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ABSTRACT 

 

Hydrological processes are greatly influenced by the characteristics of the domain through 

which the process occurs. It is generally accepted that earth materials have extreme 

variations from point to point in space. Consequently this heterogeneity results in high 

variation in hydraulic properties of soil. In order to develop a reliable predictive model for 

transport processes in soil, the effects of this variability must be considered. Soil 

heterogeneity due to presence of macropores (micro-) and to spatial variability in hydraulic 

properties (macro-heterogeneity) coexists in the real field conditions. The challenge is to 

incorporate the effects of both types of soil heterogeneity in simulation models.  

 

This thesis presents development and application of a 2D/3D numerical model for 

simulation of advection and diffusion-dispersion contaminant transport considering both 

types of soil heterogeneity. Stochastic finite element approach is used to incorporate the 

effects of the spatial variability of soil hydraulic properties on contaminant fate. The soil 

micro heterogeneity effects are modelled with a dual domain concept in which a first order 

kinetic expression is used to describe the transfer of the solute between the two domains. 

Also, the capability of the model in 3D simulation of field problems improves the accuracy 

of the results, since it is possible to avoid the generally applied assumption in 2D 

simulations.  

 

From comparison of the model results with experimental and analytical results, it is 

concluded that the model performs well in predicting contaminant fate and the 

incorporation of the both types of micro- and macro- heterogeneity in the simulation 

models improves the accuracy of the prediction. Also, capability of the model in evaluation 

of the concentration variation coefficient as an index of reliability of the model outputs 

makes it possible to estimate a probable interval (mean concentration minus and plus 

standard deviation)  for the range of oscillations of possible realizations of solute 

distribution. Moreover, comparison of the results of the proposed method with the results 

obtained using the Monte Carlo approach yields a pronounced reduction in the computation 

cost while resulting in virtually the same response variability as the Monte Carlo technique. 
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Ĉ  effective soil moisture capacity 

D dynamic dispersion transport coefficient 

Da effective diffusion coefficient at the interface of two regions 

mD  molecular diffusion coefficient 

E  total energy 

F mean value of natural logarithm of saturated hydraulic conductivity 

( )XF x  cumulative probability distribution function 

H mean capillary tension head 

J  mean hydraulic gradient 

Ka hydraulic conductivity at or near the surface of high permeable region 

K̂  effective hydraulic conductivity 

K hydraulic conductivity 

sK  saturated hydraulic conductivity 

wM  mass of water 

iN  interpolation function 

Q  Sink/source of water 

R retardation coefficient 

ccR  covariance of concentration 

S  cross-spectral density function 

( )eV  volume of element 

( )ew  element’s weighting function 

a  fluctuations of pore size distribution parameter 

c solute concentration 

′c  fluctuations of solute concentration 



                                                                                                                    List of symbols 

 ix 

f  fluctuations of natural logarithm of saturated hydraulic conductivity 

g  gravitational acceleration 

h  fluctuations of capillary tension head 

wh  hydraulic head 
�

k  wave number vector 

n soil porosity 

q water specific discharge 

q′  fluctuations of water specific discharge 

r characteristic radius or half-wide of the matrix structure 

t time 

wu  pore water pressure 

hw  relative volumetric proportion of the HK pores 

z vertical coordinate 

dZ  random Fourier-Steltjes amplitude 

α  pore size distribution parameter 

Lα  local longitudinal dispersivity 

sα  first-order solute mass transfer coefficient 

Tα  local transversal dispersivity 

wα  first-order water transfer coefficient 

β  dimensionless coefficient depending on the geometry of aggregates 

χ  first order reaction rate coefficient 

t∆  time increment 

φ  angle between mean flow direction and z direction in normal 
Cartesian coordinate system 

Γ element boundary 

sΓ  transfer term for solute exchange between the two pore systems 

wΓ  transfer term for water exchange between the two pore systems 

γ  fluctuations of soil specific moisture capacity 

wγ  corrective empirical  coefficient 

λ  correlation scale of random parameters 

v  groundwater velocity 

Θ  mean value of volumetric water content 

gθ  gravimetric water content 

θ  volumetric water content 



                                                                                                                    List of symbols 

 x 

wρ  density of water 

2
aσ  variance of α  

2
fσ  variance of ln sK  

2
hσ  variance of capillary tension head 

2
λσ  variance of λ  

Ω  domain region governed by Equation 

ψ  capillary tension head 

ζ 
rate coefficient of the mass transfer between mobile and immobile 
domains 

 



Chapter (1)                                                                                                       Introduction 

 1 

 
 
 

Chapter 1 
 

 
 

INTRODUCTION  
 
 
 

 

 

1.1 General background 

 

The movement of contaminant through soils to the groundwater is a major cause of 

degradation of water resources. Management of lands as a non-renewable resource, 

itself, is a crucial requirement for sustainability. Contaminated land management and 

selection of appropriate and efficient remedial technologies are strongly dependent on 

the accuracy of predictive models for simulation of flow and solute transport in the soil, 

and require the understanding of real mechanisms that occur in field conditions.  Recent 

studies have shown that the current models and methods are not capable of adequately 

describing the leaching of contaminants through soils; they often underestimate the risk 

of groundwater contamination by surface-applied contaminants and overestimate the 

concentration of resident solutes (Stagnitti et al. 2001). Therefore for development of an 

appropriate model for simulation of groundwater flow and contaminant transport with 

high accuracy, at least the following two issues should be addressed:  

 

i) Selection of comprehensive mathematical models describing physical and 

chemical mechanisms involved in the processes. 

ii) Solution of the model for complex problems subjected to different geometry 

and boundary conditions. 
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Transport mechanisms such as advection and dispersion in aquifers are functions of 

formation of soil porous matrix, properties of solid and aqueous phases and the 

interaction between these two phases. Therefore, water flow and contaminant transport 

are significantly influenced by the uncertainty and inherent heterogeneity which exists 

in the structure and texture of the soil. Analysis of the data obtained from laboratory 

experiments using morphological techniques (Bouma 1991; Lu et al. 1994; 

Vanderborght et al. 1997; Wang et al. 2006), and from site hydrological properties 

investigations and field scale experiments (Bakr, 1976; Sundicky 1986) imply spatial 

variability of the hydrologic properties of soil and its high influence on the flow and 

solute transport. The results of these investigations show that the field soils exhibit two 

different types of spatial heterogeneity which often also coexist; one is referred to as 

macro-heterogeneity which is due to as spatial variability in the macroscopic properties 

of soil, and another is referred to micro-heterogeneity of the soil which is heterogeneity 

due to spatial distribution of macrospores. In principle, both spatial variability in soil 

hydraulic properties and structure-induced heterogeneity can contribute to the initiation 

of preferential pathways.  

 

For simplicity the classical mathematical governing equations for water flow and 

contaminant transport have been developed assuming that the soil is a homogeneous 

medium. Accordingly, the parameters which are present in the classical governing 

equations and associated with transport mechanisms are defined with average 

determined values through the whole aquifer. However, in reality these parameters are 

subject to uncertainty due to variability in soil porosity and porous matrix. The 

importance of the consideration of physical heterogeneity in modelling transport 

phenomena has been highlighted in the literature (Kabala and Sposito 1991 and Burr et 

al. 1994). Therefore, spatial variability and randomness of the hydrological parameters 

involved in the flow and contaminant transport should be incorporated in the 

mathematical flow and contaminant transport governing equations.  

 

The source of randomness in physical realizations of the majority of stochastic 

problems is related to either an inherent irregularity in the phenomena being observed 

and impossibility of exhaustive deterministic description (such as the kinetic theory of 

gas), or a generalized lack of knowledge about the processes involved.  Uncertainty in 

modelling the flow and contaminant transport phenomena in soils is related to the 

second category of random sources. The level of uncertainty associated to this class of 
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problems can usually be reduced by recording more observations of the process. 

Hydraulic properties of soils are uniquely defined at a given spatial location within a 

medium. It is however impractical to measure them at all points or even at a relatively 

large number of points. From a finite number of observations, these properties may be 

modelled as random variables or with a higher level of sophistication, as random 

processes with the actual medium properties considered as a particular realization of 

these processes. As a result, the governing equations for flow and solute transport are 

considered as differential equations with random parameters. The solution of partial 

differential equations with random parameters is the main impetus of this study. 

 

Following the successful application of the Monte Carlo method (MCM), in simulation 

of random processes in various engineering fields, researchers have been encouraged to 

use the potential of MCM in solution of the stochastic differential equations (SDEs) 

governing the flow and contaminant transport. However, as a computational algorithm, 

MCMs have their own drawbacks. These methods rely on repeated random sampling to 

compute their results. Because of their reliance on repeated computation 

of random  numbers, which can be a very time consuming procedure, they are not 

efficient simulation techniques especially for aquifers with large dimensions. Also, 

because of statistical nature of these methods, they do not provide conceptual 

understanding of the effects of soil heterogeneity on transport mechanisms, which is 

necessary for planning proper and efficient remediation techniques. Analytical methods 

are another approach to deal with random processes and provide a closed form equation 

presenting the relationship between randomness in hydraulic parameters of soil. With 

respect to the physical and conceptual understandings, although analytical stochastic 

methods are more useful than MCMs, the effectiveness of these methods is limited to 

the simulation of simple problems, as they are unable to simulate complicated systems 

with complex geometry and boundary conditions. 

 

Thus, the development of a stochastic finite element (SFE) based model as an 

analytical-numerical method which can overcome the shortcomings of analytical and 

non-efficient MCMs would be of great advantage. The methodology used for the 

development of SFE, takes advantage of both analytical and numerical techniques. It 

involves the following two steps: 

i) Incorporation of spatial variabilities of hydraulic and transport parameters in 

the classical governing equations and development of tractable stochastic 
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differential equations (SDEs) representing structured and feasible 

relationships between the variations of soil hydrological and transport 

parameters using analytical stochastic methods. 

ii) Solution of the developed SDEs, using finite element (FE) technique as an 

efficient and versatile numerical approach. 

 

 

Macrospores (micro-heterogeneity) cause high-permeable zones in different parts of 

aquifers. Flow and solute transport in extremely heterogeneous porous media with 

macrospores are conceptualized as a dual- domain system. Based on this system, the 

aquifer is divided into two distinct transport regions. The region with macrospores is 

considered as a second domain with high permeability next to the less permeable 

region.  

 

In spite of the efforts made for the incorporation of soil heterogeneity in the simulation 

of contaminant transport models, none of the existing models have included the effects 

of both types of soil heterogeneity. They have either included the effects of micro-

heterogeneity or macro-heterogeneity. The purpose of this work is to develop an 

analytical-numerical model, which considers the potential impacts of both micro-and 

macro-heterogeneity, through implementation of SFE method on the mathematical 

model of contaminant transport in a dual-domain system. 

 

 

1.2 Objectives  

 

The stochastic finite element methodology is a theory which has been developed and 

tested for the evaluation of probability measures of the occurrence of random processes. 

Further investigations of the methodology showed its great performance in other 

scientific and engineering fields. Motivated by the capabilities of SFE, the objectives of 

this work are 

 

• The full description and development of SFE methodology for simulation of 

groundwater flow and contaminant transport problem, and incorporation of the 

spatial variability of soil hydraulic properties into the model.  
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• Development of a 2-D and 3-D computer model, based on SFE methodology, to 

find the numerical solution for flow and contaminant transport problems with 

complex geometry and boundary conditions, and investigation of the technical 

aspects involved in algebraic equations used for evaluation of the statistical 

moments of outputs. 

• Incorporation of the effects of immobile water in the computer code in order to 

consider the effects of macrospores on the flow and transport phenomena. 

• Validation of the proposed SFE model through 5 illustrative flow and 

contaminant transport examples by comparing the results for different scenarios 

to those obtained by deterministic approaches, other stochastic approaches and 

experimental data. 

• Verifying the applicability of the model to field scale problems subjected to all 

the variety of complex boundary conditions through application of the model on 

the field-scale case-studies. 

• Numerical investigation of the effects of soil heterogeneity on advection and 

dispersion mechanisms, and adsorption of the solute mass to the soil matrix 

using sensitivity analysis on relevant parameters. 

 

 

1.3 Structure of the thesis 

 

With the above objectives, this thesis is organised in 7 chapters. The main text of each 

chapter is intentionally kept as short as possible in favour of easy reading and is written 

to include only the fundamental concepts and the new ideas. 

 

In chapter 2, a literature review of the efforts that have been made on different methods 

developed and used for incorporating the effects of soil heterogeneity in prediction of 

flow and transport processes, is provided. This chapter begins with the review of several 

works which have been done to prove the importance of considering the effects of soil 

heterogeneity in modelling flow and transport processes, followed by an overview of 

main published works related to different modelling techniques used to incorporate 

uncertainty in this field. Different methods used at each work are studied and the merits 

and deficiencies of each work are discussed in detail. 
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Chapter 3 gives an insight into the general concept of SFE method. The mathematical 

representations and concepts used in this work are discussed briefly, and the analytical 

stochastic method used in development of SDEs is illustrated. Following this, the 

general concepts of FE method for disceretization of the SDEs in time and space 

domains are discussed.  

 

In chapter 4, the governing equations that have been used for the development of the 

model are presented and the stochastic methodology which is implemented in the 

classical governing equations for flow and solute transport is described. 

 

In chapter 5, SDEs developed and presented in the previous chapter are discertized in 

space and time domains using finite element and finite difference (FD) methods, 

respectively.  

 

Chapter 6 is one of the main chapters of this thesis, in which the SFE model is validated 

through some examples and the applicability of this model is tested through the 

simulation of some complex case studies.  

 

Finally in chapter 7, the main conclusion of the thesis and the recommendations for 

further research are presented. 
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2.1 Introduction 

 

Contaminant and chemical sources are usually located in unsaturated zones or they 

come from the soil surface area to the unsaturated area and pass through it to reach the 

saturated zone. The various processes occurring within this region, therefore, play a 

major role in determining both the quality and quantity of water recharging into the 

saturated zone and may cause subsurface and groundwater contamination. Management 

of groundwater and contaminated lands as a non-renewable resource will be a crucial 

requirement for sustainability and needs accrue predictions of contaminant fate and 

solute transport in subsurface. As a result, many efforts have been made in recent years 

to investigate the subsurface hydrological processes, and different models have been 

developed for simulation of flow and transport in soils. 

 

This chapter is mainly dedicated to a discussion of various approaches used for 

modelling of water flow and contaminant transport in saturated and unsaturated soils. 
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After a brief description of the classical approach for simulating water flow and solute 

transport in porous media, issues related to classical approaches for the modelling of 

these phenomena are highlighted. It is concluded that the simplified classical models of 

the water flow (Richards’ equation) and solute transport are not able to describe flow 

and transport in heterogeneous soils (Stagnitti et al. 2001). The chapter also contains a 

comprehensive discussion of alternative modelling approaches, which make it possible 

to describe the flow and transport processes in heterogeneous soils with higher accuracy 

at local and field scales. As weight of heterogeneity increases, modelling approaches 

evolve from a purely deterministic description to a stochastic analysis. They vary from 

the multi-porosity models to the stochastic-continuum models.  

 

 

2.2 Classical models  

 

2.2.1 Water flow 

The water flux in soils is commonly described using Darcy’s law.  Through a series of 

experiments, Darcy (1856) found that the water discharge rate into a specified volume 

of soil is linearly proportional to the hydraulic head gradient through the volume. 

Darcy’s law was developed with respect to a saturated porous medium.  His 

experimental results were used by Buckingham (1907) to study steady-state flow in 

unsaturated soils. Darcy’ law has also been applied to the flow of water through an 

unsaturated soil (Childs and Collis-George, 1950). The well-established Richard’s 

equation which is the Darcy’s equation embedded in the mass conservation equation is 

the commonly used mathematical model for water flow in unsaturated soils. 

 

A major characteristic of flow in the unsaturated zone is the dependency of hydraulic 

conductivity of the medium on the level of saturation, which generally becomes a strong 

nonlinear function for many soil types (Gunduz, 2004).  In addition to the complexity of 

Richards' equation, the complexity of constitutive relationships that link the degree of 

saturation to capillary pressure and hydraulic conductivity further complicates the 

governing equations and their numerical solutions.  Richards' equation is originally 

based on the capillary pressure.  Numerous researchers have developed various 
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modified forms by changing the dependent variable of the equation.  Over the years, 

three different forms of Richards' equation have been widely adopted (AL-Najjar, 

2006); there are: (i) Pressure head-based equation, (ii) Moisture content-based equation, 

(iii) Mixed form of the equation with both the pressure head and the water content 

explicitly appearing as dependent variables of the equation. 

 

The original pressure-head based equation is applicable to all levels of saturation in the 

porous medium.  It performs in a superior way under saturated conditions when some of 

the other forms fail to properly represent the flow conditions (Huang et al., 1996).  This 

behaviour is mostly related to the fact that the pressure head is a continuous function, 

both in saturated and unsaturated media under heterogeneous soil profiles.  

Unfortunately, the pressure head-based equation does not perform as well as the water 

content based equation under significantly dry conditions (Huang et al., 1996).  In 

particular, under conditions of infiltration to a very dry soil, the pressure-based form 

develops large balance errors due to the highly nonlinear nature of the specific moisture 

capacity and notably underestimates the infiltration depth.  Regardless of the limitations 

associated with it, the original form of the equation has been tried extensively in solving 

both the unsaturated zone and variably saturated-unsaturated zone flow problems (Pan 

et al., 1996; Romano et al., 1998; Williams et .al., 2000). 

 

To alleviate the problems associated with the pressure head-based form of the governing 

equation, water content based form was proposed as an alternative formulation of the 

unsaturated zone flow.  This formulation is found to be superior in terms of mass 

conservation, particularly in the discrete approximations of its numerical solution such 

as finite element (FE) and finite difference (FD) methods (Hills et al., 1989; Gottardi 

and Venutelli, 1993; Pan and Wierenga, 1997). Moreover, the hydraulic functions are 

less nonlinear when expressed in terms of moisture content rather than capillary head, 

particularly when modelling infiltration into a relatively dry medium (Williams et al., 

2000). However, the water content-based form of the equation is also limited in 

application to variably saturated and unsaturated flow since it is not able to properly 

simulate the saturated conditions. When the flow domain gets locally or completely 

saturated, the equation degenerates since the time rate of change of the moisture content 
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becomes zero (Celia et al., 1990).  In addition, using moisture content as the dependent 

variable introduces problems of continuity in the domain since it is not a state variable 

which is always continuous in space regardless of the soil non-homogeneities. To 

overcome the difficulties associated with both the pressure-based and the moisture 

content-based forms of Richards' equation, a so-called mixed-form has been proposed, 

which uses both the moisture content and the pressure head as the dependent variables.  

Celia et al., (1990) solved Richard’s equation using a method that employs the mixed 

form of the equations to guarantee mass conservation. The method has been shown to 

be robust and accurate, but requires a fine spatial and temporal discretization and so is 

fairly computationally demanding (Binning, 1994). The mixed form has both the 

superior mass conservation characteristics of the moisture content-based equation as 

well as the unlimited applicability to both saturated and unsaturated regions of flow that 

the pressure-based equation offers. In this regard, the numerical solution of the mixed 

form has found wide applicability in the last decade and many researchers used this 

form to model the flow in variably saturated-unsaturated media (e.g. Tocci et al., 1997; 

Miller et al., 1998; Williams and Miller, 1999; Zhang and Ewen, 2000; Zhang et al, 

2002).  Apart from these standard forms of the equations, some researchers did not 

directly use these three forms of the governing equation but rather applied certain 

transformation functions to smooth the strong non-linearity of the constitutive functions 

(e.g. Pan and Wierenga, 1997; Williams and Miller, 1999; Williams et al., 2000).  Even 

though these transformation techniques provide some relief to the problems associated 

with the numerical solution, they did not find wide applicability mainly due to the fact 

that they are only an approximation to the original equation and lack any underlying 

physical theory (AL-Najjar, 2006).   

 

Regardless of the form of Richards' equation, one needs to supplement the governing 

equation with the auxiliary equations to complete the mathematical representation of 

moisture movement in the unsaturated zone.  Therefore, researchers developed 

numerous empirical formulas to describe the relationship between capillary pressure 

head and soil moisture as well as capillary pressure head and hydraulic conductivity.  

The most commonly used relationships were proposed by Brooks and Corey (1964), 

Mualem (1976) and Van Genuchten (1980).  It is important to note that the original 
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forms of these relations did not consider the phenomenon of hysteresis, and pressure 

head was considered to be a single valued function of the moisture content.   

 

Many approaches to solve the unsaturated flow equations have been suggested in the 

literature. A number of analytical solutions have been developed for transient 

infiltration under various boundary conditions (e.g. Philip and Knight, 1991 and Van 

Genuchten, 1980).  Unsaturated drainage of a uniformly wet soil was solved by Sisson 

et al., (1980) for gravitational flow, whereas more complicated solutions for drainage 

with capillary suction was derived by Warrick et al., (1990) and Philip (1992).  

 

Analytical solutions can only be obtained for these equations under certain assumptions. 

This makes their applicability very limited. However, if the assumptions and limitations 

of these solutions are properly understood, analytical models can be powerful diagnostic 

tools that can give great insight into the situations where they are used. This is 

exemplified by the model of Johnson and Perrott (1991) which combines a simple user 

interface with an analytical model of air flow to create a tool for the initial evaluation of 

a venting scheme.  There are many other analytical models of water flow in the 

unsaturated zone.  They include the numerous solutions like those presented by Milly 

(1988) and Sander et al. (1988). 

 

The extreme variability and complexity of geological materials, dry initial conditions, 

varying boundary conditions and the strong nonlinearity between the pressure head and 

moisture content as well as the pressure head and hydraulic conductivity make the 

solution of Richards' equation quite a challenge, particularly within acceptable limits of 

accuracy and computational effort.  Since analytical solutions are only possible when 

these nonlinear relationships are linearised and simplified (Tracy, 1995), numerical 

techniques are the only available method of solution. Specific applications of numerical 

models include analysis of complex systems (complex in terms of geology, hydrology, 

geometry, and boundary conditions), quantifying groundwater mechanisms and 

processes occurring at a site, and assessing long term impacts due to natural and human 

induced stresses.  Numerical models have been used in several groundwater studies. In 

numerical solution of Richards' equation, the spatial discretisation is commonly 
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performed by FD or FE method (e.g. Celia et al., 1990; Hong et al., 1994; Rathfelder 

and Abriola, 1994; Pan et al., 1996; Huang et al., 1996; Miller et al., 1998; Van Dam 

and Feddes, 2000; Zhang and Ewen, 2000; Zhang et al., 2002).   

 

 

2.2.2 Solute transport 

Numerous human activities utilize subsurface as a receptor of various contaminants, 

which include hazardous waste landfills, ponds and lagoons bearing industrial or 

domestic wastewater, and on land applications of treated or partially treated domestic 

and industrial wastewater. These activities have always resulted in release of various 

pollutants into the subsurface and, consequently, to the nearby environment including 

groundwater resources. Thus, in recent years, some research has been directed 

specifically towards establishing better knowledge of what governs the transport of 

contaminants in the subsurface environment (AL-Najjar, 2006).   

 

The transport of non-reactive solutes in a porous medium takes place through two 

processes; (1) solute advection defined as the average solute particle velocity, and (2) 

the solute dispersion. The average solute particle velocity defines the centroid of the 

solute plume at a given time or the average arrival time of solutes at a given depth. 

Solute transport was considered only in a very limited way in early groundwater 

investigations. The generally applied method of analysis was advective calculation. 

Further research regarding the problem of transport in porous media, especially in the 

groundwater engineering field, showed that the average fluid velocity did not describe 

the actual motion of individual solute particles, and that advective calculation could 

therefore never give a full description of solute movement.  Statistical theories of 

hydrodynamic dispersion were developed by De Josselin de Jong (1958) and Saffman 

(1959) which addressed the difference between advectively calculated movement and 

observed movement. A number of laboratory and theoretical investigations of 

dispersion were completed of which those of Day (1956) and Rifai et al., (1956) were of 

particular significance. The solute dispersion quantifies the dispersion of the solute 

plume around the centroid at a certain time. In porous media, solute dispersion is caused 

by two mechanisms: (1) molecular diffusion and (2) hydrodynamic dispersion. 
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Hydrodynamic dispersion is explained by the tortuous nature of the convective stream 

lines resulting from microscopic fluctuations of the advection velocity. When the scale 

of the macroscopic transport process is much larger than the scale of the microscopic 

velocity fluctuations, the effect of these fluctuations on the macroscopic solute transport 

can be modelled as a Fickian, gradient-type process, similar to molecular diffusion.  The 

theory of advective-dispersive transport continued to develop, particularly in the 

contributions of Bear (1961) and Bachmat (1967). Using the continuum approach and 

the macroscopic mass conservation, classical advective-dispersive solute transport 

equation was developed.  

 

Advances in solute transport simulation have necessarily depended on advances in flow 

simulation. Many analytical (e.g., Govindaraju et al., 1996) and numerical (e.g., Bear, et 

al., 1993; Istok, 1989; Nwaogazie, 1986; Gunduz, 2004) models developed for 

simulation of solute transport in saturated zones are based on assumption of steady-state 

flow.  Marshall et al., (2000) concluded that steady models can adequately predict solute 

movement in regions with small temporal variations of the flow rate, but are inaccurate 

under highly transient flow (Russo et al., 1994). Empirical and conceptual models 

developed for saturated flow conditions, such as that developed by Bear (1972), have 

not been easily adapted to the unsaturated case. Solute transport models are coupled to 

the water flow models in order to simulate the transient solute transport. Also, as 

mentioned earlier, since pollution from the surface and subsurface pollution sources 

pass through the unsaturated zones to reach the groundwater, simulation of solute 

transport in unsaturated area plays a significant role in the prediction of groundwater 

pollution risk. So, in the literature of recent years there has been a profusion of studies 

of the transport equations in the unsaturated zone.  The impetus for this rapid 

development has been the strict regulatory stance on groundwater pollution (Gee et al., 

1991).  Therefore, research on contamination in the unsaturated zone has become more 

important and the studies for developing reliable predictive models have been increased.  

Each model has different features that tailor the model to the particular application for 

which it was designed.  The models use a variety of solution techniques.  These include: 

analytical solutions, FD, FE, particle tracking and Eulerian Lagrangian methods.   Islas 

and Illangasekare, (1992) and Barry et al., (1993) developed analytical solutions for 



Chapter (2)                                                                                              Literature Review  

 14 

simulation of water movement and solute transport in unsaturated zones.  Smiles et al., 

(1978) developed a quasi-analytical solution for non-reactive solute flow during 

unsteady horizontal infiltration under constant concentration boundary conditions which 

has been discussed by Watson and Jones, (1981) particularly in relation to assessing the 

performance of the solute model.   

 

Lessoff and Indelman (2004) presented an analytical model of solute transport by 

unsteady unsaturated gravitational infiltration. The solution was developed for 

gravitational flow and advective transport was applied to two scenarios of solute 

applications encountered in the applications: a finite pulse of solute dissolved in 

irrigation water and an instantaneous pulse broadcast onto the soil surface.   

 

Analytical models are typically used in restrictive settings such as for modelling 

transport in experimental column studies (Shoemaker et al., 1990, Jury et al., 1983) to 

test the accuracy of numerical approximations to the equations (e.g., Yeh et al., 1993).  

In these settings the exact solution of the governing equations is not possible.  However, 

for more complex geometries and boundary conditions, numerical solutions must be 

sought. 

 

FD techniques are the simplest of the numerical techniques to apply and there are a 

large number of models using this solution technique. Weeks et al., (1982), were some 

of the first to use a numerical model to study transport in the unsaturated zone.  The FD 

models range form the simple one dimensional model of Rosenbloom et al., (1993), 

through to the comprehensive model of Sleep and Sykes (1993). The FD models have 

usually used forward (explicit) time stepping.  Benson et al., (1993) and Sleep and 

Sykes (1993), presented a summary of the arguments for the different forms of temporal 

discretization.  The implicit method is less computationally expensive than the explicit 

method. The implicit time stepping scheme is unconditionally stable, so that large time 

steps can be taken.  However, large time steps may not be advantageous in an implicit 

scheme as the truncation error increases with time step size leading to a loss of accuracy 

in the solution.  In contrast, the explicit methods do have a limitation on the time step 
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size, so that small time steps must be taken.  Accuracy of an explicit scheme increases 

with increasing time step size.  

 

FE method is another common numerical approach to solve the transport equations. The 

Galerkin FE method was applied by Mendoza and Frind (1990) and Culver et al., 

(1991).  The solutions obtained by the method are prone to oscillations. Awadallah et 

al., (1997), demonstrated a horizontal contaminant transport model through unsaturated 

soil analytically and experimentally. The water and solute transport equations were 

solved using the Boltzmann transformation, to convert the partial differential equations 

to ordinary differential equations. Karkuri and Molenkamp (1997) analyzed the 

advection-dispersion of non-reactive pollutant movement through a layered porous 

medium domain under the effect of transient groundwater flow. The governing partial 

differential equations of the groundwater flow and advection-dispersion of pollutant 

together with their integral formulations were based on Galerkin's method and Green's 

theorem.  Li et al., (1999), presented a numerical FE model to simulate miscible 

contaminant transport through unsaturated soils to account for the influence of multiple 

non-equilibrium sources on the contaminant transport. 

 

Hazardous waste disposal is increasingly one of the most serious problems confronting 

health and the environment.  The movement of chemicals through the soil to the 

groundwater represents a degradation of these resources.  In many cases, serious human 

and stock health implications are associated with this form of pollution.  The chemicals 

of interest mainly include nutrients, pesticides, salts, and industrial wastes (Stagnitti, et 

al. 2001).  Chemical effects in solute transport simulation have continued to evolve 

although numerous difficulties still limit this aspect of the technology. Ahuja and 

Lehman (1983) and Snyder and Woolhiser (1985) presented the earliest works in this 

area. They presented a set of experimental data that indicated a more detailed 

description of chemical transport in soil and water was needed.  Rubin and James 

(1973) provided an early example of a transport model with equilibrium controlled 

reactions.  Rubin (1983), described the mathematical requirements for simulation of 

several classes of reaction, and noted the computational difficulties presented by various 

systems.  At the same time, extensive research has been done on the biodegradation of 
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organic chemicals in the subsurface, leading to methods of approximating some 

biodegradation effects in transport calculation. The knowledge about the mechanism 

that dominates the transport of hydrophobic organic chemicals is essential for the 

understanding of pollution processes.  Gillham and Cherry (1982) reviewed some of the 

existing mathematical models for the well established transport processes in saturated 

soils, including molecular diffusion, mechanical dispersion, and some types of chemical 

interactions such as sorption, precipitation, decomposition and oxidation-reduction. In 

many investigations of the contaminant migration in groundwater, reactive 

contaminants rather than unreactive ones are the focus of the concern.  

 

Biodegradation which is a bacterial mediate chemical reaction has been paid 

considerable attention by geochemical researchers, because of the important role that 

this type of chemical reactions plays in alleviation of geo-environmental pollutions. 

Three different conceptual frameworks were assumed to describe bacteria growth 

through the biodegradation and chemical utilization including biofilms, microcolonies 

and Monod kinetics (Chen, 1994). Baveye and Valocchi (1989) evaluated the 

mathematical models developed that founded on each of these conceptual assumptions. 

The biofilm concept is discussed in the works of Rittmann et al. (1980), Bouwer and Mc 

Carty, (1984) and Characklis, (1990). Molz et al., (1986) explained the microcolony 

concept of bacterial growth. Based on this assumption, the bacteria do not grow in 

continuous fixed films, but in small discrete units of 10 to 100 bacterial per colony 

attached to particle surfaces. Concepts of biofilm and microcolonies, focus on 

mechanisms taking place at the pore scale and have not been aimed at modelling large-

scale transport problems. The most extensively used expression for describing the 

biodegradation process in chemical transport modelling in large-scale is the one based 

on the concept of Monod kinetics.   

 

MacQuarrie, et al., (1990) developed a FE model for simulation of biodegradable solute 

transport in steady-state condition using dual Monod kinetic model, and the effects of 

microbial growth and electron acceptor limitation (Oxygen) were considered in this 

model. The accuracy and reliability of this model were proved by means of the 

simulation of a laboratory column experiment and good agreement was observed 
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between the simulated and experimental measured results. Availability of electron 

acceptor, usually Oxygen, plays an important role in occurrence of biodegradation of 

organic contaminants. Limitation of supply of Oxygen in biodegradation process was 

investigated through an experimental technique presented by Huang et al., (2003). They, 

also, used numerical codes MT3D/RT3D developed by  Clement et al., (1998) which is 

for  simulating multi-species reactive transport in soils to simulate their experiments. 

 

With non-dimensionalization of contaminant transport governing equation coupled with 

Monod kinetic model, Brusseau et al, (1999) studied some factors controlling the 

amount and speed of the biodegradation through the contaminant transport process.  

 

Liang et al., (2002) studied the transport mechanism of hydrophobic organic chemicals 

and the energy change in a soil/solvent system.  A soil leaching column 

chromatographic experiment at an environmental temperature range of 20–40C was 

carried out; it was found that the transport process quickens with the increase of column 

temperature.  Arsene (2000) presented the migration assessment of (3H 14C and 241AM) 

in unsaturated soils which constitute the emplacement medium for the disposal of 

conditioned wastes.  Gao et al., (2001) presented a model for simulating the transport of 

chemically reactive components in conjunction with energy transport in saturated and 

unsaturated groundwater systems.  McGrail, (2001) developed a numerically based 

simulator to assist in the interpretation of complex laboratory experiments examining 

transport processes of chemical and biological contaminants subject to nonlinear 

adsorption or source terms.  The governing equations for the problem were solved by 

the method of FD including any combination of three boundary conditions.   

 

In spite of numerous mathematical models that have been developed to simulate the 

migration of pollutants in soils, still most of the models simulate either geochemical 

processes (e.g., Engesgaard and Kip, 1992; Walter et al., 1994) or biological 

transformations (Kindred and Celia, 1989; Clement et al., 1996) in soils.  Relatively few 

models include the interaction between biodegradation and inorganic geochemical 

reactions in soils (Zysset et al., 1994; Prommer et al., 1999).  Modelling geochemical 
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interactions between organic biodegradation and inorganic species is a current research 

topic.  

