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Abstract

This thesis is in two parts. The first part considers a theoretical relationship be-

tween the natural variability of a stochastic model and its response to a small

change in forcing. Over a large enough scale, both the real climate and a climate

model are characterised as stochastic dynamical systems. The dynamics of the

systems are encoded in the probabilities that the systems move from one state

into another. When the systems’ states are discretised and listed, then transition

matrices of all these transition probabilities may be formed. The responses of the

systems to a small change in forcing are expanded in terms of the eigenfunctions

and eigenvalues of the Fokker-Planck equations governing the systems’ transition

densities, which may be estimated from the eigenvalues and eigenvectors of the

transition matrices. Smoothing the data with a Gaussian kernel improves the esti-

mate of the eigenfunctions, but not the eigenvalues. The significance of differences

in two systems’ eigenvalues and eigenfunctions is considered. Three time series from

HadCM3 are compared with corresponding series from ERA-40 and the eigenvalues

derived from the three pairs of series differ significantly.

The second part analyses a model of the coupled climate-economic system,

which suggests that the pace of economic growth needs to be reduced and the

resilience to climate change needs to be increased in order to avoid a collapse

of the human economy. The model condenses the climate-economic system into

just three variables: a measure of human wealth, the associated accumulation of

greenhouse gases, and the consequent level of global warming. Global warming

is assumed to dictate the pace of economic growth. Depending on the sensitivity

of economic growth to global warming, the model climate-economy system either

reaches an equilibrium or oscillates in century-scale booms and busts.
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√
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X is the state variable and W is the state of a Wiener process, so

that dW is gaussian white noise with variance dt over a timescale

dt. Both systems have the same steady pdf (a gaussian with mean

1, variance 1) but have different characteristic timescales [43] equal

to 1/α. Because of the different timescales, the two systems have

different equilibrium responses to a change in forcing. This is shown

in the right plot, where r has been reduced by 0.5 for both systems.

The new blue equilibrium for the slow system is a gaussian with

mean 0.5 and variance 1. But the red system is ten times as fast

as the slow blue system. So, the fast red system’s equilibrium mean

is reduced by one tenth of the reduction to the slow blue system’s

equilibrium mean. If the slow system were a model and the fast

system were reality, then no matter how small a change in forcing,

the slow system would overestimate the real system’s response to

the change in forcing by a factor of 10. . . . . . . . . . . . . . . . . 40

8



LIST OF FIGURES 9

1.2 This figure shows the evolution of 2 pdfs under advection and diffu-

sion. The left plot shows advection – there is only drift towards the

origin, so the pdf is compressed towards the origin. The right plot

shows only diffusion, which evens out the highs and lows i.e. the

convexity in the pdf. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.3 Each graph shows, in solid red, the exact steady pdf when a constant

forcing of r dt is applied to the 1-dimensional Langevin equation

dX = −α X dt+ ǫ dW . The forced system evolves according dX =

−α X dt+r dt+ǫ dW. The unforced steady pdf is a Gaussian density

with zero mean and variance ǫ2/2α. The forced steady pdf is also a

Gaussian density with variance ǫ2/2α but with mean r/α. The best

possible estimate via eigenfunctions of the forced steady pdf is shown
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Chapter 1

Introduction: testing climate

models

1.1 Background

Climate policy will have a major global impact whether climate change is a distrac-

tion from other more pressing problems [29] or the most urgent issue of the current

time [42]. Since climate policy is heavily based on the projections of climate models,

it is natural to ask whether climate models are credible. The Inter Governmental

Panel on Climate Change (IPCC) is charged with making policy-relevant assess-

ment of the scientific literature so it discusses the credibility of climate forecasts

in detail [41]. To start with, it challenges what is meant by credible. There are

different standards of proof or credibility depending on what can realistically be

tested.

1.1.1 Standards of proof vary by science

The IPCC’s gold standard of credibility is for a model or forecast of an event

that can be entirely controlled [41]. An example would be a physical transforma-

tion where all the environmental conditions (for example temperature, pressure,

atmospheric composition) can be repeated. Such a transformation can be carried

out with a high degree of regularity. Given enough repeated demonstrations, the

22
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‘model’ outcome is treated as a matter of fact.

Less control is possible for, say, the trials of a new medical drug. The boundary

conditions are uncontrollable. Patients are all different, so some of the bound-

ary conditions are left to chance. So, no matter how well the other conditions

are controlled, all that can be obtained is a probabilistic result. Despite these

uncertainties, this is a workable level of reliability for the medical industry.

For weather forecast models, no control is possible. There are no spare Earths to

treat as a control group and in any case there are no control mechanisms. Weather

forecasters cannot set up a real-world experiment, let alone repeat it [28]. The most

reliable forecasters become the most trusted, but this requires that their forecasts

are over a short-enough timescale that they can be repeatedly evaluated [23].

Weather forecast models start with an initial state of the Earth-atmosphere

system (based on observations and previous forecasts) and project that initial state

forward over a brief sequence of short timescales and with high spatial resolution.

Climate models project over longer timescales with lower spatial resolution, so that

climate model outputs are general features of the model system [22](e.g. global

mean surface temperature) and not heavily dependent on initial conditions [11].

For climate models, control is not possible and, furthermore, repeated evalua-

tions of forecasts take too long to be of any use. All that is available to climate

scientists are actual observations which may be explained according to some theory

or model. But if a climate model encodes universal laws of nature, its explanations

can apply to any state of nature. So climate models are challenged to compare the

recent and distant past (to the extent that these are actually known).

In short, different standards of credibility apply depending on what test can

conceivably be applied to a theory. The more complex the system, the harder it is to

test a theory, and the less precise is its credibility. Some of the criticism of climate

models comes from applying an inappropriate or indeed impossible standard of

credibility to them (for example, by requiring 100% high-resolution accuracy from

weather forecasts). But implicit in the question of whether climate projections are

credible is the reasonable assumption that observations constrain what the models
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can credibly project. So, another way of asking whether models are credible is to

ask how observations constrain models.

1.1.2 Observational constraints placed on climate models

As far as possible, climate models are based on well-known laws of dynamics and

thermodynamics, laws which are themselves based on observations and controllable

experiments. However there are some climate processes (e.g. cloud microphysics)

which are not understood to this extent. These processes must be parameterised

so that the statistics of their modelled behaviour matches the observed statistics

of the real processes’ behaviour.

Models are (necessarily) only approximations. The spatial and temporal reso-

lution affordable in climate models is limited by the size and speed of the available

computers. Processes like convection and those in the boundary layer, which occur

over smaller scales than the affordable resolution must be parameterised.

This parameterisation looks circular: if the parameterisations are chosen to fit

the observed data then it may be no surprise if model output fits the observed

data. But model output incorporates not just the parameterised processes, but the

interaction of those processes with all the other processes. In particular, model

feedbacks, where the effect of one process is amplified or dampened by another, are

a model ’output’ rather than an ’input’. Thus observations place a set of necessary,

but not sufficient conditions on the feedbacks of climate models.

Several key feedbacks of climate models have been constrained by the observed

data. Observed data, for example of short-term variability due to seasonal vari-

ation, has been used to constrain long-term feedbacks and therefore long-term

responses to a general change in forcing [18, 20, 16, 14, 31].

Recent observations are the most detailed, so an informal constraint for climate

models is to require them to match the recent past. It has been suggested that

this informal constraint has resulted in a survivor-bias by which only models that

match the twentieth century get developed [5]. Nevertheless, models do now match

more closely the mean fields of twentieth century temperature, sea-level-pressure,
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meridional overturning circulation, precipitation and cyclones. Furthermore ex-

tremes are better matched, as are modes of variability, both spatial patterns like

ENSO and the polar-tropical contrast in warming, as well as temporal patterns like

the seasonal pattern, and the night-day contrast in warming [41].

Models have also matched aspects of past climates, for example the mid-Holocene,

the Last Glacial Maximum, as well as successfully making short-term forecasts of

the cooling caused by the eruption of Mount Pinatubo.

Patterns have been noted in the projections of the models which best fit the

mean data of the recent past. For example, the smallest errors in matching the

twentieth century sea-surface temperatures are from models with the largest pro-

jected twenty-first century temperature change [39]. A strong seasonal cycle has

been linked to large climate sensitivity [25]. For these associations to carry weight

there must be reasons to believe that matching the past means that a model will

match the future[41, section 8.1.2.2]. But Kohfeld and Harrison [26] point out that

being able to simulate the current climate, while an important necessary condi-

tion, is not sufficient to guarantee that a model simulates changes correctly. Reifen

and Toumi [37] show that for any 10 year period in the twentieth century, the

model which most closely matches observations is never the same for two consec-

utive decades. A trajectory may be matched by chance, that is, by particular

coincidences between the system and the model over the period of evaluation.1

Brohan [5] has argued that it is not even necessary to match the twentieth cen-

tury, since a complex model run twice with identical boundary and near-identical

initial conditions will almost certainly produce radically different trajectories.

There may be processes which happen in the future which do not happen in the

recent past (or which happened at different rates). If that is the case, then matching

the recent past will be insufficient to match the future. For example, adding in

a carbon cycle had a big impact on future climate projections [12] though would

have had a much smaller impact on reconstructions of the twentieth century.

However, under certain assumptions, the sensitivity of a system’s response to a

1This has also been observed in financial models, to the extent that one established ‘contrarian’

strategy is to sell winners and buy losers [7].



1.1. BACKGROUND 26

small change in forcing is proportional to its natural variability. This is illustrated

by Bell [3], who observes that a mechanical spring’s strength (and thus response

to extra weight) can be inferred from the speed of its oscillations. The fluctuation

dissipation theorem of Leith [28] proves that under certain conditions, the average

response of a system to a small change in forcing is proportionate to the change

in forcing, where the proportionality is dictated by a well-defined function of the

lag-covariances of the unperturbed system’s state variables. North et al. [34] com-

pare the response predicted by the theorem with the actual response obtained by

perturbing a GCM and find the theorem applies reasonably well, but note that the

real climate does not satisfy its assumptions. Gritsun and Branstator [19] extends

the fluctuation-dissipation theorem, proving that it applies under more general

assumptions than required for [28].

The fluctuation-dissipation theorem [28, 19] states that for a sufficiently small

change in forcing (even for non-linear systems), the linear response of the system’s

expected state may be inferred from the natural variability of the unperturbed

system. As an alternative to the fluctuation-dissipation theorem, this chapter for-

malises a linear response of the system’s probability density function (pdf) to a

sufficiently small change in forcing. This is made possible, because, under the

same conditions as assumed by [47, 19], even though the dynamics of the system

may be non-linear, the dynamics of the system’s pdf (encoded in its Fokker-Planck

equation) are linear.

1.1.3 Transition densities

One way of formalising the comment in section 1.1.1 that standards of proof vary

by science is to consider what experiments can actually show. This can be put

into a common currency by considering a system state space, that is the (discrete

or continous) set of all possible states that a system may be in, and a transition

density, that is a function that quantifies the likelihood that the system comes

out of one state (or region of state space) and goes into another. The probability

that the system moves from one state into another is the integral of the transition
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density over the pair of states.

For example, an entirely controllable and predictable experiment could be de-

scribed by two states (the states before and after the transformation) with a 100%

rate of transition from one state to the other. The transition density would be

a (two dimensional) delta function, centred on the pre- and post-transformation

states.

In a test of, say a new medical treatment, then even if there were only two

states (say healthy and sick), there will usually be a transition of less than 100%

(following treatment) between the two states.

The weather may be described by a continous state space of many dimen-

sions (possibly infinitely many e.g. temperature, pressure, humidity at innumer-

able places on the globe). For each region of state space there is, over a certain

time interval, a transition density to all the other regions of the state space. Given

a long-enough time interval, we may assume that the transition density is indepen-

dent of the starting state. For example, whether it is raining a month from now

does not depend (significantly) on whether it is raining right now.

For this long-term transition density, which can be formalised as the limiting

density as the time interval increases, it makes more sense to talk of a probability

density, because the density becomes progressively independent of its starting state.

This leads to a useful definition of ‘climate’, and climate change. The climate

may be defined as the limit (as time increases) of the transition density of the state

space of the earth-atmosphere system. Climate change, then, represents a change

in the likelihood of various states of the system [47].

With this idea of climate as a density i.e. a probability distribution, it is worth

revisiting what has actually been matched between the real climate and climate

models (outlined in section 1.1.2). The great progress in increasing agreement

between features of the twentieth century climate record and the corresponding

output from climate models boils down to agreement in aspects of the observed

climate, i.e. in the long term probability distribution. However, even if a (forced)

model matches a real system’s entire probability distribution (i.e. with the same
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relative frequency of all events, the same distribution of extremes etc), then this

still does not guarantee that the model will respond to a change in forcing (no

matter how small) in the same way as the real system (shown in section 1.1.4).

1.1.4 Differences in forced response even if model matches

real mean density exactly

Two models may have the same steady probability density function but still have

quite different transition probabilities. For instance, suppose the weather in a

particular place alternates so that a sunny day always follows a cloudy day and

vice-versa. Compare this to another place which is cloudy every day from October

to March, and then sunny every day from April to September. Both places are

sunny for half of the year and cloudy for the other half. The climates for both places

(according to our definition, which are the steady probability density functions) are

the same, but the transition densities are different.

Similarly, two models may have the same steady probability density function

(not just the same mean and variance, but the same entire distribution), but still

have different steady state responses to a change in forcing, consistent with [26].

This is demonstrated in figure 1.1 on page 40. Therefore, even if a model matches

the actual mean climate, that is not enough to conclude that it will forecast the

correct equilibrium forced climate, let alone the transient forced climate.

If a model has the same transition density as the real system, then statistically

it is identical to the system [22]. It therefore makes sense to suppose that the

model will respond in the same way as the real system, at least to a small change

in forcing. This is formalised in section 1.2, which also suggests that it is not

necessary for a model to match the entire transition density of the real system, but

just its dominant modes. The transition density describes the system’s ‘internal

variability’, and so gives a relation between internal variability and forced climate

change.
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1.1.5 Comparing transition densities

The practical problem is to compare the transition densities of a climate model

with the densities of the observed climate. This is done in chapter 2 by taking

time series of climate model output and reanalysis output, discretising the state

space to a finite set of states, sampling transition matrices that count the relative

frequencies of transition from one state to another over a constant time-step, and

comparing the eigenvectors and eigenvalues of the sampled transition matrices.

The transition matrices are random variables, so any difference between their

sampled values may not necessarily indicate an actual underlying difference in

transition densities. All that can be said is whether it is likely that the difference

arises by chance.

The size of the available data limits the number of states that can credibly be

sampled. For instance, with 45 years of daily ERA-40 data, there are 16,425 data

points, so at most 16,424 transitions can be observed, and the rate of transition can

be credibly estimated only for a much lower number of states. If 1000 states are

used, made up by discretizing particular climate variables (e.g. an El Niño index)

into, say, 10 discrete intervals, then the number of individual climate variables that

can be compared together is no more than 3.

Clearly, there are several choices implicit in this method of comparison. How

many and which states should be used? What length of dataset is required? Should

the data or densities be smoothed and if so how? These are addressed in chapters

2-3.

Behind those methodological questions is the motivating question of whether

a climate model matches the available data sufficiently for all its forced climate

change forecasts to be accurate. Just three series from HadCM3 and ERA-40 are

tested in in chapter 4. The eigenvalues of the transition densities based on those

three series differ by more than can be attributed to natural variability, but the

theory needs to be developed further in order to say whether this actually indicates

a significant difference between the actual and model responses.
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1.2 Theory

The steady pdf response of a particular kind of stochastic system is expressed in

this section as a function of the transition density of the system under constant

forcing. Thus, two such systems with the same transition densities have the same

steady pdf under any small change in forcing. Section 1.2 is based on [46].

