82 nodes, here referred to as
mesh A. Also, the example was solved with a finessim 200 triangular elements and
202 nodes, here referred to as mesh B (Figure)@d eheck the accuracy of numerical
solution. The simulation results obtained with theeer mesh are very close to those

obtained with the previous simulation (Figure 6:is proves that the first generated
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mesh is an efficient one for this example and the finer mesh does not increase the
accuracy of the prediction. The values of the parameters used in the numerical (FE)
model and analytical solution are summarized at table 6.1. These values were chosen in
order to enable comparison with results from the literature (Tracy, 1995). However, the
values of parameters used by Tracy (1995) were not chosen very sensibly. As in the
development of the anaytical solution it was assumed that the soil sample is
homogeneous, in the numerical simulation the variance of soil hydraulic parameters, is
set to zero and the example is treated deterministically.

Table 6.1 Value of parameters used in horizontal groundwater flow example.

L 200m Ks 10 mday.,
H, -100 m Hg 0
o, 0.15 0, 0.45

The parameters presented in the table were defined in chapters 5 and 6.

Dry
boundary

Irrigation §

A
-
v

42 _ 82
‘\
1 2 3 1
< 200 m >
(b)
102 202
‘\‘ ______

2 3 4 101

»

A"
N
o
o
3

Figure 6.1 (a) 1-D horizontal groundwater seepage with the boundary conditions, (b)
Finite element mesh with linear triangle element.
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Figure 6.2 Pressure head distribution through the bar foilouartimes (mesh B:
symbols, mesh A: solid lines).

Initial conditions
The initial pressure head at each point of theibassumed as a function of residual
pressure head, length of the bar and distanceegbdimt from the left hand side of the

bar (i.e., x) as
TSI
H,—H{l 6( 3 H (6.1)

Boundary conditions
The pressure head at the left-hand boundary ofb#re(i.e., x=0) is calculated as a

function of time as
Ho=H,|1-—& (6.2)
where p is time duration which is defined as the time thia@ bar stays totally

unsaturatedptis calculated as (Tracy 1995)
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t =_w (6 3)
P 6H k. '

At the right-hand boundary that is kept dry thesptee head is equal to residual
pressure head, So

H =H, (6.4)
Analytical solution

The governing differential equation for horizontalater flow in homogeneous

unsaturated soil is

0 oH oH
- k — |=C— .
6x(kS ' axj ot (6.5)
where k; is relative hydraulic conductivity and is calculhs (Tracy 1995)
H-H
k = !
""H -H (6.6)

Tracy (1995) presented an analytical solution feg gxample using partial differential
equation (6.5) and applying initial and boundargditions presented at equations (6.1),
(6.2) and (6.4), as

2
=-cre) Ly ©.7)
6 t+c,
where
c=-L (6.8)
_cl?
C,= H (6.9)
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c=—— (6.10)

Results

Figure (6.3) illustrates transient pressure heatridution through the bar at various
times during the groundwater seepage obtained fmemerical and analytical methods.
The solid lines represent the numerical solutionthedsymbols represent the analytical
solution. Apart from the right end of the bar whishkept dry, the water pressure head
through the bar increases with time. The initialevgiressure head at left side of the
sample is -83.33 m. As time progresses this valaeeases and after 10 days (i.e., 240
hours) it reaches to zero (saturated condition).

Transient water content distribution through the fosrvarious times, are depicted in
Figure (6.4). At the beginning, the maximum valdemater content is located at the
left-hand side of the bar and it is equal to 03m Minimum value of water content is
located on the right end of the sample which isaéda 0.15 mim™®. the results of
analytical and numerical models both show thatwiager content increases with time
through the sample. The water content on the lefhBary increases to 0.23mi° and
0.3 n'm™ after 5 and 8 days respectively. After 10 days,(R40 hours), the left end of

the sample became nearly saturated.
The results presented at Figure (6.3) and (6.4) Ffumwd agreement between analytical

and numerical results. This proves reliability ofveleped model for simulation of

groundwater seepage though the unsaturated soil.
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Figure 6.3 Pressure head distribution through the bar foilouartimes (analytical:
symbols, numerical: solid lines, t: time).
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Figure 6.4 Water content distribution through the bar forieas times (analytical:
symbols, numerical: solid lines, t: time).
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Problem definition for vertical flow with gravity

The problem, as shown in Figure 6.4, consists of meavd, unsaturated flow in a
rather dry soil sample of depth L. The bottom (zrélts on impervious rock, and the
top (z=L) is at the ground surface. The impervioaskrgives a no-flow boundary
condition. Rain at the surface causes the predsemd H to increase towards zero.
Figure 6.5 (a) and (b) show the geometric dimerssiand the element discretisation
employed in the solution, respectively. Three-natgular elements have been used
in the discretisation. The FE mesh generated forek#nple consists of 80 triangular

elements and 82 nodes.

Rain
Ground
Surface
N Al 42
;Y
2
3
£ |
— g | I
& [
v v a4 82
Impervious
boundary

(@) (b)

Figure 6.5 (a) 1-D vertical groundwater flow with the bounglaonditions, (b) Finite
element mesh with linear triangle element.

The values of the parameters used in the numefé&g| hodel and analytical solution
are summarized at table 6.2. This example is, atdoed deterministically for the same
reason for the case of horizontal flow simulatiord ghe variance of soil hydraulic

parameters is set to zero.
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Table 6.2 Value of parameters for vertical groundwater flovample.

200 m Ks 0.115mH
H, -1.50 m Hs 0
0, 0.15mm? 0s 0.45 mim?*
a 5.06m"

Initial conditions
The initial pressure head through the column isutated as

H, :%In (exp[a(HT ~-7)] +{ ex{aH,)~ expa(H, - L)]}
j (6.11)

« az-1+e?
al-1+e

where H and H; are mean pressure heads at the top and base ofothmn,

respectively

Boundary conditions
The impervious rock at the base of the column ifindd as no flow boundary

condition, then

H_p z=0 (6.12)
0z

The pressure head at the top of the column is leaédifor various times as

B 1 o> exp(aHT ~exga(Hg - L)])
Hy =t =) (—H e | 613
and
_1(.6.-6
C_ks[Hs_Hrj ©19
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Analytical solution
The governing equation for groundwater flow in M&rtical direction with the gravity

term is
0 oH oH
—| k| —+1||=C— )
62{ (62 ﬂ ot (6.15)

For this case, K is considered as (Tracy 1995)

k=ke" (6.16)

Tracy (1995) presented an analytical solution i Example using partial differential
equation (6.15) with initial and boundary condisopresented as equations (6.12) and
(6.13) as

expla H, -z)] +{ ex(aHg) - expa(H; - L)]} (mj
H :Eln ; H oL (6.17)
1_(aj{exp(a B)—exr{C_r( T )]}t
C alL-1+¢e“"
Results

The results obtained from finite element simulatsse compared with those obtained
from the analytical solution. Figure 6.6 illustrattansient pressure head distribution
through thecolumn, at various times during the groundwatempage obtained from
numerical and analytical methods. The solid lirggesent the numerical solution and
the symbols represent the analytical solution.

Water pressure head through the column increagestiwie. The initial water pressure
head at the top of the column is -50 cm and ab#se of the column is -150 cm. Water
pressure heads at the top of the column are equdDtcm and -29 cm, and at the base
are equal to -140 cm and -129cm after 3 and 5 hoespectively, for both analytical

and numerical methods.
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After 7.12 hours, water pressure head value atojneeaches zero (saturated condition).
At this time, water pressure head at the basenonumerical solution is -96.4 cm. This
value is only 3.6% smaller than the analytical wech is equal to -100 cm. This is the

largest difference between numerical and analysiohltions which is negligible.

Transient water content distributions through tbkimn for various times, are depicted
in Figure (6.7). At the beginning, water conteritsh@ top and base of the column are
0.35 and 0.15, respectively. After 7.12 hours the lhecame saturated. The maximum
value of the water content which is located atlibtom of the sample is equal to 0.26

cmem’S,

Comparison of the results shows that the resuligidd using the FEM (finite element
model) are in excellent agreement with those obthinom the analytical solution. This
shows the potential of the developed finite elemmoidel in simulation of vertical

groundwater seepage through unsaturated soils.
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Figure 6.6 Pressure head distribution through the colummvdoious times (symbols:
analytical, solid lines: numerical results, t: difhr)).
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Figure 6.7 Moisture content distribution through the columnyarious times
(symbols: analytical, solid lines: numerical resutt time (hr)).
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6.2.2 Example 2

An example of modelling transient flow in unsatedhsoil is chosen in order to validate
the developed stochastic finite element model fatewflow in heterogeneous layered
soil. Field observations show that natural soiinfations are often stratified. In this
example, STOHYSO is used to simulate a lysimetsr dad the results are compared

with the actual experimental values (Polmann etl&90).