 

Smith et al., (1992), developed a non-equilibrium sorption dispersion-advection model 

that involves a convolution integral of the product of the rate of change of concentration 

and a time dependent sorption coefficient, and Kohn et al., (1998) presented a numerical 

study of contaminant migration in saturated porous media by using a finite difference 

method for this purpose.  The advection-diffusion equation describes the evolution of 

contaminant plumes in a vertical cross section of an aquifer.  At the same time, Dawson 

(1998) studied the numerical approximation of a nonlinear diffusion equation arising in 

contaminant transport.  The equation is characterized by advection, diffusion, and 

adsorption assuming the adsorption term is modelled by a Freundlich isotherm.  

 

Remesikova (2005) introduced an efficient operator splitting scheme for solving two 

dimensional convection-diffusion problems with adsorption. He particularly, considered 

a practical problem of soil parameters identification using dual-well tests by using a 

general mathematical model including advection, mechanical dispersion and molecular 

diffusion and adsorption in both equilibrium and non-equilibrium modes.  However, due 

to the transformation, the linear or non-linear transport problem was reduced to one 

dimensional and solved in an analytical form.  The dispersion part was solved using 

standard finite volume method.   

 

Kacur et al., (2003), discussed the numerical approximation schemes for the solution of 

contaminant transport with adsorption.  Their method was based on time stepping and 

operator splitting for the transport with adsorption and diffusion.  The nonlinear 

diffusion was solved using a finite volume method and by Newton's type of 

linearization. 

 

Most of the studies for evaluation and investigation of chemical reactions were 

concentrated on the problems in saturated area. Thomas et al., (1995) described a model 

of the hydro-thermo-mechanical behaviour of unsaturated soil, developed in the context 

of high level nuclear waste disposal.  Then, Thomas and He (1997) developed a mass 
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transport model for a multi-component solution system which includes coupled pore 

water, pore air and contaminant transport in unsaturated soils. A numerical solution of 

the governing differential equations was achieved using FE method as a spatial 

discretisation technique coupled with a FD recurrence relationship to describe transient 

behaviour.  Thomas and Ferguson (1999) presented a fully coupled heat and mass 

transfer numerical model describing the migration of a contaminant gas through 

unsaturated porous medium.  The model treats the migration of liquid water, air, and 

heat and contaminant gas separately with independent system variables of capillary 

potential, temperature, pore air pressure and concentration of the contaminant gas. 

 

Kuechler and Noack, (2002) investigated the transport of reacting solutes through the 

unsaturated zone by presenting and discussing the results of numerical calculations 

dealing with the flow of water, the chemical reaction at the water mineral interface and 

the transport of chemical species caused by such flows.  The source of the water flow 

through the soil was solely the rainfall.  The water motion was calculated for two 

different soil classes and for typical annual precipitation.  The transport of chemical 

species was described by a set of partial differential equations, and the chemical 

processes, under the assumption of equilibrium, were described by a set of nonlinear 

algebraic equations.  A description of chemical transport in the unsaturated zone is 

important for the management of potential hazardous chemicals in the ecosystem.  

Water flow is much more intricate in the unsaturated zone than in the saturated zone, 

besides the high heterogeneity of the unsaturated soil.   

 

Javadi and AL-Najjar (2007) developed a coupled 2-D numerical model to simulate 

chemical reactions through contaminant transport in unsaturated soils. In this model, FE 

and FD techniques were combined for simulation of the flow of air and water and 

transient chemical solutes. The model is capable of simulating various phenomena 

governing miscible contaminant transport in soils. Linear first-order model was used for 

estimation of chemical reaction rate and the model was used for simulation of a 

laboratory-scale experiment. Comparison of the numerical results with experimental 

measurements showed robustness of the model for simulation of these processes. This 

work was followed by Mousavi Nezhad and Javadi, (2010), for considering the effect of 
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chemical reaction using non-linear Monod kinetic model for biodegradation and the 

results obtained using non-linear Monod kinetic biodegradation compared with those 

obtained by first-order linear model. It was concluded that the non-linear model 

simulates the chemical fate with higher accuracy than the linear one. 

 

 

2.3 Influence of soil texture and structure on hydrological 

processes  

 

Soil texture is a soil property used to describe the relative proportion of different grain 

sizes of mineral particles in a soil. The textural class of a soil is determined by the 

percentage of sand, silt, and clay. Soils can be classified as one of four major textural 

classes: (i) sands; (ii) silts; (iii) loams; and (iv) clays (Smith and Smith, 1998). Soil 

structure refers to the arrangement of the solid parts of the soil and of the pore space 

located between them. In essence, soil structure is a physical condition of soil and is the 

product of processes that aggregate, cement, compact or unconsolidate soil or of other 

processes of soil material formation caused by human activities or natural atmospheric 

condition such as climatically-driven physical processes, shrinking-swelling, freezing-

thawing, and other physico-chemical processes. Also, biological processes exert a 

particularly strong influence on the formation of structure in surface horizons. 

Depending on the various processes and their intensity that constitute the formation of 

soil at different locations, soil formation and structure vary with space either in vertical 

or horizontal direction. Figure 2.1 is a cross section of a soil which clearly shows high 

variability in formation of soil.  

 

 

 



Chapter (2)                                                                                              Literature Review  

 21 

 

Figure 2.1 Typical cross section of soil. 

 

 

From mid 60’s until mid 80’s, much research was carried out to investigate the effects 

of soil heterogeneity on water flow and solute transport in soils. White, (1985) reviewed 

the research work which has been done, in order to investigate the effects of 

macroporosity on steady-state and unsteady-state flow conditions and solute distribution 

through either externally applied solutes or indigenous solutes such as nitrate and salts.   

It has been concluded that macropores can greatly decrease the time taken for dissolved 

and suspended matter applied to the surface to reach subsurface drains or groundwater 

and the convective-dispersive theory of solute transport has limitations in predicting the 

distribution of solutes and their appearance in the drainage from soils with macropores. 

 

Published experimental data clearly indicate random spatial variability in soil hydraulic 

characteristics of soil. Figure (2.2) shows the gravimetric water content (gθ  ) as a 

function of depth measured in intervals of 0.15-0.45 m obtained from a field scale 

experimental study on a dimension of 0.64 ha carried out by Butters, et al. (1989). 

Spatial variability of gravitational water content can be seen clearly in this figure.  
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Figure 2.2 Steady-state gravimetric water content profile, along the 95% confidence 

interval Butter, et al. (1989). 

 

Also, in this experiment, transport of bromide as a non-reactive chemical at steady state 

condition was studied. Many samples were taken from different locations in depth and 

lateral places of area and lateral variability of solute transport was concluded based on 

some breakthrough curves presenting minimum and maximum arrival time of solute at 

each depth at different sites. The large variability in transport was evidenced by the very 

rapid solute breakthrough at some sites, in contrast to the late arrival and slow passage 

of solute at others. 

 

Quantitative observations obtained from laboratory tests of core samples obtained by 

Bakr (1976) imply spatial variability of the hydrologic properties of soil. Laboratory 

results of this work, presented in Figures 2.3 and 2.4, show the extreme variability of 

porosity and permeability of soil in space domain. 
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Figure 2.3 Permeability space series from laboratory test, by Bakr (1976). 

 

 

 

 

 

 

Figure 2.4 Porosity space series from laboratory test, by Bakr (1976). 
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Sundicky (1986) carried out a long-term tracer test in the Borden aquifer. Spatial 

variability of hydraulic conductivity in a heterogeneous media was investigated by the 

results of this experiment. Dagan (1988) discussed the fact that the dispersion of solutes 

by groundwater is governed by large-scale spatial heterogeneity of natural formations. 

He concluded that the proper setting for relating transport to aquifer properties is the 

stochastic one.  

 

Also, some morphological techniques such as study of thin soil sections under 

microscope, analysis of two or three dimensional image of soils and dye experiments 

were used in order to investigate the macropore patterns and measure soil pore size 

distribution (Bouma 1981). Although detailed description of these techniques is beyond 

this work, the results obtained from these methods show strong variability in soil pores 

in terms of size, shape, arrangement and continuity. Since, soil pores provide pathways 

for flow and solute transport, these processes are influenced by variability in the 

formation of soil voids and pores. Foregoing techniques have been used widely in the 

literature (Bouma 1991; Lu et al. 1994; Wildenschild et al. 1994; Vanderborght et al. 

1997; Wang et al. 2006) in order to investigate the effects of soil formation and 

heterogeneity on flow and solute transport.  

 

The results of these investigations have shown that the field soils exhibit different types 

of spatial heterogeneity, such as soil spatial variability and soil structure, which often 

also coexist. Within the concept of soil heterogeneity, spatial variability relates to the 

spatial distribution of macroscopic model parameters, such as the hydraulic 

conductivity, while in structured soils microscale effects sometimes become so 

dominant that they affect macroscopic scale flow process. In principle, both spatial 

variability in soil hydraulic properties and structure-induced heterogeneity can 

contribute to the initiation of preferential pathways (Vogel, 2000). An appropriate 

model for flow and solute transport must consider all mechanisms governing these 

phenomena and must describe the structure and texture of soil as surrounding area of the 

process. So, classical equations which do not consider heterogeneity of domain are not 

appropriate for accurate modelling of foregoing processes. Essential need for having 
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accurate and reliable models has led researchers to put a lot of effort in order to consider 

profound effects of natural heterogeneity of soil in hydraulic processes.  

 

One way to account for the large spatial variability of the hydraulic properties of soils 

could be to measure the actual three-dimensional distribution of hydraulic conductivity 

in complete detail of the field site, and these data can then be applied to a numerical 

model able to capture all of the effects of the variability. Unfortunately, this approach is 

impractical for two reasons:  

 

• It is a computationally intensive approach. 

• The measurement program required to determine the detailed distribution of the 

hydraulic conductivity would be totally unworkable.  

Therefore, some alternative methods using some simplifications have been proposed for 

this purpose. 

 

 

2.4 Modelling approaches for considering soil heterogeneity 

 

2.4.1 Dual domain system 

Macropores cause high-permeable zones in different parts of aquifers. Flow and solute 

transport in extremely heterogeneous porous media with macropores are conceptualized 

as a dual- domain (dual-permeability or dual-porosity) system. Based on this system, 

the aquifer is divided into two distinct transport regions. The region with macropores is 

considered as a second domain with high permeability (HK) next to the less permeable 

(LK) region. Water flow and solute transport in dual-permeability models are described 

using separate flow and transport equations for each region which are coupled together 

with an exchange term accounting for the mass transfer of water and/or solutes between 

the regions (Gerke and van Genuchten, 1996; Gerke and van Genuchten, 1993a). Figure 

2.5 shows the general schematic of dual-domain flow system. 
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Figure 2.5 General schematic of dual-domain flow system. 

 

Flow of water in the two regions of the dual-domain system is described by two coupled 

Richard’s equation as (Gerke and van Genuchten, 1993a) 
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        (2.1) 
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where, H is capillary tension head [L], K is hydraulic conductivity [L][T]-1, C is the 

specific water capacity [L]-1, z is the vertical coordinate taken positive upward [L], t is 

time [T] and wΓ  is the transfer term for water exchange between the two pore systems 

[T] -1. The exchange of water between the two regions is based on their relative 

saturation Se differences or pressure head H differences; hw  is the relative volumetric 

proportion of the HK pores, 1l hw w= −  and subscripts l and h denote the characteristics 

of low permeability and high permeability regions, respectively. 

 

Solute transport in dual domain system is predominantly advective through the zones of 

high hydraulic conductivity and is largely diffusive in zones of low hydraulic 
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conductivity filled with immobile or relatively stagnant water. The early arrival of 

solute may be attributed to preferential flow of water through the larger channels of the 

wetted pore space (large channels and wetted regions between finer pores in an 

aggregated soil) whereas, the water in the finer pores is more stagnant and does not 

contribute to solute transport, except for diffusion exchange.  Solute transport equations 

in dual-domain system models are given as (Gerke and van Genuchten, 1993a) 
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where, θ  is volumetric water content, R is retardation coefficient, D is dynamic 

dispersion transport coefficient [L][T]-1, c is solute concentration [M][L]-3, χ  is the first 

order reaction rate coefficient [T]-1, q is water specific discharge [L][T]-1, sΓ  is the 

transfer term for solute exchange between the two pore systems [M][L]-3[T] -1. 

 

Dual-domain solute transport mode is coupled with dual-domain water flow model in 

order to predict solute fate in macroporous soils under transient flow condition. Crucial 

components of these types of models are transfer terms.  Gerke and van Genuchten 

(1993a) developed a model for water flow and solute transport in unsaturated soils 

assuming that all properties of the bulk medium are composed of two local properties, 

one associated with the fracture and one with the pore matrix, and the exchange of water 

between two regions is assumed to be proportional to the pressure head difference 

between the two regions as 
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where, wα  is the first-order water transfer coefficient [L]-1[T] -1, r is the characteristic 

radius or half-wide of the matrix structure [L], β  is the dimensionless coefficient 

depending on the geometry of aggregates, Ka the hydraulic conductivity at or near the 

surface of high permeable region [L][T]-1 and wγ is a corrective empirical  coefficient. 

 

Also, Gerke and van Genuchten (1993b) obtained the following general expressions for 

the solute transfer coefficient. 

 

( )s w h s l l h lc w c cα θΓ = ±Γ + −  
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=s aD

r

βα  

        (2.7) 
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where sα  is the first-order solute mass transfer coefficient [T] -1 and Da is the effective 

diffusion coefficient [L]2[T] -1 at the interface of two regions. 

 

Jarvis et al. (1991a) investigated the need to consider a dual-domain system for 

modelling of flow and solute transport in macrporous soils. They used two different 

models one based on assumption of single-domain system and another based on dual-

domain system for simulation of the same problem of water flow and solute transport. 

Also, in this work, a set of sensitivity analysis was carried out with respect to 

parameters of exchange terms related to the size distribution of aggregates and the 

geometry of flow paths. The results of sensitivity analysis showed dependency of flow 

and solute transport on the structure of soil. Jarvis et al. (1991b) continued this work 

and they used the above model for simulation of chloride transport in soil samples under 

field conditions. Their results showed that the macropores constituted the dominant 

flow pathway (about 80% of the total water outflow) and diffusive exchange of chloride 

between the two flow domains caused a significant fluctuation in the amount of solute 

leaching. 

 

Saxena et al. (1994) compared the results obtained from simulating non-reactive solute 

transport through undisturbed soil samples with the observed experimental results. They 

used a model which could be performed in both single and dual-domains.  Their results 
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showed that the dual domain model can improve the approximation of solute transport 

compared with classical convective-dispersive model.  

 

Sun et al. (1999) extended the code so-called RT3D developed by Clement et al. (1998) 

to a dual-domain model in order to investigate the effect of heterogeneity resulting from 

the presence of HK/LK conditions on bioremediation rate. The reaction between 

hydrocarbon and Oxygen, catalyzed by the biomass was expressed by dual-substrate 

Monod expression. The mathematical model embedded into this modified code was 

based on the two-media approach with diffusive exchange between them and in the 

water occupying LK region, the advection was assumed to be negligible. Both aqueous 

and solid microbes were considered in the HK sub-domain. The aqueous microbes are 

transported like a solute in the HK sub-domain. Only attached biomass was considered 

in the LK sub-domain. Results obtained from simulation of a hypothetical case-study 

suggest that the biodegradation process is significantly slower in the LK subsystem than 

in the HK domain. Since hydrocarbon and oxygen are transported faster in the HK 

domain than in the LK one, the microbes grow faster in the contamination period and 

mediate more rapid contaminant degradation during the pure biodegradation period. On 

the other hand, the concentration of microbes in the LK system changes slowly. It takes 

a long time to contaminate the LK system; it also takes a long time to clean it by natural 

biodegradation. The results obtained from dual-domain model were compared against 

those determined by using a single-domain model and it was concluded that 

biodegradation efficiency is overestimated in the LK system and under-estimated in the 

HK domain, when a single porosity model is used to describe the HK/LK system.  

 

Vogel et al. (2000), simulated flow and solute transport under an irrigation furrow using 

a 2-D model developed by Gerke and van Genuchten (1993a). They considered 5 

different scenarios including: a single domain with uniformly distributed soil hydraulic 

properties (SU), a single domain with randomly generated hydraulic conductivities 

(SR), a two-domain system with uniformly distributed hydraulic properties (DU), a two-

domain system consisting of a uniform matrix and a fracture domain having randomly 

generated hydraulic conductivities (DRF), and a two-domain system with a uniform 

fracture domain but a randomized matrix domain (DRM). The results obtained from 
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scenario SR, showed that the hydraulic connection between the furrows and the water 

table and consequently, the solute concentration front movement were established much 

faster than the scenario SU.  Different results were obtained for the scenario DU. In this 

case, water flow in the fracture domain reached steady state relatively soon, while the 

water content in the matrix domain was increasing only relatively slowly, 

predominantly through the absorption of water from the fractures. Also, as expected, 

solute transport rates were significantly higher in the fracture than in the matrix pore 

system. Simulation results obtained from scenario DRF showed the most heterogeneous 

distributions, especially for the solute concentration. As compared to DU, the water 

content in the fracture domain increased much faster. The randomization apparently 

provides high-flux pathways for both water and the dissolved solute. The DRM scenario 

results were quite similar to those obtained from DU. The pressure head profile in the 

matrix system still exhibited a somewhat distinctive preferential flow pattern. However, 

the matrix pressure head distributions did not greatly affect solute displacement in the 

matrix domain. 

 

Comparison of results obtained from different scenarios, demonstrated the importance 

of considering macroheterogeneity of soils due to variability of soil hydraulic 

parameters such as permeability and the usefulness of combining dual-permeability 

features with a model that considers spatially distributed hydraulic properties. However, 

their results have not been compared with observed distributions under field conditions 

in order to find the proper scenario for this case and randomization of macroscale 

parameters. 

 

2.4.2 Stochastic approaches 

Simulation of processes with random variation in one or more inputs can be treated by 

stochastic approaches. In these approaches, random variables and consequently the 

output are defined in a probabilistic framework by statistical moments like mean and 

variance rather than using a certain constant value. Distributions of potential results 

which are derived from a stochastic approach reflect the random variation in the 

input(s). In the stochastic approach, the continuous models are the most common way of 

describing heterogeneity. These models focus on soil property or parametric variability 
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to describe the local variations of certain parameters (hydraulic conductivity, porosity, 

dispersivity, etc.). These types of models are frequently used in the field of subsurface 

hydrology which is main focus of this work. The main objective of these approaches is 

to derive the stochastic properties of flow and solute transport variables (i.e., pressure 

head, water content, water flux, solute concentration, solute flux) from the stochastic 

properties (i.e., mean, variance and spatial correlation structure) of hydrological 

parameters of soil.  

 

2.4.2.1 Monte Carlo method 

Monte-Carlo approach is a powerful technique for considering uncertainties in a system.  

In general, Monte Carlo method consists of two procedures (i) generation of sample 

realizations for input parameters from a given probability distribution, P(X), to 

represent the uncertainty present in the process. (ii) Estimation of expectations of 

functions under this distribution by solving the classical continuum governing equations 

for each realization of random fields whether numerically or analytically and statistical 

analysis of the outputs (MacKay, 1998). The procedure of the method is simple. It 

assumes that the probability distribution of the parameter (e.g., hydraulic conductivity) 

and its covariance function are available from measured field data. However the 

probability distribution function and covariance function do not provide information 

about the parameter value at a particular point in space. In order to obtain the spatial 

distribution of the parameter values, many possible realizations of parameter values that 

conform to the assumed probability distribution and the covariance function are 

generated by using a random number generator with special techniques. The 

assumptions of the probability density function of the model parameters or joint 

probability density function for a number of parameters in the model are based on some 

field tests and/or laboratory tests. Each realization of the parameter values is 

subsequently input to classical governing equations of the procedure of interest which 

are then solved by standard numerical or analytical methods. In most cases, numerical 

methods are used. Thus, a solution is obtained for each realization of the input 

parameters. If there are N realizations of input parameters used for simulation, then N 

realization of output are obtained from solving the governing equations (Shinozuka, 
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1972; Mantoglou and Wilson, 1982). It is then, possible to analyse the statistical 

moments of output. The principle of the method is illustrated in Figure 2.6. 
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Figure 2.6 Schematic illustration of Monte Carlo method concept (Yeh 1992). 

 

Sample generation of random fields plays a fundamental role in results accuracy and 

efficiency of stochastic Monte Carlo method. There are different techniques to generate 

realizations for the random parameters based on random field variables type in terms of 

their spatial correlation. The simplest case of a random field variable is an orthogonal 

random field variable, which consists of random univariate samples at each location. 
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This can be implemented easily with any efficient random number generator. However, 

a particular challenge arises when the random variables are dependent and they are 

(spatially) correlated and defined through a joint or multivariate distribution. 

Hydrological random parameters contributing in the flow and solute transport are 

spatially correlated. Not only do the generated random fields have to converge in the 

mean to the desired ensemble mean and variance (and any higher order moments if 

appropriate), they also have to converge in the mean to the desired correlation structure.  

 

Anderson and Shapiro (1983) used Monte Carlo approach to study steady-state one-

dimensional flow. A drawback of this work is that flow is generally three dimensional 

and transient, thus the conclusions based on a steady and one-dimensional theory may 

be unrealistic. 

 

Harter and Yeh (1998) used MCM for simulation of steady-state water flow. They 

explained the ability of the stochastic numerical models for simulation of steady-state 

water flow in the aquifers with complex geometry. Hassan, et al. (1998a) studied the 

effects of soil heterogeneity on water flow and solute transport using Monte-Carlo 

method in two-dimensional synthetic conductivity fields. The flow problem was solved 

via a FD scheme, and a random walk approach was employed to solve the transport 

equation for a conservative tracer. The model was tested for mass conservation and 

convergence of computed statistics and found to yield accurate results. Following this, 

Hassan et al. (1998b) used Monte Carlo method for flow and transport in two-

dimensional random conductivity, porosity, and geochemistry fields to explore the 

influence of their spatial variability on flow and transport processes for both 

conservative and reactive chemicals. For conservative transport, the results showed that 

when the porosity is correlated to the hydraulic conductivity (which may be expected in 

geologic formations); the dispersion process is significantly affected. Positive cross 

correlation between the porosity and the conductivity decreases dispersion, while a 

negative correlation tends to increase dispersion in the longitudinal direction. For 

reactive transport in physically and chemically heterogeneous media, the geochemical 

variability alone yields results that are significantly different than when both 
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geochemistry and porosity are random space variables correlated to the conductivity 

field.  

Bruggeman, et al. (1999) developed a FE model for simulating flow and solute transport 

in soils with macropores. The model simulates preferential movement of water and 

solutes and uses Monte Carlo simulation to represent the stochastic processes inherent 

to the soil-water system. The model was applied to a field case-study for the evaluation 

of the developed model. The field application suggested that the model underestimated 

the fast leaching of water and solutes from the root zone. However, the computed results 

were substantially better than the results obtained when no preferential flow component 

was included in the model. 

 

To take full advantage of the field data, the input sample generation can be conditioned 

on the information known about the particular points in space, where measurements 

were taken. Conditional simulation is a special kind of Monte Carlo simulation 

technique. The realizations generated by conditional methods are a subset of generated 

unconditional realizations. The conditional subset consists of all those samples in the 

unconditional set that preserves the known data at the measured locations. Then, the 

realizations of the hydraulic parameter value which do not agree with data at sample 

locations are simply eliminated. It is expected that the variance of output from the 

conditional simulation is smaller than that from the Monte Carlo simulation (Davis 

1987; Clifton and Neuman 1982; Gelhar and Axness 1983). 

 

Conditional simulations with the turning bands method were one of the first stochastic 

methods in hydrologic applications (Delhomme 1979). Abdou and Flury (2004) used 

MCM to simulate flow and solute transport through heterogeneous soils. The main 

objective of this work was numerical study of (i) the effect of the lower boundary 

conditions in two-dimensional heterogeneous soils under transient-flow conditions, and 

(ii) the effect of spatially structured hydraulic properties on water flow and solute 

transport. So, they simulated water flow and solute transport in hypothetical domains 

with two different lower boundary conditions; free drainage boundary condition and 

semi finite boundary condition. Also, three different soil structures were investigated in 

this work; isotropic, horizontal and vertical layered structures. Turning band technique 
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was used for generation of random fields (i.e., hydraulic properties) which represent 

spatial heterogeneity of soils. Water flow and transport equations were solved 

numerically with the finite element code CHAIN_2D developed by Simunek and van 

Genuchten (1994). They concluded that the effect of lower boundary condition on the 

water flow and solute transport is more pronounced in the case of soil with vertical 

structure. The results showed that in the vertical soil structures, water was moving faster 

and with larger amounts in some regions and under the effects of lower boundary 

condition solute leaching is retarded for the case with free drainage boundary condition.  

 

The principal advantage of the Turning band method is that it reduces the generation of 

a two- or three-dimensional, random, spatially correlated process to the generation of 

one-dimensional, correlated line processes. The reduction in dimensionality is made 

possible by the fact that the transformation from a 3- or 2-dimensional covariance 

function into an equivalent one-dimensional covariance function can be uniquely 

defined (Matheron, 1973; Mantoglou and Wilson, 1982). After determining the 

equivalent 1-dimensional covariance, a one-dimensional, multivariate process Y(x) can 

be generated along a finite line by using an appropriate autoregressive or other proper 

algorithms. 

 
Fu and Gómez-Hernández (2008), used Markov chain Monte Carlo (McMC) theory to 

develop an algorithm for generation of proper realizations of soil hydrologic parameters 

representing uncertainty of hydrologic properties of soils in simulation of flow and 

solute transport. When generation of realizations directly from desired conditional 

probability distribution function (cpdf) of random parameters is impossible, a Markov 

chain of realizations can be built that will converge to a series drawn from this cpdf.  

According to Markov chain theory, a chain of realizations can be built using an 

appropriate transition kernel that, eventually, will converge to a series of random 

drawings from a pre-specified probability distribution function (pdf). Each member of 

the chain is conditional to the previous member and its value is determined through the 

transition kernel as a function of the previous chain member value. The transition kernel 

is a probability distribution function, much simpler to draw the realizations from than 

the target probability distribution function. The two problems faced in any McMC 

implementation are which transition kernel to use, and how long it will take for the 
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chain to converge (Fu and Gómez-Hernández, 2009). Details of methods for finding a 

proper transition kernel is beyond the scope of this work and can be found in MacKay 

(1998). 

 

Gotovac, et al. (2009) used MCM to obtain reliable flow and travel time statistics in 

highly heterogeneous porous media. They simulated a 2-D steady, linear and 

unidirectional flow in highly heterogeneous domain with lnK variance up to 8. Since 

each Monte-Carlo step presents a potentially serious source of errors, especially for 

highly heterogeneous aquifers in this study, strict accuracy and convergence analysis 

was performed in order to define which resolution level for all flow and transport 

variables is needed to obtain reliable flow and travel time statistics. Based on numerical 

experiments, they concluded that a high resolution level is needed to accurately solve 

the flow equation due to the large variability in hydraulic properties.  

 

Coppola, et al. (2009) investigated the impact of heterogeneity of hydraulic properties 

of a structured soil on various soil water flow processes with different top boundary 

conditions (evaporation and infiltration). Using a numerical solution of the Richards' 

equation in a stochastic framework, the ensemble characteristics and flow dynamics 

were studied for drying and wetting processes observed during a time interval of ten 

days under a series of relatively intense rainfall events. The results of their predictions 

were compared to mean water contents measured over time in several sites at field 

scale. The contribution of the variability of soil structural parameters was studied on the 

variance of the water contents obtained as the main output of the stochastic simulations. 

The contribution of each parameter depends on the sensitivity of the model to the 

parameters and on the flow process being observed. They concluded that the 

contribution of the retention parameters to uncertainty increases during drainage 

processes while the opposite occurs with the hydraulic conductivity parameters. 

 

MCM is a powerful tool in simulating stochastic phenomena while few assumptions are 

required and it is very easy to understand. The main disadvantage of the MCM is its 

computational effort. The probability density function or the histogram of the input 

parameters must be known. A large number of realizations are necessary in order to get 
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a meaningful statistical analysis. A conceptual disadvantage of the MCM is that it 

provides no theoretical insight into physical phenomena. Also, for highly nonlinear 

stochastic differential equations, there is no guarantee that Monte Carlo simulations 

have converged to the exact (ensemble) solution after some large number of 

realizations. Also, there are no well-established computational criteria to predict the 

number of realizations required to achieve the desired accuracy. This becomes 

especially critical in assessing higher order moments or the probability distribution of 

state variables of interest (Yeh, 1992). 

 

2.4.2.2 Analytical stochastic method 

The analytical stochastic method provides an approach which explicitly incorporates the 

effects of natural heterogeneity of soil in simulation and prediction of large-scale 

behaviour of both the flow and solute transport. During the last three decades rapid 

developments have been made in the theoretical research treating groundwater flow and 

solute transport in an analytical probabilistic framework. Among the different methods, 

perturbation and spectral methods are the mostly used in this field. Based on these 

methods, soil heterogeneity is represented by considering hydraulic parameters as 

random spatial variables and the resulting predictions are represented through 

probability distributions or/and in terms of their statistical moments.  

 

Based on the principle of Perturbation method, the input parameter X and the output 

variable Y can be expressed in a power series (usually Taylor series) expansion as, 

 

 2
0 1 2...X X X X= + +ι ι  

 (2.9) 

 

 2
0 1 2 ...Y Y Y Y= + + +ι ι  

 

 (2.10) 

 

where, ι  is a small parameter (smaller that unity). These expressions are incorporated 

into the differential equations of the system to get a set of equations in terms of zero and 

higher-order expressions of the factorι . The equation that is in terms of zero ι  

corresponds to the mean value of parameter or variable. This equation in terms of first-
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order of ι  corresponds to the perturbation of the parameter and variable. In practice 

only two or three terms of series are usually evaluated. It is very important to notice that 

the accuracy of perturbation methods is related to the magnitude of the truncation error 

and then they are most applicable to problems with relatively small variance (Connel 

1995). 

 

Analytical perturbation method was used by Chang and Kemblowski (1994) for 

investigation of the statistical behaviour of both one and three dimensional unsaturated 

flow in heterogeneous porous media in steady-state condition. Also, Liedl (1994) 

developed a stochastic model for water flow in unsaturated soils for transient conditions 

using perturbation theory and simulated vertical infiltration process into a dry sandy 

loam. The simulation results obtained from this model were compared with the result 

obtained with Monte Carlo method for this case. Comparison showed excellent 

agreement between the results obtained from these two different techniques while 

computer time was reduced by more than 90% for stochastic perturbation method.  

 

Another type of analytical method is spectral method which was used for the study of 

the spatial variation of the stochastic parameters as random fields. In this method, 

random fields are characterized by mean and perturbation values and theoretical spatial 

covariance in real space. Statistical characteristics of random parameters in real space 

are transferred to spectral domain. Then statistical relationships between input 

parameters themselves and their relationships with output variables are evaluated using 

spectral representations and their spectral density function. Therefore, this method has 

the advantage that it provides a physical understanding through development of closed 

form equations presenting an explicit relationship between statistical characteristics of 

the input parameters and system response. More description of this technique is found 

in chapter 4 of this thesis.  

 

One of the distinctive features of stochastic analytical methods is that through this 

method, a set of structured stochastic governing equations are developed that specify the 

relation between statistical moments of inputs and output parameters. This feature 

makes the analytical method efficient in terms of time and computational cost, since the 
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statistical properties of the model outputs can be obtained through the solution of 

developed stochastic governing equations rather than statistical computations of the 

results of classical conventional governing equations for different possible realization of 

the input parameters. Encouraged by the attractive features of the analytical methods, 

after exploration of the potential of these methods for incorporation of random 

variability of input parameters into classical governing equations of flow and transport; 

a large number of analytical stochastic models have been developed. In the following a 

detailed review of major published studies on the analytical based stochastic models for 

flow and solute transport is presented. 

 

Bakr et al. (1978) applied a combination of perturbation and spectral method to the 

classical Richard’s equation and developed two stochastic models; one for one-

dimensional and another for three-dimensional water flow in unsaturated soil. The 

comparison of the models developed shows that the variance of hydraulic head for the 

case of three-dimensional flow is about 5% of that in the case of one-dimensional flow. 

This indicates that significant errors could be introduced if a one-dimensional analysis 

is used to study the effects of random variability of soil hydraulic properties which are 

three-dimensional in reality on water flow process. They investigated the influence of 

the inherent spatial variability of aquifer properties on water flow in steady-state 

condition. They represented the hydraulic conductivity parameter as a spatial stochastic 

process and developed a mathematical relationship between the pressure head variance 

and the log hydraulic conductivity. The relationship obtained in this work shows strong 

dependence of the head variance on correlation length of log hydraulic conductivity 

field. This demonstrates the essential role of spatial statistical structure in such 

phenomena. However, the models developed in this work were not applied to a real 

example or case-study which is necessary to ascertain them as reliable models to be 

used for practical situations. 

 

Dagan (1979) used perturbation method together with bounds method to consider the 

effects of soil heterogeneity in the groundwater contamination problem. The bounds 

method establishes upper and lower bounds of the random variable (e.g. effective 

conductivity) of a heterogeneous material when the only information available is the 
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frequency distribution of the variable. These bounds are widely separated for materials 

of high variability, and a self-consistent model which provides an estimate of the 

average conductivity is subsequently adopted.  The advantages of this method are (i) 

providing simple estimates of statistical flow properties with no restrictions imposed on 

the permeability variance, (ii) relying heavily on physical models which facilitate 

understanding of the phenomena. The main limitation of this method is that it is 

assumed the average properties of the material vary slowly in space and time. 

 

Dagan (1982) studied the spread of a solute in formations of random two-and three- 

dimensional structures for transport of solute in large heterogeneous porous media.  He 

proposed an approximate analytical approach and applied it to simple cases in order to 

verify its applicability. The fundamental case of uniform average flow through an 

unbounded formation and of release of small solute body as initial condition was 

investigated. It was explained that in a homogeneous aquifer the centre of gravity of the 

solute body transforms uniformly and solute spread is governed by pore scale 

dispersion. In a heterogeneous aquifer this is no longer the case since streamlines 

become tortuous even if the flow is uniform in the average. In his paper, the various 

possible paths of solute body were determined in probabilistic terms and subsequently 

the distribution of the expectation and variance of concentration in space and time were 

evaluated.  