1.2.1 Climate defined as a probability density function (pdf)

The state of the earth-atmosphere system may be reduced to a finite dimensional

vector ~x [22]. Let f(~x,t) be a time-dependent probability density function, so the

relative likelihood that the system is in state ~x at time t is f(~x,t).

1.2.2 Earth-atmosphere dynamics assumed to be a diffu-

sion process

It is assumed, as in [50, 47, 19], that the state vector ~X evolves according to a

stochastic differential equation

d ~Xt = M( ~X) dt+ ε d ~Wt, (1.1)

The state variable ~X is a random variable. Over a small timestep dt, changes in

the state vector d ~Xt come from a combination of (deterministic) advection in state

space, in the form of M( ~X) dt, and (random) diffusion in state space, in the form

of ε d ~Wt. M(~x) is called the drift [24], and it represents the large scale resolved

processes in a climate model. For a climate to exist (in the sense of section 1.1.3

i.e. a limiting distribution for the transition density), M must be a restoring force,

otherwise the variability introduced by d ~W would grow indefinitely [22]. ~Wt is a

vector of independent Wiener processes, i.e. random walks. Fluctuations in the

Wiener processes of size ε d ~Wt diffuse the probability density independently from

the drift M. These random contributions to changes in ~Xt represent the small scale

processes which are not resolved by the model, but which are part of the system

and whose effects are integrated by the larger scale, resolved processes [22, 36, 19].
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ε is a constant matrix, with any finite number of columns, and d rows, where d is

the length of ~X, i.e. the number of dimensions in the model.

Fokker-Planck equation (FPE)

Because (1.1) is a diffusion process [24, page 34], the probability density function

f(~x,t) of the model state satisfies the Fokker-Planck equation [24, page 37]:

∂f

∂t
+ ∇.(Mf) = ∂i ∂j (Kij f) , (1.2)

where K =
ε εT

2
(1.3)

and the summation convention is used for the diffusion term, so that

∂i ∂j (Kij f) =

d∑

i=1

d∑

j=1

∂2

∂xi∂xj
(Kijf(~x)) . (1.4)

As f is a pdf, it must integrate to one and be non-negative everywhere. So, f must

fall to zero in the extreme regions of state space. The boundary condition on (1.2)

is that, for any polynomial p(~x)

p(~x)f(~x) → 0 as |~x| → ∞. (1.5)

Equation (1.2) is an advection-diffusion equation for probability. The probability

density of a state tends to increase where the advected probability converges and

tends to decrease where the advected probability diverges. Probability diffuses

into a region if the concentration of probability in that region is convex. This is

illustrated in figure 1.2 on page 41.

1.2.3 Eigenfunctions of Fokker Plank equation are used to

form a basis for the pdf

The eigenfunctions of equation (1.2) are the separable solutions to equation (1.2) of

the form fk(~x)e
−µkt, where fk(~x) are functions over state space and µk are constants.

Substituting the eigenfunctions into equation (1.2) and dividing by e−µkt,

−µkfk + ∇.(Mfk) = ∂i ∂j (Kij fk) . (1.6)
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We hypothesise that {fk}k=∞
k=0 forms a complete set, that is that any function

over the state space can be described in terms of combinations of fk.
2 So, under

this hypothesis, the initial pdf of the system, say h(~x), can be expanded in terms

of the eigenfunctions fk(~x). That is, there are constants bk for which

h(~x) = f(~x, 0) =
∞∑

k=0

bkfk(~x). (1.7)

These constants, bk, define the pdf f(~x,t) for all t. For, let

f̂(~x, t) =

∞∑

k=0

bkfk(~x)e
−µkt. (1.8)

Then f̂(~x, t) satisfies the linear equation (1.6) by the definition of fk, and also

f̂(~x, t) satisfies the initial condition that f̂(~x, 0) = h(~x). So, f̂(~x, t) is f(~x,t), the

pdf of the system.

Eigenfunctions of adjoint are orthonormal with eigenfunctions of FPE

The eigenfunctions of equation (1.6) are made orthonormal to the eigenfunctions

of the adjoint of equation (1.6), in order to expand the steady pdf under a change

in forcing, in terms of the eigenfunctions.

Let equation (1.6) be written

−µkfk = L(fk) (1.9)

where L(f) is the linear operation −∇.(Mf) + ∂i ∂j (Kij f).

The adjoint [27] of L is L∗, defined by

∀f, g
∫

L(f) g d~x =

∫
f L∗(g) d~x. (1.10)

The boundary condition on g is that

g(~x) and ∇g(~x) grow no faster than a polynomial as |~x| → ∞. (1.11)

2For example, {fk}k=∞

k=0 forms a complete set for the functions over the 1-dimensional state

space for the linear Langevin equation illustrated in chapter 3. For the 1-dimensional linear

Langevin equation, the fk are polynomials of order k times a Gaussian density.
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Integrating equation (1.10) by parts, and assuming by boundary conditions (1.5)

and (1.11) that |Mfg|, g∇.f and f∇.g tend to zero towards the boundary of state

space

∫
L(f) g d~x =

∫
(−∇.(Mf) + ∂i ∂j (Kij f)) g d~x (1.12)

=

∫
f (M.∇g +Kij ∂i ∂j g) d~x. (1.13)

So, using the summation convention, the adjoint operator is

L∗(g) = M.∇g +Kij ∂i ∂j g. (1.14)

Let gk be eigenfunctions which satisfy the adjoint equation

−νkgk = L∗(gk) = M.∇gk +Kij ∂i ∂j gk. (1.15)

The set of eigenvalues {µk}∞k=0 is the same as the set of eigenvalues {νk}∞k=0. To

see this, multiply equation (1.6) by gl from equation (1.15) and integrate over state

space:

−µk
∫
fkgl d~x =

∫
(−∇.(Mfk) + ∂i ∂j (Kij fk)) gl d~x. (1.16)

Integrate by parts, and make the same assumptions about boundary conditions

as for the adjoint equation (1.12). Necessarily, since the adjoint was obtained,

equation (1.16) involves the adjoint:

−µk
∫
fkgl d~x =

∫
fk (M.∇gl +Kij ∂i ∂j gl) d~x (1.17)

= −νl
∫
fkgl d~x from equation (1.15) (1.18)

⇒ (νl − µk)

∫
fkgl d~x = 0. (1.19)

Equation (1.19) implies that either νl = µk or
∫
fkgl d~x = 0. Assuming that for

every fk there is some gl for which
∫
fkgl d~x 6= 0, there is a νl equal to each µk.

Order and relabel the νl so that for all k, νk = µk. Then, by equation (1.19)

∫
fkgl d~x = 0 for k 6= l. (1.20)
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Both fk and gk can be multiplied by any constant and still satisfy the (linear)

equation (1.6) and equation (1.15). So normalise fk and gk so that

∫
fkgk d~x = 1 and

∫
f0 d~x = 1. (1.21)

Equation (1.21) does not uniquely define the scale of fk or gk, but this does not

matter, as only the products of fk and gk will be used.

Projection of initial pdf onto eigenfunctions

The constants bk in equation (1.7) are obtained via (1.21). Multiplying (1.7) by gl

and integrating over state space,

∫
h(~x)gl(~x) d~x =

∞∑

k=0

bk

∫
fk(~x)gl(~x) d~x (1.22)

= bl by (1.20) and (1.21). (1.23)

If the state at time t=0 is known with certainty, so that ~Xt = ~xt, then the pdf h(~x)

at time t is a delta function centred on ~xt, so that (1.23) implies that

bl =

∫
δ(~xt)gl(~x) d~x = gl(~xt). (1.24)

1.2.4 Expansion of forced steady pdf in terms of eigenfunc-

tions of unforced FPE and adjoint

This section defines the steady pdf3 as the eigenfunction with eigenvalue zero.

The Fokker-Planck equation is used to approximate the effect on the steady pdf

of a small change in the drift vector M. The approximate small change in pdf

is projected onto the eigenfunctions {fk}, and a formula for each eigenfunction

coefficient is obtained. The change in M could, in practice, come from a change in

forcing or feedback, or both.

First, observe that the steady pdf of the Fokker-Planck equation has a zero

eigenvalue. If, for any k, µk < 0 then e−µkt → ∞ as t → ∞ and so for all ~x,

3Jargon: the steady pdf is not a state of the system e.g. hot or cold, but a probability

distribution. It is the equilibrium climate according to the definition in section 1.1.3
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|f(~x, t)| → ∞. This would violate the boundary condition that f integrates to one

and is always non-negative. So µk ≥ 0. If ∀k, µk > 0 then e−µkt → 0 and so for

all ~x, |f(~x, t)| → 0 as t → ∞. This would violate the boundary condition that f

integrates to one. So there is a k for which µk = 0. Let this µk be denoted µ0 so

that f0(~x) is the system’s steady pdf. Thus, by (1.15) g0 is a constant and so by

(1.21), g0 = 1.

Second, the effect on f0 of a small change in M is estimated. Substituting

µ0 = 0 and f0 into equation (1.6)

∇.(Mf0) = ∂i ∂j (Kij f0) . (1.25)

If the forcing is changed slightly so the model becomes

d ~X = (M + ∆M)dt+ ε d ~W (1.26)

with new steady pdf (f0 + ∆f), then the steady pdf equation (1.25) becomes

∇. {(M + ∆M) (f0 + ∆f)} = ∂i ∂j (Kij (f0 + ∆f)) . (1.27)

Neglecting the product of small terms ∇. (∆M∆f) and subtracting (1.25) from

(1.27),

∇.(M ∆f) − ∂i ∂j (Kij ∆f) = −∇.(∆M f0). (1.28)

Third, ∆f is expanded in terms of eigenfunctions. Assuming as above that the

eigenfunctions are complete, there are constants {ak} for which

∆f =
∞∑

k=0

akfk(~x). (1.29)

a0 = 0 because both f0 and f0 + ∆f are pdfs, so

∫
f0 d~x =

∫
(f0 + ∆f) d~x = 1 (1.30)

and so

∫
∆f d~x = 0. (1.31)
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By the orthogonality of fk and g0,

∫
fk d~x = 0 for k > 0. (1.32)

Substituting for ∆f from (1.29), and using (1.32)

0 =

∫
∆f d~x = a0

∫
f0 d~x = a0. (1.33)

Hence,

∆f =

∞∑

k=1

akfk(~x). (1.34)

Finally, the sum of eigenfunctions is substituted for ∆f in equation (1.28). The

result is that

∞∑

k=1

ak (∇.(M fk) − ∂i ∂j (Kij fk)) = −∇.(∆M f0) (1.35)

⇒
∞∑

k=1

akµkfk = −∇.(∆Mf0) by (1.6). (1.36)

Multiplying equation (1.36) by gl and integrating over state space, using the or-

thonormal conditions (1.20) and (1.21),

al = − 1

µl

∫
gl∇.(∆Mf0) d~x. (1.37)

Integrating equation (1.37) by parts with the assumption (1.5) about far-field

boundary conditions, and relabelling l to k, the result is obtained that

ak =
1

µk

∫
f0 ∆M.∇gk d~x, k = 1, 2, ... (1.38)

Equation (1.38) is similar to [47, equation(16)]. Since (1.38) is used in (1.34), only

products of fk and gk are used, so it does not matter that the normalisation of fk

and gk only defines the scale of their product.

1.2.5 Meaning of eigenvalues and eigenfunctions

Putting (1.38) in words: the projection onto each eigenfunction of the equilibrium

response to a change in drift is (to first order) equal to the average change in
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convergence of the drift weighted by the corresponding eigenfunction of the adjoint

or ‘backwards’ equation[24] and the timescale of the eigenfunctions (which is the

reciprocal of the eigenvalue).

As the time horizon goes forwards, the pdf, conditional on the initial state,

tends to the steady state. In other words, differences from the steady state decay

to nil as the time horizon increases. The differences are expressible as a linear

sum of the eigenfunctions, and the contribution from each eigenfunction decays

exponentially over time at the rate of the eigenvalue. (Eigenfunctions with high

eigenvalues decay quickly.)

As the time horizon goes backwards, the eigenfunctions of the backwards equa-

tion are components of the distribution from which the current state might have

come. The current state gets equally likely (as you go back in time) to have come

from any previous state. That is, the the backwards density tends to a uniform

distribution which is g0. The rate at which the backwards density tends to the

uniform density is set by the eigenvalues.

1.2.6 Significance to climate models

In principle, fk, gk and µk in equation (1.38) are observable (to some level of con-

fidence) for the real climate, since they are determined by the natural variability

of the real climate system. Hence equation (1.38) and (1.34) relates the natural

variability of the real climate to the real climate’s equilibrium response to a change

in forcing. If the eigenvalues and eigenfunctions differ for two models then, by

(1.38) there are some forcings for which the response differs.

If the change in forcing projects onto the gradient of the adjoint eigenfunctions

equally, then, given the 1/µk term in equation (1.38), the eigenfunctions with the

lowest eigenvalues, and which correspond to the slowest modes of variability are the

most significant. If ∆M were calculable for the limited dimension state-space of a

subset of observed real climate variables, and if the earth-atmosphere system is a

diffusion process, then, to first order, and to the level of confidence in the observed

estimates of fk, gk and µk, the real climate’s equilibrium response to a change in
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forcing could be estimated independently of a climate model.

However, it is not possible, in general, to calculate ∆M independently of a

climate model, so the relation in (1.38) cannot be used, say, to estimate climate

sensitivity. ∆M is a function of the change in forcing, and not the change in forcing

itself. There is necessarily a reduction in dimensions from the infinite-dimensional

climate to a finite dimensional model, and the translation of the changing in forcing

to a finite dimensional ∆M is model-specific. This is illustrated in 3.6.1.

Formally, in (1.38), if the change in forcing is small in relation to the natural

variability, then it takes the system into a region of state space that has already been

observed, and where the processes that dictate the response to a small change in

forcing are largely the same processes that cause natural variability [25]. But if the

scale of the change in forcing is much larger than the scale of the natural variability,

then the new forcing represents regions of state-space which have not been observed

(and of which there is little information), so the natural variability does not give

relevant information about the response to a change in forcing. Figure 1.3 on

page 42 and figure 1.4 ilustrates the need for the change in forcing to be small in

relation to the natural variability for a system whose exact response to forcing is

known.

Part I of this thesis examines the practical problem of estimating the eigenfunc-

tions and eigenvalues of the unforced real system. Since equation (1.38) requires

an estimate of the transition density of a multi-dimensional system, whose slowest

modes of variability are the most significant, there are three practical problems.

First, the slowest modes require the longest periods of observation. Second, the

more dimensions there are, the higher is the dimension of the transition density,

and so the harder it is to estimate, requiring a yet longer time series. The available

time series may not be long enough. The ERA-40 reanalysis [49] provides 45 years

of a best-estimate of climate data, though reanalysis sets for the last 100 to 150

years are being developed [10]. Third, the forcing on the real climate (for which

time series are available) is not constant, as assumed by (1.1). The real forcing

forms a daily and seasonal cycle, and there are trends in greenhouse gas and solar
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forcings, together with sporadic cooling from volcanoes.

Approaches to reducing the number of dimensions should make optimal use of

limited data. Chapter 2 suggests a method for estimating the transition density

and chapter 3 applies the method to two test cases. Chapter 4 applies the method

to a comparison of HadCM3 and ERA-40.
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Figure 1.1: This figure shows that two systems can have the same steady probability

density function (pdf), but different steady-state responses to a change in forcing.