Problem definition

This experiment is usually performed in order adstthe effects of heterogeneity (due
to layered formation of soil) on water flow. In shparticular test the lysimeter was 6 m
long with a diameter of 0.95 m, and was filled waternating 20 cm thick layers of
Berino loamy fine sand and Glendale silty loam. Bod was air dried, sieved and
packed into the lysimeter at a known density. Texmstometers were placed into each
soil layer, installed through the lysimeter andaliedl at 10 cm apart. An access tube for
a neutron probe was installed vertically in theteemf the lysimeter. The irrigation
water was applied to the top of the lysimeter.ghtion was performed by a needle-
embedded plate installed just above the soil sarfaéhis plate was rotated at a constant
speed to distribute the flux of water uniformly oviee surface. Water was added to the
lysimeter at a rate of 0.083 cm/hr for 1200 hodrse dimensions of the lysimeter
together with the FE mesh and boundary conditiams slhown in Figure 6.8. The
generated FE mesh for this example consists otr&fiigular elements and 302 nodes.

The values of the parameters used in the examelprasented in Table 6.3. Apart from
correlation length in vertical direction (i.e.) other input parameters were measured
experimentally (Polmann et al. 1990). The finalueabfl was fine tuned through a trial
and error procedure.

Table 6.3 Values of parameters for example problem (Polmarah €1990).

parameter value parameter Value
Ks Glendale silty i
lcam (cmhr™) 0.5436 w, (cm) 100
a-Glendale silty
loam (cm') 0.0392 ws(cm) 0
Ks-Berino loamy 1
fine sand (cmhr) 22.536 A (cm™) 0.0628
a- Berino loamy 2 2
fine sand (cm™) 0.0863 6,” (cm™) 0.000555
0, (cm’cm) 0.03 F 1.25
05 (cm’cm®) 0.33 o 3.47
2 (cm) 10 At (hr) 0.1
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Irrigation Equivalent Nodal Inflow
F F
A —
20 cm
o | 1 o
o I I <t
O I |
: : Single Element
v s
95 cm e Constant head boundary
Dry condition Finite Element Mesh
(2) (b)

Figure 6.8 (a) Dimensions of the lysimeter used for the expent and (b) the FE mesh
showing boundary conditions.

Initial conditions

Because the soil was dried, the initial capillagpsion head through the column is
considered equal to the residual capillary tensiead and water content is considered
equal to the residual water content which is theimim water that soil can hold at its

driest condition.

H(z) =-100 cm
(6.18)
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O)=6 (6.19)

Boundary conditions

The bottom of the column was kept dry in the expent; hence, in the model, the
capillary tension head is fixed to a constant vageal to the residual capillary tension
head.

H(z)=-100cm z=L
(6.20)

A uniformly distributed inflow flux due to irrigatn above the column is applied at the

top of the column.

z=0) =0.083mhr?
a(z=0) (6.21)

and

9(20) =0 (6.22)

Since in the finite element method, all calculasiaare done at nodal points, the flux
implemented at the top of the column is appliedven top nodal points of the column.
The contribution of each node of element from dsted water flux that is applied to a
portion of length of that element is determinedlstock 1989)

Fo =g [ [N] T, =CIIK1@(@+ bx ¢y @, (6.23)
I be

rbc

F® is the contribution of node i of element e frome tHistributed flux; q is the
distributed flux over the length of element thapussitive for inflow and negative for

outflow; I, is the element boundary over which the flux isligop The rest of the

parameters in Equation (6.23) have already beanetkin chapter 5.
In summary, the equivalent nodal inflow (i.e, FAigure 6.8) which is applied along the
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upper boundary of the element, is evaluated bytdgutisg the relevant parameters of

that element in Equation (6.23).

Results

Figure 6.9 shows the position of the wetting freetsus time obtained from (i) the
experimental measurements, (ii) the determiniskcnffodel and (iii) the stochastic FE
model between 600 to 1200 hours after the beginaingigation. The results obtained
from the stochastic FE model are in good agreemaith the experimental
measurements while those obtained from the detesticinmodel are considerably
ahead of the measured ones. Velocity of wettingtfoan be used as an index in order
to compare the results obtained from the stochastit deterministic models with the
measured results. The slope of the position cufweetting front versus time represents
the velocity of the wetting front. Based on theults presented in Figure 6.9, the
velocity of the wetting front for deterministic apach is 34.79% greater than the
measured velocity. While the wetting front velodity the stochastic approach is very

close to the experimental one.

The position of the wetting front for the stochasthd deterministic models at different
times between 0 and 1200 hours are presented ime=&10. The wetting front moves
faster for the deterministic case than for the Isistic case. It can be seen that the

difference between the results of the two approaaieases with time.
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Figure 6.9 Position of wetting front vs. time for Stochastieterministic and
experimental approaches.
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Figure 6.10 Position of wetting front vs. time for Stochastieterministic approaches.
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The values of measured soil water content at @iffelocations in the lysimeter, and at
different times, are compared with the predictedues using the stochastic and
deterministic models and the results are presentédgures 6.11 and 6.12. It can be
seen that the stochastic model produced resultshwdrie in better agreement with the
observed water contents, whereas the determinisiiciel gave relatively poor
predictions. The Rvalues in Figures 6.12 and 6.13 represent theficieeft of

precision for the predicted water contents from #techastic and deterministic

approaches. The’Ractor is evaluated using the following equation.

2 _ Z:N(xm)2 _ZN(Xm —X P)2

R2 = (6.24)

2a(Xn)

where X, is measured value,p¥s predicted value and N is number of data points.

The R value obtained for the stochastic approach is Q.9ttkereas the value of this

coefficient for the deterministic approach is 0.611
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Figure 6.11 Volumetric water content (predicted by determigispproach vs. the
observed values).
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Figure 6.12 Volumetric water content (predicted by stochaapproach vs. observed).
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Figure 6.13 shows the pressure head distributitomgyahe depth plotted for every 100
hours during the 1200 hours of the wetting cycletfe deterministic and stochastic
models. At t=0, the pressure head is -100 cm dweenhtire domain. After 100 hours of
irrigation, the pressure head increases to -6312#c the deterministic approach and to
-39.28 cm for the stochastic approach. The posiibthe wetting front at this time is
92 cm and 80 cm along the depth for the determinisbd stochastic approaches
respectively. As time progresses the wetting fronves downwards, and the pressure
head and moisture content increase over the afdirain. After 200 hours, the wetting
front is located much deeper, at z= 172 cm, fordéterministic approach while for the
stochastic approach it is located at z=124 cm. Milogsture front continues to move
downwards and at t=500 hours it is located at ZZ¢th for the deterministic approach;
while, for the stochastic approach it is locatedzat280 cm. At t=700 hours, the
position of the wetting front is 456 cm for the ekeninistic approach while for the
stochastic approach it is at z=316 cm. Based on rdslt obtained from the
deterministic model, after 900 hours, the wettimgnt almost reaches to the bottom of
the lysimeter and after 1000 hours, the moistuatfpasses the bottom of the column;
whereas, at this time the stochastic approach grethiat the wetting front is located at
492 cm of the depth.

In conclusion, the stochastic approach shows slom@vement of the wetting front.
Also the values of moisture content and pressueal e the same location, obtained
from the stochastic approach, are more than thdgeined from the deterministic
approach. As a result, with the same input moisturethe lysimeter for both methods,
according to the mass conservation law, the watatent at the wetted sections is

higher in stochastic simulation.
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Figure 6.13 Pressure head distribution through the lysimetettfe stochastic and
deterministic models (from 100 hrs until 1200 hrs).
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Figure 6.13 (continued).
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Figure 6.14 shows the volumetric moisture contesiridution along the depth plotted
for every 100 hours during the 1200 hours of thegation procedure. The linear

relationship of Van Genuchten was used to evalihatevater content.

= s “r (H-H
8 er+H H( ) (6.25)

The maximum value of water content for the stodbagtproach is 0.26 cittm® and
for the deterministic approach is 0.15 %om’; whereas, the maximum value for

measured water content is 0.23%@m’.

