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Abstract

This thesis describes the development, benchmarking and application of a non-LTE,
co-moving frame Monte Carlo molecular line radiative transfer module for torus.
Careful attention has been paid to the convergence, acceleration and optimisation
of the code.

I present the results of the application of the code to various benchmarking
scenarios, including a collapsing cloud, a circumstellar disc and a very optically
thick cloud of interstellar water. Benchmarking is an essential step in verifying the
accuracy and efficiency of the code which is vital if it is to be used to analyse real
data. In all cases, the code was able to accurately reproduce either the expected
analytical solution or (in the absence of such a solution) was able to produce results
commensurate with the results of other codes.

In order to facilitate the motivating radiative transfer calculations of a star-
forming cluster simulated using smoothed particle hydrodynamics (SPH) performed
in this thesis, it was first necessary to devise and test an algorithm that efficiently
maps an irregular distribution of smoothed particle hydrodynamics (SPH) particles
onto a regular adaptive mesh. Whilst the algorithm was designed with this in mind
it has also been used to study the effects of radiative feedback in circumstellar discs
as well create a synthetic survey of a simulated galaxy.

Bate et al.’s particle representation was resampled onto an adaptive mesh to
enable me to use torus to obtain non-LTE level populations of multiple molecular
species throughout the cluster and create velocity-resolved datacubes by calculating
the emergent intensity using raytracing. I compared line profiles of cores traced
by N2H+(1-0) to probes of low density gas (13CO and C18O(1-0)) surrounding the
cores along the line-of-sight. The relative differences of the line-centre velocities were
found to be small compared to the velocity dispersion, matching recent observations.
The conclusion is that one cannot reject competitive accretion as a viable theory of
star formation based on observed velocity profiles.
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On the subject of stars, all investigations which are not ultimately 
reducible to simple visual observations are…necessarily denied to us… 

We shall never be able by any means to study their chemical composition.

- Auguste Comte, Cours de la Philosophie Positive (1835)

Chapter 1

Introduction

In 1835, the French philosopher Auguste Comte predicted that ‘...we shall never be
able by any means to study [the] chemical composition [of stars]’. As soon as this
thought had been articulated it was wrong. More than thirty years earlier, in 1802,
William Hyde Wollaston had observed dark lines in the optical spectrum of the Sun,
heralding the inception of stellar spectroscopy. However, numerous developments in
theoretical and experimental physics would be necessary before it would be possible
to fully explain the presence and significance of these lines.

With the celebrated début-de-siecle discoveries in the physical sciences came the req-
uisite quantum and atomic theory (e.g. Planck 1901), the Planck function (Planck
1909), stellar atmosphere models (Eddington 1916) and the theory of line forma-
tion and broadening (e.g. Lorentz 1905; Bohr 1913). Later on came generalised,
rigorous radiative transfer theory of which Chandrasekhar was a leading proponent
(Chandrasekhar 1950). In addition to these theoretical prerequisites, corresponding
advances in experimental laboratory spectroscopy occurred; like the ability to ac-
curately measure line wavelengths, dipole moments and oscillator strengths (for a
deeper historical review, see Hearnshaw 2010).

Thus, by training their telescopes towards the stars and observing the properties of
this radiation, astronomers of the mid-twentieth century were able to quantitatively
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13

analyse the spectra of starlight, permitting them to study their temperature, density
and chemical composition in direct contradiction of Auguste Comte’s asseveration.

The creation of stars is a fundamental process in the universe. Indeed, stars are
the only places in the universe where the heavier elements required for life are
created. Naturally, understanding this process gives great insight into the formation
and evolution of other astrophysical entities from the very large, to the very small.
Furthermore, by revealing the secrets of star formation we fill in one more piece of
the puzzle of the creation of the universe.

Regions of star formation have been observed since the late eighteenth century (Her-
schel 1785) but it was not until much later that the dark, opaque, nebulous ‘clouds’
clustered towards the galactic midplane were known to be such sites (Barnard 1919).
The nebulae were shown to consist of dust but it was not known until much later
that they also contain gas, indeed far more gas than dust. Although the wider in-
terstellar medium (ISM) was known to contain atomic gas, from the observation of
21-cm radiation from Hi (Lilley 1955), no such emission was detected in these ‘dark’
clouds. It was concluded by Bok et al. (1955) that any gas that existed must be
molecular.

Unfortunately, the primary component of these clouds, molecular hydrogen, is vir-
tually undetectable, owing to its homonuclear structure (see Section 1.2). It was
not until the early 1970s that any molecular component of the ISM was discovered
(Wilson et al. 1970) and these dark clouds suddenly shone when they were observed
in emission at a wavelength associated with the transition of a CO molecule from
an excited rotational state to its ground state. Today, CO and other molecules,
although far less common in the ISM than molecular hydrogen, are used as proxies
to inform our understanding of these molecular clouds.

The radiation from these molecules has a characteristic spectrum. They emit and
absorb radiation at definite frequencies across the electromagnetic (EM) spectrum,
depending on the mode of excitation. Moreover, each species emits or absorbs differ-
ently depending on the local conditions; that is, the behaviour of the same molecule
in disparate regions of temperature and density can vary strongly – conversely, dif-
ferent species will also behave differently in the same region. It is through the
interpretation of this observed radiation that it is possible to gain a deeper under-
standing of the astrophysical objects one wishes to observe.

In order to interpret the radiation observed it is necessary to understand how the
transport of radiation from one location to another is affected by the intervening
medium. This is the study of radiative transfer (RT). The mathematics of radiative
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transfer have been understood for centuries and countless solutions to simplified
problems have been solved exactly, however real astrophysical objects are three-
dimensional, have no symmetry and exhibit structure that necessitates a more pre-
cise treatment of the radiation field. They contain both gas and dust, which behave
very differently, but which are coupled to each other; chemically, kinematically and
radiatively. The mere fact that they are dynamic objects, in constant motion, adds
a degree of complexity that makes it impossible to obtain an exact solution. Further-
more, the gas and dust are made up of many different species that have their own
unique radiative ‘fingerprint’ and they may overlap throughout the electromagnetic
spectrum. Thus it has become necessary to employ numerical models of increasing
complexity to accurately model the physical phenomena we can now observe.

Our knowledge of the physical conditions in these molecular clouds and their effect
on the molecular gas is critical to our understanding of star formation processes and
consequently it is important to have access to powerful RT codes that are able to
explain what we can observe. The rest of this introductory chapter is given over
to explaining in greater detail the physical conditions necessary to form stars (Sec-
tion 1.1); the fundamental physical processes governing the creation and destruction
of electromagnetic radiation by molecules (Section 1.2); the physics and mathemat-
ics of radiative transfer (RT) necessary for quantifying the physical processes that
are observed (Section 1.3) and the computational aspects of modern-day radiative
transfer codes that are critical to our knowledge of the regions we seek to understand
(Section 1.4).

The aims of this thesis and an explanation of each subsequent chapter are set out
in Section 1.6 at the end of this chapter.

1.1 The interstellar medium

The ‘space’ between stars is not empty; closer inspection shows that it is filled with
diffuse gas and dust. This mixture is known as the interstellar medium (ISM) and
provides the environment for all astrophysical events that occur inside our galaxy.
It is composed of a heterogeneous mixture of gas and dust of varying thermal and
chemical phases. The main components are summarised in Table 1.1.

Hydrogen and helium make up the bulk of the medium with heavier elements, or
metals as they are referred to in astrophysics, comprising the remaining fraction.
Temperatures range from just above the cosmic microwave background (CMB) in



1.1. THE INTERSTELLAR MEDIUM 15

Table 1.1: Phases of the ISM

Phase / Cloud Gas temperature (K) n(H2) (cm−3)
Hot Ionised Medium ∼ 106 ∼ few×10−3

Warm Ionised Medium ∼ 104 ∼ 10−2

Warm Neutral Medium ∼ 103–104 ∼ 0.1
Atomic Cold Neutral Medium ∼ 100 10− 100
Molecular Cold Neutral Medium ∼ 10− 50 103 – 105

Diffuse cloud 100 100 – 300
GMC 10–20 1000
Dark cloud 10 ∼ 500− 103

Molecular Cloud Cores ∼ 10− 30 > 104

cold, dark ‘cores’ of molecular clouds where ionising radiation cannot penetrate, to
many thousands of Kelvin in the diffuse, tenuous regions suffused with stellar radia-
tion. Similarly, the medium may be ionised or neutral depending on its exposure to
photoionising radiation from a nearby stellar radiation field (UV and higher energy
photons), leading to a wealth of chemical combinations.

This thesis focuses primarily on molecular clouds and their constituent cores as it
is in these locations where molecules are able to form and subsequently emit their
characteristic line radiation.

1.1.1 Molecular clouds

Molecular clouds are regions of greater density of matter embedded within the ISM.
The cold, neutral conditions in the bulk of the cloud are predicated on the atten-
uation of radiation that would otherwise break the intra-molecular bonds. They
comprise one of the three distinct phases of the classical 3-phase ISM posited by
McKee & Ostriker (1977) (see Table 1.1) and are distinct from the rest of the ISM
in that they are not in pressure balance with the other phases.

In order to understand star formation we must observe and understand molecular
clouds as they are known to be active sites of star formation (e.g. Reddish 1975;
Shu et al. 1987). They are fundamental to the formation of every other structure
in the universe and have thus been studied extensively. Although their present-day
kinematic and emission profiles are known, owing to their long ‘gestation’ period
(on anthropological timescales) their formation and evolution remains an enigma.

Whether, they are long-lived on a cosmological timescale or whether they are tran-
sient features is unclear. Similarly it is not well understood if the molecular gas
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Figure 1.1: Schematic diagram of molecular cloud sites in the galactic plane.
The galactic plane is depicted in light grey, while the darker
patches indicate local star-forming regions. Constellations and
brighter stars are also shown for reference. This figure is repro-
duced from ‘The Formation of Stars’ by Stahler & Palla (2005).

is created from an atomic precursor or whether the gas is pre-existent. If they are
static features of the galaxy then how can they survive so long? Are they perhaps
just very inefficient at forming stars (Elmegreen 2000)? Theories for the formation
of molecular clouds such as collisional agglomeration of smaller clouds, gravither-
mal instability and the pressurised accumulation in shocks, either in supernovae or
in galactic shocks have been posited (e.g. Elmegreen 1990; Blitz & Williams 1999;
Dobbs & Bonnell 2007; Ballesteros-Paredes et al. 2007).

Molecular clouds are most commonly observed in the galactic plane where the con-
centrations of gas and dust are highest (see Figure 1.1). They exist on a number of
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scales; from giant molecular clouds (GMCs) in Orion and Taurus-Auriga that have
masses in excess of 106 M� and span hundreds of parsecs, to ‘Bok globules’ that have
tens of solar masses of gas within a region often less than a parsec across (Larson
2003).

Molecular hydrogen constitutes most of the gaseous matter in these clouds, although
helium represents a significant fraction (∼ 20% by mass, but is chemically inert) as
well as other heavier elements present in trace amounts. These trace elements are
responsible for most of the chemistry and nearly all of the molecular line radiation
we can observe. Along with molecular gas, dust is the other primary constituent
of molecular clouds Goldsmith et al. (1997). Dust grains have sizes ranging from
nanometres up to 0.1mm and by the process of elemental depletion are inferred to
be variously composed of silicates, carbonaceous compounds, ice and even iron and
titanium (Williams 2005), depending on the relative abundances of the elements in
their local environment. Whilst dust is vital to interstellar chemistry, its existence
has historically frustrated observers until relatively recently because the size of the
constituent grains makes them highly effective at absorbing and scattering the light
emitted by protostars deeply embedded within the cloud (known as extinction).
Furthermore, as radiation is absorbed by the dust and re-radiated primarily in the
infrared region of the spectrum, the study of molecular clouds using the infra-red
and sub-millimetre region of the spectrum is of crucial importance.

Figure 1.2 illustrates the effect of this extinction and reddening highlighting the im-
portance of infra-red and sub-millimetre astronomy. The panels show the increasing
transparency of the constituent dust with increasing wavelength. In the visible bands
(B and V) and the near-infrared band I (top panels) the cloud absorbs background
light and appears as a region of strong absorption. Longer wavelengths (bottom
panel) are better able to penetrate the cloud. The top middle panel is a composite
image of B, V(not shown) and I and the bottom middle panel is a composite image
of B, I and K that fully illustrates the large degree of reddening of the background
stars.

As the molecular cloud collapses further in on itself and a protostar begins to form
it is observable in the infra-red long before it can be seen visibly. Thus, the very
thing that thwarted the astronomers of antiquity’s observations of the stars is the
same thing that allows us to better understand their formation process today. In
fact, modern infra-red and sub-millimetre sky surveys like 2MASS (Skrutskie et al.
2006) and the JCMT legacy survey (Ward-Thompson et al. 2007b) clearly show that
the regions of sky that have a marked extinction of visible light are in fact active
regions of star formation.
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BE ‘Sphere’: Observations of  B68 

Alves, Lada, Lada 2001 Figure 1.2: Barnard 68 imaged in 6 different wavelengths (4 shown) from
0.44 – 2 micron. Adapted from Alves et al. (2001). From top-left
to bottom-right panels, the filters used are: B, BVI composite, I,
J, BIK composite, K.

1.1.2 Dense cores

Molecular clouds contain a large proportion of the molecular mass of our own galaxy.
As previously stated, they can fragment into smaller regions or ‘clumps’ which then
go on to collapse independently of each other giving rise to star-forming ‘cores’.
The observation that the structure of molecular clouds is hierarchical gave rise to a
number of theories suggesting their fractal nature (Scalo 1990). Moreover, the mass
distribution of these clumps follows a form similar to that of the stellar initial mass
function (IMF) (e.g. Kroupa 2002; Chabrier 2003) warranting further study in their
own right. The expected mass of these cores was first analysed by Jeans (1902).
Assuming an infinite, isotropic medium it can be shown that the maximum mass
that is stable against gravitational collapse is,

MJ =
(4πρ

3

)−1/2 ( 5kT
GµmH

)3/2

(1.1)

where ρ is the mass density of the cloud, µ is the mean molecular weight and mH is
the mass of atomic hydrogen. While this is a useful first approximation, molecular
cloud cores have been observed with a much greater mass than this, suggesting that
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the core is supported against collapse by more than thermal pressure. Magnetic fields
and turbulence are the most probable candidates for this (e.g. Ballesteros-Paredes
et al. 2007; Krumholz et al. 2007).
The locations of these cores within the clouds that spawn them can be detected as
areas of increased intensity of emission in the sub-millimetre (and longer wavelength)
region of the electromagnetic spectrum (e.g. Myers et al. 1983; Myers & Benson
1983). By using the relative strengths of molecular line emission in these regions it
was possible to infer that the density had to be at least 104 H2 cm−3.
Observationally, if one of these enhancements coincides with an infra-red source
(indicative of the presence of a protostar) then the core is said to be protostellar,
otherwise it is starless. Later, Ward-Thompson et al. (1994) showed that a further
distinction can be made in starless cores if evidence of further density enhancement
is seen; these are known as prestellar cores.
Dramatic increases in temperature and density that result from gravitational col-
lapse effect changes in not only the physical composition of the cores but also, cru-
cially, their chemical composition. Whereas carbon– and oxygen-bearing molecules
(e.g. CO, CS, H2O etc.) are found throughout the molecular cloud, they appear
to be depleted in the inner regions of these dense cores. There is evidence that
the molecules ‘freeze out’ (i.e. they are adsorbed) onto the mantles of the dust
grains where the gas density is high and the temperature is low (e.g. Caselli et al.
1999; Tafalla et al. 2004; Walmsley et al. 2004). Later in the evolution of a dense
core (should it continue to condense and form a protostar) the core warms up to
∼ 100 K and the frozen out molecules sublimate back in to the gas phase, further
changing the relative abundances of the chemical species present in the core. Figure
1.3 shows a schematic diagram depicting the relative locations of different chemical
species contained within a starless dense cloud core.
Today’s (sub-)millimetre observatories facilitate the observation of these cool, chem-
ically rich regions of the galaxy. Observations with modern sub-millimetre instru-
ments like the earthbound James Clerk Maxwell Telescope (JCMT), the Caltech
Submillimeter Observatory (CSO) and the Submillimeter Array (SMA) have given
high spatial resolution observations of these progenitors of young stellar objects.
These terrestrial instruments have recently been joined by a space-based counter-
part, Herschel. It is hoped that Herschel will ‘...provide new insights on interstellar
chemical processes [and] their role in the chemodynamics of star and planet for-
mation...’ (Harwit 2004) through the greater spectral resolving power of the HIFI
spectrometer. Herschel also carries SPIRE and PACS, two highly sensitive imag-
ing cameras and low-resolution spectrometers providing spectral coverage from the
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Fig. 3.— A schematic representation of eventual molecular differentiation within a starless core. The external shell of the core (where
n(H2) ! 104 cm−3) can be traced by CO, CS and other carbon bearing species. At radii < 7000 AU, where n(H2) ! 105 cm−3, CO
and CS disappears from the gas phase and the best gas tracers are NH3 and N2H+. At higher densities, deuterated species become quite
abundant and, when the density exceeds ∼106 cm−3, the chemistry will be dominated by light molecular ions, in particular H+

3 and its
deuterated forms, as well as H+ (e.g.,Walmsley et al., 2004).

cores based on interpretation of the H2D+ emission in the
L1544 core. Indeed, molecules without heavy elements,
e.g., H2D+, may be the only remaining molecular tracers
of such regions.
Figure 3 schematically summarizes how the eventual

molecular differentiation within a starless core may look.
At radii of ∼7000-15000 AU, CO and CS are still mainly
in the gas phase and the main molecular ion is HCO+, with
which one can deduce a stringent lower limit of the electron
density (e.g., Caselli et al., 1998; see Section 4.3). The frac-
tion of atomic carbon in the gas is still large, as testified by
the large observed abundances of carbon–chain molecules,
such as CCS (e.g., Ohashi et al., 1999). Deeper in the
core (∼5000-7000 AU), where the density approaches val-
ues of the order of 105 cm−3, CO and CS disappear from
the gas–phase because of the freeze–out onto dust grains.
The physical and chemical properties (as well as kinemat-
ics) are better traced by N–bearing species, in particular
NH3. Within the central 5000 AU, deuterium fractionation
takes over (see Section 4.2), and N2D+ becomes the best
probe (Caselli et al., 2002a). NH3 is still abundant in these
regions, however, as suggested by the observed increase
of the NH3 abundance toward core centers (Tafalla et al.,
2002). At r ≤ 2500 AU, where n(H2) ≥ 106 cm−3, all neu-
tral species are expected to freeze–out in short time scales
(≤1000 yr) and light species, such as H+

3 and its deuterated
forms are thought to dominate the chemistry and the degree
of ionization (Caselli et al., 2003; Vastel et al., 2004).
The schematic picture of Figure 3 of course depends on

the time spent by a starless core in this condensed phase, so

that one expects to find less significant depletion and more
typical cloud chemistry in those objects that just entered
this phase (e.g., possibly the L1521E core; see Tafalla and
Santiago, 2004). Moreover, recent VLA observations of
NH3 (1,1) and (2,2) by Crapsi et al. (in preparation) have
shown that NH3 is still present in the central 800 AU of
the L1544 core, where the gas density is a few times 106
cm−3. If no efficient desorption mechanisms are at work,
the time spent by the L1544 core nucleus in its high density
phase may be < 500 yr (see Section 4.4). More examples
are needed to refine chemical models of starless cores.

4.2 Deuterium Fractionation

Another important chemical process recently identified
within starless cores is deuterium fractionation, i.e., the
enhancement of deuterated isotopologues beyond levels
expected from the elemental D/H ratio of ∼1.5 × 10−5

(Oliveira et al., 2003). For example, in a sample of dense
cores, Bacmann et al. (2003) found a D2CO/H2CO column
density ratio between 0.01 and 0.1. In addition,Crapsi et al.
(2005) found N2D+/N2H+ ratios between 0.05 and 0.4 in a
similar sample of cores. Deuterium fractionation is related
to core temperature and CO depletion (e.g., Dalgarno and
Lepp, 1984). Species such as H+

3 and CH+
3 are enriched

in deuterium in cold clouds because of the difference in
zero-point energies between deuterated and non-deuterated
species and rapid exchange reactions such as H+

3 + HD→
H2D+ + H2 (e.g.,Millar et al., 1989). The enrichments are
propagated to other molecules by chemical reactions. At
high densities, heavy element molecules like CO will also

9

Figure 1.3: A schematic diagram showing the relative locations of different
chemical species contained within a starless dense cloud core. Re-
produced from di Francesco et al. (2007).

far-infrared into the sub-millimetre (55 – 672 microns). This is a vital region of
the spectrum for determining key astrophysical parameters for astrophysical objects
such as dust temperature and density (and hence mass) amongst many other things.
Not until the Atacama Large Millimeter Array (ALMA) sees first light some time in
2012 will our resolving power be bettered, bringing with it the promise of unprece-
dented resolution of these objects.

However, improved observations can only advance our understanding so far, there-
fore it is vital that the interpretation of the data is sound, necessitating the use
of non-symmetric models incorporating complex physics. Each new generation of
equipment must be matched by appropriate numerical modelling and indeed it has
been thus far. By Moore’s law, transistors continue to halve in size every 18 months
and the available processing power doubles. Thus in the last ten years processing
power has increased by two orders of magnitude and no doubt will do so again
in the next ten years. This enhanced power will, by permitting the inclusion of
more detailed physics, unlock regimes that were previously inaccessible, reducing
the necessity of approximations and facilitating broader parameter searches.

1.1.3 Star formation

As an individual, self-contained process, the act of star formation is qualitatively
well understood (e.g. Shu 1977; Shu et al. 1987). An initially tenuous cloud of cold
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molecular gas with small perturbations in its density will begin to fragment into
smaller ‘clumps’ as the gas and dust collapses upon itself. Gravitational potential
energy is converted into thermal energy which increases the frequency of the colli-
sions between gas molecules whereby they become excited. The molecules cool by
emitting radiation which initially escapes from the cloud. As the cloud continues to
contract, the density continues to rise in the core of the clump and radiation can
no longer be radiated away as it is reabsorbed and continuously scattered over very
short lengthscales; the cloud is said to have become optically thick. The temperature
rises dramatically and a protostar is born, however it is still embedded deep within
its natal envelope; this is known as a ‘class 0’ young stellar object (YSO) using the
morphological classification scheme based on spectral energy distributions (SEDs)
of Lada & Wilking (1984) (later extended by Andre et al. 1993).

The protostar continues to evolve by accretion, collecting material that has accu-
mulated onto a disk from the protostellar envelope (class I). Classes I and II are
distinguished by their bolometric temperature and spectral slope, α, between 2 and
25 µm (Lada 1987). Class I stars have a positive gradient, or ‘infrared excess’ owing
to the strong extinction of visible light by the dusty envelope surrounding the proto-
star. Material from the envelope is accreted on to the protostar and accretion disc
until the envelope disappears entirely and all that remains is the disc. In this phase
the star will gain most of its mass and will continue to do so until the accretion disc
is dissipated. These objects are known as class II objects and typically have a neg-
ative value for α unless observed edge-on, when the optically thick dust in the disc
can affect the SED strongly. As the temperature of the protostar continues to rise,
hydrogen burning commences and the newly-formed star becomes a main-sequence
star.

This picture is complicated as stars rarely form in isolation. One mechanism that
exists to explain this phenomenon is the competitive accretion model where pro-
tostars are theorised to form in dense clusters competing to accrete material from
their surroundings (e.g. Bonnell et al. 2001a). The most ‘successful’ will go on to
become the most massive, most luminous objects and may even eject their smaller
competitors from the cloud entirely (Bate et al. 2003a), truncating their accretion
and prematurely consigning them to existence as a brown dwarf, unable to attain a
great enough mass to start hydrogen burning. A more recent study by Price & Bate
(2007) studied the effect of magnetic fields on star formation. They showed that in
their simulations the extra pressure support provided by magnetic fields inhibits disc
and binary formation and crucially, showed that the star formation rate is reduced.

A more detailed discussion on clustered star-formation can be found in Chapter 5.
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1.2 Interstellar molecules

Molecular astrophysics is the study of line emission and absorption of radiation
from molecules in space. Molecular lines are excellent probes of the key parameters
of molecular clouds and cloud cores and can provide more information than dust
emission alone. The information encoded in the radiation received from any given
molecular line pertains not only to the physical conditions (temperature, density,
kinematics etc.) but also the chemistry of the object along the line-of-sight of the
observation. Yet, despite this, molecular line data must be interpreted with great
care for precisely the same reason as it is so powerful. Because so much information
is encoded in a very narrow range of frequencies and because the observed intensity
is potentially a function of temperature, density, velocity, chemistry and optical
depth, it is necessary to make many more assumptions about the state of the core
than with dust observations. In addition, because the intensity can be sensitive to
any one of these parameters, strong constraints are required to ensure the validity
of the conclusions obtained using line data. Fortunately, multiple lines can be used,
in addition to continuum data to provide these constraints.
As discussed earlier, molecular hydrogen is the primary component of molecular
clouds. The possible rotational (and vibrational) states for molecular hydrogen
have been known for sixty years (Herzberg 1950), therefore they should be excellent
candidates for observation in space. However, the electrons are tightly coupled
and the electron spins cancel completely so no electric dipole is present to absorb
or scatter radiation, making it very difficult to detect despite its abundance. The
spontaneous emission of light from the J = 1 − 0 state of molecular hydrogen is
‘forbidden’ (in the quantum sense), thus only very low-probability electric quadrupole
transitions may occur.
The most commonly observed molecular transition in molecular clouds is the CO
J = 1 − 0 line where the molecule falls from its first excited state back into the
ground state. The characteristic wavelength for this transition is 2.6 mm and is
readily observed owing to its high relative abundance (typically 1 part in 10,000 by
number density relative to H2) and its dipole moment, facilitating absorption and
emission of EM radiation. In general, one of the most useful observational diagnostic
tools available in the pursuit of knowledge about star-formation is the analysis of
radiation emitted by the transition of one rotational state of a molecule to another.
The applications of molecular line radiation as probes of astrophysical parameters
are discussed in Section 1.5.
However, CO is only one of over 100 molecules known to be present in the interstellar
medium and in circumstellar environments, each one with a number of observable



1.2. INTERSTELLAR MOLECULES 23

transitions. The transitions of many of the most abundant molecules have been
catalogued and put into various online databases such as the JPL (Jet Propulsion
Laboratory) catalogue (Pickett et al. 1998) and CDMS (Cologne Database for Molec-
ular Spectroscopy) (Müller et al. 2005).

In order to quantify the radiation received from these gaseous objects it is necessary
to understand how the molecules initially formed and the mechanism by which the
radiation is produced. The former question is one of chemistry addressed below; the
latter is one of molecular microphysics which is addressed in Section 1.2.2.

1.2.1 Chemistry

Astrochemistry is the study of interactions between atomic and molecular species;
typically at very low densities and/or temperatures compared to a terrestrial environ-
ment. The field has its roots in observations of CH and CN in absorption in diffuse
clouds (Swings & Rosenfeld 1937) and subsequent observations of water, ammonia
and hydroxyl radicals in the 1960s and 1970s (e.g. Dieter 1964). As previously dis-
cussed, chemistry is a powerful diagnostic, both of the current and the past physical
conditions of the forming protostar. Owing to the wide variation in the physical
parameters in the field, it is very complex. Temperatures, densities, radiation fields,
timescales, spatial scales, molecular abundances and many more variables all vary
over many orders of magnitude. Although, similar structures present broadly sim-
ilar environments, their subsequent evolution (both chemical and stellar) can be
very different from cloud to cloud depending on mass contained within (e.g. the
formation of stars in Orion vs Perseus, see for example, Johnstone & Bally (1999);
Hatchell et al. (2005)).

While the overall density of matter throughout the galaxy is very low, there are
some relatively dense regions which are extremely active sites of star formation.
The basic building blocks of stars contained within these dense molecular clouds are
molecular hydrogen (H2) and helium (He), but these regions also contain over 100
other detected molecular species; carbon monoxide (CO), ammonia (NH3) and water
(H2O) being some of most readily identified. Hydrogen and helium are the most
abundant in the ISM, making up 98% by number of protons. The remaining fraction
of heavier elements (or metals) are created by nucleosynthesis. After hydrogen and
helium, the next most abundant elements are carbon and oxygen, both more than
one-thousand times less prevalent than hydrogen (Stahler & Palla 2005), so it comes
as no surprise that the next most abundant molecule is 12C16O with a relative
abundance of ∼ 10−4 compared with that of H2.
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Table 1.2: Molecular formation and destruction mechanisms. Reproduced
from Hogerheijde (2005)

Radiative Association X + Y ↔ XY ∗ ↔ XY + ν

Photodissociation XY + ν → X + Y

Associative detachment
{
X + e→ X− + ν
X− + Y → XY + e

Dissociative recombination X+ + e→ X + ν

XY + + e→
{
XY + ν
X + Y

Gas-phase ion-neutral reaction X+ + Y Z → XY + + Z

neutral-neutral reaction X + Y Z → XY + Z

Charge transfer X+ + Y Z → X + Y Z+

Grain-surface reaction X +G : Y ⇒ X : G : Y ⇒ G : XY ⇒ G+XY

Immersed in a homogeneous radiation field such as that in the vicinity of a star,
isolated molecular lifetimes can be as short as 102 – 103 years (Draine 1978) before
photodissociation occurs, however deep inside molecular clouds with their associated
large column densities which block this ambient radiation field, the only mechanism
that is capable of effectively ionising molecules is collision with cosmic rays. Thus,
excluding their ionised envelopes (remnants of condensed atomic clouds or photodis-
sociated gas from the cloud, Blitz & Williams 1999), molecular clouds, opaque to
radiation, are denser (nH2 ∼ 104 cm−3) and cooler than their surroundings.

On Earth, the high ambient temperature and gas density can often provide sufficient
activation energy and opportunity for chemical reactions to occur but in these tenu-
ous environments, mechanisms other than two–(or more) body radiative association
must be utilised. Table 1.2 demonstrates the main pathways by which chemistry
can occur. On-line databases such as the UMIST06 database for Astrochemistry
(Woodall et al. 2007) list the known rates of these reactions between the 420 species
in their network. The different chemical processes are inter-dependent and it is pos-
sible to create (or destroy) more and more complex molecules. Moreover, it is clear
that dust plays a critical role as a catalyst in gas chemistry as well as being used as
a diagnostic tool (e.g. Andre et al. 1996).

Today, time-dependent models (e.g. Bergin & Langer 1997; Viti et al. 2000; Le Petit
et al. 2006) are used to understand the inter-dependence of chemical abundances in
astrophysically interesting regions. These models simulate large reaction networks
which are evolved with realistic initial conditions and approach a steady-state if the
simulation timestep is shorter than the chemical timescale. It is then possible to
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determine abundances of some molecular species which agree well with observations
(e.g. Bergin et al. 2002) when the column densities of the model are compared with
observations. However, many uncertainties in these models persist and often the
abundances provided by chemical models can differ from observations by orders
of magnitude. By incorporating a fuller treatment of radiative transfer into the
chemical networks (e.g. treating photodesorption/photodissociation of some species
that are sensitive to Lyman α radiation), matched to improved constraints provided
by future observations, we can increase our cognisance of the chemical evolution of
many important tracer elements in these chemically active regions.

1.2.2 Molecular microphysics

Energy can be stored in molecules in four ways: by increasing their kinetic energy
through heating and collisions; by exciting electronic transitions; by exciting vibra-
tional modes of the molecular bonds and by exciting rotational modes in the bonds.
The energy required to promote molecules to these excited states ranges from the
UV in electronic excitation to the sub-millimetre in the rotational case. Typically,
infrared radiation stimulates vibrational states. Figure 1.4 illustrates the range of
transitions that molecules may undergo. In this section I will focus primarily on
rotational modes, as these are the modes that observers of cool molecular clouds are
most interested in, although (ro-)vibrational transitions are important in hotter envi-
ronments like protoplanetary discs and shock fronts. The concepts discussed in this
chapter are equally valid for both rotational and vibrational lines but the associated
energy levels are orders of magnitude different owing to the different mechanism of
excitation.

The positive and negative charges do not completely overlap in the covalent bonds
that hold together most molecules. Polar molecules possess a permanent dipole mo-
ment, a time-averaged imbalance of charge relative to the centre of mass. Molecules
with reflection symmetry like carbon dioxide and molecular hydrogen have no per-
manent dipole moments and thus do not readily radiate by electric dipole radiation.
They may radiate by electric quadrupole radiation but this is a very slow, low-
probability process compared to electric dipole transitions. It is possible, however,
to induce a dipole moment by applying an external electric field or by inducing
electronic excitations which lead to asymmetric charge distributions creating a net
dipole moment inside the molecule. Electromagnetic waves can then excite the
molecules into higher rotational levels by exerting a torque on the bond about a
rotational axis. Energy is stored in this state analogously to a classical rigid rotor,
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Figure 1.4: A schematic molecular energy level diagram. Electronic, vibra-
tional, rotational transitions and ro-vibrational transitions (a com-
bination of both rotational and vibrational transitions) are shown.

however quantum mechanics dictates that the rotational energy stored in a molecule
must be quantised.

The frequency required to promote a molecule into an excited state is typically on
the order of 100−1000 GHz, the corresponding wavelengths being 3−0.3 mm, which
is in the microwave region of the spectrum. This gives rise to the moniker millimetre
astronomy that is used to probe star-forming regions at these frequencies.