The left graph shows time series for two stochastic dynamical systems of the form

dX = − (αX − r) dt +
√

2α dW. X is the state variable and W is the state of

a Wiener process, so that dW is gaussian white noise with variance dt over a

timescale dt. Both systems have the same steady pdf (a gaussian with mean 1,

variance 1) but have different characteristic timescales [43] equal to 1/α. Because

of the different timescales, the two systems have different equilibrium responses to

a change in forcing. This is shown in the right plot, where r has been reduced by

0.5 for both systems. The new blue equilibrium for the slow system is a gaussian

with mean 0.5 and variance 1. But the red system is ten times as fast as the slow

blue system. So, the fast red system’s equilibrium mean is reduced by one tenth of

the reduction to the slow blue system’s equilibrium mean. If the slow system were

a model and the fast system were reality, then no matter how small a change in

forcing, the slow system would overestimate the real system’s response to the change

in forcing by a factor of 10.
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Figure 1.2: This figure shows the evolution of 2 pdfs under advection and diffusion.

The left plot shows advection – there is only drift towards the origin, so the pdf is

compressed towards the origin. The right plot shows only diffusion, which evens

out the highs and lows i.e. the convexity in the pdf.
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Figure 1.3: Each graph shows, in solid red, the exact steady pdf when a constant

forcing of r dt is applied to the 1-dimensional Langevin equation dX = −α X dt+

ǫ dW . The forced system evolves according dX = −α X dt + r dt + ǫ dW. The

unforced steady pdf is a Gaussian density with zero mean and variance ǫ2/2α. The

forced steady pdf is also a Gaussian density with variance ǫ2/2α but with mean

r/α. The best possible estimate via eigenfunctions of the forced steady pdf is shown

in solid blue. The exact difference between the unforced and forced steady pdf is

in the red broken line. The blue broken line shows the difference calculated using

eigenfunctions. The differences are divided by the ratio of the change in mean to the

unforced standard deviation, so that the accuracy of the eigenfunction method can

be compared for different levels of forcing. As the theory predicts, the eigenfunction

method is more accurate for small levels of forcing. In this case, ‘small’ means in

relation to the size of the standard deviation of the unforced system.



1.2. THEORY 43

−4 −3 −2 −1 0 1 2 3 4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

α= 1, ε=1.41, ψ= 0.1

state

pr
ob

 d
en

si
ty

(a)

−4 −3 −2 −1 0 1 2 3 4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

α= 1, ε=1.41, ψ= 0.5

state

pr
ob

 d
en

si
ty

(b)

Figure 1.4: Each graph shows, in solid red, the exact steady pdf when a forcing

of −ψα x dt is applied to the 1-dimensional Langevin equation dX = −α X dt +

ǫ dW . The forced system evolves according to dX = −α (1 + ψ)X dt + ǫ dW.

The unforced steady pdf is a Gaussian density with zero mean and variance ǫ2/2α.

The forced steady pdf is also a Gaussian density with zero mean and variance

ǫ2/2α(1+ψ). The best possible estimate via eigenfunctions of the forced steady pdf

is shown in solid blue. The exact difference between the unforced and forced steady

pdf is in the red broken line. The blue broken line shows the difference calculated

using eigenfunctions. The differences are divided by ψ, so that the accuracy of the

eigenfunction method can be compared for different levels of forcing. As the theory

predicts, the eigenfunction method is more accurate for small levels of forcing (the

blue and red broken lines are closest for small values of ψ).



Chapter 2

Method of analysing time series

Chapter 1 established, to first order, a theoretical equivalence between the tran-

sition density of a diffusion process under constant forcing and the steady state

response of that process to a small change in forcing. The transition density was

expanded in terms of the eigenfunctions and eigenvalues of the Fokker-Planck equa-

tion of the process. This chapter approaches the practical problem of estimating

the eigenfunctions and eigenvalues for reanalysis data and a climate model.

2.1 Estimating eigenfunctions and eigenvalues from

a transition matrix

The eigenfunctions and eigenvalues of equation (1.2) may be estimated by discretis-

ing the state space into bins, and then calculating the rates of transition from each

bin to each other bin, forming a transition matrix. The eigenvectors of the tran-

sition matrix approximate the integral of the eigenfunctions of the Fokker-Planck

equation over the bins, and the log of the eigenvalues of the transition matrix

approximate the eigenvalues of the Fokker-Planck equation. This is because the

transition probabilities are a discretisation of the transition density, which is proven

in this section.

44
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2.1.1 Transition matrix is a function of eigenvalues and

eigenfunctions

If the system’s state space is divided into mutually exclusive and collectively ex-

haustive bins, then, over any fixed time period, there is a probability of transition

from one bin to another. The system has been assumed to be a diffusion process,

i.e. a homogeneous Markov process [24, page 34], so the transition probabilities are

constant in time. If the (continuous) eigenfunctions of the Fokker-Planck equation

are known, then the transition probabilities for the discretised system are known

(in principle). This is shown in equation (2.6).

Let Tij be the transition probability, i.e. the probability that the system moves

from bin j to bin i over timestep ∆t, given that the system starts off in bin j. If

the system is in bin j, then, on average, its density within bin j is the steady pdf,

restricted to bin j, i.e. if hj(~x) is the average density within bin j then

hj(~x) =






0 ~x /∈ bin j

f0(~x)∫
bin j

f0(~x) d~x
x ∈ bin j.

(2.1)

Then Tij = Probability((Xt+∆t ∈ bin i| pdf of Xt is hj(~x)) (2.2)

=

∫

bin i

f(~x, t+ ∆t) d~x (2.3)

=

∫

bin i

( ∞∑

k=0

bkfk(~x)e
−µk∆t

)
d~x by (1.8) (2.4)

=
∞∑

k=0

∫
hj(~x)gk(~x) d~x

︸ ︷︷ ︸
bk

e−µk∆t

∫

bin i

fk(~x) d~x by (1.23) (2.5)

=
∞∑

k=0

∫
bin j

f0(~x)gk(~x) d~x
∫
bin j

f0(~x) d~x
e−µk∆t

∫

bin i

fk(~x) d~x by (2.1). (2.6)

Note that Tij ≥ 0 and
∑

i Tij = 1 by (2.3).
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2.1.2 Eigenvalues and eigenfunctions are functions of tran-

sition matrix

The matrix of transition probabilities defines (up to discretization error) the eigen-

functions and eigenvalues of the Fokker-Planck equation. If the state space is

divided into mutually exclusive and collectively exhaustive bins 1, 2, . . . , n, then,

as the resolution of the bins gets finer, the eigenvectors and eigenvalues of the

transition matrix become increasingly accurate estimates of the eigenfunctions and

eigenvalues of the Fokker-Planck equation.

To see this, let ~F k be a vector of integrals over each bin of the eigenfunction

fk and let ~Gl be a vector of the averages over each bin of the eigenfunctions of the

adjoint gl. That is,

~F k
i =

∫

bin i

fk(~x) d~x, and ~Gl
i =

∫
bin i

gl(~x)f0(~x) d~x∫
bin i

f0(~x) d~x
. (2.7)

Combining (2.6) and (2.7),

Tij =
∞∑

k=0

~Gk
j
~F k
i e

−µk∆t. (2.8)

Since the state space is unbounded, some of the bins must be unbounded. As

the volume of state space included in bounded bins increases, and the number of

bounded bins → ∞,

~F k approaches a right eigenvector of the transition matrix T, and (2.9)

~Gl approaches a left eigenvector of the transition matrix T. (2.10)

In fact, T is a discretization of equation (1.2), so that (2.9) simply says that

fk(~xi, t+ ∆t) = e−µk∆tfk(~xi, t), which is true by definition. (2.11)

To prove (2.9), partition state space into n+1 mutually exclusive and collectively

exhaustive bins so that bins 1, 2, . . . , n are bounded, and only bin n + 1 is un-

bounded. (Bin n+1 is probably not a connected set). Let ǫ1 be an arbitrarily small

positive number. By the boundary condition equation (1.5), for every k and every
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l there is a partition such that the largest volume of a bounded bin is less than ǫ1,

and the integral of fg over the unbounded bin is less than ǫ1, i.e.

∀k, l,
∣∣∣∣
∫

bin n+1

fk(~x)gl(~x) d~x

∣∣∣∣ < ǫ1. (2.12)

Then,

lim
ǫ1→0

[
T~F l

]

i

~F l
i

= e−µl∆t. (2.13)

Since ǫ1 can be arbitrarily small, (2.13) proves (2.9).

Proof of (2.13):

[
T~F l

]

i
/~F l

i =
n+1∑

q=1

Tiq ~F
l
q/
~F l
i (2.14)

=
n+1∑

q=1

( ∞∑

k=0

~Gk
q
~F k
i e

−µk∆t

)
~F l
q/
~F l
i by (2.8) (2.15)

=

∞∑

k=0

(
n+1∑

q=1

~Gk
q
~F l
q

)
e−µk∆t ~F k

i /
~F l
i . (2.16)

lim
ǫ1→0

n+1∑

q=1

~Gk
q
~F l
q =

∫
fk(~x)gl(~x) d~x = δk,l (2.17)

⇒ lim
ǫ1→0

[
T~F l

]

i
/~F l

i =

∞∑

k=0

δk,l e
−µk∆t ~F k

i /~F
l
i = e−µl∆t. (2.18)

Equation (2.13) shows that

• the right eigenvectors of the transition matrix tend to integrals of the eigen-

functions of the Fokker-Planck equation, where the integrals are taken over

the bins that discretize state space;

• the log of the eigenvalues of the transition matrix, divided by the time step

of the transition, tend to the eigenvalues of the Fokker-Planck equation.

By a similar argument, the left eigenvectors of the transition matrix tend to the

eigenfunctions of the adjoint of the Fokker-Planck equation.
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2.1.3 Sampling error weakens results

Intuitively, the more that sampled data is dominated by measurement error, the

less is truly known about the system, and the less confident are any model forecasts.

Consistent with this, the more measurement error there is in the data, the more

equation (1.38) underestimates the response to a change in forcing.

The underestimate is due to the fact that as the measurement error increases,

the probability of landing in any bin becomes increasingly independent of the bin

the system started in. The columns of the transition matrix tend to become iden-

tical (and to be in proportion to the equilibrium density). Thus the eigenvalues of

the transition matrix tend to zero (for all eigenvectors apart from that of the steady

pdf), so the estimated eigenvalues µk in (1.38) tend to infinity, and the estimated

∆f tends to zero.

Proof For let T =
(
~t ~t . . . ~t

)
be an n x n transition matrix with identical

columns ~t = (t1, t2, . . . , tn) : t1 + t2 + . . .+ tn = 1.

Then

T~t =




t1 (t1 + . . .+ tn)

t2 (t1 + . . .+ tn)
...

tn (t1 + . . .+ tn)




=




t1.1

t2.1
...

tn.1




= ~t. (2.19)

Let ~ei be a basis vector (δi,1, δi,2, . . . , δi,n).

Then

T~ei = ~t⇒ T(~ei − ~ej) = ~0. (2.20)

{(~e1 − ~ej), j = 2, 3, . . . , n} is a linearly independent set of n − 1 vectors, since

for any non-zero scalars ω2, . . . , ωn,

n∑

j=2

ωj(~e1 − ~ej) =




∑n
j=2 ωj

−ω2

...

−ωn




6= ~0. (2.21)
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Also {~t, (~e1 − ~ej), j = 2, 3, . . . , n} is linearly independent, since if ~t were a sum

of scalar multiples of (~e1 − ~ej), then by (2.20) T~t would be ~0. But T~t = ~t 6= ~0.

Thus {~t, (~e1 − ~ej), j = 2, 3, . . . , n} is a spanning set of n linearly independent

eigenvectors, and the eigenvalues of T are 1 (with multiplicity 1) and 0 (with

multiplicity n− 1).

2.2 Getting the transition matrix

Two methods of calculating the transition matrices are shown below: bin counting,

and kernel density estimation. The methods are applied to test cases in chapter 3.

2.2.1 Bin-counting: getting the transition matrix by count-

ing transitions

A simple way to estimate the transition matrix is to partition the state space into

bins, sample the time series at regular intervals, and count the proportion of times

that the system changes from each bin to each other [15]. This approach is valid,

assuming that the diffusion process in (1.1) is ergodic [24, page 38]. For, by the

definition (2.2) of the elements of the transition matrix:

Tij = Probability
(
~Xt+∆t ∈ bin i| ~Xt is distributed as per hj(~x)

)
. (2.22)

Let 1 () be the indicator function for a subset S of the state-space:

1S (~x) =






1 ~x ∈ S

0 ~x /∈ S, and

(2.23)

1S1,S2
(~x, ~y) = 1S1

(~x)1S2
(~y) . (2.24)
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Hence, by the definition of conditional probability and (2.22),

Tij =
Probability

(
~Xt+∆t ∈ bin i and ~Xt is distributed as per hj(~x)

)

Probability
(
~Xt is distributed as per hj(~x)

)

(2.25)

=
E

(
1bin i

(
~Xt+∆t

)
1bin j

(
~Xt

))

E

(
1bin j

(
~Xt

)) . (2.26)

The ergodic assumption [24, page 38] is that a function of many samples from a

long time series tends to the expectation of that function over the steady pdf. The

discrete time ergodic assumption is that, where u is any function and N samples

are taken, each ∆t apart in time, then

lim
N→∞

1

N

N∑

p=1

u
(
~Xp∆t

)
= E

(
u
(
~X
))

(2.27)

So, assuming that the diffusion process is ergodic,

Tij = lim
N→∞

�
��1/N
∑N−1

p=1 1bin i

(
~X(p+1)∆t

)
1bin j

(
~Xp∆t

)

�
��1/N
∑N−1

p=1 1bin j

(
~Xp∆t

) , (2.28)

which is the relative frequency of transitions from bin j to bin i.

Equally likely bins may minimise the variance of the estimated eigen-

values

Ideally, the estimated eigenvalues will be insensitive to ‘noise’ or sampling error, but

sensitive to ‘signal’ i.e. to real differences in two underlying processes. Equivalently,

the ideal approach will minimise the variance of estimated eigenvalues, given several

series from the same underlying process, and minimise the bias, i.e. the average

difference of the estimated eigenvalues from the true eigenvalues.

The variance of the estimated eigenvalues may be reduced if we choose to use

bins which are equally likely, i.e. if the state is sampled in each bin equally fre-

quently. With equally likely bins, the variance of the eigenvalues of the transition

matrix appears to be approximately inversely proportional to the number of sam-

ples (based on empirical evidence shown in 3.4.3).



2.2. GETTING THE TRANSITION MATRIX 51

Bias in estimating the eigenvalues is reduced by increasing the number of bins.

This is shown in section 3.4. If there are too few bins, then eigenfunctions with

a high eigenvalue are conflated with eigenfunctions with a low eigenvalue, so the

sampled eigenvalue is an overestimate.

Choices of bins for transition matrix obtained by counting transitions

The more bins that are used, the worse each bin is sampled. This introduces noise

or sampling error into the estimated eigenfunctions. A trade-off is required between

noise and resolution bias. This is illustrated in figure 2.1.
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−0.3

−0.2

−0.1
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0.1

0.2

0.3

X (state)

pd
f

Too coarse

Too noisy

Too coarse

Too noisy

Figure 2.1: Estimate of second eigenfunction for the system dX = −Xdt+
√

2dW

100 seconds, sampled at 10 Hz split into 130 (blue line) and 10 (red line) equally

probable bins. The exact eigenfunction is the function x weighted by a Gaussian

density.

2.2.2 Kernel density estimation of transition density

A generalisation of the bin-counting method is the kernel density estimation method

[40]. This method estimates the transition density directly as a continuous function.