The smooth nature of the stochastic solution shihas this is a large-mean solution
where small-scale fluctuations within or across ldngers are not represented. In the
deterministic case, the small scale spatial vamatiin the hydraulic parameters of the
soil are included directly in the numerical destiop. In the stochastic case, spatial
variations, such as layering, are incorporated tht® effective parameters that are
homogeneous over the entire domain. Hence, theemces of the small-scale

fluctuations across the layers is not evident exdtochastic simulation.
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Figure 6.14 Volumetric water content distribution through tiigsimeter from stochastic
and deterministic approach every 100 hours (frorhi8Quntil 1200 hrs).
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Figure 6.14 (continued).

165



Chapter (6) Numerical examples and csdies

Figure 6.15 shows the pressure head variance veepih from the beginning until
1200 hours for every 200 hours. The minimum valtiéhe pressure head variance is
about 122 and the maximum value is about 3448.pFassure head variance decreases
with time as more amount of water infiltrates ink@ soil, and increases through the
depth. The maximum value of the variance is atwibting front position. In theory, as
the wetting front moves vertically, it encountersseries of soil layers that were
previously dry. The dry coarse soil layers gengrahibit vertical flow, and they tend
to remain dry, while the fine soil layers are easietted. Then, at the wetting front
position a relatively large pressure head variaa@xpected. But, at the other parts of
the soil, where water already passed and made Wediress pressure head variance is
expected (Mantoglou and Gelhar, 1987a).

Variance is an index of reliability of the predari and can be used to estimate a
possible range of the out value. A probable intefveean concentration minus and plus
standard deviation) is estimated for the real valti¢he output. So, having a higher
value for the variance, the mean value of the maméput can not be a proper
estimation of the real value. This implys that {hredicted mean values are not as

reliable at the points with high variance as theyia the other parts of domain.

In the stochastic model, the output of the probbefrich is a random variable is
described by statistical moments. The possibleegbf output at each location or time
are in a range between mean plus and minus stadeardtion rather than an explicit
value. Figures 6.16 and 6.17 show mean pressuck disibution minus and plus one
standard deviation at 600 hours and 1200 hours thieestart of the irrigation. It is clear
that standard deviation of pressure head from tb@mvalue increases with decrease in
the water pressure head. Comparison of the regrdtented in Figures 6.16 and 6.17
shows that the standard deviation decreases with thile the mean pressure head
increases. So, the mean pressure heads can bet@dediore accurately at wetter

conditions.
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Figure 6.15 Pressure head variance through the lysimeterdioows time.
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Figure 6.16 Mean pressure head distribution +/- standard tievias. depth 600 hours
after irrigation (SD: Standard deviation, H : Mgaessure head).
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Figure 6.17 Mean pressure head distribution +/- standard tiewias. depth 1200
hours after irrigation (SD: Standard deviation, Mean pressure head).
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6.2.3 Example 3

Definition of the example

This example was chosen to validate the model ifoulstion of solute transport in
heterogeneous soil by comparing the result obtaired the stochastic finite element
method with those obtained from the Monte Carlohodt The example consists of
transient solute transport with steady-state unatgd flow through a column of soil. A
solute with concentration of@qual tol kg/n? is applied at the surface of the column
for 20 days and is leached vertically into the smlumn while the concentration at
bottom of the column (J is kept at zero. Figures 6.18 (a) and (b) shosvgbometric
dimensions and the element discretisation emplaydtie solution, respectively. The
length of the column is 0.5m and its width is 0.0bot computational domain was
extended to 1.5 m in order to semi infinite spa&s.a result, solute concentration
distribution through the column is independent loé ttype of boundary condition
applied to the end of the column. The FE (finiteneént) mesh generated for this
example consists of 150 triangular elements andnbsi2s.

Solute source

(Co)
1 77
7w
2
3
I I
L 1.5m | I
I I
76 152

CL

® Constant Solute concentration
(Dirichlet) boundary condition (Co)

® Constant Solute concentration
(Drichlet) boundary condition (C,)

(a) (b)

Figure 6.18 (a) Dimensions of the simulated soil column faasty-state flow and
solute transport (b) the FE mesh showing boundamnglitions.
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The input parameter values are the same as thesehysPersaud et al. (1985) who
solved the same problem using the Monte Carlo noetAoconstant velocity of water
equal to 1.310" m/sec is assumed through the column and the ciaftiof diffusion

is 3.6x10° m?sec in vertical direction of the column. Mean atural log of saturated
hydraulic conductivity is taken as 0.31with variarequal to 0.2135 and the variance
scaling parameter is equal tol.3*nValues of the parameters used in the model are

summarized in Table 6.4.

Table 6.4 Value of parameters for steady-state groundwater 8nd solute transport

example.
F 0.31 q 1.32x10" m/sec
E 3.6x10%n/sec of 0.2135
o, 1.3 m? A 0.25m

Initial conditions

The initial solute concentration through the doniaias
C(zt)=0 0< z<1.5m, t= ( (6.26)

C(zt)j=1kg/mi =0, £0 (6.27)

Boundary conditions
The boundary conditions implemented to the domadefsed as

C(zt)=1kg/mi  z0,0< & 20 days (6.28)

C(zt)=0 z=0, 20days & 50 day (6.29)

C(zt)=0 z=1.5m (6.30)
Results

Figure 6.19 ) shows the variation of the mean solute conceaotratith time at depth
of 0.5 m of the column obtained using stochastigdielement model and Monte Carlo

method. The mean values obtained from stochastitefielement model are in
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agreement with the Monte Carlo results, while tbenputational time for simulation
using stochastic finite element model would be al200 times less than that of Monte
Carlo method for achieving approximately the sae®ults as Monte Carlo analysis
involved 200 calls of FE model. This reduction iomputational time and costs
indicates the advantage of the stochastic finiemeht method over Monte Carlo
method.

Figure 6.19 lf) shows the variance of solute concentration. Taeance reaches its
maximum after 23 hours and its minimum after 39reod’he solute concentration
distribution along the column presented in Figu9gc) shows that at time equal to 23
hours the gradient of solute concentration (tein Figure 6.19c) at this depth is
maximum and at time 39 hours, it is zero. Time atesn of solute concentration
distribution along the column can be seen in Figud® (e). For lower concentration
gradientsindicating uniform distribution or smooth variation concentration in the
domain, the solute transport occurs with less flaton. Therefore, in the regiamound
the centre of the concentration plume where thenplmoves more uniformly a lower
value is estimated for the variance. Uncertaintyari@nce) is higher at higher
concentration gradients. This can be seen in theecform equation presented for
evaluation of variance of solute concentration Wwhghows the variance is directly
proportional to the solute concentration gradi€htandG;). However, the small value
estimated for the variance in this example showsttie predicted mean concentrations

are reliable.
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Figure 6.19 (a) Mean solute concentration vs. time obtainechfMCM and SFEM, (b)
o’ vs. time, (c) normalized mean solute concentratisndepth after 23 days, (d)

normalized solute concentration vs. depth afted®@, normalized solute concentration

vs. depth for different times.
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A sensitivity analysis on the variance of saturabgdraulic conductivity was carried

out to show the effects of spatial variability dfist parameter on macrodispertion
coefficient and solute transport speed. Figure &l28ws solute concentration versus
time at 0.5 m depth obtained from stochastic fiel@ment model using different values

for o,. The solute concentration in earlier time of siatioin increases because of

implementation of solute at the top of the colurhfirat 20 days of the simulation and
transport of solute from the upper part of the poluto this depth. After some times,
concentration starts to decrease in response toyehaf solute concentration applied to
the column surface from 1 kg?rto zero. It is shown that in the initial part bktcurves

when the mean solute concentration increases \wwith, tthe concentration increases

with increasing, . On the other hand, in the post peak part of tives; increasings, ,

causes decrease in concentration. This shows oh#tesspread faster with increasing

o, as index of soil heterogeneity.

0.7 -

Mean solute concentration (kg/ms3)

0 25 50 75 100 125 150
Time (days)

Figure 6.20 Solute concentration vs. time obtained for différealues ofo, .
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Figure 6.21 shows the solute concentration disiobs vs. depth at 50 days for
different values of variance of natural log satedahydraulic conductivity. It is shown
that concentration decreases as the variance sesedhis means that solute spreads
faster when the soil heterogeneity increases. Ehhecause of the direct relationship

between macrodispersivity and the large-scale dhtains of the water flow.