Diatomic molecules are the simplest possible molecules; they must have a linear
geometry and may be either homonuclear (i.e. consist of two identical atoms, e.g.
H2, O2) or heteronuclear (e.g. CO or CS). Owing to their cylindrical symmetry,
one of the moments of inertia is negligible, reducing the degrees of freedom to one.
Consequently, they exhibit the simplest spectra. The separation between energy
levels is almost directly proportional to the bond length of the molecule because
a slight reduction is observed as the centrifugal force of the rotating molecule acts
to pull the atoms apart. The measurement and identification of one spectral line
permits the direct calculation of the moment of inertia and the bond length. It is
possible to ascertain the same information for linear molecules with three or more
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atoms (e.g. HCN, HNC, HCO+) with little additional work.
Only certain energies are permitted as the solutions to the Schrödinger equation for
a rigid rotor:

Erot = ~2

2I J(J + 1), (1.2)

where I is the classical moment of inertia and where J is the dimensionless rotational
quantum number. This quantum number can be used to quantify the change from
one energy level to another (a transition) and the notation J = i− j describes the
energy levels that the molecule has transitioned from, i, and to, j. The rotational
constant, B, is measurable using spectroscopy and is defined as

B = h

8π2I
(1.3)

where I = µR2, the classical moment of inertia of the molecule, µ is the reduced
mass of the molecule µ =

(
1
MA

+ 1
MB

)−1
and R is the bond length.

For a diatomic molecule, the selection rules for electric dipole rotational transitions
are ∆J = ±1 so from equation 1.2, the energy liberated from the de-excitation of a
molecule from J to J − 1 is:

EJ→J−1 = 2BhJ. (1.4)

The allowed transitions for the diatomic molecule are regularly spaced at intervals of
2Bh for increasing J creating a ‘ladder’ with equally spaced rungs. Molecules with
large moments of inertia will have a small rotational constant and their levels will be
less widely separated. The moment of inertia for a CO molecule, ICO = 1.46×10−39

is large, so the levels are close together making it a good tracer of temperature. In
comparison, IH2 = 4.7×10−41 is extremely small and thus the levels are spaced much
further apart. Owing to the large amount of energy required to excite H2 and its
ubiquity in molecular clouds it is an excellent tracer of shocks; any emission at all
is indicative that the temperature is at least 500 K below which the gas is usually
undetectable.
The rate at which a molecule radiates is characterised by the Einstein coefficient,
Aul and is unique to each transition. These rates are described in this section.
Intuitively, more complex molecules have more complex spectra but can typically
be grouped into two distinct groups: symmetric rotors, where some symmetry may
be exploited to ascertain the physical parameters of the molecule and two moments
of inertia are the same, as is the case with NH3 and asymmetric rotors (e.g. H2O
and NO2), where the moments of inertia along all three axes are different and no
symmetry can be exploited. These non-linear molecules have more complex spectra
that exhibit many features.
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Figure 1.5: Location in the electromagnetic spectrum of some common molec-
ular transitions, superimposed on an SED of a dusty envelope with
extensive flux emission at long wavelengths (light grey) and a typ-
ical stellar SED. Molecular rotational transitions can be used to
probe regions of the EM spectrum where the continuum emission
is very low.

Figure 1.5 illustrates the location in the electromagnetic spectrum where these lines
are present. Coverage of the electromagnetic spectrum from ultraviolet far into the
radio by spectral lines is extensive and where lines from different species do not
overlap they provide an excellent diagnostic tool that is sensitive to many intrinsic
properties of a YSO.

Einstein co-efficients and radiative rates

The Einstein coefficients are fixed probabilities associated with each atom or molecule
and do not depend on the state of the gas of which the atoms are a part. The sub-
sequent derived relationships assume thermal equilibrium will be valid universally.
When all levels are in equilibrium, the net change between any two levels will be
balanced, because the probabilities of transition are not affected by other excited
atoms/molecules.

Spontaneous emission is the radiative process by which a state ‘spontaneously’ (i.e.
without any outside influence) decays from a higher energy level, u, to a lower one,
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l. The Einstein coefficient, Aul, quantifies the probability per unit time that level
u will decay spontaneously to level l, emitting a photon with an energy E = hνul.
The rate of increase in the number density of atoms in level l per unit time due to
spontaneous emission will be:

dnl
dt Aul

= Aulnu, (1.5)

where nu is the number density of atoms in level u.

The classical value for the oscillator strength for a damped harmonic oscillator is:

γrad = µ2ν3

3πε0~c3 , (1.6)

which, by applying the dipole approximation, can be shown to be equivalent to the
Einstein A-coefficient.

Similarly, stimulated emission is the process by which an excitation is induced by
the presence of electromagnetic radiation at (or near) the frequency of the transition.
As above, the Einstein coefficient Bul gives the probability per unit time per unit
spectral radiance of the radiation field that an excited molecule in state u will decay
to state l. As above, the change in the number density of atoms in l per unit time
due to induced emission will be:

dnl
dt Bul

= Bulnuρ(ν), (1.7)

where
ρ(ν) = 2hν3

c2(ehν/kT − 1) (1.8)

and ρ(ν) is the radiation density of the radiation field at the frequency of the tran-
sition.

Stimulated absorption can be viewed as the inverse process of stimulated emission
and is governed by the coefficient Blu and

dnl
dt Blu

= −Blunlρ(ν). (1.9)

By invoking statistical equilibrium, it can be shown that the other Einstein coef-
ficients are not uniquely defined. The pair of stimulated absorption and emission



30 CHAPTER 1. INTRODUCTION

coefficients can be determined from the spontaneous emission coefficient,

Bul = c2

2hν3Aul (1.10)

Blu = gu
gl
Bul. (1.11)

gu and gl are the statistical weights of the states – the number of ways a particular
state can be populated. These values typically increase with increasing quantum
number. In the case of linear molecules, g = 2J + 1.

These intrinsic rates govern the macroscopic radiation field that is produced by the
cloud through the coupling of the global radiation field and the local level popula-
tions.

Molecular Hyperfine Structure

In addition to the normal structure that is observed in rotational line spectra, fur-
ther interactions between electrons and/or nucleons cause hyperfine structure to be
observed in the spectra. The shifts in energy are an order of magnitude smaller than
the rotational energies they are superimposed upon, but can have significant effects
on astrophysical observations (e.g. Daniel et al. 2006) by providing alternative path-
ways for a molecule to de-excite rather than saturating a line that would exist in
the absence of hyperfine splitting.

In the case of N2H+, hyperfine splitting is observed because the quadrupole moments
of the two nitrogen atoms and the molecular spin are coupled (Shirley et al. 2005).
Figures 1.6(a) and 1.6(b) illustrate that a single transition splits into 7 distinct
although potentially overlapping levels each with a distinct strength (although 15
exist mathematically).

This additional splitting means that more information about the temperature and
density structure of the core can be encoded in an observation (by examining the
ratios of the hyperfine levels, e.g. Tatematsu et al. 2004) however the increased
complexity in the spectrum requires special analysis of observations and additional
physics in molecular line transfer codes.

1.3 Radiative transfer

The field of radiative transfer is the bridge between the microscopic – interactions of
photons with matter – and the macroscopic – the flux of energy observed from the
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15 hyperfine split levels only 7 are observed due to the fact that the hyperfine splitting
of the J=0 level is very small. Grouping of the indicated transitions show the 7 observed
transitions. Transitions are ordered by increasing frequency from left to right.
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(a) Schematic energy level diagram of the first two rotational levels of N2H+

including hyperfine splitting.

Figure 8: Synthetic spectra for the N2H
+ J = 1 → 0 transition. Horizontal axes are offset

velocity (top) and frequency (bottom) relative to 93173776.7 kHz. Transition designations
in (F�,F�

1:F,F1) format are indicated. Overlain in dash is a synthetic 100 kHz gaussian
linewidth source spectrum.
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(b) Synthetic spectra for N2H+ J = 1−0 assuming a 100kHz gaussian linewidth
(dashed). Reproduced from ‘Molecular Column Density Calculation’ (Mangum
& Shirley 2008)

Figure 1.6: Schematic energy level diagram of the first two rotational levels of
N2H+ and the relative line strengths of the observed transitions.
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matter. Our understanding of all astrophysical objects (e.g. molecular clouds, YSOs,
disks, photon-dominated regions (PDRs) etc.) necessarily requires both observation
and detailed theoretical modelling. It is impossible to physically acquire the intrinsic
(intensive) parameters (temperature, density, molecular abundance or (turbulent)
velocity and magnetic fields for example) of these objects by direct manipulation
as it would be possible to in a laboratory. Thus, the ability to examine conditions
passively, using only the emitted radiation is a key diagnostic tool, not only in
astrophysics, where the benefits are manifest, but in other fields too, such as plasma
physics and medicine.

It has truly existed as a field of study in its own right since 1950 when Subrahmanyan
Chandrasekhar published his treatise on ‘Radiative Transfer’ (Chandrasekhar 1950)
focussing strongly on plane-parallel stellar and planetary atmospheres which rapidly
became the seminal work in the field. Much subsequent work has been accomplished
in the field which builds on the foundations of Chandrasekhar’s work (e.g. Rybicki
& Lightman 1979).

By making some simple assumptions like the ability of radiation to freely escape
the medium in the case of large velocity gradients (e.g. Sobolev 1960) (see Section
1.4.1) and assuming that stimulated emission is totally redistributed in space and
frequency it has been possible to derive analytical solutions to situations that can
approximate with some degree of accuracy what is observed. Naturally, representing
real media with its complex interplay of physical effects is beyond a purely analytical
approach and requires computer modelling, but it is the same basic equations that
must be solved in order to determine the flux of energy emitted from these objects.

Throughout this section, I shall assume time-independent radiative equilibrium. If
one is considering the kinematical effects of radiation on its environment then one
may have to consider the fact that radiation travels at a finite speed, which, in the
case of optically thick media will effectively be considerably less than the speed of
light in vacuo. Radiative equilibrium is a dynamic equilibrium and time-dependence
breaks this assumption as it is no longer necessary for every point in space to in-
stantaneously satisfy this criterion.

In common with the most popular texts on radiative transfer, the derivation of the
equations in this section use the CGS unit system.

1.3.1 The equations of radiative and statistical equilibrium

The propagation of radiation through a medium is affected by emission, absorption
and scattering. The radiation field can be defined by its specific intensity, Iν , defined
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as the energy emitted per unit time with frequency between ν and ν + dν that
propagates normal to the area dA and within the solid angle dΩ,

dE = IνdAdΩdνdt. (1.12)

The radiative transfer equation mathematically describes the rate of change of Iν ,
along a path, s, as the energy is added to or subtracted from its path. In the absence
of scattering, as this does not apply to molecular line radiation, this becomes:

dIν
ds

= −ανIν + jν , (1.13)

where αν and jν are the local absorption and spontaneous emission coefficients re-
spectively.

Defining the frequency specific optical depth, τν , as

τν =
∫
ανds, (1.14)

equation 1.13 becomes
dIν
dτν

= −Iν + Sν , (1.15)

where Sν is the local source function, the ratio of the emission to the absorption:

Sν = jν
αν
. (1.16)

From the definition of optical depth come two more terms, optically thin and optically
thick. An optically thin medium does not strongly attenuate incident radiation and
emission from ‘behind’ the object can still be observed. An optically thick medium
does attenuate incident radiation and it is not possible to obtain information about
material emitting from behind an object where τ & 1; the distinction between thick
and thin is consequently made where τ = 1, recalling that this point may vary with
frequency.

Equation 1.15 is the differential version of the radiative transfer equation along a
path. The more computationally useful integral of this equation along the path from
τ = 0 to τ = τ ′ is obtained by formally solving equation 1.15:

Iν(τ) = Iν(0)e−τν +
∫ τ

0
Sν(τ ′ν)eτ

′
ν−τνdτ ′ν , (1.17)

where Iν(0), is the background radiation entering the medium.

The above equations are valid for both line radiation and broadband continuum.
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Indeed it is possible and often necessary to take into account radiative mechanisms
for both gas and dust simultaneously, depending on the region of the EM spectrum
under consideration.

Dust absorbs many frequencies of radiation with different efficiencies. Neglecting
scattering, the opacity due to dust is, at its simplest, a function of frequency and
temperature, κν(Tdust) but it can also be a function of space as well, where larger
dust grains sediment into the midplane of a disc (e.g. Dubrulle et al. 1995; Dullemond
et al. 2007). The units of dust opacity are g cm−2, which when scaled by the dust
density returns the total absorption per cm for the particular dust model being used,

αdust
ν = κνρdust. (1.18)

The accepted canonical mass ratio of gas-to-dust is 100 (e.g. Mathis 1993). The
emission by the dust is then given by assuming all absorbed radiation is re-radiated
as a blackbody at the dust temperature, Tdust:

jdustν = Bν(Tdust)αdust
ν , (1.19)

where
Bν(Tdust) = 2hν3/c2

ehν/kTdust − 1 . (1.20)

is the Planck function expressed in terms of frequency.

The effect of frequency on the dust absorption depends on both the chemical com-
position of the dust and the distribution of grain sizes in the object (Draine & Lee
1984; Ossenkopf & Henning 1994). The functional form of grain size distribution
is usually assumed to follow a power-law (Mathis et al. 1977), f(a) ∝ a−q, where
q = 3.5.

For the specific molecular line transfer problem, the emission and absorption coeffi-
cients can be determined by the Einstein transition rates between rotational/vibra-
tional levels of the molecule and the relative populations of these levels. However,
the treatment of absorption and emission due to molecular gas is more complex
because systematic velocity fields make it anisotropic:

αgas
νul

= hν0

4π (nlBlu − nuBul)φν (1.21)

jgasνul
= hν0

4π (nuAul)φν , (1.22)

where Aul, Bul and Blu are the Einstein coefficients of spontaneous emission, stimu-
lated emission and stimulated absorption associated with the transition from level
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u to level l respectively (Equations 1.10 and 1.11); similarly nu and nl are the
respective number densities of molecules populating those levels.

The systematic velocity field enters both the gas emission and absorption coefficients
through the line profile function, φν . The line profile is discussed in more detail in
Section 1.3.1. Technically, the line profile functions associated with spontaneous and
stimulated emission/absorption may differ but, by invoking the assumption of com-
plete angular and frequency distribution of emitted photons, we treat them as being
the same, vastly simplifying the radiative transfer equation without significantly
reducing its validity.

As stated previously, the absorption and emission due to dust and gas may be added
to find a total source function which, if known along the entire length of the path
joining two points, may be used to determine the intensity of radiation incident at
one point from the the other.

In order to predict the mean intensity at a point from all other points in space, the
intensity must be integrated over the entire sphere:

Jν = 1
4π

∫
IνdΩ. (1.23)

Equation 1.23 can only be solved exactly if the level populations are known at all
points in the cloud. Under the assumption of LTE (Section 1.3.1), the level popula-
tions are solely a function of temperature but this is rarely the case in astrophysical
situations where the densities are too low. However, even when LTE is not valid, it
is usually possible to assume statistical equilibrium where the rates of excitation and
deexcitation in to each level, ni, are in dynamic equilibrium (it is usually assumed
that the chemical time scale is long compared to the radiative timescale so that this
holds):

dni
dt

= 0. (1.24)

By taking into account radiative and collisional processes, equation 1.24 may be
re-written as

ni

∑
i>j

Aij +
∑
i 6=j

(BijJij + Cij)
 =

∑
i<j

njAji +
∑
i 6=j

nj(BjiJij + Cji), (1.25)

where A,B and C are the spontaneous and simultaneous radiative coefficients and
the collisional rate coefficient respectively and where the LHS gives the rate of
destruction and the RHS gives the rate of formation in level i.
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The first term on the LHS gives the rate of spontaneous emission (deexcitation)
from level i and the second term gives the rate from stimulated emission and deex-
citation from the level caused by collisions, which it is important to note, permits
the molecule to enter any rotational state. Radiative transitions are constrained
to change the rotational state such that ∆J = ±1. The RHS contains the equiva-
lent terms for the formation of molecules in level i. The collisional coefficients are
complex and are discussed in context in Chapter 2.

Solving statistical equilibrium radiative transfer is non-trivial because the problem
is no longer local because the mean radiation field and the level populations are
coupled to the global radiation field through equations 1.17, 1.23 and 1.25. In
all but the simplest cases it is necessary to solve these equations iteratively using
radiative transfer codes that discretise the problem and solve the problem at each
discrete point in the grid. This is the subject of the next section of this chapter.

Local Thermodynamic Equilibrium

Thermodynamically, exchanges within a system are controlled by intensive parame-
ters, like temperature. In general, thermodynamic equilibrium (TE) means that the
intensive parameters are homogeneous to some degree. If the equilibrium is global,
then these parameters are the same everywhere in the system; if the equilibrium is
‘local’, as in LTE then the intensive parameters may vary in both space and time
but are so slowly varying that TE may be assumed in the neighbourhood about that
point.

In LTE, the relative fraction of molecules in each state, ni/
∑
ni is characterised by

a Boltzmann distribution characterised by a single parameter, Tgas:

ni∑
i ni

= gie
−Ei/kTgas

Z(Tgas)
(1.26)

where Z(Tgas) is the partition function, ∑i gie
−Ei/kTgas ; gi, is the statistical weight,

the number of states having energy, Ei; and n, being the total number of particles
in the ensemble.

When the density is sufficiently great, LTE is mediated by collisions between parti-
cles – the volume is said to be collision-dominated or thermally excited. However,
for lower densities, radiative processes effect more change in the local conditions and
so the simplification breaks down.

The critical density is defined as the point at which radiative and collisional processes
are equal to each other, i.e. where the collisional timescale,Kul and the characteristic
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radiative timescale, Aul, are equivalent,

Cul = Kuln
crit
H2 = Aul

⇒ ncritH2 = Aul
Kul

. (1.27)

If the gas is optically thick then the probability that a photon can escape, β ∝ 1/τ ,
reduces. This effectively reduces the rate of spontaneous emission and thus the
critical density is reduced by a factor of β. This effect explains why two molecules
can have a similar critical density but trace different densities before becoming
thermalised.

Spectral line broadening

In any gas, thermal motions will cause radiation to be emitted over a distribution of
frequencies dependent on temperature which is sharply peaked at ν = ν0, the rest
frequency in the absence of bulk motions. The non-relativistic Doppler equation
gives a relationship between velocity and frequency:

v = c(ν − ν0)
ν0

. (1.28)

Recalling that the number of atoms or molecules with mass m having velocities
between v and v + dv along the line-of-sight is proportional to the 1-dimensional
Maxwell distribution:

n(v) ∝ exp
(
−mv2

2kTgas

)
dv, (1.29)

then by combining equations 1.28 and 1.29 the emission between frequencies ν and
ν + dν is expected to be proportional to

exp
(
−mc2(ν − ν0)2

2ν2
0kTgas

)
dν. (1.30)

Normalising this distribution so that the integral over all possible frequencies is unity
gives

φν = 1
∆νD
√
π
e−((ν − ν0)/∆νD)2 (1.31)
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where

∆νD = ν0

c

√
2kTgas
m

, or by applying Eq. 1.28 (1.32)

vThermal =
√

2kTgas
m

=
√

2RTgas
µ

(1.33)

where R is the gas constant and µ is the molecular mass in amu. As an example
the thermal linewidth for 12C16O gas at 10 K is 0.077 km s−1.

Except in very cold cloud cores, observed linewidths in molecular clouds are actually
on the order of 1 km s−1 (e.g. Larson 1981; Goodwin et al. 2004). This is typically
ascribed to unresolvable stochastic gas motions at a microscopic or macroscopic
level (microturbulence and macroturbulence respectively). Many effects act to ‘stir
up’ the gas but their individual effects have generally eluded a closed formula and
the turbulent velocity is described by adding the parameter vNT in quadrature to
the thermal broadening parameter to give the line profile function:

φν = c

vturbν0
√
π
exp

(
−∆v2

v2
turb

)
(1.34)

vturb =
√
v2
T + v2

NT. (1.35)

In this definition of the line profile function, the intrinsic (natural) line broadening
has been neglected as in most cases it is many orders of magnitude smaller than the
Doppler broadening. Where this is not the case, the line profile can be expressed
as a Voigt profile; a convolution of the gaussian line function and the Lorentzian
(natural) line function.

Temperatures

Various measures of temperature are used in radiative transfer. Each one has a
different meaning but they are all used in some way to equate the observed conditions
with a blackbody emitting at an equivalent temperature.

By setting the magnitude of the source function to that of a blackbody emitting
at the same frequency, one can write the source function in terms of an excitation
temperature, Tex:

Sν = Bν(Tex) (1.36)

where
Tex = −hν

kln
(
glnu
gunl

) . (1.37)
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The excitation temperature is useful for characterising the ratio of two levels and
can be used to determine where the level populations deviate from LTE, where
Tex = Tkin. The excitation is said to be super-thermal if the excitation temperature
exceeds the kinetic temperature; otherwise it is sub-thermal. In the optically thin
limit, it can be shown that the observed intensity is proportional to Tex.

The brightness temperature is extensively used in sub-millimetre and radio astronomy
to express the temperature that a blackbody would have to have in order to match
the observed intensity, Iν = Bν . In radio astronomy, where hν � kT the Rayleigh-
Jeans law is used, so that:

Bν(T ) = 2kTBν2

c2

⇒ TB = c2Iν
2kν2 . (1.38)

This measure of intensity is often extended to observations at shorter wavelengths
even though it is no longer technically valid.

More relevant measures of intensity for comparison with observations are radiation
temperature, TR, and the associated antenna temperature, TA:

TR = c2

2kv2 (Iν − Ibgν ) = TB − T bg
B and (1.39)

TA = ηTR, (1.40)

where T bg
B is the Rayleigh-Jeans temperature of the background and where η takes

into account various corrections for atmospheric attenuation, radiative loss, scatter-
ing, spillover and main-beam efficiency (Kutner & Ulich 1981).

1.4 Computational approach to radiative transfer

Historically, poor spatial and spectral resolution of astrophysical objects combined
with insufficient computational power has led to the widespread use of approximate
methods, including the assumption of LTE throughout the object which is rarely
correct and using so-called ‘escape probabilities’ (see below).

As shown in the previous sections, in order to interpret molecular line data it is
necessary to accurately determine the level populations of each required molecule
for the entire object. The solution to the coupled equations of radiative transfer
and statistical equilibrium is both non-trivial and non-linear, necessitating the use
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of iterative schemes that converge on a set of global level populations that are
consistent with the mean radiation field that they generate (Pavlyuchenkov et al.
2007).

In this section I address some of these approximate and so-called ‘exact’ methods.

1.4.1 Approximate (local) methods

The simplest source model in line radiative transfer is that of LTE. In LTE, the
source function is assumed to be a blackbody radiating at the local temperature
of the system. Moreover, the molecular level populations are a function of a single
temperature only and are not coupled to locations elsewhere in the object. This ap-
proximation is permissible in certain scenarios like the dense, collisionally-dominated
midplane of a circumstellar disc. However, as the gas becomes less dense (or, more
generally where radiative processes become significant) this approximation rapidly
breaks down and masses derived assuming LTE often underestimate the true mass
of an object (Pavlyuchenkov et al. 2007).

The Sobolev approximation permits the very fast solution of the RT equation in
media with large velocity gradients, hence it is also known as the LVG approxima-
tion. It is an excellent approximation when dealing with stellar winds or rapidly
expanding envelopes, where velocities can be many hundreds of kilometres per sec-
ond. Physically, it takes advantage of the fact that photons that are emitted locally
are only likely to be absorbed locally; their line profiles being shifted too far away
from that of other areas to interact further away. Mathematically, the integration of
the transfer equation over space can be replaced with an integration over frequency,
substantially simplifying the problem (Wehrse & Kalkofen 2006). This method is
one of many ‘escape probability’ approaches that have been used to rapidly deter-
mine the basic physical parameters of molecular clouds using molecular line data.
Another similar method is the ‘one-zone’ escape probability method which can be
used in isothermal and homogeneous media (e.g. Mihalas 1978). The probability in
this case indicates the chance of a photon escaping a cloud without undergoing scat-
tering or absorption. However, LVG analyses suffer when applied to real molecular
clouds that do not exhibit large velocity gradients and which are not isothermal and
homogeneous, indeed, they are often far from it.

All other local approximations are variants on this probabilistic theme. ‘Full’ escape
probability codes assume that the photon will definitely escape instantly (assuming
the line is very optically thin) (e.g. van der Tak et al. 2007); VEP (vertical es-
cape probability) and VOR (vertical only radiation transport) methods utilise the
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known velocity profiles of a disc undergoing Keplerian rotation in order to speed
up their level population calculations but they are still not true non-local methods
(Pavlyuchenkov et al. 2007).

1.4.2 Exact (non-local) methods

More recently, sophisticated non-local line radiative transfer codes have been de-
veloped. Initially these were one-dimensional Lambda Iteration methods but their
evolution has culminated in the development of three-dimensional accelerated Monte
Carlo methods as the available computational resources have increased. Their ne-
cessity as analytical tools has arisen as it has become possible to resolve the more
complex kinematic and chemical environments of, for example, dense cloud cores
(e.g. Hogerheijde & van der Tak 2000, and many others) and more recently proto-
planetary discs (e.g. Semenov et al. 2008).

In this section I present a broad overview of the methods that have been used in
molecular line radiative transfer following van Zadelhoff et al. (2002) which provides
an excellent summary of the implementation of some contemporary codes.

The Lambda Iteration method

The Lambda Iteration is the most intuitive of all non-local methods. It is epony-
mously titled for its construction and use of the Lambda operator, Λ, which repre-
sents the process of determining the mean radiation field impinging on each point in
space from the source function across the whole region as calculated in the previous
iteration:

Jnew
ν = Λ

(
Sold
ν

)
. (1.41)

Mathematically, it involves the formal integration of equation 1.23 over the entire
spatial-frequency domain. The Lambda operator can be expressed as a matrix that
connects each grid point and each level. By assuming some initial set of level pop-
ulations, the Lambda operator is constructed by solving 1.23 and using it to find
updated level populations which are then used as the next trial solution. In subse-
quent iterations, it is expected that the relative change in level populations reduces
and that a self-consistent numerical solution for J in the cell has been reached when,
after the final iteration, the relative change in the level populations of successive
iterations is less than some predetermined limit (since the solution is not known a
priori). This does however, rely on the assumption that when the mean intensity
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and the level populations are far from their equilibrium solution, the change between
iterations is large which is not generally the case in optically thick media.

High optical depth has been identified as a factor affecting convergence and Hoger-
heijde & van der Tak succinctly surmised that ‘...emission passing through an opaque
cell will rapidly lose all memory of its incident intensity and quickly tend towards
the local source function. The distance over which the information about changes
in excitation can travel is one mean free path so the required number of iterations
grows ∝ τ 2 characteristic of a random walk’. Thus, in regions of high optical depth,
the level populations may change very slowly and care must be taken to ensure that
the ‘convergence’ towards the solution is real, as iterative processes do not converge
perfectly monotonically and fluctuations in their convergence ratios may trigger the
convergence criteria prematurely. This is discussed in greater detail in Chapter 3.

The accelerated Lambda Iteration method

Lambda iteration methods converge very slowly for high optical depths. It is possible
to accelerate the convergence of the method by considering an approximate operator,
Λ∗ (Rybicki & Hummer 1991) constructed from the full operator, thus:

Λ = (Λ− Λ∗) + Λ∗. (1.42)

Equation 1.41 can be written as,

Jnew
ν = (Λ− Λ∗)[Sold

ν ] + Λ∗[Snew
ν ]. (1.43)

An ALI iteration proceeds similarly to an LI iteration except that whilst equation
1.41 is fully solved in LI, only the second approximate term is solved in ALI. In
ALI, sub-iterations are performed so that the level populations are consistent with
the approximate operator and then only once all the cells have been updated in this
way is the full operator updated.

The approximate operator is typically chosen to be easily inverted making the prob-
lem readily soluble. By happy coincidence Olson et al. (1986) demonstrated that
the local (diagonalised) Λ operator was almost optimal. This approximate operator
is trivial to invert and easy to construct by using only the conditions within the cell.
Because the dependency on data outside the cell is greatly reduced, it is possible to
converge to a solution in optically thick media.



1.4. COMPUTATIONAL APPROACH TO RADIATIVE TRANSFER 43

(Accelerated) Monte Carlo methods

The main difference between Lambda Iteration codes and Monte Carlo codes is in the
sampling of the mean radiation field that affects the level populations. LI codes use
a fixed grid yielding a solution without the noise associated with random sampling
at the risk of potentially undersampling the radiation field in other directions.

There are a number of advantages in using Monte Carlo methods over conventional
methods. By definition one does not need to consider every possible configuration in
the ensemble but merely sample from it, reducing memory and time requirements, al-
lowing more consideration to be given to the physics of a model. Specifically, instead
of performing a formal integration of some variable over all space, one evaluates a
finite sum approximating an integral:

1
4π

∫ ∞
0

f(x)dV =
N∑
i=1

f(xi), (1.44)

where N is the number of samples (with index i) to be taken of the function, f .
Furthermore, it is possible to quantify the random errors present in the solution by
monitoring the variance in the solution.

Moreover, a major advantage of Monte Carlo codes is the ease of their extension to
non-regular grids (e.g. adaptively refined meshes, see Chapter 2) which are able to
be more flexible in their coverage over many spatial scales, reducing the number of
cells required to cover a space.

Although Lambda Iteration numerical radiative transfer codes had been developed
earlier in the 1970’s it was Bernes (1979) who first used the flexibility of Monte
Carlo methods to solve non-LTE line radiative transfer in an astrophysical context,
recognising that similar accomplishments had been made using the MC method in
radiative transfer in other areas of physics. He demonstrated that a well-converged
non-local solution could be arrived at within a feasible timescale (at least for one-
dimensional source models). Although Bernes used a simplified spherical, collapsing
cloud, his work laid the foundations for many efforts to come.

Bernes determined the level populations by using randomly sampled discrete pho-
tons that are emitted and absorbed in the material; this however can lead to poor
convergence in undersampled cells. An alternative formulation considers each cell
and considers the mean radiation field that impinges upon each cell, ensuring that
no cell is undersampled (although depending on the number of rays used, it is still
possible that the radiation field is not well sampled in either direction or frequency).
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One of the well-documented problems with MC simulations come from their slow
‘square-root’ convergence (Press et al. 1992), although this can be overcome by
employing acceleration techniques (e.g. Ng 1974) and variance reduction techniques
(e.g. Juvela 1997; Juvela & Padoan 2005).

Also, analogously to the ALI method, it is possible to split the contribution of the
radiation field internal and external to the cell. By using sub-iterations to consider
only the local radiation field, a similar increase in performance as seen in the ALI
method over the LI method in optically thick media can be achieved.

1.5 Applications of molecular tracers

Since the discovery of cosmic CO in 1951 (Ewen & Purcell 1951; Muller & Oort
1951), it has yielded more information about star-forming regions than any other
molecule. Moreover, for over 40 years, molecular line radiation has regularly been
used to trace key evolutionary parameters.

The lowest rotational levels of Carbon monoxide are used as tracers of low density
gas, because its critical density is low (ncr ≈ 103 cm−1, see Section 1.3.1). At
higher densities, because the rotational constant of CO is relatively high compared
to other molecules the levels are more closely spaced, the transitions become readily
thermalised and the line ratios become sensitive to temperature. However, owing
to the high relative abundance of the most abundant isotopologue of CO, 12C16O,
lower transitions are rapidly saturated for typical column densities associated with
molecular clouds. Less abundant isotopologues like 13CO and C18O must be used to
probe conditions deeper within the interior of the cloud. In an extra-galactic context
the molecule is even more important as its abundance is its strength as it is readily
observable in extra-galactic sources. CO is thought to be a good probe of the entire
mass of an object because its abundance relative to H2 can be well constrained. The
observed intensity of this line is strongly correlated to the hydrogen column density
(e.g. Frerking et al. 1982) (although it should be noted that a direct determination
found the ratio to be three times higher, Lacy et al. 1994).

Conversely, the CS molecule has a large dipole moment and its emission is not very
sensitive to temperature. Consequently, by examining the ratio between different
emission lines, say (2-1)/(3-2), and assuming some relative abundance to H2, it can
be used to determine the H2 density more accurately than many other molecules.
This is because the degeneracy between gas temperature and density make it difficult
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Figure 1.7: Top panel: Chemical network of turbulence-dominated chemistry.
Bottom panel: Chemical network of UV-dominated chemistry. Re-
produced from Godard et al. (2010).
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to disentangle the two parameters. van der Tak et al. (2000) have used their radiative
transfer code to demonstrate this effect for some molecular species (Figures C1-C5).

More generally, for any molecule, higher frequency transitions will probe high tem-
peratures and densities as the critical densities of molecular lines scale ∝ µ2ν3 (Equa-
tion 1.6). Moreover, non-linear molecules such as H2CO and NH3 are advantageous
because it is possible to probe both temperature and density within the same range
of frequencies. Line ratios from different J states tend to trace density whereas
different K states (on the rotational backbone) trace temperature (e.g. Stutzki &
Winnewisser 1985).

While it is critical to understand the temperature and density profiles of an object
as they broadly define the physical conditions of an astrophysical object, secondary
characteristics may be used to separate two otherwise similar objects. Molecular
tracers have been used to determine magnetic field strengths, ionisation and deuter-
ation fraction (e.g. Bourke et al. 2001).

The utility of molecular lines as tracers however is tempered by the fact that the
relative abundances of a particular molecule must be well constrained. As a first-
order approximation some species can be assumed to have an approximately constant
abundance throughout the cloud and this can be quite accurate. Some species
however are sensitive to the abundances of other species and also to the evolution
of the cloud. More complex chemical networks attempt to model this but they
often assume very simple conditions (e.g. homogeneous temperature and density
field) and more sophisticated treatments couple these networks to radiative transfer
codes. A simplified example of a chemical network showing the interconnection of
some species with others is depicted in Figure 1.7. It should be noted that the full
networks contain hundreds of species and typically contain thousands of reaction
pathways.

1.6 Thesis aims

For the reasons outlined already in this chapter it is clear that molecular line data
from observations is an extremely powerful tool for analysing the properties of many
astrophysical objects, from giant molecular clouds spanning many 100s of parsecs
to dense clouds cores to protoplanetary discs around young stars. Historically, the
use of approximate transfer methods to analyse this data has been out of necessity;
today, with the ready availability of parallel processing facilities it is possible to
use non-LTE models to recover more accurate estimates of the physical parameters
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governing an object. Moreover, as radiative transfer provides a gateway from theory
to observation, it can be used, for example, to create synthetic maps of hydrody-
namic simulations permitting their comparison with observational data. In effect,
radiative transfer codes hold the key to attacking the discrepancy between theory
and observation from both ends – their critical importance cannot be understated.
Consequently, I have developed a fast, efficient, accurate line transfer code that can
be used in all these respects.