The ‘kernel’ is a weighting function w() applied directly to each sample. It estimates
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the joint density fX,Y as

fX,Y (~x, ~y) =

N−1∑

p=1

ŵp(~x, ~y) (2.29)

and the steady pdf f0(~x) as

f0(~x) =

N−1∑

p=1

wp(~x). (2.30)

The weighting function wp(~x) is defined on the state space and takes maximum

value at ~xp, where ~xp is the pth sample. The joint weighting function ŵp(~x, ~y) takes

maximum value at (~xp, ~xp+1), that is at the point in transition-space where the state

~xp changes to the state ~xp+1. If bins are then chosen, the estimated probability of

transition from bin j to bin i is

T̂ij =

∫
bin i

∫
bin j

fX,Y (~x, ~y) d~x d~y
∫
bin j

f0(~x) d~x
(2.31)

=

∑N−1
p=1

∫
bin i

∫
bin j

ŵp(~x, ~y) d~x d~y
∑N−1

p=1

∫
bin j

wp(~x) d~x
. (2.32)

Bin-counting is equivalent to using weighting functions which are delta func-

tions, centred on the samples. Such delta functions give the same result as indicator

functions, and so (2.32) gives the same result for bin-counting as (2.28).

If the weighting function is non-negative everywhere and integrates to one,

then the kernel is equivalent to treating each sampled value as a true value plus

a random sampling error, where the sampling error is independent and identically

distributed for each sample. From the argument in section 2.1.3, any smoothing

tends to overestimate the eigenvalues. This is is confirmed in figure 3.9 on page 73.

Optimal bandwidth

The bandwidth of a kernel is a measure of the amount of smoothing it performs.

For example, a Gaussian kernel with bandwidth η is a weighting function

wp(x) ∝
1

η
√

2π
e−1/2(x/η)2 . (2.33)
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Silverman [40] defines an integrated square error [40, §3.1.2] to measure the

total difference between an estimated and exact eigenfunction, and states that

the bandwidth which minimises this error for a 1-dimensional density based on N

independent, normally distributed samples with variance σ2 is

η = σ(4/3N)1/5 ≈ 1.06 σN−1/5. (2.34)

If the samples are not independent, then N is overestimated in equation (2.34) and

so the optimal bandwidth will be higher.

Silverman [40] also states [40, Table 4.1 on p.87] that if a d-dimensional multi-

variate normal kernel is used (for multi-variate normally distributed samples with

covariance matrix σ2I) then the optimal bandwidth is

η = σ

(
4

N (d+ 2)

)1/(d+4)

.

(2.35)

2.3 Detecting differences in transition matrices

The purpose of estimating the transition matrices is to detect significant differences

in their eigenvalues and eigenvectors. This requires a measure of the differences,

and a measure of significance, since differences may emerge by chance, because the

transition matrices are random variables.

2.3.1 Measure of difference in eigenvectors

The measure used is the integrated square error over state space. Given bins

I1, I2, . . . , In, and eigenvectors ~V and ~W , which are computed using the same bins

over state space, the eigenvectors are normalised to have the same absolute sum

over state space, and then the sum of their squared differences is taken.

n∑

i=1

∥∥∥∥∥∥

~Vi
∑n

i=1

∣∣∣~Vi
∣∣∣
−

~Wi
∑n

i=1

∣∣∣ ~Wi

∣∣∣

∥∥∥∥∥∥

2

1

Vol (Ii)
(2.36)

In order to avoid recording a difference if all that separates two eigenvectors is a

factor of -1, the difference measure d(~V , ~W ) is
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min




n∑

i=1

∥∥∥∥
~Vi

Pn
i=1|~Vi| −

~Wi
Pn

i=1| ~Wi|

∥∥∥∥
2

Vol (Ii)
,

n∑

i=1

∥∥∥∥
~Vi

Pn
i=1|~Vi| +

~Wi
Pn

i=1| ~Wi|

∥∥∥∥
2

Vol (Ii)


 . (2.37)

2.3.2 Significance of difference in eigenvectors

The distribution of the differences in sampled eigenvectors or eigenvalues is not

known, but is estimated by taking several simulations of identical underlying pro-

cesses, calculating their mean eigenvector (or eigenvalue) and observing the spread

of sampled differences from this mean. A significant difference is one which is

outside the range of the sampled differences for identical processes.

2.4 Summary

This chapter described a method of comparing the eigenfunctions and eigenval-

ues of the Fokker-Planck equation for the transition densities of the real climate

and a climate model. The method compares the eigenvectors and eigenvalues of

transition matrices based on time series for the model and reanalysis data. The

transition matrices could be constructed by first defining bins and then counting

the transitions between bins, or by first estimating the density according to some

smoothing function and then defining bins over which to integrate the density. An

optimal level of smoothing was suggested. This smoothing level is tested in chap-

ter 3 by applying it to a known system, and measuring the integrated square error

(2.36) between the known eigenfunctions and the sampled eigenfunctions.



Chapter 3

Test Cases: linear Langevin

equations

In this chapter, the theory in chapter 1 is verified for a diffusion process (of Brow-

nian motion in one dimension) whose transition density is known analytically. The

methods in chapter 2 are applied to numerical simulations of Brownian motion,

and to a multi-dimensional linear diffusion process, in order to investigate:

• what bandwidth should be used to estimate the dominant eigenfunctions;

• what bandwidth should be used to estimate the dominant eigenvalues;

• how the variance of the eigenvalues scales with the length of the series;

• what structure of bins should be used to reduce the variance of the sampled

eigenvalues;

• what the effect of adding dimensions is on the detectability of differences

between models.

3.1 Test model: Brownian motion

A Brownian motion model (whose solution is known analytically) is used to com-

pare estimated and exact eigenfunctions and eigenvalues. The model may be con-

sidered to be a simple energy-balance model, as in [50], where one dimensional

55
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global mean temperature change (X) responds linearly to random white-noise ra-

diative forcing ǫdW at a rate α determined by the thermal inertia of the oceans.

So, where α, ǫ are scalar constants,

dXt = −αXtdt+ ǫdWt. (3.1)

Equation (3.1) is the mixed-layer ocean model of equation (1) of [50] (i.e. with

the ∆F term in that equation set to zero). Equation (3.1) is also used to model

the velocity X of a dust particle on the surface of water: subject to a braking force

αXproportional to its speed, and subject to random perturbations ǫdW . The same

equation models these two systems because, as pointed out by [22], the climate

integrates the many small scale, short-term effects of weather similarly to how the

dust particle integrates the random effect of the many smaller particles that make

up the braking force.

3.1.1 Exact eigenfunctions and eigenvalues

1. The eigenvalues µk of the Fokker-Planck equation for the pdf of the state of

the process in (3.1) are integer multiples of α;

2. the eigenfunctions fk(x) of the Fokker-Planck equation are constant multiples

of Hermite polynomials weighted by a Gaussian distribution centred on 0,

with variance ǫ2/(2α);

3. the eigenfunctions of the adjoint gk(x) are proportional to the Hermite poly-

nomials.

In other words, let

ξ = x

√
2α

ǫ2
, (3.2)

and φk(ξ) = eξ
2/2 ∂

k

∂ξk

(
e−ξ

2/2
)
. (3.3)

So, for example, φ0(ξ) = 1, (3.4)

φ1(ξ) = −ξ, (3.5)

φ2(ξ) = ξ2 − 1. (3.6)
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Then, using the notation of (1.38) for the Fokker-Planck equation corresponding

to (3.1)

µk = kα, k = 0, 1, 2, . . . (3.7)

fk(x) ∝ φk(ξ)e
−ξ2/2, (3.8)

gk(x) ∝ φk. (3.9)

The leading eigenfunctions are pictured in figure 3.1.
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Figure 3.1: dX = −Xdt +
√

2dW ; first three eigenfunctions of Fokker-Planck

equation for Langevin model in (3.1).

Proof of (3.7) - (3.9)

By substituting (3.1) into (1.2), the Fokker-Planck equation for the evolution of

the pdf of the system is

∂f

∂t
=
∂(αxf)

∂x
+
∂2(Kf)

∂x2
(3.10)

where K =
ǫ2

2
. (3.11)
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Suppose that equation (3.10) is satisfied by solutions of the form

e−µtfk(x) = e−µtφ(ξ)e−
ξ2

2 , (3.12)

By substituting e−µtfk(x) for f in (3.10) and dividing by e−µt−
ξ2

2

φ′′ − ξφ′ +
µ

α
φ = 0. (3.13)

Equation (3.13) is the probabilistic form of Hermite’s equation, so φ is a Hermite

polynomial and µ/α is an integer [1, pp 773–785].

Similarly by substituting (3.1) into (1.15), the adjoint of the Fokker-Planck equa-

tion is

−νg = −αx∂g
∂x

+K
∂2g

∂x2
. (3.14)

By substituting φ(ξ) for g in (3.14)

φ′′ − ξφ′ +
ν

α
φ = 0, which is (3.13) with ν= µ. (3.15)

Normalisation of eigenfunctions

fk(x) and gk(x) may be normalised according to (1.21) so that

fk(x) =
1

σ
√

2π
φk(ξ)e

−ξ2/2, and (3.16)

gk(x) = γk φk(ξ), where (3.17)

1/γk =
1√
2π

∫ ∞

−∞
φ2
k e

−ξ2/2 dξ, and (3.18)

σ2 = ǫ2/2α. (3.19)

3.2 Verification of theory

By substituting e−
ξ2

2 for f in (3.10), the steady pdf of the process in (3.1) is a

Gaussian, with zero mean and variance σ2. Under a constant change in forcing, or

a change in α, the steady pdf is still a Gaussian, though with a shifted mean or

a change in variance. The change in the steady pdf is directly calculated in this

section, and verifies (1.38).
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3.2.1 Direct calculation of response of 1-d Langevin equa-

tion to constant forcing

If a constant r is added to the drift then (3.1) becomes

dY = (−αY + r) dt+ ǫdW. (3.20)

By substituting X = Y −r/α into (3.20), the steady distribution of Y is a Gaussian,

with mean r/α and variance σ2, illustrated in figure 1.1(a). So the steady pdf of

Y is

f0 + ∆f =
1

σ
√

2π
e−

1

2
(x−r/α

σ )
2

(3.21)

=
1

σ
√

2π
e−

1

2
( x

σ )
2

e(
xr/α

σ2
+O(r2)) (3.22)

=
1

σ
√

2π
e−

1

2
ξ2
(

1 +
r/α

σ
ξ +O

(
r2
))

(3.23)

= f0(x) −
r/α

σ
f1(x) +O

(
r2
)
. (3.24)

3.2.2 Direct calculation of response of 1-d Langevin equa-

tion to forcing proportional to state variable

If a constant ψα is added to the drift parameter α then the steady distribution of

(3.1) changes from N(0, σ2) to N(0, σ2

1+ψ
), illustrated in figure 1.1(b). So, as above,

the altered steady pdf is

f0 + ∆f =

√
1 + ψ

σ
√

2π
e−

1

2
ξ2(1+ψ), (3.25)

=

(
1 +

ψ

2
+O(ψ2)

)
1

σ
√

2π
e−

1

2
ξ2
(

1 − ψξ2

2
+O(ψ2)

)
(3.26)

=
1

σ
√

2π
e−

1

2
ξ2
(

1 +
ψ

2
− ψξ2

2

)
+O(ψ2) (3.27)

= f0 +
−ψ
2

(
ξ2 − 1

) 1

σ
√

2π
e−

1

2
ξ2 +O(ψ2) (3.28)

= f0 +
−ψ
2
f2(x) +O(ψ2). (3.29)
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3.2.3 Equilibrium response to forcing by eigenfunction is

next eigenfunction

If the drift in (3.1) is changed in proportion to a hermite polynomial, i.e. if ∆M =

r φl(ξ) where r is a small scalar constant, then (1.38) implies that, to first order,

the steady state response is proportional to the (l + 1)th eigenfunction, i.e. the

(l + 1)th Hermite polynomial weighted by the Gaussian density.

For (1.38) gives the change in steady pdf as

∆f =
∞∑

k=1

akfk(x) (3.30)

where ak = − 1

kα

∫
gk(x)

∂ (f0(x) ∆M)

∂x
dx (3.31)

= − 1

kα

∫
γkφk(ξ)

∂

∂ξ

(
e−ξ

2/2

σ
√

2π
rφl(ξ)

)
dξ (3.32)

= − rγk
kασ

∫
φk√
2π

∂

∂ξ

(
∂l

∂ξl

(
e−ξ

2/2
))

dξ (3.33)

= − rγk
kασ

∫
φk φl+1√

2π
e−ξ

2/2 dξ (3.34)

= − r

(l + 1)ασ
δk,l+1 by orthonormality of φ. (3.35)

∴ ∆f = − r

(l + 1)ασ
fl+1(x), agreeing with (3.24) and (3.29). (3.36)

3.3 Estimating eigenfunctions via transition ma-

trices

To test the method in chapter 2 for estimating eigenfunctions and eigenvalues, time

series of the process in (3.1) are generated, and then the eigenfunctions deduced

from their transition matrices are compared with the known eigenfunctions in (3.8).

3.3.1 Generated time series

Figure 3.2 on the next page shows a series generated by discretising (3.1) in time

with a predictor-corrector method, though similar results are obtained with a sim-

ple Euler method. On the right of figure 3.2, the sample auto-correlation function
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for the series fits the theoretical auto-correlation function, which is e−αt [24, page

44]. This confirms that the series is generated sensibly.

The series is generated, given initial value x0 and a timestep ∆t, for each time N ,

by letting

rN = ǫ ρN
√

∆t, (3.37)

where ρN is a pseudo-random sample from a standard normal distribution.

predictor = xN−1 − αxN−1∆t+ rN ; (3.38)

xN = xN−1 − α
xN−1 + predictor

2
∆t+ rN . (3.39)
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Figure 3.2: dX = - X dt +
√

2 dW. Series and sample autocorrelation function

(blue line). The sample autocorrelation fits the theoretical autocorrelation function

(red line) which is e−l. The series was generated with a time step of 0.0001 time

units but was sampled only every 0.01 time units i.e. at 100 Hz.

3.3.2 Estimated eigenfunctions

Figures 3.3–3.5 show the integrated square error when using a Gaussian kernel

density to estimate the first 3 eigenfunctions for the system in (3.1) with α = 1, ǫ =
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√
2. The estimates are based on a single series of 100 time units sampled at 10 Hz,

generated using (3.39). (To put this in the context of the available climate data,

ERA-40 contains 45 years of at least daily reanalysis output. For processes like El

Niño this represents about 30 multiples of the process’s characteristic timescale.)

The estimated transition density is integrated over various numbers of bins to form

a transition matrix. The bins are equally sized, mutually exclusive intervals whose

union is [-5,5] with (∞, 5] and [5,∞) as semi-infinite bins. The eigenvectors of the

transition matrices are linearly interpolated to estimate the eigenfunctions of the

Fokker-Planck equation for (3.1). The estimated eigenfunctions are compared with

the known eigenfunctions from (3.8) in order to see what level of smoothing gives

the best estimate of the true eigenfunctions.

Figure 3.3 shows that where there is too little smoothing, then after a point,

adding more bins increases the error (as noise dominates the signal). Figure 3.5

shows that where there is too much smoothing, adding more bins reduces the

error (by an insignificant amount, and only because the smoothing dominates both

the noise and the signal). Figure 3.4 shows a better level of smoothing, with

lower errors for most eigenfunctions. Since these observations are only relevant

to one time series, the mean error is shown in figure 3.6 for 2000 independent

time series at various levels of smoothing. The optimal bandwidth is higher for

higher eigenfunctions (which are progressively worse estimated). The sample mean

integrated square error is minimised for the steady state pdf when the bandwidth

is approximately 0.4.

Figure 3.7 shows the sample mean and variance of 2000 series, each of samples

10 times as long as those in figure 3.6. For the longer series, the optimal bandwidth

was approximately 0.2, compared with the bandwidth recommended by (2.34) of

1.06 ∗ 10000−1/5 = 0.17. The sample mean integrated square error (ISE) and

variance appeared (based on only two sample lengths) to scale inversely with sample

length, as the sample mean ISE and variance for the longer series was approximately

one tenth of the sample mean ISE and variance of the shorter series.