0.25 -

——g?=0
——02=0.2
07 =12

0.15 4 —o—O'f2 =24

o
N
I

o
=
L

0.05

Mean solute concentration (mg/cm3)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
Depth (m)

Figure 6.21 Solute concentration vs. depth obtained for d#fevalues ofo, .

In order to highlight the effects of soil heterogigy on solute transport, the results

obtained from the stochastic finite element modehg a higher value o, equal to

1.2 were compared with deterministic results. Fegu6.22 shows mean solute
concentration versus depth after 10, 30 and 50 dayained from deterministic and
stochastic finite element models. It is shown g@tite moves downward with time for
both stochastic and deterministic cases, but therméistic results show slower solute
transport than stochastic results. This is becaimsethe deterministic model

macrodispersivity which is dispersion due to se@tdnogeneity and variability of local
velocity is ignored.
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Figure 6.22 Solute concentration vs. depth obtained from thehastic and
deterministic finite element models after a) 10sjJd) 30 days and c) 50 days.
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6.2.4 Example 4

This example has been selected to verify the mmdedimulation of three-dimensional
problems. In this section, the analytical solutitor a transient solute transport
presented by Wexler, (1992) is used to check tisaracy of the developed model. A

set of sensitivity analysis is performed.

Problem definition

The problem (Figure 6.23) consists of steady-dtate and transient solute transport in
an aquifer of finite width\() and height i) with a solute source of finite width and
finite height. The aquifer is infinite in x direott and the flow is assumed to be in x
direction only with a constant mean velocity. Itsaassumed that the soil is stratified in

x direction. A source of pollution of 1m width ardldm height is located at the left
boundary of the aquifer. The values useddgrand A, are based on measurements of
hydraulic conductivity for samples collected from aquifer in Vancouver, B.C.,
(Smith 1978 and, Smith and Schwartz 1980) and #haeg of the other parameters are

based on real soil data available in the literat(felmann, 1990). Values of the

parameters used in the model are summarized at 6ahl

Source of
Pollution

Z 10m

A\ 4

«— 5m — >

(@) (b)

Figure 6.23 Dimensions of the simulated 3D hypothetical sotta@sport problem. (a)
Plan, (b) Cross section.
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Table 6.5 Values of parameters used for 3D solute transp@amgle.

F 0.31 W 5m
of 0.2 H 5m
ol 1.3m? \ 2m
)‘1’)‘2 2m Y, 3m
A 0.38 m Z 2m
E 3.6x10%mf/sec Z, 3m
q 1.32x 10" m/sec Co 100 mgl/l

where,Y; is y coordinate of lower limit of the sourcé, is y coordinate of upper limit
of the sourceZ; is z coordinate of lower limit of the source afidis z coordinate of

upper limit of the source at x=0.

Initial conditions
The initial solute concentration at each pointha tomain is assumed as

C=0 0< X<, O<y<W,andO< = H E C (6.31)

Boundary conditions

The boundary conditions implemented to the domeen a

C=G, Xx=0,Y< y<YandZ< g ¢ (6.32)
C=0 x=0andy< Yory Y andg ,Z orz , (6.33)
(33_3:0 y=0 (6.34)
‘;—3:0 y=W (6.35)
%—CZ;:O z=0 (6.36)
%—Szo z=H (6.37)
‘;—i:o Z=oo (6.38)
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Analytical solution
Wexler, (1992) presented an analytical solution tfas example using the classical

partial differential equation for solute transpamd applying initial and boundary

conditions presented in equations (6.31)-(6.38) as

C(x%24=GYY 1., Reod{ ooy ¥

m=0 n=0

x(v- ) X - f3t
.{ex;{ 2D, } erfc{z DXXJ (6.39)
+
+exp{—x(v ﬁ)}erfclz—“’gt :l}
2D,, D,.t
where
1 m=0,andn=0
2
L =41 m=0,and n> 0 (6.40)
1 m>0,and n=0
2 m>0,and n> 0
% m=0
Q, = _ _ (6.41)
sin({Z,)—sin
[sin(¢Z,)-sin(¢z)]
T
Y2-VY1 n=0
w
A= [sin(nY 2) - sin(7Y) ] (6.42)
n>0
n7T
:an m=0,1,2,3.. (6.43)
n7r
=— n=0,12,3.. 6.44
n= (6.44)
(6.45)

B= \/vz +4D,, (/72Dyy+52DZZ+,1)
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Results

A computer program was developed to compute the/aee solution of this example
using Equations (6.39-6.45). The program is writteMaple 11.0. In order to provide
better visualization, the results are presentetDircurves. Figure (6.24) shows solute
concentration distribution a&= 2 m andz= 2.5m after 24, 60 and 120 hours obtained
from the analytical solution and the determinisfi@riances=zero) finite element
method. The solid lines represent the analytichltem and the symbols represent the
deterministic solution. The largest difference kestw the deterministic and analytical

solutions is 4.1%, which is negligible and provas accuracy of the developed model.

60 -
—— After 24 h-Analytical solutuion
o After 24 h- DFEM
50] 8 90 o o o ——— After 60h- Analytical solution
o O After 60h- DFEM

—— After 120h- Analytical
O After 120h- DFEM

Solute concentration (mg/l)

x coordinate (m)

Figure 6.24 Solute concentration vs. x direction obtained framalytical and

deterministic finite element methods (y=2 and Z=1R).

Figure (6.25) and (6.26) show solute concentratistribution at y=2m after 12, 60
and 120 hours obtained from the deterministic andhastic finite element methods,
respectively. From the analysis of the resultajas concluded that stochastic FE model
predicts a wider contaminant distribution in arédter 12 hours, the contaminant
reaches the length of 1r& while it reaches to 8n for the stochastic case. At t= 60
hours, it reachesmbin deterministic case and reaches m.b stochastic case and after

120 hours reaches to &band 10m for deterministic and stochastic, respectively.
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Figure 6.25 Solute concentrations (mg/l) at $=m obtained from DFE method at

different times.
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Figure 6.26 Solute concentrations (mg/l) at $=m obtained from SFE method

0% =0.2at different times.
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The example was also simulated witfh equal to 0.5. Figure (6.27) shows the results

of this simulation for t= 12, 60 and 120 hours. Tdiference in dimension of the

contaminated plume in direction perpendicular ®gtratification (z direction) between

results of the stochastic finite element model with=0.2 and the deterministic finite

element model is negligible.

Although, this difference increases with increasirigand the stochastic results show a

larger contaminated plume in this direction, howeties difference is very small in
comparison with that in the direction parallel ke tmean flow. This is in agreement
with the finding of Gelhar and Axness, (1983). Thewe shown theoretically, using
analytical methods, that for the case of stratifsed with mean flow parallel to the
direction of stratification (condition assumed fahis example), transverse
macrodispersion are extremely small and the cantiah will be much smaller than the

local transverse dispersion.

The stochastic and deterministic results were coetpbo the analytical results. The

deviation in contaminant concentrationyat 2 m for the stochastic approach with (a)
02 =0 ; (b) 05 =0.2 ; (c) 65 =0.5 and for the deterministic approach is shown in
Figure 6.27. The deviation is evaluated as theedifice between deterministic
analytical and numerical results. The determiniaiid analytical results are coincident

except for near the source of pollution. The démmts small. The maximum deviation
is 2 mg/l and it decreases with increase in theadce from the source. The deviation

between analytical and mean solute concentratioreases whero; increases. This

means that the higher the variability of the sobgerties, the higher the difference

between deterministic and stochastic results.
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Figure 6.27 Solute concentrations (mg/l) at $=m obtained from SFE method

o’ =0.5at different times.
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In order to study the effects of correlation saatethe solute concentration distribution
the problem was simulated for different values ofrelation scale. Dimensions of
contaminated plume in x,y and z directions foretiét values of correlation scales are

presented in the Table 6.6.

Table 6.6 Contaminated plume dimensions for different valuecfarrelation scale.

Case Parameter under study Value (m) W, (m) L. H. (m)
A A 4 2 8.5 2
B A, 0.5 2 7 2.1
C A 1 2 7 2.1

where, W, L. andH. are width, length and height of contaminated @uespectively.