 

Dagan (1990) studied transport of solute in heterogeneous soils. It was assumed that the 

advection is the only mechanism of solute transport and local dispersion is negligible. It 

was shown that soil heterogeneity causes solute to disperse with higher rate in porous 

media.  

 

Yeh et al. (1985a), developed a mean equation describing large-scale behaviour of water 

flow using stochastic first-order perturbation approach and spectral representation 

techniques. Also general equations were derived relating capillary pressure head 

variations in terms of mean capillary pressure head field. The model was developed 

only for the case of one-dimension vertical infiltration in steady-state condition. Also, 

the model was valid when the scale of heterogeneity is much smaller than the overall 
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scale of the problem. It was assumed that hydrological properties of soil are statistically 

isotropic i.e., the variation of the related parameters in every direction is the same. 

However in real conditions these parameters can be statistically anisotropic. Therefore 

following this work, Yeh et al., (1985b), studied the effect of statistical anisotropy of 

hydraulic properties on head variance and effective hydraulic conductivity considering 

two different cases. In the first case, the saturated hydraulic conductivity was assumed 

to be statistically variable and the pore size distribution parameter (α ) constant.  The 

results from this study showed that the pressure head variance in a steady state 

infiltration in an anisotropic medium depends on the statistical parameters of the media 

and the mean hydraulic gradient while in the case of isotropic assumption, it was shown 

that the variance depends on mean capillary pressure head. They considered another 

case in which both saturated hydraulic conductivity and parameter α  were considered 

to be stochastic processes. The results for this case showed that the head variance could 

be significantly larger depending on the magnitude of the mean capillary pressure, 

especially for the soil with a larger variance of the parameterα . It was concluded that in 

order to apply the result of the stochastic analysis to a field situation, it was necessary to 

invoke the ergodic hypothesis. The ergodic hypothesis implies that the scale of the 

problem under consideration has to be many times larger that the correlation scale of the 

input process. In this way, equivalence between ensemble average and space average 

can be achieved. 

 

Yeh et al. (1985c) applied their previous results to a field situation where relatively 

large amounts of soil hydrologic data were collected so that the stochastic results could 

be tested. The theory developed earlier indicated that the capillary head variance 

increases with its mean value. This means that the variance becomes large as the soil 

becomes dryer. It was also found that the effective unsaturated hydraulic conductivity 

depends on the mean gradient, the orientation of stratification, and the correlation 

scales, and its anisotropy varies substantially when the mean capillary pressure changes 

if the variance of the parameter α is large. The results also showed that the horizontal 

unsaturated hydraulic conductivity of a stratified soil formation could be several orders 

of magnitude greater than the vertical saturated hydraulic conductivity and the vertical 

conductivity decreases considerably as mean capillary pressure increases. As the soil 
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becomes drier, horizontal hydraulic conductivity becomes more important than the 

vertical conductivity causing the migration of water in the horizontal direction. 

 

Gelhar and Axness (1983) presented an analytical stochastic theory for evaluation of 

dispersion due to complex flow in a large-scale transport problem which is called 

macrodispersion. The developed theory was used to study the solute transport 

mechanisems in two specific aquifers. They showed that dispersivities predicted from 

the stochastic theory are consistent with the results of controlled field experiments and 

numerical simulations. Also, they concluded that inclusion of three-dimensionality is 

important in analyzing the macroscopic dispersion process and important features are 

lost when the flow is considered to be two-dimensional. However, the proposed theory 

was applied only to the steady state flow and transport equations and transient condition 

was not considered which is common situation in real problems. 

 

Later on, Gelhar (1986) investigated the applicability of above theory on field-scale 

problems through comparing some results obtained of this method with those obtained 

by Monte-Carlo method. The importance of finding the appropriate value for correlation 

scale and variation of hydraulic conductivity for specific aquifer was illustrated. Also 

range of values for correlation scale and perturbation for different aquifers was 

presented.  

 

Following exploration of strong capability and potential of spectral method in 

incorporation of the effects of spatial variability of random hydraulic parameters in 

transport phenomena, this probabilistic framework was used by Mantoglou and Gelhar 

(1987a) for modelling of large-scale transient unsaturated flow systems. In this work, 

effects of sinks/sources of water such as vapour flow were ignored. The most important 

advantage of this method is that the effective parameters of the large-scale model 

depend on only a few parameters describing the statistics of local variability (i.e., mean, 

variances, and correlation lengths) rather than the actual local soil properties which are 

infinite. However, the general stochastic theory developed requires evaluation of several 

three-dimensional integrals. These integrals are generally very complex and are not 

analytically tractable.  
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Mantoglou and Gelhar (1987b) solved the above mentioned integrals for stratified soil. 

Field observations show that natural soil formations are often stratified. The hydrologic 

properties of stratified soil formations can be visualized as realizations of three-

dimensional, statistically anisotropic random fields, with the correlation lengths in the 

directions parallel to stratification being significantly larger than the correlation length 

in the direction perpendicular to stratification. They presented analytically tractable 

expressions for capillary tension head variance, mean soil moisture content, and 

effective specific soil moisture capacity of transient unsaturated flow in soils. 

Consequently, they tried to make these equations simpler through implementation of 

some constrains related to some specific cases of wetting or drying condition. They 

considered the conditions that in which the random parameters and variables are 

correlated or uncorrelated and developed some simple and transparent relationships 

between capillary tension head variance, mean soil moisture content and effective 

specific soil moisture capacity with statistical parameters of hydraulic properties of soil. 

The attractive feature of these expressions is that they provide a conceptual 

understanding of the effects of variability and type of distribution of input parameters 

on statistical values of output.  

  

Mantoglou and Gelhar (1987c) simplified the general stochastic equations derived in 

Mantoglou and Gelhar (1987a) and presented a set of generic expressions for evaluation 

of the effective hydraulic conductivities for the soils with stratified formation. However, 

these simple expressions are valid at particular range of soil property. They showed that 

effective hydraulic conductivities show significant hysteresis and are anisotropic with 

the degree of anisotropy depending on the mean flow condition (wetting and drying). 

Such hysteresis and anisotropy are produced by the spatial variability of the hydraulic 

soil properties rather than hysteresis or anisotropy of the local parameters.  

 

Vomvoris and Gelhar (1990) used spectrally based perturbation approach to evaluate 

the concentration fluctuations for a steady-state flow field in a three-dimensional 

statistically homogeneous and anisotropic aquifer. The theoretical model developed in 

this work, was used for numerical study of the effects variance of saturated hydraulic 

conductivity and concentration gradient on the variance of solute concentration. They 
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concluded that increase of both the variance of saturated hydraulic conductivity and 

solute concentration gradient causes increase in variance of solute concentration. In 

spite of very good numerical results obtained from the mathematical model developed 

in this work, it has a complex structure that limits the application of this model since the 

model can not be easily solved with analytical techniques.  

 

Van Kooten, (1994) used analytical perturbation technique for developing a model to 

predict mean travelling time and rate of contaminant movement in the confined aquifer. 

The effects of linear non-equilibrium sorption and first-order decay were taken into 

account in this model. He developed asymptotic expression for two different 2D flow 

patterns including flow parallel to the boundary of domain and flow towered pumping 

wells. The performance of the model developed in this work depends on the ratio of the 

advection and dispersion. Accuracy of prediction increases as the ratio of advection and 

dispersion increases. 

 

Kapoor and Gelhar (1994a) studied the movement of contaminants and concentration 

fluctuations in heterogeneous porous media. They focused on the transport mechanisms 

that occur in the saturated zone and considered the groundwater velocity as a spatially 

variable instead of considering a uniform mean velocity. It was concluded that the 

variability in concentrations in this condition is more than when only local dispersion is 

considered in uniform velocity. Also, they showed that the mean and variance of 

concentration field undergo a translation with the mean velocity field and the rate of 

creation of fluctuations increases with the mean concentration gradient and it decreases 

with an increase in the plume scale.  

 

Kapoor and Gelhar (1994b) presented an analytical solution to the equation for 

concentration variance developed in Kapoor and Gelhar (1994a) for a special case of 

multi-dimensional finite-size impulse input. The coefficient of variation that was 

estimated from a bromide tracer test data was compared with their theoretical 

predictions. The coefficient of variation of the concentration was defined as the standard 

deviation of concentration divided by its mean in this work. Both theoretical and 

experimental results showed that the coefficient of variation of concentration decreases 
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with time. Also, they noticed that the regions in which the coefficient of variation is 

small were the regions for which the mean concentration was a good predictor of the 

actual concentration levels in a sample realization of a hydraulic conductivity field. 

 

Russo (1993) used stochastic method for modelling transport coupled with flow in 

unsaturated zone. He combined the Lagrangian formulation developed by Dagan (1984) 

for modelling of solute transport with stochastic theory developed with Yeh et al. 

(1985a, b) for steady-state water flow. Therefore, the statistical moments of solute 

transport were related to hydrological properties of the heterogeneous unsaturated soils.  

Then, though a numerical investigation, they showed that solute spread increases as 

water saturation decreases.  

 

Russo (1995a, b) developed a model based on Lagrangian-stochastic method for 

transient solute transport in vados-zone. He evaluated a macrodispersion coefficient for 

the saturated case and applied this coefficient for the unsaturated case with employing 

the assumption that for a given mean capillary pressure head, water saturation is a 

deterministic constant and log conductivity is a multivariate normal, stationary random 

space function. The proposed approach is applicable to vados zone flow and transport as 

long as, the scale of heterogeneity in the direction of the mean flow is smaller than 

approximately one tenth of the characteristic length of unsaturated flow. Effects of 

water saturation on solute transport, was investigated. He concluded that for a soil with 

a specific formation, the magnitude of macrodispersion in unsaturated flow is larger 

than that in saturated flow, and increases as water saturation decreases.  

 

Yang et al. (1996) derived an analytical solution of macrodispersivity for adsorbing 

solute transported in physically and chemically heterogeneous unsaturated soils under 

the condition of gravity dominated flow and expressed as a function of statistical 

properties of the unsaturated soil and chemical heterogeneities. The unsaturated 

hydraulic conductivity and water content were treated as spatial random functions.  The 

chemical adsorption, described as linear equilibrium isotherm, and the adsorption 

coefficient were represented as a spatial random function. 
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Miralles-Wilhelm and Gelhar (1996) carried out a stochastic analysis of transient 

characteristics of sorption at field scale and showed that sorption macro-kinetics arises 

as a result of physical and chemical heterogeneities of aquifer. They developed an 

analytical expression for the time evaluation of the field scale retardation factor and 

longitudinal macrodispersivity for a reactive solute. They presented a stochastic analysis 

of solute transport and first-order decay for the case of spatially varying porous media 

(hydraulic conductivity), flow (groundwater velocity), and decay rate. 

 

Miralles-Wilheim et al. (1997) developed a three-dimensional analytical model to 

quantify the process of oxygen-limited biodegradation as it occurs at field scales. The 

model incorporated the effects of chemical and microbiological heterogeneities inherent 

to the biodegradation process in a stochastic analysis of coupled transport equations for 

a system consisting of a contaminant and an oxidizing agent (oxygen) in heterogeneous 

and anisotropic aquifers. Natural aquifer variability, equilibrium linear sorption and 

Monod-type kinetics for the microbial population constitute the sources of these 

heterogeneities. Their results showed that in oxygen-limited biodegradation, the 

presence of heterogeneities has strong effects on the longitudinal macrodispersivities for 

contaminant and the dissolved oxygen. But this model does not consider the effects 

interaction between oxygen and hydrocarbon concentration fluctuations. Following this, 

Kemblowski et al. (1997) developed a methodology to obtain a clear understanding of 

mixing-limited biodegradation processes in heterogeneous geologic formations. They 

showed that, their model and particularly the effective biodegradation rate, depend 

strongly on the cross correlation between the oxygen and hydrocarbon concentration 

fluctuations.  

 

Xin and Zhang (1998) presented a close form solution for a one-dimensional transport 

model coupled with biodegradation in heterogeneous porous media. The model consists 

of two reaction-advection equations for nutrient and pollution and a rate equation for 

biomass. The hydrodynamic dispersion was ignored. Uncertainty and spatial variability 

in geochemical and biological parameters were not considered and spatial variability of 

porosity was considered as the only source of randomness in process. Statistics of 

degradation fronts were studied via representations in terms of the travel time 
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probability density function and travelling front profiles. In all above studies, it was 

assumed biomass does not move in the domain. 

 

Miralles-Wilheim et al. (2000) expanded the model presented in Miralles-Wilheim et al. 

(1997) in order to consider transient microbial dynamics. Comparing their results in this 

paper with Miralles-Wilheim et al. (1997) assuming an established active biomass at 

steady state, shows that, the effects of transient microbial growth dynamics on the 

effective retardation factor and macrodispersivities are minor, while modest effects are 

produced in the effective decay rate. Advantages of this model are that it capture the 

most important large-scale system characteristics and has few effective parameters 

which are identifiable from a realistic data set. However, solution of this stochastic 

partial differential equation needs to a proper numerical method due to complex nature 

of these equations. 

 

Zhang and Brusseau (2004) used a stochastic approach to study the effects of 

uncertainty in dissolution and sorption/desorption rate due to soil heterogeneity on 

transport of immiscible organic liquid constituents in water-saturated porous media. In 

this approach a probability density function was used to describe a continuous 

distribution of sorption domains and associated rate coefficients. The initial dissolution 

rate coefficient and the sorption/desorption rate coefficient were considered as random 

parameters and Log-normal probability density functions were used to describe their 

distributions. They concluded that both heterogeneous rate-limited sorption/desorption 

and heterogeneous rate-limited dissolution can significantly increase the time required 

to elute immiscible-liquid constituents from a contaminated porous medium.  

 

Chaudhuri and Sekhar (2005) used a stochastic analytical method similar to that of 

Gelhar and Axness (1983) in order to evaluate coefficient of macrodispersivity in three-

dimensional heterogeneous porous media. Both hydraulic conductivity and local 

dispersion coefficient were considered as random variables, while, in the mathematical 

model developed by Gelhar and Axness (1983), local dispersion coefficient was 

considered as deterministic parameter. 
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From study of the documents presented in this section, it can be concluded that the 

analytical stochastic approaches can be used to provide valuable insight about the 

effects of soil heterogeneity on the behaviour of large-scale unsaturated flow and solute 

transport in soils. However, these approaches are not capable of simulating complicated 

problems; particularly problems related to aquifers with the complex boundary 

conditions. In the case of simulating particular domains of an aquifer, numerical 

approaches are more appropriate than analytical methods. Therefore, the combination of 

analytical methods, for incorporating the uncertainty present in the problem, with 

numerical techniques, for simulating the complex geometry and boundary conditions of 

the aquifer, can be used to overcome the limitations of analytical approaches and to take 

advantage of both analytical and numerical methods. 

 

2.4.2.3 Alternative methods 

Polmann et al. (1991) used FD technique to solve the analytical-based partial 

differential equations developed by Mantouglou and Gelhar (1987a, b, c) for modelling 

of transient water flow through unsaturated soils. The results obtained from their mean 

flow method were compared with those obtained using turning band method (Ababou, 

1988 and Ababou and Gelhar, 1988). Good agreement between the results of these two 

different methods indicates that, the assumptions and simplifications applied for the 

development of mean flow equations from the spectral based method are not critical in 

simulating of water flow. However, in this work, the effects of the spatial gradient of 

mean capillary tension head in evaluation of hydraulic conductivity were ignored. The 

same problem was solved by Aguirre and Haghighi (2002) using a numerical FE 

technique and they obtained different results from those gained by Polmann et al. 

(1991). In this work, the effects of the spatial gradient of mean capillary tension were 

considered. Following this, Aguirre and Haghighi (2003) worked on further 

development of their model and tried to consider heterogeneity in their FE model. 

However their model had the shortcomings of not considering some of the critical 

mechanisms affecting the fate of solute, such as chemical reaction and molecular 

diffusion. Additional drawback of their model could also be that it could not be applied 

to some practical problems, because it lacks having a versatile top boundary condition 

and considering the effects of atmospheric evaporation.  
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3.1 Introduction 

 

From a geo-environmental perspective, the most common stochastic problem involves 

one or more differential equations with random coefficients. These coefficients 

represent the properties of the system under investigation. They can be thought of as 

random variables or more accurately and with an increasing level of complexity, as 

random processes with a specified probability structure. Mathematically the problem 

can be formulated as  

 

 u fΛ =  
 

 (3.1) 
 

 

where Λ  is a stochastic differential operator, u is the random response, and f  is the 

possibly random excitation.   
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The problem in dealing with stochastic equations is two-fold. Firstly, the random 

properties of the system must be modelled adequately as random variables or processes, 

with a realistic probability distribution. A good treatment of this modelling phase is 

presented by Gelhar and Axness (1983), Gelhar (1993) and Russo et al. (1994). 

Secondly, the resulting differential equation must be solved and response quantities of 

interest obtained, usually as determined by their second order statistics. The solutions to 

most of such differential equations are too complex for analytical methods and are 

commonly obtained using approximate numerical techniques.  

 

The problems dealt with in this study involve concepts of mathematics and probability. 

It is both necessary and instructive to introduce the mathematical concepts which are 

used in the sequel. So the primary focus of this chapter is on stochastic processes and 

random fields that provide the tools needed to represent the continuous variation of 

parameters in space. Then, it is explained that how stochastic spectral method is applied 

to mathematical models of stochastic processes to obtain the related stochastic 

differential equations (SDEs). Finally, a description of finite element and finite 

difference procedures for finding numerical solution of resulted stochastic partial 

differential equations is presented.     

 

 

3.2 Probability and random variables 

 

A random variable X is defined in terms of its cumulative probability distribution 

function (cdf) as  

 

 ( ) [ ]XF x P X x= ≤  
 

 (3.2) 
 

which denotes the probability that the random variable X is less than some specified 

value x. In this section, Capital letters are used to denote random quantities and 

lowercase letters to identify deterministic numerical values. In an applied sense, 

probability is usually thought of as the relative frequency of occurrence, expressed as  

 

 [ ] number of occurence withX x

totalnumber of occurences
P X x

≤≤ =  
 

 (3.3) 
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The cdf is a non-decreasing function, ranging from 0 to 1 as X goes from −∞  to∞ .  For 

a continuous random variable the probability density function (pdf) is 

 

  ( )X

dF
f x

dx
=  

 
 (3.4) 

 
 

which can be expressed in terms of the probability that x is in some small interval xδ  

 

 ( ) [ ]xf x x P x X x x= < < +δ δ  
 

 (3.5) 
 

 

By integrating Equation (3.4), 

 

 ( ) ( )
x

X XF x f u du
−∞

= ∫  
 

 (3.6) 
 

 

which the area under probability density function is 1 ( ( ) 1XF ∞ = ). 

Random variables are often characterized by their moments; for example, the expected 

value, or mean of X is found by taking the first moment  

 

 [ ] ( )X XE X xf x dx
∞

−∞

= ≡ ∫µ  
 

 (3.7) 
 

 

which is a measure of central tendency of random variable. The second moment about 

the mean, the variance, is   

 

 ( ) ( ) ( )2 22
X X XE X x f x dx

∞

−∞

 = − ≡ −
  ∫σ µ µ  

 
 (3.8) 

 
 

When more than one random variable is analysed it is necessary to consider how the 

variables are interrelated probabilistically. For example, if X1 and X2 are two random 

variables, then their joint distribution function is 

  ( ) [ ]1 2 1 1 2 2, andF x x P X x X x= ≤ ≤  
 

 (3.9) 
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and the joint probability density function is 

 

  ( ) ( )2
1 2

1 2
1 2

,
,

F x x
f x x

x x

∂
=

∂ ∂
 

 
 (3.10) 

 
 

For continuous random variables, the conditional probability density function of X1, 

given X2=x2, is defined by 

 

 
( ) ( )

( )

( )
( )

1 2 1 2
1 2

2 2
1 2 1

, ,
|

,

f x x f x x
f x x

f x
f x x dx

∞

−∞

= =

∫
 

 

 
 (3.11) 

 

 

where ( )2 2f x denotes the marginal probability density function of X2 defined as 

 

 ( ) ( )2 2 1 2 1,f x f x x dx
∞

−∞

= ∫  

 

 
 (3.12) 

 

 

The covariance function of a stochastic process as function of time, X(t1) and X(t2), is  

 

 
( ) ( ) ( )( ) ( ) ( )( )1 2 1 1 2 2cov , ( )t t E X t t X t t Rµ µ τ = − − =   

 

 
 (3.13) 

 
 

When t1=t2, Equation (3.13) gives the variance the process. The covariance function is a 

measure of the degree of linear relationship between X(t1) and X(t2).   
 

If a process is stationary, it is virtually always possible to describe the process in terms 

of a kind of Fourier representation. A stationary process is one in which the 

probabilistic descriptions become independent of origin of independent variable (time 

or space). Consider a zero-mean stationary process, ( )X t ; then, the spectral 

representation of the process is  

 ( ) ( )iktX t e dZ k
∞

−∞

= ∫
�� �

 

 

 
 (3.14) 
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where, k
�

 represents wave number vector. This is a Fourier-Stieltjes integral in which Z 

is a stochastic process having the properties that 

 

 

( )
( ) ( )
( ) ( ) ( )
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1 2 1 2

*
1 2 1 2

0

0;

;

E dZ k

E dZ k dZ k k k

E dZ k dZ k S k dk k k k
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  = ≠
 

  = ≠ =
 

�

� � � �
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 (3.15) 

 

 

where, *Z  is conjugate of Z and S is spectral density function of random process Z. 

 

In this work, the spectral representation theorem is accepted as a well-established 

mathematical theorem and the concept and details of this theorem can be found in 

Priestley (1981) and Lumley and Panofsky (1964). 

 

For a zero-mean stationary stochastic process X(t), the covariance function can be 

written as (Lumley and Panofsky, 1964) 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

*

*

*

ik t ik t

i k k t k

R E X t X t

E e dZ k e dZ k

e E dZ k dZ k

τ

τ

τ τ
∞ ∞

+ ′−

−∞ −∞

∞ ∞
 ′− +
 

−∞ −∞
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 
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 ′=
 
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 (3.16) 

 

 

The first line on the right side of Equation (3.16) results because X is real, so that it is 

equal to its complex conjugate. The second line is simply a substitution of the 

representation in Equation (3.14). The third line follows from the interchange of the 

order of expectation and integration, noting that the exponential terms are deterministic. 

When X is stationary process, its covariance function must be independent of t, as a 

result, the term involving t and the last line of Equation (3.16) must cancel out as a 

result of the integration. This can be expressed as (Lumley and Panofsky, 1964) 

 

 ( ) ( ) ( ) ( )E dZ k dZ k S k k k dkdkδ ′ ′ ′= −
 

� � � � � � �

 

 

 
 (3.17) 
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where δ  is a Dirac delta function. The covariance function in Equation (3.16) then 

reduces to 

 

 ( ) ( )ikR e S k dkττ
∞

−∞

= ∫
� � � �

 

 

 
 (3.18) 

 

 
which shows covariance function can be written as the inverse Fourier transform of the 
spectrum. The corresponding transform relationship for the spectrum is then 
  

 ( ) ( )1

2
ikS k e R dτ τ τ

π

∞
−

−∞

= ∫
�

ɺɺ

�

 

 

 
 (3.19) 

 

  

Equations (3.18) and (3.19) are classical results for stationary stochastic processes that 

show that the covariance and spectrum contain essentially equivalent information. 

These mathematical relationships are used for solution of stochastic partial differential 

equations using spectral method that is explained briefly in the following section in 

general case and in chapter 4 in the case of flow and solute transport. 

 

 

3.3 Stochastic differential equation 

 

In order to illustrate the approach that has been used to treat SDEs, consider a simple 

SDE of the form 

 

 
dX

AX Y
dt

= − +  
 

 (3.20) 
 

 

If A is a constant, then this is a stochastic differential equation with a random non-

homogeneous part. The second-moment solution of this equation can be approached by 

expressing X and Y as their expected values plus a zero-mean perturbation, that is, 

  

 
[ ] [ ]
[ ] [ ]

; ; 0

; ; 0

X X x E X X E x

Y Y y E Y Y Y y

= + = =

= + = =
 

 
 (3.21) 
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By using this decompositions in Equation (3.9), 

 

 
dX dx

AX Ax Y y
dt dt

+ = − − + +  
 

 (3.22) 
 

 

and by taking the expected value of this equation, the equation describing the mean 

becomes 

 

 
dX

AX Y
dt

= − +  
 

 (3.23) 
 

 

and when the mean equation is subtracted from Equation (3.22), it results in the 

following equation for the zero-mean perturbations: 

 

 
dx

Ax y
dt

+ =  
 

 (3.24) 
 

 

Note that no approximations have been introduced in order to decompose the problem 

into this form involving differential equations for the mean and perturbation. 

 

The perturbation equation, considers, first, the possibility of a stationary solution for X, 

given that Y is stationary process. Then, using the spectral representation for x and y, 

 

 0ikt
x x ye ikdZ AdZ dZ

∞

−∞

 + − = ∫
�� �

 
 

 (3.25) 
 

 

Then, by the uniqueness of the spectral representation, it follows that (Gelhar 1993) 

 

 ( )
y

x

dZ
dZ

A ik
=

+
�  

 
 (3.26) 

 
 

and multiplying xdZ  by its complex conjugate, it follows that the spectra of x and y are 

related by 
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 ( ) ( )
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=
+

yy
xx
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A k
 

 
 (3.27) 

 
 

where, xxS  and yyS  are the spectral density functions of x and y respectively. 

 

The perturbation equation is treated analytically to develop a set of algebraic equations 

for evaluation of variance of response variables. The mean equation can be solved 

directly as a deterministic ordinary differential equation, given the expected value of Y. 

Finite element method can be used to solve the mean equation.  

 

 

3.4 Finite element method 

 

The finite element method is a numerical analysis technique for obtaining approximate 

solutions to a wide variety of engineering problems (Huebner et al. 2001). This method 

was designed to study stresses in airframe structures and then adapted to a wider field of 

mechanics. Finite elements are used to solve a complex problem by dividing the 

problem into smaller problems and solving them separately. Thus this method looks at a 

model as made up of small inter-connected sub-regions or elements. The idea of the 

finite element method is that a “solution region” i.e., a model can be analysed or 

approximated by replacing the region with a finite number of distinct elements. These 

elements can then be placed in different ways to make up complex problems. 

 

3.4.1 Finite element procedure 

In general the solution procedure for a continuum problem using the finite element 

method involves the following basic steps (Cheung et al. 1996): 

 

i) Discretising the problem domain into a number of sub-regions known as 

finite elements. The field variables are assigned at the nodes of each element 

with the nodal values of these field variables being the unknown parameters 

of the problem.  

ii)  Selection of element interpolation functions to represent variation of the 

field variables over the element. 

iii)  Evaluation of individual element properties. This involves approximating the 

governing differential equations using a simpler system of algebraic 
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equations over the element domain. The approximation is commonly 

achieved using either variational techniques or weighted residual 

approaches. Galerkin's weighted residual approach is adopted in this 

research for its simplicity and accuracy. 

iv) Formation of elements stiffness matrix. 

v) Assembling the element properties to obtain the system equations that will 

represent the overall system. 

vi) Imposing boundary conditions to modify the global system of equations 

using the known values of the nodal variables at the continuum boundary. 

vii)  Solving the system of equations for the unknown nodal variables using 

conventional numerical analysis techniques. 

viii)  Finally, further computations to evaluate second-order moment of system 

response and additional important parameters such as mean soil water 

content and other physically meaningful quantities from the computed nodal 

variables and element properties. 

 

 

3.4.2 General formulation 

 

Basics of FE Formulation 

The basic idea behind the finite element method is to divide the structure, body or 

region being analysed into a suitable number of elements with associated nodes and to 

choose the most appropriate element type to model most closely the actual physical 

behaviour.  The number of elements used and their variation in size and type within a 

given region are primarily matters of engineering judgment.  These elements may be 

one, two or three dimensional.  Discretisation results in the specification of the finite 

element mesh and involves two distinct but related tasks: nodes definitions and 

elements definitions.  The nodes are always numbered consecutively from one to the 

total number of nodes present.  The nodal numbering pattern has a strong influence on 

execution time in a computer program (for large problems).  Usually the nodes are 

numbered in such a way so as to minimise the bandwidth of the assemblage matrix. 

Node definition completes when the coordinates of each of the nodes are also specified.  

The element numbering scheme is completely arbitrary.  To define the elements, one 

needs to number them consecutively from one to the maximum number of the elements 

present. 
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The nodes associated with each element must be specified.  In addition, the material 

property data to be used for each element should be specified (Stasa 1985).  The choice 

of appropriate element for a particular problem is one of the major tasks that must be 

carried out by analyst.  However, the elements must be small enough to give usable 

results and yet large enough to reduce computational effort.  Small elements are 

generally desirable where the results are changing rapidly, such as where changes in 

geometry occur; large elements can be used where results are relatively constant (Daryl 

2002).  Figure 3.1 shows three-node triangular element and four-node tetrahedral 

element with their nodal coordinate, which have been used in the developed FE 

programs for this work.  

 
 

(a) 

 

 

(b) 

Figure 3.1 (a) Linear triangular element with global coordinates, (b) linear tetrahedral element 

with global coordinates. 

For the finite element procedure a set of so called shape functions has to be considered 

so that they exclusively define the state of unknown variable of the problem within each 

element in terms of its nodal values. The shape functions for a typical three-node 

element are given as (Stasa 1985) 
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where  
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 (3.31) 

 

and ( )eA  is the area of the element which is evaluated as 

 

 ( )

( ) ( )

( ) ( )

( ) ( )

1
1

1
2

1

e e
i i

e e e
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A x z
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The derivatives of the interpolation functions are 
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 (3.33) 

 

 

The shape functions for a typical tetrahedral four-node element are given as (Stasa 

1985) 

 

 ( ) ( ) 11 21 31 41, ,e
iN x y z m m x m y m z= + + +  (3.34) 
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 ( ) ( ) 12 22 32 42, ,e
jN x y z m m x m y m z= + + +  (3.35) 

 

 ( ) ( ) 13 23 33 43, ,e
kN x y z m m x m y m z= + + +  (3.36) 

 

 ( ) ( ) 14 24 34 44, ,e
mN x y z m m x m y m z= + + +  (3.37) 

 

where  
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 (3.38) 

 

and so forth. ( )eV  is the volume of the tetrahedron which is evaluated as 

 

 ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

11
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e e e
i i i

e e e
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e e e
k k k
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x y z
V

x y z
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=  (3.39) 

 

 
The unknown variable of the problem, x, at any point within an element can be 

aproximated in terms of their nodal values. 

 

 { } [ ]{ }
nodal

x N x=  (3.40) 

 
The approximation of the unknown of the problem by Equation (3.40) makes it possible 

to formulate the equilibrium equation for each element which can then be used to 

describe the characteristic of the element such as element’s hydrological behaviour. The 

element characteristic matrices extracted by formulation of the equilibrium equation 

over each linear triangular element can be readily computed using the following 

integration formula (Stasa, 1984) 
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and it can be computed over each linear tetrahedral element using the following 

integration formula (Stasa, 1984) 

 

 
( )( ) ( )( ) ( )( ) ( )( ) ( )

( )
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3 !e
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e e e e e
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A single governing equation with only one independent variable can be considered as: 

 

 [ ] 0)( =xTf         in             Ω                                                                                    (3.43) 

 

where, 

 

T   : the function sought, which is function of only x. 

Ω   : the domain region governed by Equation (3.43). 

 

In addition, the boundary conditions can be specified in the form: 

 

 

[ ] 0)(1 =xTg         in             1Γ                                                                                

[ ] 0)(2 =xTg         in             2Γ       

 

(3.44) 

 

where, 1Γ , 2Γ , include only those parts of Ω  that are on the boundary.  An 

approximation solution to Equation (3.43) with boundary conditions (3.44) can be 

presented as an approximate function T ′ : 

 ,,;( 21 ccxTT ′=′ ... ), nc   =   )(
1

xNc i

n

i
i∑

=

                                                     (3.45) 

which, has one or more unknown parameters c1, c2,….., cn and that satisfies the 

boundary conditions given by Equation (3.44) exactly.  The major requirement placed 

on the trial functions is that they should be admissible functions:  that is, the trial 

functions are continuous over the domain of interest and satisfy the boundary conditions 

exactly.  In addition, the trial functions should be selected to satisfy the physics of the 
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problem in general sense (Hutton 2004).   If this approximation solution T ′  is 

substituted into Equation (3.43) for )(xT , it should not be surprising that it will not 

necessarily satisfy this equation exactly; there may be some residual error 

,,;( 21 ccxR ... ), nc .  Therefore it can be written as follows: 

 

 ,,;([ 21 ccxTf ′ … )], nc  = ,,;( 21 ccxR ... ), nc                                (3.46) 

 

The method of weighted residual requires that the parameters ,,;( 21 ccx ... ), nc , be 

determined by satisfying: 

 

 ,,;()( 21∫
Ω

ccxRxwi ... 0), =dxcn         ,2,1=i ... n,                    (3.47) 

 

where, the function )(xwi are the n arbitrary weighting functions.  The method of 

weighted residuals is useful for developing the element equations and allows the finite 

element method to be applied directly to any differential equation (Daryl 2002).  

However, there are four particular methods which can be used.  These are: 

 

1. Point collocation. 

2. Subdomain collocation. 

3. Least squares. 

4. Galerkin. 

 

Galerkin’s method is most widely used in finite element analysis (Stasa 1985).  The 

success of the Galerkin finite element method is largely due to the best approximation 

result (Brooks and Hughes 1982).  In the Galerkin weighted residual method, the trial 

functions )(xNi  themselves are used as weighting functions or: 

 

 )()( xNxw ii =      (3.48) 

 

So that Equation (3.47) then becomes: 

 

 ,,,()( 21 ccxRxNi∫
Ω

... 0), =dxcn       for  1=i  to n                                      (3.49) 
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Because there is one trial function for each unknown parameter, Equation (3.49) 

generates n such equations that, when solved, yield the values of the unknown 

parameters, c1, c2,…, cn.  Obviously, the values obtained for the ci’s are dependent on 

the choice of trial functions.  In this work, Galerkin method has been used in 

conjunction with the finite element model 

  

3.4.3 Determination of the local element characteristics 

Element characteristics mean the element stiffness matrices and nodal unknown vectors. 