The optimal bandwidths are higher than the estimates provided by (2.34) be-
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cause (2.34) is for independent samples, but the samples in the time series are not

independent. Each sample depends explicitly on the previous sample. However,

the optimal bandwidths are close enough to the estimate in (2.34) that (2.34) can

be used as a preferred bandwidth for smoothing unknown eigenfunctions.
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Figure 3.3: Unsmoothed eigenfunctions; first three eigenfunctions (going across the

page) of the Fokker-Planck equation for a 1-dimensional Langevin equation. The

time series is a simulation of dX = −Xdt+
√

2dW , sampled at 10Hz for a series

100 s long. The smoothing bandwidth is 10−5, which is next to no smoothing. The

state space is split into 20, 40, 80, 160 (increasing down the page) equally spaced

bins on [-5,5]. The absolute error between the exact and sampled eigenfunction

is shaded. Both the exact and the sampled eigenfunctions are normalised to have

absolute area of one.



3.3. ESTIMATING EIGENFUNCTIONS VIA TRANSITION MATRICES 65

Figure 3.4: Optimally smoothed eigenfunctions; first three eigenfunctions (going

across the page) of the Fokker-Planck equation for a 1-dimensional Langevin equa-

tion. The time series is a simulation of dX = −Xdt+
√

2dW , sampled at 10Hz for

a series 100 s long. The smoothing bandwidth is 0.4, which is optimal on average

for estimating the steady pdf.
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Figure 3.5: Oversmoothed eigenfunctions; first three eigenfunctions (going across

the page) of the Fokker-Planck equation for a 1-dimensional Langevin equation.

The time series is a simulation of dX = −Xdt +
√

2dW , sampled at 10Hz for a

series 100 s long. The smoothing bandwidth is 1, which is about four times the

optimal level suggested by (2.34).
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Figure 3.6: sample mean ISE from 2000 runs each of 1001 samples of dX =

−Xdt +
√

2dW , sampled at 10 Hz. Eigenfunctions normalised to have absolute

area of one. 80 bins on [-5,5]. Transition matrix obtained by Gaussian kernel

density with various bandwidths. The best bandwidth for estimating the dominant

eigenfunctions is approximately 0.4.

3.4 Estimating eigenvalues via transition matri-

ces

This section shows that the best way to estimate the eigenvalues appears to be to

have a fine grid of equally likely bins, and to simply count the transitions from one

bin to another.

3.4.1 Too few bins causes an overestimate of eigenvalues

The eigenvalues of the Fokker-Planck equation are overestimated if too few bins

are used. Figure 3.8 on page 72 shows that the eigenvalues for the problem (3.1)

are overestimated if there are less than 100 bins, even if a long time series is

available. This overestimate in the eigenvalues is worsened by taking more frequent

time samples. In the extreme of using only two semi-infinite bins, then even if



3.4. ESTIMATING EIGENVALUES VIA TRANSITION MATRICES 68

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6
x 10

−3

bandwidth of gaussian kernel

m
ea

n 
IS

E

 

 

1st efunction (steady pdf)
2nd efunction

(a)

0 0.2 0.4 0.6 0.8
0

0.02

0.04

0.06

0.08

bandwidth of gaussian kernel

st
an

da
rd

 d
ev

ia
tio

n 
of

 m
ea

n 
IS

E

 

 

1st efunction (steady pdf)
2nd efunction

(b)

Figure 3.7: sample mean ISE from 2000 runs each of 10001 samples of dX =

−Xdt +
√

2dW , sampled at 10 Hz. Eigenfunctions normalised to have absolute

area of one. 80 bins on [-5,5]. The best bandwidth for estimating the dominant

eigenfunctions is approximately 0.2.

the transition matrix can be perfectly estimated, the overestimate of the non-zero

eigenvalue for dX = −Xdt+
√

2dW is approximately

2
√

2

π
√

∆t
− 1 → ∞ as ∆t→ 0. (3.40)

Proof of (3.40)

With only 2 symmetric bins, the true probability transition matrix

T =



 p 1 − p

1 − p p



 (3.41)

where p = Probability(Xt+∆t ≤ 0|Xt ≤ 0) , (3.42)

so that as ∆t → 0, p→ 1. (3.43)

If the process is dX = −Xdt +
√

2dW then by (3.7)-(3.8) the first non-zero

eigenvalue is 1, and the steady distribution f0(x) ∼ N(0, 1) and for any ∆t,
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Xt+∆t ∼ N(e−∆txt, 1 − e−2∆t) [24, p. 35, equation (7.4)], so that

Probability(Xt+∆t < x0) = Φ

(
x0 − xte

−∆t

√
1 − e−2∆t

)
, (3.44)

where Φ (y) =
1√
2π

∫ y

∞
e−

t2

2 dt. (3.45)

∴ p =
Probability(Xt+∆t ≤ 0 & Xt ≤ 0)

Probability(Xt+∆t ≤ 0)
by (3.42) (3.46)

=
Probability(Xt+∆t ≤ 0 & Xt ≤ 0)

1/2
(3.47)

= 2

∫ 0

−∞
Probability(Xt+∆t ≤ 0 |Xt = x) f0(x) dx (3.48)

= 2

∫ 0

−∞
Φ

( − xe−∆t

√
1 − e−2∆t

)
f0(x) dx by (3.44). (3.49)

By expanding the exponential and square root in (3.49) for small ∆t,

p ≈ 2

∫ 0

−∞
Φ

( −x√
2∆t

)
f0(x) dx (3.50)

= 2

∫ 0

−∞

{
1 − Φ

(
x√
2∆t

)}
f0(x) dx, since Φ (−y) = 1 − Φ (y) , (3.51)

⇒ p ≈= 1 − 2

∫ 0

−∞
Φ

(
x√
2∆t

)
f0(x) dx. (3.52)

When
√

2∆t is small, then, as x → −∞, Φ
(

x√
2∆t

)
→ Φ (−∞) = 0 much faster

than f0(x) changes. So (3.52) may be approximated by treating f0(x) within the

integral as constant i.e.

p ≈ 1 − 2 f0(0)

∫ 0

−∞
Φ

(
x√
2∆t

)
dx (3.53)

= 1 − 2√
2π

√
2∆t

∫ 0

−∞
Φ (y) dy, (3.54)
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by changing the dummy variable in the integral in (3.53) to y = x/
√

2∆t.

Now

∫ 0

−∞
Φ (y) dy =

∫ 0

−∞

∫ y

−∞

e−x
2/2

√
2π

dx dy (3.55)

=
1√
2π

∫ 0

−∞

∫ 0

x

e−x
2/2 dy dx (3.56)

=
1√
2π

∫ 0

−∞
−x e−x2/2 dx (3.57)

=
1√
2π
. (3.58)

So, by (3.54) and (3.58), p ≈ 1 −
√

2∆t

π
, satisfying (3.43). (3.59)

The eigenvalues of T are 1 and (2p− 1), so the non-zero eigenvalue of the Fokker-

Planck equation is estimated as − log(2p− 1)/∆t

= − log(1 + (2p− 2))/∆t (3.60)

≈ (2 − 2p)/∆t by expanding log (3.61)

≈ 2
√

2

π
√

∆t
by (3.59). (3.62)

Equation (3.62) has also been checked empirically, by generating long series,

sampling frequently, counting the transitions over (−∞, 0] and [0,∞) and calcu-

lating the smaller eigenvalue of the resulting 2x2 matrix.

3.4.2 Kernel density smoothing overestimates eigenvalues

The artificial noise assumed by kernel smoothing has the same effect as actual noise,

noted in section 2.1.3. That is, Gaussian kernel smoothing makes the overestimates

of the eigenvalues worse, as it adds an upwards bias to the estimate. Also, kernel

smoothing does not provide any compensating reduction in the variance of the

estimated eigenvalues, so it appears to add no net benefit. This is shown in figure

3.9, which shows estimates of the first non-zero eigenvalue for 100 different time

series, each of which is a simulation of dX = −1Xdt +
√

2dW (so the exact

eigenvalue is 1). This suggests that kernel density estimation should not be used

to estimate the eigenvalues.
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3.4.3 Eigenvalue variance scales with reciprocal of length

of time series

Figure 3.10 on page 74 shows that when equally probable bins are used with bin-

counting, the variance of the eigenvalues of the transition matrix is approximately

proportional to 1/N , where N is the length of the series. This is consistent with

the argument of [19] which uses the Central Limit Theorem to scale errors in the

estimated response to a change in forcing proportionately to 1/
√
N . When logs

are taken and the eigenvalues of the Fokker-Planck equation are estimated, their

variance is also approximately proportional to 1/N . The variance is larger if equally

sized (rather than equally probable) bins are used. The difference between equally

sized and equally likely bins is amplified if the number of bins is small.

The relevant length of the time series is the multiple of the system’s character-

istic timescale 1/α. Figure 3.11 on page 75 shows that if the system evolves slowly

(with α = α0, say) then a sample at 10Hz over a period of 1000 time units will

give eigenvalue estimates with a similar variance to those for a system with α=10

α0 also taken at 10Hz over 100 time units.

Figure 3.12 shows the sample standard deviation and variance of the estimate

of the eigenvalues (in proportion to the actual size of the eigenvalues) for increasing

lengths of time series. This demonstrates a limitation of the theory in chapter 1. By

(1.38) the slowest i.e. smallest eigenvalues are most significant, but data limitations

make them the hardest to estimate with confidence. Assuming an approximately

Gaussian distribution of the sampled eigenvalues, then two systems will be detected

as having significantly different timescales only if the proportional difference in

their eigenvalues is more than about twice the eigenvalues’ standard deviation. So

if the available time series are shorter than about 80 multiples of the characteristic

timescale 1/α, then two systems will be detected as significantly different only if

their eigenvalues differ by more than 40%.
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Figure 3.8: Eigenvalues for the problem (3.1) are overestimated if there are less

than 100 equally likely bins. The graph shows the result of estimating the first

non-zero eigenvalue for dX = −1Xdt +
√

2dW . 100 simulations of the system

over 10, 100, 1000 model seconds were made and sampled at 10 Hz. Transition

matrices were calculated using 10, 25, 50, 100, 200 equally likely bins, and using

bin-counting, with no kernel density smoothing. The theoretical eigenvalue is 1.

The sampled eigenvalues have ranges of about 1 which reduce only a little if more

bins are used. The range also reduces slowly with larger series. In addition, there

is an upwards bias in the sampled values if fewer than 100 bins are used.
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Figure 3.9: Estimate of first non-zero eigenvalue is biased upwards with Gaussian

kernel smoothing. The graph shows the result of estimating the first non-zero eigen-

value for dX = −1Xdt+
√

2dW . 100 simulations of the system over 100 time units

were made and sampled at 10 Hz. Transition densities were estimated via gaussian

kernel estimation with bandwidths which were various multiples of the sample stan-

dard deviation of the series. The densities were integrated over 100 bins, equally

spaced between the lowest sample (less 3 times the bandwidth) to the highest sample

(plus 3 times the bandwidth).
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(d) Equally likely bins

Figure 3.10: Each graph shows the sample variance of the first 4 non-zero eigen-

values of transition matrices based on simulations of dX = −1Xdt+
√

2dW . The

vertical scale is determined by the timestep ∆t. 200 simulations of the system over

N=20, 40, 80, 160, 320 model seconds were made and sampled at 100 Hz. The

transition matrices were calculated using 20 (top) or 100 (bottom) equally spaced

or equally likely bins, using bin-counting, with no kernel density smoothing. The

straight lines are each a constant times 1/N . The sample variance of each sam-

pled eigenvalue lies roughly on one of the straight lines, indicating that the sample

variance scales approximately with 1/N . Where the bins are equally sized, and espe-

cially for the higher eigenvalues, the variance scales more slowly than the reduction

in 1/N .
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Figure 3.11: Variance of estimate of smallest positive eigenvalue increases as

timescale 1/α increases. A slower system, with lower α, requires a longer time-

series to be sampled well and obtain reliable estimates of eigenvalues. 100 equally

likely bins. Transition matrix obtained by bin-counting with no smoothing.
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Figure 3.12: Variance of estimate of eigenvalues falls as length of time series falls.



3.5. TEST CASE: BOX MODEL 76

3.5 Test Case: Box model

The test case in 3.1 is idealised, being both linear and one-dimensional, whereas

the climate system is non-linear and effectively infinite-dimensional. To analyse

the multi-dimensional real (or model) climate requires some strategy for reducing

the number of dimensions, since finite computer power limits the number of bins

that can be used, and finite observations limit confidence in the sampled transition

densities. Adding the complexity of multi-dimensionality, this section defines a box

model of one hemisphere and analyses it using the bin-counting method in section

3.4.

Figure 3.13 represents the model, which is of the atmosphere and ocean tem-

peratures in tropical and polar boxes of one hemisphere. The hemisphere is heated

constantly with no diurnal or annual cycle. Noise comes from fluctuations to the

tropical sea-surface temperature. The tropical sea-surface temperature anomalies

form an independent stochastic process, which evolves according to a 1-dimensional

linear Langevin equation with a similar timescale to El Niño. For convenience, the

polar and tropical boxes cover equal surface area.

DO2

DO1

CA2

CA1

N

F2

F1

L2

L1
HO

HA

S1

S2

Figure 3.13: Stocks and flows of fourbox model.
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The form of the model is

d ~X =
(
M ~X + ~R

)
dt+ ~ǫ dW (3.63)

where ~X is the state variable, M is a constant matrix, ~R, ~ǫ are constant vectors,

and W is a single Wiener process. The components of the state variable ~X =

(A1, A2, O1, O2, N)′ are:

A1, A2, O1, O2 Tropical, polar, near-surface air and ocean temperature

N Surface temperature anomaly (ENSO index)

In the model, heat is introduced by solar radiation of constant heat fluxes S1 and

S2 (different due to the different average angles of incidence of tropical and polar

solar radiation). Heat transfers at rates proportionate to the temperature difference

between boxes, and at different rates depending on the processes of heat transfer

(which depend on whether the transfer is ocean-ocean, ocean-atmosphere etc). The

assumed heat fluxes are:

F1 = Λ(O1 + αN − A1), (3.64)

F2 = Λ(O2 − A2), (3.65)

HA = KA(A1 −A2), (3.66)

HO = KO(O1 −O2), (3.67)

Li = pi +BAi, i = 1, 2. (3.68)

where Λ, α,KA, KO, pi, B are the scalar constants in table 3.1 on page 79. The

long-wave radiation Li is a linearisation of the rate of grey-body radiation. If,

say, an increase in greenhouses gases further insulated outgoing radiation, then the

body would get greyer and both pi and B would fall.
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Multiplying the box temperatures by assumed constant box heat capacities C and

D gives the total heat fluxes into each box as:

CȦ1 = S1 + F1 − L1 −HA, (3.69)

CȦ2 = S2 + F2 − L2 +HA, (3.70)

DȮ1 = −F1 −HO, (3.71)

DȮ2 = −F2 +HO. (3.72)

The sea-surface temperature anomaly is assumed to evolve independently according

to a Langevin equation:

dNt = −aNtdt+ ǫdWt, (3.73)

where a and ǫ are constants and Wt is a Wiener process. Hence, in (3.63)

~R =




(S1 − p1) /C

(S2 − p2) /C

0

0

0




, ~ǫ =




0

0

0

0

ǫ




, (3.74)

M =




− (B + Λ + KA) /C KA/C Λ/C 0 αΛ/C

KA/C − (B + Λ + KA) /C 0 Λ/C 0

Λ/D 0 − (Λ + KO) /D KO/D −αΛ/D

0 Λ/D KO/D −(Λ + KO)/D 0

0 0 0 0 −a




.