In case A, the value ofl, is equal to 4m. From comparison of the dimensions of
contaminated plume with the those of the case Wjtequal to 2 m, it is concluded that
increase inA;, causes a higher amount of solute to disperse tirection and the

dimension of the plume gets longer. However it dosshave a significant effect on the

dimension in y and z directions. Both reduction Affrom 2 to 0.5 in case C and
increase of4, from 0.38 to 1 in case C do not have any signifiefects either on the

length of plume (i.e. x direction) or the heightpdiime (i.e. z direction). However, they

cause slight increase in the contaminated plumeiison in y direction.
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6.2.3 Example 5
This example was chosen to verify the model in ergg the effects of immobile

water due to the existence of macropores in theatlem

Problem definition

A one-dimensional solute transport experiment cotetliby Schoen, et al. (1999) in an
undisturbed field lysimeter set up in a site lodat® km northwest of Grenoble, France,
is considered to be simulated using the model dgeel in this study. The lysimeter
with 1.2 nf surface area and 1.5 m depth (Figure 6.29) wasketer controlled water

flux conditions. There was no surface vegetation tbe lysimeter during the

experiments, and the surface was covered in oodavdid evaporation. The soil was an
aggregated sandy and clayey loam. A higher deos$itgyacro-pores was observed and
the percentage and size of sand gravel and stocesased with increasing depth. A
finite element grid consisting of 120 triangulam@des elements is used for the

numerical simulation.

e
1.Em ll
v u -

Figure 6.29 Problem definition.
Initial conditions

A zero initial solute concentration is considerecbtigh the lysimeter.

C(zt)=0 0< z< 1.5m, &= ( (6.46)
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Boundary conditions

The following concentration boundary conditions ased:

Lower BC:
0C(o,t)/02=0 (6.47)
Upper BC:
c(0.t)=G,, 0<ts<t

(6.48)
c(0,t)=0, t, <t

where,tp is initial time.

The lysimeter was subjected to two different floWxf conditions using rainfall

simulator grid; one with a constant water flux o#8 mm/h (experiment A) and another
with a constant water flux of 1.05 mm/h (experimBit Solute pulses as KBr and KC1
were applied to the surface of the lysimeter whes ftow condition was reached to
steady state. Duratiorg), composition, concentratiorC{) of the pulses and value of
the other parameters used in the simulations grerted in Table 1. Numerical
simulation of the problem is carried out for fourffetent scenarios assumed for

structure and formation of the soil:

A single domain system having uniform hydraulic pedies (SDU); the
variance of the hydraulic parameters of the don@aid coefficient of solute
exchange rat€) between the domains are fixed to zero.

e A dual-domain system with uniform hydraulic propest (DDU); the spatial
variability of hydraulic properties of the soilignored and the variances of the
hydraulic parameters of the domain are fixed t@ zer

* A ssingle domain system with spatially variable heydic properties (SDV).

* A dual-domain system with spatially variable hydiaproperties (DDV). The

variance of saturated hydraulic conductivity equeaBB and correlation length

equal to 1&mare considered for the DDV in the experiment B.

Table 6.7 Values of input parameters used for simulatiorheféxperiments A and B.

Experiment ) to () Co (mgll) D (cm’h) D ¢ (cm?lh) Bm
A 0.248 755 476 35 5.3 2x10™ 0.181
B 0.247 112.0 972 5.2 5.2 6x10° 0.195

D*:Dispersion coefficient used for the scenarios DDU and DDV,
D**:Dispersion coefficient used for the scenarios CD.
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Results

Experiment A

The breakthrough curves (BTCs) presented in theirBig.30, shows the numerical
results obtained using the SFEM, and the analy#indl experimental results presented
by Schoen, et al. (1999) for the experiment A, assg two scenarios SDU and DDU.
The result obtained based on the SDU scenariay igery good agreement with the
analytical solution of convective-dispersive (CDansport equation presented by
(Schoen, et al. 1999). However the results are fibéd with experimental
measurements. The possible reason for this distegps that the effects of soll
heterogeneity and existence of macrospores in dneath were not considered in the
simulations. As, the results obtained based on [H2€nario present good agreement
with experimental measurements. This result is afsagreement with analytical
solution of governing equation of transport in ddamain system presented by Schoen,
et al., (1999). These agreements show the validftythe developed model for
simulation of solute transport in dual-domain systand highlight the significant
effects of micro-heterogeneity (macro-pores) indbkite fate.

0.6 -

05 4 —+—SDU

—a—DDU
e MEASURED

0.4 | * | CV(Schoen, et al., 1999)
° MIM(Schoen, et al., 1999)
@]
5034

0.2 4

0.1+

0 200 400 600 800
Time (h)

Figure 6.30 Relative solute concentration vs. time.

During transport process, mass is trapped in tpeztme of the lysimeter due to its
diffusion to immobile water stacked in the macrog®) so less mass moves
downstream. Sensitivity analysis can be utilize@ddress the effects of soil structural

heterogeneity (macro-pores) on solute transpogurei 6.30 shows the results of a
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sensitivity analysis of relative solute concentmatdistribution along of the lysimeter
with respect tQ. The relation between solute concentration distrdouand{ depends

on the sign of temporal variation of concentrat{@C/At).To illustrate this relation,

solute concentrations at an arbitrarily chosenisecftat a depth of 0.4m) of the
lysimeter are considered 83 and 139 hours aftestie of the solute application (S1
and S2 in Figure 6.31). As shown in the figuree@83 hours, when the peak of solute
concentration has not yet reached this section €t) AC/At is positive in S1,
increase In{ causes decrease in the concentration while afiér Hburs, when the
concentration peak has passed this section AGdAt is negative, concentration

increases witld in this area (see sections S1 and S2, magnifi€ture 6.31).

For lower values of indicating less heterogeneity in the soil structuhe transport
regime approaches the behaviour of a single-dorsgstem having a total porosity
equal to the mobile porosity of the dual-domaintexsys Therefore, the plume moves
downstream at a faster rate, causing higher rel&@ibncentration to appear in the lower
zone. When the mass transfer rate coefficientageased more connection is exchanged
between the domains, and the system behaves lgiage-domain regime having a
porosity approaching the total porosity of the did@ainain system. Thus the plume

travels through the domain at a slower rate.

——DDU7 =5x107"

—x—DDUJ =2.5x107
0.18 /X/

0.8 - —a—DDU{ =8x10°°
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0 Zxat‘iﬁ : : \?335*3*5*!*_..
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Figure 6.31 Relative solute concentration vs. depth, for défe value of, after 83 and
139 h.
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Experiment B

Figure 6.32 shows the numerical results obtainesnfithe developed model for
experiment B, assuming scenarios SDU, DDU, togethath experimental
measurements presented by Schoen, et al., (1998)pkriment B which was based on
stratified formation of soil, the soil in the lysater was assumed to consist of 10 layers
having constant water contelfater contents and solute concentration were medsur
by extracting 30 samples in every 10 cm thick lay8rsamples in each layer). The
measured water contents show spatial variabilitgngl of lysimeter. Existing
oscillations in measured solute concentrations maldgifficult to find a simulated
profile using a numerical method to fit the meadwalues. The results obtained with
SDU and DDU scenarios do not fit the measured dlta. possible reason is that in
these scenarios, the effect of the macro-heteraiyenfesoil is ignored. A better fit can
be observed between the results obtained baseddhsbenario and the experimental
data (Figure 6.33). It is noticeable that the rssof SDV which only considers the
effects of macro-heterogeneity are not in agreemht the measured results as much
as those of DDV. This indicates the significancecofisideration of both types of

heterogeneity.

Although, the mean concentration profile obtaineddal on DDV does not still cover
all the measured data, the measured concentra@zation is more or less surrounded
by mean concentration plus and minus a standarehtitav with a fairly good accuracy.
The mean concentration profile shows a better ageeé with the measurements at the
lower zone of the lysimeter than the upper zonsci2pancy between the results at the
upper area of the lysimeter might be because obthundary effects in the numerical
results, as it is close to source of solute inggctiAlso, the coefficient of variability of
the concentration as index of reliability of residhows higher value at the area close to

the source.
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Figure 6.32 Solute concentration vs. depth.
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Figure 6.33 Solute concentration vs. depth.
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6.3 Case studies

6.3.1 Case-study 1
The developed SFEM is applied to a case study wmwgltransport of a petroleum-
based contaminant at a site in south west of Edglam order to examine the

applicability of the SFEM for simulation of field¢tale problems.