In Chapter 2 I present an implementation of a non-LTE molecular line RT module
using the AMC method for determining molecular line populations for torus, a
multi-purpose AMR radiative transfer code. In Chapter 3, I demonstrate agreement
with other line transfer codes in some of the benchmark problems set out in van
Zadelhoff et al. (2002) and verify the accuracy of the raytracing routines used for
generating synthetic intensity maps. In Chapter 4, I present an efficient method for
mapping irregular SPH data on to an AMR grid as used in Douglas et al. (2010),
Acreman et al. (2010b) and Rundle et al. (2010) and in Chapter 5, I present the
results of its application to the hydrodynamic clustered star-formation simulation
of Bate et al. (2003a).

Finally, in Chapter 6 I conclude on the significance of the work contained in this
thesis and report on the future work that it will be possible to do using the code
that I have developed.



I consider the work presented in [Rundle, Harries, Acreman & Bate (2010)] to be a major step 
forward in providing a tool to understand the star formation process in all its complexity. 
After having seen years and years of simulation presentations lacking attempts to make a 

relation to observations, it is refreshing to see ... meaningful analysis tools for their simulations.
 In view of the expected Herschel and ALMA data, the manuscript is excellently timed to 

strengthen a communication between astrophysicists working on observations and simulations.

— Anonymous referee for Rundle, Harries, Acreman & Bate (2010)

Chapter 2

Molecular Line Radiative Transfer
using torus

torus (an acronym, according to the webpage of the original author, Dr Tim Harries
for, Transport of Radiation Under Sobolev or Transport of Radiation Using Stokes)
is a Monte Carlo radiative transfer code that was originally designed to model atomic
line transfer in a moving medium in order to compute polarisation images and
spectra on a generalised three-dimensional opacity grid. It is written in FORTRAN-
2003 and has been designed to be as general in application as possible. To this end,
the code is highly modular and has incorporated techniques such as AMR (Berger
& Colella 1989) to enable the adequate resolution of, for example, dust nebulae
(Harries et al. 2004) where densities can change by many orders of magnitude. The
code is fully parallelised using the Message Passing Interface (MPI) libraries and as
each Monte Carlo process can be run independently, the code benefits greatly from
running in parallel on multiple processors.

torus has been used to examine astrophysical phenomena that occur over many
orders of magnitude; from massive and hot Wolf-Rayet and O stars (Harries et al.
2000, 2004), to YSOs of all classes and their encircling discs/envelopes (Symington
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et al. 2005a,b; Kurosawa et al. 2006; Hatchell et al. 2007). Now, using the molecular
line radiative transfer module I developed for torus, large scale cluster calcula-
tions have been performed (Rundle et al. 2010) and even galaxy-scale calculations
(Acreman et al. 2010a; Douglas et al. 2010).

Until relatively recently, only spherically or axially symmetric core collapse simula-
tions of line transfer had been performed (e.g. Tsamis et al. 2008; Pavlyuchenkov
et al. 2008) however, due to recent advances in computational power, it is now possi-
ble to compute three-dimensional line transfer for these complex density structures
in star-forming regions. As a result, my primary Ph. D. project was to develop,
benchmark and apply a molecular line transfer module for torus, the result of
which is now known as molecular_mod in the torus code. As the name suggests,
the module requires the main torus subroutines for grid creation and various ‘book-
keeping’ tasks but is self-contained insofar as it only contains all the routines for,
e.g., determining level populations and creating synthetic images. Currently, the
module comprises about 5500 lines of FORTRAN. Figure 2.1 captures the salient
details of the determination of the non-LTE level populations for a user-specified
model. By supplying some criteria or accepting sensible program defaults, the user
ultimately obtains the end product of a converged grid which can be used to create
synthetic line maps/profiles. An abundance of diagnostic information is available to
the developer or keen user.

This chapter describes how I have implemented the code in torus. It is split
broadly into 3 main sections; the creation of an appropriate AMR grid (Section 2.1),
the determination of non-LTE level populations (Section 2.2) and the generation of
synthetic line maps/line profiles from a converged grid of level populations (Section
2.3). Convergence, acceleration and optimisation are also discussed towards the end
of this chapter (Section 2.4) but the results from the benchmarking application are
presented in chapter 3.

The torus code is currently undergoing substantial revision in order to make it
more user-friendly; this will be known as torus version 2. This chapter documents
the functionality of the molecular line transfer module for torus version 1.2 at the
time of submission of this thesis (July 2010).

2.1 Grid generation

Problems in star formation typically span many orders of magnitude in both space
and density. AMR naturally resolves the fine structure of these problems well
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Figure 2.1: Abridged programme flowchart of torus when calculating non-
LTE molecular level populations. Highlighted in grey are impor-
tant torus routines that facilitate the execution of the code but
I did not contribute greatly to the development.
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whereas a fixed, regular grid will often be insufficient to capture crucial informa-
tion like peaks in the density profile where a protostellar core far smaller than the
size of a grid cell has begun to accrete material. Moreover, the resolution of a fixed
grid may be unnecessarily fine in large, low density regions that are unimportant
in a star formation context. Nested grids can ameliorate this problem somewhat
(D’Angelo et al. 2002) but they often need to be hand-crafted to fit each individual
problem. The flexibility of AMR is that it will adapt the resolution given to a region
depending on the criteria the user applies. Typically, one is interested in resolving
the temperature and density structure in a region (ensuring that the optical depth
of a cell is not too high), although when calculating line radiative transfer accurately
it is necessary to accurately resolve variations in the velocity field as well, owing to
the anisotropy in absorption introduced by the line profile function.

Three-dimensional grids have become a more popular tool for modelling objects
without any axes of symmetry as the computational power available to numerical
modellers has increased. Many astrophysical fields are expected to act to disturb
the symmetry of an object placed within them (e.g. anisotropic magnetic fields) and
thus these grids are essential for accurately modelling the effect of these phenomena.

In order to create an AMR grid it is necessary to define how the simulation space
will be split and how each physical parameter for each cell will be determined. User-
specified criteria are used to control the resolution of the grid at any given point in
space. In torus this is achieved by the repeated subdivision of an initial unrefined
cell centred on the region of interest. This parent cell is bisected once in each
dimension, thus, in Cartesian coordinates, each child has a volume 2−ν times that
of its parent, where ν is the dimensionality of the simulation. The simulation region
may also be specified (and split) by cylindrical coordinates. Each cell is recursively
refined until it no longer satisfies the splitting criteria or it has reached some pre-
determined depth, that is, it has been split as many times as the user has determined
to be necessary (in order to limit the amount of memory used by the grid). More
detail of the AMR implementation used in torus is given in Harries (2000) and
Symington et al. (2005a) and a comprehensive discussion of the mechanism by which
torus executes this can be found in Symington (2006).

The initial splitting criteria to be used in a simulation depends on what is known
a priori while subsequent adaptive refinement criteria may change as the calculation
proceeds. These initial criteria depend on the geometry being used by torus to
model the physical situation. Geometry is a key input parameter in torus that
defines the physical parameters of the simulation. In the theoretical benchmark
model examined in chapter 3, all the salient parameters are tabulated. In this
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case, the splitting criteria ensure that the parameters for each octal can be uniquely
defined by one datapoint. When ‘gridding’ an SPH simulation (see Chapter 4) it
is necessary to refine the grid by mass per cell, density gradient and the range of
velocities contained with a cell. Further details on these criteria can be found in
their respective chapters.

The final grid may undergo further processing if it is determined to be necessary. In
some geometries it is possible that large cells may neighbour a number of very small
cells if, in the case of an accretion flow geometry or a jet, the local density gradient
is very high. This can cause numerical instabilities in the determination of physical
parameters especially in cases where it is necessary to perform interpolation. The
grid may be smoothed after this initial refinement to ensure that the difference in
cell depth of adjacent cells is no greater than the maximum permissible size ratio
between cells. In geometries where the opacity is simply proportional to the path
length through the cell (e.g. continuum radiative transfer), a further refinement can
be performed where the grid is refined to ensure that the optical depth through one
cell at some frequency does not exceed some user-defined limit. The grid is stored in
a tree structure. In three dimensions, this is called an octree to reflect the fact that
each branch of the tree can spawn 23 nodes recursively. In one and two dimensions
each branch spawns fewer nodes but for brevity, in this thesis each node may be
called a cell, or octal.

Once the structure of the grid octree is known, it is necessary to fill each octal with
the values that will be used to perform the calculation. Each octal is implemented
as an instance of a Fortran 95 derived type, akin to a structure in the C-family of
languages, greatly improving the readability, maintenance and development of the
code. Position, linear size, density, temperature and velocity are the only param-
eters that are statically allocated for every octal. As the functionality of torus
has been enhanced, the number of grid variables required to perform the requisite
calculations has increased and in order to save memory, almost every other quantity
is initialised as a null pointer that can be allocated post hoc. Allocation of mem-
ory for variables associated with molecular line radiative transfer is handled by the
allocateMolecularLevels subroutine and is discussed in Section 2.1.2.

The calcvaluesAMR subroutine recursively traverses the octree assigning values to
the fundamental physical quantities according to a combination of user-defined pa-
rameters and/or tabulated data/analytical formulae. From here on, I shall only
discuss what is necessary to perform molecular line radiative transfer. Other modes
of operation will usually be broadly similar.

It must be stressed here that the line code described in this chapter requires a gas
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temperature field as an input, be it tabulated or self-consistently determined assum-
ing radiative equilibrium. In the latter case, an appropriate geometry containing
at lease one radiation source must be used. torususes an iterative algorithm de-
scribed by Lucy (1999) to determine the gas temperature for each cell. Owing to the
negligible emission in the sub-millimetre region of the spectrum of any ‘point-like’
source (e.g. a protostar), it is only through their contribution to the temperature of
the region of interest that their radiation field is accounted for in the line transfer
code.

As it is critical when considering line transfer, to have an accurate representation
of the velocity field, it is often necessary to perform sub-grid calculations where it
might be impractical or impossible to split the grid sufficiently to account for the
changes in velocity; the most illustrative example being the existence of a large
radial velocity gradient in one direction and no gradient perpendicular to that as
is found in a rotating disc. Consequently, velocity vectors are stored at up to 27
points within the parent octal corresponding to the corners of the 8 subcells (in
the three-dimensional case) facilitating the performance of up to quadratic interpo-
lation without access external octals. For certain geometries, an identical scheme
has been implemented for storing extra density information on the parent octal cor-
ners, resulting in improved quality images, but currently only linear interpolation
is possible because simple higher-order interpolation schemes do not guarantee that
the interpolated value lie within the range of the fiducial values. Obviously, the
potential for the grid to contain negative densities is highly undesirable and there
are diminishing returns from increasing the interpolation order.

For some geometries, like the cluster geometry used in chapter 5, the process
of populating the grid is non-trivial and can be time-consuming. At the end of
the process torus saves an intermediate grid filled with the fundamental physical
quantities but with no molecular data superposed on top.

The current mode of operation for the line transfer module is to calculate the level
populations for each molecule of interest separately, so this intermediate grid may
be determined and reused for multiple molecular species. This is a valid assumption
where the lines of different species do not overlap. Similarly, the probability of
molecular species other than H2 colliding with each other is vanishingly small and
this may be neglected. Consequently, the user chooses the molecule that they wish
to calculate level populations and/or a synthetic line map for and the corresponding
data is fetched from the file in the torus data directory using the readMolecule
subroutine (described below). The level populations and other relevant parameters
are then superposed onto the grid using allocateMolecularLevels. Once the
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molecular data are known, the AMC code can begin to iterate on the initial grid.

2.1.1 The readMolecule subroutine

torus uses molecular data from the LAMDA database (Schöier et al. 2005), a repos-
itory of molecular and atomic data for many common species found in molecular
clouds. The data is stored in the RADEX file format (van der Tak et al. 2007)
which contains data pertaining to the energy levels, Ei, statistical weights, gi, Ein-
stein A-coefficents, Ai and collisional rate coefficients, Cij, for whichever collision
partners have been calculated; all required inputs for performing statistical equi-
librium calculations. The authors of the database have compiled the data from a
number of sources; energy levels, transition frequencies and Einstein A-coefficients
are usually taken from the Jet Propulsion Laboratory (JPL) and/or CDMS whereas
collisional data is collated from various reference sources (e.g. Green & Chapman
1978; Monteiro 1985).

The readMolecule routine reads the data for each level or transition and stores it in
a global moleculetype data structure containing many dynamically allocated fields
(because it is not known a priori which molecule will be modelled and consequently
how many transitions/levels need to be stored).

The rest of the file is given up to describing how the collision rates vary with specific
collision partner and temperature. Unlike radiative transitions where specific transi-
tion rules apply between levels (e.g. ∆J = ±1 for dipole transitions), collisions may
excite or de-excite a molecule from any level to another. Furthermore, because the
collision cross-sections vary as a function of temperature, the array needed to store
the collision rates between partners is far larger.

The RADEX format allows for multiple collision partners for each molecule. Typi-
cally this will either be for ortho– and para-H2 which have different collision cross-
sections, or some combined values for H2 as a whole which are usually taken from
[molecule]-He data which have been scaled. In torus it is assumed that the ratio
of ortho– to para-hydrogen, [ortho-H2]/[para-H2] = 5×10−5 for most astrophysical
situations, under the assumption that the J = 0 and J = 1 levels of H2 are not
thermalised even at high densities (Walmsley et al. 2004). Other collision partners
such as electrons, neutral and ionised hydrogen and helium may also be considered.

Temperature dependent collision rates are tabulated and range from 2− 3000 K in
25 unequally spaced data points in the case of CO (Yang et al. 2010) to 8 points
covering a range of temperatures from 15 − 300 K for NH3 (Danby et al. 1988),
depending on the current level of understanding of the specific molecule.
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As a module variable, the molecule structure is accessible by all subroutines con-
tained within molecular_mod.

2.1.2 The allocateMolecularLevels subroutine

The allocateMolecularLevels subroutine allocates the memory required to store
all of the variables necessary for the calculation of the non-LTE level populations.
Like many other subroutines it uses the same code to fully traverse the grid’s octree
structure; allocating memory only to those octals who do not have any child cells.
The code fragment which controls this is given in Appendix C.

In the non-LTE case, where the relative population of molecules in a given state is no
longer solely a function of temperature, the relative populations of each level in each
cell is unique. This means that the arrays required to store this data can become
very large. Furthermore, because of the large dynamic range of values that must
be accurately stored, each array must be stored as a double precision variable,
doubling the size of the array. In the three-dimensional case, the storage requirement
can easily become as much as 160 MB (40 levels × 106 cells × 4 bytes per level per
cell). Today, this might not seem like very much memory but combined with the
other large arrays that are required to store previous levels to test for convergence
and the temporary arrays that store estimates of the external radiation field the
memory requirement can rapidly exceed 2 gigabytes, the maximum memory per
core on a standard node on zen, the University of Exeter supercomputer (the most
efficient use of zen achievable using MPI).

Often, in the kind of astrophysical scenarios where molecular chemistry can occur,
the gas temperature is very low. It is rarely necessary to take into account, for
example, the J = 40 − 39 transition of some molecule even if the molecule struc-
ture contains that much information. It is possible, using the setmaxlevel input
parameter or allowing the heuristic algorithm in findMaxLevel to set the maximum
level (and hence upper level for a transition and the overall number of transitions
to be considered, maxtrans) for which it is necessary to store level populations and
the mean radiation field within the cell, J̄ul. This can drastically reduce memory
consumption and increase computation speed at the expense of reduced accuracy in
the uppermost levels of the simulation.

As an initial condition for the iterative calculation, the molecular level populations
can be initialised such that they are in LTE and so follow a Boltzmann distribution
(see equation 1.26) or so that all levels are unpopulated except for the J = 0 level.
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The choice of initial conditions is user-specified depending on the scenario; if the
solution for the model is known to be close to LTE then LTE is a good choice as
it saves many unnecessary code iterations. Naturally, for a solution to be truly
converged, the final solution should be independent of initial conditions. Values for
J̄ul are stored in jnu for each cell and are initialised such that they are consistent
with the level populations within the cell (equation 1.16).

In addition to these variables, the following must also be allocated and initialised
for each octal if they have not been already: the microturbulent velocity vturb,
microturb and its reciprocal; the molecular abundance relative to H2, molAbundance
and where it is necessary to simulataneously account for gas and dust in the radia-
tive transfer calculations, the blackbody emission at each transition rest-frequency,
bnu.

The reciprocal of the microturbulence is stored explicitly because it is used so fre-
quently in the calculation of the line profile. The memory footprint is only 4MB for
106 cells and the speedup is significant.

The allocateOther routine is similar to the main subroutine except that it allocates
and initialises grid variables that are not so critical to the calculation as those allo-
cated in allocateMolecularLevels. This primarily includes the self-explanatory
newMolecularLevel, oldMolecularLevel and oldestMolecularLevel which are
used to save the level population data from previous iterations principally for the
purposes of determining convergence but also to facilitate the Ng Acceleration step
(described in more detail in Section 2.4.3) which can accelerate the convergence
of the solution considerably, especially in very optically thin and optically thick
scenarios.

A useful facility offered by torus is the ability to restart a partially converged grid
– a so-called ‘warm start’ – if for instance, a calculation exceeded its allotted time
on a supercomputer. If the restart flag is set then it is only necessary to call
allocateOther; everything else is read in at run-time.

2.2 Determining non-LTE level populations

In order to determine the non-LTE populations within a cell it is necessary to cal-
culate the mean radiation field for all molecular line transitions both within and
external to the cell. As the level populations and the local radiation field are de-
pendent upon each other, they must be found self-consistently through multiple
iterations of the Lambda operator, Λ (equation 1.41).
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torus adopts an accelerated Monte Carlo (AMC) method similar to that described
in Hogerheijde & van der Tak (2000). The primary innovation in the AMC scheme is
the splitting of this operator into a local and external component. The separation of
local and external contributions to the radiation field in a cell facilitates convergence
even in optically thick regimes (τ > 100). This is analogous to the operator-splitting
step in Accelerated Lambda Iteration (ALI) methods (see Rybicki & Hummer 1991).
In particular, Hogerheijde & van der Tak’s method uses rays, or long characteristics
to sample the external radiation field as opposed to tracking photon packets (c.f.
Bernes 1979; Lucy 1999), which can become trapped or fail to penetrate some regions
leading to poor convergence or sometimes failure to converge at all. Using this
method, each grid cell is sampled individually meaning that no cell is undersampled.
Figures 2.2(a) and 2.2(b) highlight the fundamental differences between the two
representations.

In the photon packet representation of the Monte Carlo method for solving radia-
tive transfer (Figure 2.2(a)), the radiation field is represented by individual photon
packets that emanate from an arbitrary position in the grid (corresponding to spon-
taneous emission) and travel through the grid until they are absorbed or escape. The
packets convey information about cells that they have traversed and contribute to
the cells that they pass through. A potential disadvantage is illustrated in the figure
where it demonstrated that it is possible that some cells may be poorly sampled or
completely unsampled.

Using the method of Hogerheijde et al. an estimate of Jν is determined by choosing
a certain number of rays that will enter the cell from the grid edge. The path that
the ray took is then retraced (from the cell towards the grid edge along the long
characteristic) along the random direction vector in order to find the ray’s contribu-
tion to the field within the cell. There is no issue of undersampling because each
cell is evaluated using the same number of rays. The main issue is the computation
of potentially using so many more rays to sample some cells which will not require
such good sampling. Furthermore, it is possible that the set of rays will still fail to
convey information between two resonant cells (by not passing through both).

In the AMC/ALI schemes, as opposed to regular MC/LI schemes, only the local
component is updated and iterated until the radiation field and the level populations
within the cell are self-consistent. The external component is determined only once
per cell by sampling the external radiation that would impinge on the cell from the
other cells in the grid by means of random samples of intensity incident at the cell
surface over 4π steradians. This is where the Monte Carlo element presents itself
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(a) Photon-centric model.

(b) Cell-centric model.

Figure 2.2: Schematic representations of photon-centric and cell-centric meth-
ods of determining the mean radiation field felt by a cell.
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although it is not technically necessary to use random numbers at all if care is taken
to mitigate against systematic errors.

The AMC scheme is split into 2 consecutive stages; the first stage samples the
intensity of radiation incident upon each cell systematically using a small set of rays
each possessing a unique direction, d, origin within the cell and frequency, ν. The
direction and frequency of the set of rays do not vary from iteration to iteration,
nullifying the random fluctuations in coverage of the radiation field and consequently
converging rapidly towards a self-consistent solution. However, because the radiation
field is poorly sampled both spatially and in frequency, the solution will be strongly
dependent upon the choice of initial random seed.

The second stage of the scheme reduces systematic errors by allowing the direction
and frequency of the rays to vary from iteration to iteration, improving coverage of
the spatial-frequency parameter space, reducing systematic errors. Random errors
are reduced by doubling the number of rays used to sample the radiation field
per cell per transition in each successive iteration. It is trivial to show that the
noise in a solution from a Monte Carlo simulation diminishes proportional to

√
N

asymptotically, where N is the number of rays used to sample the field, so it is quite
possible to have to sample a cell with in excess of 105 rays in order to achieve global
convergence on the order of 1%.

At the end of each iteration over all cells, the new level populations are tested
against those of the previous iterations to quantify the convergence of the algorithm.
The iteration is repeated again and again until subsequent levels are within a user-
specified tolerance. This cycle of improvement is illustrated in Figure 2.3.

In torus, the process is executed by the molecularLoop subroutine and the helper
routines, getray, calculateJbar and solveLevels. I document the method of
action of each routine henceforth.

2.2.1 The molecularLoop subroutine

The molecularLoop subroutine controls the whole non-LTE level population de-
termination process. It is this subroutine that is called from within the main
torus code. The filled grid octree structure and the molecule structure are
the only parameters passed to it explicitly although it uses other public variables
stored within other modules. These variables are set at run-time in the param-
eters file, parameters.dat. A full description of these parameters can be found
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Figure 2.3: Iterative cycle of improvement for determining a self-consistent
solution to the system of equations germane to the molecular line
transfer problem when using an AMC method.

in Appendix D. Currently, the following parameters are used in molecularLoop:
tolerance, usedust, amr1d, amr3d, debug, restart, isinlte, quasi, doNgstep.
Their individual action is described where necessary.

The molecularLoop subroutine performs various ‘house-keeping’ tasks peripheral
to the main calculation but nevertheless essential to the successful execution of the
code, such as determining the minimum number of levels to be converged to the user-
specified tolerance, opening file handles for output data and, if the code is being run
in parallel, handling the MPI communication between threads. Specifically, there
are two important events that must be coordinated at the start of the calculation.
First, each MPI thread must have the same seed for the random number generator
in order that the fixed-ray stage of the calculation run as intended - this means
that it must be inherited by all MPI threads at the start of the calculation and kept
synchronised throughout the first stage. Secondly, in order to attain the nearly-linear
calculation speed increase afforded by the Monte Carlo method, it is necessary to
ensure that the computational burden is shared equally over each thread. This is
most simply done by allocating an equal share (Noctals/Nproc) of the octals in the
grid to each thread. For this reason, an array of pointers to each cell, octalarray
is constructed and broadcast to each thread along with the start and end indices of
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the octals under consideration for each thread.

This method is simple but does not take into consideration the relative complexity
of the subsequent calculation of the level populations for the cells in each thread; it
is possible to contrive a scenario where one thread might have large quiescent cells at
the grid edge where there is little work to be done and finish its workload relatively
quickly whereas another thread consisting entirely of cells covering an optically thick
turbulent area of the grid will take longer to complete its calculations.

In torus, to keep the code as broadly applicable to as many geometries as possible,
storing the octal in this way (a flat array) will remain the method for the foreseeable
future; however, it is possible to improve the scalability of the code by creating
a worker thread that allocates smaller fractions of the grid to each thread and
then, upon completion of that ‘workunit’ by a thread, ‘hands out’ more. Using
this mechanism a thread only becomes idle when there are no more workunits to
hand out. Alternative methods of decomposing the problem are possible; a common
alternative is to split the grid so that no spatial domain is duplicated in memory.
This is common in hydrodynamics calculations but is undesirable in a ray-based
code because each time the ray crosses a domain boundary its properties must be
communicated between threads. This method may ultimately become necessary
if grids exceeding the available RAM of an individual computing node are to be
considered.

Once each thread has its allotted octals to work on the calculation of the non-LTE
level populations in each octal proceeds, in serial, following the flowchart given in
Figure 2.3. I present an overview of the loop below and explain the mechanism of
action for each subroutine in depth in the relevant subsections.

First, a Monte Carlo sample of the external radiation field at all the requisite line
transition frequencies is obtained by repeating the getray subroutine nray times
using different initial conditions (see 2.2.2 for details). This information is passed
into calculateJbar which outputs the mean radiation field felt within the cell to
solveLevels which in turn generates the non-LTE level population estimate which
alters the mean radiation field. calculateJbar and solveLevels are iterated until
the relative RMS change in the level populations between successive iterations is
less than 10−10.

If the user has elected to use Ng acceleration, every fifth sub-iteration will be an
extrapolation based on Ng’s vector sequence acceleration method. This can help to
drastically reduce the number of sub-iterations required to reach the tolerance level.
Details of this method can be found in Section 2.4.3.
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Once each cell has converged or reached a maximum number of sub-iterations, each
thread broadcasts its updated level populations and the global convergence proper-
ties of the grid are tested in calculateConvergence (discussed in Section 2.4.1).
As with the sub-iteration acceleration, every fifth iteration may also be accelerated
using the same technique. Although the technique permits every fourth iteration to
be accelerated, in practice I have determined that the first two iterations after the
acceleration show an increase in the RMS convergence parameter and that at least
three more iterations are required to notice the benefit of the acceleration.

If the grid is determined to be insufficently converged when compared to the user-
specified tolerance then molecularLoop starts a new iteration with the updated
level populations in each cell. It is also at this stage that any convergence data or
diagnostic data is written, along with a part-converged grid (so that the calculation
may be restarted if interrupted). At the end of each iteration, torus can output a
VTK file which can be used to visualise the current status of the grid. The VTK
file contains normalised relative level populations and convergence information for
each cell and the number of iterations it took to solve equations 2.12 and 1.25 in
the previous iteration. This diagnostic information can be useful to determine if
there are pockets of slower convergence in an otherwise converged grid. This data
can be useful for analysing the individual convergence characteristics of each cell
as opposed to the summary statistics provided by the code at this stage. A full
discussion of the convergence criteria used in the calculation is given in section 2.4.

Once the grid is determined to be converged it is written to disk and the torus will
either exit or proceed to calculate synthetic maps of the grid in any user-specified
molecular transition.

2.2.2 Determining the external radiation field

The getray subroutine stores the specific intensity along the ray path for each tran-
sition in the array i(1:maxtrans), the optical depth attained by each transition as
the grid is traversed in the tau(1:maxtrans) array as well as scalar phi (ray weight)
and ds (path length through current cell) in global arrays defined in molecularLoop
for each ray for use by calculateJbar to find the local radiation field, J̄ul in the
cell.

While determining the level populations, torus spends an increasingly large fraction
of computational effort calculating the external radiation field depending on the
number of rays used to sample it – in fact, the computational burden can be in
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excess of 95% of the runtime as the number of rays exceeds 105. Significant effort
was devoted to optimising this function.

The getray subroutine takes as primary inputs, a particular grid cell, position
within that cell, p(x), and a direction, d, from which the ray will emanate as well
as the velocity shift from the line centre (in fractions of the turbulent line width).
The particular grid cell is simply an element in the octalArray array. A position
and direction is chosen based on the user’s choice of whether to use the quasi-
random number generator or not (controlled by the quasi parameter). Either way,
a ‘random’ position within the cell is obtained, appropriate for the dimensionality
of the calculation. In the one– and two-dimensional cases a uniform radius (and
height) within the cell is chosen in the plane and then the position vector is rotated
such that it lies within the cell projected by some random angle (or pair of angles
as appropriate). In three Cartesian dimensions, the random position is trivial to
obtain.

Currently, the direction is described by a random unit vector created so that no
direction on the unit sphere is more likely than any other - although this may
change if it is decided to implement weighted spatial sampling. The Cartesian unit
direction vector (u, v, w)T is constructed from a pair of uniform random deviates
{r1, r2} ∈ [0, 1) according to the equations shown in Figure 2.4.

Finally, the velocity shift of the ray from the line centre is determined. Two effects
must be considered. The first is the systematic velocity field at x, which will Doppler
shift the line function by v(x) ·d. The shift is proportional to the cosine of the angle
that the ray makes with the local velocity vector, v(x). torus accepts an analytical
function for evaluation of v(x). However, in the absence of one, or if the velocity
is computationally expensive to calculate, it is possible to quadratically interpolate
over values stored at the grid cell corners.

Secondly, the frequency shift caused by Doppler broadening of the line profile caused
by microturbulent (thermal and non-thermal) motions of the molecules must be
accounted for. Noting the relationship between (non-relativistic) velocity and fre-
quency (Equation 1.28) the Maxwellian distribution of velocities of the molecules
relative to a stationary observer is transformed into a distribution of frequencies
centred about the transition rest frequency ν0. This quantifies the broadening as
a function of the known turbulent velocity field; the so-called line profile function
which is given here again:

φν = c

vturbν0
√
π
exp

(
−∆v2

v2
turb

)
. (2.1)
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Figure 2.4: The random unit vector is efficiently derived from two uniform
random deviates using the equations shown in the figure.

where vturb is calculated as in equation 1.35.

Observers will note that this definition is less easily determined than the full-width
at half maximum (FWHM) of an observed line profile. Assuming that the line
profile is gaussian then vturb is related to the FWHM by the relationship vturb =
FWHM/2

√
ln(2).

Thus, each frequency has a weighting depending on its likelihood of occurring, φν .
Because the line optical depth is greater in the line centre, the effective path length
over which information can travel (∝ 1/τ 2) is reduced compared to the line wings
and it is computationally efficient to devote as many photons to the line wings as to
the line centre. Consequently, a variance reduction technique is employed to reduce
the total number of rays required to sample the radiation field. Instead of sampling
the ray frequencies from a gaussian distribution, in practice, the deviate is picked
from a uniform distribution with a width of 4.3 turbulent line widths, vturbν0/c,
centred on the rest frequency for the transition, ν0. This ensures good sampling in
the optically thin line wings.
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Having picked a random frequency for the ray, the total velocity shift, ∆v, is the
sum of these two effects:

∆v = c
ν − ν0

ν0
+ v · d. (2.2)

The subroutine’s primary role is to return an array of intensities incident on the cell
for each transition being considered, i(1:maxtrans). This natural vectorisation
is one of the most valuable design choices in the code. By considering all transi-
tions at once, rather than looping over each transition individually, the grid need
only be traversed once per transition. Furthermore, a secondary but not negligible
speedup is obtained by vectorising the calculations along the ray; i.e. it is relatively
quicker by using SIMD processor instructions (single instruction multiple data) to
find the exponential of an array of, say, 50 values than it is to perform 50 separate
exponentials. This is discussed in greater detail in section 2.5.

Once the position, direction and ray frequency shift are known it is necessary to
find the distance to the cell boundary along the ray direction, ds. This kind of ray-
surface ‘collision’ detection can be very time-consuming but is unavoidable. In the
three-dimensional Cartesian case, the algorithm is quite simple, but, paradoxically,
the mathematical burden becomes greater in lower dimensions necessitating the
solution of multiple trigonometric quadratic equations.

Having found ds and phi for the ray, all that remains is to integrate the specific
intensity in each transition, Iul, over all line segments in a piecewise manner along
the ray direction towards the edge of the grid.

The bulk of the computational time is usually taken up by traversing the grid, i.e.
finding the grid cell that contains the current position along the ray. In theory, given
the tree-like structure in which the octals are stored, up to half the time the current
position will be in the same parent octal as the previous position but lie within
a different subcell - there is very little penalty for this in terms of tree-traversal.
However, the advantage of this tree-like structure becomes a distinct disadvantage
when crossing more fundamental boundaries. This is because spatially adjacent grid
cells are not contiguous in memory.

All quantities on the grid are assumed to be constant within a cell except for the
systematic velocity vector, v(x), which enters both the gas emission and absorption
coefficients through the line function, φν :

jgasul = hν0

4π (nuAul)φν (2.3)

αgas
ul = hν0

4π (nlBlu − nuBul)φν . (2.4)
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As previously stated, Aul, Bul and Blu are the Einstein coefficients of spontaneous
emission, stimulated emission and stimulated absorption associated with the transi-
tion from level u to level l respectively; similarly nu and nl are the respective number
densities of molecules populating those levels.

In order to determine the contribution of the cell to the ray it is necessary to calculate
the source function, Sν , in the cell. If not considering dust then equation 1.16 reduces
to

Sgas
ul = jgasul

αgas
ul

= nuAul
nlBlu − nuBul

(2.5)

by cancelling the line profile function in both terms. Otherwise one must determine
αdust
ν and jdustν , where ν is the frequency associated with the particular line transition
u to l and calculate the ratio of emission and absorption from the combined gas
and dust terms. This is handled in torus by the returnKappa subroutine which
when scaled by the dust density returns the total opacity due to absorption for the
particular dust model being used (scattering is negligible at rotational frequencies).
The emission by the dust in the cell is then given by assuming all absorbed radiation
is re-radiated as a blackbody at the dust temperature, Tdust. This is calculated in
the cell using equations 1.18 and 1.19.

It is also necessary to calculate the transition specific optical depth through the
cell. The absorption is then weighted by line profile (equation 1.34) depending on
difference in ray velocity and velocity within the cell at the current position. The
differential optical depth within the cell for a transition at frequency, ν, is then given
by

∆τν = ανds, (2.6)

where α without superscripts is the combined gas and dust absorption coefficient.
This optical depth attenuates the ray by a factor of e−∆τ .