(3.75)

3.5.1 Model timescales

The box model in (3.63) decomposes into 5 linear one-dimensional Langevin equa-

tions, each with a timescale inversely proportional to an eigenvalue of the matrix

M. For M is invertible and diagonalizable. So, there is a matrix P : P−1MP = D,

where D is diagonal.



3.5. TEST CASE: BOX MODEL 79

Parameter Value Units Based on

B 1.7 W m−2 K−1 [30, p.1353]

S1 − p1 554.4 W m−2 [30, p.1353] Switch from ◦C to K :

90 + 273.15 × B = 90 + 273 × 1.7.

S2 − p2 424.4 W m−2 [30, p.1353] Switch from ◦C to K :

−40+273.15×B = −40+273×1.7.

Ocean depth 1000 m [13, p.2808]

C 107 J m−2 K−1 Air mass 104 kg m−2× Specific heat

capacity 1005 J kg−1 K−1

D 4 × 109 J m−2 K−1 Density 1000 kg m−3 × 1000 m

depth × specific heat capacity 4000

J kg−1 K−1

Λ 15 W m−2 K−1 [13, p.2808]

KA 1.3 W m−2 K−1 [30, p.1353 (χ)]

KO 2.0 W m−2 K−1 [30, p.1354, thermohaline heat flux]

a 0.6 K year−1 13 peaks in 120 years (as El Niño)

ǫ
√

2a K year−1 Gaussian steady state with unit vari-

ance

α 1 1

Table 3.1: Constants in four-box model: An increase in CO2 to, say, a doubling of

CO2 would cause B and pi to fall, and thus the equilibrium temperature to rise.

Let ~y = ~x+ M−1 ~R (3.76)

⇒ d~y = d~x = M~y dt+ ~ǫ dW by (3.63) (3.77)

Let ~b = P−1~y (3.78)

⇒ d~b = P−1 (M~y dt+ ~ǫ dW ) (3.79)

= D~b dt+ P−1~ǫ dW. (3.80)

In this (linear) case, the eigenvectors and eigenvalues of the drift matrix M are
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related to the eigenvectors and eigenvalues of the Fokker-Planck equation, because

equation (3.63) decomposes into 5 one-dimensional linear Langevin equations in

(3.80). From (3.7) or by considering a change in the time unit, the timescale of

the one-dimensional linear Langevin equations are determined by the size of Di,i

in (3.80), i.e. by the size of the eigenvalues of M. So, from the solutions to the

characteristic equation of M, the timescales of each component bi, in ascending

order, are

C

(
1

Λ + B + 2KA
+ O

(
C

D

))
≈ C

Λ
≈ 8 days, (3.81)

C

(
1

Λ + B
+ O

(
C

D

))
≈ C

Λ
≈ 8 days, (3.82)

1

a
≈ 1.7 years, (3.83)

D

(
1

2KO + B+2KA
1+B/Λ+2KA/Λ

+ O

(
C

D

))
≈ D

2KO + 2KA + B
≈ 15 years, (3.84)

D

(
1

B
+

1

Λ
+ O

(
C

D

))
≈ D

B
≈ 75 years, (3.85)

As observed in section 3.4.3, as a timescale lengthens, a longer time series is required

to sample the state space of its variable. By (3.8) and (3.80), the true steady state of

each component is a Gaussian distribution. But figure 3.18 shows the bell-shape of the

Gaussian distribution is only seen when the time series lasts for about 100 multiples

of the timescale, consistent with 3.4.3. The eigenvector with the longest timescale, ap-

proximated in figure 3.14, is a temperature pattern of general warming. All the other

eigenvectors are patterns of temperature contrasts, shown in figures 3.15–3.17. An in-

crease in radiative forcing projects onto the slowest eigenvector, indicating that a very

long time series would be needed to use this method to estimate e.g. climate sensitivity.

This is consistent with [50], who showed with a stochastic climate model of the form

of (1.1), that high-frequency information is of little use in estimating climate sensitivity,

as the high-frequency response is approximately independent of climate sensitivity. Still,

it should be borne in mind that the results in figure 3.18 are for a system subject to

constant forcing (with no daily or annual cycle), so only internal variability is generated.

The real system is subject to varying external forcing which provokes a varying response,

and so does not require such a very long time series to explore the system’s state space.
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Figure 3.14: Approximate eigenvector of general warming. Ocean heat capacity is

D, and ocean heat is lost to space at rate ΛB and time scale is
D(Λ +B)

ΛB
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3.6 Detecting a change in eigenvalues of the Fokker-

Planck equation

3.6.1 Dimension reduction

In order to analyse real climate data by this method it is necessary to reduce the number

of dimensions analysed at once. The multi-dimensional time series must be condensed

to lower-dimensional time series. The dimensions or variables of the lower-dimensional

time series could be a subset of the original dimensions, or a projection of them onto

some other lower-dimensional space.

Possible dimensions for the lower-dimensional series are components of the raw time

series, the raw series projected onto the eigenvectors of the drift matrix M, or the prin-

cipal components of the time series, i.e. the raw series projected onto the eigenvectors of

the covariance matrix of the series. In general, the eigenvectors of the drift matrix are

unknown or non-existent, so may be of limited use for real climate data.
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Figure 3.15: Approximate eigenvector of meridional air temperature difference. Air

heat capacity is C, and time scale is
C

Λ +B + 2KA

.

Insufficiency of identical eigenvalues and eigenvectors

If the one-dimensional (identical) Niño series from two models with, say different values

of B were compared, then clearly there would be no difference in the statistics of the

identical series, and this would be insufficient for the two models to have the same

response to every forcing. (The response to radative forcing is proportional to 1/B.)

3.6.2 Method

In figures 3.19 – 3.24, one of the parameters in M is varied. For each level of the param-

eter, 20 realisations of the model are generated, starting from the model’s equilibrium

point and sampling each 5 model days. For each realisation a transition matrix is formed.

If just one time-series is analysed, then 100 equally likely bins are used. If two time-series

are analysed, then the range of each series is split into 15 equally likely bins, and the

bins are combined to make 225 two-dimensional bins over which to analyse the two-

dimensional series. The log of the largest non-unity eigenvalue of the transition matrix,

divided by the time step in the time series is plotted. A ‘signal to noise ratio’ can be

defined as the sensitivity of the mean sampled eigenvalue to the change in parameter
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divided by the sample variance of the eigenvalue. The signal to noise ratio is a property

of the dimension (i.e. the variable whose timeseries is analysed) as different dimensions

have different sensitivities and variances. A low signal to noise ratio is shown by a large

spread of eigenvalues with little difference when a parameter is varied. Such a dimension

does not easily detect a significant difference in models.

3.6.3 Expected result

Equations (3.81)–(3.85) show the degree to which an eigenvalue of the drift matrix M

is affected by a change in one of the parameters. They also show the timescales of the

processes of the components bi. Thus they show the detectability via that component, of

a significant difference between two models. For example, (3.85) shows that the smallest

eigenvalue is approximately proportional to the size of B, but also a difference in B

between two models will be hard to detect via this component, as it will require a very

long time series to measure with confidence. On the other hand (3.81) shows that the

largest eigenvalue is approximately proportional to Λ, and is for a fast process, so this

component will most easily show differences in Λ between two models. This is confirmed
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by figures 3.19–3.24, which show the difference in estimated eigenvalues of the Fokker-

Planck equation when just one variable at a time is considered.

3.6.4 Actual result

Figures 3.19 – 3.21 show the spread of estimated eigenvalues based on timeseries over dif-

ferent dimensions where B is varied. All that differs between 3.19 – 3.21 is the (reduced)

dimension-set chosen to analyse the time series over. For each dimension set (raw data,

data projected onto eigenvectors of drift matrix, data projected onto EOFs), the graph

of the best detector is shown, i.e. the dimension and pair of dimensions with the greatest

signal to noise ratio. The signal to noise ratios have been estimated by eye from the

graphs of the various dimension sets, so that the set with the highest signal to noise ratio

is the steepest and least spread out. Figures 3.22 – 3.24 show a similar set of estimated

eigenvalues where heat flux parameter Λ is varied.
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Figure 3.18: Histograms of samples of the four-box state variables projected onto the

eigenvectors of the drift matrix M. As the relaxation timescale of the eigenvector

increases, the required length of series to recognise a Gaussian distribution also

increases. The model system has no varying forcing, so the variation observed is

only from internal variability. If varying forcing were included (as for the real

world) then a much shorter observation period would be required to observe the

system’s variability.
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Figure 3.19: Estimates of the smallest positive eigenvalue of Fokker-Planck equa-

tion for the pdf of the reduced-dimension box model, when model parameter B is

varied. The better a series is at detecting a change in model parameter, the greater

is the ratio of the gradient of the mean estimate to the variance of the estimates.

Tropical atmospheric temperature variable A1 shows (from all the single raw vari-

ables) the greatest detectability of the change in model climate sensitivity parameter

B. Variables (A1, A2) show almost no detectability of the change in B, though other

pairs of raw variables are even worse at detecting a change in B.
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Figure 3.20: Estimates of the smallest positive eigenvalue of Fokker-Planck equation

for the pdf of the reduced-dimension box model, projected onto eigenvectors of the

drift matrix. Meridional air temperature contrast variable λ1 detects most easily

(from all the projections onto single eigenvectors of the drift matrix) the change in

model climate sensitivity parameter B. Variables (λ1, λ2) detect the change in B

most easily for a pair of projected variables, but less easily than just λ1 alone.
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Figure 3.21: Estimates of the smallest positive eigenvalue of Fokker-Planck equa-

tion for the pdf of the reduced-dimension box model, projected onto the empirical

orthogonal functions of the sampled series. The principal component that explains

the least variance detects most easily (from all the principal components) the change

in model climate sensitivity parameter B. The pair of principal components that

explain respectively the least and most variance detect the change in B most easily

for a pair of principal components, but less easily than the best principal component

alone.



3.6. DETECTING A CHANGE IN EIGENVALUES 89

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6
x 10

−9

100 years sampled every 5 days
A

1

Change to L as a proportion of L

D
iff

er
en

ce
 in

 e
va

l f
ro

m
 r

ef
. m

ea
n

(a) Single series

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
x 10

−8

100 years sampled every 5 days
A

1
 and N

Change to L as a proportion of L
D

iff
er

en
ce

 in
 e

va
l f

ro
m

 r
ef

. m
ea

n

(b) Pair of series

Figure 3.22: Estimates of the smallest positive eigenvalue of Fokker-Planck equation

for the pdf of the reduced-dimension box model, when model heat flux parameter Λ

is varied. The tropical atmospheric temperature variable A1 shows (from all the

single raw variables) the greatest detectability of the change in Λ. As Λ increases,

the noise from the Niño variable is amplified throughout the system and so the

variance in the sampled eigenvalue increases. Variables (A1, N) where N is the

Niño variable itself, detect the change in Λ most easily for a pair of raw variables,

but detect the change less easily than does just variable A1 alone.
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Figure 3.23: Estimates of the smallest positive eigenvalue of Fokker-Planck equa-

tion for the pdf of the reduced-dimension box model, projected onto eigenvectors

of the drift matrix. Meridional air temperature contrast variable λ1 detects most

easily (from all single variables) the change in model heat flux parameter Λ. Equa-

tion (3.81) shows that the eigenvalue itself is proportional to Λ, and so it is most

sensitive to a change in Λ. Also, as the characteristic timescale of the series is

small, the available series is effectively long, so there is less sampling noise and

the eigenvalues are less spread out. Variables (λ1, λ2) detect the change in Λ most

easily for a pair of projected variables, but less easily than just λ1 alone.
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Figure 3.24: Estimates of the smallest positive eigenvalue of Fokker-Planck equa-

tion for the pdf of the reduced-dimension box model, projected onto the empirical

orthogonal functions of the sampled series. The principal component that explains

the least variance detects most easily (from all the principal components) the change

in model heat flux parameter Λ. The pair of principal components that explain re-

spectively the most and fourth most variance detect the change in Λ most easily for

a pair of principal components, but less easily than the best principal component

alone.
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3.6.5 Conclusions

The response to a change in drift ∆M is not (as suggested by the first part of (1.38))

simply proportional to the reciprocal of the eigenvalues. As shown in 3.2.3, the projection

of the change in drift onto the eigenfunctions of the adjoint (which is the other part of

(1.38)) is significant.

The best way to estimate eigenvalues appears to be to have a fine grid of equally likely

bins, and to simply count the transitions from one bin to another without smoothing.

Bins

• If the finite set of n calculated eigenvalues is treated as estimates of the first n

eigenvalues in the infinite set of actual eigenvalues, then the fewer bins that are

used, the more the estimates of the eigenvalues are biased upwards.

• when equally probable bins are used with bin-counting, the variance of eigenvalues

is approximately inversely proportional to the length of the series. If the avail-

able time series are shorter than about 80 multiples of the system’s characteristic

timescale, then the method will detect two systems as significantly different only

if their eigenvalues differ by more than 40%,

Smoothing

• the best bandwidth from a Gaussian kernel to estimate the dominant eigenfunctions

is approximately 0.4 times the system’s standard deviation, when the series length

is 100 multiples of the system’s characteristic timescale. The best bandwidth is

approximately 0.2 times the system’s standard deviation when the series length is

1,000 multiples of the system’s characteristic timescale;

• the best estimate of eigenvalues for the simplest test problem is made with zero

bandwidth, i.e. by the bin-counting technique;

Dimensionality

• For a multi-dimensional linear model, differences between models are most de-

tectable when dimensions are treated separately. The eigenvalues based on 2-
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dimensional series are more spread out than those based on a single series, as

shown in each of figures 3.19 – 3.21.

• The best series to use for detecting differences in models are the quickly-varying

components of the projection onto the eigenvectors of the drift matrix M. This

may simply be due to the limited length of the time series, consistent with 3.4.3.



Chapter 4

Comparison of climate model and

reanalysis data

Chapter 3 compared the eigenvalues of the Fokker-Planck equations of linear, low-dimensional

models. This chapter compares the corresponding eigenvalues of a general circulation cli-

mate model, HadCM3, with those of the ERA-40 reanalysis of the real earth-atmosphere

system [48, 49]. The HadCM3 control run fixes levels of greenhouse gases and aerosols at

levels representative of the pre-industrial era [9]. Ideally, we would compare its output

with a long time series from the pre-industrial era, as this would compare the natural

model variability with the relevant actual natural variability. Long datasets are avail-

able, e.g. those based on ice cores. Chapter 3 showed that the longer the dataset, the

more reliable the result. But in order to use more than one dataset with the method of

chapter 3, it is necessary that each sample from each dataset is taken simultaneously.

So we have decided to use the high frequency, multi-dimensional dataset from ERA-40,

even though this is not a pre-industrial time series, but an industrial era time series. A

similar compromise was made in [51].

Both the climate model and the real system carry the added complexity of being

non-linear, and having a very high number of dimensions. The non-linearity means that

neither system decomposes into one-dimensional components as in 3.5.1. But the two

systems must be condensed to no more than about 3 dimensions or time series at a time

in order for us to be able to construct their transition matrices.

The time series chosen to analyse are Niño 3.4, an Arctic Oscillation index, which

94
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evolves over many timescales, and global mean surface temperature, which is a direct

measure of global warming. All three indices are large scale summaries of the earth-

atmosphere system. The surface temperature index is used because it is well-known and

is the basis for descriptions of climate sensitivity [41]. The Niño index is used because its

characteristic timescale is longer than that of the Arctic Oscillation or surface tempera-

ture indices, so the eigenvalues based on it will be small, so equation (1.38) suggests that

differences in the Niño index’s behaviour indicate more significant differences in overall

dynamics and response. The Arctic Oscillation index is an atmospheric index unlike

the other two temperature indices, whose response to climate change is of wide interest

[17, 35]. A more systematic selection of dimensions is made by [19], albeit using many

more dimensions.

