Decision-Making under Uncertainty:
Optimal Storm Sewer Network Design
Considering Flood Risk

Submitted by Si’Ao Sun to the University of Exeter
as a thesis for the degree of
Doctor of Philosophy in Engineering
In July 2010

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature: ...
Abstract

Storm sewer systems play a very important role in urban areas. The design of a storm sewer system should be based on an appropriate level of preventing flooding. This thesis focuses on issues relevant to decision-making in storm sewer network design considering flood risk.

Uncertainty analysis is often required in an integrated approach to a comprehensive assessment of flood risk. The first part of this thesis discusses the understanding and representation of uncertainty in general setting. It also develops methods for propagating uncertainty through a model under different situations when uncertainties are represented by various mathematical languages.

The decision-making process for storm sewer network design considering flood risk is explored in this thesis. The pipe sizes and slopes of the network are determined for the design. Due to the uncertain character of the flood risk, the decision made is not unique but depends on the decision maker’s attitude towards risk. A flood risk based storm sewer network design method incorporating a multiple-objective optimization and a “choice” process is developed with different design criteria.

The storm sewer network design considering flood risk can also be formed as a single-objective optimization provided that the decision criterion is given a priori. A framework for this approach with a single objective optimization is developed. The GA is adapted as the optimizer. The flood risk is evaluated with different methods either under several design storms or using sampling method.

A method for generating samples represented by correlated variables is introduced. It is adapted from a literature method providing that the marginal distributions of variables as well as the correlations between them are known. The group method is developed aiming to facilitate the generation of correlated samples of large sizes. The method is successfully applied to the generation of rainfall event samples and the samples are used for storm sewer network design where the flood risk is evaluated with rainfall event samples.
Acknowledgement

First of all, I would like to express my deep gratitude to my supervisors, Prof. Slobodan Djordjević and Prof. Soon-Thiam Khu for their exceptional supervisions on this research for the last three years. I appreciate their valuable guidance on the subject and the freedom that they gave me to develop my own interests. Prof. Djordjević offered his professional support and patience throughout the research. Prof. Khu is not only a mentor but also a good friend in private to me.

Also I would like to thank Prof. David Butler and Prof. Kapelan Zoran for engaging in some valuable discussions. I would like to thank Dr. Guangtao Fu and Dr. Albert Chen for their unconditional help whenever I went to them with a question or a problem. I would like to thank Francois Courtot, Sarah Ward and Barry Evens for their help in my English correction. I would like to thank all people from the Centre for Water Systems for their friendly support and assistance.

Then I give the acknowledgement to University of Exeter for the provision of ERS (Exeter Research Studentship), which made this research possible.

Finally I am very grateful to my parents for their selfless support and love.
Table of Contents

Abstract ... 2
Acknowledgement .. 3
Table of Contents ... 4
List of Publications ... 9
List of Figures .. 10
List of Tables .. 13
List of Abbreviations .. 15
List of Symbols ... 17

Chapter 1 Introduction .. 21
 1.1 Background .. 21
 1.2 Motivation ... 22
 1.3 Objectives ... 23
 1.4 Thesis outline ... 24

Chapter 2 Literature review ... 26
 2.1 Uncertainty and uncertainty analysis ... 26
 2.1.1 The nature and source of uncertainty ... 27
 2.1.2 Uncertainty expressed in mathematics ... 29
 2.1.3 Handling uncertainty in hydrosystems .. 31
 2.2 Flood risk and related uncertainty ... 34
 2.3 Decision-making under risk/uncertainty ... 37
 2.3.1 The concept ... 37
 2.3.2 Methodologies .. 39
 2.4 Storm sewer network design ... 40
 2.4.1 Development of storm sewer network design .. 40
Chapter 3 Uncertainty understanding, representation and propagation: handling uncertainty in flood evaluation48