The line absorption can vary strongly with velocity gradient across a cell when the
velocity gradient is large compared to the local magnitude of the turbulent velocity
field. Variations in φν are accounted for by subdividing the integration into smaller
steps. To ensure good resolution of the velocity structure within a cell, we use the
condition

nsplit = max
(

2, b5 |ve − vs|
vturb

c
)
, (2.7)

where ve and vs are the velocities at the cell boundaries where the ray intersects the
cell. Often, there is very little velocity gradient across a cell regardless of direction.
If, during the fixed ray stage nsplit never exceeds 2 then the cell is determined to
be quiescent and nsplit is fixed at 2 for the cell for the rest of the calculation. By
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pre-determining this in the relatively quick fixed-ray stage, it is possible to reduce
by two-thirds the number of calls to the velocity subroutine.

The contribution of the cell to the total ray intensity in the transition from u to l,
∆Iν , is therefore by integrating equation 1.15:

∆Iν =
(
1− e−∆τ

)
Sν , (2.8)

where
∆τν = ανdT (2.9)

and dT is the differential distance that the ray has been subdivided into within the
cell. Different notation for ray pathlength has been used for clarity; ds is only used
to describe the initial pathlength of the ray within the originating cell, not outside
the cell.

In the code, two running counters keep track of total attenuated intensity and optical
depth for each transition as the ray is tracked along its path:

τν = τν + ∆τ (2.10)

Iν = Iν + e−τν∆Iν . (2.11)

The current position along the ray is advanced to the next cell by adding on the
distance as calculated in distanceToCellBoundary and the calculation is repeated
until the ray reaches the edge of the grid.

By default, the code assumes that the simulated region is surrounded by a vacuum
pervaded by cosmic microwave background (CMB) radiation; consequently, at the
edge of the grid, the attenuated contribution of the CMB, Bν(TCMB), is added to
the intensity counter.

The code fragment that tracks Iν (for brevity, the gas-only scenario) is included in
Appendix B.

2.2.3 Determining J̄ and solving the equations of statistical
equilibrium

Given a set of {phi, ds, i(1:maxtrans)} for each of the rays from getray and the
most recent estimate of the level populations, npops, the calculateJbar subroutine
calculates a Monte Carlo estimate for J̄ν by summing the two contributions to the
field. Mathematically, this is determined by averaging the contribution of samples
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of the specific intensity incident at a point in the cell over 4π steradians. Thus the
equation

Jν = 1
4π

∫
IνdΩ,

becomes

J̄ν = Jext
ν + J int

ν =
∑all rays
i I iνe

−τ iνφiν∑all raysi
i φiν

+
∑all rays
i Sν [1− e−τ

i
ν ]φiν∑all rays

i φiν
. (2.12)

Equation 2.12 highlights the necessity of knowing ds and hence τ inside the cell.
Unfortunately, as the level populations are iterated to a solution consistent with
the radiation field, the optical depth within the cell will change and consequently
both the local and external contributions will change. The line profile weights, their
sum and the external intensities remain constant until the next getray iteration
for the cell and so do not need to be recomputed. Thus, compared to getray, the
calculateJbar subroutine is quick to execute even when summing over thousands
of rays.

The newly updated J̄ν data are used to update the level populations by solving the
statistical equilibrum system of equations.

The solveLevels subroutine

In order to obtain the relative fractional level populations, ni, for a cell it is necessary
to solve a system of equations describing the statistical equilibrium that is to be
attained where the rates of excitation and de-excitation to and from each level
reach dynamic equilibrium - the so-called equations of detailed balance, viz.,

ni

∑
i>j

Aij +
∑
i 6=j

(BijJij + Cij)
 =

∑
i<j

njAji +
∑
i 6=j

nj(BjiJij + Cji), (2.13)

where J̄ν is input from calculateJbar and Cij is the rate coefficient of collision from
level i to j for the molecule and a particular collision partner at a specific tempera-
ture. To obtain a total collision rate at a specific temperature, linear interpolation
is performed on the tabulated data described in Section 2.1.1 and the collision rates
per unit volume are scaled by the collision partner density, normally some fraction
of n(H2), to give the rate for that unique collision. Each collision rate is summed
linearly to obtain the total rate.
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Collision rates are only stored for de-excitations, however excitation rates are trivial
to calculate. The excitation rate can be obtained from the de-excitation rate using
the Boltzmann distribution as follows:

Cji = Cij
gi
gj
e−|Ei−Ej |/kT (2.14)

Neither the temperature nor the density in a cell changes at any time during the non-
LTE calculation, so the elements of the collision matrix are calculated in advance
(even if not stored owing to the large memory requirements).

In addition to the system of equations (1.25) an additional constraint is imposed:

all levels∑
i

ni = 1, (2.15)

to ensure that the relative level populations are normalised in each cell. In order
to recover the actual number of molecules in any given state, the level populations
may be multiplied by the molecular number density, molAbundance.

In practice, the system of equations is represented as a matrix equation where each
element, Mij, represents the net rate of emission (radiative and collisional) from
level i to level j. In the solveLevels subroutine, the matrix of radiative rates is
constructed and added to the matrix of collisional rates. The radiative matrix is com-
prised of only tri-diagonal terms due to quantum selection rules. Consequently, only
collision terms populate matrix elements that lie off the diagonal or its neighbouring
elements. The constructed matrix is illustrated below:

Mij =




B01J10 + ΣC0i −B10J10 − A10 − C10 −C20 · · · −Cn0 0
−B01J10 − C01 B10J10 + A10 + B12J21 + ΣC1i B21J21 − A21 − C21 · · · −Cn1 0

−C02 −B12J21 − C12 B21J21 + A21 + B23J32 + ΣC2i · · · −Cn2 0
...

...
...

. . .
...

...
−C0n −C1n −C2n · · · Bn,n−1Jn,n−1 + An,n−1 + ΣCn,i 0

1 1 1 · · · 1 0




Each row represents one of the equations of statistical equilibrium (Equation 1.25),
where the diagonal term represents the total emission out of a level and the off-
diagonal terms represent emission in to the level.

The resultant system of Nmaxlevel + 1 linear equations,

Mn = (0, 0, ..., 1)T , (2.16)

is readily solved using a matrix method. In solveLevels, the system of equations
is solved using LU-decomposition. This method is easy to implement, numerically
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stable and moderately efficient (see Press, Teukolsky, Vetterling, & Flannery (1992)
for details).

2.3 Creating synthetic maps

As well as determining the non-LTE level populations for a geometry, torus can
create three-dimensional, velocity-resolved spatial maps of the emergent intensity
(hereinafter described as datacubes) from an AMR grid containing molecular level
data for each cell. torus generates datacubes in a similar way to that in which
it calculates the intensity in a cell, except that when creating datacubes the point
from which the ray emanates lies outside the grid, on an image plane centred on the
hypothetical observer’s position and the frequency/transition of the observation is
chosen directly.

A datacube is comprised of many velocity channels which the observer may scan
through in order to create images of intensity at each corresponding frequency. This
simulated three-dimensional dataset is similar in structure to ‘real’ observations but
free from instrument noise, bias and point spread function. When comparing theory
and observation it is not sufficient to determine the level populations, temperature
or H2 density profiles of an astrophysical object. Observers must make do with an
image projected upon the sky from which they can infer the properties of the object.
By convolving the synthetic map with an instrument function, observational data
can be compared with synthetic data, enabling the salient parameters of an object
to be quantified by recovering the model parameters that best fit the observational
data through a fitting process.

Each datacube contains a wealth of information. By integrating over the velocity
channels when considering line molecular data it is possible (using an optically thin
tracer) to estimate the column density, as would be done for real observations. By
integrating over the spatial dimensions it is possible to obtain information on the
velocity structure of the object. torus produces synthetic observations as a dat-
acube of intensities; conversion to flux by beam convolution can be achieved using
one of the many tools that exist that will emulate real instruments, e.g. casa1 for
ALMA, or perform arithmetic on datacubes like miriad (Sault et al. 1995), ciao
(Fruscione et al. 2006) or idl.

In this section I describe the routines that are called when generating a datacube.
The process is much more linear than determining the level populations and conse-
quently I present the subroutines that I wrote to create the synthetic maps in order

1http://casa.nrao.edu/
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of highest to most elemental function (amplifying as appropriate where it is obvious
that a loop will be necessary, e.g. determining the intensity in each pixel).

The first step is to create a hypothetical observer and the corresponding image
plane (Section 2.3.1) then to divide the image into individual elements, or pixels,
that represent a discrete sample of the intensity that would be incident on that
region of the image plane (Section 2.3.2). The final stage is the population of each
pixel with the appropriate values (Section 2.3.3).

2.3.1 Defining the image plane

When creating synthetic maps of an object the first issue is the definition of the
image plane. The plane onto which the image is projected is defined by the vector
passing through the point of observation and an arbitrary point inside the grid
(usually the centre). This is handled by the setObserverVectors subroutine.

The setObserverVectors subroutine

Observer coordinates can be specified in torus in two ways. In the first mode the
observer coordinates are input directly from a file called observerpositions.dat.
The file contains the normalised direction of the observer from the centre of the grid.
Orthonormal image basis vectors, b1 & b2 are chosen such that one is perpendicular
to ẑ (in the case where the observer is looking along ẑ, the bases are chosen as ±x̂
and ±ŷ). Using this method it is possible to increment the observerpos parameter
in parameters.dat to create a whole series of maps with minimal effort.

The second way is to specify up to three angles through which an observer initially
at -ŷ should be rotated. The horizontal and vertical image basis vectors are chosen
as x̂ and ẑ respectively and are fixed relative to the rotated observer position.

It is not a requirement that a map be centred on the grid centre. An offset may be
applied if the user is interested in a feature elsewhere in the grid. A zoom effect can
be obtained by reducing the image size while maintaining the resolution and picking
a different coordinate in the grid to centre on.

The default assumption in the code is that the observer is far away from the object
being imaged and that it is appropriate to sample the intensity in the image by using
a set of paraxial rays normal to the plane. Douglas et al. (2010) have extended my
original code to render images in solid angle (as opposed to rectilinear coordinates)
in the near field where the observer is close to or actually inside the object, in their
case, simulating the spiral structure of a galaxy in Hi from within the galaxy itself.
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The createImage subroutine

Once the image plane is defined, a map is parameterised by its extent, resolution
and the frequency range of the observation to simulated. If the user wishes to
simulate an observation in a particular molecular transition (by setting lineimage
to true in parameters.dat) then they must supply a grid with the appropriate
molecular data. They must also specify a particular transition for which they they
wish to calculate the emergent intensity (the itrans parameter corresponding to
the transition number in the molecular data file) and the range of velocities they
wish to scan over, determined by maxvel. If the user wishes to create a continuum
map of dust emission/absorption at a particular wavelength then they must instead
set lamline in parameters.dat to the required wavelength in microns.

Datacubes of any size may be created, limited only by the amount of memory and
the spatial resolution of the original AMR grid. Each image is subdivided into
N2

pixel square pixels of equal area so that the intensity per pixel may be stored in the
datacube structure.The number of pixels per row/column of the image is controlled
by npixel and the number of velocity channels by nv in parameters. For a typical
datacube, the memory footprint can be as much as 400 MB (4 bytes per pixel × 1024
pixels × 1024 pixels × 100 velocity channels) so this must be taken into account
along with the size of the grid when assessing the desired resolution of the datacube.

The datacube is stored as a derived type, cube, containing arrays of the intensity
and optical depth (if required) attained for each velocity channel as well as the
actual column density. The axis labels and quantity units are also stored so that
the quantities may be scaled at a later time.

Like the level population code, the datacube creation routines also benefit from par-
allelisation by MPI. Each image is decomposed into strips which can be computed
independently and summed together once all threads have computed the intensi-
ties in the pixels in their region. Each strip has an area of Npixels × Npixels/Nproc.
Currently, no load balancing is performed but because of the magnitude of the prob-
lem compared to the determination of the level populations there would be little
practical reduction in time taken by including this functionality.

The final task before calculating the intensities in each pixel is to pre-compute the
emission and absorption (and hence the source function) in each grid cell using the
level populations, which are known in advance. This step can be omitted if the
lowmemory flag is set in parameters.dat. This trade-off can result in significantly
slower computation times however. As in allocateMolecularLevels the reciprocal
of the microturbulent velocity is also calculated to save time.
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This subroutine then calls the makeImageGrid subroutine to populate a temporary
intensity array for each velocity channel. The calls are looped using as index variable,
iv, corresponding to a specific Doppler shift for each velocity channel stored in the
datacube, ∆v = cube%vAxis(iv)

c
. It is also necessary to pass the column indices that

each MPI thread should process.

Once the intensity array has been populated by each thread (using a call to the
MPI library routine MPI_ALLREDUCE to combine each thread’s contribution) for a
particular velocity channel, the values are saved to the cube structure as single
precision real variables to save memory. The extra intermediate precision is unnec-
essary as the numerical errors in determining the intensities will be far greater than
the round-off error.

Once the loop has been completed, the final datacube is written to disk in a standard
FITS format using routines provided by the CFITSIO library (Pence 1992). At this
stage, the labels stored in the structure are added to the World Coordinate System
(WCS) stored in the FITS file so that the scale of the output file is known by the
FITS reading tool. By default, intensity has units of erg s−1 cm−2 Hz−1 sr−1 and
linear scale in 1010 cm and velocity in km s−1. As a standard file format it is then
possible to view, analyse and manipulate the file using familiar observational tools,
e.g. ds9, gaia, kvis etc.

2.3.2 Populating the datacube

The makeImageGrid and pixelIntensity subroutine

The function of the makeImageGrid subroutine is to pass the pixel coordinates to a
worker subroutine pixelIntensity and to populate the corresponding element in
the array with the returned value. Each pixel is described by its linear extent and
the physical position on the image plane of its top-left corner.

The image is stored so that the intensity in the bottom-left corner of the image is
stored in pixel (0,0). The unit image basis vectors are now scaled so that one unit
corresponds to one pixel length (|b| = Npixel|b|). Thus, considering the observer
position as the origin, the top-left pixel in the grid (where the imaging process
starts) is located at O + 0.5Npixel(b2 − b1). This is illustrated in Figure 2.5. Note
that a further shift along b1 is required for MPI threads to ensure that they start
in the correct pixel column.
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Figure 2.5: makeImageGrid controls where each pixel intersects the grid. The
image is created by rastering along each row by a pixel size and
calling pixelIntensity to find the Monte Carlo average of the
intensities incident on the image plane within the pixel using one
or more paraxial rays.
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Once the pixel position in the image has been determined, control is handed over to
the worker routine, pixelIntensity, which returns the average incident intensity
over the area covered by the pixel.
In the simplest, fastest mode of operation, the intensity in a pixel is assumed to
equal that of a single ray emanating from the centre of the pixel towards the grid
along the viewing vector multiplied by the area of the pixel. The resolution of the
image will usually be considerably less than that of the grid being imaged, i.e. the
width of a pixel will be greater than that of the smallest subcells contained within
the grid. This inevitably leaves many grid cells entirely unsampled (and likely all
cells undersampled if there is a large velocity gradient across a cell in the direction
of the observer) and it is possible that features on the order of one pixel width or
smaller will be missed entirely. This necessarily means that some information about
the structure will be lost.
torus utilises sub-pixel sampling to ameliorate this effect, by keeping a running
average of the intensity sampled over quasi-randomly allocated rays bound within
the pixel:

Iavgnew =
(n− 1)Iavgprev + In

n
(2.17)

σ2
new =

(n− 1)σ2
prev + (In − Iavgnew)(In − Iavgprev)

n
(2.18)

until the normalised standard error, is less than some user-specified tolerance, tol,
or until the number of rays exceeds a pre-specified maximum:

σnew/I
avg
new√
n

< tol or computationally, (2.19)

σ2
new < n(tol× Iavgnew)2. (2.20)

The advantage of the second representation being that the variance, σ2
new is calcu-

lated directly (Equation 2.18) and that no square-roots or divisions need be per-
formed.
The origin of the ray inside the pixel is chosen using a Sobol’ quasi-random number
generator that is reset for each new pixel. The 2-dimensional quasi-random sequence
is initialised and the output is used immediately; the first quasi-random pair being
(0.5,0.5). These are the fractions of each basis vector added to the top-left corner
used to define the pixel’s position in the image. If nsubpixels is set to 1 then no
further rays are used and this recovers the simple mode described above.
The advantages over pseudo-randomly generated ray-origins are two-fold; the ray-
origins are created so that they avoid each other as best possible within the confines



76 CHAPTER 2. LINE RADIATIVE TRANSFER USING TORUS

of the pixel thereby avoiding clumpiness (mathematically, a property known as low
discrepancy), providing a truer representation of the range of intensities in the region
being sampled. Also, because these low discrepancy sequences are extendable in a
pointwise fashion until some criterion is met, they are considerably more flexible than
grid-based subsampling techniques that require an exponential increase of samples.
A more in-depth discussion of quasi-Monte Carlo methods is given in section 2.4.2.

The final task in makeImageGrid is to track the indices of the pixel that are sent
to pixelIntensity. These are the indices over which pixelIntensity loops to
populate the region of the image for which a particular thread is responsible for.
The thread returns its region to createImage and the full image for that velocity
bin is stored in the datacube.

2.3.3 The intensityAlongRay subroutine

The main part of intensityAlongRay is much the same as getray, their aims being
similar, however this time only one transition is considered and the velocity shift is
determined in advance. Furthermore, because the level populations are no longer
changing, the absorption and emission are known in advance and can be stored,
thereby reducing the computational effort.

In geometries where the density can be evaluated analytically or is stored on the
corners of each cell in addition to the cell centres, torus uses density subsampling.
In the iterative level population solver, a ray is subdivided within a cell to ensure
good resolution of the velocity field. Analogously, using this technique it is possible
to use a more accurate value for the density field at a point along the ray than that
stored at the cell centre alone; producing both smoother and more accurate images
- especially at lower grid resolutions. Furthermore, whilst errors in determining the
intensity from very optically thick regions have little effect upon the level populations
in their neighbourhood, they can strongly affect the appearance of an object because
they affect the shape of the boundary that can be probed by radiation of a particular
wavelength.

intensityAlongRay will also return the optical depth, τ , along a ray and the true
column density. Both these variables can be stored in the datacube. In the optically
thin limit, the intensity should map the column density well and this can then be
verified.

An experimental piece of diagnostic code has been added recently. For each velocity
bin, the average contribution to the intensity, dI, along each ray that passes through
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a cell in the grid is written to disk (in VTK format). This will potentially allow a
spatial map of where radiation might be expected to be created for some geometry.
Of course, this is anisotropic but averaged over enough angles may provide an inter-
esting theoretical insight into the emission/absorption profiles of complex physical
structures.

Finally, intensityAlongRay can run in two other modes. The first returns the
depth that a ray penetrated before being attenuated by some optical depth in a
velocity channel. The second returns either the maximum density attained for a
user-specified fraction of the maximum intensity along the ray or the mean density
along the ray integrated over all intensities. This facility may be used to explore
the relationship between emergent intensity and density. This is discussed in more
depth in Chapter 6.

2.4 Convergence and acceleration

At the heart of the stochastic AMC method there must be some definite endpoint
where it is determined that further iteration is unnecessary for the level of accuracy
required by the user. The random nature of this method should be viewed as
a strength and not as a weakness as it becomes possible to readily quantify the
numerical errors present in the simulation.

In the absence of an analytic solution to compare against it must be assumed that an
iterative solution tends to the true solution for a sufficiently large number of samples.
That is to say that the parameter space is well sampled and that no systematic bias
is present in the solution. The level of convergence of the calculation therefore can
be approximated by the examining the change in the level populations since the
previous iteration.

2.4.1 Convergence in molecularLoop

When determining the level populations there are two places in the code where it
is necessary to quantify the relative difference between two iterations. Once, when
iteratively solving equations 1.25 and 2.12 and again when finding the global con-
vergence properties of the calculation. Each instance is examined here and detailed
numerical results are presented in Section 3.1.2.
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Sub-iteration convergence

For each cell, the system of equations is solved iteratively to obtain a self-consistent
solution vector of relative level populations, n. torus uses a user-defined parameter
to specify the point at which successive iterations of this system are determined to
have converged. By default, the criterion is set so that the mean-square (MS) error
between the two most recent iterations over all but the uppermost level is less than
10−12, i.e.

Nlevel−1∑
i

(
nnewi − noldi

nnewi

)2

< 10−12. (2.21)

Typically, the uppermost level is chosen so that its population has no significant
impact on the quality of the solution of lower levels. Due to its low population
and underestimated rate at which molecules de-excite in the level from above, the
uppermost level is often subject to a high degree of noise and its convergence is
not representative of the convergence of the other levels. Furthermore, given the
very low absolute abundance of molecules in this level round-off error may become
significant, although double precision variables are used throughout the code to
safeguard against this.

The mean-square is used because it is a more stringent test than the sum of the
absolute deviates. Large deviations in any level are weighted more strongly and are a
sign that more iterations are required to reach proper convergence. Normalised level
populations are used instead of absolute populations because each level is dependent
on every other so the input from each level into every other is potentially relevant
however sparsely populated it is. It is possible that an unacceptably large change
in a single sparsely populated level from one iteration to the next may still pass a
weaker criterion. Criterion 2.21 ensures that every important level is converged to
at least 10−6 and many will be converged to a much higher degree.

Global convergence

Once each cell has an updated set of level populations, they are compared with those
from the previous iteration. The global convergence of the grid is characterised by
a single parameter, ξ, which must be less than the user-specified tolerance for the
grid to be defined as converged;

ξ =
maxall levels

(√∑
all cells

(
nnew−nprev

nnew

)2
)

√
Ncells

. (2.22)
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In the case where all levels and all cells have relative differences of, say, 1% then
equation 2.22 will return a value of 1%. If all bar one cell is perfectly converged then
the maximum error in any level can be as much as ξ1/2N

1/4
cells ∼ 30% for ξ = 1% and

100 grid cells. Whilst it is not ideal that one cell might be so far from convergence,
this extreme case is highly unlikely. However, it does illustrate the fact that the
value obtained is the best case for the most poorly converged level. This in itself
can be problematic and the most insidious scenario occurs when the sum over all
cells is equal for each level and that the error is spread so the error in each cell
is all contained within one level. The maximum error may then be as much as
ξ1/2N

1/2
levelsN

−1/4
cells in every cell for any particular level.

Obviously, it is crucial to examine the relative change in the final iteration of the
converged grid to see where, spatially and in which level, the fractional change is
greatest. If the error is concentrated in the least important parts of the grid (perhaps
at the boundary of the grid or where the density is very low) then it is safe to assume
that the level populations are mainly converged and will not vary much in subsequent
iterations. For this reason, torus outputs this diagnostic data in VTK format so
that it can be visualised in programs like VisIt - an interactive parallel visualisation
and graphical analysis tool for viewing scientific data.2 However, it is the parameter
defined in equation 2.22 that defines when the code should move from the fixed-ray
stage to the random ray stage or should stop running entirely. Once this criterion
is satisfied, one further iteration is performed and if the convergence parameter is
still better than the tolerance then the grid is considered to be converged.
One important point that must be stressed is that a converged grid is not necessarily
a correct grid. Only comparison with analytic solutions can verify the veracity of a
solution. This is discussed in Chapter 3.

2.4.2 Acceleration

Juvela (1997) describes a number of schemes for reducing the variance and accelerat-
ing the convergence of Monte Carlo methods. I have implemented low-discrepancy
Sobol’ sequences (Sobol’ 1967, 1976) to optimally cover the direction/frequency pa-
rameter space offering the potential to exceed the N−1/2 convergence of random
Monte Carlo methods (this section). I have also implemented antithetic variates
in an attempt to reduce the variance associated with random sampling, the theory
being that a ray that is the antithesis of another (that is, has the ‘opposite’ charac-
teristics) breaks the assumption that the covariance between two rays is, on average,
0 (this section).

2https://wci.llnl.gov/codes/visit/
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Both methods appear to offer a small gain in convergence. Owing to the random
nature of the method and the complexity of even simple benchmark cases it has
so far been difficult to show a statistically significant effect, however this work is
ongoing.

True spatial weighting to reduce the variance between iterations for the code has
not yet been implemented and as such it is possible that the contribution of a small
bright grid cell to another cell at some distance will often be missed when the number
of rays used per cell to sample the field is low. However, in the scenarios considered
in this thesis, it has not been necessary to implement such a strategy.

Significant gains in expediency, however, have been achieved by implementing Ng
acceleration (Ng 1974) with weights from Olson, Auer, & Buchler (1986) to improve
the convergence properties of the code without any apparent loss of generality (c.f.
Hogerheijde & van der Tak 2000), especially in very high optical depth calculations
as found in Section 3.3. An outline of the method is presented in Section 2.4.3.

(Quasi-) Monte Carlo methods and low discrepancy sequences

Numerical integration lies at the heart of Monte Carlo methods. By sampling some
N-dimensional space it is possible to construct an estimate of the average function
value over the space. Most simply, in one-dimension:

∫
f(x)dx ≈ 1

N

N∑
i=1

f(xi), (2.23)

which is readily extended to more dimensions, when x becomes a vector quantity.

The choice of the set of {xi} becomes key to the accuracy with which the integral can
be calculated. If the points are chosen such that they are regularly spaced then one
recovers the rectangle-rule. If the points are chosen at random (or pseudorandomly)
then a Monte Carlo method is being used.

Both methods have their strengths and weaknesses. It is trivial to show that the
error between the approximation using the simple rectangle rule and the true in-
tegral of the function improves as the square of number of points used to sample
the space. However, the method is inflexible if greater accuracy is required; the
number of points required to re-sample the space scales exponentially as previous
function evaluations cannot, in general, be re-used. Conversely, it is always possible
to generate another random number which can be used to reduce the error term.
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Figure 2.6: Quasi-random integration (QMC) vs. pseudo-random integration
(MC)

For this flexibility, asymptotic accuracy is sacrificed; the improvement now goes as√
N , necessitating many more samples than the regular-sampling method.

A third way, using low discrepancy sequences (or quasi-random sequences) represents
a compromise between the two methods, achieving better asymptotic convergence
than Monte Carlo whilst maintaining its flexibility.

The discrepancy of a sequence is a measure of how many points fall inside an ar-
bitrary region compared with the average expected for such a region. A ‘clumpy’
sequence will exhibit high discrepancy whereas a regular grid will exhibit very low
discrepancy.

It can be shown, using the Koksma-Hlawka inequality (e.g. Niederreiter & Sloan
1996) that the error is dependent on the product of two terms; one dependent on
the smoothness of the function (Morokoff & Caflisch 1994, 1995) and the other on
the discrepancy of the set of {xi}. Combined, these terms bound the error in the
integration from below by a constant times

(logN)s
N

, (2.24)

where s is the dimensionality of the integration. Figure 2.6 compares equation
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2.24 with s = 1, 2, 3, 5 with 1/
√
N convergence. Asymptotically, quasi-Monte Carlo

integration outperforms regular Monte Carlo methods for low-dimensional spaces
(i.e. s ≤ 3) for relatively low N but for higher dimensions, this advantage is rapidly
lost. However, Morokoff & Caflisch (1995) cite examples of problems in which the
advantage of the quasi-Monte Carlo is less than expected theoretically.

In torus , the Sobol’ sequence is used (Sobol’ 1967), following the implementation
found in Numerical Recipes (Press et al. 1992). To ensure that the convergence
is typically at least as good as regular MC, a maximum of three dimensions are
requested at any time. In the non-LTE solver, 2 random uniform deviates are used
to generate a direction for a ray and a further one is used for the frequency (see
Section 2.2.2). In the image generation, two deviates are used as normalised (x, y)
coordinates within a pixel (see Section 2.3.2).

Antithetic variates

The method of antithetic variates is a variance reduction technique that acts to
improve the sampling error in a Monte Carlo simulation. The underlying principle
of the method is to take, for each sample vector, x = {x1, ..., xn}, the antithetic
path; the very opposite set of variables, −x = {−x1, ...,−xn}.

Fundamentally, an unbiased estimate of the expected value of an unknown distribu-
tion, θ, from which two samples, Y1 and Y2, have been drawn will simply be:

θ̂ = Y1 + Y2

2 (2.25)

and the variance will be

Var(θ̂) = Var(Y1) + Var(Y2) + 2Cov(Y1, Y2)/4. (2.26)

Where Y1 and Y2 are independent and identically distributed variables (iid), the
covariance is 0 and Var(Y1) = Var(Y2) and so Var(θ̂) = Var(Y1)/2. The method of
antithetic variates breaks the assumption of independent and identically distributed
(i.i.d.) random variates by seeking a second sample such that Cov(Y1, Y2) < 0
thereby reducing the variance of the estimate.

In the simplest case of choosing random variates from a uniform distribution U(0, 1)
with a view to determining the integral of some one-dimensional scalar function
f(x), the first sample will be x1. The antithetic sample x′1 = 1− x1 will be chosen
as the second variate. Clearly this is anti-correlated with the first variate and the
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Covariance is readily calculated as −1
12 . Note that this variance reduction is only guar-

anteed if the function being evaluated is monotonic on the interval of U , otherwise
it is possible that the variance may increase.

In torus, I have only used the antithetic sampling for the ray-direction generation
and not for the ray-frequency generation because the line profile function is non-
monotonic over the interval of the random deviates.

2.4.3 Vector sequence acceleration using Ng’s method

As with many problems that are solved numerically by repeated function evaluation
it is often possible to obtain a more accurate solution more rapidly by employing
vector sequence acceleration. Ng acceleration is a popular method for accelerating
vector sequences in astrophysics (e.g. Steinacker et al. 2003; Hauschildt & Baron
2006; Daniel & Cernicharo 2008); the original method however, was used to accel-
erate the numerical solution of the hypernetted chain equation; an equation that
occurs in the field of plasma physics. I have implemented and extensively tested a
vector acceleration technique developed by Ng (1974) to extrapolate an updated set
of relative level populations from the previous four iterations of ni.

In a complex iterative scheme such as this one where function evaluation can be
expensive, we find that these acceleration techniques, used appropriately, not only
reduces the time required to find an accurate solution but may, in cases of extremely
high optical depth, be used to determine a solution that might not be possible to
obtain by fixed iteration at all.

The simplest way to solve a system of equations is to re-write them such that

fn+1 = Afn (2.27)

where f is a potential solution vector, n is the iteration number and A is a (non–)
linear operator, like the Lambda Operator. Starting with an initial vector, f1, it is
then possible to generate a sequence, f1, f2, f3 . . . by repeated iteration of equation
2.27. If certain conditions are satisfied regarding diagonal dominance of A, then
for sufficiently large n, fn is indeed a solution of 2.27. However, the fate of such a
scheme is not guaranteed and often this naïve method fails to converge and either
oscillates and/or diverges around the solution. A better choice is to use the following
process

fn+1 = ωAfn + (1− ω)fn. (2.28)
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This is the basis of the successive over-relaxation method. However, the optimal
choice of the relaxation parameter, ω must be determined empirically. Effectively,
for ω > 1, the most recent estimate is assumed to be closer to the true solution
than expected and more weight is given to it; the older estimate is trusted less.
For appropriate values of ω, convergence can be accelerated considerably. Values
of ω < 1 are used to damp oscillations of a process that would otherwise converge
slowly towards a solution.

It is noted that, in general, A is not linear and that is especially true in the case
of Λ operator in radiative transfer. However, A may be approximated by a linear
operator in the neighbourhood of fn for each iteration step, n. This is similar to the
method of false position for solving non-linear equations.

Ng’s innovation was to extend this method by taking into account more of the
previous iterations and quantifying the relaxation parameters. Thus the form of the
solution vector becomes,

f̄ = (1− c1 − c2)fn + c1fn−1 + c2fn−2 (2.29)

where f̄ is the extrapolated solution vector. In Ng (1974), Ng derives forms for c1

and c2 that minimise the absolute difference between successive iterations Af̄ and
f̄ in the case where A is linear.

One drawback of this method is that, in order to be applied to the global conver-
gence problem, it requires the storage of three previous level populations making it
impractical for very large grids as the memory requirements can run into hundreds
of megabytes. It is possible to apply the same algorithm to the sub-iteration where
it is only necessary to keep the level populations for one cell at a time.

A useful corollary of this method is that because the accelerated solution vector
uses previous iterations as basis vectors it assumes the properties of those vectors.
Chiefly, this means that because the problem imposes the condition that for any
iteration, ∑ni = 1 then the accelerated vector will also have this property. I have
not used Aitken’s ∆2-method or the Shanks transform because they do not satisfy
this necessary criterion.

In the study of radiative transfer, Olson, Auer, & Buchler (1986) comment that
weighting each level with Wi = J̄−1

ul ensures that weak transitions with small J are
adequately represented. I have implemented these weights in the code and note that
they do indeed lead to acceleration in all cases where they have been used.
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2.5 Compilers, profiling and optimisation

As a result of increased processing power and the rise of massively parallel, affordable
supercomputing facilities, three-dimensional molecular line radiative transfer at the
kinds of resolutions discussed later on in this work has only recently become possible.
Consequently, it is important to reduce the computational time where possible. I
have therefore dedicated significant time in optimising the code. In this section I
give an overview of some of the techniques I have used to speed up the code. I have
quantified the effect of some of these optimisations in Chapter 3.

Optimisation can occur at a number of levels, some of which the developer has more
control over than others. The most important stage of optimisation should happen
before the code is even written, at the design stage. Some algorithms are intrinsically
more efficient than others (e.g. quicksort vs. bubblesort or LU matrix reduction vs.
Gauss-Jordan matrix reduction). The efficiency of an algorithm is described using
so-called ‘big O notation’ which describes the limiting behaviour of a function when
the argument tends towards a particular value. Algorithms that solve a problem in
quasi-linear time scale as n log(n) whereas those that solve in quadratic time scale
as n2. Clearly as n becomes large this exponential increase is highly undesirable
and this must be born in mind when writing a piece of code incorporating these
algorithms. I have considered this when writing my code and make reference to
this principle in the text where appropriate. One must also be aware that it might
be necessary to trade algorithmic efficiency for scalability. If an algorithm requires
that MPI threads communicate their state to one another regularly then it may
perform less in parallel well than an algorithm where each thread can be executed
independently.