The word “local” refers to the fact that the element characteristics are derived in a local 

reference system, which usually change from element to element and are determined 

numerically for each element.  The element characteristics, the local stiffness matrices 

and nodal unknown vectors may be determined numerically for each element (Stasa 

1985). 

 

3.4.4 Transformation of the element characteristics 

The element characteristics are transformed from the local coordinate system to the 

global system.  The transformation of the local element characteristics needs to be 

performed only when the unknown parameter function is a vector such as the (nodal) 

pore water pressure, and then only when the local coordinate system is used (Stasa 

1985). 

 
 
3.4.5 Assemblage of the global element characteristics 

The global element stiffness matrices and global element nodal force vectors must be 

assembled to form the assemblage element stiffness matrix and nodal unknown vector 

to find the properties of the overall system modelled by the network of elements.  The 

matrix equations for the system have the same form as the equations for an individual 

element except that they contain many more terms because they include all nodes.  The 

unknown parameters functions have the same value at any given node regardless of the 

element containing (Stasa 1985).   

 

3.4.6 Imposition of the boundary conditions 

The boundary conditions of the problem must be considered to modify the system of 

equations and prepare them for the solution phase. At this stage, known nodal values of 

the dependent variables are imposed (Huebner et al. 2001). 
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3.4.7 Solution 

The assembly process gives a set of simultaneous equations that must be solved to 

obtain the unknown nodal values of the problem. For engineering applications of the 

finite element formulation, the material behaviour can be assumed to be linear or 

nonlinear depending on the material parameters used in the assembly of stiffness matrix. 

For each case the solution may be obtained by any of the methods suitable to a system 

of algebraic equations.  

In linear finite element analysis, one of the most popular methods to solve the system of 

algebraic equations is direct Gauss elimination method. However for nonlinear 

problems a direct solution of the system of equations is generally impossible and an 

iterative scheme must be adopted (Owen and Hinton 1980).  

 

3.4.7.1 Gaussian elimination and back substitution  

Gaussian elimination is the name given to a well known method of solving 

simultaneous equations by successively eliminating unknowns.  In this work, Gaussian 

elimination and back substitution method of solution has been used to find the final 

values of unknown nodal vectors for linear problems; it has also been used to solve the 

system of equations at every iteration, for nonlinear problems.  The general concept of 

Gaussian elimination and back substitution can be found in Chandrupatla and 

Belegundu (1991) and Klaus (1996). 

 
 
 

3.5 Finite difference method 
  

In this work, both the finite element and finite difference methods are used to solve a 

time dependent contaminant transport problem.  The Finite difference method is another 

numerical technique frequently used to obtain approximate solutions of problems 

governed by differential equations.  The finite difference method is based on the 

definition of the derivative of a function )(tf  that is:  

 

 
t

tfttf

dt

tdf
t ∆

−∆+= →∆
)()(

lim
)(

0                           
 

 (3.50) 
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where, t is the independent variable.  In the finite difference method, as implied by its 

name, derivatives are calculated by an equation like Equation (3.50) using small, but 

finite values of t∆ .  So an approximation to the first derivative is obtained by omitting 

the limiting process (Neylon 1994). 

 

 
t

tfttf

dt

tdf

∆
−∆+≈ )()()(                           

 
 (3.51) 

 
 

A differential equation such as: 

 

 100
)( ≤≤=+ tx

dt

tdf
 

 
 (3.52) 

 
                                                                                         

is expressed as:  

 

 0
)()( =+

∆
−∆+

x
t

tfttf
 

 
 (3.53) 

 
 

In the finite difference method, Equation (3.53) can be written as: 

 

 )()()( txtfttf ∆−=∆+  
 

 (3.54) 
 

 

 

The solution of a first order differential equation contains one constant of integration.   

The constant of integration must be determined such that one condition (a boundary 

condition or an initial condition) is satisfied.  If it is assumed that the specified 

condition is t0=A =  constant and an integration step t∆  is chosen to be a small constant 

value (the integration step is not required to be constant) therefore it can be written as: 

 

 nittt ii ,01 =∆+=+                                 
 

 (3.55) 
 

 

where, n is the total number of steps required to cover the domain.  Equation (3.54) is 

then: 
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 niAftxff oiii ,0)(1 ==∆+=+                                 
 

 (3.56) 
 

 

The above equation is known as a recurrence relation and provides an approximation to 

the values of unknown function )(tf  at a number of discrete points in the domain of the 

problem (Hutton 2004).  In the finite difference method, approximations such as that 

presented by Equation (3.56) are applied to differential equation at each grid point, with 

t∆  being the time increment (in this study).  This results in an equation for each node, 

involving the approximation to the solution variables at all nodes. Approximation 

presented by Equation (3.51) is known as a forward difference.  Other finite difference 

approximations are the backward difference 

 

 
t
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dt

tdf
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 (3.57) 
 

 

and the central difference 

 

 
t
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tdf
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 (3.58) 

 
 

In fact, one somewhat practical way to assess the accuracy of the solution is to compare 

the results for two different steps and if the results for the two different steps are within 

some acceptable tolerance, a good approximation to the true solution has been obtained.  

The error in the approximation (i.e., Equations 3.53, 3.54, 3.55) is termed the truncation 

error.  An expression for this is calculated by performing a Taylor series expansion on 

the )( ttf ∆+ term about t (Neylon 1994). 



Chapter (4)                                                                                    Stochastic Methodology 

 67 
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STOCHASTIC METHODOLOGY 
 

 

 

 

 

4.1 Introduction 

 

Choosing an appropriate model is essential in simulation of water flow and solute 

transport in soils. The model must comprehensively describe physical and chemical 

behaviours of the system. Also, it must represent all deferent characteristics of the 

system. Hence, water flow and solute transport models in the soil must include all 

mechanisms of flow, and consider heterogeneity of the structure and formation of soils.      

 

In this chapter, the classical mathematical models for water flow and solute transport in 

unsaturated soils are presented. These classical equations include the mechanisms of 

flow and solute transport, and they are applicable to local scale processes in which 

variations of hydraulic parameters are negligible. Variations of hydraulic parameters 

due to heterogeneous nature of soil are incorporated in theses models using analytical 
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stochastic methodology, and then related large-scale mathematical models are 

developed. Hydraulic conductivity, moisture retention parameters and macrodispersion 

coefficient are defined as effective coefficients in the large-scale models. Finally, 

spectral method used to evaluate these effective coefficients and the variance of water 

pressure head and solute concentration is explained.  
 

 

4.2 Classical governing equation for water flow 

 

The driving potential for flow of water is related to three primary components of 

energy, namely gravitational, pressure, and velocity. Total energy of an arbitrary point 

A, in the water phase, for flow of water is written as (Fredlund and Rahardjo, 1993)  

 

 
2

2
w w w w

w
w

M u M v
E M gz

ρ
= + +  (4.1) 

 

where E  is total energy at point A [M] [L]2[T] -2, wM  is mass of water at point A [M], 

g  is gravitational acceleration [L][T]-2, z  is elevation of point A above an arbitrary 

datum [L], wu  is pore water pressure at point A [M][L]-1[T] -2, wρ  is density of water 

[M][L] -3, and wv  is the velocity of water at point A [L][T]-1. 

 

In Equation (4.1), the term wM gz is the gravitational energy, w w

w

M u

ρ
 is the component 

of energy due to the water pressure at point A and 
2

2
w wM v

is the part of energy due to the 

velocity of water at the point A. 

                                                 

Total hydraulic head at a certain point is defined as the total driving energy per unit 

weight of water at that point. Therefore, total head can be obtained through dividing 

Equation (4.1) by the weight of water (wM g ) at the point under consideration as 
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where wh  is the hydraulic head or total head [L]. 

 

Since the velocity head in the soil is negligible in comparison with the gravitational and 

pressure heads, the expression for the hydraulic head at any point in the soil mass can be 

presented as 

 

 w
w

w

u
h z

gρ
= +  (4.3) 

 

It is the gradient of hydraulic head that causes flow in soil. Darcy (1856) postulated the 

following equation to express the rate of water flow through a mass of soil 

 

 
( )

( )i
i

z
q K

x

ψψ ∂ +=
∂

 (4.4) 

 

where iq  is the specific discharge in direction i [L][T] -1, ψ  is the capillary tension head 

[L], K  is the unsaturated hydraulic conductivity [L][T]-1. 

 

Darcy’s equation is mainly applicable for saturated soils. However Equation (4.4) is 

used for soils in unsaturated condition as well. Fredlund and Rahardjo (1993) 

investigated the validity and applicability of Darcy’s equation in unsaturated soils, 

based on the findings of Childs (1969) and experimental results presented by Childs and 

Collis-George, (1950).   

 

The conservation of mass law for the soil moisture leads to the governing partial 

differential equation for water movement in unsaturated medium presented as Equation 

(4.5).  In derivation of Equation (4.5), it has been assumed that the soil matrix is rigid 

(i.e., incompressible) and sink-source terms have been ignored. 
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                  1,2,3i =  (4.5) 

where θ  is the soil volumetric moisture content and 1 2 3, ,x x x  are coordinates in a 

Cartesian system. 

 

Substituting Equation (4.4) into Equation (4.5) yields the unsaturated flow equation as 

 

 
( )

[ ( ) ]
i i

z
K

t x x

θ ψψ∂ ∂ ∂ +− =
∂ ∂ ∂

 (4.6) 

 

Equation (4.6) is applicable to small–scale problems in which the spatial variability is 

negligible.  

 

The coefficient of permeability which is a function of volume-mass properties of the 

soil is obtained at each point of the domain under consideration based on parameters 

such as degree of saturation or matric suction. Different functional forms have been 

proposed for coefficient of permeability relationships in unsaturated soils. Gardner 

(1958) has proposed the following simple parameterization for the coefficient of 

permeability 

 

 ln ( ) ln sK Kψ αψ= −  (4.7) 

 

where sK  is saturated hydraulic conductivity [L][T] -1, and  α  is a scaling parameter 

[L] -1, equals to the slope of curve of ( )ln K ψ  versus ψ . 

 

The coefficient of permeability with respect to water phase is a measure of the space 

available for water to flow through the soil. The coefficient of permeability depends on 

the properties of the fluid and the properties of the porous medium. Different types of 

fluid (e.g., water and oil) or different types of soil (e.g., sand and clay) produce different 

values for the coefficient of permeability. Also, water flow is controlled by soil 

moisture capacity coefficient. This coefficient is the slope of retention curve of the soil. 
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The soil moisture retention curve presents relationship between soil moisture content 

and the capillary tension head. This curve is a characteristic for different types of soil. 

This can be used to predict soil water storage capability. The water holding capacity of 

any soil is due to the porosity and the nature of the bonding in the soil. Then spatial 

variability of soil type and consequently spatial variability of soil characteristic in 

natural soil cause significant variation in the coefficients of permeability and moisture 

capacity. These result in non-applicability of Equation (4.6) for large-scale problems 

and consequently show essential need to incorporate the effects of these variations in 

the related governing equation. In the following section, the method which has been 

proposed by Mantoglou and Gelhar (1987a), for incorporating variability in hydraulic 

properties of soil into governing equation of water flow in a stochastic framework, will 

be explained. 

 

 

4.3 Large-scale governing equation for water flow  

 

Basic hydraulic parameters of soil (i.e., ,sK α  and soil specific moisture capacity C) 

vary randomly in space domain. These parameters can be defined by stochastic 

representations. They are considered as realizations of random fields. Realization is the 

profile of random variable through dimension where it varies. This dimension could be 

time or space. It is assumed that these random fields are three-dimensional, spatially 

cross-correlated, and are composed of two components, mean and fluctuations 

  

 ln sK F f= +  (4.8) 

 

 A aα = +  (4.9) 

 

 C γ= Γ +  (4.10) 

 

The first terms on right hand-side of Equations (4.8), (4.9) and (4.10) are assumed to be 

deterministic, while the second terms are three-dimensional zero mean second-order 

stationary random fields. A stationary random field is one in which the probabilistic 
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descriptions become independent of time origin and they are invariant under shifts of 

the time origin. These random variables are inputs of governing partial deferential 

equation of flow. Classical differential equation with random parameters, coefficients, 

boundaries and initial values is called stochastic deferential equation (SDE). The output 

of a SDE (here,ψ ), is random. Therefore it is possible to express ψ  as 

 

 H hψ = +  (4.11) 

 

where, H  is the mean of ψ  and h  is fluctuations around the mean. The basic 

assumptions are: (i) the fluctuations , ,f a γ  and h  are relatively small, and (ii) the scale 

of variations of the mean values , ,F A Γ  and H  is much larger than the scale of 

variations of the fluctuations , ,f a γ  andh .  

 

The large-scale model of transient unsaturated flow is obtained by averaging the small-

scale governing equation over the ensemble of possible realizations of the stochastic 

processes ,f a  andγ . Therefore, expected value of small-scale equation with respect to 

fluctuations is calculated. Taking the expected value of Equation (4.6) with respect to 

, ,f a  andγ , yields 

 

 
{ [ ]} ( )

{ [ ]}
i i

E z
E K

t x x

θ ψ∂ ∂ ∂ +− =
∂ ∂ ∂

 (4.12) 

 

Substituting Equations (4.8), (4.9) and (4.11) into Equation (4.7) yields,  

 

 exp( )mK K f Ah Ha ah= − − −  (4.13) 

 

where 

 

 F AH AH
m GK e e K e− −= =  (4.14) 
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and substituting Equation (4.11) into the term related to spatial rate of head pressure 

yields 

 
( ) ( )

i
i i i

z H h z h
J

x x x

ψ∂ + ∂ + + ∂= = +
∂ ∂ ∂

 (4.15) 

 

where ( )i iJ H z x= ∂ + ∂ is the mean hydraulic gradient in the direction ix . Using 

Equations (4.4), (4.13) and (4.15), the expected value in the right-hand side of Equation 

(4.12) can be written as follows 

 

 [ ] ( )expi m i
i

h
E q K E f Ah Ha ah J

x

  ∂= − − − +  ∂   
 (4.16) 

 

In order to expand the exponential terms, Taylor series can be used as 

 

 ( ) ( ) ( )21
exp 1

2
f Ah Ha ah f Ah Ha ah f Ah Ha ah− − − = + − − − + − − − +⋯  (4.17) 

 

 As it is assumed that fluctuations are small, the third- and higher-order terms can be 

neglected. Substituting Equation (4.17) into Equation (4.16) yields 

 

 [ ] ( ) ( )21
1 ( )

2i m i
i

h
E q K J E ah E f Ah Ha E f Ah Ha

x

  ∂   = − + − − + − −     ∂    
 (4.18) 

 

where expected values due to fluctuations of third- or higher-order terms have been 

neglected. Effective hydraulic conductivity is defined as having the following property 

Mantoglou and Gelhar (1987a) 

 

 [ ] ˆ
i ij iE q K J=                        i=1,2,3   no sum on i   (4.19) 
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This definition of effective hydraulic conductivity helps to express the mean flow 

Equation (4.12) in a form similar to the small-scale governing Equation (4.6). 

Incorporating Equation (4.18) into Equation (4.19) gives 

 

 
2

ˆ 1 ( )
2

i
ij m

i

K K E ah
J

εσ τ 
= − + + 

 
                                     i=1, 2, 3 (4.20) 

 

where 

 

 
( )

[ ] [ ] [ ]

22

2 2 2 2 2 2 2 2f a

E f Ah Ha

A E h H A E fh H E fa AH E ah

εσ

σ σ

 = − −
 

 = + + − − + 

 (4.21) 

 

 ( )i
i i i

h h h
E f Ah Ha E f H E a

x x x
τ

     ∂ ∂ ∂= − − = −     ∂ ∂ ∂     
 (4.22) 

 

where,  2
fσ  is the variance of ln sK and 2

aσ  is variance of α . 

 

It is assumed that terms inside the parenthesis in Equation (4.20) are essentially the first 

two terms of a Taylor series expansion of an exponential term. By converting these 

terms to the exponential term, Equation (4.20) gives 

 

 
2

ˆ exp
2

i
ij M

i

K K
J

εσ τ 
= + 

 
            no sum on i (4.23) 

 

where [ ]{ }exp .M mK K E ah= −  

 

Equation (4.23) calculates the effective hydraulic conductivity for large scale flow 

governing equation. 
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Now left-hand side of Equation (4.12) is examined. The expected value [ ]E θ  

represents the mean soil moisture content [ ]EΘ θ= . For small fluctuations, h, it holds 

Mantoglou and Gelhar (1987b)  

 ( ) ( )H Chθ θ ψ θ= ≈ −  (4.24) 

 

where 

 

 HC ψ
θ
ψ =

∂= −
∂

 (4.25) 

 

Substituting Equations (4.10) and (4.11) into Equation (4.24) and taking the expected 

value yields 

 

 [ ] [ ]( )E H E hθ γΘ = −  (4.26) 

 

The effective specific moisture capacity is defined by Mantoglou and Gelhar (1987b) 

 

 
[ ] [ ]( )ˆ E H E h

C H
H

θ γ ∂ − = − ∂Θ ∂ = −
∂

 (4.27) 

 

where ( )E Hθ    is assumed to be a known characteristic of spatial variability 

of ( )Hθ . Substituting Equations (4.19) into Equation (4.12) and using Equations (4.26) 

and (4.27) yield large-scale governing equation for flow in unsaturated soils as 

 

 
( )ˆ ˆ( )ij

i i

H H z
C K

t t x x

∂Θ ∂ ∂ ∂ += − =
∂ ∂ ∂ ∂

 (4.28) 
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4.4 Calculation of expected values  

 

Equation (4.28) presents large-scale governing equation of water flow in soil. This 

equation is in the similar form of the related small-scale governing equation. The 

effective moisture capacity and effective hydraulic conductivity coefficients (i.e, 

ˆ ˆandC K  are calculated by Equations (4.27) and (4.23), respectively. Then according to 

Equations (4.21), (4.22), (4.23) and (4.27), evaluation of the effective hydraulic 

conductivity, mean soil moisture content Θ  and the effective specific moisture capacity 

Ĉ  has now been reduced to the evaluation of the expected values [ ]E hγ , 

2E h   , [ ]E fh , [ ]E ah , [ ]iE f h x∂ ∂ and [ ]iE a h x∂ ∂ .  

 

 

4.4.1 Calculation of expected values by spectral method  

The foregoing expected values are evaluated using spectral analysis. The following 

spectral representation properties are used in this analysis. Two cross-correlated 

stationary random fields ( )u x
�

 and ( )v x
�

 can be expressed in the spectral domain as 

(Gelhar 1993) 

 

 

( ) ( ) ( )

( ) ( ) ( )

exp .

exp .

u

v

u x ik x dZ k

v x ik x dZ k

∞

−∞
∞

−∞

=

=

∫ ∫ ∫

∫ ∫ ∫

� �
� �

� �
� �

 (4.29) 

 

where, ( )1 2 3, ,k k k k=
�

is the wave number vector, ( )1 2 3, ,x x x x=�  is the position vector. 

The cross-spectral density function of u and v, called ( )uvS k
�

 is given by (Lumley and 

Panofsky, 1964) 

 

 
( ) ( ) ( )*

1 2 1 2;

0 ;

u v uvE dZ k dZ k S k dk if k k k

otherwise

  = = =
 

� � � � � � �

 (4.30) 



Chapter (4)                                                                                    Stochastic Methodology 

 77 

where ( )udZ k
�

 and ( )vdZ k
�

are random Fourier-Steltjes amplitudes of( )u x
�

 and ( )v x
�

 

respectively. Z is a complex-value and asterisk (*) denotes complex conjugate of 

complex number. The expected value of ( )u x
�

 and ( )v x
�

 can be represented as function 

of the cross-spectral density function( )uvS k
�

 

 

 [ ] ( ) ( ) ( ) ( ) ( )*exp expu v uvE uv E ikx dZ k ikx dZ k S k dk
∞ ∞ ∞

−∞ −∞ −∞

 
= − = 

 
∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

� � � � � �
� �

 (4.31) 

In this way, the following expected values are evaluated as (Mantoglou and Gelhar 

1987a) 

 

 ( )2 2
h hhE h S k dkσ

∞

−∞

  = =  ∫ ∫ ∫
� �

 (4.32) 

 

 [ ] [ ] ( )hfE fh E hf S k dk
∞

−∞

= = ∫ ∫ ∫
� �

 (4.33) 

 

 [ ] [ ] ( )haE ah E ha S k dk
∞

−∞

= = ∫ ∫ ∫
� �

 (4.34) 

 

 [ ] ( )hE h S k dkγγ
∞

−∞

= ∫ ∫ ∫
� �

 (4.35) 

 

 ( ) ( )i hf
i i

h h
E f E f ik S k dk

x x

∞

−∞

   ∂ ∂= =   ∂ ∂   
∫ ∫ ∫

� �

 (4.36) 

 

 ( ) ( ) ( )i ha
i

h
E a ik S k d k

x

∞

−∞

 ∂ = ∂ 
∫ ∫ ∫

� �

 (4.37) 

 

Then evaluation of these expected values has been reduced to the evaluation of cross 

spectral density functions emerged in Equations (4.32) to (4.37). In Section (4.4.2), a 
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linearized perturbation partial differential equation is extracted. This equation presents a 

relation between capillary tension head fluctuations and soil properties fluctuations. 

This equation is used to evaluate the cross spectral density function relationships of 

fluctuations of soil properties. 

 

 

4.4.2 Linearized fluctuation equation 

A linearized perturbation equation relating the capillary tension head fluctuations h to 

the soil property fluctuations f, a, andγ is derived using the local flow equation. 

Substituting Equation (4.7) and (4.25) into the Equation (4.6) and expanding derivatives 

yield 

 

 ( ) ( ) ( ) 2ln
exp s

s i i

K zC

K t x x

αψ ψψαψ ψ
∂ − ∂ +∂ = + ∇

∂ ∂ ∂
 (4.38) 

 

Substituting Equations (4.9) and (4.11) into the left-hand side of Equation (4.38) yields 

 

 

( )

( ) ( ) ( ) ( )

exp

exp exp

s

C
L

K t

H h
AH F Ah Ha f ah

t

ψαψ

γ

∂=
∂

∂ +
= Γ + − + − −

∂

 (4.39) 

 

where, L represents the left-hand side of equation (4.38). 

 

The second exponential term in Equation (4.39) is expanded using a Taylor series 

representation 

 

 
( ) ( )

( )2

exp 1

1

2

Ah Ha f ah Ah Ha f ah

Ah Ha f ah

+ − + = + + − + +

+ − + +⋯
 (4.40) 

Rewriting gives 
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 ( )exp 1 HAh Ha f ah Ah Ha f ah T+ − + = + + − + +  (4.41) 

 

where, HT  contains second- and higher-order terms. Substituting Equation (4.41) into 

Equation (4.39) yields 

 

 

( )

( )

( )

( ) ( )

exp

H

H H
L AH F A H a f

t t

h H
ah A h H a f ah

t t
h

A h H a f ah A h H a f ah
t

H h
T

t

γ

γ γ γ γ

γ γ γ γ γ

γ

∂ ∂ = − Γ + Γ + Γ − Γ + + ∂ ∂ 

∂ ∂Γ + Γ + + − + +
∂ ∂

∂Γ + Γ − Γ + Γ + + + − + +
∂

∂ +
Γ +

∂

 (4.42) 

 

Rewriting Equation (4.42) gives 

 

 0 1 HL L L L= + +  (4.43) 

 

where 0L  is independent of the fluctuations (zero-order term) 

 

 ( )0 exp
H

L AH F
t

∂ = − Γ ∂ 
 (4.44) 

 

1L  is linear in the fluctuations (first-order terms) 

 ( )1

H h
L A h H a f

t t
γ ∂ ∂= Γ + Γ − Γ + + Γ

∂ ∂
 (4.45) 

 

and HL contains the remaining second and higher-order terms. 

Substituting Equations (4.8), (4.9), (4.10) and (4.11) in the first component of the first 

term in right-hand side of Equation (4.38) yields 
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( ) ( )

( )

ln lns s

i i

i i i i i i

K K AH Ah Ha ah

x x

ahf H h h a
A A a H

x x x x x x

αψ∂ − ∂ − − − −
=

∂ ∂
∂∂ ∂ ∂ ∂ ∂= − − − − −

∂ ∂ ∂ ∂ ∂ ∂

 (4.46) 

 

The terms iF x∂ ∂ and iA x∂ ∂  are negligible because the spatial variation of F and A  is 

assumed to be very slow. Substituting Equations (4.8), (4.9), (4.10), and (4.11) in the 

right-hand side of Equation (4.38) yields 

 

 

( ) ( )

( ) ( )

2 2

2

2

ln s
i

i i i

i i i i
i i i i i i

i
i i i i i i i i i i

K z H
R J A H

x x x

f h H a H h
J J A J a J H A h

x x x x x x

ah ahf h h H h a h h
J A a H

x x x x x x x x x x

αψ ψ
ψ

∂ − ∂ +  ∂= + ∇ = − + ∇ + ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂− − − − + ∇ + ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 − + − − − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 (4.47) 

 

Rewriting equation (4.47) gives 

 

 0 1 HR R R R= + +  (4.48) 

 

where 0R  is independent of the fluctuations (zero-order terms) 

 

 
2

0 i
i

H
R J A H

x

∂= − + ∇
∂

 (4.49) 

 

1R  is linear in the fluctuations (first-order terms) 

 
2

1 i i i i
i i i i i i

f h H a H h
R J J A J a J H A h

x x x x x x

∂ ∂ ∂ ∂ ∂ ∂= − − − − + ∇
∂ ∂ ∂ ∂ ∂ ∂

 (4.50) 

HR  contains the remaining second and higher-order terms. 

 

Rewriting Equation (4.38) using Equations (4.43) and (4.48) gives 
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 0 1 0 1H HL L L R R R+ + = + +  (4.51) 

 

Taking the expected value of Equation (4.51) with respect to , ,f a γ  and remembering 

that the expected value of the linear term is zero, yields 

 [ ] [ ]0 0H HL E L R E R+ = +  (4.52) 

 

Subtracting (4.52) from (4.51) produces 

 

 [ ] [ ]1 1H H H HL L E L R R E R+ − = + −  (4.53) 

 

Assuming that fluctuations , , andf hα γ are small, the higher order terms can be 

approximated by their expected values; [ ] [ ]andH H H HL E L R E R≈ ≈  (Mantoglou and 

Gelhar 1987a). Substituting these in Equation (4.53) and rewriting it yields 

 1 1L R=  (4.54) 

 

Then, according to the Equations (4.45) and (4.50), Equation (4.54) is rewritten as 

  

 

( ) ( )

2

exp

i i i i
i i i i i i

H h
AH F A h H a f

t t

f h H a H h
J J A J a J H A h

x x x x x x

γ ∂ ∂ − Γ + Γ − Γ + + Γ = ∂ ∂ 

∂ ∂ ∂ ∂ ∂ ∂− − − − + ∇
∂ ∂ ∂ ∂ ∂ ∂

 (4.55) 

 

Defining two new terms 

 

 
1

m

H
G

K t

∂=
∂

 (4.56) 

 

and 

 ,i i
i

H
L J

x

∂= +
∂

 (4.57) 
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substituting Equations (4.56) and (4.57) into Equation (4.55) and rearranging yields 

 

 

2m
i

i

m
i i

i i

Kh h
h A Gh AL

t x

K f a
J Gf J H ba G

x x
γ

 ∂ ∂+ −∇ + Γ + = ∂ Γ ∂ 

    ∂ ∂+ Γ − + −    Γ ∂ ∂     

 (4.58) 

 

where 

 

 i
i

H
b J H G

x

∂= + Γ
∂

 (4.59) 

 

  

4.4.3 Spectral density functions relationships 

Spectral method is used to solve the fluctuation equation (i.e., Equation 4.58). This 

equation is written in the spectral domain and general solution of the resulted equation 

is obtained in the spectral domain as (Mantoglou and Gelhar, 1987a) 

 

 ( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , ) ( )h f f a ay k t dZ k t W k t dZ k W k t dZ k W k t dZ kγ γ= = + +  (4.60) 

 

where 

 

 ( ) ( )( ) ( )( )1 10 0 0
( , ) exp exp

t t t
W k t g g s ds g s dsβ β τ = −

  ∫ ∫ ∫  (4.61) 

 

 ( ) ( )2 2 2
1 1 2 3

m
i i

K
g t k k k A G iAL k= + + + Γ +

Γ
 (4.62) 

 

 ( ) ( )m
i i f i i i a

i

K H
g t iJ k G dZ iHJ k J H G dZ G dZ

x γ

  ∂= + Γ − + + Γ −  Γ ∂   
 (4.63) 
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where, , ,fβ α= or γ , In transient case functions g1 and g depend on t since the mean 

flow properties H, etc., depend on t. 

 

The solution is a linear function relating spectral amplitudes of capillary tension head to 

spectral amplitudes of soil properties fluctuations. Using Equations (4.60) and (4.30) 

( )hhS k is evaluated as (Mantoglou and Gelhar, 1987a) 

 

 

( )( )

(
)

*

22 2 * *

* * * *

( )hh f f a a f f a a

f ff a aa f a fa f f

a f af a a f f a a

S k dk E W dZ W dZ W dZ W dZ W dZ W dZ

W S W S W S W W S W W S

W W S W W S W W S W W S dk

γ

γ γ γ γ

γ γγ γ

γ γ γ γ γ γ

 = + + + +  

= + + + + +

+ + +

 (4.64) 

 

Equation (4.64) determines cross-spectral density function hhS as function of those of 

soil properties , andf aγ , which are known in the problems. Also, by defining 

 

 
2

2
2
a

f

σε
σ

=  (4.65) 

 

and 

 

 
2

2
2
f

γσ
η

σ
=  (4.66) 

 

the relationships between the spectral density functions of , andf a γ  are written as 

(Mantoglou 1984) 

 

if , andf a γ  are uncorrelated 

 

 2
aa ffS Sε=  (4.67) 
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 2
ffS Sγγ η=  (4.68) 

 

 0faS =  (4.69) 

 

 0aS γ =  (4.70) 

 

 0fSγ =  (4.71) 

 

 

if , andf a γ  are correlated 

 

 2
aa ffS Sε=  (4.72) 

 

 2
ffS Sγγ η=  (4.73) 

 

 fa ffS Sξ=  (4.74) 

 

 a ffS Sγ ξ η=  (4.75) 

 

 f ffS Sγ η=  (4.76) 

 

From Equations (4.67) to (4.76), the following relationship can be derived 

 

 ( ) ( ) 2 2 2 2, ,0,0,0, , , , ,uv ffS k S kµ µ ξ η ξ η ξ ξη η= =
� �

 (4.77) 

 

Cross spectral density functions in Equations (4.32) to (4.37) are substituted by their 

related equivalence as function of ffS  through Equations (4.67) to (4.76). After these 

substitutions, evaluation of integrals in Equations (4.32) to (4.37) is still very 

complicated. But, they can be evaluated in some certain cases. Mantoglou and Gelhar 
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(1987b, 1987c), evaluated them for stratified soil. They assumed soils are stratified 

which is an acceptable assumption for soil structure in real condition.  Their resulted 

equations have been employed in this work. A summary of the results in the case of a 

stratified soil is presented here. 

 

4.4.4 Evaluation of 2E h          

 
2

12 2
12 f

hE h I
σ λ

σ
π

  = =   (4.78) 

 

where, λ  is correlation scale of random parameters [L]. 

and 

 

 
2

1 1 2
1 14 2 20

1 3 1 4 5 1

1

1

a k a
I dk

k a k a a k

∞ +=
+ + +∫  (4.79) 

 

where 

 

 2 2
3 12a A G A L= Γ +  (4.80) 

 

 2 2 2
4a A G= Γ  (4.81) 

 

 2
5 1a λ=  (4.82) 

 

and if , and f a γ  are uncorrelated 

 

 ( )2 2 2
1 11a H Jξ= + +  (4.83) 

 

 ( )2 2 2 2
2a G bη ξ= Γ + +  (4.84) 

if , and f a γ  are fully correlated 
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 ( )2 2 2
1 11a H Jξ= −  (4.85) 

 

 ( )2a G b Gξ η= Γ − −  (4.86) 

where 

 i
i

H
b J H G

x

∂= + Γ
∂

 (4.87) 

 

Defining 2 2 2
3 4 14 4a a A L A G∆ = − = + Γ . 

 

If 0∆ > , evaluating the integral in Equation (4.79) and substituting in Equation (4.78) 

gives (Mantoglou and Gelhar, 1985) 

 
( ) ( ) ( )

1 4 1 4 5 4 2 5 2 2 3 52 2 1 2 5
1 5 22 2 2

4 5 3 5 14 5 3 5 1
11 4

h f

a a a a a a a a a a a a a a a
a

a a a aA G a a a a A G A L
σ σ λ

λ

 + − + − − = −
 + −Γ + − Γ + 

 (4.88) 

 

and if 0∆ <  

 

 ( ) ( ) ( )
1 4 1 4 5 4 2 5 2 2 3 52 2 1 2 5

1 52 2
4 5 3 5 1 4 5 3 5 11 1

h f

a a a a a a a a a a a a a a a
a

A G a a a a AL a a a a
σ σ λ

λ

 − − + − + −
 = −

Γ + − + −  

 (4.89) 

 

 

4.4.5 Evaluation of [[[[ ]]]]E fh  

 [ ]
2

1
12 fE fh I

σ λ
π

=  (4.90) 

 

The integral is given by Equation (4.79). The terms 3 4 5, ,a a a  are given by Equations 

(4.80), (4.81) and (4.82) and 1 2,a a  are different for each case, as follows 

 

if , and f a γ  are uncorrelated 
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 1 1 1a G AL J= Γ +  (4.91) 

 

 2 2
2a A G= Γ  (4.92) 

if , and f a γ  are fully correlated 

 

 ( )1 1 1 1i
i

H
a G J H G G AL J H

x
ξ η ξ
 ∂= Γ − + Γ − + − ∂ 

 (4.93) 

 

 2 i
i

H
a G J H G G A G

x
ξ η

  ∂= Γ − + Γ − Γ   ∂  
 (4.94) 

 

The result for the integral 1I  depends if 2 2 2
3 4 14 4a a A L A G∆ = − = + Γ  is a negative or a 

positive value.  