Section 4.3 describes how the time series were constructed and section 4.4 uses the

time series to compare the model with the reanalysis data.

4.1 Data source

The ERA-40 and HadCM3 control run data is provided by the British Atmospheric Data

Centre [49, 48]. The ERA-40 data has 4 samples per day, on a 2.5 x 2.5 degree grid for

1-Sep-1957 to 31-Aug-2002. The HadCM3 data has one sample per model day, on a 2.5

x 3.75 degree grid of the globe, over 310 model years from a notional 1849 to 2159.

4.2 Eigenvalues and eigenfunctions of Fokker-Planck

equation

For each time series, estimated eigenvalues of the corresponding one-dimensional Fokker-

Planck equation are obtained by bin-counting (with no smoothing). The first three

eigenfunctions of the Fokker-Planck equation are estimated using gaussian kernel density

estimation with bandwidth equal to (
4n

3
)−

1

6 times the sample standard deviation of the

series, where n is the number of samples in the series. The graphs of the eigenfunctions

have been normalised so that the integral of their absolute area is equal to one.
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4.3 Construction and validation of time series

4.3.1 ERA-40 Nino 3.4 index

The Niño 3.4 index is the mean sea-surface temperature in the Equatorial Pacific. The

mean is taken over latitudes 5S to 5N and longitudes 170W to 120W [4], and area-

weighted by the cosine of the latitude (the area-weights are all close to one). The data

samples are treated as average temperatures for a grid-box centred on the sampled lat-

itude and longitude, so only half of the most northerly and southerly boxes are treated

as being relevant, and just half of the most easterly and westerly boxes are treated as

relevant (illustrated in figure 4.1). So the data points on the boundaries of the box are

weighted by a half, and the datapoints on the corner are weighted by a quarter.

boundary of relevant area

sample points

Figure 4.1: Illustration of area weighting of datapoints, used to calculate Niño3.4

index. Points on the boundary of the relevant area are given half the weighting of

points in its interior. Points on the corner are given a quarter of the weighting of

points in the interior.

The seasonal cycle for the index is the mean (over the 45 years of reanalysis) for each

day of the year. The seasonal mean is calculated only for a mean year of 365 days, so,

in calculating the mean, the last day in leap years is ignored, for the sake of simplicity.

The first day of the series is 1 September (1957), so the last day of the year which is

excluded from the mean in leap years is 31 August. The anomaly index is the difference

between the index for a day and the mean for that day of the year, counting days since 1

September. In a leap year, the anomaly for 31 August is taken as the difference between

the index for 31 August and the mean index for 1 September. The seasonal cycle and
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anomaly index are shown in figure 4.2, which also shows the estimated autocorrelation

function for the anomaly index.

Figure 4.3 shows an adequate visual match between the calculated daily anomaly,

averaged over a month, and the same index calculated by National Oceanic and Atmo-

spheric Administration (NOAA).

Chang et al. [8] and Burgers [6] (reproduced in figure 4.4) report similar Niño auto-

correlation functions to the function calculated in figure 4.2 for ERA-40.
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Figure 4.2: ERA-40 Nino3.4 index, calculated from approx 45 years of reanalysis.

(a) actual index. (b) anomaly index, that is excess of index over seasonal mean.

(c) seasonal mean (mean daily value). (d) autocorrelation of anomaly index, fitted

to exponential. (e) estimated smallest eigenvalues of Fokker-Planck equation. (f)

estimated dominant eigenfunctions of Fokker-Planck equation.
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Figure 4.3: Niño 3.4 anomalies based on ERA-40 match monthly means as calcu-

lated by NOAA. NOAA figures are from [32].

Figure 4.4: The autocorrelation of the observed NINO3.4 index from 1951–1995

(solid line), which shows a similar shape to the autocorrelation calculated in figure

4.2. From [6] based on NCEP data. Reproduced with kind permission of G.Burgers.



4.3. CONSTRUCTION AND VALIDATION OF TIME SERIES 100

4.3.2 ERA-40 Arctic Oscillation

The Arctic Oscillation index is the principal component of the area-weighted surface

pressure anomalies for the northern hemisphere above and including 20 degrees north[2,

45]. The anomalies are the difference between the surface pressure at any time, and the

mean surface pressure for that time of day on that day of the year. The mean is taken

over the 45 years of reanalysis. The area weighting (which is applied before the covariance

matrix is calculated) is the average of the cosines of the latitude ±1.25 degrees. In fact,

the square root of the cosine of latitude (as for the NOAA index [33]) is the correct

weighting, because it causes the variance of the anomalies to be weighted by the cosine

of latitude, that is by the area-weighting. However, since the same error has been made

in calculating the HadCM3 Niño index, the two series may be compared.

The dominant empirical orthogonal function (EOF), shown in figure 4.5, is the dom-

inant eigenvector of the covariance matrix of the winter anomalies (those from December

1 to March 31). The Arctic Oscillation index for any day is the dot product of the area-

weighted surface pressure anomaly for that day and the dominant empirical orthogonal

vector.

By construction, the mean over all years of every anomaly is zero, so there is no

seasonal cycle. This is verified in figure 4.6.

Figure 4.5 on the next page shows that the dominant EOF is similar to that calculated

by NOAA, though the NOAA low is more centred over the pole. The monthly mean of

the AO index (the first principal component) is correlated with the NOAA AO index

with correlation coefficient 0.92. Known differences between the calculations are that

the NOAA calculation is based on monthly means for the whole year, a different period

(1979-2000), and NOAA weights pressure anomalies (correctly) by the square root of the

cosine of latitude, giving more weight to anomalies at the pole [33]. The NOAA data

was not used directly because it provided only monthly mean indices, and our method

required high temporal resolution.
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Figure 4.5: First empirical orthogonal function of mean sea level pressure anoma-

lies. The EOF based on ERA-40 data, has the same main features as those of the

first EOF calculated by NOAA.
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Figure 4.6: ERA-40 Arctic Oscillation index, calculated from approx 45 years of

reanalysis. (a) actual index. (b) anomaly index, that is excess of index over seasonal

mean. (c) seasonal mean (mean daily value). (d) autocorrelation of anomaly index,

fitted to exponential. (e) estimated smallest eigenvalues of Fokker-Planck equation.

(f) estimated dominant eigenfunctions of Fokker-Planck equation.
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4.3.3 ERA-40 surface air temperature

The Surface Air Temperature index is the area-weighted global mean near-surface air

temperature. The area weighting is the average of the cosines of the latitude ±1.25

degrees. As for the Niño 3.4 index, the seasonal cycle for the surface air temperature is

obtained by taking the mean (over the 45 years of reanalysis) for each day of the year.

Days are indexed from 1 Sep (the first date in the series) so, in a leap year, 31 August

is ignored. The anomaly index is the difference between the index for a date and the

mean for that day of the year. In a leap year, the anomaly for 31 August is the difference

between the index for 31 August and the mean index for 1 September.

The surface air temperature index is calculated over land and sea, but temperature

varies over land more than over sea due to the greater effective thermal capacity of the

sea [44]. The northern hemisphere has a smaller sea surface area than the southern

hemisphere, and so has a greater temperature variability. Thus the variability of the

global index is dominated by the northern hemisphere, and the global seasonal cycle

peaks in the northern hemisphere summer, as shown in figure 4.7.

Figure 4.7 shows an increasing trend in the temperature anomaly, corresponding to

the well-known global warming over the twentieth century, consistent with, for example

[38] in figure 4.8. This trend is very unlikely to be a feature of the system’s natural

variability, and is ‘very likely’ to be a feature of the system’s drift [41], the result of

a change in the radiative forcing on the system. There is ‘very high confidence’ that

the radiative forcing increased over the twentieth century [41], and so the assumption in

equation (1.1) of a constant drift does not hold. But the system’s response to the change

in forcing over the twentieth century gives information about its sensitivity, just as its

response to random changes gives information about its sensitivity. So an area of useful

future research would be to extend the theory behind (1.38) to allow for a time-dependant

change in drift e.g. a time-dependant change in forcing.

More immediately, a quadratic trend (red line in figure 4.7b) has been obtained by

the method of least squares, and been removed from the series to form a de-trended

series, shown in figure 4.9.
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Figure 4.7: ERA-40 Surface Air temperature index, calculated from 45 years of

reanalysis. (a) actual index. (b) anomaly index, that is excess of index over seasonal

mean. (c) seasonal mean (mean daily value). (d) autocorrelation of anomaly index,

fitted to exponential. (e) estimated smallest eigenvalues of Fokker-Planck equation.

(f) estimated dominant eigenfunctions of Fokker-Planck equation.
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(a) ERA-40 (b) NASA

Figure 4.8: Annual and Five-year means of global surface temperature anomaly,

ERA-40 vs NASA. Note that the NASA graph covers twice the period of the ERA-

40 graph and has a different reference mean. The NASA graph is from [38] which

is an update of [21].
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(b) auto-correlation of detrended anomalies
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Figure 4.9: ERA-40 Global mean surface air temperature index. (a) detrended

anomaly, which is excess over seasonal mean minus the quadratic trend. (b)

autocorrelation function of the detrended anomaly. (c) estimated eigenvalues of

the Fokker-Planck equation corresponding to the detrended anomaly. (d) esti-

mated eigenfunctions of the Fokker-Planck equation corresponding to the detrended

anomaly. Once the trend is removed the autocorrelation function becomes more sim-

ilar to the autocorrelation function of the HadCM3 surface air temperature anomaly

in figure 4.13.
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4.3.4 HadCM3 Nino 3.4 index

The HadCM3 Niño 3.4 index, shown in figure 4.10, is calculated similarly to the ERA-40

Niño 3.4 index in 4.3.1. The HadCM3 data has a coarser longitudinal resolution, so

the longitudes over which the Sea Surface temperatures are averaged are approximately

168.75W to 120W.
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Figure 4.10: HadCM3 Nino3.4 index, calculated from approx 310 model years. (a)

actual index. (b) anomaly index, that is excess of index over seasonal mean. (c)

seasonal mean (mean daily value). (d) autocorrelation of anomaly index, fitted

to exponential. (e) estimated smallest eigenvalues of Fokker-Planck equation. (f)

estimated dominant eigenfunctions of Fokker-Planck equation.
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4.3.5 HadCM3 Arctic Oscillation

The HadCM3 Arctic Oscillation (AO) index, shown in figure 4.11 is calculated similarly

to the ERA-40 AO index in 4.3.2. The only difference between the HadCM3 and ERA-40

calculation is that the HadCM3 series is longer, and has lower longitudinal resolution.

The ’loading pattern’ for the HadCM3 AO index [33] is the EOF for the HadCM3 winter

surface pressure anomalies (shown in figure 4.12 to be similar to the loading pattern for

the ERA-40 AO index). The HadCM3 AO index is the dot-product of this loading

pattern with the daily area-weighted surface pressure anomaly.



4.3. CONSTRUCTION AND VALIDATION OF TIME SERIES 110

0 100 200 300 400
−5

0

5

Arctic Oscillation index raw index
Mean daily data from HadCM3 1849 −− 2159

(a) raw series

0 100 200 300 400
−5

0

5

Arctic Oscillation index difference from seasonal mean
Mean daily data from HadCM3 1849 −− 2159

(b) anomalies

0 50 100 150 200 250 300 350 400
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Arctic Oscillation index seasonal cycle
Mean daily data from HadCM3 1849 −− 2159

Day of the year

M
ea

n 
in

de
x 

(s
d=

1)

(c) cycle

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

lag l (days)

co
rr

el
at

io
n 

E
(x

t+
l x

t)

Lagged correlation
Arctic Oscillation index difference from seasonal mean

 

 

corr

e−0.083793 l

(d) auto-correlation

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

Arctic Oscillation index
eigenvalues

k

µ k

(e) evalues

−5 0 5
−0.5

0

0.5

Arctic Oscillation index
Mean daily data from HadCM3 1849 −− 2159

Anomaly

co
m

po
ne

nt
 o

f p
df

 

 

0th

1st

2nd

(f) efunctions

Figure 4.11: HadCM3 Arctic Oscillation index, calculated from 310 model years.

(a) actual index. (b) anomaly index, that is excess of index over seasonal mean.

(c) seasonal mean (mean daily value). (d) autocorrelation of anomaly index, fitted

to exponential. (e) estimated smallest eigenvalues of Fokker-Planck equation. (f)

estimated dominant eigenfunctions of Fokker-Planck equation.
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Figure 4.12: Dominant empirical orthogonal function (EOF1) of Mean sea level

pressure anomalies, based on ERA-40, is similar to the corresponding EOF1 based

on HadCM3.
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4.3.6 HadCM3 surface air temperature

The HadCM3 surface air temperature (SAT) index, shown in figure 4.13, is calculated

with the same approach as was used for the ERA-40 SAT index in 4.3.3. The HadCM3

index does not exhibit any trend as it uses a pre-industrial level of radiative forcing

throughout.
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Figure 4.13: HadCM3 Surface Air temperature index, calculated from approx 310

model years. (a) actual index. (b) anomaly index, that is excess of index over sea-

sonal mean. (c) seasonal mean (mean daily value). (d) autocorrelation of anomaly

index, fitted to exponential. (e) estimated smallest eigenvalues of Fokker-Planck

equation. (f) estimated dominant eigenfunctions of Fokker-Planck equation.
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4.4 Comparison of series

The anomaly time series were compared (for one dimension only) by splitting their state

spaces into 80 equally probable bins, and then by counting bins without smoothing. This

approach was taken in order to get the best estimate of differences in eigenvalues, as it

was observed in section 3.4.2 that smoothing worsens the estimate of eigenvalues.

When two-dimensional series are compared, the eigenvalues are calculated by splitting

the state space for each single series into 15 equally probable bins, and then forming 225

two-dimensional bins from the pairs of one-dimensional bins. The two-dimensional bins

are not equally probable unless the one-dimensional series are uncorrelated. Bin counting

was used with no smoothing to estimate the transition matrix for the 225 discrete bins.

4.4.1 Eigenvalues for single series

Figures 4.2–4.13 show that the eigenvalues based on the transition matrices for the single

indices of Nino 3.4, Arctic Oscillation index, and global surface air temperature, are

significantly different between ERA40 and HadCM3. The eigenvalues that most differ

are for the Niño index, which has the smallest eigenvalue and is therefore subject to the

greatest sampling error or variance, consistent with section 3.4.3 and [19].

Figure 4.14 shows the 7 eigenvalues from 7 different sections of the HadCM3 time

series, obtained by splitting the HadCM3 series into series of the same length as ERA-40.

These are compared with the corresponding eigenvalue from ERA-40. The 7 eigenvalues

give a range of variation, such that any sampled eigenvalue which falls within that range

could clearly be from a statistically identical system. If a sampled eigenvalue falls outside

that range, then it is still possible that it came from a statistically identical system, but

this is less likely, the further it gets outside the range. In order to quantify this likeli-

hood it would be necessary to state an explicit model for the distribution of eigenvalues.

We have not modelled the distribution of eigenvalues explicitly, but observe that the

eigenvalues based on each ERA40 series lie outside the range of the eigenvalues based on

HadCM3, suggesting a significant difference between the actual eigenvalues of the two

systems.
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Figure 4.14: Smallest non-zero eigenvalues for Fokker-Planck equations based on

single series. Blue crosses are for HadCM3 control runs. Red cross is for ERA 40.