The next level of optimisation occurs at source code level. Writing good quality
code that avoids redundancy, unnecessary loops and avoids where possible ‘slow’
operations like division or transcendental functions (trigonometric or exponential
functions) will naturally be quicker than naïve code. At this level, the developer
should look to balance memory against execution time. Whilst developing the
molecular_mod code I have strived to provide a choice of execution modes, not-
ing that it is often possible to pre-compute or store variables that would otherwise
have to be re-calculated repeatedly. The most important optimisations I have made
have been those that vectorise code that was previously running in a loop. Not only
does this reduce the number of function calls made but also invokes the Vector Math
Library (when using the ifort compiler) which can take advantage of SIMD instruc-
tions that efficiently operate on multiple data that have a quicker overall execution
time (in CPU ticks) than the equivalent serial instructions.



86 CHAPTER 2. LINE RADIATIVE TRANSFER USING TORUS

Optimising a piece of code includes finding bottlenecks. These are critical parts of
the code that are frequently executed or where the code spends most of its time.
Profiling a code enables the developer to find these ‘hotspots’ and take steps to
optimise them as a priority. By Amdahl’s law (Amdahl 1967), optimising these code
segments will result in the greatest speed increase. I have used shark, a profiling
tool available on Mac OS X to profile torus at various points in the development
cycle to pinpoint parts of the code that might benefit from optimisation. I discuss
Shark more in the benchmarking chapter.

Although this optimisation has been undertaken on a single processor machine, good
single processor performance tends to lead to good multi-processor performance.

Compilers: portability and optimisation

The final step in the optimisation process is taken at compile time. Use of an
optimising compiler ensures that the code is optimised at a lower-level than the
previous stages. The compiler must take advantage of the specific architecture that
the code will run on.

torus has been designed to be as portable as possible. Today, the code runs pri-
marily on 32– and 64-bit LINUX and Mac OS platforms but it has run on many
other platforms in the past. The portability of torus is achieved by using only
FORTRAN features that are part of the current standard. Therefore torus can be
compiled by any compiler that supports all the features of current standard (FOR-
TRAN 2003) that torus uses. Furthermore, torus does not need any external
libraries (outside those used by the compiler but these may be statically linked if
necessary) to perform any task, except the CFITSIO library, which may be included
at compile time, if required.

On the Mac OS platform, the list of supported compilers includes gfortran, g95
and nagfor as well as ifort. I have developed the molecular_mod on a mid-2007
iMac using a combination of the g95 compiler and the Intel proprietary FORTRAN
compiler, ifort. ifort can automatically create vectorised code that take advan-
tage of SIMD instruction set extensions like SSE(1-4). Moreover, because Intel tunes
its compiler for its own processors it can take advantage of specific details of the
processor architecture. The main reason I have used and recommend ifort over
other compilers is its support for high-level optimisation techniques like, for example,
inter-procedural optimisation (IPO) and profile-guided optimisation (PGO) and is
thus able to produce very fast code. I have extensively tested the combinations of
compiler flags that can be safely used to improve the execution time of the code.
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I describe the compiler flags I have found to give the fastest stable code in the
benchmarking chapter.

Inter-procedural optimisation takes a holistic approach to optimisation by examin-
ing the inter-dependence between functions, subroutines and modules. This kind of
optimisation is very difficult to do by hand and the details are beyond the scope of
this work; the ifort 11 manual3 is an excellent reference however. Profile-guided
optimisation (PGO) is a two-stage process where the first stage is given to profiling
the code at runtime to determine which parts of the code are accessed most fre-
quently. The second stage incorporates the profiling data gathered in the first stage
to improve branch prediction etc., leading to fewer cache misses which increase the
time taken to perform a calculation. Both IPO and PGO appear to reduce execution
time by 10% and 15− 20% when combined.

Other reasons for using ifort are that it is also the primary compiler on zen, the
University of Exeter supercomputer and that the compiler suite comes with its own
MPI library for parallelising the code to take advantage of Monte Carlo methods
inherent parallelism and the Math Kernel library, a library of highly optimised math
routines that are applicable to many scientific calculations.

3http://software.intel.com/sites/products/documentation/hpc/compilerpro/en-
us/fortran/lin/main_for_lin.pdf



故曰：知彼知己，百戰不殆；不知彼而知己，
一勝一負；不知彼，不知己，每戰必殆。

‘So it is said that if you know your enemies and know yourself, you can win a hundred battles without a single loss.
If you only know yourself, but not your opponent, you may win or may lose.

If you know neither yourself nor your enemy, you will always endanger yourself.’

— Sun-Tzu, The Art Of War

Chapter 3

Benchmarking

With continuing exponential improvement in processing power, numerical simula-
tions are becoming increasingly important in astrophysics. However, with increased
value being placed on their results, the scrutiny under which the results are placed
must be enhanced and their limitations must be recognised. Today, computational
models are used in all areas of science. In all these applications, accuracy, reliability
(reproducibility) and speed have important ramifications.

It is common to test the output of these codes against each other to verify the
numerical quality of the obtained solution and indeed that of the ensemble against
which it is tested. This is known as benchmarking and is a necessary step in the
development of a numerical code. Without this benchmarking step, any conclusions
drawn from the results of a calculation would be potentially unsound.

The assessment of a numerical simulation can be split into two parts; verification
and validation. Verification tests a code’s implementation of the particular physics
contained within. Potential errors here include, but are not limited to; flawed al-
gorithms, poor quality numerics, finite resolution effects, code errors, unexpected
compiler behaviour and poor, or worse, incorrect convergence. Comparison of obser-
vations with insufficiently converged or systematically incorrect solutions can range
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from preposterous to subtly wrong. It is the goal of this chapter to demonstrate that
I have taken all reasonable steps to ensure that torus is as free from these defects
as possible whilst remaining widely applicable to many astrophysical scenarios.

Validation assesses the ability of a specific model to describe the true physical sit-
uation. In this chapter it is assumed that the models that have been created to
represent their physical counterparts are sufficiently accurate and reflect the com-
plexities of reality. As a result I have not discussed in depth the detail of the physics
contained within each model except when concluding on the application of the code
in non-benchmark scenarios.

Each key subroutine of the molecular line radiative transfer code, as described in
Chapter 2, has been extensively tested and debugged. A daily test is run on a
suite of benchmark problems to ensure the consistency of the code from revision to
revision and to identify any regressions that may have been introduced so that they
may be fixed in a timely manner.

This chapter focuses primarily on models that test a particular subsystem of the
code (e.g. non-LTE level populations, datacube generation or vector sequence accel-
eration). Any individual model will have a certain degree of physical and geometrical
complexity but by isolating and testing each subsystem it is more likely that when
combined to tackle a complex scenario (such as that described in Chapter 5) requir-
ing all the facilities of the code, the resultant output is as expected.

The first test described in this chapter (Section 3.1) is a test of all the major sub-
systems of the molecular-line radiative transfer code; the propagation of rays (and
hence non-local information) across the grid, the determination of the local radiation
field, the statistical equilibrium solution and the ability of the algorithm to converge
on a solution that is accurate and reproducible with sufficient rapidity to permit the
code’s use on larger scales. The model contains complex physics but is simplified
geometrically by the assumption of spherical symmetry. The relative abundance of
the molecular tracer used in the model (HCO+) can be varied to make the test more
or less optically thick (and hence more or less difficult to converge). The output
from torus is compared with an average of other codes.

Another model (Section 3.2) tests the other main capability of torus; datacube
generation. An optically thick circumbinary disc assumed to be in LTE, the source
function is assumed but the frequency-dependent emergent intensity must be cal-
culated. In this case, the more complex two-dimensional geometry requires many
more cells. This time the results are compared against results obtained by mcfost
(Pinte et al. 2006).
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Finally, torus has successfully solved an analytical benchmark model; this is dis-
cussed in Section 3.3. The two-level molecule employed in this model allows for
the comparison of the level populations derived by torus with an analytical solu-
tion and despite the many simplifying assumptions provides a stiff test of a code’s
performance owing to the extreme optical depths (τ > 1000) attained.

3.1 One-dimensional collapsing cloud model

In order to verify the accuracy of a code, it is necessary to compare its output against
either analytical solutions or the results of other codes. Whilst comparison with
analytical solutions can provide useful sanity checks, they rarely provide insight into
astrophysically relevant situations. I have tested torus against a one-dimensional
collapsing cloud model to benchmark the iterative solver used to ascertain the non-
LTE level population solution along the radius of the cloud.

This problem was first presented as a robust test of a molecular line radiative trans-
fer code’s ability to deal with as many astrophysical phenomena as possible at a
1999 workshop on ‘Radiative Transfer in Molecular Lines’ held in Leiden.1 As a
prototypical example of a problem in sub-millimetre astronomy, it has become a
standard test of a molecular line transfer code’s ability to reproduce level popula-
tions in a complex physical situation. Although the spherically symmetric model is
quite straightforward to implement, the velocity and temperature gradients, variable
turbulent line widths and multiple levels provide a stern test of a code’s accuracy,
especially at higher optical depths. It is noted that whilst no analytic solution ex-
ists for this benchmark, multiple codes have reached a broad consensus (within 20%,
though often much better depending on the fractional abundance of HCO+ and the
specific level being verified) as to what the level populations should be along the
radius of the cloud. The results of this test were published in van Zadelhoff et al.
(2002).

Eight codes constituted the ensemble: 4 ALI codes (Wiesemeyer 1997; Dullemond
& Turolla 2000; Ossenkopf et al. 2001), 3 (A)MC codes (Juvela 1997; Hogerheijde &
van der Tak 2000; Schöier 2000) and a MULTI-type code (Rawlings & Yates 2001).
These are all non-local codes; codes utilising local escape probability methods would
fail the optically thick version of this test due to the radiative trapping that occurs
in the centre of the cloud.

1http://www.strw.leidenuniv.nl/astrochem/radtrans/
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As well as comparing the final output of torus with the other codes I have used the
model to test the convergence characteristics, the convergence speed and accuracy
of the code and present them in this section.

3.1.1 Model

The problem is based on a model by Rawlings et al. (1992) to analyse HCO+ data
for an infalling envelope around a protostar; a typical event in the evolution of a
class 0 YSO. The model is similar to the inside-out collapse model theorised by Shu
(1977) where a pressure-balanced isothermal sphere is perturbed causing the cloud
to collapse from the cloud centre outwards but includes more realistic physics.

At the point of cloud collapse, a rarefaction wave travels at the local sound speed
creating an enhancement in density in the interior. In this model, the collapse is
represented by the negative radial velocity in the cloud interior. Because the collapse
propagates outward at the sound speed in the cloud, the outer shell of the cloud is
assumed to be static (see Figure 3.1). The density profile follows a piecewise power-
law n(r) = n0(r/r0)−m where r0 = 1017 cm and m = 1.5 for r < r0 and m = 2
beyond r0; n0 denotes the number density of H2 at 1017 cm. All other parameters
are specified at 50 logarithmically spaced points between 1016 cm and 4.6×1017 cm
except the relative abundance of HCO+ to H2 which is constant. In this section,
two otherwise identical models are studied with either [HCO+] = 10−9 (model (a))
or [HCO+] = 10−8 (model (b)).

In this problem, where the input parameters are tabulated, torus uses an AMR
grid which is refined such that no cell contains more than one datum point as
defined in the source model. In each octal, the salient parameters, temperature,
n(H2), systematic velocity field and local turbulent velocity are assigned assuming
conditions at the centre of the cell apply throughout its extent. Where the cell
centre does not coincide with a datum point the parameters are logarithmically
interpolated where an analytical value is not available. In the one-dimensional case,
each cell represents a spherical shell. In this problem both thermal and turbulent
velocities are combined.

To maintain consistency with the other codes, a common molecular data file was
supplied with the problem set; a database of Einstein coefficients and collisional rate
coefficients for HCO+ with H2 in the ground state (Green 1975; Monteiro 1985). For
radii inside and outside the region covered by the data file a vacuum at TCMB was
assumed. In this model, emission and opacity due to dust is neglected as the dust
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Figure 3.1: Model parameters as a function of radius along the cloud. The
stark change in n(H2), temperature and velocity at 1017 cm is
evidence of the collapse front having reached this radius. The
non-monotonic kinetic temperature and microturbulence profiles
complicate the model.

emits only weakly at the (sub-) millimetre wavelength associated with the HCO+

line emission.

Both models were used to test the convergence and accuracy of torus. The grid
was split into 89 cells covering the simulation volume which is sufficient to avoid
spurious finite resolution effects. Only the first 8 rotational levels of the molecule
were used as the neglecting higher levels made no appreciable difference to the final
solution. The salient results of the simulation are presented in the sections below.

3.1.2 Convergence

As expected, model (a) converges rapidly in both time and number of rays required;
just 5 minutes and 21 iterations (32768 rays per cell) gives a convergence value
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(b) Optically thick model.

Figure 3.2: Graph of the convergence parameter as a function of iteration
number for the benchmark models. The vertical dashed line rep-
resents the transition from fixed rays to random rays. The hori-
zontal dashed lines denote the 1% and 0.5% convergence level. In
model (b) the red dots denote iterations where global Ng acceler-
ation was performed in the non-fixed ray case. The long-dashed
line overlaid represents

√
N convergence.
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(equation 2.21) of approximately 0.5%. Model (b) needs 32 iterations (262144 rays
per cell).

In the absence of an analytic solution to compare against it must be assumed that an
iterative solution tends to the true solution for a sufficiently large number of samples.
That is to say that the parameter space is well sampled and that no systematic bias
is present in the solution. The true level of convergence of the calculation therefore
can be approximated by examining the change in the level populations from the
previous iteration. This picture is complicated by the fact that convergence is a
complex function of model geometry, initial conditions, space and level populations.

For the initial iteration, it was assumed that all molecules were in the ground state.
The tolerance was set at 1% and Ng acceleration was used. In both models, the
fixed ray stage took between 10 and 15 seconds to converge, however, as discussed
in chapter 2, this solution is not free from systematic bias; the error can be greater
than 100% in the higher levels compared to a solution converged to 0.1%. Each fixed
ray iteration took less than 1 second on a single processor of a 2.4 GHz MacBook Pro.
The random rays are used to reduce this bias but increase the random fluctuations
substantially. The optically thin case converged to better than 1% in about 5 minutes
having reached 16384 random rays. Within 10 minutes this improves to better than
0.5% using 32768 rays to sample the radiation field. While each level converges at
its own rate, in this model the highly populated J = 0 and J = 1 levels converge
much faster than the other levels having converged to better than 0.1% after 32768
rays (Figure 3.2(a)).

The optically thick model (Figure 3.2(b)) does not exhibit such rapid convergence
as model (a) but it is still able to converge to the same level in just over 1 hour.
The final iteration used 262144 rays and took just under 35 minutes.

The Ng acceleration is only moderately effective in these models. It is very effective
in the fixed ray stage, typically reducing by five or six, the number of iterations
required to reach convergence. Its effect is most striking in the optically thin case
where the model converges 3 iterations after the first Ng acceleration. However, for
this model this only saves a few seconds. It is more effective in the very optically
thick cases where the abundance was set to be very high. In fact convergence was
only possible by enabling the Ng acceleration.

The most heavily populated levels were the quickest to converge for both models
although all levels seemed to converge at approximately the same

√
N rate, as would

be expected for a Monte Carlo method.

The effect of the dimensionality for this particular geometry has ramifications for
not only the speed of execution but also the convergence rates of the problem. For
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the one-dimensional case of the collapsing cloud, 89 cells are required if a minimum
AMR depth of 6 is requested. By reducing the axes of assumed symmetry, the same
space is split into 4882 cells and in the fully 3-dimensional cartesian space, 192172
cells are required.

The qualitative effect on the time taken to complete an iteration is obvious. However,
quantitatively, the effect is ameliorated somewhat by simpler ray-cell intersection
calculations and it only takes 20 minutes to perform a single iteration in the 3-
dimensional case, half as long as would be expected by scaling up the spherically
symmetric case. Furthermore, fewer iterations are required in higher dimensions
- this may be simply because the ‘local’ conditions surrounding any given cell are
‘more’ local and/or that a greater fraction of cells are allotted for regions further out
in the cloud where convergence is observed to be slower in the one-dimensional case.

Figure 3.3 illustrates some of the convergence data recorded by torus. Extra
summary data is written to the disc if requested (through the outputconvergence
flag), including historical data for each iteration since the start of the calculation
so that trends can be ascertained. The most useful summary data are the fraction
of cells converged to different tolerances (5, 2, 1 and 0.5 times the user-specified
tolerance) for each level (J = 0 on the left). Clearly, if all the cells are converged
to at least some degree then, assuming monotonic convergence of the levels towards
the true solution, the entire grid is also likely to be well converged.

3.1.3 Results and comparison

For comparison with the ensemble of codes tested during the workshop, torus
produced results for both models (a) and (b) where the first 8 levels were converged
to better than 0.1%; no data were available for the levels above J = 5 so only the
first 6 levels were compared. Moreover, higher levels are more sparsely populated
and are subject to significantly more Monte Carlo noise.

The level populations as calculated by torus were compared for the optically thin
scenario (model (a), Figure 3.4(a)) and for the optically thick scenario (model (b),
Figure 3.4(b)) with the ensemble average of other codes that completed this test.
It is clear that the results obtained by torus are consistent with the other codes.
Note that the deviation from the benchmark of the level populations at the inner
boundary reflects differences in the chosen boundary conditions of the models that
were combined to produce the benchmark curves.Without the exact values obtained
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Figure 3.3: torus outputs a range of summary convergence data to standard
output.
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Figure 3.4: Relative level populations for J = 0 to J = 5 for the benchmark
model.
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Figure 3.5: Relative error of torus level populations compared with ensemble
average.

for each code, however, it is not possible to precisely compare our output with the
ensemble average but our code varies by no more than 5% for J = 0 in the optically
thick case (Figure 3.5). Agreement in the optically thin case is even better. It should
be noted that the average of the results of the codes is not a good quantitative
measure of accuracy and the inclusion of results from some of the codes may create
a systematic bias (c.f. Figure 6 in van Zadelhoff et al. 2002). It is expected that the
results from torus would be most similar quantitatively to the AMC codes in the
previous reference.

The relative error of the torus level populations compared with ensemble average
exhibits a similar trend to that of torus compared with itself although the errors
are somewhat higher.

The relatively low abundance of HCO+ in the model creates a scenario where the
cloud is quite optically thin. The J = 1 − 0 transition (ν0 = 89.1885 GHz) has an
optical depth of ≤ 5 from the centre to the edge of the cloud for [HCO+] = 10−9.
The critical density for this transition is ∼ 4.6×104 cm−3. Consequently, throughout
most of the cloud radiative processes are dominant over collisional processes there-
fore the assumption of LTE is inappropriate. In the optically thick scenario, the
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Figure 3.6: Departure coefficients for 5 different abundances from [HCO+] =
10−5 to 10−9 (see legend).

departure from LTE is still significant. Furthermore, the presence of a systematic
velocity field allows radiation emitted at the line centre of a particular transition to
escape the denser cloud centre more easily, pushing the solution further from LTE.

As the cosmic microwave background radiation field is able to readily penetrate the
edge of the cloud, J = 0 and J = 1 are heavily overpopulated relative to LTE at
larger radii. The J = 1 level has a characteristic temperature of 4.3 K and so the
CMB is able to efficiently excite the transition. At smaller radii, J = 2 and J = 3
are closer to their LTE values because the greater density is able to thermalise the
transition. However, the density in the outer regions of the cloud is too low to
strongly excite higher energy transitions and the CMB is far weaker at these shorter
wavelengths.

Figure 3.6 shows the departure coefficients from LTE, defined as nnLTEi /nLTEi , the
ratio of the calculated relative level population for a specific rotational energy level
at some radius to that predicted by assuming the cloud is collision dominated. Both
model cases are far from LTE. As expected, for [HCO+] > 10−7 it can be seen
that the local density of HCO+ has become sufficiently great to permit collisions
to dominate. The cloud has become sufficiently optically thick in most lines that
these levels are well approximated by an LTE solution everywhere except the cloud
periphery.
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Figure 3.7: The relative error between a benchmark calculation converged to
1% and one converged to 0.1%.

3.1.4 Accuracy

The random nature of the Monte Carlo method employed in torus imparts sig-
nificant variance in the level populations. Figure 3.7 compares two independent
benchmark calculations performed at 1% and 0.1% tolerance and the actual differ-
ence is far higher than the convergence levels would suggest. This highlights the
critical and often overlooked point that convergence to 1% does not guarantee 1%
accuracy. The difference in this case is around 5% here at worst but can be far
higher. This is a clear strength of the Monte Carlo method; deterministic methods
will return the same results time after time and are dependent on perturbations in
the input conditions to determine the true error. It is clear that less well populated
(higher) levels exhibit greater errors but the dependence on radius can be complex
for all levels.

The approximations used in local escape probability codes break down in regions of
very high optical depth and the deviation from the true level populations can become
severe. The authors of radex (van der Tak et al. 2007), an escape probability code,
acknowledge that their code will be inaccurate in this regime but state that ‘even
if some lines are highly optically thick, radex may well be used to analyse other
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lines which are optically thin.’ It is unclear how an optically thin transition can have
the correct source function if the contributing level populations are incorrect which
must be the case if other level populations (contributing to the optically thick line)
are incorrect.

3.1.5 Code profiling and execution time

Optimising any code that is expected to perform long calculations can be an ex-
ceptionally efficient thing to do. Premature or misinformed optimisation can lead
poor results. That is, there is no point in optimising a piece of code that runs for
a minute out of a 1000-hour calculation, even an order-of-magnitude only saves 54
seconds out of that hour. Conversely, a modest 10% improvement in a subroutine
that runs for, say, 900 hours will save 90 hours of processing time. By profiling a
code to establish which is the most frequently executed code, a developer can focus
their efforts on optimising that part of the code to achieve the greatest results in
the shortest time.

Because three-dimensional line radiative transfer can involve calculations using hun-
dreds of thousands of path integrals over millions of cells, it was essential not only
that the code I wrote worked, but worked quickly. The cluster calculation in chapter
5 took approximately 100000 CPU hours; however, if I had not profiled the code it
would have taken closer to 1 million hours rendering it impractical to run at all.

Profiling using shark has allowed me to pinpoint the bottlenecks in the molecular
module of torus. Figure 3.8 illustrates this well; 27% of the runtime is taken up
by the getray subroutine. This is greatly reduced from earlier versions of torus
where this figure would have been over twice as high. As can be seen, many other
subroutines take ∼ 5% of the process time which means that optimising individual
subroutines would provide little further benefit. Furthermore, calls to square-roots
and exponentials are unavoidable in the course of integrating the intensity along a
ray however, it does illustrate that in order to improve the execution times of the
molecularLoop subroutine significantly will require a change in design (see Chapter
6). It must be noted that this is only the case in the fixed ray case; when in the ray-
doubling phase of the code, getray takes up proportionally more time. Moreover,
in other geometries, more or less time may be spent calculating the ray trajectories
and in other scenarios more or less transitions will be evaluated and the amount of
time given over to solving the level population equation will vary.
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Figure 3.8: This screen capture of Shark profiling tool output at subroutine
level shows the time spent in each subroutine during a sample of
30 seconds from the fixed ray stage.
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Figure 3.9: Understanding which lines of code are responsible for the greatest
proportion of time taken to execute a code is the first step to
effectively optimising a numerical code such as torus.
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Using shark, it is also possible to attribute each sampled instruction to a specific
line of source code, allowing the developer to see if, for example, a particular loop
within a subroutine can be optimised. Figure 3.9 illustrates 60 lines of code in
getray that are responsible for approximately 80% of the run time. Much of the
time is spent calculating jν (L1511) and αν (LL1507-1509). The comment that an
integer multiplication is occurring is indicative of the molecular level populations
not being stored consecutively in memory which may be an area where the code
might be improved. In line 1536 a floating-point division occurs but this is also
unavoidable. Finally, shark shows that the compiler has managed to vectorise the
optical depth calculation and this is reflected in the relatively small amount of time
it takes to perform the transcendental exponential calculations.

Judicious choices of compiler flags can generate faster code than that created by the
default options. The ‘fast’ profile uses the following flags to improve the execution
time:

-O3 -xT -no-prec-div -fp-model fast=2 -mdynamic-no-pic

Each flag instructs the compiler to make more assumptions or reduce the precision
with which a calculation is performed. Typically the loss of precision is negligible
compared to the numerical errors associated with the Monte Carlo method and have
been assuaged where precision is important (for example, in the ray-cell boundary
intersection calculation). A brief description of each flag is given below:

• -O3 instructs the compiler to pursue the most aggressive optimisation policy. It
performs many optimisations which could be done by hand but which aren’t
for code readability reasons such as function inlining, constant propagation
and loop unrolling as well as padding the size of array to allow more efficient
cache use and performing more data dependency analysis to enable better data
prefetching.

• -xT instructs the compiler to generate code that can only run on a minimum
specified architecture (Intel Core2 Duo processors with SSSE3). This option is
useful when it is known in advance which processor architecture will be used
to execute the code. The compiler then able to use certain instruction set
extensions (e.g. SSE etc.) which can improve efficiency of the code and is able
to tailor the code to best utilise the known features of the processor.

• -no-prec-div instructs the compiler to use a less precise but faster division
algorithm which is useful if full precision is not necessary. Where numerical
errors are far greater in magnitude it is not necessary. -no-prec-sqrt enables
similar optimisations for square-roots but this is included in -O3.
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Figure 3.10: Graph of speeds attained by torus using different compilers /
flags. Debugging flags typically reduce the execution speed by a
fraction of 3.

• -fp-model fast=2 specifies that the compiler should again optimise for speed
over accuracy.

• -mdynamic-no-pic specifies that the compiler should generate code that is not
position-independent but has position-independent external references. This
makes a small difference in the execution time of the code.

Figure 3.10 clearly shows that the performance of torus is sensitive to compiler
choice and flags. The commercial ifort compiler generates code that is around 5
times faster that g95. Other optimisations such as inter-procedural optimisation
(IPO) and profile-guided optimisation (PGO) can improve baseline performance by
around 30%. All the g95 and ifort times were obtained using a single thread (core)
of a 2.4 GHz Intel MacBook Pro. Values obtained on the zen supercomputer were
obtained by using 1 thread per core per node (e.g. 8 threads on 1 core, 16 threads
on 2 cores etc.)

When executed on parallel systems, the non-LTE code scales very well. Because
the simulation space is distributed over many processors and it is not necessary
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to know the state of any other region, the calculation scales almost linearly as is
the case with many Monte Carlo codes. The small reduction in performance as
the calculation is performed on greater numbers of nodes is due to the increased
amount of communication that occurs at the end of each iteration as well as taking
into account the approximately constant amount of time it takes the single worker
thread to calculate the convergence for the benchmark.

3.2 A circumbinary disc

In order to test the synthetic image / line profile generation routines used by torus,
an optically thick circumbinary disc exhibiting Keplerian rotation is imaged in 13CO.
The model parameters are similar to those used to model GG Tau, a young multiple
star system surrounded by a circumbinary disc. In this case, the more complex
two-dimensional geometry requires many more cells. The results of the raytrace are
compared against results obtained by mcfost (Pinte et al. 2006).

3.2.1 Model

The Dutrey, Guilloteau, & Simon (1994) model of GG Tau provides an excellent
test of the imaging capabilities of torus. The circumbinary disc is assumed to be
in LTE and the temperature, H2 number density and velocity profiles are all given
in analytical form unlike the tabulated data for the collapsing cloud in Section 3.1.
This allows a comparison of the predictions of the expected flux from the object by
different RT codes that is free from discrepancies in the physical parameters and
level populations.

The model parameters and scaling laws used in the model are given in equations
(3.1–3.4) and in Table 3.1. Note that the velocity is assumed to be Keplerian and
the turbulent linewidth is calculated as per equation 1.35.

n(r, z) = n0

(
r

r0

)− 11
4

exp
(
−z
H(r)

)2

cm−3 (3.1)

H(r) = H0

(
r

r0

) 5
4
AU (3.2)

T (r) = T0

(
r

r0

)− 1
2
K (3.3)

V (r) = V0

(
r

r0

)− 1
2
km s−1. (3.4)
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Table 3.1: GG Tau model parameters
Parameter Value (unit)

n0 6.3× 109 cm−3

13CO/H2 1.76×10−8

r0 100 AU
H0 14.55 AU
T0 30 K
V0 3.3 km s−1

vNT 0.2 km s−1

Inclination 43 ◦

rin 180 AU
rout 800 AU

As the model is symmetric about the rotational axis, a cylindrical coordinate system
(r, φ, z) is used. torus takes advantage of rotational symmetry by projecting any
coordinate with φ 6= 0 onto the (r, 0, z) plane. Naturally, this reduces the number of
grid cells required to represent the space from O(h3) to O(h2). In order to resolve
the disc well it is necessary to devise criteria that ensure the grid is split sufficiently
to capture all its features. The following conditions were used to decide if a cell
should be split, where d is the cell width and H(r) is the characteristic scaleheight
of the disc at radius r:

z

H(r) < 5 and d

H(r) > 0.1 (3.5)
z

H(r) ≥ 5 and z

d
> 5 (3.6)

r > 0.99rin and r < 1.01rin and d > 0.1rin (3.7)

If any of these conditions are true then the cell should be split. The cell is not split
if r < 0.99rin or r > 1.01rin even if another condition is satisfied as the model is not
defined outside these radii. The minimum cell depth is 3 and the maximum depth
is set to 20, although this is never reached. The first two conditions cover the entire
vertical extent of the disc and stipulate that at least 50 cells must be used to cover
the first 5 scaleheights above the disc midplane. Beyond this, where the disc is far
more tenuous, the criterion is relaxed so that the maximum cell size is less than
one-fifth of the z−coordinate of the cell. The third criterion ensures the adequate
resolution of the inner-edge of the disc.

When the disc is split according to these criteria, a region with diameter of 6×1016

cm is split into 23782 cells, the smallest of which is 0.12 AU across (representing a
maximum AMR depth of 15). Figure 3.11 depicts the discretised density profile.
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Figure 3.11: The discretised density profile of GG Tau in g cm−3. The log
scale captures the steep decline in material away from the disc
midplane.

3.2.2 Raytracing test

The geometry and simplifying assumptions used in this model make it possible to
test the capabilities of the rendering code without introducing additional numerical
uncertainties inherent in the level population solver. By making these assumptions
and ensuring that the same physical parameters are used by torus and mcfost it
is possible to isolate any potential differences in the resultant line profiles. In the
scenario presented in this chapter, torus utilises an adaptive mesh, but the regular
grids of torus and of mcfost have also been compared and we find no significant
difference between the AMR and the regular grid representation. Figure 3.12 shows
a three colour image of the disc imaged in 13CO(1-0).

Having ruled out any differences in discretisation, we assume that any differences in
the line profiles can be explained by differences in raytracing strategy. The codes
were created entirely independently of each other which adds to the credence that can
be attached to this benchmark. Another reason that this test of the imaging code is
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Figure 3.12: This three colour plot of GG Tau in 13CO(1-0) shows that the
observer is inclined to the midplane (as evidenced by the elliptical
evacuated region in the centre of the disc). The red component
denotes all material moving away from the observer, blue towards
and green has no radial velocity component. The intensity scale
is given in erg s−1 cm−2 sr−1 Hz−1.

preferred to that of the benchmark in section 3.1 is that in van Zadelhoff et al. (2002),
the level populations from all the codes are passed through the same raytracing code,
sky. This obfuscates any potential differences between codes making comparisons
of line profiles not generated using sky more difficult. Figure 3.13 illustrates the
excellent agreement between mcfost and torus line profiles in this test case. The
agreement is well within observational error and discrepancies may be put down
to minor differences in discretisation strategy. Having passed both tests we are
confident in attempting a far more complex geometry that does not exhibit any
symmetry and where no physical parameters are defined analytically.
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Figure 3.13: This line profile shows the excellent agreement between mcfost
(dashed black line) and torus (solid grey lines). A distance
of 150 parsecs was assumed to convert intensity into flux. The
two torus lines represent models with (lower peak) and without
(higher peak) subpixel sampling using a resolution of 512×512
pixels. The two black lines denote the relative difference between
the mcfost solution and the torus solutions on the right-hand
scale.

3.3 Benchmarks for H2O radiative transfer

Water has been observed in many astrophysical sites (e.g. Melnick et al. 2000; Nisini
et al. 2010), both in our galaxy and in others. It plays an important role in the
chemistry of interstellar environments and observations of water lines can provide
important diagnostics of the conditions in the chemically active shells surrounding
the sites of star formation (i.e. photon-dominated regions, or, PDRs). Accurate RT
modelling of these often optically thick lines is consequently an essential precursor
for providing constraints on the conditions in these regions.

In order to further test the quality of the results of their codes, many of the partic-
ipants of the 1999 workshop developed another series of benchmarks that test the
codes’ compliance with analytical solutions in the case of a fictive two-level model of
ortho-water (developed by David Neufeld) and the complex case of an AGB star con-
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Table 3.2: Water model parameters
Parameter Value (unit)

nH2 104 cm−3

H2O/H2 10[−4..−11]

T0 40 K
α1 0 km s−1 pc−1

2 100 km s−1 pc−1

vturb 0 km s−1

rmin 0.001 pc
rmax 0.1 pc

tributed by Jeremy Yates. In this section, I present the results obtained by torus
for the two analytic models. The results of the other codes are available online.2

3.3.1 Model

The first two problems discussed at the workshop use a fictive molecule that uses
the two lowest energy levels of ortho-H2O, the so-called (110 − 101) transition. This
transition is important because it can be used to trace density enhancements in
shock-heated clouds where the H2O abundance is significantly enhanced by the re-
turn of water-ice previously frozen out onto dust grain mantles to the gas phase.
Indeed, as the temperature continues to rise (above ∼300 K) other formation path-
ways become feasible (Bergin et al. 2003) and the abundance can be enhanced by
many orders of magnitude (upto 10−4 relative to H2).