3.1 Mathematical languages for uncertainty ... 48
3.1.1 Probability ... 49
3.1.2 Fuzzy sets ... 50
3.1.3 Possibility .. 51
3.1.4 Random sets and Dempster-Shafer theory ... 52
3.1.5 Probability box .. 53
3.2 Uncertainty understanding and representation ... 54
3.2.1 Understanding uncertainty: interpreting aleatory and epistemic uncertainties ... 54
3.2.2 Representing uncertainty: one- or two-dimension? .. 55
3.3 Uncertainty propagation ... 59
3.3.1 Probabilistic evaluation .. 61
3.3.1.1 Separating aleatory and epistemic uncertainties (two-dimension uncertainty propagation) ... 61
3.3.1.2 Pooling aleatory and epistemic uncertainties (one-dimension uncertainty propagation) ... 62
3.3.2 Imprecise probabilistic evaluation .. 63
3.3.2.1 Probability box for propagating uncertainty .. 64
3.3.2.2 Conversion to probability box .. 65
3.3.2.3 Propagating uncertainty using MCS ... 68
3.4 A general process for uncertainty propagation through modelling 69
3.5 Applications .. 69
3.5.1 Probabilistic evaluation... 70
3.5.1.1 Two-dimension uncertainty propagation.................................. 71
3.5.1.2 One-dimension uncertainty propagation 73
3.5.2 Imprecise probabilistic evaluation.. 74
3.6 Conclusions ... 78

Chapter 4 Decision-making in storm sewer network design

considering flood risk..80

4.1 General issues... 80
4.1.1 The decision-making process.. 80
4.1.2 Conventional methods for economical storm sewer network design .. 81
4.1.3 Problem formulation... 82
4.2 Taking flood risk into account.. 83
4.2.1 Construction cost and flood risk ... 83
4.2.2 Probabilistic flood risk evaluation... 84
4.2.3 Decision-making criteria.. 87
4.2.3.1 The design storm based method ... 88
4.2.3.2 Criterion based on expected/mean flood risk 88
4.2.3.3 The Hurwicz criterion ... 88
4.2.3.4 Criterion based on stochastic dominance 89
4.3 Multiple-objective optimization... 90
4.3.1 Multiple-objective optimization formulation............................ 90
4.3.2 NSGA II .. 92
4.4 Applications... 93
4.4.1 Case studies.. 93
4.4.1.1 The synthetic network... 93
4.4.1.2 The Miljakovac Network... 96
4.4.2 Results and discussions.. 98
4.4.2.1 The synthetic network... 98
4.4.2.2 The Miljakovac network ... 102
4.5 Conclusions.. 105
Chapter 5 Optimal storm sewer network design: flood risk evaluated with several design storms ...107

5.1 Introduction ... 107
5.2 The framework for single-objective optimization of storm sewer network design ... 108

5.2.1 Problem formulation ... 108
5.2.2 The Framework ... 108

5.3 Optimization by adapted GA .. 110
5.4 Applications ... 113

5.4.1 The synthetic network ... 113
5.4.2 The Miljakovac network ... 118
5.5 Conclusions ... 120

Chapter 6 Optimal storm sewer network design: flood risk evaluated with sampling method ...122

6.1 Generating correlated samples .. 122
6.1.1 Related issues .. 122

6.1.1.1 Background .. 122
6.1.1.2 Existing methods for generating correlated samples ... 125
6.1.2 Methodology ... 126

6.1.2.1 Basic principle .. 126
6.1.2.2 The group method and its theoretical basis ... 128
6.2 Applications of generating correlated samples ... 131

6.2.1 Rainfall events with correlated rainfall depth and duration .. 132
6.2.2 Rainfall events with correlated dry duration, wet duration and intensity. 135
6.2.3 Samples for storm sewer network design ... 137

6.3 Optimal flood risk based storm sewer network design using sampling method: the synthetic network .. 139
6.4 Conclusions ... 144

Chapter 7 Conclusions ...146

7.1 Summary .. 146
7.2 Conclusions ... 147
7.3 Future research directions .. 149
7.3.1 Uncertainty representation and uncertainty propagation 149
7.3.2 Optimal storm sewer network design .. 150

Reference ... 152