Site description

The local geology comprises Yeovil Sand beds tm @@pth, with Jurassic limestone
immediately to the north. The surface geology ef site includes shallow, fine alluvial
deposits containing organic matter, and layers adrge grained material, probably
weathered limestone with limestone fragments. Siteeis underlain by a major aquifer
and is on the boundary of a fluvial floodplain, v an annual flooding risk of 1%.
The plot is approximately 20 by 20m and consists of a building formerly used as a
shop and office, together with two attached workshwith concrete floors, used for
repairs and storage (Figure 6.34). Adjacent todineent office entrance is a store
containing two paraffin or light oil tanks, each1800litre capacity. The forecourt is
concrete surfaced above the fuel tanks, with adaramd gravel access road to the rear.
The fuel filling area is directly adjacent to thabtic pavement and consists of four
diesel pumps. Five manhole covers are nearby,dfimghich provide access to fuel

storage tanks, with two adjacent surface drainsaieet al., 2008).

Site observation

Numerous inspection covers are present on thepsidgiding access to fuel tank fillers,
pipe manifolds, water supply pipes and two surfdiens, with two further drains on
the site periphery. Tests carried out by a consglangineers company, showed that
one drain adjacent to the fuel pumps dischargescttljrinto a receptor, which means
that any spillages from pump operation has a dipathway to local surface water.
Water present beneath some inspection covers lmagnstonsiderable contamination

by heavy olls.

Eight monitoring boreholes have been used for theey as shown in Figure 6.34 to

provide comprehensive information about the possiamount of dispersed and
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dissolved fuel compounds. Such contaminates carexpected to show greatest

mobility and hence potential for migration off-site

Four monitoring boreholes had previously been llestao three meters depth, adjacent
to the storage tanks and pump areas. Four additmraholes were installed by the
consultant in charge of the investigation as cls@ossible to the site boundaries. The
installation points were selected to surround tteeas far as practicable, with emphasis
on the north and west boundaries, as observatioggest that groundwater is likely to
flow in this direction. The new boreholeB5 — B7 were of a similar design to the
original, slotted from t below ground level, and were installed to a degttb m.
Groundwater in the boreholes was allowed to eqailéd and was sampled four days
after installation. Water samples were taken atm.Below groundwater surface to
exclude floating product, which may be constrainadhe site, and to detect dispersed
and dissolved fuel components which are more vabler to migration with
groundwater. The receptor was also sampled upstesad downstream of the site,

adjacent to the site boundaries (Javadi et al.8R00
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Figure 6.34 Plan of site.
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Results

A survey was undertaken initiated in January 2003ider to assess the extent of
contamination throughout the site and general giaater movement. This survey
found hydrocarbon contamination at all sample oimithin the site and around the
periphery as shown in Table 6.8. A section of $ite, 40n wide and 1fnh deep as
shown in Figure 6.34 is analyzed using SFEM. Téwtisn is divided into 800 three-
node triangular elements (Figure 6.35).

Table. 6.8 Analysis of contaminants in aquifer (January 20@8ta provided by
Exeter Environmental Services).

Xylene Total Petroleum
Ethyl
Benzene Toluene total Hydrocarbons
Sample ID benzene
mg/I mg/I isomers (TPH)
mg/I
mg/I mg/I
Bl <0.1 0.1 3.3 3.4 124
B2 97.5 5.0 61.4 205.7 115034
B3 0.2 0.1 0.9 0.8 141
B4 0.7 0.1 1.1 4.0 141014
B5 0.2 0.2 0.6 0.7 22000
B6 3.6 0.7 1.2 15 20100
B7 29.7 0.6 34.6 9.2 2462
B8 0.2 1.1 15 2.5 921
Brook upper 0.1 0.1 0.8 0.8 <40
Brook lower 0.1 0.1 0.3 0.4 <40
Dutch
Intervention 30 1000 150 70 600
Levels
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Y

10m

40m

Figure 6.35 Finite element mesh.

The transport of the contaminant by advection,udifin and dispersion mechanisms is
considered. Table 6.9 shows model parameters usthe ISFEM. The parameters were
measured or estimated as a part of the site imat&in. In the model the water velocity

v, Wwas estimated by measurement of the hydraulic igmadof the aquifer.

Unfortunately, data describing the spatial varigpibf soil properties (e.glnks andc)
in real field situations are not sufficient to avate all the necessary statistical
parameters. The correlation length has been rapbdtveen 0.08 to 1.8 m for different
types of soils in the literature (Polmann et a@9Q). The correlation lengths bandc

wereassumed to be 0.4 m, based on the soil type.

Table. 6.9 Model parameters used in the FEM analysis.
Model parameters

parameter value
D, : coefficient of water molecular diffusiomt.sec") 1x10™
a,, . longitudinal dispersivity for water phase)( 0.5
@ . moisture contents (%) 21
p. : density of the solid phasélg.ni°) 2.69
K, :saturated permeabilityn(9 1x10°
T . absolute temperatune€)( 293
e,  initial void ratio 0.713
v, :water velocityrfi.sed) 23x1077

196



Chapter (6) Numerical examples and csdies

Figure 6.36 compares the results of the model ptiedi with the measured values of
contaminant concentration recorded in Septembe#d.20be results are plotted for
section A-A (Figure 6.37). It is shown that the ules of the SFEM are in better
agreement with field measurements than the restittee DFEM presented by Javadi et
al., (2008). Figure 6.37 shows the contaminantitigion in February and March 2003
obtained from SFEM and DFEM. The results of SFEMoveha lower peak

concentration in the plume than those of the DFEMensitivity analysis is performed

to examine the sensitivity of the model to variatiof af. Figure 6.38 shows solute
concentration distribution in Sept 2004 for differevalues ofg? . It can be seen that
this parameter plays a significant role in transmdrthe contaminant and changes in
concentrations with time. Increasir@’ will increase the amount of contaminant that

will spread in the soil matrix due to increaseha tandom variation of local velocity.
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= ---e--- measured-Sep 2004
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Figure 6.36 Comparison between measured data and the resi 88N and DFEM.
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Figure 6.37 Comparison between SFEM and DFEM predictions.
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Figure 6.38 Solute concentration vs. length at Sep 2004 olbdaimedifferent values
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6.3.2 Case-study 2

A field-scale experiment conducted at the Maricdjgricultural Center, Phoenix,
Arizona, USA. (Abbasi et al.,, 2003a,b), was simedaby the developed stochastic
finite element model to show applicability of theodel for field scale problems. This
experiment was conducted to investigate the didioh of soil moisture and solute
concentration in soil profile below agriculturatigation furrows. The soil of the field
site is bare sandy loam. The experiment was caougdn 115 m long furrows under
free-draining (FD) condition, spaced 1 m apart ({F¢g6.39). The experiment was run
with two irrigation events 10 days apart; the fingtgation lasted 275 min and the
second irrigation 140 min. Two sets of neutron prabcess tubes were installed at x =
5 and 110 m along the monitored furrow. Hereafterrefer to these locations as the
inlet and outlet sites, respectively. In additieninitial readings before the irrigation,

water contents were recorded 6 and 12 h after ieagation and then daily.

Soil samples for investigation of gravimetric soMater content and bromide
concentration, were collected from one side ofrttanitored furrows at three different
locations top, side, and bottom of the furrows .(@glocations 1, 2 and 3 in Figure
6.40), in a cross-section perpendicular to theofuraxis at similar depths as they used
for the neutron probe measurements. Water flowhdejpt the furrows were taken at the
inlet and outlet sites every few minutes and thesasurements served as the upper

boundaries for the numerical calculations.
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« 115m .
M 405m — JSM =
ol e

-]

o

® Soil and water sampling station
I Neutron probe access tube site

Figure 6.39 Plan view of the furrow irrigation field experimsnnot to scale, (Abbasi,

et al., 2004).
50 60 v v 25em
\ A‘ 25cm
oy 25cm- 25cm

Figure 6.40 Position of neuron probe access tubes at diffdagrations in the furrow
cross-section. Numbers relate to access tubedla@tsia two different rows; the first
row includes tubes 2 and 4 along the sides anddbend row includes tubes 1, 3 and 5
(Abbasi, et al., 2004).

The values of scaling paramet®r saturated and residual soil water contems gnd
6, ) are considered equal to 0.055 1/m, 0.411 an@lbased on laboratory analyses of

soil water content data obtained from 38 undistdrbal samples. Measured soil water
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retention parameters showed considerable spatiaabilty in the soil hydraulic

properties at the field site. The FE (finite elem)enesh generated for this example
consists of 1288 triangular elements and 702 nodiee. parameters used in the
stochastic finite element model and HYDROUS2-D (Siek, 1999) are summarized in
Table 6.10. Different values combination of varies©f stochastic parameters and the

vertical correlation length were used to simuldte experiment and the best fit was

achieved with assuming? andg? equal to 0.6 and 0.02 17mrespectively.