 

Evaluating the integral in Equation (4.79) and substituting in Equation (4.90) gives 

(Mantoglou and Gelhar, 1985)  

 

For 0∆ > , 

 [ ]
( ) ( ) ( )

1 4 1 4 5 4 2 5 2 2 3 5 1 2 5
5 22 2 2

4 5 3 5 14 5 3 5 1

2
1

11 4
f

a a a a a a a a a a a a a a a
a

a a a aA G a a a a A G A L
E fh

λ
σ λ

+ − + − −
−

+ −Γ + − Γ +

 
 =
 
 

 (4.95) 

 

and if 0∆ <  

 

 [ ] ( )( ) ( )
1 4 1 4 5 4 2 5 2 2 3 52 1 2 5

1 52 2
4 5 3 5 1 4 5 3 5 11 1

f

a a a a a a a a a a a a a a a
E fh a

A G a a a a AL a a a a
σ λ

λ

 − − + − + −
 = −

Γ + − + −  
(4.96)
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4.4.6 Evaluation of [ ]E ah  

 [ ]
2

1
12 fE ah I

σ λ
π

=  (4.97) 

 

The integral 1I  is given by Equation (4.79). Substituting Equation (4.79) in Equation 

(4.97) gives (Mantoglou and Gelhar, 1985) 

 

For 0∆ >  

 

 [ ] ( ) ( ) ( )
1 4 1 4 5 4 2 5 2 2 3 52 1 2 5

1 5 22 2 2
4 5 3 5 14 5 3 5 1

11 4
f

a a a a a a a a a a a a a a a
E ah a

a a a aA G a a a a A G A L
σ λ

λ

 + − + − − = −
 + −Γ + − Γ + 

(4.98)

 

and if 0∆ <  

 

 [ ] ( )( ) ( )
1 4 1 4 5 4 2 5 2 2 3 52 1 2 5

1 52 2
4 5 3 5 1 4 5 3 5 11 1

f

a a a a a a a a a a a a a a a
E ah a

A G a a a a AL a a a a
σ λ

λ

 − − + − + −
 = −

Γ + − + −  
(4.99)

 

The terms 3 4 5, ,a a a  are given by Equations (4.80), (4.81) and (4.82), and 1 2,a a  are as 

follows 

 

if , and f a γ  are uncorrelated 

 

 ( )2
1 1 1a b AL J Hξ= − +  (4.100) 

 

 2
2a bA Gξ= − Γ  (4.101) 

 

if , and f a γ  are fully correlated 

 

 ( )1 1 1 1a b AL J Hξ ξ = + −   (4.102) 
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 2a bA Gξ= Γ  (4.103) 

 

 

4.4.7 Evaluation of [ ]∂ ∂ iE f h x  

 [ ]
2

1
22 f

iE f h x I
σ λ

π
∂ ∂ =  (4.104) 

 

where  

 
( )2 2

1 1 2 1

2 14 2 20
1 3 1 4 5 1

1

1

a k a k
I dk

k a k a a k

∞ +
=

+ + +∫  (4.105) 

 

Substituting Equation (4.105) in Equation (4.104) gives (Mantoglou and Gelhar, 1985) 

 

For 0∆ >  

 
( ) ( )

( )

2 4 2 4 5 4 1 4 5 1 3 4 1 42
1 2 2 2

1 4 5 3 5 1

1 2 5

2
4 5 3 5 1

1 4

1

f

a a a a a a a a a a a a a ah
E f

x A G a a a a A G A L

a a a

a a a a

σ λ

λ

 + + + − ∂ = +  ∂ Γ + − Γ +  

−

+ − 

 (4.106) 

 

and if 0∆ <  

 

 
( )( )

( )

2 4 2 4 5 4 1 4 5 1 3 4 1 42
1 2

1 4 5 3 5 1

1 2 5

2
4 5 3 5 1

1

1

f

a a a a a a a a a a a a a ah
E f

x A G a a a a AL

a a a

a a a a

σ λ

λ

− − − + + ∂
= + ∂  Γ + −  

−

+ − 

 (4.107) 

 

The terms 3 4 5, ,a a a  are given by Equations (4.80), (4.81) and (4.82) and 1 2,a a  are as 

follows 
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 1 1a J= −  (4.108) 

 

 ( )2 1 1a A G L J= Γ −  (4.109) 

 

if , and f a γ  are fully correlated 

 

 ( )( )1 1 1a J Hξ= − −  (4.110) 

 

 ( )2 1 1 11a A G H J AL bξ = − Γ − −   (4.111) 

 

For i=2, 3, 

 0
i

h
E f

x

 ∂ = ∂ 
 (4.112) 

 

4.4.8 Evaluation of [ ]∂ ∂ iE a h x  

 [ ]
2

1
22 f

iE a h x I
σ λ

π
∂ ∂ =  (4.113) 

 

Substituting Equation (4.105) in Equation (4.113) gives (Mantoglou and Gelhar, 1985) 

 

For 0∆ >  

 

 
( ) ( )

( )

2 4 2 4 5 4 1 4 5 1 3 4 1 42
1 2 2 2

1 4 5 3 5 1

1 2 5
2

4 5 3 5 1

1 4

1

f

a a a a a a a a a a a a a ah
E a

x A G a a a a A G A L

a a a

a a a a

σ λ

λ

 + + + − ∂ = ∂  Γ + − Γ +  

−
+

+ − 

 (4.114) 

 

and if 0∆ <  
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( )( )

( )

2 4 2 4 5 4 1 4 5 1 3 4 1 42
1 2

1 4 5 3 5 1

1 2 5
2

4 5 3 5 1

1

1

f

a a a a a a a a a a a a a ah
E a

x A G a a a a AL

a a a

a a a a

σ λ

λ

− − − + + ∂
= ∂ Γ + −  

−
+

+ − 

 (4.115) 

The terms 3 4 5, ,a a a  are given by Equations (4.80), (4.81) and (4.82) and 1 2,a a  are as 

follows 

 

if , and f a γ  are uncorrelated 

 

 2
1 1a J Hξ=  (4.116) 

 ( )2
2 1 1a HJ A G AL bξ= Γ −  (4.117) 

 

if , and f a γ  are fully correlated 

 

 ( )( )1 1 1a J Hξ ξ= − −  (4.118) 

 

 ( )2 1 1 11a A G H J AL bξ ξ = − Γ − −   (4.119) 

 

For i=2, 3 

 

 0
i

h
E a

x

 ∂ = ∂ 
 (4.120) 

 

4.4.9 Evaluation of [ ]E hγγγγ  

 [ ]
2

1
12 fE h I

σ λ
γ

π
=  (4.121) 

 

The terms 3 4 5, ,a a a  are given by Equations (4.80), (4.81) and (4.82) and 1 2,a a  are as 

follows: 
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if , and f a γ  are uncorrelated 

 

 2
1a Gη= −  (4.122) 

 

 2 2
2a A Gη= − Γ  (4.123) 

 

if , and f a γ  are fully correlated 

 

 ( )1 1 1 1i
i

H
a G J H G G AL J H

x
η ξ η ξ
  ∂= Γ − + Γ − + −   ∂  

 (4.124) 

 2 i
i

H
a G J H G G A G

x
η ξ η
  ∂= Γ − + Γ − Γ   ∂  

 (4.125) 

 

Substituting Equation (4.79) in Equation (4.121) gives (Mantoglou and Gelhar, 1985) 

 

For 0∆ >  

 

 

[ ] ( ) ( )

( )

1 4 1 4 5 4 2 5 2 2 3 52
1 2 2 2

4 5 3 5 1

1 2 5
5 2

4 5 3 5 1

1 4

1

f

a a a a a a a a a a a a
E h

A G a a a a A G A L

a a a
a

a a a a

γ σ λ

λ

 + − + −
=
 Γ + − Γ +

−
+

+ − 

 (4.126) 

 

and if 0∆ <  

 

 

[ ] ( )( )

( )

1 4 1 4 5 4 2 5 2 2 3 52
1 2

4 5 3 5 1

1 2 5
5 2

4 5 3 5 1

1

1

f

a a a a a a a a a a a a
E h

A G a a a a AL

a a a
a

a a a a

γ σ λ

λ

− − + − +
=

Γ + −

−
+

+ − 

 (4.127) 
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4.5 Local governing equation for solute transport  

  

The transport of solute in soil is carried out by advection, dispersion and diffusion 

mechanisms. In what follows, these mechanisms are briefly described and the 

associated mathematical models are presented.  

 

4.5.1 Advection 

Advection is the transport of material caused by the net flow of the fluid in which the 

material is suspended. Whenever a fluid is in motion, all contaminants in the flowing 

fluid, including both molecules and particles, are advected along with the fluid 

(Nazaroff and Alvarez-Cohen, 2001).  The rate of contaminant transport that occurs by 

advection, in a rigid domain, is given by the product of contaminant concentration c and 

the component of groundwater specific discharge q. For three-dimensional case, the rate 

of contaminant transport due to advection is (Javadi and AL-Najjar, 2007). 

 

 ,x advection xF q c=  (4.128) 

 ,y advection yF q c=  (4.129) 

 ,z advection zF q c=  (4.130) 

 

where, ,x advectionF , ,y advectionF  and ,z advectionF  are advection fluxes in x, y and z directions 

respectively [M][L]-2[T] -1, qx, qy, and qz are groundwater specific discharge in x, y and z 

directions, respectively [L][T]-1 and c is the solute concentration [M][L]-3. 

                                                                                                         

4.5.2 Diffusion 

The process by which contaminants are transported by the random thermal motion of 

contaminant molecules is called diffusion (Yong et al., 1992).  The rate of contaminant 

transport that occurs by diffusion is given by Fick’s law. The equations for evaluation of 

components of diffusive flux are expressed as (Javadi and AL-Najjar, 2007) 

 

 ,x diffusion m

c
F D

x

∂= −
∂

 (4.131) 
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 ,y diffusion m

c
F D

y

∂= −
∂

 (4.132) 

 ,z diffusion m

c
F D

z

∂= −
∂

 (4.133) 

 

where, ,x diffusionF , ,y diffusionF  and ,z diffusionF  are diffusion fluxes in x, y and z directions 

respectively [M][L]-2[T] -1, and  mD   is the molecular diffusion coefficient in the porous 

medium [M]2[T] -1
. 

 

4.5.3 Mechanical dispersion 

Mechanical dispersion is a mixing or spreading process caused by small scale 

fluctuations in groundwater velocity along the tortuous flow paths within individual 

pores (Zheng and Bennett 2002).  The rate of contaminant transport by mechanical 

dispersion is given by (Javadi and AL-Najjar, 2007) 

 

 ,x dispersion xx xy xz

c c c
F D D D

x y z

∂ ∂ ∂= − − −
∂ ∂ ∂

 (4.134) 

 ,y dispersion yx yy yz

c c c
F D D D

x y z

∂ ∂ ∂= − − −
∂ ∂ ∂

 (4.135) 

 ,z dispersion zx zy zz

c c c
F D D D

x y z

∂ ∂ ∂= − − −
∂ ∂ ∂

 (4.136) 

 

where, ,x dispersionF , ,y dispersionF  and ,z dispersionF  [M][L] 2[T] -1 are dispersion fluxes in x , y 

and z directions, respectively and  xxD , xyD , xzD , yxD , yyD , yzD , zxD , zyD  and zzD  

are the tensor of coefficients of dispersivity [L][T]-1.  

 

Based on mass balance law, solute concentration governing equation is given as 

 

 
( )

advection dispersion diffusion

c
n F F F

t −

∂
= ∇ − ∇ +

∂
 (4.137) 
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where, n is porosity, advectionF∇ and dispersion diffusionF −∇  are concentration change due to 

movement of solute by advection and diffusion-dispersion mechanisms respectively in 

the specified area and time duration, and F represents the solute sink-source terms. 

 

Substituting Equations (4.128) to (4.136) into the Equation (4.137) leads to (Javadi et 

al., 2006) 

 

 
( ) ( )

, ,i
ij

i i j

c cq c
n E F i x y z

t x x x

 ∂ ∂ ∂ ∂= − + + = 
∂ ∂ ∂ ∂  

 (4.138) 

 

where, Eij is local Bulk dispersion equal to ijnD (Dij is dispersion coefficient including 

dispersion and molecular diffusion). 

 

In the transport Equation (4.138), the left-hand side term describes the change of 

contaminant mass in time. In the right-hand side, the first term represents the movement 

of contaminant due to advection and the second term represents the effects of dispersion 

and diffusion. 

  

In the steady-state condition when the change in solute concentration with time is zero, 

local solute transport equation becomes 

 

 
( )

0 , ,
 ∂ ∂ ∂− + + = = 

∂ ∂ ∂  

i
ij

i i j

cq c
E F i x y z

x x x
 (4.139) 

 

4.5.4 Dual-domain transport model 
Immobile or stagnant water regions may exist within the porous medium due to the 

water occupying dead-end macropores, or local zones with very low permeability.  In 

unsaturated flow this may also occur in pendular rings of drained pores as can be seen 

in Figure 4.1. So, for the area subjected to this structural form, the contaminant 

transport system can be viewed in terms of a dual-domain model, which divides the 

aquifer into two distinct transport domains, termed mobile and immobile domains. 
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Immobile or stagnant water regions may exist within the porous medium due to the 

water occupying dead-end macropores, or local zones with very low permeability.  In 

unsaturated flow this may also occur in pendular rings of drained pores as can be seen 

in Figure 4.1. So, for the area subjected to this structural form, the contaminant 

transport system can be viewed in terms of a dual-domain model, which divides the 

aquifer into two distinct transport domains, termed mobile and immobile domains. 

 

 
Figure 4.1 Transport mechanisms: mobile and immobile phases (AL-Najjar 2006).  

 

Transport is predominantly advective in the mobile domain but largely diffusive in the 

immobile domain. The early arrival of solute may be attributed to preferential flow of 

water through the larger channels of the wetted pore space (large channels and wetted 

regions between finer pores in an aggregated soil) whereas, the water in the finer pores 

is more stagnant and does not contribute to solute transport, except for diffusion 

exchange.  In the mobile region, solute is transported by an advection-dispersion 

process whereas, in the immobile region, a rate-limited diffusion process exchanges 

solute with the mobile region. It is common to assume that neither hydrodynamic 

dispersion nor advection of a pollutant can take place in a body of immobile water. 

However, there is a pollutant exchange process between immobile and mobile water 

responsible for the transport. The governing equation for solute transport in dual-

domain soil is 

 

Air 

Water 

Pendular rings 
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where, subscripts m and im represent the characteristics of mobile and immobile 

domains, and ζ is the rate coefficient of the mass transfer between mobile and immobile 

domains [T]-1 modelled as a first-order, reversible kinetic reaction. 

 

In above equations groundwater specific discharge q as a function of hydraulic 

conductivity varies randomly in spatial domain. The effect of this spatial variability is 

profound in the case of large scale problems and causes unsuitability of local-scale 

governing equations for simulation of large scale problems. An appropriate model for 

solute transport can be found by incorporation of the effect of this spatial variability in 

the related governing equations. In the following section, the stochastic method 

proposed by Gelhar (1986) and Vomvoris and Gelhar (1990) for incorporating spatial 

variability of hydraulic properties of soil into the classical Equations (4.138) and 

(4.139) is explained. 

 

 

4.6 Large-scale governing equation for solute transport  

 

Local specific discharge, q, has been considered as random parameter in the model, and 

as a result the output of the model, (i.e., the solute concentration, c) is a random 

variable. These parameters can be defined by stochastic representations. They are 

considered as realizations of random fields. It is assumed that theses random fields are 

three-dimensional, spatially cross-correlated, and they are composed of two 

components, mean and fluctuations 

 

 , ,i i iq q q i x y z′= + =  (4.142) 

 

 ′= +c c c  (4.143) 

 

The first terms in the right hand-side of Equations (4.142) and (4.143) are assumed to be 

deterministic, while the second terms are three-dimensional zero mean second-order 

stationary random fields.  
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 ′= +c c c  (4.143) 

 

The first terms in the right hand-side of Equations (4.142) and (4.143) are assumed to be 

deterministic, while the second terms are three-dimensional zero mean second-order 

stationary random fields.  

 

The basic assumptions are: (i) the fluctuations q′  and ′c  are relatively small, and (ii) 

the scale of variations of the mean values q  and c  is much larger than the scale of 

variations of the fluctuations q′  and ′c .  

 

The large-scale model of steady-state solute transport is obtained by averaging the local-

scale governing equation over the ensemble of possible realizations of the stochastic 

processes,′q . In this way, expected value of small-scale equation with respect to 

fluctuations is calculated. Taking the expected value of Equation (4.138) with respect to 

′q , yields 

 

 
[ ] [ ] [ ]

,i
ij

i i j

E c E cq E c
n E F i x z

t x x x

 ∂ ∂ ∂∂= − + + = 
∂ ∂ ∂ ∂  

 (4.144) 

 

Substituting Equations (4.142) and (4.143) into Equation (4.144), the first term on the 

right-hand side of this equation (i.e., ( )  iE cq ) can be rewritten as 

 

 ( ) ( )( ) [ ]′ ′ ′ ′   = + + = +   i i i iE q c E q q c c c q E q c  (4.145) 

 

In Equation (4.145), ic q  represents the advective flux and [ ]′ ′
iE q c  represents macro-

dispersive flux. Macro-dispersive flux is a dispersive flux due to spatial variation of 

groundwater discharge in large-scale problems. 

 

In this work, it is assumed that dispersion is Fickian. Fick`s law postulates that 

dispersive flux goes from region of high concentration to region of low concentration, 
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 yy TD qα=  (4.147) 

 zz TD qα=  (4.148) 

 0xzD =  (4.149) 

 0zxD =  (4.150) 

 0xyD =  (4.151) 

 0yxD =  (4.152) 

 0yzD =  (4.153) 

 0zyD =  (4.154) 

 

where Lα  and Tα are the local longitudinal and transversal dispersivities, respectively, 

and q is a mean specific discharge equal to 

 

 
1 2

ˆ ˆ
xx zzq k J k J′ ′= +  (4.155) 

 

where ˆ
xxk and ˆ

zzk are effective hydraulic conductivities in x and z directions, 

respectively, given by Equation (4.23)  and 1J ′ and 2J ′  are mean gradients in directions 

x' and z' given by Equation (4.15). 
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z
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q
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�

J'z

J'x

 

Figure 4.2 Coordinate system xz corresponds to the mean flow direction and coordinate 
system x'z' corresponds to mean hydraulic conductivity (Mantoglou 1984). 

 

 

Also, based on Fick’s law, macro-dispersive flux can be written as 

 

 ( ) ˆ ∂′ ′  = −  ∂i ij
j

c
E c q E

x
 (4.156) 

 

where ˆ
ijE  is the effective bulk macrodispersion coefficient tensor. By defining a 

macrodispersion tensor as 

 

 
ˆ

ij
ij

E
A

q
=  (4.157) 

 

Equation (4.156) can be written as 

 

 [ ]i ij
j

c
E c q A q

x

∂′ ′ = −
∂

 (4.158) 
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and substituting Equations (4.158) and (4.145) into Equation (4.144) and rearranging, 

yields 

 ( ) ( )i
ij ij

i j i

c qc c
n E A q

t x x x

  ∂∂ ∂ ∂= + − 
∂ ∂ ∂ ∂  

 (4.159) 

 

Equation (4.159) is the relationship for large-scale unsteady-state solute transport 

problem. In steady-state condition in which concentration in a certain point is constant 

along the time, the first term in the Equation (4.159) is equal to zero (i.e., 0
c

t

∂ =
∂

). 

Therefore, the large-scale solute transport governing equation for steady-state condition 

can be presented as 

 

 
( ) ( ) ∂ ∂ ∂= + 
∂ ∂ ∂  

i
ij ij

i i j

c q c
E A q

x x x
 (4.160) 

 

Comparing Equations (4.159) and (4.160) to the related local transport Equations 

(4.138) and (4.139), it is noticed that they have a similar form. The term ij ijE A q+  is the 

total large-scale dispersion coefficient. The difference between local-scale and large-

scale dispersivity is the effective Bulk macrodispersion ( ijA q). This difference is due to 

the variations in the groundwater specific discharge ( iq ) or equivalent groundwater 

seepage, (iq

n
).  

  

In this work, the following expressions developed by Mantoglou (1984) are used for 

evaluation of macrodispersivties (Aij). Two assumptions were considered in order to get 

the following analytical expression: (i) the soil is assumed to be horizontally stratified, 

and (ii) the lateral head gradients are considered to be small. 

 

 ( )
2

2 4
22 23 332

2= + +f x z
xxA T T T

b

σ λ λ
ξ ξ

πγ
 (4.161) 
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 ( )
2 2

4
332 2

f x y y
yy

x

J
A T

o J

σ λ λ
ξ

πγ
=  (4.162) 

 ( )
2

4
232 2

f x z z
zz

x

J
A T

o J

σ λ λ
ξ

πγ
=  (4.163) 

 ( )
2

2 2
23 332

f x z z
zx xz

x

J
A A T T

o J

σ λ λ
ξ ξ

πγ
= = +  (4.164) 

 0xy yx yz zyA A A A= = = =  (4.165) 

 

where 

 

 
2

2
2 2 2

=
m x

q

K J
γ

β
 (4.166) 

 ( ) ( )2 22 2sin cos= +x zo λ φ λ φ  (4.167) 

 ( ) ( )
2

2 22
2

sin cos= +x

z

λξ φ φ
λ

 (4.168) 

where 
ˆ

ˆ
′ ′ ′

′ ′ ′

 
=   

 

z z z

x x x

k J
arctg

k J
φ  defines direction of the axes x and z with respect to axes x′  

and y′  (see Figure 4.2). 

 

If f and a are uncorrelated, then  

 

 2 21= + Hβ ξ  (4.169) 

 

If f and a are perfectly correlated, then 

 

 2 1= − Hβ ξ  (4.170) 

 

and 

 cos sin′ ′= +x x zJ J Jφ φ  (4.171) 

 sin cos′ ′= − +z x zJ J Jφ φ  (4.172) 
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T22, T23 and T33are evaluated by the following integrals 

 

 ( ) ( )
2 2 2

4

22 2 2 22 2
0

1 8
4 ln cos

8

  
= −  −−   
∫

c c
T d

a c aa c

π

π φ φ  (4.173) 

 ( ) ( ) ( )
2

2

22 2
2 2

23 2 22 2 2
0

ln

2 1 2 sin cos
42

c

ac c
T d

a ca a c

π

π φ φ φ

  
  

    = − −
  −−

 
 

∫  (4.174) 

 ( ) ( )
2 2 2

4

33 2 2 22 2
0

1 8
4 ln sin

8

  
= −  −−   
∫

c c
T d

a c aa c

π

π φ φ  (4.175) 

 

where 

 

 ( ) ( )2 22 cos sin= +a φ φ  (4.176) 

 

and 

 

 ( )22 2 2 2 cos= zc A L b φ  (4.177) 

 

 

 

4.7 Evaluation of concentration variability 2

c
σσσσ  

 

In this section, the concentration variance is evaluated as 

 

 ( )2 0c ccRσ =  (4.178) 
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where 2
cσ is the solute concentration variance and ccR  is the covariance of 

concentration if 0ς = . The relationship between variance and covariance has been 

explained in Chapter 3. The covariance function for solute concentration is presented as 

 

 ( ) ( )ik
cc ccR e S k dkςς

∞

−∞

= ∫  (4.179) 

 According to Equation (4.179), evaluation of the covariance of solute concentration is 

reduced to evaluation of spectrum of solute concentration. Assuming the spectrum of 

hydraulic conductivity is known, the spectrum of solute concentration is evaluated using 

its relationship with the spectrum of hydraulic conductivity. Linear solute perturbation 

equation is used for this purpose. The linear fluctuation equation relates the 

concentration fluctuations to the specific discharge fluctuations and is obtained by 

subtracting Equation (4.159) from Equation (4.138) as 

 

 0i i ij i i
i i i j i i

c c c c c c
q q E E q q

t x x x x x x

 ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′+ + − = − ≅ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 (4.180) 

 

Equation (4.180) is solved using spectral method.  Using Equation (4.29), the 

concentration and specific discharge, pressure head and natural logarithm of the 

saturated hydraulic conductivity perturbations can be written as 

 

 ( )exp . ( )cc ik x dZ k
∞

−∞

′ = ∫ ∫ ∫
� �
�

 (4.181) 

 ( )exp . ( )
ii qq ik x dZ k

∞

−∞

′ = ∫ ∫ ∫
� �
�

 (4.182) 

 ( )exp . ( )hh ik x dZ k
∞

−∞

= ∫ ∫ ∫
� �
�

 (4.183) 

 ( )exp . ( )ff ik x dZ k
∞

−∞

= ∫ ∫ ∫
� �
�

 (4.184) 

 

where k
�

 is the wave number vector, and  x
�

 is the position vector. 
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Substituting Equations (4.181) and (4.182) into Equation (4.180) leads to 

 

 ( )2

i ji q j q ij i cG dZ G dZ E k ikq dZ= = −
�

 (4.185) 

where, 2 2 2 2
1 2 3k k k k= + + .  

 

Multiplying both sides of Equation (4.185), once by complex conjugate Fourier 

amplitude *

jqdZ   and another time by *
cdZ  and taking the mean values, and using the 

spectral relationship presented at Equation (4.30), lead to 

 

 ( )2

i j jj q q ij i cqG S E k ikq S= −
�

 (4.186) 

 

and  

 

 ( )2

ii cq ij i ccG S E k ikq S= −
�

 (4.187) 

 

where 

 

 i
i

c
G

x

∂= −
∂

 (4.188) 

 

Substituting Equation (4.187) into Equation (4.186) yields 

 

 
( )

( ) ( )2
2

i ji j q q

cc

ij i

G G S k
S k

E k ikq
=

−

�

�

�
 (4.189) 

 

where, ( )ccS k  is the spectrum of the concentration perturbation. ( )
j iq qS k  is the 

spectrum of the specific discharge along the xi and xj . Also, the relationship 

between ( )
j iq qS k  and ( )ffS k , the spectrum of the hydraulic conductivity, is determined 
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using Darcy’s equation (Gelhar and Axness 1983). Darcy's equation with locally 

isotropic hydraulic conductivity, is written as 

 i
i

q K
x

ψ∂= −
∂

 (4.190) 

Substituting Equations (4.8) and (4.11) into Equation (4.190) and using Taylor 

expansion yields 

 
( ) 2

1
2

F f F
i

i i i

H h f H h
q e e e f

x x x

∂ +    ∂ ∂= − = − + + + +  ∂ ∂ ∂  
⋯  (4.191) 

 

Assuming small perturbations and dropping products of perturbed quantities, the mean 

removed form of Equation (4.191) is 

 

 

( )F f
i

i

F

i i

H h
q e e

x

H h
e f

x x

∂ +
′ = −

∂

 ∂ ∂= − + ∂ ∂ 

 (4.192) 

 

and using spectral representations for h and iq′  

 

 ( )
i

F
q i f i hdZ e J dZ ik dZ= −  (4.193) 

 

Perturbed flow equation is given as (Bakr et al., 1978) 

 

 
2

2 i
i i

h f
J

x x

∂ ∂=
∂ ∂

 (4.194) 

 

Substituting spectral representations for h and f (i.e., Equations (4.183) and (4.184)), 

into Equation (4.194) yields 

 

 
2

i i f
h

iJ k dZ
dZ

k

−
=  (4.195) 
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Combining Equations (4.193) and (4.195), produces the following relationship between 

complex Fourier amplitudes of specific discharge and hydraulic conductivity 

perturbations 

 

 2i

j i jF
q i f

J k k
dZ e J dZ

k

 
= − 

 
 (4.196) 

 

With similar procedure used for producing relationship between the spectrum of solute 

concentration and the spectrum of the specific discharge, (i.e., producing Equation 

(4.189) from Equation (4.185)), the relationship between spectrum of specific discharge 

and spectrum of hydraulic conductivity is obtained from Equation (4.196) and spectral 

representations presented at Equations (4.30) and (4.31) as  

 ( ) ( )2
2 2

  = − −  
  

j i

j m i n
q q l m n jm jn ff

k k k k
S k K J J S k

k k
δ δ  (4.197) 

 

Note that summation over m and n is implied. 

 

Substituting Equations (4.197), (4.189) and (4.179), into Equation (4.178) and taking 

ξ =0 produces the following equation for evaluation of solute concentration variance 

(Vomvoris and Gelhar 1990). 

 

 

( )

( )

( )

2

2
2 2

2

c cc

j m i n
i j l m n jm jn ff

ij i

S k dk

k k k k
G G K J J S k

k k
dk

E k ikq

σ

δ δ

∞

−∞

∞

−∞

=

   − −   
   =

 −
  
 

∫

∫

 (4.198) 

 

The integration presented in Equation (4.198) was solved analytically by Vomvoris and 

Gelhar (1990). Their resulted equations are used in this work for evaluation of solute 

concentration. The equations is presented bellow 
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 ( )2 2 2
1 2 3, , ,

ic ii fT Gσ ρ ρ ε ν σ λ=  (4.199) 

 

where,   

 2
1 2

1 2 1 1 1

3xxT
γ νε ρ ρ

=  (4.200) 

 
2

2 2 2 2 2
1

1 1 1 1 1 1 1 2
ln

6 2 2 2yy zz

R R
T T

R R R R Rγ ρ
 + = = + + +   −  

 (4.201) 

 

and 1
z

x

λρ
λ

= , 2
z

y

λρ
λ

= , L

z

αε
λ

= , T

L

αν
α

= , 2 2
11R ρ= − . 

 

4.8 Summary and conclusion  
                            

In order to develop a reliable model for water flow and solute transport it is essential to 

consider the effects of spatial variability of soil formation on water seepage rate in soils 

and its frequent effects on solute transport. Based on the literature (Polmann et al., 1990 

and Mantoglou and Gelhar, 1987), spectral approach is known as appropriate method 

for dealing with random processes (in order to incorporate spatial variability of random 

parameters existed in the processes into the related governing equations). This approach 

has been selected in this work. The procedure of implementation of spectral method to 

the classical governing equations for development of large-scale mean governing 

equations for these processes were described in this chapter.  

 

The large-scale partial differential governing equations include some terms which are 

called effective parameters. These effective parameters are produced by fluctuations of 

random hydraulic parameters due to natural heterogeneity of soils. Perturbation 

equations for flow and solute transport are used in order to evaluate these effective 

parameters. They were also employed to evaluate flow and concentration variances. 

Perturbation partial differential equations were developed by removing mean flow and 

transport partial differential equations from the classical governing partial differential 

equations. Analytical spectral method used for solving the perturbation equations and 
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developing algebraic equations for evaluation of effective parameters was described. In 

the developed algebraic equations, some complex integrals appear that could not be 

solved by simple analytical methods. However, these integrals have been solved using 

some assumptions which are consistent with real field condition by Mantoglou and his 

co-workers (Mantoglou and Gelhar, 1987a, 1987b, 1987c and Mantoglou, 1984). These 

solutions were used in this work.   

 

The resulting stochastic partial and algebraic equations predict large-scale flow and 

solute transport characteristics rather than local details of flow. The advantage of the 

resulted equations is that they depend on few parameters describing the statistics of 

local variability (i.e., mean, variance, correlation lengths) which are finite rather than 

depending to the actual soil properties which are infinite. The formation of these 

equations which show the relationship between mean flow and perturbation 

characteristics with statistic of local variability provides a better understanding of the 

probabilistic nature of this process and effects of present uncertainty in soil properties 

on relevant phenomena. 

 

As the large-scale models representations were discussed in partial differential equation 

form, they can be evaluated by numerical techniques. In the next chapter (Chapter 5), 

numerical finite element and finite difference techniques that have been used to solve 

these stochastic partial differential equations are discussed in detail (see Figure 5.1). 
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NUMERICAL SOLUTION  
 

 

 

 

 

5.1 Introduction 

  

The transport of pollutants in the unsaturated zone is modelled using two sets of 

equations.  The first set of equations describes the groundwater flow through the 

problem domain. These equations include a stochastic partial differential relationship 

expressing temporal variability of mean capillary tension head through the domain and 

mathematical algebraic equations for evaluation of important parameters such as 

effective hydraulic conductivity, second-order moment (variance) of capillary tension 

head, mean hydraulic gradient and mean groundwater velocity.  The second set of 

equations describes the ways that the fluid phase transports a miscible contaminant that 

include a stochastic partial differential equation expressing movement of solute through 

the domain with time and algebraic equations for evaluation of important parameters 

such as effective diffusion of the area and second-order moment of solute concentration 

through the domain.  

 

The solutions of these equations are too complex for analytical methods; however they 

can be obtained using approximate numerical methods. In the model developed in this 

work, the governing equations of these procedures are solved using a finite element 
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method in the space domain and a finite difference scheme in the time domain.  In this 

chapter, the procedure for generating finite element formulations for the prescribed 

governing differential equations and implementation of a finite difference scheme on 

them are presented. Possible various types of boundary conditions influencing on 

hydrologic procedures and commonly present to contaminated lands and aquifers are 

discussed.  