In the analytical models, an isothermal, homogeneous cloud is presented containing
only the model two-level ortho-H2O molecule. We run two sets of models for two
values of radial velocity gradient (α = 0 and 100 km s−1 pc−1). For each value of α
the relative abundance of H2O is varied from 10−4 to 10−11 representing increasingly
optically thin scenarios. Tables 3.2 and 3.3 state the salient simulation parameters
for the molecule and the cloud respectively. Note that γ21 and γ12 are the collisional
de-excitation and excitation rates respectively and α is the radial velocity gradient
given in km s−1 pc−1, where a positive value indicates expansion. The parameters,
u and s in the Table 3.3 are substituted for the Boltzmann factor and the critical
density ratio model of the model respectively in the analytic derivation given in
Section 3.3.2.

2http://www.sron.rug.nl/∼vdtak/H2O/
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Table 3.3: Two-level molecule parameters
Parameter Value (unit)

E21 556.936 GHz
γ21 2.18×10−10 cm 3 s−1

γ12 1.12×10−10 cm 3 s−1

A21 3.458×10−3 s−1

ncr 1.59×107 cm 3

exp(−∆E/kT ) 0.512
ncrit
nH2

1588

The models are nominally defined over 50 logarithmically-spaced radial points from
rmin to rmax but as torus splits the simulated region in same fashion as described
in the HCO+ benchmark above and the values are constant or analytically defined
this is ignored.

As it is possible to derive an analytical solution in the optically thin and thick
limits, the models are a good test of a code’s ability to reproduce exact values.
Codes utilising local approximations like the escape probability/LVG method are
unable to do so in conditions of high optical depth as in the static [H2O] = 10−8

case, highlighting the importance of full radiative treatments in arbitrary media.

The analytic and numerical solutions for each model are given in the sections below.

3.3.2 The static cloud

Analytical predictions can be made for the critical abundance of H2O at which the
population of the upper level becomes significant.

The equation of detailed balance can be formulated in terms of an escape probability,
β – the probability that a photon is not reabsorbed before leaving the cloud,

n1C12 − n1C21 − n2A21β = 0 (3.8)

or equivalently, as a ratio of the two levels,

n2

n1
= C12

C21

(
1 + A21

C21
β
)−1

. (3.9)

The ratio of collisional excitation to deexcitation is determined by Boltzmann dis-
tribution,

u = C12

C21
= g2

g1
e−∆E/kT , (3.10)
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so equation 3.9 can be written as

n2

n1
= g2

g1
e−∆E/kT

(
1 + A21

C21
β
)−1

. (3.11)

Furthermore, by reformulating A21
C21

as the ratio of the critical density to the model
density,

s = A21

C21
= ncr
nH2

, (3.12)

equation 3.11 becomes

n2

n1
= g2

g1
e−∆E/kT

(
1 + ncr

nH2

β

)−1

(3.13)

or
n2

n1
= u

1 + sβ
(3.14)

using some simplifying substitutions set out in Table 3.3.
For this fictive two-level molecule, n2 = 1 − n1, so the relative population of the
emitting level can be determined by the equation,

n2 = 1
1 + 1

u
(1 + sβ) . (3.15)

Equation 3.15 is dependent on β which is in turn a function of optical depth. For
a static cloud with constant density, the optical depth across the cloud at the rest
frequency of the transition can be written as

τ0 = αν

∫
ds = hν0

4π (n1B12 − n2B21)φ(ν0)L, (3.16)

where, L is the diameter of the cloud.
For n2 � n1 and vturb = 0.32 km s−1 ⇒ ∆νD = 3.57158× 105 Hz and recalling the
relationship between Einstein coefficents (Equations 1.10 and 1.11), equation 3.16
simplifies to

τ0 = 0.194× X[H2O]
10−10 (3.17)

For relative abundances of H2O . 10−9, the optical depth is negligible and thus
the radiation is not trapped and does not affect the population of the upper level.
At low optical depths β ≈ 1 and the population of the upper level can be directly
calculated for this model as

n2 = 1
1 + 1

0.512(1+1588)
= 3.22× 10−4. (3.18)
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For higher abundances, where radiative trapping and molecular collisions dominate,
the population of the upper level tends to that expected when the two levels are in
LTE, i.e. from equation 3.10, n2 = 0.3388.

The formal escape probability for a uniform sphere (e.g. Osterbrock & Ferland 2006)
is given as:

βsphere = 3
2τ

(
1− 2

τ 2 +
(2
τ

+ 2
τ 2

)
e−τ

2
)
. (3.19)

Assuming significant trapping occurs at β ' 0.01, τ ' 150 and from equation 3.16,
the ‘critical’ abundance can be written as

Xcrit[H2O] = 8π3/2τ0ν
2∆νD

(1− n2)c2A21nH2L
= 1.17× 10−7. (3.20)

Figure 3.14 illustrates the predicted fractional upper level populations for both the
static and the expanding cloud. The torus derived values for the innermost radial
points very closely match (i.e. � 1%) the analytical values which are valid only for
small radii where any radiative trapping is most effective.

Figure 3.15 shows the population of the upper level as a function of radius across the
cloud for a range of abundances from 10−5 to 10−10. It clearly illustrates that at the
cloud edge, radiation is able to escape more easily and because no background radi-
ation field is present as an external boundary condition, the upper level populations
decay freely towards the low abundance solution.

By plotting the level ratio as an excitation temperature (equation 1.37), it can be
seen that for X[H2O] � Xcrit, Tex → Tkin = 40 K implying that the levels have
been thermalised. Conversely, for X[H2O] � Xcrit, Tex � Tkin. The excitation
temperatures for X[H2O] = 10−4, 10−8 and 10−10 are shown in Figure 3.16 .

torus seems to perform very well in this benchmark. It is comparable with the other
codes that took part in this test and does not appear to suffer from the same degree
of Monte Carlo noise that the other MC codes did, even at very high abundances. I
believe that this is explained by the use of Ng acceleration. Using this acceleration
method, torus is able to converge to a solution at a level of ∼ 1% in around
10 minutes on a single processor even when initialised assuming all molecules are
initially in the ground state. Interestingly, torus is not able to achieve this without
Ng acceleration in the very high optical depth case (X[H2O] = 10−4).
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Figure 3.14: Graph of the upper level populations as a function of abundance.
Squares denote the static cloud; crosses denote the expanding
cloud. The lower dashed line is the low abundance limit whereas
the upper dashed line represents the LTE equilibrium state. The
black vertical lines represent where the optically thin approxima-
tion is no longer valid.
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Figure 3.15: Graph of the upper level populations as a function of radius
and abundance. The red lines represents the static cloud (abun-
dances on left); green lines represent the expanding cloud (abun-
dances on right). The black line represents the solution of the
Schöier AMC code.
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Figure 3.16: Graph of the excitation temperature as a function of radius for
three different H2O abundances

3.3.3 An expanding cloud

Up to equation 3.16, the derivation of the previous section was applicable to any
homogeneous, isothermal cloud. A large velocity gradient increases the probability of
the escape of a photon, effectively decoupling different layers of the cloud, reducing
the effective optical depth. The optical depth in the case of the large velocity
gradient was derived by Sobolev 1960,

τLVG = hc

4πα (n1B12 − n2B21)

= c3A21

8παν3 (1− 2n2)

= X[H2O]
1.51× 10−8 (1− 2n2) (3.21)

where equation 3.21 is specific for this expanding cloud model.

This critical abundance is an order of magnitude smaller than that determined for
the static cloud, (equation 3.16). This too is illustrated in Figure 3.14 where higher
abundances are required for the expanding cloud to attain the same upper level
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population. Moreover it is expected that the level populations are constant over
the cloud except close to the cloud edge. Figure 3.15 again corroborates torus
compliance with this analysis.

The workshop organisers noted in their conclusions that the excitation temperature
should increase towards the cloud centre. Codes that are not able to fully resolve the
innermost cells underestimate the optical depth of the excitation and consequently
show a decrease in excitation temperature towards the centre of the cloud. This
effect seemed to affect a number of the codes that participated in this benchmark but
closer inspection of the torus level populations does shows that the well-converged
torus grids do not incur this spurious phenomenon.

Finally, torus seems quantitatively better than the other codes that undertook the
expanding cloud test. Comparing the AMC code that was used at the workshop
(black line in Figure 3.15) with that of torus (green) for the high abundance
(X[H2O] = 10−8) case shows that not only is the AMC code subject to a significant
amount of noise but it also is not able to predict the expected upper level populations,
even at the cloud centre. torus is able to reproduce the analytical value of 5.6×10−4.
This is likely to have a significant effect on the total line luminosity where the
organisers state that even the most effective code (the AMC code) was only able to
recover 80% of the expected flux.



Science is what we understand well enough to explain to a computer. Art is everything else we do. 

– Donald Knuth, A=B (1996)

Chapter 4

Transforming particle-based
representations to grid-based
representations

Problems in star formation typically span many orders of magnitude in both space
and density. SPH and AMR naturally resolve the fine structure of these problems
well, whereas fixed, regular grids will often be insufficient to capture crucial informa-
tion such as peaks in the density profile where a protostellar core far smaller than
the size of a grid cell has begun to accrete material. Moreover, the resolution may
be unnecessarily fine in large, low density regions that are unimportant in a star
formation context. Nested grids can ameliorate this problem somewhat but they
often need to be hand-crafted to fit each individual problem (e.g. D’Angelo et al.
2002; Ercolano et al. 2007). The flexibility of the AMR method is that it adapts the
resolution given to a region depending on the criteria the user applies. Typically, one
is interested in resolving the temperature and density profile in a region, although
when calculating line radiative transfer accurately it is also necessary to accurately
resolve variations in the velocity field, owing to the anisotropy in the absorption
introduced by the line profile function.

An alternative family of techniques that seek to overcome the issue of resolution are
the particle-based ‘Lagrangian’ methods such as ‘Smoothed Particle Hydrodynam-
ics’ (SPH), originally developed to describe astrophysical fluid dynamics problems
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(e.g. Gingold & Monaghan 1977; Lucy 1977). As in grid-based methods, each unique
particle contains information about the density, mass, velocity at its location. In
addition, to these fundamental quantities, others may be stored such as the mag-
netic field strength or the abundance of a tracer molecule; these are astrophysically
important parameters but the SPH is utilised in wider fluid dynamics scenarios.

Owing to the Lagrangian nature of the SPH method, calculations are made between
particles and by design the particles move to represent the areas of highest density.
Thus, the method is capable of dealing with simulation volumes that contain large
variations in density making it a natural choice for star formation simulations. By
considering additional properties stored on the SPH particles it is possible to study
many diverse topics in astrophysics such as the cosmological expansion of space
(e.g. Springel 2005), the formation of spiral structure in galaxies (e.g. Dobbs &
Bonnell 2007), clustered star formation (e.g. Bate 2009a) and planet formation in
protoplanetary discs (e.g. Ayliffe & Bate 2009b).

While SPH produces 3D temperature, density and velocity fields, radiative transfer
is required in order to simulate the interaction of radiation with this material and
produce artificial 2D maps or position-position-velocity cubes like those measured
by observers. By comparing the simulated maps with the real observations, the
strengths and weaknesses of the models can be identified.

Because it is necessary to perform many path integrals, radiative transfer, is most
naturally treated using grid-based methods; it is particularly time consuming in
particle methods, as the interaction between each particle and each path is complex
and slow to compute. As a result, should one wish to perform an accurate treatment
of radiative transfer, or model the effects of radiative feedback in an SPH simulation,
a natural strategy is to interpolate from the values of the salient parameters stored
on the particles on to the grid cells (and in the latter case vice-versa). Moreover,
in order to facilitate a self-consistent radiative treatment, many timesteps of both
the hydrodynamical code and the radiative transfer code must be performed. As a
result, the algorithm must be efficient enough to readily convert one representation
to another without using too much processing time.

In this chapter I discuss the basic formulation of the SPHmethod (Section 4.1). More
details on the technical aspects of implementing an astrophysical hydrodynamics
code can be found in Monaghan (1992) and in more recent references (e.g. Bate &
Bonnell 1997; Price 2005; Price & Federrath 2010). The kernel smoothed particle-
to-grid algorithm used in torus is detailed in Section 4.2. Specifically the section
is split into two parts; creating a grid that accurately reflects the SPH particle
distribution and efficiently populating the grid cells with values commensurate with
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those stored on the particles. Finally, published applications of this algorithm are
described in Section 4.3.

4.1 Smoothed particle hydrodynamics

To estimate the value of a continuous scalar function, A, at some point, P, in the
simulation space, the SPH method uses an integral interpolant. Formally,

A(P) =
∫
A(p)W (|P− p|, h)dp, (4.1)

where W is known as the kernel function and h is the smoothing length.

A good kernel is smooth and continuous over the entire simulation space. Further-
more, in the limit as the smoothing length tends to zero, A(P) = A(p) when P = p,
i.e. it should act as a delta function. However, a kernel with finite width (h 6= 0)
no longer satisfies this criterion and the relationship in equation 4.1 becomes an
approximate one. Furthermore, whereas the function is continuous, the points at
which the function is to be sampled, particles, are discrete. Thus, the integral rep-
resentation given above is approximated using a summation over all particles, the
volume element dp having been replaced with its discrete equivalent, mi/ρi:

A(P) ≈
Npart∑
i=1

Ai(pi)W (|P− p|, hi)
mi

ρi
, (4.2)

where mi, ρi and hi are a particle’s mass, density and smoothing length respectively
and Npart is the number of particles being used to sample the continuous function.

The smoothing length of each particle determines the characteristic size scale that
defines its ‘sphere of influence’. Thus each particle has its own smoothing length.
However, it is useful to nondimensionalise the kernel in such a way that it written
in terms of a single dimensionless parameter, q:

W (q, hi) = W(q)
hνi

(4.3)

where
q = |P− pi|

hi
. (4.4)

Assuming a closed form for the particle smoothing length relating it to the true
density of the medium being described (e.g. Springel & Hernquist 2002; Price &
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Monaghan 2004, 2007), hi can be written as:

hi = η

(
mi

ρi

)1/ν

, (4.5)

where η is a constant controlling the approximate number of nearest neighbours a
particle has and where ν is the dimensionality of the simulation. It is thus possible
to succinctly re-write equation 4.2 as follows:

A(P) ≈
Npart∑
i=1

Ai(pi)
W(qi)
hν

mi

ρi
, (4.6)

≈
Npart∑
i=1

Ai(pi)η−νW(qi). (4.7)

If h is permitted to vary in such a way as to keep the number of neighbouring
particles constant at each timestep (e.g. Bonnell & Bate 2006; Bate 2009a), then it
necessary to use an iterative scheme (e.g. Newton-Raphson iteration) to determine
a self-consistent smoothing length that satisfies the neighbour constraint. In any
case, either equation 4.6 or 4.7 is used to determine the SPH interpolated value of
the function to be evaluated.

The weight of each particle’s contribution is thus determined by the smoothing
kernel. One mathematically appropriate choice of smoothing kernel would be a
spherically symmetric gaussian function, however there are major computational
disadvantages that preclude its use in hydrodynamical calculations, primarily that
the computation of exponentials is very slow compared to, say, polynomial functions
and that the contribution of particles greater than a few smoothing lengths away will
be negligible. A common smoothing kernel is the cubic spline function (Monaghan
& Lattanzio 1985), defined below,

W (q, h) = W(q)
hν

= σ

hν


1− 3

2q
2 + 3

4q
3 for 0 ≤ q < 1,

1
4(2− q)3 for 1 ≤ q < 2,

0 otherwise,

(4.8)

where σ is the normalisation constant for the dimensionless kernel W(q) defined
such that ∫ ∞

0
W(q)dV = 1. (4.9)

For ν = 3, σ = 1/π. This kernel is popular due to its ease of computation and
compact support over 2h. By utilising the property of compact support possessed
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Figure 4.1: Two SPH smoothing kernels (solid line) and their normalised in-
tegrals (dashed line). Green is a truncated gaussian and red is a
cubic spline.

by the kernel smoothing function it is possible to discard those particles with q ≥ 2
without having to evaluate the kernel function. Figure 4.1 highlights the numerical
differences between these two kernels. Other smoothing kernels are discussed in
greater detail in Monaghan (1992).

By dividing the mass to be modelled between all the particles, the conservation
of mass is a guaranteed property of the SPH method. Moreover, it can be shown
that because the derivative of a scalar function approximated in this way is easy to
calculate, linear and angular momentum are naturally conserved making it trivial
to satisfy the hydrodynamical continuity, momentum and energy equations.

4.2 An efficient particle-to-grid algorithm

In order to map the density structure of a particle-based representation onto the
adaptive mesh employed by torus it is necessary to use a particle-mesh algorithm
that interpolates data stored at irregularly spaced points onto the grid. Many meth-
ods exist that already do this; the simplest is to use only the particles within a cell
to determine a parameter value. For example, the density is taken to be the aver-
age density over all the particles within the cell or the sum of the particle masses
divided by the cell volume. However, the variation between these two calculations
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may be large and neither takes into account the concept of smoothing inherent in
the SPH technique. Furthermore, whilst this technique tends to give an accurate
result in high density regions, where the particle density is naturally greatest, it
is not capable of giving an answer in regions where no particles exist and further
provision must be made to evaluate parameters in empty cells. More sophisticated
algorithms take into account a particle’s contribution to its associated cell and its
nearest neighbours using a linear or quadratic kernel, namely the cloud-in-cell al-
gorithm (see Laux 1996, for details), however even this algorithm fails to take into
account the variable radius over which each individual particle contributes to its
environs. In fact, in order to accurately determine information about a parameter
at any given point in space from a particle ensemble, it is necessary, in theory, to
calculate and sum an appropriately weighted contribution from each particle.

4.2.1 Creating the grid

To create an AMR grid from an SPH particle distribution it is necessary to test each
cell against a mass criterion, a density criterion and where calculating line transfer,
a velocity criterion. Where these criteria are not met, a cell is recursively split until
the conditions in each child cell are met. Handling complex astrophysical structures
necessitates the use of a full 3-dimensional representation of the space so each parent
has 8 child cells, or octals.

The mass per cell criterion determines the maximum number of particles that may
occupy a cell (at least for equal mass particles), thus ensuring that no cell has more
than a certain fraction of the entire mass of the simulation within it. Typically, this
parameter is set to a value that balances the need for accurate determination of
the conditions within a cell and sufficient grid resolution within memory constraints.
The mass per cell condition allows a wide range in the total number of octals while
maintaining a total mass which is correct to within a few percent.

The density criterion dictates the range of particle densities within a cell. This
criterion facilitates the resolution of density gradients which are both physically
and computationally important in radiative transfer calculations (e.g. treatment of
shocks, jets, etc.). Large changes in density from cell to cell can have deleterious
effects on the convergence of the iterative algorithm used to determine the relative
level populations of a molecular species within the cell so it is critical that the volume
over which they change is well resolved. Typically, this criterion is set so that the
maximum density stored on a particle within the cell is not greater than twice that
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of the minimum density or that the parameter

fsplit = ρmax − ρmin

ρmax + ρmin
<

1
3 (4.10)

The velocity criterion regulates the variation in the magnitude of the velocity within
a cell. It is vital to have good velocity resolution over a cell when studying the
effects of line radiation in an object, to obtain the correct line profile shape since
absorption and emission of line radiation is a strong function of Doppler-shifted
frequency. Therefore, where possible we use this criterion to ensure that the range
of velocities within a cell is less than 5 times that of the turbulent line velocity.

In summary, the density condition is effective at giving extra resolution in regions
of high density contrast which are likely to be important in radiative transfer calcu-
lations. Used in conjunction with the mass limit per cell condition it is possible to
add extra resolution to the grid where required whilst maintaining an accurate total
mass.

If any of the conditions in the parent cell meet the splitting criteria then the cell is
split. This process is iterated until each cell no longer triggers any of the criteria
or a maximum cell depth is reached. This is to ensure that the simulation does
not run out of memory. A further condition is imposed that the minimum cell
size is no smaller than the smallest inter-particle separation (∼ 0.25hmin), which is
commensurate with the natural resolution of the SPH simulation. Figure 4.2 shows a
cut-through version of a grid created from an SPH particle distribution representing
a star forming cluster using the above splitting criteria; the minimum cell size in
this grid is ∼ 0.05 AU and the spatial extent of the grid is 1 pc. The number of
cells used in this case was one-third that of the number of SPH particles.

4.2.2 Determining cell parameters

Having created a grid it is then necessary to populate each cell with parameters
pertinent to the calculation that is to be performed. The method outlined here
is optimised to take advantage of geometry where possible but is not prejudiced
against the general case where the distribution of particles is not known a priori.

For each cell in the grid, the centre is chosen to be the point in space where the
conditions that pervade the cell are to be determined. Whilst it is trivial to deter-
mine the region over which a particle acts (because the distance at which a particle



4.2. AN EFFICIENT PARTICLE-TO-GRID ALGORITHM 125

Figure 4.2: A cutaway of an adaptively refined grid created using the particle-
to-grid method.

ceases to contribute is fixed at 2hi in the case of the cubic spline kernel used here),
the inverse problem of determining which particles contribute to the grid cell centre
is less trivial. That is, some may lie within the cell but some may not. Furthermore,
some may lie within the cell yet not contribute to it at all; Figure 4.3 illustrates this.
Naïvely, one might assume that by finding the particle with the greatest smoothing
length, hmax and subsequently checking for all particles that lie within 2hmax of a
point one is guaranteed to recover the most accurate answer possible. Whilst this
is certainly true, it turns out to be so inefficient that determining the contents of
an entire grid like this would take an impractically long time. Not only does hmax

overestimate the smoothing lengths of all but one particle in the ensemble, but also,
due to the direct relationship between smoothing length and density it is unrepre-
sentative of the entire physical region; very low density regions being the exception
rather than the rule in circumstellar discs and star-forming clusters. Moreover, these
very low density regions play a negligible role in radiative transfer and are naturally
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Figure 4.3: Schematic diagram of the contribution of particles to a cell.
Darker grey denotes higher densities. In actuality, the density
contributed to a point decays as the distance from the particle
increases.
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Figure 4.4: Cumulative graph of all particle smoothing lengths (in 1/10s of a
parsec) for an SPH cluster geometry. hmax (not shown) ≈ 0.43 pc
whereas h95% ≈ 0.01 pc.

undersampled by the SPH technique.

In this method, the parameter hcrit is defined as the smoothing length of the particle
lying at some critical point in the distribution of smoothing lengths of all particles;
by default this is set at 95%. This length is often as much as an order of magnitude
less than that of hmax but still greater than that of all but the 5% of particles
representing the least well-populated areas of the physical space (see Figure 4.4).
However, as the adaptive mesh is already split so that the cell size is commensurate
with the smoothing lengths of the particles it contains, a better estimate for the
critical lengthscale over which to search for nearby particles is

rcrit = min(4d, hcrit), (4.11)

where d is the cell width. The factor of 4 has been empirically derived as the
smallest factor that retains the furthest most particles that are likely to contribute
whilst keeping computational speed high. Equation 4.5 shows that for each ten-fold
reduction in r, 3 orders of magnitude of density resolution are lost. However, as the
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radius over which contributing particles are searched for reduces, the volume (and
hence the computational effort) reduces as r3, making the problem more tractable.
Furthermore, as it is the least dense regions that are no longer resolved, the impact
on the solution is minimised. If however there are no particles in a point’s vicinity
then the code makes another attempt to locate a nearby particle that can be used
to derive the local density. The algorithm is repeated with a wider search volume
whose radius is determined by

rcrit = min(max(4d, 2hcrit), 0.5hmax). (4.12)

This second condition covers almost all cases where the initial condition does not
suffice but if even this radius is not sufficient then one last attempt is made using
rcrit = hmax; beyond this the cell is justifiably declared empty and its parameters set
to some global minimum.

Sorting the particle list by ascending x−coordinate facilitates the reduction of the
number of candidates that can contribute to a point, P. This is achieved by removing
all particles that lie outside 2 rcrit in the abscissal dimension, leaving only particles
whose x−coordinate lies within Px±rcrit. In practice, by utilising a priori knowledge
of the approximately constant number of nearest neighbouring particles this can be
rapidly achieved by testing the x−coordinate of a particle 32 elements away from the
particle whose x−coordinate is closest to that of the cell. If that cell lies outside 2
rcrit then the a particle that lies 16 elements away is tested until a range of particles
satisfying this criterion is found (following the lines of a standard binary search).

In the case where all the particles are equally spaced this reduces the number of
comparisons necessary to 4 3

√
Npart. Each particle in this reduced list is then tested

against the same criterion in y, i.e. |Py − pyi | < 2rcrit. For all those particles where
this criterion is satisfied a further test for the z−component is made. This process
discovers all particles that lie within a cube of side length 4rcrit centred about the
point. Whilst this means that only approximately half the particles are expected to
lie within a sphere of radius 2 rcrit, it is still more efficient than directly calculating
the pairwise distance for each particle in the entire ensemble. The logic is such that,
at each step in the algorithm, it is necessary to do less work than the stage before.
Furthermore, the order in which the criteria are applied has been selected in such a
way as to reject the greatest number of particles as early on in the process as possible;
that is, culling by x then y then z is the most efficient method of locating nearby
particles for a disc with its semi-major axis in the xy-plane. By storing the differences
calculated when ascertaining the proximity of a particle to the point it is possible
to speed up this calculation slightly; it is then only a matter of summing them in
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quadrature to find the pairwise separation, r2
i = (Px−pxi )2 +(Py−pyi )2 +(Pz−pzi )2.

Once the reduced list of particles has been created it is then a matter of calculating
the contribution of each particle to the point, determined by the kernel smoothing
function (equation 4.8).

In a homogeneous, isotropic distribution of 106 particles, using a smoothing kernel
with compact support of 2hi reduces the number of particles able to contribute
to a point by approximately five orders of magnitude. Specifically, the number of
particles able to contribute is independent of volume or number, being constant at
∼ 60 for η = 1.2.

As stated in section 4.1, the value of a scalar parameter at a point in space, A(P),
is the weighted sum of the stored parameter values, Ai, over all nearby particles
(equation 4.6). This formulation assumes that ∑W(qi) ≈ 1 which is typically true
for points in the bulk of the simulation surrounded by a full complement of neigh-
bours. Where it is true, it is possible to normalise A(r) by dividing by ∑W(qi) ≈ 1,
reducing the variation associated with kernel smoothing. The superposition of many
spherically bound kernels on to a regular 3D grid will not recover a constant field but
rather it will tend to oscillate around the true value; the field will be over-estimated
at the particle position (where the weighting function at that point is 1 and the
sum over all other particles is positive) and will similarly be underestimated at the
point in space centred at the midpoint of surrounding kernels. This normalisation
can certainly improve the appearance of an image, (see Price (2007)) but can cause
problems at free surfaces where a smooth decay is preferred.

Particles with h > 3
√
Vsim/Npart, the average linear separation of particles in the

simulation volume, Vsim, are expected to lie close to a free surface and are initially
classed as ‘hull’ particles. The algorithm adaptively decides whether to normalise
or not depending upon one of two strategies:

• If ∑W(qi) > Wnorm then normalise; or

• Normalise only if all contributing particles are determined to be ‘bulk’ particles,
(as opposed to hull particles).

Either strategy relies upon an empirically determined parameter, Wnorm, that is
typically set between 0.3 − 0.5. In the first case, normalising when ∑W(qi) > 0.3
typically recovers total grid masses most similar to the SPH representation for a
cluster, whereas Wnorm = 0.5 seems to work well for disc-like geometries (Acreman
et al. 2010b). In the second case, the designation of a hull particle may change if it is
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subsequently found to belong to a set of particles where ∑W(qi) > Wnorm, whereby
it is classed again as a bulk particle. Similarly, it is possible, though unlikely, that a
bulk particle may become a hull particle if it belongs to a set that fails to meet the
criterion. In any case, it is possible for a user to override this strategy as it is not
obviously desirable to let the temperature or velocity decay at a free surface even in
the apparent absence of matter.

Once the contributing particles have been located and their weights determined
they can be reused for each parameter that needs to be found. A vector such as
velocity must be split into its 3 components and each one must be determined before
outputting the resultant vector. Moreover, as this process is the slowest part of the
algorithm, if the distance between grid cells is small then it is possible to reuse the
list of contributing particles and just recalculate the weights. This can substantially
reduce the amount of time taken to perform the interpolation.

The algorithm is repeated for each grid cell until the grid has been populated with
data. The original serial version of this code took ∼12 hours to create a ∼106

cell AMR grid using the default parameters on an SPH cluster containing 3.5×106

particles. By using a smaller hcrit, this time could be reduced substantially at the
cost of significantly decreased accuracy at the cloud edge. Similarly, runtime can be
reduced by relaxing the splitting criteria to produce a less refined grid. However, the
code has subsequently been parallelised by Dr Tim Harries; as the values in one cell
are not dependent on another, the improvement in time is approximately linear so
a grid with comparable resolution to that of the SPH representation can be created
in minutes, given enough processors.

Interpolation

Despite the efficiency of the particle-to-grid algorithm, it is still many orders of
magnitude slower to calculate the contributions from each appropriate particle to a
point on the grid than it is to perform polynomial interpolation on a regular grid.
torus takes a pragmatic approach to determining the values of parameters that do
not lie on the grid cell centre, for example, the velocity of the gas at a point that is
used to determine the Doppler-shifted line centre for a ray-trace.

By using the kernel interpolation algorithm to populate values for the velocity (or
density) at the octal corners, of which there are 27, it is possible to linearly or
quadratically interpolate to obtain a good approximation to the kernel smoothed
value. For each cell in Figure 4.2, the relative fractional difference between the
stored grid cell centre value for the magnitude of the velocity was compared with
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Figure 4.5: This graph demonstrates the efficacy of the quadratic interpola-
tion routine used in torus and the general efficacy of the polyno-
mial interpolation routines employed.

the interpolated value determined from the cell corners. The average error was
recorded for each level of cell recursion. The results are shown in Figure 4.5. The
quadratic interpolation routine gives very similar results to the linear interpolation
routine for very small and very large grid cells but is more accurate by up to an
order of magnitude for cell depths between 10 and 16. Approximately 2.25×106

out of the 3.5×106 cells lie between these depths which cover length scales between
∼ 10− 650 AU.

Note that it is not mathematically sound to quadratically interpolate the density
field, as this may result in unphysical (negative) densities. However, using linear
interpolation to sub-sample the density field during the synthetic line mapping in
conjunction with sub-pixel intensity sampling (described in Section 2.3.2) can pro-
duce far higher quality images than images that are created without using these
features (Figures 4.6 and 4.7).
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Figure 4.6: Comparison of two images produced without (left panel) and with
density and pixel sub-sampling (right panel).

Figure 4.7: A three-colour image of a cluster observed in HCO+ (1-0) pro-
duced using torus.
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4.3 Application to hydrodynamical models

This section explains how the particle-to-grid algorithm detailed in the previous
section has been used in different astrophysical scenarios. The algorithm has been
used to convert an SPH representation of a circumstellar disc around a T Tauri Star
into an AMR grid which was used to facilitate self-consistent radiative feedback
calculations. It has also been used to facilitate the synthetic observation of an SPH
representation of a galaxy in Hi both from within the galaxy and exterior to it. The
other use is fully described in Chapter 5. In all cases, the line radiative transfer
code was also used to create synthetic images of the resultant grids.

4.3.1 A circumstellar disc around a T Tauri Star

Acreman, Harries, & Rundle (2010b) presented the first use of the algorithm for
coupling the grid-based torus radiative transfer code with the SPH code of Bate
(2009a) to incorporate fully self-consistent polychromatic radiative feedback into the
hydrodynamic simulation of a realistic circumstellar disc. The grid creation criteria
were used to test the accurate creation of three-dimensional cartesian and cylindrical
polar discs which were tested using the continuum radiative transfer benchmark of
Pascucci et al. (2004). The hybrid code was subsequently used to evolve an initially
vertically isothermal disc into a more physical flared disc in radiative and hydrostatic
equilibrium.

Grid creation tests

In order to accurately resolve the disc it is necessary to ensure that the regions of
interest are well-sampled, both by the SPH particle distribution and by the grid,
that is, those regions that will contribute significantly to the shape of the disc SED.

The mass and the density splitting criteria were tested to find the optimal setting
for each parameter, balancing the required number of grid cells with fidelity to the
known model solution. For each splitting condition a number of AMR grids were
generated using different values of the mass per cell limit or fsplit. This was repeated
for discs represented by 105, 106 and 107 SPH particles.

The effects of the different splitting criteria described in Section 4.2.1 are demon-
strated in Figure 4.8. A grid constructed from using a mass per cell limit of 5×1026 g
is depicted in Figure 4.8(a) whereas a grid with fsplit = 0.1 is plotted in Figure 4.8(b).
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(a) Mass per cell condition of 5×1026 g. (b) Density condition of fsplit = 0.1

Figure 4.8: Example AMR grids constructed from 107 SPH particles. The
grids shown are slices perpendicular to the disc mid-plane.

As expected, in Figure 4.8(a) increased resolution is seen towards the disc centre
and mid-plane where the density is higher. Similarly, in Figure 4.8(b) the resolution
increases towards the edge of the disc, where there are large density gradients.

Figure 4.9 plots the number of octals generated as a function of mass per cell or fsplit
(solid line), and the percentage error in the disc mass (dashed line). The number of
octals as a function of mass per cell limit was found to be quite consistent between
runs with different numbers of SPH particles. For mass per cell limits of 1028 g and
less the total mass error was found to vary only slowly as a function of mass per cell
and to be accurate to within a few percent (Figure 4.9(a)).

For the density contrast condition, the total number of octals required by the disc
was a stronger function of the number of particles. In order to ensure a total mass
accurate better than 1%, the density contrast condition was found to require at least
107 particles and a density contrast threshold of no more than 0.3.

It was noted that relatively few particles, ∼ 106, were needed to obtain an accurate
temperature distribution compared to the benchmark disc, offering a substantial
improvement over the temperatures derived from the SPH equation of state when
radiation transport dominates, however, in order to accurately model the disc SED
many more particles are required – in excess of 108.
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Figure 4.9: Number of octals (solid line) and percentage error in total disc
mass (dashed line) for the benchmark disc represented on Carte-
sian AMR grids. The grids were generated using either 105

(squares), 106 (circles) or 107 particles (triangles).