Table.6.10 Parameter values used for the numerical simulgtion

Site Ks(m/s) 6s A(m) a, (m) a;(m)

Simultaneously optimizationinlet ~ 1.39x10° 0.411 0.222 0.044
Outlet 1.59x10° 0.411 0.091 0.0001
Two-step optimization Inlet  7.6x10° 0.301 0.2005 0.0434
Outlet 1.78x10° 0.387 0.0174 0.0004

Stochastic finite element  Inlet  1.5x10° 0.411 0.2 0.22 0.044
Outlet 1.5x10° 0.411 0.2 0.22 0.044

The values of the parameters used in the HYDROUSE&wrel were inversely
estimated by Abbasi et al. (2004) using an optittiramethod in combination with the

HYDRUS-2D numerical code using two optimization eggrhes;

» Simultaneously optimization approach; in this @agh the saturated hydraulic
conductivityKs and the convective dispersive solute transportrpaters were
estimated simultaneously using a optimization metf#bbasi et al., 2004).

* Two-step optimization approach; in this approadie saturated soil water
content, the parameter n in van Genuchten’s salfdwyic property model, and
the saturated hydraulic conductivis as the most sensitive soil hydraulic
parameters (Abbasi et al., 2003b) were estimatalthwed by estimation of
transport parameters (Abbasi et al., 2004).

Initial conditions
Measured soil water contents before the experimemt® used as initial conditions

within the flow domain and initial Bromide conceation was assumed zero through the

entire domain.
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C(xzt=0 t

I
o

(6.49)

Boundary conditions

Time-space dependent flow depths (surface pondntg,t) in Figure 6.41) were
specified as the upper boundary condition in theofu during irrigation. A free-
drainage condition for water was applied to thedowoundary of the domain (Figure
6.42). No-flux boundary conditions were appliedboth sides of the flow domain.
Bromide in the form of CaBmwas injected at a constant rate equal to 6.3 Ig Buring
the entire irrigation. A Cauchy (solute flux) boangd condition was used for the upper

boundary of the domain for solute transport.

Atmospheric boundary condition

o - / h(x,0)

I
h(x,t) is flow depth

€

oA

e

1

]

(a)

@

5 <€— No flux boundaries ——
a

%

)

Free-draining boundary

-100

(o] 100
Furrow WwWidth (cm)

Figure 6.41 Water boundary conditions used for numerical manaigl

Result
Measured and predicted (using the stochastic fieléenent model developed in this

study and HYDROUS2-D model soil water contentshatinlet and outlet sites of the

experiment are presented in Figure 6.41. The eaudt given by means of 1D curves to
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provide a better visual comparison between the oredsand calculated distributions.
The results are given at two different times (1ard five days after the start of
irrigation, being representatives of relatively waetd dry conditions) and for three
different locations in the furrow cross-sectiont{bm, side and top of the furrow) up to
a depth of 100 cm below the ground surface. Theltesre plotted versus depth
(instead of versus lateral distance) since conalilgrmore data were available versus
depth. The black solid and dashed lines show siimunlaesults obtained by HYDRUS-
2D in combination with simultaneous and two-steptiroation approaches,
respectively (Abbasi et al., 2004). The solid reed show the results obtained using
the stochastic finite element model. From comparisithe results, it is concluded that
stochastic finite element method produced betteeeagent with the observed water
contents than HYDROUS2-D. HYDROUS2-D is a deteistio numerical code and
effects of spatial variability of soil hydraulic gemeters are not considered in this
model. Saturated hydraulic conductivity used irs tmodel was obtained by inverse
estimation using two different simultaneous and-step optimization approaches and
different values were found for each inlet and etuslections of the problem that shows
spatial variability of the hydraulic parameters difmain. However in the stochastic
finite element model spatial variability of thessrgmeters is considered; and this could
be the possible reason for agreement of its resutiismeasured ones.

Other advantage of the developed stochastic feléement model over the HYDROUS-
2D or similar deterministic models are its cap#pifor considering the effects of large-
scale hysteresis. The large-scale hysteresis &reef to as hysteresis due to spatial
variability of large scale parameters (Mantoglow &Belhar, 1987). The effective
parameters (i.e., effective hydraulic conductivisffective moisture capacity) are
functions of time history of mean capillary presstead. It is generally accepted that
the hysteresis often occurs in field-scale problamd it may have played a major role
in this problem. The results obtained for the irdié¢ show (Figure 6.42) that after 12
hour and 5 days from the start of irrigation wheit is in wetting and drying conditions
respectively, stochastic model predicts less amadnivater content along the soil
profile than the deterministic model. It is expelctbat water moves slower at early time
when soil is still dry and in wetting condition dteethe effects of large-scale hysteresis.
So, less amount of water infiltrates into the godfile. While after 5 days that the soil

is in drying condition, a faster drainage of wabexm the bottom of the furrow is
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expected. So less amount of water predicts in usieg model that considers the

hysteresis than the other one.
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Figure 6.42 Measured and predicted (using stochastic finkeneht and HYDRUS2-D
models) soil water contents for the inlet and dutbtes (measured: symbols,
simultaneous: solid black lines, two-step: dasheés| stochastic finite element: solid
red lines).

In the case of outlet section, the results showtttehysteresis does not play significant
role in water content distribution. This is becawadethe times under study of water
movement, the soil profile in this site is not ieither wetting nor drying conditions.

The initial measured water content showed thadtiatsection of furrow, soil profile was
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Figure 6.43 Measured and predicted (using stochastic finkeneht and HYDRUS2-D
models) bromide concentration for the inlet andletusites (measured: symbols,
simultaneous: solid black lines, two-step: dasheés| stochastic finite element: solid
red lines).

already wet. So, after 12 hours, the surface wat#trates into a wet soil. Also, after 5

days the profile does not reach to drying conditbecause of the late arrival of surface
water to this site as the outlet site is locateBmiGar from the irrigation place (see
Figure 6.39). The results presented in Figure (6stbw that the stochastic model

predicts a slower water movement and consequeidglyeh amount of water content
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through the soil profile than the deterministic ahee to considering the effects of soil

heterogeneity.

The measured and predicted Br concentrations atirtlet and outlet sites of the
experiment are presented in Figure 6.43. The esult given at two different times
(five days after the start of each of the first dhd second irrigations) and for three
different locations in the furrow cross-sectiont(bm, side and top of the furrow). The
black solid and dashed lines show simulation resalitained by HYDRUS-2D in

combination with simultaneous and two-step optiriiza approaches, respectively
(Abbasi et al., 2004). The solid red lines showlitssobtained using stochastic finite
element model. From comparison of the resultss itancluded that stochastic finite
element method produced better agreement with tieereed water contents, than
HYDROUS2-D.

Comparison of both solute concentration profilesaoied by SFEM and DFEM is
difficult because it is impossible to detect if thiéferences in the two profiles are due to
the different flow fields and or due to the diffeteapproaches used to solve the
contaminant transport equation. In order to study eéffect of the inclusion of the
macrodispersion as a transport mechanism, thei¢ransnsaturated flow equation was
solved using a stochastic approach and the transgoltion was solved twice; first
time using a deterministic approach for the transpart and the second time using a
stochastic approach. The Figures 6.44, 6.45 andl $héw mean solute concentration
through the domain after 2 hours, 2 days and 5 dtgsthe start of first irrigation.

The stochastic results show lower value of broncmlgcentration at the area close to the
surface of the furrow than the deterministic resueterministic model overestimates
solute concentration around of the solute sourbes Means that the effect of including
the variability of the properties of the soil irttee transport equation is to increase the
lateral and longitudinal spreading of the contamin&o, greater amount of solute
disperses through the domain and it is distribateldrger area. This can be seen in the
Figures 6.44 and 6.45 for example; the area witiceotration between 2-3 mg/l is
larger for the stochastic case in comparison whth deterministic one. Deterministic
approaches predict slower movement of the solut®th directions than the stochastic

approach.
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Figure 6.44 Solute concentration (mg/l) after 2hours from sket of the first irrigation
using (a) deterministic (b) stochastic method.
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Figure 6.45 Solute concentration (mg/l) after 2days from tteetsof the first irrigation
using (a) deterministic (b) stochastic method.
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Figure 6.46 Solute concentrations (mg/l) after 5 days fromdtaet of the first irrigation
using (a) deterministic (b) stochastic method.
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Higher amount of dispersion resulting from the kemtic method is mathematically
referred to as the macrodispersion coefficient Whg added to the local dispersion.
Since the total dispersion coefficient in the SFEEWreater than the local dispersion

coefficient, a wider area leached by solute is joted.