 

 

5.2 Finite element formulation for groundwater flow  

 

In this section, finite element formulations are derived for stochastic mathematical 

model of unsteady-state (transient) groundwater flow in unsaturated soil. The stochastic 

partial differential equation for unsteady-state groundwater flow through an unsaturated 

soil is 

 

 
( )ˆ ˆ , ,ij

i i

H H z
C K i x y z

t t x x

 ∂Θ ∂ ∂ ∂ += − = − = ∂ ∂ ∂ ∂ 
 (5.1) 

 

The three-dimensional form of equation (5.1) is 

 

 ˆ ˆ ˆ ˆ 1x y z

H H H H
C K K K

t x x y y z z

   ∂ ∂ ∂ ∂ ∂ ∂ ∂   = + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂     
 (5.2) 

 

Mean capillary tension head is the unknown variable of the equation. An approximate 

solution of this variable is defined in terms of its nodal values and associated nodal 

shape function as 

 

 ( ) ( ) ( )
1

ˆ , , , , ,
n

i i
i

H x y z t N x y z H t
=

=∑  (5.3) 

 

where  ( )Ĥ x, y, z, t   is the approximated value of capillary tension head at any location 

of the problem, iN  is the interpolation function at node i, iH  is the mean capillary 

tension head value at node i, and n is the number of nodes in the element.  
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When the approximate solution for hydraulic head is substituted into the equation (5.2), 

the equation is not satisfied exactly. Then 

 

 
ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ 1 0x y z

H H H H
K K K C R

x x y y z z t

      ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + − = ≠     ∂ ∂ ∂ ∂ ∂ ∂ ∂       
 (5.4) 

 

where R is the residual or error due to the approximate solution. The residual at each 

point in the problem domain is a measure of the degree to which the head does not 

satisfy the governing equation. Based on the philosophy behind the weighted residual 

method, the weighted average of residuals at nodes over the solution domain is forced to 

be zero. 

 

 
ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ 1 0x y z

H H H H
K K K C d

x x y y z z tΩ

       ∂ ∂ ∂ ∂ ∂ ∂ ∂
 + + + − Ω =      ∂ ∂ ∂ ∂ ∂ ∂ ∂        

∫∫ ∫  (5.5) 

 

After some mathematical manipulation this equation leads to a system of algebraic 

equations to solve the governing differential equation of transient water flow and work 

out its unknown variable (mean capillary tension head) approximately. According to the 

basic theory behind the finite element method Equation (5.5) is formulated for each 

finite number of distinct elements that together they form the problem domain. The 

system of algebraic equations is generated by summation of element equations over the 

domain. Generation of these algebraic formulations is carried out through four steps 

including: (i) determination of contribution of elements in weighted residual (ii) 

determination of element characteristics, (iii) summation of element residual 

formulation over the problem domain and (iv) employing the weighted residual method.  

In the following sections these four steps are discussed in details. 

 

 

5.2.1 Element weighted residual for groundwater flow 

 

Equation (5.3) is used to approximate the capillary tension head over an element. In this 

case, parameter n, is the number of nodes in each element. Then, the contribution of 

every element, e, to the residual at node i, to which the element is connected, is obtained 

by substituting the approximated capillary tension head of each element.  
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       ∂ ∂ ∂ ∂ ∂ ∂= − + + +       ∂ ∂ ∂ ∂ ∂ ∂            

    ∂ ∂ ∂ ∂ ∂ − = − +    ∂ ∂ ∂ ∂ ∂        

  ∂∂ ∂ ∂+ + − ∂ ∂ ∂ ∂ 

∫

∫

dV




 (5.6)

 

where ( )e
iw  is the element’s weighting function for node i and the limits of the 

integration are chosen to represent the area of element e.  

 

In this work, Galerkin’s method is employed; therefore, the weighting function for each 

node in the element is taken as the element’s interpolation function for that node (i.e., 

( ) ( )e e
i iW N= ). Then, Equation (5.6) is written as  
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    ∂ ∂ ∂ ∂= − +   ∂ ∂ ∂ ∂       

  ∂ ∂ ∂ + + −    ∂ ∂ ∂     

    ∂ ∂ ∂ ∂= +   ∂ ∂ ∂ ∂       

  ∂∂ ∂ ∂ − + + −  ∂ ∂ ∂ ∂ 

∫

( )eV

dV


∫

 (5.7) 

 

Because the approximate solution is a linear function of x, y and z, 
2

2

Ĥ

x

∂
∂

, 
2

2

Ĥ

y

∂
∂

 and 

2

2

Ĥ

z

∂
∂

 are not defined. However, the approximate solution does have a continuous first 

derivative; therefore, Equation (5.7) can be evaluated if it is rewritten in terms of
Ĥ

x

∂
∂

, 

Ĥ

y

∂
∂

 and 
Ĥ

z

∂
∂

.  

 

Using integration by parts to the second order derivate terms of Equation (5.7) yields 
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∂ ∂
∂ ∂

∫

∫

( )
( ) ( )

( )
( ) ( )ˆ ˆ

ˆ ˆ
e ee e

e ei i
y z

N NH H
K K dV

x y y z z

     ∂ ∂∂ ∂ + +          ∂ ∂ ∂ ∂      

 (5.8) 

 

Green’s Theorem is applied to the second-order derivative terms of Equation (5.8); 

therefore, 

 

 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
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ˆ ˆ ˆ

ˆ ˆ ˆ

e

yz xz xy

e e e
e e e e e e

x i y i z i

V

e e e
e e e e e e

i x i y i z

H H H
K N K N K N dV

x x y y z z

H H H
N K dydz N K dxdz N K dxdy

x y zΓ Γ Γ

         ∂ ∂ ∂ ∂ ∂ ∂ − + + =            ∂ ∂ ∂ ∂ ∂ ∂              

∂ ∂ ∂− − −
∂ ∂ ∂

∫

∫ ∫ ∫

 (5.9)

 

where, yzΓ , xzΓ  and xyΓ  are projections of element boundary surface on the plans yz, 

xz and xy respectively. 

 

Equation (5.9) represents the groundwater flow across the element’s surface. Thereafter, 

this term is denoted by( )e
iQ , or 

 

 
( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
ˆ ˆ ˆ

yz xz xy

e e e
e e e e e e e

i i x i y i z

H H H
Q N K dydz N K dxdz N K dxdy

x y zΓ Γ Γ

∂ ∂ ∂= − − −
∂ ∂ ∂∫ ∫ ∫  (5.10)

 

( )e
iQ  is zero for the internal elements and is defined as boundary condition for the 

elements that are on the boundary of domain. 

 

Then, substituting the Equations (5.8), (5.9), (5.10) into the residual equation yields 
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( ){ } ( ) ( )
( ) ( )

( )
( ) ( )

( )

( )
( ) ( )

( )
( )

( ) ( )
( )

( )( )

ˆ ˆ
ˆ ˆ

ˆˆ ˆ
ˆˆ

e

e e

e ee e
e e e ei i

i x y

V

e ee e
e e e ei z

z i i

V V

N NH H
R Q K K

x x y y

N KH H
K dV N dV N C dV

z z z t

    ∂ ∂∂ ∂= − + +       ∂ ∂ ∂ ∂    

 ∂ ∂∂ ∂+ − +  ∂ ∂ ∂ ∂ 

∫

∫ ∫  
(5.11) 

 

Over each element, the following variables are approximated by polynomial shape 

functions relating them to their nodal values: 

 ( ) ( ) ( ){ }ˆ  =  
e e e

i iH N H  (5.12) 

 

 
( )

( ) ( ){ }ˆ e
e e

i i

H
N H

t

∂  =  ∂
ɺ  (5.13) 

 

If equivalent set of approximated capillary tension head and time derivative of the 

approximated capillary tension head are substituted into the Equation (5.11), the 

residual equation can be written as   

 

 

( ){ }
( )

( )
( ) ( )

( )
( )

( )

( )
( )

( )
( ){ }

( ) ( ) ( ) ( ){ }
( )

( )
( )

( )

( )

ˆ ˆ ˆ

ˆ
ˆ

e

e e

e e e e e e
e e e e ei i i i i i

x y z i

V

e
e e e e e ez

i i i i i

V V

N N N N N N
R K K K H dV

x x y y z z

K
N C N H dV N dV Q

z

  ∂ ∂ ∂ ∂ ∂ ∂ = + +   ∂ ∂ ∂ ∂ ∂ ∂   

∂+ − −
∂

∫

∫ ∫ɺ

(5.14)

 

Equation (5.14) is written in the matrix form as 

 

 ( ){ } ( ) ( ){ } ( ) ( ){ } ( ){ }ˆˆe e e e e e
i i iR p H K H F   = + −   
ɺ  (5.15) 

 

where ( )ˆ ep 
   is the effective capacitance matrix which is equal to 

 

  
( ) ( ) ( ){ }

( )

( )ˆ
e

e e e e
i i

V

p N C N dV     =     ∫  (5.16) 

 

( )eK̂ 
   is the effective permeability matrix which is equal to 
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( )
( )

( ){ }
( ) ( )

( ){ }
( )

( )

( )
( ){ }

( )

ˆ ˆ ˆ

ˆ

e

T T
e e e e

i i i ie e e
x y

V

T
e e

i ie
z

N N N N
K K K

x x y y

N N
K dV

z z

        ∂ ∂ ∂ ∂          = +  ∂ ∂ ∂ ∂


   ∂ ∂    + ∂ ∂ 


∫

 (5.17) 

and ( ){ }e
iF  is the force vector which include gravitational force and Neumann boundary 

condition 

 

 ( ) ( )
( ){ } ( )

ˆ e
T ze e e

i i i

A

K
F N dA Q

z

∂
   = +    ∂∫  (5.18) 

 

Evaluation of the effective permeability and effective capacitance matrices and force 

vector necessitates the determination of the interpolation function for each node of 

every element. In the following section, the type of element and related interpolation 

functions that have been used in this work are described.  

 

  

5.2.2 Element effective permeability and capacitance matrices 

Linear triangular 3-node element and linear tetrahedral 4-node element are used in this 

work. They are the commonly used two-dimensional and three-dimensional elements. 

The interpolations for this type of elements were presented in the chapter 3. The 

element matrices for linear triangular and tetrahedral elements can be readily computed 

using equations (3.41) and (3.42) respectively.  

 

Two-dimensional element matrix 

The element effective conductivity matrix for the two dimensional problems is written 

in an expanded matrix form as 
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 ( )

( ) ( )

( ) ( )( )

( )

( )

( ) ( )

( ) ( )

1 1
1

1

ˆ 0ˆ
ˆ0e

e e
ee

n
e

e x

ee e
A e e nz

n n

N N
NN

x z K x xK dxdy
NK N

N N
z z

x z

 ∂ ∂
 ∂∂ ∂ ∂      ∂ ∂   =           ∂∂ ∂ ∂    ∂ ∂  ∂ ∂ 

∫∫
⋯

⋮ ⋮

⋯

 (5.19) 

 

where, n is number of nodes per element. 

 

Then, using the interpolation functions and Equation (3.41) the first array of the 

effective conductivity matrix for each element can be evaluated as 

 

 

( )
( )

( )
( )

( )

( )
( )

( )

( )

( )
( )

( )
( )

e e

e e e e
e e e1 1 1 1

x z

A A

2 2
e ei i

x ze e

N N N Nˆ ˆ ˆK K dxdz K dxdz
x x z z

b cˆ ˆK K
4A 4A

∂ ∂ ∂ ∂  = +  ∂ ∂ ∂ ∂

= +

∫∫ ∫∫
 (5.20) 

Other arrays of the matrix can be evaluated in a similar way. The final result is 

 ( )
( )

( )

( )

( )

2 2

2 2

2 2

ˆ ˆ
ˆ

4 4

i i j i k i i j i k
e e

e x z
j i j j k j i j j ke e

k i k j k k i k j k

b bb bb c c c c c
K K

K b b b b b c c c c c
A A

b b b b b c c c c c

   
   

  = +    
   
      

 (5.21) 

 

A similar procedure can be used to compute the effective capacitance matrix. The result 

is 

 ( )
( ) ( )e e

e

2 1 1
Ĉ A

p̂ 1 2 1
12

1 1 2

 
   =   
  

 (5.22) 

 

Three-dimensional element matrix 

The element effective conductivity matrix for three dimensional problems is written in 

an expanded matrix form as 
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 ∂ ∂ ∂ ∂ ∂  ∂ ∂     ∂ ∂ ∂     ∂ ∂    =      ∂ ∂   
 ∂ ∂ ∂      ∂ ∂   ∂ ∂ ∂   ∂ ∂ 

∫ ∫∫

⋯

⋮ ⋮ ⋮ ⋯

⋯

(5.23)

 

Using the interpolation functions and Equation (3.42) the first array of the effective 

conductivity matrix for each element can be evaluated as 
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1 1
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N N N Nˆ ˆ ˆK K dxdydz K dxdydz
x x z z

N N
K̂ dxdydz

y y

∂ ∂ ∂ ∂  = +  ∂ ∂ ∂ ∂

∂ ∂+
∂ ∂

∫∫ ∫ ∫∫ ∫

∫∫ ∫

 (5.24) 

 

and so on for each array of the matrix. The final result is 
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ˆ
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ˆ
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ˆ
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e
jj ji jj jj jj jke x

e
jk ji jk jj jk jk

jm ji jm jj jm jk

ki ki ki kj ki kk

e
kj ki kj kj kj kky

e
kk ki kk kj kk kk

km ki km kj km kk

e
z

m m m m m m

m m m m m mK
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 
 
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 
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 
 
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 
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( )6

mi ki mi kj mi kk
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e
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 
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 
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 
  

 (5.25) 

 

A similar procedure can be used to compute the effective capacitance matrix. The result 

is 
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 ( )
( ) ( )e e

e

2 1 1 1
ˆ 1 2 1 1C V

P̂
1 1 2 120

1 1 1 2

 
 
   =   
 
 

 (5.26) 

 

5.2.3 Global effective permeability and capacitance matrices 

Summing up the weighted residuals of elements over the domain and minimising them 

to zero yield  

 

 

( )
( )

( ) ( )
( )

( )
( ){ }

( )

( ) ( ) ( ) ( ){ } ( )
( )

( )

ˆ ˆ

ˆ
ˆ 0

e

e e e e
e e ei i i i

x y i
e V

e
e e e e e ex

i i i i i

N N N N
K K H

x x z z

K
N C N H N dV Q

x

  ∂ ∂ ∂ ∂
 + +   ∂ ∂ ∂ ∂ 

∂ − − = ∂  

∑ ∫

ɺ

 (5.27) 

 

Equation (5.27) can be written in the matrix form as 

 

 
( ) ( ){ } ( ) ( ){ } ( ){ }ˆˆ 0e e e e e

i i i
e

p H K H F    + − =    ∑ ɺ  (5.28) 

 

Thus, the general finite element formulation for groundwater flow is 

 

where [ ]p̂  is the global effective capacitance matrix and K̂ 
   is the global effective 

permeability matrix over the problem domain. 

 

 

5.2.4 Imposition of the boundary conditions 

The boundary conditions of the problem can be as specified flow (Neumann boundary 

conditions) or specified head (Dirichlet boundary conditions). Dirichlet boundary 

conditions are directly introduced in the final system of equations.  

 

 ( )H x, y,z, t HΓΓ
=  (5.30) 

 

 [ ]{ } { } { } { }ˆˆ 0p H K H F + − = 
ɺ  (5.29) 
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Neumann boundary conditions are imposed by the global Force vector{ }F . The force 

vector term is associated with gravitational force and water flow flux ( )e
iQ . For the 

adjacent elements on the interior of the mesh ( )e
iQ  will have opposite signs cancelling 

the contribution of this term for the two elements for the node(s) they share. But, for the 

elements on the exterior of the mesh this term will be used to represent specific rates of 

groundwater flow as 

 

 

5.3 Finite difference formulation for groundwater flow  

 

Numerical evaluation of transient equation is completed using time descretisation of 

effective matrices in time domain. Applying the finite difference approach to the 

equation yields the final form of the equation system for evaluation of pressure heads in 

the problem domain as 

 

 [ ]( ){ } [ ]{ } { }ˆˆ ˆ
t t t t t

p t K H p H t F
+∆ +∆

 + ∆ = + ∆   (5.32) 

 

where,  subscript t and t t+ ∆ represent time level and t∆  is time increment. 

 

5.4 Hydraulic gradient 

 

In this section, vertical and horizontal hydraulic gradients for the triangular element are 

evaluated. According to the shape function approximation, the partial derivative of 

hydraulic head with respect to the x direction is given by 

 

 
1

N
i

i
i

NH
H

x x=

∂∂ =
∂ ∂∑  (5.33) 

 

Spatial derivatives of interpolation functions can be written with respect to the area 

coordinates of the element as 

 ( ) nq x, y,z, t q
Γ

=  (3.31) 
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 31 2

1 2 3

i i i iN N N N LL L

x L x L x L x

 ∂ ∂ ∂ ∂ ∂∂ ∂= + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 (5.34) 

 3 1 2L L L

x x x

∂ ∂ ∂= − −
∂ ∂ ∂

 (5.35) 

 

 ( )1
3 2 / 2

L
z z A

x

∂ = −
∂

 (5.36) 

 

 ( )2
3 1 / 2

L
z z A

x

∂ = −
∂

 (5.37) 

 

Substituting Equations (5.35) to (5.37) into the Equation (5.34) yields 
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1 3 2 3
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H
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H
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∑
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    ∂ ∂ ∂∂ ∂− + −    ∂ ∂ ∂ ∂ ∂ ∂     

∂ ∂= − + −
∂ ∂

− −   = − + −   
   

 (5.38) 

 

Following a similar procedure, the vertical hydraulic gradient is evaluated as 
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1 2
1 3 2 3

3 2 1 3
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e

e e
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 (5.39) 
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5.5 Groundwater velocity 

 

The parameters appearing in the contaminant transport equation include groundwater 

velocity and the coefficient of dispersion. Also the coefficient of dispersion is a function 

of velocity. This implies that the groundwater velocity is a crucial variable in 

contaminant transport modelling in an aquifer. The water flow velocity is calculated 

based on the hydraulic gradient and hydraulic conductivity. The mathematical equation 

for the estimation of water flow velocity in porous media is based on Darcy’s law 

 

 , ,i
i

i

K H
v i x y z

n x

∂= − =
∂

 (5.40) 

 

Therefore, groundwater velocity for each element in the problem domain is evaluated 

by substituting the effective hydraulic conductivity and hydraulic gradient of each 

element in Darcy’s equation as 

 

 
( )

[ ] ( ) [ ] ( )
2 3 3 1

1 3 2 3

ˆ

2 2

e
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x e e

K z z z z
v H H H H

n A A

 − −   = − − + −    
    

 (5.41) 

 

 
( )

[ ] ( ) [ ] ( )
3 2 1 3

1 3 2 3

ˆ

2 2

e
z

z e e

x x x xK
v H H H H

n A A

 − −   = − − + −    
    

 (5.42) 

 

 

5.6 FE formulation for steady-state solute transport 

 

The stochastic partial differential equation for steady-state solute transport through an 

unsaturated soil is 

  

 
( ) ˆ ∂ ∂ ∂=  ∂ ∂ ∂  

i
ij

i i j

cq c
D

x x x
 (5.43) 

   

where ˆ = +ij ij ijD E A q. 
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The three-dimensional form of the Equation (5.43) is 

  

 

( ) ( ) ( ) ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

yx z
xx xy xz

yx yy yz
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 
 
 
 
  
 

∂∂ ∂  ∂ ∂ ∂ ∂+ + = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ 

 (5.44) 

 

Mean solute concentration is the unknown variable of the Equation (5.44). A procedure 

similar to the one used for the flow, is employed for extracting finite element equation 

for solute transport. An approximate solution of this variable is defined in terms of its 

nodal values and associated nodal shape functions as 

 ( ) ( ) ( )
1

ˆ , , , , ,
=

=∑
n

i i
i

c x y z t N x y z c t (5.45) 

 

where  ( )ĉ x, y, z, t   is the approximated value of solute concentration at any location of 

the problem, iN  is the interpolation function at node i, ic  is the mean solute 

concentration value at node i, and n is the number of nodes in the mesh. The 

approximated value does not exactly satisfy Equation (5.45). Based on the weighting 

residual method, weighted average of residuals at nodes, produced by substituting 

approximated solution into Equation (5.44) over the solution domain is forced to be 

zero. Then, 
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 ∂ ∂ ∂ ∂+ + + Ω =  ∂ ∂ ∂ ∂  

∫ ∫∫

 (5.46) 
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5.6.1 Element weighted residual for steady-state solute transport  

The contribution of any element, e, to the residual at node i to which the element is 

jointed is acquired by substituting the approximated mean solute concentration and 

other related hydraulic parameters of each element into the Equation (5.46). 
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 ∂ ∂ ∂ ∂ − + +  ∂ ∂ ∂ ∂  

∫

 (5.47) 

  
Using Galerkin’s method, Equation (5.47) can be written as  
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 (5.48) 

 

Because of linearity of solute concentration with respect to x ,y or z, 
2

2

ˆ∂
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x
 , 

2

2

ˆ∂
∂

c

y
 and 

2

2

ˆ∂
∂

c

z
 are not defined. However, the approximate solution does have a continuous first 

derivative; therefore Equation (5.48) can be evaluated if it is rewritten in terms of
ˆ∂

∂
c

x
, 

ˆ∂
∂
c

y
 and

ˆ∂
∂
c

z
. 

 
 



Chapter (5)                                                                                           Numerical Solution  

 125 

By integration by parts, the second-order derivative terms can be written as  
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(5.49) 
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Applying Green’s theorem to Equation (5.49) and substituting the resulted equation into 
the residual Equation (5.48), yields   
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 (5.50)

 
where,  
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∫

∫

∫

 (5.51) 

 

Equation (5.51) represent the solute sink/source across the element’s surface. This term 

in equation (5.50) is equal to zero for the internal elements and applied as solute flux for 

the boundary elements. 

 

Over each element, the element mean solute concentration is approximated by 

polynomial shape functions relating it to its nodal values as  

 

 ( ) { }( )ˆ [ ]= ee
i iN cc  (5.52) 

 

Substituting Equation (5.52) into the Equation (5.50), yields   
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(5.53)

 

Equation (5.53) is written in the matrix form as 

 

 { } { } { }( ) ( ) ( )ˆ[ ]e e eR D c f= −  (5.54) 

 
 

where ( )ˆ[ ]eD  is the effective advective-dispersive matrix  which is equal to 
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(5.55)

 

 

5.6.2 Element effective advective-dispersive matrix 

   

Two-dimensional element matrix 

The element effective advective-dispersive matrix for two dimensional problems is 

written in the expanded form as 
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 (5.56) 

 

Using interpolation functions and Equation (3.41) the arrays of the effective advective-

dispersive matrix for each element can be evaluated as 
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Three-dimensional element matrix 

The element effective advective-dispersive matrix for two dimensional problems is 

written in the expanded form as 
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(5.58)

 

 

Then, using interpolation functions and Equation (3.42) the arrays of the effective 

advective-dispersive matrix for each element can be evaluated as 
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(5.59) 



Chapter (5)                                                                                           Numerical Solution  

 131 

 

( )

( )

( )

( )

ˆ

36

24

24

 
 
  + 
 
  

 
 
  + 
 
  

mi ji mi jj mi jk mi jm

e
mj ji mj jj mj jk mj jmzx

e
mk ji mk jj mk jk mk jm

mm ji mm jj mm jk mm jm

ji jj jk jm

e
ji jj jk jmx

ji jj jk jm

ji jj jk jm

ki kj

e
y

m m m m m m m m

m m m m m m m mD

m m m m m m m mV

m m m m m m m m

m m m m

m m m mq

m m m m

m m m m

m m m

q

( )

24

 
 
  + 
 
  

 
 
 
 
 
  

kk km

ki kj kk km

ki kj kk km

ki kj kk km

mi mj mk mm

e
mi mj mk mmz

mi mj mk mm

mi mj mk mm

m

m m m m

m m m m

m m m m

m m m m

m m m mq

m m m m

m m m m

 

 

 

 

5.6.3 Global effective characteristics of domain 

Summing up the weighted residuals of elements over the domain and minimising it to 

zero yield  
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(5.60)
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Equation (5.60) in a matrix form is 

 

 
( ) ( ){ } ( ){ }ˆ 0e e e

i i
e

D c f   − =  ∑  (5.61) 

 

Then the general finite element formulation for the solute transport is 

 

 

where ˆ 
 D  is the global effective advective-dispersive matrix over the problem 

domain. 

 
 
 
5.7 FE formulation for unsteady-state solute transport 

 

The stochastic partial differential equation for unsteady-state solute transport through an 

unsaturated soil is 

  

 
( ) ˆ( )i

ij
i i j

cqc c
n D

t x x x

 ∂∂ ∂ ∂= − +  ∂ ∂ ∂ ∂  
 (5.63) 

  
The weighted average of residuals at nodes, produced by substituting the approximated 

solution into the Equation (5.63), over the solution domain is forced to be zero. Then, 
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 (5.64) 

 

 

 { } { } { }ˆ[ ] 0D c f− =  (5.62) 
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5.7.1 Element weighted residual for unsteady-state solute transport 

The contribution of any element, e, to the residual at node i, to which the element is 

jointed, is acquired by substituting the approximated solute concentration and other 

related hydraulic parameters of each element into the Equation (5.64) and using the 

Galerkin’s method, as 
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Integrating by parts and applying the Green Theorem yields the residual Equation as   
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Over each element, the following variables are approximated by polynomial shape 

functions relating them to their nodal values:  
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Substituting Equations (5.67) and (5.68) in to Equation (5.66) yields:  
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Equation (5.69) is written in a matrix form as 

 

 { } { } { } { }( ) ( ) ( ) ( )ˆ ˆ[ ] [ ]e e e eR P c D c f= + −ɺ  (5.70) 

 

where the element effective capacitance matrix ( )ˆ[ ]eP is:  
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5.7.2 Determination of element effective capacitance matrix   

The element effective capacitance matrix for two dimensional problems is written in the 

expanded form as 
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 (5.72) 

 

Using interpolation functions and Equation (3.41) the arrays of the effective capacitance 

matrix for each element is evaluated as 
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and with similar procedure the effective capacitance matrix for each tetrahedral element 

(three-dimensional element) is evaluated as 

 

 

5.7.3 Global effective characteristics of domain 

Summing up the weighted residuals of elements over the domain and minimising it to 

zero yield  
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Equation (5.75) can be written in the matrix form as 
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Then the general finite element formulation for the transient solute transport is 
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 { } { } { } { }ˆ ˆ[ ] [ ] 0P c D c f+ − =ɺ  (5.77) 

 
where ˆ 

 D  is the global effective advective-dispersive matrix, ˆ 
 P  is the global 

capacitance matrix and { }f solute flux vector over the problem domain. 

 
 
5.8 Finite difference formulation for transient solute transport 
 
 

5.8.1 Single domain solute transport 

Numerical evaluation of transient solute transport equation is completed using time 

descretisation of effective matrices in time domain. Applying the finite difference 

approach to Equation (5.77) yields the final form of equation system for evaluation of 

mean solute concentration in the single domain problem as 
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5.8.2 Dual domain solute transport 

Dual domain solute transport equation is written as  
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( ) ( )im im
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t
ζ

∂
= −

∂
 (5.80) 

 

where,  

 ( ) ( )i mm
m ij

i j i

q cc
L c D

x x x

   ∂∂∂= −    ∂ ∂ ∂  
 (5.81) 

 

( )mL c  is the operator representing the advection, dispersion, and solute sink/source 

terms in the mobile domain and this term is solved using Finite element method with 

similar procedure applied for advection, dispersion terms in single domain equation.  

Applying finite element method to Equations (5.79) and (5.80) yields 
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 { } { } { } { } { }m m im im m
ˆ ˆ ˆP c P c D c f 0     + + − =     
ɺ ɺ  (5.82) 

 { } { } { }( )im im m imP̂ c c cζ  = − 
ɺ  (5.83) 

 

where, 

 ( ) ( )
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 

∑  (5.84) 

 

and  
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 
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∑  (5.85) 

 

 

Substituting Equation (5.83) into Equation (5.82) and rearranging it yields 

 { } { } { } { } { }( ) { }m m m m im
ˆ ˆP c D c f c c 0ζ   + − − − =   
ɺ  (5.86) 

 

Applying the finite difference algorithm to Equation (5.86) yields 

 
{ } { } { } { } { } { }( )m mt t t

m m m imt t t t t t

c cˆ ˆP D c f c c
t

∆
∆ ∆ ∆

ζ
∆

+
+ + +

−
   = − − −     (5.87) 

 

Equation (5.87) contains two primary dependant variables, t t
mc ∆+  and t t

imc ∆+ , the solute 

concentration in the mobile and immobile domains respectively. Therefore, one must be 

expressed in terms of the other. This can be accomplished by applying finite difference 

algorithm to Equation (5.83). 

 

 
{ } { } { } { }( )im imt t t

im m imt t t t

c c
P̂ c c

t
∆

∆ ∆
ζ

∆
+

+ +

−
  = −   (5.88) 

 

Equation (5.88) can be arranged to yield  
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 { } { } { }im

im m imt t t t t

P̂
c c c

t∆ ∆

ζ
ϑ ∆ ϑ+ +

 
 = +  (5.89) 

 

where, 
imP̂

t
ϑ ζ

∆

 
 = + . 

 

Substituting Equation (5.89) into Equation (5.87) yields 

  

 
{ } { } { } { } { } { }

2
imm mt t t

m m m imt t t t t

P̂c cˆ ˆP D c f c c
t

∆
∆ ∆

ζζζ
∆ ϑ ∆ϑ

+
+ +

 −       = − − + +    
 

 (5.90) 

 

Equations (5.89) and (5.90) represent final solution of solute transport equation in dual 

domain systems.  

 

 

5.9 Solution procedure 
 
A computer code was written in Compaq Visual FORTRAN 2000 (© 2000 Compaq 

Compute Corporation) to solve the equations presented above for evaluation of 

stochastic properties of water flow and solute transport problems. The solution 

procedure and the algorithm used in the developed stochastic finite element code are 

summarized in Figure (5.1).  

 

The first step of the solution procedure involves defining the input data and the 

geometry of the problem. The expected values are determined using the related 

equations presented in chapter 4, and consequently, the effective permeability and 

capacitance matrices for each element are evaluated. They are assembled to create the 

global matrices. The boundary conditions are implemented and the global system of 

equations is solved using finite difference scheme in the time domain. The results of H 

and 2
hσ  are evaluated for each node. The solution procedure for evaluation of H is 

repeated to satisfy the convergence criteria of the problem. The convergence criteria of 

the results in this model is satisfied if the difference between two successive iterations 

at each point of the domain is smaller than 1%.   The convergence of mean pressure 

head is checked and if the nodal values converge, the transport equation can be solved, 

otherwise, the flow equation is solved. Once the convergence of pressure head for each  
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Figure 5.1 General structure of developed model. 
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node is achieved, then the field water velocity is evaluated and the arrays of 

macrodispersion coefficient are numerically determined; thereafter the advective-

dispersive transport and capacitance matrices are computed. The boundary conditions of 

transport problems are implemented. The system of equations for transport problems is 

solved using a finite difference scheme in time domain and mean and variance of solute 

concentration are evaluated. The solution procedure is repeated for the next time steps 

up to the total duration of the problem under study.   
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Chapter 6 
 
 
 

NUMERICAL EXAMPLES AND CASE 
STUDIES 
 
 
 

 

 

6.1 Introduction 

 

Stochastic FE model was used to simulate 7 different scenarios. The first case consists 

of simulating a one-dimensional transient unsaturated flow through a vertical column of 

soil. Analytical solution was used to verify the accuracy of the model. The second case 

consists of simulating a one-dimensional transient unsaturated flow through a layered 

soil. The results from stochastic FE analysis were compared to deterministic FE results 

and experimental data. The stochastic FE theory for solute transport was verified in the 

next case through simulation of a one-dimensional steady-state unsaturated flow and 

transient contaminant transport. The stochastic FE results were compared to 

deterministic and Monte Carlo results.  In the forth case, the capability of the developed 

model for simulation of three-dimensional problems is verified. The ability of the model 

in considering the effects of immobile water was verified in the fifth case. This case 

consists of simulation of solute transport in a column of soil with high density of 

macropores.  The results of the developed model were compared with those obtained 

using an analytical solution and experimental measurements. 
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Applicability and performance of the developed model for simulation of real problems 

was verified with simulation of two different case-studies; (i) a steady-state flow and 

transient solute transport case-study, (ii) a transient flow and contaminant transport 

case-study. Stochastic and deterministic results were compared to each other. Details of 

these 7 cases are presented in the following sections.   

 

 

6.2 Numerical examples 

 

6.2.1 Example 1 

This example has been selected to verify the model by comparing the results obtained 

from the developed model with those obtained from analytical equations presented by 

Tracy (1995) for 1-D horizontal and vertical unsteady-state groundwater flow in 

unsaturated soil samples. Effect of gravitational force on seepage potential of 

groundwater in vertical direction distinguishes horizontal and vertical groundwater 

flow.   

 

Problem definition for horizontal groundwater flow 

The problem, as shown in Figure 6.1, consists of horizontal, unsaturated groundwater 

seepage in a dry soil sample of length L. The right-hand boundary of the sample is kept 

as dry as possible, so pressure head is set to residual head. The residual head is the 

largest (in absolute value) negative pressure head allowed for the soil which is a 

function of type and properties of soil (Fredlund and Rahardjo 1993). Irrigation is 

applied to the left-hand side of the soil sample. As a result, water seepage occurs from 

left to the right through the soil sample. This causes the water pressure head at x=0 to 

gradually increase from a negative value (as the soil is unsaturated) to zero (saturated 

pressure head). Figure 6.1 (a) and (b) show the geometric dimensions and the element 

discretisation employed in the solution, respectively. Three-node triangular elements 

have been used in the discretisation of the area. The FE (finite element) mesh generated 

for this example consists of 80 triangular elements and 82 nodes, here referred to as 

mesh A. Also, the example was solved with a finer mesh; 200 triangular elements and 

202 nodes, here referred to as mesh B (Figure 6.1 c) to check the accuracy of numerical 

solution. The simulation results obtained with the finer mesh are very close to those 

obtained with the previous simulation (Figure 6.2). This proves that the first generated 
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mesh is an efficient one for this example and the finer mesh does not increase the 

accuracy of the prediction. The values of the parameters used in the numerical (FE) 

model and analytical solution are summarized at table 6.1. These values were chosen in 

order to enable comparison with results from the literature (Tracy, 1995). However, the 

values of parameters used by Tracy (1995) were not chosen very sensibly. As in the 

development of the analytical solution it was assumed that the soil sample is 

homogeneous, in the numerical simulation the variance of soil hydraulic parameters, is 

set to zero and the example is treated deterministically. 