A radiation hydrodynamics simulation of a T Tauri star

Acreman, Harries, & Rundle demonstrated that not only was it possible to faithfully
reproduce the SPH density distribution using AMR but also that it was possible to
pass temperatures back that were sufficiently accurate for hydrodynamic calculations
(under the assumption of radiative equilibrium) to the SPH code to update the gas
pressure and perform the next hydrodynamical step.

A ‘realistic’ test problem was devised to test and showcase the hybrid code. A
model system was constructed to have physical parameters similar to those observed
in the prototypical T Tauri star, AA Tau. The resultant midplane optical depths
are considerably higher than those considered in the classical radiative equilibrium
benchmark model of Pascucci et al. (2004), providing a stiffer test in terms of both
computation time and required numerical accuracy.

A 1 M� star was placed in the centre of a 0.02 M� disc which was initialised to
have an outer radius of 150 AU and an inner radius of 1 AU. Inside the inner radius
particles were assumed to have accreted on to the sink particle representing the star,
which was assumed to have a radius of 2 R�, a blackbody temperature of 4000 K
and a luminosity of 0.9 L�.

106 SPH particles were evolved using only the SPH code to bring the disc to dy-
namical equilibrium. The internal energies of the SPH particles were determined
using an isothermal equation of state in the vertical axis and having a 1/r radial
dependence (Figure 4.10(a)). The star was then ‘switched on’ and the hybrid code
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(a) Vertically isothermal initial state.

(b) Disc evolved self-consistently satisfying radiative and hydrostatic equilibrium.

Figure 4.10: Internal energy distribution in the initially vertically isothermal
model disc (top panel) and in hydrostatic and radiative equilib-
rium (bottom panel).
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was used to determine the radiative equilibrium temperatures (and hence particle
internal energies) at every fourth hydrodynamical timestep (Figure 4.10(b)). The
Monte Carlo RT calculation dominated the total run time of the model (440 hours
out of 560 hours) but overall the calculation was well within feasible timeframes for
such a calculation on the Exeter supercomputer and will be even more so in future.
The particle-to-grid algorithm was able to transform the particles in approximately
280000 cells in around one minute so it can be concluded that it is not a bottleneck
in this calculation.

The scope for use of this hybrid model is limited to geometries where faster approx-
imations, like flux-limited diffusion are no longer valid, i.e. optically thin regions
where the diffusion ‘speed’ may exceed the speed of light as the mean-free-path
tends to infinity and an essentially arbitrary flux-limiter must be used. Moreover,
flux-limited diffusion is often implemented as a grey method, typically using the
Rosseland mean opacity tabulated as a function of temperature; this certainly ne-
glects the importance of line radiation as a cooling/heating mechanism.

Finally, we concluded that although a method for constructing an AMR grid from
SPH particles which was robust, in terms of conserving the total mass on the grid
had been created, we found that it was necessary to add additional grid refinement
in the central region of the disc to allow the inner edge to be well represented which
had a large effect on the temperature distribution in the disc and on the emergent
SEDs.

4.3.2 An SPH spiral galaxy simulation

In Acreman et al. (2010a) (Paper I) and Douglas et al. (2010) (Paper II), the particle-
to-grid code is used to transform an 8 million particle SPH representation of a spiral-
arm galaxy into an extremely high resolution AMR grid consisting of up to 6 million
grid cells (Figures 4.11 and 4.13) (in Paper II the required grid resolution was greater
in order to provide greater resolution in areas close to the observer).

In Paper I, a derivative of the ray-tracing algorithm presented in Chapter 2 of this
thesis was used to produce synthetic spectra in the 21 cm Hi line for arbitrary observ-
ing positions which were compared to observations of M31 and M33. Perturbations
in constant intensity contours in each velocity channel associated with the spiral
structure of the galaxy similar to those seen in the grand design spiral galaxy M81
(Rots & Shane 1975) were seen in the synthetic Hi images (Figure 4.12). However,
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Figure 4.11: Hi density (in g cm−3) in the galaxy midplane, as represented on
the torus AMR grid (top panel) and as represented with SPH
particles (bottom panel). The AMR representation has the grid
overplotted to illustrate the small-scale structures that can be
captured using the splitting criterion.

these features are not observed in the flocculent M33 galaxy, indicating that the
formation mechanism for the

The method of generating synthetic observations can also be applied to simulations
in which velocity structure is generated by other mechanisms. Other mechanisms,
including self-gravity and stellar feedback, can also generate velocity structure, and
indeed are dominant in flocculent spiral galaxies (e.g. M33). Moreover, external
influences are known to affect the Hi morphology of a spiral galaxy (e.g. interactions
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with a companion galaxy or high velocity clouds). As the majority of galaxies reside
in groups or clusters, it is likely that external environmental effects will influence
the Hi structure of most real galaxies; the model galaxy simulated in Paper I was
entirely isolated and the results showed idealised behaviour in the absence of external
influences.

Artificially degraded images exhibited much less detail but displayed a broadening
of the contours in the region of the spiral arms. The authors concluded that the
simulated data showed what would be observed in an idealised case where a strong
spiral perturbation dominates the structure of the galaxy.

In Paper II, the observer was placed inside the galaxy (Figure 4.13), facilitating
the simulation of Galactic Hi observations. A very high-resolution grid was created
from 8 million particles in the region of interest, the so-called second quadrant,
l = 90 − 180◦ defined from a point 7.1 kpc from the galactic centre; this choice
corresponds to a position in an inter-arm ‘spur’ of Hi, similar to the Orion Spur of
the Milky Way. By exploiting the cylindrical geometry of the galaxy, the process
took less than one hour. The authors modified the ray-tracing code in torus in the
near-field case where the assumption of paraxial rays used to generate the image
breaks down. The resultant synthetic spectral cube (partly depicted in Figure 4.14)
was compared to real Canadian Galactic Plane Survey data (CGPS) (Taylor et al.
2003). Moreover, by reversing the direction of the ray-trace (so that it was done from
the object to the source) they were able to separate the absorption and emission
contribution for each cell, facilitating the investigation of HISA (Hi self absorption)
in the overdense spiral arms.

The main purpose of the work was to investigate whether factors such as geometry,
kinematics, chemistry and thermodynamics of a spiral shock can produce HISA, as
has been observed in the Perseus arm of our Galaxy. In comparing the synthetic
and observed data sets, it was possible to discern what characteristics the model
galaxy had in common with Galactic H I observations.

The primary difference observed was the apparent confinement of Hi gas to the
plane in the synthetic datacubes, compared to the widespread and more diffuse
distribution of atomic gas seen in the CGPS data. This was expected as the lack of
any feedback mechanisms in the simulation mean that it would not be possible to
‘stir up’ the ISM. Another notable difference is the difference in scaleheights. The
synthetic galaxy had a far great column density of atomic hydrogen in the mid-
plane leading to greater brightness temperatures being observed (200 K (synthetic)
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Figure 4.12: Contours of constant intensity in different velocity channels
(colours) are overlaid on summed intensity of emission in sim-
ulated Hi for the synthetic galaxy (greyscale).

Figure 4.13: A midplane density slice of the simulated galaxy. The position
of the observer in Paper II is denoted by the black circle situated
between two spiral arms on the y-axis.
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vs. 150 K (CGPS)) and also exhibited more HISA. The simulation did replicate the
spiral structure of the Milky Way well and ∆vr (line of sight velocity) of 40 km s−1
was observed (as seen in the Milky Way between local gas and the Perseus arm).
It was noted that the future inclusion of feedback is likely to ameliorate both the
differences seen in the original work and the authors are working to include this
now.



142 CHAPTER 4. TRANSFORMING SPH TO AMR

Figure 4.14: Simulated Hi brightness temperature for synthetic ‘Perseus Arm’
gas at vr = −45 km s−1 for the second quadrant.



To try to write a grand cosmical drama leads necessarily to myth. 
To try to let knowledge substitute ignorance in increasingly larger regions of space and time is science. 

– Hannes Alfven, 
‘Cosmology: Myth or Science?', Journal of Astrophysics and Astronomy (1984), 5, 79-98

Chapter 5

Imaging a simulated star
formation cluster

Large-scale hydrodynamic collapse calculations of turbulent clouds (e.g. Bate, Bon-
nell, & Bromm 2003a) demonstrate the fragmentation of molecular clouds into clus-
ters which in turn typically fragment into high-density cores and subsequently frag-
ment into protostars. These simulations predict the statistical properties of the
distribution of young stellar objects such as the initial mass function, the binary
fraction and the star formation rate (e.g. Zinnecker 1984; Bonnell et al. 2003; Bate
et al. 2003a; Bate 2009a). It is expected that the fate of these objects is strongly af-
fected by their evolution history, specifically the competitive accretion of gas as they
move through their environs. Star formation in isolation necessarily neglects the dy-
namic interactions between these objects, which can cause them to be ejected at
great velocities from their nascent gas-rich core, truncating their accretion (Klessen,
Burkert, & Bate 1998; Bate, Bonnell, & Bromm 2002b). Consequently, it is posited
that if ballistic motions are common for the dense cores likely to make stars, or that
are forming stars, then it may be possible to measure these motions with precise
Doppler spectroscopy using suitable millimeter-wavelength molecular lines (Walsh,
Myers, & Burton 2004).

Although these simulations provide a physical explanation for many observed phe-
nomena and enhance our understanding of cloud complexes and associated pre– and

143



144 CHAPTER 5. IMAGING A SIMULATED STAR FORMATION CLUSTER

protostellar cores, the conclusions that can be inferred from them are not readily
verifiable directly from observational data. In order to make comparisons between
theory and observation, given the intractability of the inverse problem, it is neces-
sary to transform the temperature and density characteristics of a simulated cloud
into a synthetic intensity map comparable with those obtained by observation.

To investigate the theory of Walsh et al. (2004), I took snapshots of an SPH star
formation simulation by Bate et al. (2003a). The simulation used 3.5×106 particles
to trace the evolution of a 50 M� molecular cloud as it collapsed to 50 proto-stellar
objects, some still deeply embedded in their dense cores.

The paper published on this work, Rundle et al. (2010), aimed to improve upon the
analysis of the relative motions of cores to their nascent envelopes in the cluster
models of Bate et al. (2003a) by Ayliffe et al. (2007). Both Ayliffe et al. (2007)
and Walsh et al. (2004) looked for supersonic ballistic motions of cores relative to
their inchoate envelopes as evidence against competitive accretion as a clustered star
formation theory. Both papers compared differences in the line of sight velocities
of cores and envelopes as determined from line profiles of high– and low-density gas
tracers. In Ayliffe et al. (2007) and Rundle et al. (2010) each timestep was examined
for statistically significant differences in the profiles.

By performing a non-LTE radiative transfer calculation of the molecular level pop-
ulations of tracers of high– and low-density gas within the cluster using torus (see
Harries 2000; Harries et al. 2004; Symington et al. 2005a for details), I sought to
improve upon the comparison between simulation and observation carried out by
Ayliffe et al. (2007) and reconcile some of the differences between observation and
theory.

Most of the contents of this chapter have been accepted for publication in Rundle
et al. (2010). The outline of this chapter is broadly similar to Sections 5-7 of that
paper. In addition to this, I have included a more in-depth consideration of the
nature of clustered star formation and the use of molecular line data to observe the
cores associated with clustered star formation (Section 5.1)

5.1 Star formation in clustered environments

Deep within giant molecular clouds, dense filaments of gas fragment and collapse to
form star-forming clumps. These clumps are the precursors of stellar clusters and
the most massive stars. They have masses ranging from 10 – 1000 M�.
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The specific formation mechanism of stars that form in clusters is not well-understood.
Competitive accretion proposed by Bonnell et al. (1997) has been shown to be an
effective way of simulating the formation of both low– and high-mass stars. Over
a decade’s worth of numerical simulations by Bate and Bonnell have shown that
many statistical properties of star-forming regions can be reproduced using numeri-
cal simulations adopting this theory. Briefly, the accretion process that determines
the ultimate mass of a star is split into two regimes. Initially, the graviational poten-
tial is dominated by cold gas and low-mass stars accrete their mass (slowly). Later,
stars dominate the gravitational potential and high-mass stars are able to accrete
mass rapidly. This dynamic stage has been demonstrated as being responsible for
truncating the accretion of mass by brown dwarfs which can be ejected from the
cluster following an interaction with a larger mass star.

The mechanism is able to create stars with masses up to around 10 M� but beyond
this, the radiation pressure is too great to accrete more material. The mechanism can
be extended by proposed stellar mergers (Bonnell et al. 1998) whereby stars greater
than 10 M� can accrete mass very rapidly even where the expected radiation pressure
associated with such stars becomes too great for regular accretion to occur. This
mechanism has been used to successfully model the stellar IMF and multiple-star
systems.

An alternative theory suggests that supersonic turbulence persists even on the scales
where individual stars form (McKee & Tan 2003). Recent observational studies (Kirk
2009), however, suggest that even in dynamic cluster-forming clouds, the conditions
for protostellar collapse are relatively free of supersonic turbulence.

The clusters show a lot of filamentary structure and ultimately fragment in to
prestellar cores however many regimes not seen in isolated star-formation regions
are observed in these dense environments, including ‘hot cores’, Hii regions and OB-
associations. Prestellar cores in clustered environments tend to be more compact
(∼ 0.02 pc vs ∼ 0.1 pc) and more dense (nH2 > 106 cm−3 vs. nH2 < 105 cm−3)
compared to isolated prestellar cores (e.g. Ward-Thompson et al. 2007a, and refer-
ences therein). Their gravitationally bound masses are thought to be on the order
of a few solar masses. However, they are all observed to be very cold exhibiting
temperatures ranging from around 8 – 12 K.

Prestellar cores are important because they most closely represent the physical con-
ditions prior to star formation. These cores are considered either isolated or clustered
depending on the surface density of other nearby dense objects (cores or protostars).

Naturally, observations of isolated cores (e.g. Walsh et al. 2004) are simpler to
interpret since the environments they inhabit are less confused. However, such
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observations are not representative of star formation within embedded clusters (e.g.
Walsh et al. 2007).

The use of line maps to identify and understand these cores is difficult. As dis-
cussed earlier in this thesis, line optical depths and chemical evolution can strongly
affect the observed profiles. Even rare isotopolgues of CO (and others) have lines
that can be too opaque to sample the inner regions of these cores. Moreover, all
carbon-bearing molecules are affected by significant depletion making it harder to
ascertain the relationship between the derived column densities of the tracers and of
H2. Nitrogen-bearing species are known to be better able to trace the denser parts
of the cores. To partially workaround the problem of being unable to penetrate
deeper into the cloud (where the gas is more dense), lines with high critical den-
sities and rarer species such as N2H+which suffer little depletion are observed and
interpreted with non-LTE codes. Coupled with chemical models, these codes can
provide insight into the velocity differences between the protostellar cores and the
surrounding cloud, to test whether cores accrete locally or move significant distances
through the surrounding cloud over their lifetime.

Continuum maps are less complex but are still able to trace the cores; however, they
are not able to map the kinematic profile of the cores. The determination of core
kinematics is fundamental to understanding many of the dynamic processes that
occur in star-formation. Clearly, the ultimate solution is to use line and contin-
uum data synergistically to complement each other to provide better constraints for
theoretical models of cores (e.g. Jessop & Ward-Thompson 2001).

5.2 The SPH cluster calculation

The SPH model used to demonstrate the efficacy of competitive accretion in replicat-
ing certain statistical features of observations by Bate et al. (2003a) can be thought
of as being similar to part of the ρ Ophiuchus dark cloud, which has 6 identified
dense cores (Motte et al. 1998). The SPH model forms dense cores with equiva-
lent densities to those observed. The mass of the largest SPH core (∼ 5.3M�) is
commensurate with the smallest core (F) in ρ Ophiuchus (∼ 8 M�). The model is
also representative of part of the Orion Trapezium Cluster although far less massive
(Bate et al. 2002a).

A 0.375 parsec, 50 M� cloud was created to be initially spherically symmetric with
a uniform density and temperature (10 K). A supersonic turbulent velocity field
(M = 6.4) was imposed on the cloud to create anisotropies which ultimately led to
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the formation of a dense pre-stellar core after approximately 1 free-fall time. Here,
tff ≈ 1.9 × 105 yr. The velocity field was normalised so that the kinetic energy of
the turbulence equalled the magnitude of the gravitational potential of the cloud.

During the early stages of collapse, the relatively tenuous gas allows energy to be
radiated with ease. At this stage the gas was assumed to be isothermal. If the rate
at which energy is released exceeds the rate at which the gas can cool then the local
environment begins to heat rapidly, because of the dependence of this point on gas
opacity this is the so-called ‘opacity limit for fragmentation’. Masunaga & Inutsuka
(2000) showed that the gas begins to heat significantly at a density of ρ > 10−13 g
cm−3 depending on gas opacity (and initial temperature). To avoid performing a
computationally expensive full radiative treatment, Bate et al. used a barotropic
equation of state p = Kρη. The barotropic exponent, η, equals unity where the gas
is isothermal (for ρ ≤ 10−13 g cm−3) and increases to 7/5 for ρ > 10−13 g cm−3.
This equates to a temperature-density relationship of

Tgas = max
(

10, 10
(

ρ

10−13

)2/5
)
. (5.1)

As the gas heats up, a previously Jeans-unstable collapsing clump (in the isothermal
regime) becomes stable once again forming a pressure-support fragment. Following
the coalescence of these fragments becomes computationally impractical once their
density increases beyond a certain level owing to the short dynamical timescales
involved in following their evolution further. Consequently, when the local simulated
density in a particle exceeds 1011 g cm−3, a sink particle is created with a mass
equivalent to the sum of the masses of all particles within a 5 AU radius (e.g. Bate
et al. 1995). The sink particle inherits a weighted average of all the properties of
the contributing particles and they are destroyed and interacts with the gas only
via gravity and accretion. This ameliorates the computational slowdown caused by
resolving the fragments as they continue to accrete more mass.

The minimum mass for a sink particle is ∼ 10 Jupiter masses (MJ). They will
continue to accrete gas particles throughout the simulation to become brown dwarfs
(< 75 MJ) or stars (> 75 MJ).

Finally, although the cloud initially contained enough turbulent energy to support
itself against gravity, turbulence decays on the dynamical time-scale of the cloud
and star formation began after approximately one global free-fall time. This rapid
decay of the turbulence is consistent with other numerical studies of turbulence in
molecular clouds (e.g. Offner et al. 2008a) but studies using driven turbulence are
also starting to be performed (ibid).
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The calculation was evolved for ≈ 69000 years after star formation began until
t = 1.40tff. At the time it was one of the largest SPH simulations ever performed. It
required approximately 95000 CPU hours on the SGI Origin 3800 at the United King-
dom Astrophysical Fluids Facility (UKAFF). A similar calculation was repeated on
the University of Exeter supercomputer in 2008 which took just weeks, highlighting
the improvement of modern-day computational facilities over past facilities.

5.3 Creating synthetic images of an SPH cluster

Five snapshots were used to investigate the effect of time on the core velocities. They
are taken at 1.0, 1.1, 1.2, 1.3 and 1.4 tff; the first snapshot occurs just before the start
of star formation, the second is taken during the first star formation episode, while
the third and forth are taken during an interstitial period during which a second
and third star-forming core is formed. The final snapshot is taken at the end of the
simulation when over 50 objects have been formed, some of which are still accreting.
At the end of the simulation, approximately 1/5 of the SPH gas particles (≈ 10 M�)
have been accreted onto the sink particles.

Each SPH snapshot was discretised using the algorithm outlined in the previous
chapter using the same splitting criteria for each timestep; no more than 50 particles
were allowed within one cell, the ratio of the maximum density to the minimum
density must be no greater than 2 and the range of velocity magnitudes must be
less than 5vturb.

The process of discretisation will necessarily introduce some further uncertainty in
the exact distribution of mass throughout the cloud, however, as discussed above,
the algorithm has been designed to minimise any systematic error which may arise
through using too coarse a grid to represent the space. The total mass stored on
the grid in most cases is found to lie within 5% of the true mass.

In this application, the mass discretisation error is better than 3% and in the absence
of overdense regions in later timesteps, better than 1% (see Table 5.1). Furthermore,
a comparison of the number of cells in each level of refinement against a histogram of
the smoothing lengths of the particles (Figure 5.1) shows broad agreement, except in
the highly refined tail of the AMR cell distribution. This is because of the additional
constraints required for adequate radiative transfer, additional velocity splitting in
particular. Over all 5 frames, the maximum level of refinement was 22, resulting in
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Figure 5.1: Histogram of the relative fraction of AMR cells (dark grey) at each
depth for t = 1.1tff. The smoothing lengths of the SPH particles
(light grey) were binned according to their closest association in
log-space. Note that the x-axis is reversed to show the proportion
of cells at lower depths on the left.

the smallest octal having a linear dimension of ∼ 0.08 AU, commensurate with the
shortest inter-particle spacing. On average, this discretisation policy resulted in a
ratio of particles:cells of approximately 1/3.

Owing to the complex, filamentary structure of the SPH particle distribution, the
particle-to-grid algorithm took longer than in the disc applications described earlier.
Each snapshot took between 12 and 24 hours to generate on a single processor

Table 5.1: Table of SPH properties and corresponding AMR grid properties
for each timestep.
SPH properties Grid properties

Timestep Npart Npt ρmax Noctals Depth Mass Mass Npart
(M�) Error % /Noctals

1.0 tff 3500000 0 2.18(-16) 1097622 14 50.43 -0.850 3.19
1.1 tff 3455362 8 7.65(-10) 1118601 21 50.18 -0.369 3.09
1.2 tff 3287092 18 2.49(-09) 1112357 23 49.42 1.16 2.96
1.3 tff 3248783 27 2.92(-09) 1174818 21 49.14 1.73 2.77
1.4 tff 3087719 50 3.17(-09) 1151781 20 48.67 2.66 2.68



150 CHAPTER 5. IMAGING A SIMULATED STAR FORMATION CLUSTER

Figure 5.2: A slice through the xy−plane illustrating the dynamic range of
densities that can be captured within the cloud using AMR. Thirty
orders of magnitude are present in the simulation with densities
reaching as high as 2×10−7g cm−3 and as low as 5×10−36g cm−3

(although very little material by mass is actually present below
∼ 10−25g cm −3). The greyscale for this plot is given in n(H2).

machine depending on the complexity of the SPH particle distribution. In order to
produce accurate gridded velocities and densities, hcrit (see Section 4.2.2) was taken
at the 95% level. It is expected that this could have been reduced with minimal
effect on the final conclusions of this work.

Figure 5.2 illustrates how an SPH representation of density can be discretised onto
a mesh.
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5.3.1 Molecular line analysis

Our analysis of this cluster simulation seeks to examine the conclusions of Ayliffe
et al. (2007), that the dynamical picture of star formation provided by the SPH
hydrodynamics simulation and others like it are not invalidated by the observations
of Walsh et al.

We do this by following the analysis methods employed by Walsh et al. (2004).
Accordingly, the 13CO (1-0) transition (ν0 = 110.2013542798 GHz) was used to
trace low density envelopes. Initially, an abundance of [13CO] = 10−6 relative to
H2 was assumed. To trace gas closer in to the cores within the cluster, the C18O
(1-0) transition (ν0 = 109.7821734 GHz, [C18O] = 10−7) was used and to define
cores the N2H+ (1-0) transition (ν0 = 93.1737 GHz) was used because of its high
critical density (ncrit ≈ 1.4 × 105). For N2H+ a constant relative abundance of
1.5 × 10−10 was assumed in line with values obtained for well-studied cores in the
Taurus-Auriga molecular complex (Tafalla et al. 2004). For N2H+ this is a good first-
order approximation for the core but is not necessarily true for the wider envelope
(although this is ameliorated by the fact that much of the gas outside the core is
too diffuse to emit strongly in any case); a more sophisticated study would take into
account the spatial variation noted by Tafalla et al. (2004) as well as considering the
variation in N2H+ abundance for low and high mass cores (Zinchenko et al. 2009).

For all molecules, a non-thermal turbulence parameter with a fullwidth of 0.3
km s−1 ∼ cs for H2 at the simulated temperatures was assumed.

The 13CO, C18O and N2H+ molecular data was superimposed on to the discretised
grid for a total of 15 distinct grids (3 molecules and 5 timesteps). A non-LTE
solution was derived for each grid using the molecular line transfer code described
in Chapter 2. Table 5.2 shows the mean error of the least well converged level over
all grid cells. A further condition that every cell had to have an RMS error of less
than 1% in J = 0 and J = 1 was imposed to reduce any pixel-to-pixel variance in
intensity in the subsequent raytracing of the grid.

The computation of the level populations for all the grids took approximately 100000
CPU hours. Each individual grid was converged to the required level within 240
real hours (the maximum allotted wall time for each simulation) using upto 48
processors. Depending on the tracer, between 12800 rays and 102400 rays were used
to converge the grid in the random-ray stage of the code. The quickest calculation
took approximately 6000 minutes. The longest took almost exactly 15000 minutes
(240 hours).
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Table 5.2: Error (in percent) of the least well converged level in each grid for
each timestep.

Species
13CO C18O N2H+

1.0 tff 0.30 0.14 1.03
1.1 tff 0.27 0.19 1.98
1.2 tff 0.25 0.07 0.54
1.3 tff 0.16 0.12 0.59
1.4 tff 0.14 0.15 0.71

To improve the statistics of our analysis, each of the 15 grids were observed from 20
equally spaced positions on a sphere with radius 140 pc. Care was taken to maximise
the separation of each observer position giving equal coverage of the viewing sphere
from each perspective. Although these viewing positions do not provide independent
observations, they are necessary to perform a statistical analysis of the velocity
differences on a large enough sample set. It is common to take the six cardinal
directions as viewing locations for simulated data (e.g. Offner & Krumholz 2009)
and this is an extension of this method of extending datasets that are ’expensive’
to acquire. By extension, the same caveats that apply to the conclusions based on
that method for creating multiple datasets from one apply to this work also.

A 1024× 1024× 80 element datacube was created for each observer position-tracer-
timestep triplet. This work therefore contains 300 distinct datasets upon which to
perform statistical analysis. The maps have a linear spatial resolution of 2 × 1015

cm or ∼133 AU per element. This is equivalent to a spatial resolution of ∼ 1 arcsec
at 140 pc. From the known velocity distribution of the SPH particles, the emission
was expected to come from a range of velocities within 3.2 km s−1 of the line centre
giving a velocity resolution of 0.08 km s−1.

In these grids, molecular abundance has been assumed to remain constant in both
time and space. Without a detailed evolution history, it is not possible to predict
with any certainty the local chemistry in any region of the grid. In Section 5.3.2, a
simple chemical model to take into account the expected CO freezeout in the cloud
is described. In the absence of better chemical modelling it is assumed that the
abundance of N2H+ remains constant, which is appropriate given the age of the
cluster (Bergin & Langer 1997).

5.3.2 Chemistry

Molecular adsorption onto dust grain surfaces is known to be an effective depletion
mechanism in many carbonaceous species at densities of n(H2) = 3 × 104 cm−3
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(Bacmann et al. 2002). At higher densities, the depletion is more than an order
of magnitude greater (Caselli et al. 1999; Bergin et al. 2002) – Crapsi et al. (2005)
found the average depletion of CO in starless cores to be ∼ 10. Notable absentees in
this list are N-containing species including N2H+. C18O is expected to trace a larger
scale than N2H+ not only because of its lower critical density but also because it
effectively freezes out at densities above ∼ 3 × 104 cm−3. Therefore, in the cluster,
C18O intensity is weighted towards the outer regions while N2H+ traces the denser
inner parts.

Drop profile

A ‘drop’ profile was used to test the effect of CO chemistry, as described in Jørgensen
(2004). In its simplest implementation, the model assumes a constant, undepleted
abundance of CO relative to that of H2,X0, where Tdust/gas ≥ Tevap or n(H2) < 3×104

cm−3 combined with a depleted abundance of XD, elsewhere. Using equation (5.1),
it is possible to reformulate the model solely in terms of the local gas density, ρ,

X(ρ) =


XD for 10−19 < ρ < 1.56× 10−12 g cm−3,

X0 elsewhere,
(5.2)

Empirically, the drop profile has been used to improve the fit of gaussian line profiles
to low J observational C18O data of various class 0, class 1 and pre-stellar objects.
The improvement in the goodness of fit is found to be sufficiently significant as
to provide strong evidence for its acceptance over the constant abundance model.
Moreover, the model has its basis in observations (Caselli et al. 1999; Tafalla et al.
2002) where a freeze-out zone has been directly imaged.

Physically, the profile is explained in terms of radii. The material within the inner
radius is expected to be gas-phase owing to its proximity to the warm core. The
temperature at which CO is expected to start returning to the gas-phase is around
30 K with a non-linear increase in desorption rate occurring up to ∼ 160K (Collings
et al. 2004). Beyond the outer radius, at densities lower than 3 × 104 cm−3, the
depletion timescale due to freezeout is thought to exceed the lifetime of the core
and is thus assumed to remain at an undepleted abundance, to reduce the number
of free parameters.

Since the critical densities of N2H+ are higher than those of the CO isotopologues,
they are less sensitive to the outer region of the envelope where depletion and con-
tribution from the surrounding cloud may be important. It has been posited (Jør-
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Figure 5.3: CO chemistry drop profile.

gensen 2004) that this may explain why these transitions can be modelled assuming
a constant density.

In the runs taking chemistry into account, the same method as outlined in Section
5.3 but with depleted densities one order of magnitude lower in the intermediate
region, viz. [13CO]D = 1× 10−7 and [C18O]D = 1× 10−8 was used.

5.4 Results

In order to compare the core and cloud velocities, line profiles for each each molec-
ular species were extracted. For each synthetic observation the intensity datacubes
had their background intensity subtracted, B(ν0, Tcmb), and were summed over all
velocity channels to give an integrated intensity map. The maps were converted to
brightness temperature, Tb using the Rayleigh-Jeans approximation (see equation
1.38).

We used wavdetect, part of the ciao data analysis system written for the Chan-
dra X-ray Observatory, to detect cores in the N2H+ intensity maps. The wavde-
tect tool (Freeman et al. 2002) correlates the image with wavelets of different,
user-defined scales and then searches the results for significant correlations. This
method is very similar to the difference of Gaussians (DoG) method, where a differ-
ence map is created by convolving an image with two Gaussian distributions with
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different spatial variances and subtracting the resultants, preserving structure with
lengthscales between the two variances. wavdetect produced very similar results
but was slightly better at detecting objects that it was not possible to resolve using
DoG and was more robust against the converse case of rejecting objects that upon
later inspection had distinct line profiles (often indicative of containing protostars).

We looked for cores with lengthscales of 2 – 64 pixels (∼ 0.001−0.04 pc) and applied
a threshold of 50% of the global maximum to the transformed image to determine
the membership of a pixel to a core. The range of lengthscales over which core-like
features were searched for was determined by testing different values (limited by the
fact that the limits must be a power-of-2) and examining the results. In actuality,
the number of objects found by this method was approximately constant for most
ranges. The limits that were settled upon are smaller compared to typical beam
sizes at typical distances and thus smaller than the size of observationally extracted
cores (upto 0.1 pc).

A recursive blob counting algorithm was invoked to determine the number of separate
regions identified as containing a local maximum within the map; for N2H+, each
region is a potential core and for 13CO and C18O each region defines the envelope
which surrounds the core. This is similar to the method of Offner, Krumholz, Klein,
& McKee (2008b) in that we generate a background map and then detect local
intensity peaks above that.

Any core candidate that lay wholly or partially outside the enveloping material as
determined by the low density contour was excluded from the analysis. In this
constant abundance analysis, it is expected that the regions should be strict subsets
of each other. For each core candidate, a mask was applied to the original datacube
corresponding to the region defined by the 50% contour and line profiles for that
region were found by integrating over all pixels in the region for each molecular
tracer.

Note that in this work, we have performed the spectrum extraction on the original,
non-degraded synthetic observations. Convolution with a beam and the addition of
a source of noise may be added in a future analysis of the data. It is expected that
by convolving the data with an instrument function, the regions identified as having
high-density gas will be smeared out over a wider area and that the point of peak
intensity will have a reduced magnitude. This leads to an additional increase in the
identified core size, as the 50% threshold is reduced compared to the non-degraded
case and the emission from more lower-density gas is identified as belonging to the
dense core.
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Figure 5.4: Integrated intensity map in N2H+ (1-0). Contours have been
added to demarcate each of the cores identified. The line pro-
files of the two largest cores and those of the enveloping gas are
illustrated in Figures 5.5 and 5.6 respectively. Note that this im-
age only shows the region of interest in the cloud. The extent of
the entire cloud is ≈ 0.6 pc.

Two methods were used to define the centre and spread of the extracted line pro-
files. In one method, the line profile was fitted with a Gaussian distribution using a
Levenberg-Marquardt algorithm. The initial Gaussian was set to have a peak bright-
ness temperature of 5 K, σ = 1 km s−1 and to be centred at v = 0 km s−1. Each
datum point was assumed to have equal weighting. The centre of the distribution
was taken to be the mean of the fitted Gaussian and the spread was parameterised
by the standard deviation of the Gaussian.

In addition to characterising the line profile using parameters derived from the fit,
the mean and median of the distribution were directly calculated, providing a robust
method to verify the position of the peak in the Gaussian distribution determined
by fitting. Similarly, the full-width at half-maximum (FWHM) of the profile was
recorded to parameterise the spread. The same process was repeated for the low
density tracer and the resultant difference in line centre velocities was assumed
to represent the systematic shift in line-of-sight velocity. Figures 5.4, 5.5 and 5.6
illustrate the results of the analysis for one particular observation at 1.4 tff.
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Figure 5.5: Typical high-density core line profiles traced using N2H+. Dashed
lines indicate the Gaussian profile fit and FWHM. Dotted line
indicates position of the Gaussian line centre. The legend also
displays median line centre and the equivalent standard deviation,
σe, from the FWHM of the profile. (b) shows a profile that it
would be possible to fit two Gaussians to (assuming two cores
along the line-of-sight) however by examining the SPH particle
distribution this profile is known to be caused by rotating gas
surrounding a multiple system.
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Figure 5.6: Typical low-density envelope profiles traced using 13CO. Both pro-
files exhibit flat peaks associated with the saturation of optically
thick 13CO (1-0) line.
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Figure 5.7: The line profiles of the square regions are superimposed onto an
N2H+ (1-0) integrated intensity map (see Figure 5.4). The regions
containing the three cores have somewhat broader line profiles and
exhibit more structure (i.e. double peaks caused by rotation and
infall) than the optically thin gas surrounding them.