Figure 6.47 shows the variance of bromide concgatral’ he variance is higher along
the border of the contaminant plume but, the coeffit of variation is low. This means
that the uncertainty on the predicted bromide cotraéion is higher along the borders
of the contaminant plume compared to other regafnthe domain, but the predicted

values are still reliable since the coefficienvafiation is low.
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Figure 6.47 Bromide concentration (*Idmg/l) at (a) t=2 hours, (b) 2 days and (c) 5 ddier zhe start of first irrigation.
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CHAPTER 7

CONCLUSIONS AND
RECOMMENDATIONS

7.1 Concluding remarks

In this study, a stochastic FE based model wasloleee for simulation of water flow
and contaminant transport in unsaturated soils. Jtdoehastic spectral method was
implemented in the governing equations for wat@wfl(Richard’ equation) and
convective-dispersive solute transport to incorfthe spatial variability of hydraulic
properties of soil and to reduce the uncertaintyprediction of contaminant fate and
transport. The procedure of the stochastic metloggolvas explained.

Two stochastic differential equations for mean flamd contaminant transport and a set
of mathematical algebraic equations for evaluabrimportant parameters such as
effective hydraulic conductivity, the variance oépdlary tension head and solute
concentration were presented. Stochastic goveramqgtions obtained for the mean
flow and solute transport were solved using thenféthod in space domain and a FD
scheme in time domain. Mean and variance of sa&drhydraulic conductivitykf),

scaling parameter and correlation scale of these random parametertha inputs of

the model and can be provided by site investigaiod statistical analysis of data
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obtained from the region under study. The variasfaeapillary tension head and solute

concentration are indicators of reliability of timeadel.

The developed model was verified for both flow amansport problems through
comparison of the results obtained using stochaB#c model with analytical,
deterministic and Monte Carlo simulations, as vesllexperimental results. From this
comparison, it can be concluded that the stochhased model performs better than the
deterministic one. Also, the developed model is anefficient than Monte Carlo

method in terms of computational time and efforts.

A lysimeter experiment conducted at NSMU Collegenékanear Las Cruces was
simulated numerically using both stochastic andemeihistic FE methods. The
stochastic approach which includes the variabiliy the soil properties in the
formulation predicts a slower movement of the wgttfront in the vertical direction.
The stochastic and deterministic results were coetpéo the field-measured values.
The results predicted by the stochastic finite elehtheory presented in this work are

in good agreement with the experimental values.

A one-dimensional transient contaminant transpoith wsteady-state flow was
simulated. The mean solute concentration profilesewcompared to Monte Carlo
simulations. The great advantage of the stoch&ffianethod over the Monte Carlo
method is the tremendous saving in the computdtmoss. In this example, 200 Monte
Carlo simulations were necessary to obtain bagi¢th# same results using stochastic
finite element approach. Then, the capability af treveloped model in simulation of
three-dimensional non-isotropic statistical proldewas tested with simulation of one

hypothetical example and comparison of the resutts analytical solutions.

The model was used to simulate transport of nootinga solute in an undisturbed
lysimeter during steady-state water flux. Numerisahulation of the problem was
carried out for four different scenarios assumetdiiie structure and formation of the
soil: a single domain having uniform hydraulic pegjes (SDU), a dual-domain system
with uniform hydraulic properties (DDU), a singleordain with spatially variable
hydraulic properties (SDV) and a dual-domain systeth spatially variable hydraulic
properties (DDV). The numerical results were comgawith experimental measured
data. The results obtained based on SDU were ragreement with the measured data.
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The dual domain system method (i.e., DDU) yieldatisgactory results but higher
accuracy was achieved using the DDV scenario. Amlgf the results shows that the
incorporation of both types of micro- and macrotehegeneity in the simulation
models can greatly improve the accuracy of the iptieds. So, combination of dual
domain approach with stochastic approach providgegfective approach to predict

solute transport problems in naturally heterogersesmil with higher accuracy.

Two field-scale transport problems were simulatsthg the developed stochastic FE
model. The results were compared to those obtaisety deterministic models from
the literature and experimental measurement. Thelteeof these case-studies proved
the capability of the model for simulation of largeale problems.

From the results of this study following conclustan be drawn:

« Stochastic finite element methodology is an effitimethod to incorporate the
small-scale variability of the soil properties inarge-scale models for water
flow and solute transport in unsaturated soil. Magiances of the capillary
tension head and solute concentration are provasedesults along with the
predictions for the mean capillary tension head ar@@n solute concentration

values.

e An interesting feature of developed model is thatydimited number of
stochastic properties (e.g., mean, variance, @iro@l scale) of soil hydraulic
parameters is required to evaluate the outputeofribdel. Mean and variance of

saturated hydraulic conductivitks], scaling parameteray, specific moisture
capacity (C) and correlation scale of random parameters aernputs of the

model and can be provided by site investigation statistical analysis of field-
observed values obtained from the region underystud

e The numerical results presented in this study, skimat the stochastic finite
element approach is a very attractive alternativélonte Carlo approaches in
terms of time and computational cost. Because lainmee of the Monte Carlo
approaches on repeated computation of random ngmiveich can be a very
time consuming procedure, they are not efficieabhmtéques. While only one call

of stochastic finite element model is requireditoudate problems and achieve
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virtually the same result as Monte Carlo one.

The developed model prevail over the Monte Cappreaches in terms of
providing physical and conceptual understanding tloé effects of soil

heterogeneity on transport mechanisms, which isessy for planning

appropriate and efficient remediation techniquesisTis achieved with

implementation of a set of closed form equationst lup using the spectral

analytical method, into the developed model. Trezgpeations clearly present the
relationship between stochastic properties of hyldrgparameters of soil and
outputs of the model. However, Monte Carlo appresacldo not provide

conceptual understanding of the random processubeaaf statistical nature of
these approaches.

A set of sensitivity analysis performed on the sstd hydraulic conductivity as index
of soil heterogeneity and correlation scale of mmdyarameters. The higher value of
saturated hydraulic conductivity causes slower mwm@ of wetting front and an

enhancement of solute spreading in the soil. Alsis concluded that the higher the
correlation length results in higher effects ofl $mterogeneity on the water flow and

solute transport processes.

The developed model also is capable to consider dffiects of micro-
heterogeneity of soil and presence of macro pomesimulation of solute
transport. The field soils exhibit two differentpgs of spatial heterogeneity
including micro- and macro- heterogeneity whiclenftoexist. Simulation of in
situ problems with high density of macropores il structure, the effects of
both types of heterogeneity must be considered.dEveloped model is capable
to consider the potential impacts of both micro-amécro-heterogeneity,
through implementation of SFE method on the mathieada model of

contaminant transport in a dual-domain system.

The model is capable of evaluating the varianceooicentration as an index of
reliability of the model output. This makes it pids to estimate a probable
interval (mean concentration minus and plus stahdaviation) for the range of

oscillation of possible realizations of contamindistribution.
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7.2 Recommendations for further work

The numerical study that has been discussed inmbiik, shows great influence of the

uncertainty in the structure and formation of tb@é en contaminant transport problems
and stochastic FE methodology provides an efficart reliable way for reduction and

quantification of uncertainties in modelling ancegiction of contaminant transport.

The benefits of the stochastic FE methodology tdsethe development the model can
be the motivation for more work in this area. ThReammendations for the future work

presented here are aimed at promoting to makedsteuse of the developed model and
to develop a more comprehensive model coveringwalege of physical and chemical

transport mechanisms. A list of further researabdsearising out of this study are listed
in the following

« Soil heterogeneity has influence on the rate ohtbal reaction and chemical
reactions play significant role in contaminant fata@ch has not been considered
in this work. The approach developed in this stoaly be extended to model the

transport of reactive contaminant.

e Accuracy of the developed model is dependent onctiwce of the proper
values for the stochastic hydrologic parameterthefsite under consideration.
So, it is important to develop and test accurat¢hous for determining the

stochastic parameters of the soil such as meaianearand correlation lengths.

* One of the most challenging issues facing environtaleesearchers is finding a
timely and cost effective remediation approach émntaminated soil and
groundwater. The model can be integrated with dp#itton softwares and
decision support systems to find the best remedliagchniques for sustainable

management of contaminated land.
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