 
Table 6.1 Value of parameters used in horizontal groundwater flow example. 

L  200 m  ks  10 m day-1 

Hr  -100 m  Hs  0 

θr  0.15  θs  0.45 

 

The parameters presented in the table were defined in chapters 5 and 6. 
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Figure 6.1 (a) 1-D horizontal groundwater seepage with the boundary conditions, (b) 
Finite element mesh with linear triangle element. 
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Figure 6.2 Pressure head distribution through the bar for various times (mesh B: 
symbols, mesh A: solid lines). 

 
 

Initial conditions 

The initial pressure head at each point of the bar is assumed as a function of residual 

pressure head, length of the bar and distance of the point from the left hand side of the 

bar (i.e., x) as 

 

 
2

1
1

6I r

x L
H H

L

 − = −  
   

 (6.1) 

 

 

Boundary conditions  

The pressure head at the left-hand boundary of the bar (i.e., x=0) is calculated as a 

function of time as 

 

 0

1
1

5
6

r

D

H H
t

t

 
 
 = −
 −
  

 (6.2) 

 

where tD is time duration which is defined as the time that the bar stays totally 

unsaturated. tD is calculated as (Tracy 1995) 
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( )25

6
s r

D
r s

L
t

H k

θ θ−
= −  (6.3) 

 

At the right-hand boundary that is kept dry the pressure head is equal to residual 

pressure head, So 

 

 L rH H=  (6.4) 

 

 

Analytical solution 

The governing differential equation for horizontal water flow in homogeneous 

unsaturated soil is  

 

 s r

H H
k k C

x x t

∂ ∂ ∂  = ∂ ∂ ∂ 
 (6.5) 

 

where, kr is relative hydraulic conductivity and is calculated as (Tracy 1995) 

 

 r
r

s r

H H
k

H H

−=
−

 (6.6) 

 

Tracy (1995) presented an analytical solution for this example using partial differential 

equation (6.5) and applying initial and boundary conditions presented at equations (6.1), 

(6.2) and (6.4), as 

 
( )2
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26 r
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H H

t c
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= − +

+
 (6.7) 

 

where  

 

 1c L= −  (6.8) 
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cL
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H
=  (6.9) 
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s r

s

c
k

θ θ−=  (6.10) 

  

 

Results 

Figure (6.3) illustrates transient pressure head distribution through the bar at various 

times during the groundwater seepage obtained from numerical and analytical methods. 

The solid lines represent the numerical solution and the symbols represent the analytical 

solution. Apart from the right end of the bar which is kept dry, the water pressure head 

through the bar increases with time. The initial water pressure head at left side of the 

sample is -83.33 m. As time progresses this value increases and after 10 days (i.e., 240 

hours) it reaches to zero (saturated condition).  

Transient water content distribution through the bar for various times, are depicted in 

Figure (6.4). At the beginning, the maximum value of water content is located at the 

left-hand side of the bar and it is equal to 0.2 m3m-3.  Minimum value of water content is 

located on the right end of the sample which is equal to 0.15 m3m-3. the results of 

analytical and numerical models both show that the water content increases with time 

through the sample. The water content on the left boundary increases to 0.23 m3m-3 and 

0.3 m3m-3 after 5 and 8 days respectively. After 10 days (i.e., 240 hours), the left end of 

the sample became nearly saturated.  

 

The results presented at Figure (6.3) and (6.4) show good agreement between analytical 

and numerical results. This proves reliability of developed model for simulation of 

groundwater seepage though the unsaturated soil.  
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Figure 6.3 Pressure head distribution through the bar for various times (analytical: 
symbols, numerical: solid lines, t: time). 
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Figure 6.4 Water content distribution through the bar for various times (analytical: 
symbols, numerical: solid lines, t: time). 
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Problem definition for vertical flow with gravity 

The problem, as shown in Figure 6.4, consists of downward, unsaturated flow in a 

rather dry soil sample of depth L. The bottom (z=0) rests on impervious rock, and the 

top (z=L) is at the ground surface. The impervious rock gives a no-flow boundary 

condition. Rain at the surface causes the pressure head HL to increase towards zero. 

Figure 6.5 (a) and (b) show the geometric dimensions and the element discretisation 

employed in the solution, respectively. Three-node triangular elements have been used 

in the discretisation. The FE mesh generated for this example consists of 80 triangular 

elements and 82 nodes. 
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Figure 6.5 (a) 1-D vertical groundwater flow with the boundary conditions, (b) Finite 
element mesh with linear triangle element. 

 
 

The values of the parameters used in the numerical (FE) model and analytical solution 

are summarized at table 6.2. This example is, also, solved deterministically for the same 

reason for the case of horizontal flow simulation and the variance of soil hydraulic 

parameters is set to zero. 
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Table 6.2 Value of parameters for vertical groundwater flow example.  

L  200 m  ks  0.115 m h-1 

Hr  -1.50 m  Hs  0 

θr  0.15m3m-3  θs  0.45 m3m-3 

α   5.06m-1     

 

 

Initial conditions 

The initial pressure head through the column is calculated as 

 

( ) ( ) ( ){ }(1
ln exp exp exp

1

1

I T B T

z

L

H H z H H L

z e

L e

α

α

α α α
α

α
α

−

−

   = − + − −   

− +× − + 

 (6.11) 

 

where HT and HB are mean pressure heads at the top and base of the column, 

respectively 

 

 

Boundary conditions  

The impervious rock at the base of the column is defined as no flow boundary 

condition, then  

 

The pressure head at the top of the column is calculated for various times as 
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and  
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Analytical solution 

The governing equation for groundwater flow in 1-D vertical direction with the gravity 

term is 

 

 

For this case, K is considered as (Tracy 1995) 

 

Tracy (1995) presented an analytical solution for this example using partial differential 

equation (6.15) with initial and boundary conditions presented as equations (6.12) and 

(6.13)  as 

 

 

 

Results 

The results obtained from finite element simulation are compared with those obtained 

from the analytical solution. Figure 6.6 illustrates transient pressure head distribution 

through the column, at various times during the groundwater seepage obtained from 

numerical and analytical methods. The solid lines represent the numerical solution and 

the symbols represent the analytical solution.  

 

Water pressure head through the column increases with time. The initial water pressure 

head at the top of the column is -50 cm and at the base of the column is -150 cm.  Water 

pressure heads at the top of the column are equal to -40 cm and -29 cm, and at the base 

are equal to -140 cm and -129cm after 3 and 5 hours, respectively, for both analytical 

and numerical methods. 
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After 7.12 hours, water pressure head value at the top reaches zero (saturated condition). 

At this time, water pressure head at the base for the numerical solution is -96.4 cm. This 

value is only 3.6% smaller than the analytical one which is equal to -100 cm. This is the 

largest difference between numerical and analytical solutions which is negligible. 

 

Transient water content distributions through the column for various times, are depicted 

in Figure (6.7). At the beginning, water contents at the top and base of the column are 

0.35 and 0.15, respectively. After 7.12 hours the top became saturated. The maximum 

value of the water content which is located at the bottom of the sample is equal to 0.26 

cm3cm-3.   

 

Comparison of the results shows that the results obtained using the FEM (finite element 

model) are in excellent agreement with those obtained from the analytical solution. This 

shows the potential of the developed finite element model in simulation of vertical 

groundwater seepage through unsaturated soils. 
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Figure 6.6 Pressure head distribution through the column for various times (symbols: 
analytical, solid lines: numerical results, t:  time (hr)). 
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Figure 6.7 Moisture content distribution through the column for various times 
(symbols: analytical, solid lines: numerical results, t:  time (hr)). 
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6.2.2 Example 2 

An example of modelling transient flow in unsaturated soil is chosen in order to validate 

the developed stochastic finite element model for water flow in heterogeneous layered 

soil. Field observations show that natural soil formations are often stratified. In this 

example, STOHYSO is used to simulate a lysimeter test and the results are compared 

with the actual experimental values (Polmann et al., 1990). 
 

Problem definition 

This experiment is usually performed in order to study the effects of heterogeneity (due 

to layered formation of soil) on water flow. In this particular test the lysimeter was 6 m 

long with a diameter of 0.95 m, and was filled with alternating 20 cm thick layers of 

Berino loamy fine sand and Glendale silty loam. The soil was air dried, sieved and 

packed into the lysimeter at a known density. Two tensiometers were placed into each 

soil layer, installed through the lysimeter and located at 10 cm apart.  An access tube for 

a neutron probe was installed vertically in the centre of the lysimeter. The irrigation 

water was applied to the top of the lysimeter. Irrigation was performed by a needle-

embedded plate installed just above the soil surface. This plate was rotated at a constant 

speed to distribute the flux of water uniformly over the surface. Water was added to the 

lysimeter at a rate of 0.083 cm/hr for 1200 hours. The dimensions of the lysimeter 

together with the FE mesh and boundary conditions are shown in Figure 6.8. The 

generated FE mesh for this example consists of 300 triangular elements and 302 nodes.  

 

The values of the parameters used in the example are presented in Table 6.3. Apart from 

correlation length in vertical direction (i.e., λ) other input parameters were measured 

experimentally (Polmann et al. 1990). The final value of λ was fine tuned through a trial 

and error procedure. 

Table 6.3 Values of parameters for example problem (Polmann et al., 1990). 

parameter value parameter Value 
Ks- Glendale silty 

loam (cmhr-1) 
0.5436 ψr (cm) -100 

α-Glendale silty 
loam (cm-1) 

0.0392 ψs (cm) 0 

Ks--Berino loamy 
fine sand (cmhr-1) 

22.536 A (cm-1) 0.0628 

α- Berino loamy 
fine sand (cm-1) 

0.0863 σa
2 (cm-2) 0.000555 

θr (cm3cm-3)  0.03 F 1.25 
θs (cm3cm-3) 0.33 σf

2 3.47 
λ (cm) 10 ∆t (hr) 0.1 
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Figure 6.8 (a) Dimensions of the lysimeter used for the experiment and (b) the FE mesh 
showing boundary conditions. 
 

Initial conditions 

Because the soil was dried, the initial capillary tension head through the column is 

considered equal to the residual capillary tension head and water content is considered 

equal to the residual water content which is the minimum water that soil can hold at its 

driest condition. 

 

 H(z) = -100 cm      
(6.18) 
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 θ(z)= θr      
(6.19) 

 

 

Boundary conditions 

The bottom of the column was kept dry in the experiment; hence, in the model, the 

capillary tension head is fixed to a constant value equal to the residual capillary tension 

head.   

 

 H(z)= -100 cm    z=L      
(6.20) 

 

A uniformly distributed inflow flux due to irrigation above the column is applied at the 

top of the column.  

 

 q(z=0) =0.083 cmhr-1      
(6.21) 

 

and 

 

 q(z≠0) =0                           
(6.22) 

 

Since in the finite element method, all calculations are done at nodal points, the flux 

implemented at the top of the column is applied on two top nodal points of the column.  

The contribution of each node of element from distributed water flux that is applied to a 

portion of length of that element is determined as (Istock 1989) 

 

 
( ) ( )

( ) ( )
i

bc bc

e e
i bc i i i bce

1
F q N d q a b x c y d

2AΓ Γ

 = Γ = + + Γ ∫ ∫  (6.23)

 

Fi
(e) is the contribution of node i of element e from the distributed flux; q is the 

distributed flux over the length of element that is positive for inflow and negative for 

outflow; bcΓ  is the element boundary over which the flux is applied. The rest of the 

parameters in Equation (6.23) have already been defined in chapter 5.  

 

In summary, the equivalent nodal inflow (i.e, F in Figure 6.8) which is applied along the 
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upper boundary of the element, is evaluated by substituting the relevant parameters of 

that element in Equation (6.23). 

 

 

Results 

Figure 6.9 shows the position of the wetting front versus time obtained from (i) the 

experimental measurements, (ii) the deterministic FE model and (iii) the stochastic FE 

model between 600 to 1200 hours after the beginning of irrigation. The results obtained 

from the stochastic FE model are in good agreement with the experimental 

measurements while those obtained from the deterministic model are considerably 

ahead of the measured ones. Velocity of wetting front can be used as an index in order 

to compare the results obtained from the stochastic and deterministic models with the 

measured results. The slope of the position curve of wetting front versus time represents 

the velocity of the wetting front. Based on the results presented in Figure 6.9, the 

velocity of the wetting front for deterministic approach is 34.79% greater than the 

measured velocity. While the wetting front velocity for the stochastic approach is very 

close to the experimental one. 

 

The position of the wetting front for the stochastic and deterministic models at different 

times between 0 and 1200 hours are presented in Figure 6.10. The wetting front moves 

faster for the deterministic case than for the stochastic case. It can be seen that the 

difference between the results of the two approaches increases with time.  
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Figure 6.9 Position of wetting front vs. time for Stochastic, deterministic and 
experimental approaches. 
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Figure 6.10 Position of wetting front vs. time for Stochastic, deterministic approaches. 
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The values of measured soil water content at different locations in the lysimeter, and at 

different times, are compared with the predicted values using the stochastic and 

deterministic models and the results are presented in Figures 6.11 and 6.12. It can be 

seen that the stochastic model produced results which are in better agreement with the 

observed water contents, whereas the deterministic model gave relatively poor 

predictions. The R2 values in Figures 6.12 and 6.13 represent the coefficient of 

precision for the predicted water contents from the stochastic and deterministic 

approaches. The R2 factor is evaluated using the following equation. 

 

 
( ) ( )

( )

22

m m p2 N N
2

mN

X X X
R

X

− −
= ∑ ∑

∑
 (6.24) 

   

where Xm is measured value, Xp is predicted value and N is number of data points. 

 

The R2 value obtained for the stochastic approach is 0.911, whereas the value of this 

coefficient for the deterministic approach is 0.611.  
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Figure 6.11 Volumetric water content (predicted by deterministic approach vs. the 
observed values). 
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Figure 6.12 Volumetric water content (predicted by stochastic approach vs. observed). 
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Figure 6.13 shows the pressure head distributions along the depth plotted for every 100 

hours during the 1200 hours of the wetting cycle for the deterministic and stochastic 

models. At t=0, the pressure head is -100 cm over the entire domain. After 100 hours of 

irrigation, the pressure head increases to -63.22 cm for the deterministic approach and to 

-39.28 cm for the stochastic approach. The position of the wetting front at this time is 

92 cm and 80 cm along the depth for the deterministic and stochastic approaches 

respectively. As time progresses the wetting front moves downwards, and the pressure 

head and moisture content increase over the entire domain. After 200 hours, the wetting 

front is located much deeper, at z= 172 cm, for the deterministic approach while for the 

stochastic approach it is located at z=124 cm. The moisture front continues to move 

downwards and at t=500 hours it is located at z= 412 cm for the deterministic approach; 

while, for the stochastic approach it is located at z= 280 cm. At t=700 hours, the 

position of the wetting front is 456 cm for the deterministic approach while for the 

stochastic approach it is at z=316 cm. Based on the result obtained from the 

deterministic model, after 900 hours, the wetting front almost reaches to the bottom of 

the lysimeter and after 1000 hours, the moisture front passes the bottom of the column; 

whereas, at this time the stochastic approach predicts that the wetting front is located at 

492 cm of the depth. 

 

In conclusion, the stochastic approach shows slower movement of the wetting front. 

Also the values of moisture content and pressure head at the same location, obtained 

from the stochastic approach, are more than those obtained from the deterministic 

approach. As a result, with the same input moisture into the lysimeter for both methods, 

according to the mass conservation law, the water content at the wetted sections is 

higher in stochastic simulation.  
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Figure 6.13 Pressure head distribution through the lysimeter for the stochastic and 
deterministic models (from 100 hrs until 1200 hrs). 
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Figure 6.13 (continued). 
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Figure 6.14 shows the volumetric moisture content distribution along the depth plotted 

for every 100 hours during the 1200 hours of the irrigation procedure. The linear 

relationship of Van Genuchten was used to evaluate the water content. 

  

 ( )s r
r r

s r

H H
H H

θ − θθ = θ + −
−

 (6.25) 

 

The maximum value of water content for the stochastic approach is 0.26 cm3/cm3 and 

for the deterministic approach is 0.15 cm3/cm3; whereas, the maximum value for 

measured water content is o.23 cm3/cm3. 

 

The smooth nature of the stochastic solution shows that this is a large-mean solution 

where small-scale fluctuations within or across the layers are not represented. In the 

deterministic case, the small scale spatial variations in the hydraulic parameters of the 

soil are included directly in the numerical description. In the stochastic case, spatial 

variations, such as layering, are incorporated into the effective parameters that are 

homogeneous over the entire domain. Hence, the presence of the small-scale 

fluctuations across the layers is not evident in the stochastic simulation. 
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Figure 6.14 Volumetric water content distribution through the lysimeter from stochastic 
and deterministic approach every 100 hours (from 00 hrs until 1200 hrs). 

. 
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Figure 6.14 (continued). 
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Figure 6.15 shows the pressure head variance versus depth from the beginning until 

1200 hours for every 200 hours. The minimum value of the pressure head variance is 

about 122 and the maximum value is about 3448. The pressure head variance decreases 

with time as more amount of water infiltrates into the soil, and increases through the 

depth. The maximum value of the variance is at the wetting front position. In theory, as 

the wetting front moves vertically, it encounters a series of soil layers that were 

previously dry. The dry coarse soil layers generally inhibit vertical flow, and they tend 

to remain dry, while the fine soil layers are easily wetted. Then, at the wetting front 

position a relatively large pressure head variance is expected. But, at the other parts of 

the soil, where water already passed and made them wet, less pressure head variance is 

expected (Mantoglou and Gelhar, 1987a).  

 

Variance is an index of reliability of the prediction and can be used to estimate a 

possible range of the out value. A probable interval (mean concentration minus and plus 

standard deviation) is estimated for the real value of the output. So, having a higher 

value for the variance, the mean value of the model output can not be a proper 

estimation of the real value. This implys that the predicted mean values are not as 

reliable at the points with high variance as they are in the other parts of domain. 

 

In the stochastic model, the output of the problem which is a random variable is 

described by statistical moments. The possible values of output at each location or time 

are in a range between mean plus and minus standard deviation rather than an explicit 

value. Figures 6.16 and 6.17 show mean pressure head distribution minus and plus one 

standard deviation at 600 hours and 1200 hours after the start of the irrigation. It is clear 

that standard deviation of pressure head from the mean value increases with decrease in 

the water pressure head. Comparison of the results presented in Figures 6.16 and 6.17 

shows that the standard deviation decreases with time while the mean pressure head 

increases. So, the mean pressure heads can be predicted more accurately at wetter 

conditions. 
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Figure 6.15 Pressure head variance through the lysimeter for various time. 
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Figure 6.16 Mean pressure head distribution +/- standard deviation vs. depth 600 hours  
after  irrigation (SD: Standard deviation, H : Mean pressure head). 
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Figure 6.17 Mean pressure head distribution +/- standard deviation vs. depth 1200 
hours after  irrigation (SD: Standard deviation, H : Mean pressure head). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter (6)                                                               Numerical examples and case studies 

 169 

6.2.3 Example 3 

 

Definition of the example 

This example was chosen to validate the model for simulation of solute transport in 

heterogeneous soil by comparing the result obtained from the stochastic finite element 

method with those obtained from the Monte Carlo method. The example consists of 

transient solute transport with steady-state unsaturated flow through a column of soil. A 

solute with concentration of C0 equal to 31 g/mk  is applied at the surface of the column 

for 20 days and is leached vertically into the soil column while the concentration at 

bottom of the column (CL) is kept at zero. Figures 6.18 (a) and (b) show the geometric 

dimensions and the element discretisation employed in the solution, respectively. The 

length of the column is 0.5m and its width is 0.01m but computational domain was 

extended to 1.5 m in order to semi infinite space. As a result, solute concentration 

distribution through the column is independent of the type of boundary condition 

applied to the end of the column. The FE (finite element) mesh generated for this 

example consists of 150 triangular elements and 152 nodes. 

 

F
lo

w

 

Figure 6.18 (a) Dimensions of the simulated soil column for steady-state flow and 
solute transport (b) the FE mesh showing boundary conditions. 
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The input parameter values are the same as those used by Persaud et al. (1985) who 

solved the same problem using the Monte Carlo method. A constant velocity of water 

equal to 1.3× 10-7 m/sec is assumed through the column and the coefficient of diffusion 

is 3.6× 10-8 m2/sec in vertical direction of the column. Mean of natural log of saturated 

hydraulic conductivity is taken as 0.31with variance equal to 0.2135 and the variance 

scaling parameter is equal to1.3 m-2. Values of the parameters used in the model are 

summarized in Table 6.4. 

 

 

Table 6.4 Value of parameters for steady-state groundwater flow and solute transport 
example. 

F  0.31  q  1.32× 10-7 m/sec 

E  3.6×10-8 m2/sec  
2
fσ   0.2135 

2
aσ   1.3 m-2  λ   0.25 m 

 

 

Initial conditions 

The initial solute concentration through the domain is as 

 

 
( )
( ) 3
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, 1 / 0, 0
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(6.26) 

(6.27) 

 

 

Boundary conditions  

The boundary conditions implemented to the domain is defined as  
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(6.28) 

(6.29) 

(6.30) 

 

 

Results 

Figure 6.19 (a) shows the variation of the mean solute concentration with time at depth 

of 0.5 m of the column obtained using stochastic finite element model and Monte Carlo 

method. The mean values obtained from stochastic finite element model are in 
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agreement with the Monte Carlo results, while the computational time for simulation 

using stochastic finite element model would be about 200 times less than that of Monte 

Carlo method for achieving approximately the same results as Monte Carlo analysis 

involved 200 calls of FE model. This reduction in computational time and costs 

indicates the advantage of the stochastic finite element method over Monte Carlo 

method.  

Figure 6.19 (b) shows the variance of solute concentration. The variance reaches its 

maximum after 23 hours and its minimum after 39 hours. The solute concentration 

distribution along the column presented in Figure 6.19 (c) shows that at time equal to 23 

hours the gradient of solute concentration (tan α in Figure 6.19c) at this depth is 

maximum and at time 39 hours, it is zero. Time variation of solute concentration 

distribution along the column can be seen in Figure 6.19 (e). For lower concentration 

gradients indicating uniform distribution or smooth variation in concentration in the 

domain, the solute transport occurs with less fluctuation. Therefore, in the region around 

the centre of the concentration plume where the plume moves more uniformly a lower 

value is estimated for the variance. Uncertainty (variance) is higher at higher 

concentration gradients. This can be seen in the close form equation presented for 

evaluation of variance of solute concentration which shows the variance is directly 

proportional to the solute concentration gradient (Gi and Gj). However, the small value 

estimated for the variance in this example shows that the predicted mean concentrations 

are reliable. 
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Figure 6.19 (a) Mean solute concentration vs. time obtained from MCM and SFEM, (b) 
2
cσ  vs. time, (c) normalized mean solute concentration vs. depth after 23 days, (d) 

normalized solute concentration vs. depth after 39 days, normalized solute concentration 
vs. depth for different times. 
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A sensitivity analysis on the variance of saturated hydraulic conductivity was carried 

out to show the effects of spatial variability of this parameter on macrodispertion 

coefficient and solute transport speed. Figure 6.20 shows solute concentration versus 

time at 0.5 m depth obtained from stochastic finite element model using different values 

for fσ . The solute concentration in earlier time of simulation increases because of 

implementation of solute at the top of the column at first 20 days of the simulation and 

transport of solute from the upper part of the column to this depth. After some times, 

concentration starts to decrease in response to change of solute concentration applied to 

the column surface from 1 kg/m3 to zero. It is shown that in the initial part of the curves 

when the mean solute concentration increases with time, the concentration increases 

with increasing fσ . On the other hand, in the post peak part of the curve, increasing fσ , 

causes decrease in concentration. This shows that solute spread faster with increasing 

fσ  as index of soil heterogeneity.  
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Figure 6.20 Solute concentration vs. time obtained for different values of fσ . 
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Figure 6.21 shows the solute concentration distributions vs. depth at 50 days for 

different values of variance of natural log saturated hydraulic conductivity. It is shown 

that concentration decreases as the variance increases. This means that solute spreads 

faster when the soil heterogeneity increases. That is because of the direct relationship 

between macrodispersivity and the large-scale fluctuations of the water flow.  
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Figure 6.21 Solute concentration vs. depth obtained for different values of fσ . 

 

 

In order to highlight the effects of soil heterogeneity on solute transport, the results 

obtained from the stochastic finite element model using a higher value of fσ  equal to 

1.2 were compared with deterministic results. Figure 6.22 shows mean solute 

concentration versus depth after 10, 30 and 50 days obtained from deterministic and 

stochastic finite element models. It is shown that solute moves downward with time for 

both stochastic and deterministic cases, but the deterministic results show slower solute 

transport than stochastic results. This is because in the deterministic model 

macrodispersivity which is dispersion due to soil heterogeneity and variability of local 

velocity is ignored.   
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Figure 6.22 Solute concentration vs. depth obtained from the stochastic and 
deterministic finite element models after a) 10 days, b) 30 days and c) 50 days. 
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6.2.4 Example 4 

This example has been selected to verify the model for simulation of three-dimensional 

problems. In this section, the analytical solution for a transient solute transport 

presented by Wexler, (1992) is used to check the accuracy of the developed model. A 

set of sensitivity analysis is performed. 

 

Problem definition 

The problem (Figure 6.23) consists of steady-state flow and transient solute transport in 

an aquifer of finite width (W) and height (H) with a solute source of finite width and 

finite height. The aquifer is infinite in x direction and the flow is assumed to be in x 

direction only with a constant mean velocity. It was assumed that the soil is stratified in 

x direction. A source of pollution of 1m width and 1 m height is located at the left 

boundary of the aquifer. The values used for 2
fσ  and 3λ  are based on measurements of 

hydraulic conductivity for samples collected from an aquifer in Vancouver, B.C., 

(Smith 1978 and, Smith and Schwartz 1980) and the values of the other parameters are 

based on real soil data available in the literature (Polmann, 1990). Values of the 

parameters used in the model are summarized at Table 6.5. 

 

 

 

          

 
 
 

Figure 6.23 Dimensions of the simulated 3D hypothetical solute transport problem. (a) 
Plan, (b) Cross section. 
 

 

 

 

 

(a) (b) 
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Table 6.5 Values of parameters used for 3D solute transport example. 

F  0.31  W  5m 
2
fσ   0.2  H  5m 
2
aσ   1.3 m-2  Y1  2 m 

1 2,λ λ   2 m  Y2  3 m 

3λ   0.38 m  Z1  2 m 

E  3.6×10-8 m2/sec  Z2  3 m 

q  1.32× 10-7 m/sec  0C   100 mg/l 

 

where, Y1 is y coordinate of lower limit of the source, Y2 is y coordinate of upper limit 

of the source, Z1 is z coordinate of lower limit of the source and Z2 is z coordinate of 

upper limit of the source at x=0.   

 

Initial conditions 

The initial solute concentration at each point of the domain is assumed as  

 

 0 0 , 0 , 0 , 0C x y W and z H t= < < ∞ < < < < =  (6.31) 

 

Boundary conditions  

The boundary conditions implemented to the domain are 

 0 1 2 1 20,C C x Y y Y and Z z Z= = < < < <  (6.32) 

 1 2 1 20 0C x and y Y or y Y and z Z or z Z= = < > < >  (6.33) 

 0 0
C

y
y

∂ = =
∂

 (6.34) 

 0
C

y W
y

∂ = =
∂

 (6.35) 

 0 0
C

z
z

∂ = =
∂

 (6.36) 

 0
C

z H
z

∂ = =
∂

 (6.37) 

 0
C

z
x

∂ = = ∞
∂

 (6.38) 
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Analytical solution 

Wexler, (1992) presented an analytical solution for this example using the classical 

partial differential equation for solute transport and applying initial and boundary 

conditions presented in equations (6.31)-(6.38) as 

 

( ) ( ) ( )

( )

( )

0
0 0

, , , cos cos

. exp .
2 2

exp .
2 2

mn m n
m n

xx xx

xx xx

C x y z t C L O P z y

x v x t
erfc

D D t

x v x t
erfc

D D t

ζ η

β β

β β

∞ ∞

= =

=

   − −
   
    

  + + +   
    

∑∑

 (6.39) 

 

where  

 

 

1
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2
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1 0, 0

2 0, 0

mn

m and n

m and nL
m and n

m and n

 = =
 = >= 
 > =


> >

 (6.40) 
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η η
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 0,1,2,3...
m

m
H

πζ = =  (6.43) 

 0,1,2,3...
n

n
W

πη = =  (6.44) 

 ( )2 2 24 xx yy zzv D D Dβ η ζ λ= + + +  (6.45) 
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Results 

A computer program was developed to compute the analytical solution of this example 

using Equations (6.39-6.45). The program is written in Maple 11.0. In order to provide 

better visualization, the results are presented in 1D curves.  Figure (6.24) shows solute 

concentration distribution at y= 2 m and z= 2.5 m after 24, 60 and 120 hours obtained 

from the analytical solution and the deterministic (variances=zero) finite element 

method. The solid lines represent the analytical solution and the symbols represent the 

deterministic solution. The largest difference between the deterministic and analytical 

solutions is 4.1%, which is negligible and proves the accuracy of the developed model. 
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 Figure 6.24 Solute concentration vs. x direction obtained from analytical and 

deterministic finite element methods (y=2 and z= 2.5 m). 

 

Figure (6.25) and (6.26) show solute concentration distribution at y=2 m after 12, 60 

and 120 hours obtained from the deterministic and stochastic finite element methods, 

respectively. From the analysis of the results, it was concluded that stochastic FE model 

predicts a wider contaminant distribution in area. After 12 hours, the contaminant 

reaches the length of 1.5 m while it reaches to 3 m for the stochastic case. At t= 60 

hours, it reaches 5m in deterministic case and reaches 7.5 m in stochastic case and after 

120 hours reaches to 8.5 m and 10 m for deterministic and stochastic, respectively. 
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(a) After 12 hours 

 

 
(b) After 60 hours 

 

 
(c) After 120 hours 

 

 
 

 
Figure 6.25 Solute concentrations (mg/l) at y= 2 m obtained from DFE method at 

different times. 
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(a) After 12 hours 

 

 
(b) After 60 hours 

 

 
(c) After 120 hours 

 

 

 
Figure 6.26 Solute concentrations (mg/l) at y= 2 m obtained from SFE method 

2 0.2fσ = at different times. 
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The example was also simulated with 2
fσ  equal to 0.5. Figure (6.27) shows the results 

of this simulation for t= 12, 60 and 120 hours. The difference in dimension of the 

contaminated plume in direction perpendicular to the stratification (z direction) between 

results of the stochastic finite element model with 2 0.2fσ =  and the deterministic finite 

element model is negligible.  

 

Although, this difference increases with increasing 2
fσ  and the stochastic results show a 

larger contaminated plume in this direction, however this difference is very small in 

comparison with that in the direction parallel to the mean flow. This is in agreement 

with the finding of Gelhar and Axness, (1983). They have shown theoretically, using 

analytical methods, that for the case of stratified soil with mean flow parallel to the 

direction of stratification (condition assumed for this example), transverse 

macrodispersion are extremely small and the contribution will be much smaller than the 

local transverse dispersion. 

 

The stochastic and deterministic results were compared to the analytical results. The 

deviation in contaminant concentration at y= 2 m for the stochastic approach with (a) 

2 0fσ =  ; (b) 2 0.2fσ =  ; (c) 2 0.5fσ =  and for the deterministic approach is shown in 

Figure 6.27. The deviation is evaluated as the difference between deterministic 

analytical and numerical results. The deterministic and analytical results are coincident 

except for near the source of pollution. The deviation is small. The maximum deviation 

is 2 mg/l and it decreases with increase in the distance from the source. The deviation 

between analytical and mean solute concentration increases when 2
fσ  increases. This 

means that the higher the variability of the soil properties, the higher the difference 

between deterministic and stochastic results. 
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(a) After 12 hours 

 

 
(b) After 60 hours 

 

 
(c) After 120 hours 

 

 
Figure 6.27 Solute concentrations (mg/l) at y= 2 m obtained from SFE method 

2 0.5fσ = at different times. 
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(a) 2

fσ =0 

 

 
(b) 2

fσ =0.2 

 

 
(c) 2

fσ =0.5 

 

 
Figure 6.28 Deviation of solute concentration (mg/l) at y= 2 m. 
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In order to study the effects of correlation scale on the solute concentration distribution 

the problem was simulated for different values of correlation scale. Dimensions of 

contaminated plume in x,y and z directions for different values of correlation scales are 

presented in the Table 6.6.  

 

  

Table 6.6 Contaminated plume dimensions for different value for correlation scale. 
Case Parameter under study Value (m) Wc (m) Lc Hc (m) 

A 1λ  4 2 8.5 2 

B 2λ  0.5 2 7 2.1 

C 3λ  1 2 7 2.1 

 

where, Wc, Lc and Hc  are width, length and height of contaminated plume respectively. 

  

In case A, the value of 1λ  is equal to 4 m. From comparison of the dimensions of 

contaminated plume with the those of the case with 1λ  equal to 2 m, it is concluded that 

increase in 1λ  causes a higher amount of solute to disperse in x direction and the 

dimension of the plume gets longer. However it does not have a significant effect on the 

dimension in y and z directions. Both reduction of 2λ from 2 to 0.5 in case C and 

increase of 3λ  from 0.38 to 1 in case C do not have any significant effects either on the 

length of plume (i.e. x direction) or the height of plume (i.e. z direction).  However, they 

cause slight increase in the contaminated plume dimension in y direction. 
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6.2.3 Example 5 

This example was chosen to verify the model in considering the effects of immobile 

water due to the existence of macropores in the domain.  

 

Problem definition 

A one-dimensional solute transport experiment conducted by Schoen, et al. (1999) in an 

undisturbed field lysimeter set up in a site located 40 km northwest of Grenoble, France, 

is considered to be simulated using the model developed in this study. The lysimeter 

with 1.2 m2 surface area and 1.5 m depth (Figure 6.29) was kept under controlled water 

flux conditions. There was no surface vegetation on the lysimeter during the 

experiments, and the surface was covered in order to avoid evaporation. The soil was an 

aggregated sandy and clayey loam. A higher density of macro-pores was observed and 

the percentage and size of sand gravel and stones increased with increasing depth. A 

finite element grid consisting of 120 triangular 3-nodes elements is used for the 

numerical simulation. 