Having removed the two ‘cores’ identified by wavdetect that did not lie within
the 50% low-density envelope we also removed 11 cores (over the 5 timesteps) which
were judged to be spurious detections which were typically characterised by very
small areas (< 10 pixels), similar velocity profiles to a larger nearby detection and
often did not contain any sink particles. This left 169 cores over the 5 timesteps;
the fewest detected cores (22 from 20 observing positions) being in the first timestep
before the creation of any sink particles and the most (58) being detected in the
last timestep, where three unique star-forming regions were detected by Bate et al.
(2003a). Every remaining valid core-envelope pair was analysed and the results
were collated to allow us to perform a statistical analysis according to the strategy
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outlined in Section 5.3.1. Cores that contained one or more sink particles were
judged to be protostellar cores while cores without sink particles are categorised as
being prestellar (or starless).

Following Ayliffe et al. (2007), we do not present the results of Gaussian fits in
this work. All analysis was done using both methods and the differences between
methods of analysis were sufficiently small that they did not affect any conclusions
drawn upon the results of the work. Moreover, the profiles of 13CO data were
rarely found to be Gaussian, exhibiting flat, wide peaks (owing to their large optical
depth). As such, we characterise the dispersion using the FWHM / 2

√
2ln(2) of any

given line profile and take the line centre to be the median, m, of the distribution
(
∫m
−∞ f(x) dx = 0.5

∫∞
−∞ f(x) dx). As a non-parametric estimator of the line centre,

the median does not assume normally distributed data; as a result the median is less
influenced by shoulders, long tails, noise etc. and may give a less biased estimate
of the true line centre. Consequently we did not attempt to fit multiple Gaussians
to the data (with the assumption that a double-peaked distribution indicated two
cores along the line-of-sight) primarily because it was possible to confirm from the
SPH particle distribution that this was not the case but also because it allows us to
more directly compare our results with previous studies. The presence of a doubly
(or more) peaked profiles is caused by the velocity shift associated with the rotation
and/or infall of gas. In order to illustrate these effects we have calculated profiles
from 25 areal bins around the cores shown in Figure 5.4 and plotted them over an
integrated intensity map (Figure 5.7). Whilst the optically thin gas is associated
with single-peaked profiles, the denser cores display a more complex line profile
morphology. A similar variety of profile shapes have been found in one-dimensional
simulations of collapsing and rotating cores (Pavlyuchenkov et al. 2008).

Figure 5.8 shows a histogram of the distribution of relative velocity difference, de-
fined as the difference between the medians of the line profiles for 13CO and N2H+,
for each of the 300 observing positions of the cores and their associated low density
gas envelopes. The standard deviation of the histogram for all cores (both pre–
and protostellar) is σ = 0.16 km s−1. In the same figure, we plot three normalised
Gaussian distributions whose standard deviations are equal to that of the equiva-
lent standard deviations as derived from the mean FWHM of the line profiles for
each tracer molecule. They are notably more broad than either the relative velocity
difference or the sound speed.

Figure 5.9 illustrates values for the mean velocity dispersions of each tracer for each
timestep. The trend for the CO isotopologues is the same; that the mean velocity
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Figure 5.8: Histogram of velocity difference of all cores (combined starless and
protostellar cores) identified at all time steps (light grey, σ = 0.16
km s−1) and protostellar cores (dark grey, σ = 0.18 km s−1). Also
plotted are the velocity dispersions for N2H+ (dot, σ = 0.861 km
s−1), C18O (dot-dash, σ = 0.808 km s−1), 13CO (dash, σ = 1.05
km s−1).

dispersion is relatively low at 1.0 tff, rises until a peak at 1.2 tff and then turns over
and levels off towards the end of the simulation. The same effect can be seen in the
N2H+cores except that the effect seems to be delayed until 1.3 tff. We discuss this
trend in section 5.5.

The relative differences in line-centre velocities between the C18O envelope and the
N2H+ cores are lower throughout the cluster. This is due to C18O emission being
more optically thin than the 13CO emission. Consequently, C18O (1-0) is able to
trace a region closer to the core. It must be stressed that in these constant abundance
calculations CO is not frozen-out and therefore will trace a higher density region
– the opposite behaviour of what is known to occur. Consequently, until this is
addressed any conclusions drawn from this work must be used cautiously. This
effect is explored further in Section 5.5.
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5.4.1 The effect of LTE and chemistry

The statistical equilibrium calculations performed in this work are very computationally-
intensive and it is important to justify the complexity of the calculations. We in-
vestigated a synthetic observation from the last timestep to examine the effect that
the assumption of LTE had on the N2H+ tracer. Owing to the high overall average
density of the cluster (above the critical density for the (1-0) transition in both CO
isotopologues), 13CO (1-0) and C18O (1-0) maps showed differences of only a few
percent in integrated emission. However, the N2H+ map (Figure 5.10) shows a large
deviation from the assumption of LTE, happily providing a posteriori justification
for solving statistical equilibrium throughout the cluster.

We repeated the analysis on the same timestep with the ‘drop’ model outlined in
Section 5.3.2. Although minor differences in line profile intensity and shape are
observed, the velocity dispersions did not change significantly and no systematic
differences with the constant abundance models were detected. It appears that the
optical depths of the transitions we have studied are such that the effective photo-
surface of the cores is outside the volume where freeze-out occurs. Naturally a more
sophisticated treatment of chemistry, involving a full time-dependent calculation, is
required to confirm our preliminary results. However such a calculation is beyond
the scope of this thesis.

5.5 Discussion

We performed a detailed radiative transfer analysis of a self-gravitating hydrodynam-
ics simulation in order to examine the relationship between the core and envelope
velocity dispersions and make a more direct comparison between the hydrodynamical
models and millimetre observations. We used information about specific molecular
tracers and determined the non-LTE level populations and used these to calculate
the emergent intensity from different observation angles around the cluster. We
compared the core-envelope velocity dispersion for different observation directions
of the same cluster and found good qualitative agreement with observational results
(e.g. Walsh et al. 2004, 2007; Kirk et al. 2007), our main conclusion being that one
cannot reject competitive accretion as a viable theory of star formation based on
observed velocity profiles.

Ayliffe et al. (2007) found that the majority of their sources had velocity differences
(between high and low density gas) less than the sound speed at all timesteps but
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that they had a significant tail out to large velocity differences (in this case > 0.5
km s−1). However, they also found that their high-density gas linewidth became
larger than their low-density gas linewidth at times greater than 1.1 tff, contradict-
ing the observations of Walsh et al. and Kirk, Johnstone, & Tafalla (2007). We
believe this may be because the study done by Ayliffe et al. (2007) did not take
into account optical depth effects and that their density cut for the high density
material was too high. By reducing their assumed critical density by a factor of
3 they were able to reduce the velocity dispersion of high-density material by a
significant amount so that the high-density gas linewidth was smaller than the low-
density linewidth, when averaged over all timesteps. This work does not show the
trend of larger high-density linewidths at any time, although Figure 5.9 shows that
the velocity dispersion turns over with increasing time. We believe that this effect
can be explained by two opposing processes. The original simulation did not drive
turbulence so it is expected that in the absence of dynamic interactions between pro-
tostellar objects the velocity dispersion of the gas will ultimately tend to decrease.
However, as we are observing regions undergoing complex interactions that act to
stir up the gas, thereby increasing the velocity dispersion, we see the two effects
combined; each star formation episode acting to increase the velocity dispersion and
decay over time acting to reduce it. Like Ayliffe et al. and the observational surveys,
we see no clear trend in the relative motions of core/envelope pairs and note that
the standard deviations of the velocity differences are always far smaller than the
velocity dispersion.

The original hydrodynamic simulation did not include any form of driven turbulence.
For the radiative transfer calculation, we assumed a global constant non-thermal
broadening parameter of 0.3 km s−1 in addition to the expected thermal broadening.
This is similar to that of the mean non-thermal turbulent line width of the driven
case analysed in Offner et al. (2008a) but at odds with ‘the notion that cores are
supported primarily by thermal pressure, large non-thermal motions having disap-
peared on small scales (< 0.1 pc) and at high densities (> 104 cm−3)’ (Johnstone
et al. 2010). As a result we found larger velocity dispersions than have been observed
in some studies (Offner et al. 2008b). However, not only are our observed core mo-
tions smaller than the mean velocity dispersion but also they are often less than
the local sound speed (Figure 5.8). This is true for both starless and protostellar
cores and in fact, our results mirror those of Kirk et al. in that they too show no
indication that the core-to-envelope motions significantly change between the star-
less and protostellar stages of evolution. By performing a more detailed radiative
transfer study of Bate et al.’s cluster simulation, our findings go some way towards
reconciling the results previously obtained by Ayliffe et al. (2007) with those found
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by others who had performed similar studies.

Although relatively sophisticated we intend to incorporate additional physics in fu-
ture. Specifically we have not yet taken into account N2H+ hyperfine splitting.
Tafalla et al. (2004) studied the effect of neglecting hyperfine splitting (which max-
imises radiative trapping). They found that the difference in obtained level popula-
tion was on the order of tens of per cent which is comparable to the uncertainties in
collision parameters. Neglecting hyperfine splitting can have a significant effect on
the optical depth of any N2H+ transition and consequently the emergent intensity.
In effect, we have systematically overestimated the line optical depth and the inclu-
sion of hyperfine splitting would shift the line formation regions to higher density.
In the future we wish to incorporate hyperfine splitting, although previous work
(Daniel et al. 2006) incorporating this microphysics has demonstrated that whilst it
is likely to have a significant effect it will not be large enough to affect our overall
conclusions.

Another important factor is depletion of CO by adsorption onto dust grain surfaces.
For the results presented in this chapter, we have assumed that all tracer molecules
occur with constant abundance and many observational studies have shown that this
is demonstrably not the case. Chemical networks (Bergin & Langer 1997; Glover
& Mac Low 2007) exist that allow us to predict the abundance of many molecular
species in molecular clouds. We used a simple chemical model to estimate the effect
that CO chemistry would have on our observations, and have discovered that a
simple freeze-out model does not significantly affect our results. Nonetheless we
recognise that a more complete treatment is desirable and a natural extension of
this work would be to couple torus with a chemical network to understand more
fully where line emission comes from in molecular clouds.
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Figure 5.9: The velocity dispersion (km s−1) of each molecular species for each
timestep. White squares denote N2H+, grey squares denote 13CO
and black squares denote C18O.

Figure 5.10: The ratio (nLTE:LTE) of integrated intensity of N2H+(1-0). The
contours are at 0.25, 0.5, and 0.75.



Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's Law.

—Douglas Hofstadter,
Gödel, Escher, Bach: An Eternal Golden Braid

Chapter 6

Conclusions and future work

In this section I will summarise the work that has been presented in this thesis. I
conclude upon the work done in each chapter of this work individually (Sections 6.1
– 6.4). In each section I also briefly discuss the future work that can be done that
is relevant to the section.

6.1 The molecular line transfer module for torus

This chapter documents the non-LTE molecular line radiative transfer code module
that has been developed for torus. The code is fast, highly parallelised and appli-
cable to realistic astrophysical conditions. The AMR grid enables torus to fully
resolve geometries that span many spatial orders of magnitude. It is possible to
model any molecular line transitions for which the salient data are known, although
the code has been extensively validated for microwave rotational transitions in lin-
ear molecules that do not exhibit hyperfine splitting. Excitation by dust, which is
important for transitions at shorter wavelengths is also treated fully. It is my inten-
tion that torus become a popular tool for the analysis of observational line data
from Herschel and ALMA as well as a tool for predicting the observed line emission
expected from simulations (see Chapter 5) and to that end, the code has been writ-
ten for future maintainability and ease of use. Moreover, now that desktop PCs are

166
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sufficiently powerful, it is now possible to conduct full non-LTE analyses using one-
and two-dimensional models in close to real-time. Consequently, full non-local RT
codes may be used in χ2-minimisation routines to extract physical parameters from
observed objects without having to resort to LTE or LVG methods.

I hope to add more functionality in the near future to extend its applicability to a
wider range of scenarios and to further increase the speed of calculation to offset the
enhanced complexity of scenarios that torus might deal with.

Although torus has been tuned to efficiently calculate line data for microwave
rotational transitions in linear molecules and runs most quickly in this scenario,
due to inherent generality of the code design it will be very easy to extend the
code to deal with hyperfine splitting and overlapping levels in general which add an
additional degree of complexity.

6.1.1 Future work

In terms of speed improvements, much work has already been done. Where possible,
the code has been vectorised and optimised for single processor performance. As a
Monte Carlo method, it scales exquisitely with Nproc as the communication overhead
is low (see Figure 3.10). However, while the code is currently parallelised with MPI,
it does not take advantage of OpenMP which can be used in conjunction with MPI
to take advantage of shared memory on machines that have large amounts of RAM.
Specifically, in instances where the torus grid has a large memory footprint, i.e. in
three-dimensional geometries (> 106 cells) with very many molecular levels to solve
SE for, each MPI thread must retain a copy of the grid and all temporary arrays (e.g.
i(1:maxray,1:maxtrans) can be in excess of 100 MB); this can be up to 8 copies on
zen. In the so-called ’Hybrid mode’ inter-thread communication would be reduced
and, crucially, each node would only need one grid and one copy of the working
arrays, potentially reducing the memory overhead by tens of gigabytes allowing far
larger arrays to be considered (assuming CPU time is available).

Algorithmically, there are several methods that can be implemented to accelerate
the code. torus uses so-called long characteristics to sample the external radia-
tion field where the closer a cell is to the source (of the rays), the more rays pass
through virtually the same part of the cell, resulting in a large number of redundant
calculations. Whilst this method is intrinsically the most accurate for finding the
intensity along a ray and very intuitive it is not fast. The method of short charac-
teristics, where the salient parameters are interpolated from earlier (upstream) cells
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does not suffer from this redundancy but introduces some degree of numerical dif-
fusion. Furthermore, in order to perform the integration along short characteristics,
all the relevant values for upstream cells must have already been calculated, impos-
ing the condition that the grid must now be swept outwards from the source. Due
to this dependence, the method of short characteristics is intrinsically serial mak-
ing it impractical for implementation on a parallel computing platform. Conversely,
long characteristics methods are inherently parallel and any slowdown can be ame-
liorated somewhat by parallelising the ray-tracing process because each thread is
able to independently work on a different ray. Rijkhorst et al. (2006) suggest a third
way, that combines the desirable properties of both methods, excellent parallelisa-
tion and computational efficiency, called hybrid characteristics where ‘ray sections
are traced through the cells of each patch and it is these local contributions which
are combined through interpolation by performing another ray trace, this time not
over cells but over patches’. It is anticipated that implementing this method would
greatly accelerate the code when the number of rays being used to sample the radia-
tion field becomes very large. Currently this stage can take many hours even when
executed on many nodes.

Through extensive code profiling, it has been determined that torus spends a sig-
nificant proportion of time calculating ray-boundary intersections and traversing the
oct-tree. Currently, the routines that perform these calculations are very generalised
and do not take into account the discrete nature of the AMR grid. The gadget-2
code (Springel 2005) utilises Peano-Hilbert curves in order to decompose the sim-
ulation space. It may be possible to implement some kind of similar structure to
improve the average-case ray-tracing speed through the grid but it is not clear yet
how this might be implemented in FORTRAN.

I have recently noted that if the memory were available, makeImageGrid would not
have to loop over all velocity channels as it does currently. As in getray, an array
of intensities in each channel could be returned along the same ray, reducing the
amount of time spent traversing the grid. This would halve the execution time when
dealing with many velocity channels.

Finally, it is often possible to exploit the geometry of a model in order to gain signif-
icant execution time reductions. When considering disc structures Pavlyuchenkov
et al. (2007) introduced the concept of interaction areas for each cell, where only ra-
diation from within the area is likely to affect the level populations for that cell. For
a disc structure exhibiting Keplerian rotation it is possible to analytically determine
these zones in advance but it may be possible to generate them numerically for more
complex geometries. The other innovation introduced in the same work was that
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of thermalised cells where, if it is clear a cell is likely to be in thermal equilibrium
with its surroundings there is no need to determine the level populations within as
it will naturally be determined by the Boltzmann equation.

The simple, fundamental objective in this project is to improve techniques used to
estimate the masses of gas and dust in several typical regions, using a wide range
of data from the optical, infrared, sub-millimetre/millimetre spectral regions, which
can critically constrain radiative transfer modelling.

6.2 Benchmarking

This chapter showcases the exemplary performance of torus in some challenging
astrophysical scenarios. The models used in this chapter contain much of the physics
necessary to model a collapsing cloud and a circumstellar disc with realistic tempera-
tures and densities. torus compares well with other RT codes that have undertaken
the same benchmark tests and in the case of the H2O benchmark, quantitatively im-
proves on the other codes efforts (in that in recovers more of the flux expected from
the analytic solution).

With a preponderance of processing power now available to astronomers, it would
seem that the days of local approximations are numbered. I have shown that
some complex models take very little time even today. Even a more complex two-
dimensional disc model with tens of thousands of cells takes little more than a day
to converge to a non-LTE solution and, moreover, the ray-tracing routines are able
to produce high-resolution datacubes in just a few hours.

As the push towards multi-core processors takes sway, it will become possible to
use codes like torus to interpret observational data in something very close to real
time on a regular desktop machine. It is vital then that these codes can be relied
upon to produce accurate results.

6.2.1 Future work

The benchmark tests that were discussed in Chapter 3 are quite old now (8 years
for the collapsing cloud and 6 years for the water benchmark). Whilst they are still
very relevant, we must now look ahead to more robust, demanding benchmarks that
will test codes’ abilities to resolve the high-resolution we expect to be able to see
with ALMA and other observatories. Moreover, it is now very clear that accurate
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chemical modelling is essential for providing high-quality modelling of dense cores
and discs. The benchmarks discussed in this chapter all assume constant abundances
of their molecular tracers. We should now look to work like Tsamis et al. (2008) and
others to create standard scenarios that all codes should be able to reproduce.

In this vein, I am working on a gas and dust disc model that was designed by
Glauser et al. (2008) to model IRAS 04158+2805, a young source with spectral
type M5-M6 in the Taurus star-forming region. The cylindrically symmetric model
is specified by 60 radial points and 40 vertical points. The gas and dust are at
different temperatures and because the molecular abundance (of 13CO) has been
calculated using a chemical network exhibits complex structure. I hope to present
the results of this in the near future.

6.3 An efficient particle-to-grid method

The particle-to-grid method presented in this chapter has proved to be a useful tool
for rapidly transposing a set of irregularly ordered SPH particles on to a fixed AMR
grid. A number of parameters can be used to control the resolution of the grid
and to control the fidelity with which the temperature or density or velocity field is
reproduced.

In clustered star-forming environments, gas that is dense enough to emit with suffi-
cient intensity may only exist in the small volumes occupied by dense cores compared
with the size of the whole cloud. Consequently, fine discretisation is only required
over a small volume. Thus, I devised an efficient method of mapping irregular SPH
data onto an AMR grid with minimal discretisation error. This technique permitted
the study of the expected molecular line emission from a hydrodynamical simulation
of molecular cloud collapse using SPH with our grid-based radiative transfer code.

As well as enabling us to accurately model line profiles, the mapping of density
distributions from the particle-based representation onto an AMR grid has impor-
tant implications for coupling radiation transfer and hydrodynamics. For example,
using the technique outlined in Chapter 4, it is now possible to conduct a full, poly-
chromatic multiple scattering treatment of the transport of radiation in an SPH
simulated circumstellar disc using high-accuracy grid-based techniques (Acreman
et al. 2010b) without having to resort to the flux-limited diffusion approximation
employed in earlier radiative transfer simulations (e.g. Whitehouse & Bate 2004;
Krumholz et al. 2007; Bate 2009b).
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The code has also been used to rapidly discretise AU-scale circumstellar discs through
to kiloparsec-scale galactic hydrodynamic simulations so that a full treatment of ra-
diative feedback can be performed. Currently, the diffusion approximation is still
used in areas of high optical depth but the surface is determined self-consistently, as
opposed to the grey flux-limited diffusion method commonly used in non-polychromatic
SPH codes. In a disc configuration the volume covered by the diffusion approxima-
tion is large, reducing the computational effort. In contrast, the volume that can be
approximated in a tenuous molecular cloud is far smaller than the cloud itself; thus
extending such calculations to a cluster collapse model is currently not tractable
given the very large dynamic range of linear scales necessary to accurately treat the
radiation transport of optically thin-to-thick boundaries, but, with further advances
in computational power this kind of calculation will become a reality.

6.3.1 Future work

In the future, I hope to modify the code so that the grid points are filled in an
order such that the particle list that is currently created for each grid parent cell is
created less frequently, relying more heavily on the property of compact support of
the kernel to cull the contributions of any particle in the list that is too far away
from the particle.

Soon, I will implement a monotonic cubic interpolation routine following Fritsch &
Carlson (1980) that will guarantee the sign of the density while hopefully providing
the benefits of improved interpolation order. By utilising the density and velocity
gradient information on the particles in a manner identical to that already done for
the density and velocity information it is possible to perform this more accurate
interpolation without using data from outside the grid structure. This will lead
to even smoother images and potentially more accurate physics where the density
structure is complex and the use of additional cells is not practical. Conversely, it
may be possible to use fewer cells to model the radiation feedback which may be
important in calculations that are barely tractable.

Using the rate equations prescribed in Dobbs et al. (2008) it is possible to estimate
the dynamic relative fractional abundance of CO to H2 across the galaxy for each
timestep of the SPH model. Douglas et al. intend to complement their existing
Hi study with a synthetic CO galactic plane survey. Whereas the simplicity of
the two-level 21-cm transition makes the production of the synthetic Hi spectra
straightforward, detailed balance calculations will be necessary for other molecular
tracers including CO. As torus been used to perform a similar study in a star-
forming cluster, it is a natural extension to the torus to perform this calculation.
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6.4 Creating synthetic images of SPH cluster cal-
culations

This chapter demonstrates the full capabilities of the molecular line radiative transfer
module and the particle-to-grid algorithm used in torus.

Having obtained non-LTE level populations throughout the cluster for tracers of
high– and low–density gas over 5 timesteps covering the creation of 50 protostellar
objects we were able to produce and analyse synthetic observations. We have shown
in this chapter that clusters exhibiting competitive accretion are able to reproduce
the properties of relative core motions found in observation.

The conclusions of this work are discussed in Section 5.5 so here I will discuss future
work that can be done on hydrodynamic simulations.

6.4.1 Future work

In 2003, Bate et al. demonstrated that competitive accretion was a likely formation
mechanism for stars in the kinds of environments that can be observed. In order to
render these hydrodynamic calculations tractable, their original simulations did not
consider radiative transfer and were limited to quite a small cluster. This is the work
we have tested our code on today. Since 2003, Bate has run a 500 M� simulation
with 10 times the number of SPH particles (Bate 2009a). This simulation created
over 25 times as many protostellar objects as the original simulation and very many
more star-forming cores. The calculation has also been run with a realistic gas
equation of state and radiative transfer in the flux-limited diffusion approximation
rather than the original barotropic equation of state (Whitehouse & Bate 2004).
This simulation Bate (2009b) produced a ratio of brown dwarfs to protostars that
better matches the ratio seen in observations.

As well as providing an excellent proof of concept for the particle-to-grid algorithm,
the work contained in Rundle et al. (2010) provided confirmation of many of the
conclusions reached by Ayliffe et al. (2007).

The next logical step for any future synthetic line mapping would be to incorpo-
rate the enhanced chemical modelling and hyperfine splitting of N2H+ and to more
closely compare how the SPH particle distribution compares with the RT analysis.
Moreover, having created accurate synthetic maps, we should examine other phys-
ical parameters of the simulation, such as the identified core masses and density
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Figure 6.1: Output of the ALMA simulation package, CASA.

profiles. The effects of convolution should also be examined in more detail and it
may be possible to investigate what might be seen with future observatories like
ALMA.

6.5 Current work

In this section I will briefly discuss the work that is currently being done using
torus. The application of the code given below is in the early stages but I will
discuss the preliminary work here.

6.5.1 Predicted ALMA observations of a proto-planetary
disc

Ben Ayliffe and I are currently working on a project to investigate whether a planet
formed in an SPH simulation (Ayliffe & Bate 2009a,b), very close to the inner
edge of a proto-planetary disc, can be resolved using ALMA. We will carry out
multi-wavelength continuum and molecular line calculations to image the disc. An
850 micron image from torus has been read into CASA, the ALMA simulation
software package, which produces output as shown in Figure 6.1. The figure shows
the input data (top-left) and predicted output (top-middle) as well as a number of
other diagnostic images. Although other studies have investigated the detectability
of planets forming in discs (e.g. Wolf et al. 2002; de Gregorio-Monsalvo et al. 2004),
this will be the first investigation based on radiation hydrodynamical simulations.



Appendix A

Good coding practice

Below, I have listed some of the coding practices I have tried to adhere to whilst
writing the code.

1. The bulk of the work done by the program should be done in subroutines
contained within modules that group similar subroutines together. The main
program should primarily consist of calls to these subroutines. This improves
readability and code maintenance.

2. Where appropriate, code is commented. Typically, functions and subroutines
start with a description of their utility and there is a running commentary
through the main program explaining what’s going on.

3. All variables, functions and subroutines have descriptive names; loop variables
are similarly descriptive, e.g. itrans vs. i. We use ’CamelCase’ to improve
code readability.

4. Code is fully indented, demarcating code branches and loops.

5. Calculations that consist of multiple steps are split over as many program
lines.

6. We define all mathematical and physical constants in a module, constants_mod.
This eliminates the need for repetitive calculation of constant values and im-
proves readability. Furthermore, if the accepted value of Planck’s constant, h,
or π should change then it is only necessary to change it in one location.

7. Commonly used variables are declared as public rather than being passed in
function calls to clarify the pertinent input and output of a call.
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Appendix B

getray code fragment

1 ! Follow long characteristic of ray until edge of grid
2 do while ( inOctal (grid% octreeRoot , currentPosition ))
3

4 ! Find distance to edge of cell
5 call findSubcellLocal ( currentPosition , thisOctal , subcell )
6 call distanceToCellBoundary (grid , currentPosition , direction , tVal , soctal

= thisoctal )
7

8 CellEdgeInterval = OneOverNtauArray (ntau) ! if ntau = 2 then the segment is
taken in one chunk

9 dds = tval * cellEdgeInterval ! determine line segment length
10 halfstep = dds * 0.5 * direction ! find point halfway between start and end

to take representative velocity
11 dist = 0. d0
12 ! Calculate number density of molecules
13 nMol = thisOctal % molAbundance ( subcell ) * thisOctal %nh2( subcell )
14 ! Absorption by gas per length
15 balance (1: maxtrans ) = ( hcgsOverFourPi * nmol) * &
16 ( thisOctal % molecularLevel ( ilower (1: maxtrans ),subcell ) * thisMolecule %

einsteinBlu (1: maxtrans ) - &
17 thisOctal % molecularLevel ( iupper (1: maxtrans ),subcell ) * thisMolecule %

einsteinBul (1: maxtrans ))
18 ! Emission by gas per length
19 spontaneous (1: maxtrans ) = ( hCgsOverfourPi * nmol) * &
20 thisMolecule % einsteinA (1: maxtrans ) * thisOctal % molecularLevel ( iupper

(:) ,subcell )
21 ! Source function
22 where ( balance /= 0. d0)
23 snu (1: maxtrans ) = spontaneous (1: maxtrans ) / balance (1: maxtrans )
24 end where
25 ! Calculate total emission and absorption over entire cell ( sum over all line

segments )
26 do itau = 2, nTau
27 ! Get next position
28 dist = dist + dds
29 thisPosition = currentPosition + dist * direction
30 ! Get velocity at midpoint
31 thisVel = velocity ( thisPosition -halfstep , grid)
32 ! Get velocity difference and weighting
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33 dv = deltaV - ( thisVel .dot. direction )
34 PhiProfVal = phiProf (dv , thisOctal % molmicroturb ( subcell ))
35 ! Get weighted gas absorption (+ dust if req ). If usedust then update jnu and snu
36 alpha (1: maxtrans ) = balance (1: maxtrans ) * phiprofVal
37 endif
38

39 ! Calculate optical depth and associated attenuation factor
40 dTau = alpha * dds * 1. d10
41 attenuation = exp(-tau)
42 ! Intensity along ray owing to line segment
43 localradiationfield = exp(-dtau)
44 localradiationfield = OneArray - localradiationfield
45 di0 = localradiationfield * snu
46 ! Add contribution to whole line
47 i0 = i0 + attenuation * di0
48 tau = tau + dtau
49 enddo
50 ! Update position into next cell making sure that new position is definitely in new

cell
51 currentPosition = currentPosition + (tval + 1.d -3* grid% halfSmallestSubcell )

* direction
52 enddo
53

54 ! Add attenuated CMB to intensity at point .
55 i0 (1: maxtrans ) = i0 (1: maxtrans ) + BnuBckGrnd (1: maxtrans ) * attenuation (1:

maxtrans )

Listing B.1: Source code fragment from getray.



Appendix C

Recursion code

1 do subcell = 1, thisOctal % maxChildren
2 if ( thisOctal % hasChild ( subcell )) then
3 ! find the child
4 do i = 1, thisOctal % nChildren
5 if ( thisOctal % indexChild (i) == subcell ) then
6 child => thisOctal % child (i)
7 call calculateOctalParams (grid , child , thisMolecule )
8 exit
9 end if

10 end do
11 else
12 ...

Listing C.1: Source code fragment that controls the recursion through the
octree

177



Appendix D

Table of TORUS input parameters
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Table 7: Required parameters are in bold

Parameter Type Comment Range (default)

moleculefile char Name of the molecule to image the grid in (need the .mol).
Can be any from the Leiden LAMDA database

densitysubsample logical Interpolate density where possible in order to make smoother
image

T/F F

molAbundance real Relative abundance of molecule : H2
Overridden by doChemistry

0 − 1

vturb real Non-thermal turbulent velocity (km s−1)
Currently constant throughout grid
See equation ... for usage

0 ∼ 1 0.2

isinlte logical I nitialise molecular level populations assuming LTE
Useful for geometries that fulfil LTE criteria (almost)
globally

T/F T

dongstep logical Perform Ng acceleration steps at specified intervals
current global step is 6
current local step is 5

T/F T

quasi logical Use Sobol quasi-random number generator to determine ray
direction and frequency

T/F F

setmaxlevel integer Manually set maximum number of levels to consider during
convergence
This can reduce the computation time for the grid at the ob-
vious cost of loss of information about upper levels and inac-
curacy in levels around them.
Set to 0 or not set specifies that the code should automatically
determine the maximum number of levels to take into account

2 - nlevels 0

plotlevels logical Write VTK file of diagnostic data + level populations in
./plots

T/F F

usedust logical Includes continuum emission/absorption from dust
(requires mie at the moment)

T/F F

restart logical Restart process from part-converged grid
Useful if the job is killed. Old level populations are not stored
so convergence information cannot be used for first subsequent
iteration

T/F F

addnewmoldata logical Add molecular data to a secular grid
Currently used for molcluster geometry where a tempera-
ture/density is stored on grid but nothing else

T/F F

tolerance real RMS Convergence level (see eqn ...) for writemol
Standard error per pixel (eqn...) for readmol with adaptive
subsampling (see subpixels

(0 − 0.1] 0.01

lowmemory logical [broken?] Do not store constants for grid but recalculate each
time (slower)

T/F F

distance real Distance to grid (in pc) [1 - 1010] 10
maxVel real Range of velocities over which to scan (km s−1).

Currently this is symmetric about 0 and assumes the object
does not possess any systematic velocity

(0 − 1000]

lineimage logical Create a datacube in a molecular line determined by itrans
rather than a continuum wavelength

T/F T

lte logical Create datacube using LTE grid rather than nLTE grid T/F F
itrans integer Determines line transition for raytracing

See molecularfile file for details
[1-ntrans]

lamline real Determines wavelength of continuum image (in microns) 850
imageside real Determines spatial extent of datacube



npixels integer Controls number of spatial pixels per dimension
If using multiple threads, make this a multiple of nthreads

[1-4096] 100

nSubpixels integer Controls number of rays used to sample object per pixel
Setting this to 0 turns on adaptive pixel sub-sampling.
The region is sampled with paraxial rays until the standard
error drops below tolerance

[0-4096] 1

nv integer Controls number of velocity channels in datacube 1-10000 100
wanttau logical output FITS file also contains average ray optical depth per

velocity channel
T/F F

centrevecX
[x/y/z]

real Image centre coordinates in 1010 cm. 0

rotateviewaboutX
[x/y/z]

real Angle (degrees) through which image plane is rotated about
X-/Y-/Z- axis

[-180–180] 0

observerpos integer If present, read line XX from observerpos.dat to get observer
coordinates

maxrhocalc logical FITS file contains maximumdensity encountered in pixel in-
stead of intensity

T/F] F

SPH & splitting Parameters

limitscalar real Mass (g) limit above which cell is split 1 1

limittwo real Ratio of minimum and maximum densities
Negative value: ρmax/ρmin ≤ X
Positive value:
(ρmax − ρmin)/(ρmin + ρmax) ≤ X

2 2

vturbmultiplier real If present, number of turbulent linewidths that velocity in cell
exceeds before splitting (km s−1)

-999

mindepthamr integer Minimum AMR depth [2-30] 2
sphdatafilename char SPH data filename
hcritpercentile real Fraction of particle smoothing lengths that hcrit should exceed (0-1] 0.9
hmaxpercentile real Fraction of particle smoothing lengths that hmax should ex-

ceed
(0-1] 0.99

kerneltype integer Kernel used for discretisation
(1 is cubic spline, 0 is truncated exponential)

0/1 1
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