 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
Figure 6.29 Problem definition. 

 
 
Initial conditions 

A zero initial solute concentration is considered through the lysimeter. 

 ( ), 0 0 1.5 , 0C z t z m t= < ≤ =  (6.46) 

 
 

 

 

 

 

y=0 

1.5m 

y=1.5 m 
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Boundary conditions 

The following concentration boundary conditions are used: 

 
Lower BC: 

 ( ), 0C t z∂ ∞ ∂ =  (6.47)

Upper BC: 

( ) 0 00, , 0C t C t t= < ≤  

( ) 00, 0,C t t t= <  
(6.48)

 
where, t0 is initial time. 
 
The lysimeter was subjected to two different flow flux conditions using rainfall 

simulator grid; one with a constant water flux of 1.48 mm/h (experiment A) and another 

with a constant water flux of 1.05 mm/h (experiment B). Solute pulses as KBr and KC1 

were applied to the surface of the lysimeter when the flow condition was reached to 

steady state. Duration (t0), composition, concentration (C0) of the pulses and value of 

the other parameters used in the simulations are reported in Table 1.  Numerical 

simulation of the problem is carried out for four different scenarios assumed for 

structure and formation of the soil: 

 

• A single domain system having uniform hydraulic properties (SDU); the 

variance of the hydraulic parameters of the domain and coefficient of solute 

exchange rate (ζ) between the domains are fixed to zero.  

• A dual-domain system with uniform hydraulic properties (DDU); the spatial 

variability of hydraulic properties of the soil is ignored and the variances of the 

hydraulic parameters of the domain are fixed to zero.  

• A single domain system with spatially variable hydraulic properties (SDV).   

• A dual-domain system with spatially variable hydraulic properties (DDV). The 

variance of saturated hydraulic conductivity equal to 3 and correlation length 

equal to 10 cm are considered for the DDV in the experiment B.   

 
 
Table 6.7 Values of input parameters used for simulation of the experiments A and B. 

Experiment θ t0 (h) C0 (mg/l) D** (cm2/h) D* ζ (cm2/h) θm 

A 0.248 75.5 476 3.5 5.3 2 x 10-4 0.181 

B 0.247 112.0 972 5.2 5.2 6 x 10-5 0.l95 

D* =Dispersion coefficient used for the scenarios DDU and DDV, 
D** =Dispersion coefficient used for the scenarios CD. 
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Results 
 
Experiment A 

The breakthrough curves (BTCs) presented in the Figure 6.30, shows the numerical 

results obtained using the SFEM, and the analytical and experimental results presented 

by Schoen, et al. (1999) for the experiment A, assuming two scenarios SDU and DDU. 

The result obtained based on the SDU scenario, is in very good agreement with the 

analytical solution of convective-dispersive (CD) transport equation presented by 

(Schoen, et al. 1999). However the results are not fitted with experimental 

measurements. The possible reason for this discrepancy is that the effects of soil 

heterogeneity and existence of macrospores in the domain were not considered in the 

simulations. As, the results obtained based on DDU Scenario present good agreement 

with experimental measurements. This result is also in agreement with analytical 

solution of governing equation of transport in dual-domain system presented by Schoen, 

et al., (1999). These agreements show the validity of the developed model for 

simulation of solute transport in dual-domain system and highlight the significant 

effects of micro-heterogeneity (macro-pores) in the solute fate.    
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Figure 6.30 Relative solute concentration vs. time. 
 
 

During transport process, mass is trapped in the top zone of the lysimeter due to its 

diffusion to immobile water stacked in the macro-pores, so less mass moves 

downstream. Sensitivity analysis can be utilized to address the effects of soil structural 

heterogeneity (macro-pores) on solute transport. Figure 6.30 shows the results of a 
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sensitivity analysis of relative solute concentration distribution along of the lysimeter 

with respect to ζ. The relation between solute concentration distribution and ζ depends 

on the sign of temporal variation of concentration ( C t∆ ∆ ).To illustrate this relation, 

solute concentrations at an arbitrarily chosen section (at a depth of 0.4m) of the 

lysimeter are considered 83 and 139 hours after the start of the solute application (S1 

and S2 in Figure 6.31). As shown in the figure, after 83 hours, when the peak of solute 

concentration has not yet reached this section (S1) and C t∆ ∆  is positive in S1, 

increase in ζ causes decrease in the concentration while after 139 hours, when the 

concentration peak has passed this section and C t∆ ∆  is negative, concentration 

increases with ζ in this area (see sections S1 and S2, magnified in Figure 6.31). 

 

For lower values of ζ indicating less heterogeneity in the soil structure, the transport 

regime approaches the behaviour of a single-domain system having a total porosity 

equal to the mobile porosity of the dual-domain system. Therefore, the plume moves 

downstream at a faster rate, causing higher relative concentration to appear in the lower 

zone. When the mass transfer rate coefficient is increased more connection is exchanged 

between the domains, and the system behaves like a single-domain regime having a 

porosity approaching the total porosity of the dual-domain system. Thus the plume 

travels through the domain at a slower rate.  

 

 

 

0

0.2

0.4

0.6

0.8

1

0 0.4 0.8 1.2
Depth(m)

C
/C

0

DDU

DDU

DDU

After 139 hours

 7

7

8

5 1 0

2 .5 1 0

8 1 0

ζ
ζ
ζ

−

−

−

= ×
= ×

= ×

After 83 hours

 

Figure 6.31 Relative solute concentration vs. depth, for different value of ζ after 83 and 
139 h. 
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Experiment B 

Figure 6.32 shows the numerical results obtained from the developed model for 

experiment B, assuming scenarios SDU, DDU, together with experimental 

measurements presented by Schoen, et al., (1999). In experiment B which was based on 

stratified formation of soil, the soil in the lysimeter was assumed to consist of 10 layers 

having constant water content. Water contents and solute concentration were measured 

by extracting 30 samples in every 10 cm thick layer, (2 samples in each layer). The 

measured water contents show spatial variability along of lysimeter. Existing 

oscillations in measured solute concentrations make it difficult to find a simulated 

profile using a numerical method to fit the measured values. The results obtained with 

SDU and DDU scenarios do not fit the measured data. The possible reason is that in 

these scenarios, the effect of the macro-heterogeneity of soil is ignored. A better fit can 

be observed between the results obtained based on DDV scenario and the experimental 

data (Figure 6.33). It is noticeable that the results of SDV which only considers the 

effects of macro-heterogeneity are not in agreement with the measured results as much 

as those of DDV. This indicates the significance of consideration of both types of 

heterogeneity.  

 

Although, the mean concentration profile obtained based on DDV does not still cover 

all the measured data, the measured concentration realization is more or less surrounded 

by mean concentration plus and minus a standard deviation with a fairly good accuracy. 

The mean concentration profile shows a better agreement with the measurements at the 

lower zone of the lysimeter than the upper zone. Discrepancy between the results at the 

upper area of the lysimeter might be because of the boundary effects in the numerical 

results, as it is close to source of solute injection. Also, the coefficient of variability of 

the concentration as index of reliability of results shows higher value at the area close to 

the source.  
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Figure 6.32 Solute concentration vs. depth. 
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Figure 6.33 Solute concentration vs. depth. 
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6.3 Case studies 

 

6.3.1 Case-study 1 

The developed SFEM is applied to a case study involving transport of a petroleum-

based contaminant at a site in south west of England, in order to examine the 

applicability of the SFEM for simulation of field scale problems.  

 

Site description 

The local geology comprises Yeovil Sand beds to 60m depth, with Jurassic limestone 

immediately to the north. The surface geology of the site includes shallow, fine alluvial 

deposits containing organic matter, and layers of coarse grained material, probably 

weathered limestone with limestone fragments.  The site is underlain by a major aquifer 

and is on the boundary of a fluvial floodplain, having an annual flooding risk of 1%.  

The plot is approximately 20m by 20m and consists of a building formerly used as a 

shop and office, together with two attached workshops with concrete floors, used for 

repairs and storage (Figure 6.34).  Adjacent to the current office entrance is a store 

containing two paraffin or light oil tanks, each of 1300 litre capacity.  The forecourt is 

concrete surfaced above the fuel tanks, with a tarmac and gravel access road to the rear.  

The fuel filling area is directly adjacent to the public pavement and consists of four 

diesel pumps.  Five manhole covers are nearby, two of which provide access to fuel 

storage tanks, with two adjacent surface drains (Javadi et al., 2008). 

 

Site observation 

Numerous inspection covers are present on the site, providing access to fuel tank fillers, 

pipe manifolds, water supply pipes and two surface drains, with two further drains on 

the site periphery. Tests carried out by a consulting engineers company, showed that 

one drain adjacent to the fuel pumps discharges directly into a receptor, which means 

that any spillages from pump operation has a direct pathway to local surface water. 

Water present beneath some inspection covers has shown considerable contamination 

by heavy oils. 

 

Eight monitoring boreholes have been used for the survey as shown in Figure 6.34 to 

provide comprehensive information about the possible amount of dispersed and 



Chapter (6)                                                               Numerical examples and case studies 

 193 

dissolved fuel compounds. Such contaminates can be expected to show greatest 

mobility and hence potential for migration off-site. 

 

Four monitoring boreholes had previously been installed to three meters depth, adjacent 

to the storage tanks and pump areas. Four additional boreholes were installed by the 

consultant in charge of the investigation as close as possible to the site boundaries. The 

installation points were selected to surround the site as far as practicable, with emphasis 

on the north and west boundaries, as observations suggest that groundwater is likely to 

flow in this direction. The new boreholes, B5 – B7, were of a similar design to the 

original, slotted from 1m below ground level, and were installed to a depth of 5 m. 

Groundwater in the boreholes was allowed to equilibrate and was sampled four days 

after installation. Water samples were taken at 0.3 m below groundwater surface to 

exclude floating product, which may be constrained on the site, and to detect dispersed 

and dissolved fuel components which are more vulnerable to migration with 

groundwater.  The receptor was also sampled upstream and downstream of the site, 

adjacent to the site boundaries (Javadi et al., 2008). 
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Figure 6.34 Plan of site. 
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Results 

A survey was undertaken initiated in January 2003 in order to assess the extent of 

contamination throughout the site and general groundwater movement. This survey 

found hydrocarbon contamination at all sample points within the site and around the 

periphery as shown in Table 6.8.  A section of the site, 40m wide and 10m deep as 

shown in Figure 6.34 is analyzed using SFEM.  The section is divided into 800 three-

node triangular elements (Figure 6.35).  

 

 
Table. 6.8  Analysis of contaminants in aquifer (January 2003) (Data provided by 
Exeter Environmental Services). 

Sample ID 
Benzene 

mg/l 

Toluene 

mg/l 

Ethyl 

benzene 

mg/l 

Xylene 

total 

isomers 

mg/l 

Total Petroleum 

Hydrocarbons 

(TPH) 

mg/l 

Bl <0.1 0.1 3.3 3.4 124 

B2 97.5 5.0 61.4 205.7 115034 

B3 0.2 0.1 0.9 0.8 141 

B4 0.7 0.1 1.1 4.0 141014 

B5 0.2 0.2 0.6 0.7 22000 

B6 3.6 0.7 1.2 1.5 20100 

B7 29.7 0.6 34.6 9.2 2462 

B8 0.2 1.1 1.5 2.5 921 

Brook upper 0.1 0.1 0.8 0.8 <40 

Brook lower 0.1 0.1 0.3 0.4 <40 

Dutch 

Intervention 

Levels 

30 1000 150 70 600 
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40m 

Figure 6.35 Finite element mesh. 

 

The transport of the contaminant by advection, diffusion and dispersion mechanisms is 

considered. Table 6.9 shows model parameters used in the SFEM. The parameters were 

measured or estimated as a part of the site investigation.  In the model the water velocity 

wv  was estimated by measurement of the hydraulic gradient of the aquifer. 

Unfortunately, data describing the spatial variability of soil properties (e.g., lnks and c) 

in real field situations are not sufficient to evaluate all the necessary statistical 

parameters. The correlation length has been reported between 0.08 to 1.8 m for different 

types of soils in the literature (Polmann et al., 1990). The correlation lengths of f and c 

were assumed to be 0.4 m, based on the soil type.  

 
Table. 6.9 Model parameters used in the FEM analysis. 

Model parameters 

parameter value 

wmD  :  coefficient of water molecular diffusion (m2.sec-1) 7101 −×  

WLα   : longitudinal dispersivity  for water phase (m) 0.5 

θ      :  moisture contents (%) 21 

sρ     : density of the solid phase (Mg.m-3) 2.69 

sK     : saturated permeability (m/s) 5101 −×  

T      :  absolute temperature (K) 293 

oe      :  initial void ratio 0.713 

wv      : water velocity (m.sec-1) 7103.2 −×  

 

10m 
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Figure 6.36 compares the results of the model prediction with the measured values of 

contaminant concentration recorded in September 2004. The results are plotted for 

section A-A (Figure 6.37). It is shown that the results of the SFEM are in better 

agreement with field measurements than the results of the DFEM presented by Javadi et 

al., (2008). Figure 6.37 shows the contaminant distribution in February and March 2003 

obtained from SFEM and DFEM. The results of SFEM show a lower peak 

concentration in the plume than those of the DFEM. A sensitivity analysis is performed 

to examine the sensitivity of the model to variations of 2
fσ . Figure 6.38 shows solute 

concentration distribution in Sept 2004 for different values of 2
fσ . It can be seen that 

this parameter plays a significant role in transport of the contaminant and changes in 

concentrations with time. Increasing 2fσ  will increase the amount of contaminant that 

will spread in the soil matrix due to increase in the random variation of local velocity. 
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Figure 6.36 Comparison between measured data and the results of SFEM and DFEM. 
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Figure 6.37 Comparison between SFEM and DFEM predictions. 
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Figure 6.38 Solute concentration vs. length at Sep 2004 obtained for different values 

of 2
fσ . 
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6.3.2 Case-study 2 

 

A field-scale experiment conducted at the Maricopa Agricultural Center, Phoenix, 

Arizona, USA. (Abbasi et al., 2003a,b), was simulated by the developed stochastic 

finite element model to show applicability of the model for field scale problems. This 

experiment was conducted to investigate the distribution of soil moisture and solute 

concentration in soil profile below agricultural irrigation furrows. The soil of the field 

site is bare sandy loam. The experiment was carried out on 115 m long furrows under 

free-draining (FD) condition, spaced 1 m apart (Figure 6.39). The experiment was run 

with two irrigation events 10 days apart; the first irrigation lasted 275 min and the 

second irrigation 140 min. Two sets of neutron probe access tubes were installed at x = 

5 and 110 m along the monitored furrow. Hereafter we refer to these locations as the 

inlet and outlet sites, respectively. In addition to initial readings before the irrigation, 

water contents were recorded 6 and 12 h after each irrigation and then daily.  

 

Soil samples for investigation of gravimetric soil water content and bromide 

concentration, were collected from one side of the monitored furrows at three different 

locations top, side, and bottom of the furrows (e.g. at locations 1, 2 and 3 in Figure 

6.40), in a cross-section perpendicular to the furrow axis at similar depths as they used 

for the neutron probe measurements. Water flow depths in the furrows were taken at the 

inlet and outlet sites every few minutes and these measurements served as the upper 

boundaries for the numerical calculations.  
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Figure 6.39 Plan view of the furrow irrigation field experiments, not to scale, (Abbasi, 
et al., 2004). 

 

 

 

 

 

 

 

Figure 6.40 Position of neuron probe access tubes at different locations in the furrow 
cross-section. Numbers relate to access tubes installed in two different rows; the first 
row includes tubes 2 and 4 along the sides and the second row includes tubes 1, 3 and 5 
(Abbasi, et al., 2004). 
 

 

The values of scaling parameter A, saturated and residual soil water contents (sθ  and 

rθ )  are considered equal to 0.055 1/m, 0.411 and 0.106 based on laboratory analyses of 

soil water content data obtained from 38 undisturbed soil samples. Measured soil water 
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retention parameters showed considerable spatial variability in the soil hydraulic 

properties at the field site. The FE (finite element) mesh generated for this example 

consists of 1288 triangular elements and 702 nodes. The parameters used in the 

stochastic finite element model and HYDROUS2-D (Šimunek, 1999) are summarized in 

Table 6.10. Different values combination of variances of stochastic parameters and the 

vertical correlation length were used to simulate the experiment and the best fit was 

achieved with assuming 2fσ  and 2
aσ  equal to 0.6 and 0.02 1/m2, respectively.  

 
 

Table.6.10 Parameter values used for the numerical simulations. 

 

The values of the parameters used in the HYDROUS2-D model were inversely 

estimated by Abbasi et al. (2004) using an optimization method in combination with the 

HYDRUS-2D numerical code using two optimization approaches;  

 

 

•  Simultaneously optimization approach; in this approach the saturated hydraulic 

conductivity Ks and the convective dispersive solute transport parameters were 

estimated simultaneously using a optimization method (Abbasi et al., 2004). 

• Two-step optimization approach; in this approach; the saturated soil water 

content, the parameter n in van Genuchten’s soil hydraulic property model, and 

the saturated hydraulic conductivity Ks as the most sensitive soil hydraulic 

parameters (Abbasi et al., 2003b) were estimated, followed by estimation of 

transport parameters (Abbasi et al., 2004).  

 

Initial conditions 

Measured soil water contents before the experiments were used as initial conditions 

within the flow domain and initial Bromide concentration was assumed zero through the 

entire domain. 

 Site Ks (m/s) θs λ (m) Lα (m) Tα (m) 

Simultaneously optimization Inlet 1.39×10-5
 0.411  0.222 0.044 

 Outlet 1.59×10-5 0.411  0.091 0.0001 
Two-step optimization Inlet 7.6×10-6 0.301  0.2005 0.0434 
 Outlet 1.78×10-5 0.387  0.0174 0.0004 
Stochastic finite element Inlet 1.5×10-5 0.411 0.2 0.22 0.044 
 Outlet 1.5×10-5 0.411 0.2 0.22 0.044 
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 ( ), , 0 0C x z t t= =  (6.49) 

 

Boundary conditions 

Time-space dependent flow depths (surface ponding, h(x,t) in Figure 6.41) were 

specified as the upper boundary condition in the furrow during irrigation. A free-

drainage condition for water was applied to the lower boundary of the domain (Figure 

6.42). No-flux boundary conditions were applied to both sides of the flow domain. 

Bromide in the form of CaBr2 was injected at a constant rate equal to 6.3 g Br l-1 during 

the entire irrigation. A Cauchy (solute flux) boundary condition was used for the upper 

boundary of the domain for solute transport. 

. 
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Figure 6.41 Water boundary conditions used for numerical modelling. 

 

 

 
Result  
Measured and predicted (using the stochastic finite element model developed in this 

study and HYDROUS2-D model soil water contents at the inlet and outlet sites of the 

experiment are presented in Figure 6.41. The results are given by means of 1D curves to 
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provide a better visual comparison between the measured and calculated distributions. 

The results are given at two different times (12 h and five days after the start of 

irrigation, being representatives of relatively wet and dry conditions) and for three 

different locations in the furrow cross-section (bottom, side and top of the furrow) up to 

a depth of 100 cm below the ground surface. The results are plotted versus depth 

(instead of versus lateral distance) since considerably more data were available versus 

depth. The black solid and dashed lines show simulation results obtained by HYDRUS-

2D in combination with simultaneous and two-step optimization approaches, 

respectively (Abbasi et al., 2004). The solid red lines show the results obtained using 

the stochastic finite element model. From comparison of the results, it is concluded that 

stochastic finite element method produced better agreement with the observed water 

contents than HYDROUS2-D.  HYDROUS2-D is a deterministic numerical code and 

effects of spatial variability of soil hydraulic parameters are not considered in this 

model. Saturated hydraulic conductivity used in this model was obtained by inverse 

estimation using two different simultaneous and two-step optimization approaches and 

different values were found for each inlet and outlet sections of the problem that shows 

spatial variability of the hydraulic parameters of domain. However in the stochastic 

finite element model spatial variability of these parameters is considered; and this could 

be the possible reason for agreement of its results with measured ones.   

 

Other advantage of the developed stochastic finite element model over the HYDROUS-

2D or similar deterministic models are its capability for considering the effects of large-

scale hysteresis. The large-scale hysteresis is referred to as hysteresis due to spatial 

variability of large scale parameters (Mantoglou and Gelhar, 1987). The effective 

parameters (i.e., effective hydraulic conductivity, effective moisture capacity) are 

functions of time history of mean capillary pressure head. It is generally accepted that 

the hysteresis often occurs in field-scale problems and it may have played a major role 

in this problem. The results obtained for the inlet site show (Figure 6.42) that after 12 

hour and 5 days from the start of irrigation when soil is in wetting and drying conditions 

respectively, stochastic model predicts less amount of water content along the soil 

profile than the deterministic model. It is expected that water moves slower at early time 

when soil is still dry and in wetting condition due to the effects of large-scale hysteresis. 

So, less amount of water infiltrates into the soil profile. While after 5 days that the soil 

is in drying condition, a faster drainage of water from the bottom of the furrow is 
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expected. So less amount of water predicts in using the model that considers the 

hysteresis than the other one.  

 

c)  Outlet site:  12 hours after the first 

       Bottom of Furrow                                   Side of Furrow                            Top of Fu rrow   

b)  Inlet site:  5 days after the first irrigation

a)  Inlet site:  12 hours after the first 

d)  Outlet site:  5 days after the first 
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Figure 6.42 Measured and predicted (using stochastic finite element and HYDRUS2-D 
models) soil water contents for the inlet and outlet sites (measured: symbols, 
simultaneous: solid black lines, two-step: dashed lines, stochastic finite element: solid 
red lines). 

 

In the case of outlet section, the results show that the hysteresis does not play significant 

role in water content distribution. This is because at the times under study of water 

movement, the soil profile in this site is not in neither wetting nor drying conditions. 

The initial measured water content showed that at this section of furrow, soil profile was 
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c)  Outlet site:  5 days after the first irrigation

-80

-55

-30

-5

0 2 4 6 8

Bromide concentration (g l-3)

S
oi

l P
ro

fil
e 

D
ep

th
 (

cm
)

-80

-55

-30

-5

0 2 4 6 8

Bromide concentration (g l-3)

S
oi

l P
ro

fil
e 

D
ep

th
 (

cm
)

-80

-55

-30

-5

0 2 4 6 8

Bromide concentration (g l-3)

S
oi

l P
ro

fil
e 

D
ep

th
 (

cm
)

-80

-55

-30

-5

0 3 6 9

Bromide concentration (g l-3)

S
oi

l P
ro

fil
e 

D
ep

th
 

(c
m

)

       Bottom of Furrow                                   Side of Furrow                            Top of Fu rrow   

a)  Inlet site:   5 days after the first irrigation
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b)  Inlet site:   5 days after the second  irrigati on
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d)  Outlet site:  5 days after the second  irrigation

 

Figure 6.43 Measured and predicted (using stochastic finite element and HYDRUS2-D 
models) bromide concentration for the inlet and outlet sites (measured: symbols, 
simultaneous: solid black lines, two-step: dashed lines, stochastic finite element: solid 
red lines). 

 

already wet. So, after 12 hours, the surface water infiltrates into a wet soil. Also, after 5 

days the profile does not reach to drying condition because of the late arrival of surface 

water to this site as the outlet site is located 105m far from the irrigation place (see 

Figure 6.39). The results presented in Figure (6.42) show that the stochastic model 

predicts a slower water movement and consequently higher amount of water content 
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through the soil profile than the deterministic one due to considering the effects of soil 

heterogeneity. 

 

 The measured and predicted Br concentrations at the inlet and outlet sites of the 

experiment are presented in Figure 6.43. The results are given at two different times 

(five days after the start of each of the first and the second irrigations) and for three 

different locations in the furrow cross-section (bottom, side and top of the furrow). The 

black solid and dashed lines show simulation results obtained by HYDRUS-2D in 

combination with simultaneous and two-step optimization approaches, respectively 

(Abbasi et al., 2004). The solid red lines show results obtained using stochastic finite 

element model. From comparison of the results, it is concluded that stochastic finite 

element method produced better agreement with the observed water contents, than 

HYDROUS2-D.   

 

Comparison of both solute concentration profiles obtained by SFEM and DFEM is 

difficult because it is impossible to detect if the differences in the two profiles are due to 

the different flow fields and or due to the different approaches used to solve the 

contaminant transport equation. In order to study the effect of the inclusion of the 

macrodispersion as a transport mechanism, the transient unsaturated flow equation was 

solved using a stochastic approach and the transport equation was solved twice; first 

time using a deterministic approach for the transport part and the second time using a 

stochastic approach. The Figures 6.44, 6.45 and 6.46 show mean solute concentration 

through the domain after 2 hours, 2 days and 5 days after the start of first irrigation. 

 

The stochastic results show lower value of bromide concentration at the area close to the 

surface of the furrow than the deterministic results. Deterministic model overestimates 

solute concentration around of the solute source. This means that the effect of including 

the variability of the properties of the soil into the transport equation is to increase the 

lateral and longitudinal spreading of the contaminant. So, greater amount of solute 

disperses through the domain and it is distributed at larger area. This can be seen in the 

Figures 6.44 and 6.45 for example; the area with concentration between 2-3 mg/l is 

larger for the stochastic case in comparison with the deterministic one. Deterministic 

approaches predict slower movement of the solute in both directions than the stochastic 

approach. 
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Figure 6.44 Solute concentration (mg/l) after 2hours from the start of the first irrigation 
using (a) deterministic (b) stochastic method. 
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Figure 6.45 Solute concentration (mg/l) after 2days from the start of the first irrigation 
using (a) deterministic (b) stochastic method. 
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(a) 

 

 

 

 

(b) 

 

 

Figure 6.46 Solute concentrations (mg/l) after 5 days from the start of the first irrigation 
using (a) deterministic (b) stochastic method. 
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Higher amount of dispersion resulting from the stochastic method is mathematically 

referred to as the macrodispersion coefficient which is added to the local dispersion. 

Since the total dispersion coefficient in the SFEM is greater than the local dispersion 

coefficient, a wider area leached by solute is predicted.  

 

Figure 6.47 shows the variance of bromide concentration The variance is higher along 

the border of the contaminant plume but, the coefficient of variation is low. This means 

that the uncertainty on the predicted bromide concentration is higher along the borders 

of the contaminant plume compared to other regions of the domain, but the predicted 

values are still reliable since the coefficient of variation is low. 
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CONCLUSIONS AND 
RECOMMENDATIONS 
 
 
 

 

 

7.1 Concluding remarks 

 

In this study, a stochastic FE based model was developed for simulation of water flow 

and contaminant transport in unsaturated soils. The stochastic spectral method was 

implemented in the governing equations for water flow (Richard’ equation) and 

convective-dispersive solute transport to incorporate the spatial variability of hydraulic 

properties of soil and to reduce the uncertainty in prediction of contaminant fate and 

transport. The procedure of the stochastic methodology was explained. 

 

Two stochastic differential equations for mean flow and contaminant transport and a set 

of mathematical algebraic equations for evaluation of important parameters such as 

effective hydraulic conductivity, the variance of capillary tension head and solute 

concentration were presented. Stochastic governing equations obtained for the mean 

flow and solute transport were solved using the FE method in space domain and a FD 

scheme in time domain. Mean and variance of saturated hydraulic conductivity (ks), 

scaling parameter (α) and correlation scale of these random parameters are the inputs of 

the model and can be provided by site investigation and statistical analysis of data 
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obtained from the region under study. The variance of capillary tension head and solute 

concentration are indicators of reliability of the model.  

 

The developed model was verified for both flow and transport problems through 

comparison of the results obtained using stochastic FE model with analytical, 

deterministic and Monte Carlo simulations, as well as experimental results. From this 

comparison, it can be concluded that the stochastic based model performs better than the 

deterministic one. Also, the developed model is more efficient than Monte Carlo 

method in terms of computational time and efforts.  

 

A lysimeter experiment conducted at NSMU College Ranch near Las Cruces was 

simulated numerically using both stochastic and deterministic FE methods. The 

stochastic approach which includes the variability of the soil properties in the 

formulation predicts a slower movement of the wetting front in the vertical direction. 

The stochastic and deterministic results were compared to the field-measured values. 

The results predicted by the stochastic finite element theory presented in this work are 

in good agreement with the experimental values.  

 

A one-dimensional transient contaminant transport with steady-state flow was 

simulated. The mean solute concentration profiles were compared to Monte Carlo 

simulations. The great advantage of the stochastic FE method over the Monte Carlo 

method is the tremendous saving in the computational costs. In this example, 200 Monte 

Carlo simulations were necessary to obtain basically the same results using stochastic 

finite element approach. Then, the capability of the developed model in simulation of 

three-dimensional non-isotropic statistical problems was tested with simulation of one 

hypothetical example and comparison of the results with analytical solutions. 

 

The model was used to simulate transport of non-reactive solute in an undisturbed 

lysimeter during steady-state water flux. Numerical simulation of the problem was 

carried out for four different scenarios assumed for the structure and formation of the 

soil: a single domain having uniform hydraulic properties (SDU), a dual-domain system 

with uniform hydraulic properties (DDU), a single domain with spatially variable 

hydraulic properties (SDV) and a dual-domain system with spatially variable hydraulic 

properties (DDV). The numerical results were compared with experimental measured 

data. The results obtained based on SDU were not in agreement with the measured data. 
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The dual domain system method (i.e., DDU) yielded satisfactory results but higher 

accuracy was achieved using the DDV scenario. Analysis of the results shows that the 

incorporation of both types of micro- and macro- heterogeneity in the simulation 

models can greatly improve the accuracy of the predictions. So, combination of dual 

domain approach with stochastic approach provides an effective approach to predict 

solute transport problems in naturally heterogeneous soil with higher accuracy. 

 

Two field-scale transport problems were simulated using the developed stochastic FE 

model. The results were compared to those obtained using deterministic models from 

the literature and experimental measurement. The results of these case-studies proved 

the capability of the model for simulation of large-scale problems. 

 

From the results of this study following conclusion can be drawn: 

 

• Stochastic finite element methodology is an efficient method to incorporate the 

small-scale variability of the soil properties into large-scale models for water 

flow and solute transport in unsaturated soil. The variances of the capillary 

tension head and solute concentration are provided as results along with the 

predictions for the mean capillary tension head and mean solute concentration 

values. 

 

• An interesting feature of developed model is that only limited number of 

stochastic properties (e.g., mean, variance, correlation scale) of soil hydraulic 

parameters is required to evaluate the output of the model. Mean and variance of 

saturated hydraulic conductivity (ks), scaling parameter (α), specific moisture 

capacity (C) and correlation scale of random parameters are the inputs of the 

model and can be provided by site investigation and statistical analysis of field-

observed values obtained from the region under study.  

 

• The numerical results presented in this study, show that the stochastic finite 

element approach is a very attractive alternative to Monte Carlo approaches in 

terms of time and computational cost. Because of reliance of the Monte Carlo 

approaches on repeated computation of random  numbers, which can be a very 

time consuming procedure, they are not efficient techniques. While only one call 

of stochastic finite element model is required to simulate problems and achieve 
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virtually the same result as Monte Carlo one. 

•  The developed model prevail over the Monte Carlo approaches in terms of 

providing physical and conceptual understanding of the effects of soil 

heterogeneity on transport mechanisms, which is necessary for planning 

appropriate and efficient remediation techniques. This is achieved with 

implementation of a set of closed form equations built up using the spectral 

analytical method, into the developed model. These equations clearly present the 

relationship between stochastic properties of hydraulic parameters of soil and 

outputs of the model. However, Monte Carlo approaches do not provide 

conceptual understanding of the random process because of statistical nature of 

these approaches.  

 

• A set of sensitivity analysis performed on the saturated hydraulic conductivity as index 

of soil heterogeneity and correlation scale of random parameters. The higher value of 

saturated hydraulic conductivity causes slower movement of wetting front and an 

enhancement of solute spreading in the soil. Also, it is concluded that the higher the 

correlation length results in higher effects of soil heterogeneity on the water flow and 

solute transport processes. 

 

• The developed model also is capable to consider the effects of micro-

heterogeneity of soil and presence of macro pores in simulation of solute 

transport. The field soils exhibit two different types of spatial heterogeneity 

including micro- and macro- heterogeneity which often coexist. Simulation of in 

situ problems with high density of macropores in soil structure, the effects of 

both types of heterogeneity must be considered. The developed model is capable 

to consider the potential impacts of both micro-and macro-heterogeneity, 

through implementation of SFE method on the mathematical model of 

contaminant transport in a dual-domain system. 

 

• The model is capable of evaluating the variance of concentration as an index of 

reliability of the model output. This makes it possible to estimate a probable 

interval (mean concentration minus and plus standard deviation) for the range of 

oscillation of possible realizations of contaminant distribution.  
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7.2 Recommendations for further work 

 

The numerical study that has been discussed in this work, shows great influence of the 

uncertainty in the structure and formation of the soil on contaminant transport problems 

and stochastic FE methodology provides an efficient and reliable way for reduction and 

quantification of uncertainties in modelling and prediction of contaminant transport. 

The benefits of the stochastic FE methodology used for the development the model can 

be the motivation for more work in this area. The recommendations for the future work 

presented here are aimed at promoting to make the best use of the developed model and 

to develop a more comprehensive model covering wider range of physical and chemical 

transport mechanisms. A list of further research needs arising out of this study are listed 

in the following  

 

• Soil heterogeneity has influence on the rate of chemical reaction and chemical 

reactions play significant role in contaminant fate which has not been considered 

in this work. The approach developed in this study can be extended to model the 

transport of reactive contaminant.  

 

• Accuracy of the developed model is dependent on the choice of the proper 

values for the stochastic hydrologic parameters of the site under consideration. 

So, it is important to develop and test accurate methods for determining the 

stochastic parameters of the soil such as mean, variance and correlation lengths. 

 

• One of the most challenging issues facing environmental researchers is finding a 

timely and cost effective remediation approach for contaminated soil and 

groundwater. The model can be integrated with optimization softwares and 

decision support systems to find the best remediation techniques for sustainable 

management of contaminated land. 
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