Green cross in graph (c) is for detrended ERA 40. (Vertical axes are meaningless).
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4.4.2 Eigenvalues for pairs of series

Figure 4.15 shows the corresponding eigenvalues if two series are taken at a time. That

is, figure 4.15 shows the eigenvalues for the two-dimensional Fokker-Planck equations

from the same 7 different sections of the HadCM3 time series. The eigenvalues based on

ERA-40 are outside the range of sampled eigenvalues based on HadCM3, and the scale of

the differences is much greater than the differences based on the one-dimensional series.
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Figure 4.15: Smallest non-zero eigenvalues for Fokker-Planck equations based on

two series. Blue crosses are for HadCM3 control runs. Red cross is for ERA 40.

(Vertical axis is meaningless). Left column is compares ERA-40 with HadCM3 con-

trol run. Right column compares ERA-40 (with the quadratic trend removed from

the surface air temperature anomaly) with HadCM3 control run. The difference

between eigenvalues involving the Niño series persists after the trend in surface air

temperature is removed.
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4.5 Conclusion

There is an adequate match between the main features of the calculated indices and those

calculated by others using different datasets, so differences in the statistics are features

of the method of calculating them (or of the system itself) but are not artefacts of the

method of calculating the indices.

Based on the autocorrelation functions (and consistent with [6]), the Niño index

cannot be modelled as a linear Langevin system since neither the model nor the actual

autocorrelation functions decay simply to zero as they would for a linear system. Of

the three indices examined, the Arctic Oscillation index shows, via its autocorrelation

function, the most similarity to a linear 1-dimensional Langevin system.

The autocorrelation function of the Surface Air Temperature series shows a persistent

memory for the ERA-40 series (and not for the HadCM3 series), though this is due

to the global warming trend, as the feature disappears for the detrended series. The

(detrended) ERA-40 SAT series and HadCM3 control run SAT series show two timescales:

the autocorrelation falls very quickly initially (showing a short-term memory of the order

of days) but a longer-term autocorrelation persists.

Certain differences between the series are only brought out by the eigenvalue analysis.

For example, the Niño series have similar autocorrelation functions, but have eigenvalues

that differ by a factor of 4. Significant differences exist between the eigenvalues of the

model and actual systems. Unlike in the linear case in section 3.5, these differences are

accentuated by comparing two series at a time.

However, the theory needs to be developed further in order to clarify how differences

in the eigenvalues represent a different response to forcing, and in particular, to the

radiative forcings that are of genereal interest. A lower eigenvalue may represent a

system which is harder to vary, but which, when varied, responds more stongly. However

this is not enough to conclude that the real and model systems respond differently to a

particular forcing.

Future work could usefully develop the theory in chapter 1 and more firmly establish

• how it could be verified to what extent the real system (or even a model) is of the

form in (1.1);

• how the theory could be extended to systems with different kinds of noise e.g.
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multiplicative rather than additive;

• the adaptation of the theory to systems with varying forcing;

• the circumstances, if any, under which ∆M in (1.38) can be calculated indepen-

dently of a model, and hence

• the significance (in terms of responses to changes in forcings) of differences in the

eigenvalues and eigenvectors of different models’ transition matrices.
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Chapter 5

Emergent dynamics of the

climate-economy system

5.1 Introduction

It is widely accepted that climate change will have major impacts on humankind. De-

pending on the magnitude of 21st century climate change, negative impacts are expected

on water, food, human health [20, 11] and ultimately economic growth [19, 28]. Global

CO2 emissions, which are the largest contributor to anthropogenic climate change [29],

have, to date, been highly correlated with economic output [2]. As a result there is

a negative feedback between climate change and economic growth that is mediated by

CO2 emissions: an increase in human wealth causes an increase in emissions and global

warming, but the warming damages human wealth, slowing its rise or even making it

fall.

This climate-economy feedback is typically neglected in a standard climate change

assessment [27], which is largely a serial process going from socioeconomic scenarios to

emissions to climate change to impacts [4]. Integrated assessment models, e.g. [19]

do include the feedback but only weakly. A feasible sensitivity of the economy to the

climate results in important emergent properties, which are the subject of this chapter.

Dangerous rates of change [25] can be defined as those rates that cause instabilities

or long-term boom-bust oscillations, thereby preventing a ‘soft-landing’ of the climate-

economy system. A soft-landing would be a process leading smoothly to an equilibrium.
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Using a simple model of the coupled climate-economy system this chapter derives

formulae for the critical rates of growth of global CO2 emissions which define the edges

of stable and unstable regimes. On the basis of this model, historical rates of economic

growth and decarbonisation, which together have led to the historical rates of growth of

CO2 emissions, put the climate-economy system in a dangerous boom-bust regime.

The model is defined in section 5.2 and the stability of its equilibria are analysed

in section 5.3. The model is fitted to the 20th century experience in section 5.4 and

projected in section 5.5. The model is compared with the well known DICE model [19]

in section 5.6.

5.2 Model definition

The model presented here describes the global human-environment system with just 3

state variables: atmospheric CO2 concentration (Ĉ), global warming (T̂ ), and global

wealth (Ŵ ), interdependent as in figure 5.1a.

(a) Climate-economy model (b) Predator-prey model

Figure 5.1: Schematic of climate-economy model, with predator-prey model for

comparison. Red lines indicate positive feedbacks and blue lines indicate negative

feedbacks. On the left, the blue dot-dash line is the climate change impact on the

economy, which is the main subject of this chapter.

Schematically (see figure 5.1b) the model has a similar form to a predator-prey model

[32]. Global wealth has the role of the prey. It supplies the ‘predator’ of pollution and is
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reduced by the pollution’s impacts.

5.2.1 Model dynamics

Global warming is assumed to increase with the atmospheric CO2 concentration according

to the standard logarithmic dependence on CO2 [10, 7], moderated by the extra outgoing

radiation from the higher temperature on earth. Equilibrium climate sensitivity [8] is

∆T2∗CO2(for a doubling of CO2 from an assumed pre-industrial level of CPI), approached

on a characteristic climate timescale of τT , which is set by the thermal capacity of the

oceans.

dT̂

dt̂
=

1

τT

{
∆T2∗CO2

ln 2
ln(Ĉ/CPI) − T̂

}
. (5.1)

Atmospheric carbon dioxide (Ĉ) increases in proportion to global CO2 emissions (Ê),

but the excess Ĉ above the preindustrial level is reduced by the combined effect of land

and ocean carbon sinks with an assumed characteristic timescale of τC years. In reality

CO2 is removed from the atmosphere on a large range of timescales [1], but a single

effective timescale of τC=50 is consistent with the historical airborne fraction [23].

dĈ

dt̂
= Ê − 1

τC

(
Ĉ − CPI

)
. (5.2)

CO2 emissions Ê increase with global wealth Ŵ , which is human and material capital.

Initially, Ê= χŴ , where χ is a constant carbon intensity, that is the amount of CO2

required to service each unit of wealth. Consistent with historical records of emissions in

[15, 17, 3], the carbon intensity is assumed to fall exponentially over time by a constant,

positive decarbonisation rate of µ per year, so that after Y years, one unit of wealth can

be serviced by CO2 emissions of e−µY times the amount currently required. If Ŵ grows

faster than at µ per year, then emissions will increase, that is

Ê = χe−µt̂Ŵ . (5.3)

Global wealth (Ŵ ) grows through net investment in social capital, technology, pro-

ductivity [9, 14], and is shown as the positive feedback loop on the right-hand-side of

Figure 5.1a. An increase in Ŵ comes from world product exceeding world consumption

and depreciation. Within the model, Ŵ is theoretically infinite, only constrained by the

condition of natural resources, i.e. by T̂ . The model simplifications imply that there are
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sources (of resources) and sinks (for waste) with infinite capacity. In reality, both are

limited [16]. In particular, a finite fossil fuel reserve could be modelled, with the cost

of fossil fuel increasing as the reserve fell. An increasing real cost of fossil fuel would

require a higher proportion of resources to be allocated to production of energy, and a

lower proportion to be allocated to production of goods and services, so that the rate

of increase in global wealth would fall as the fossil fuel reserve fell (which would be as

the integral of emissions over time rose). However, for simplicity, effectively infinite fossil

fuel reserves with a constant price of extraction have been assumed, so that the rate of

increase in wealth does not depend on the size of wealth, nor on its integral over time.

The Kaya identity [22] separates the components of emissions into ratios so that

emissions are a product of population, GDP per person and carbon intensity of GDP.

Population is not modelled explicitly in this model. An increase in global wealth could

be the result of greater wealth per person, or of a rising population with static or falling

wealth per person.

The climate-economy feedback loop is closed by assuming that global warming sup-

presses economic growth. An extensive literature (surveyed in e.g. [28, 21]) estimates

the total impacts of climate change from the ‘bottom-up’ – aggregating the different im-

pacts (water stress, sea-level rise, weather extremes etc) on different regions (low-lying,

developing, industrial etc) and sectors (food supply, human health, security etc). Parry

et al. [21] concludes that the degree to which economic growth is affected by climate

change depends on the projected development pathway. This implies damage that de-

pends somehow on the time-integral of the level of wealth. Also, Parry et al. [21] suggests

that the convexity of the damage function depends on inequalities of wealth within the

population. However, for the sake of simplicity we have neglected inequalities by using

a single variable for global wealth, and assumed that the net rate of growth in wealth,

x̂(T̂ ), depends only on the level of global warming, and falls as global warming rises.

Similarly, we have assumed the rate of growth in wealth is independent of the pace of

global warming, so that x̂(T̂ ) does not depend on
dT̂

dt
. Also, the proportional rate of

growth
1

Ŵ

dŴ

dt
is assumed to be independent even of the size of wealth, so the model

does not allow for climate change to have less proportionate impact if the level of wealth

is high, and unlike e.g. [16] the model does not assume a carrying capacity.

The actual ranges of temperature allowing economic growth or forcing economic con-
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traction are unknown, so x̂(T̂ ) is only specified as far as assuming that at one (positive)

level of global warming the rate of economic growth will fall to the decarbonisation rate

µ, at which point, by (5.3), the growth of CO2 emissions will be zero, though may not

necessarily be stable.

dŴ

dt̂
= x̂(T̂ )Ŵ ; (5.4)

∃T̂e > 0 : x̂(T̂e) = µ (5.5)

dx̂

dT̂
< 0. (5.6)

5.2.2 Non-dimensional form of model

In non-dimensional variables, the model is autonomous:

Ċ :=
dC

dt
= E − φC, (5.7)

Ṫ = log (1 + C) − T, (5.8)

Ė = x(T )E, (5.9)

where

t =
t̂

τT
, (5.10)

C =
Ĉ

CPI
− 1, (5.11)

T =
T̂ log 2

∆T2∗CO2
, (5.12)

E =
τTχe−µt̂Ŵ

CPI
, (5.13)

φ =
τT
τC

, (5.14)

x(T ) = τT

{
x̂(T̂ ) − µ

}
. (5.15)

5.3 Model equilibria

Without making any approximations, the model has two equilibrium points, i.e. combi-

nations of C, T , E which are in balance, and so can (in theory) be permanent. These
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points are obtained by setting (5.7)–(5.9) to zero and solving for C, T , E. The equilib-

rium points are (0,0,0) and, using the assumptions in equations (5.5–5.6), the positive

equilibrium

se ≡




Ce

Te

Ee


 =




eTe − 1

x−1(0)

φ
(
eTe − 1

)


 . (5.16)

At the equilibrium level of emissions, CO2 concentration and global warming are

constant. From (5.13) Ŵ ∝ eµt̂E so that an equilibrium level of E means Ŵ increases

exponentially at rate µ.

5.3.1 Zero equilibrium is unstable

The zero equilibrium (no emissions, a preindustrial level of CO2 and no warming) is

unstable. A small level of emissions grows exponentially at rate x(0) without (initially)

any significant impact on T̂ , because the accumulated emissions are initially small, so

the radiative forcing is small, and the increase in temperature only emerges over the

timescale τT .

5.3.2 Stability of positive equilibrium

The positive equilibrium may be stable or unstable. If it is stable, differences from the

equilibrium get smaller over time, so that configurations of the variables C, T , E which

are only slightly different from the equilibrium configuration, tend over time, towards

the equilibrium. If it is unstable, differences from the equilibrium get larger over time,

so that the equilibrium is practically unattainable.

Whether the equilibrium is stable or unstable depends on the relative timescales

for economic growth or decay, global warming and the carbon cycle. In dimensionless

variables, the stability depends on the relationship between x and φ.

For, let σ = σ(x) = −dx(Te)

dT

{
1 − e−Te

}
(5.17)

= − dx

dT

∣∣
x−1(0)

{
1 − e−x−1(0)

}
, by (5.16). (5.18)

By (5.5), (5.6) and (5.15)

σ > 0. (5.19)
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Then (proven in section 5.3.3) the equilibrium is stable if and only if

σ < 1 + φ. (5.20)

Equations (5.18) and (5.20) show that the stability of the equilibrium depends entirely

on the damage function x and the relative timescales of the warming and carbon cycles,

φ. The equilibrium gets less stable the higher the level of warming at which emissions

can continue to grow, and the more severe the change in the damage function near the

equilibrium. In other words, the slacker the control, but the more suddenly it is applied,

the less stable is the equilibrium. This confirms the idea of instability being a function

of delays in responses to an oncoming limit [16]. There are many physical analogies, e.g.

when braking smoothly and early, or suddenly and at the last moment.

Even if the equilibrium is stable, the system oscillates on its way to achieving the

equilibrium unless (proven in section 5.3.3)

σ <
1

φ
pq2, (5.21)

where pq2 =
1

27

(
−2 + 3φ + 3φ2 − 2φ3 + 2

(
1 − φ + φ2

)3/2)
. (5.22)

It follows (estimated in (5.61)) that the system does not oscillate near the equilibrium if

σ <
1

8
min (1, φ) (5.23)

and does oscillate near the equilibrium if

σ >
1

4
min (1, φ) . (5.24)

5.3.3 Proof of stability conditions

Jacobian of linearized system

Standard linear stability theory [12] proves equations (5.20) – (5.21). By the Hartman-

Grobman theorem [30], the qualitative behaviour of small displacements from the equi-

librium is the same as the behaviour of small displacements in the linearized system. Let

s(t) be the state of the system at time t and se be the equilibrium point.
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Let sd(t) = s(t) − se. Let F = Ċ,G = Ṫ and H = Ė. Then let J be the Jacobian

matrix evaluated at se:

J(se) =




∂F/∂C ∂F/∂T ∂F/∂E

∂G/∂C ∂G/∂T ∂G/∂E

∂H/∂C ∂H/∂T ∂H/∂E


 (5.25)

=




−φ 0 1

1
1+Ce

−1 0

0 dx(Te)
dT Ee x(Te)


 (5.26)

=




−φ 0 1

e−Te −1 0

0 dx(Te)
dT φ

{
eTe − 1

}
0


 , by (5.16). (5.27)

If, as t → ∞, |Jt sd| → 0 so that the linearized system tends to the equilibrium point

then s(t) → se for the non-linear system. If |Jt sd| → ∞, so that the fixed point is

unstable for the linearized system, then it is also unstable for the non-linear system.

|Jt sd| → 0 or ∞ according to whether the eigenvalues of J have negative or positive

real part. sd spirals towards 0 or away from it if any of the eigenvalues of J have non-zero

imaginary parts.

Characteristic equation of Jacobian

This section shows that the eigenvalues of J depend on the size of

h = φσ > 0, (5.28)

because the characteristic equation of the Jacobian is

⇒ λ (λ + φ) (λ + 1) + h = 0. (5.29)

The eigenvalues λ of J(se) are solutions to its characteristic equation i.e.

| λI− J | = 0 (5.30)

⇒ λ (λ + φ) (λ + 1) − dx(Te)

dT
φ
(
1 − e−Te

)
= 0 by (5.27), (5.31)

⇒ λ (λ + φ) (λ + 1) + h = 0 by (5.17) , (5.28). (5.32)

Consider the polynomial in (5.32) when h= 0. When h=0, the roots of the polynomial

are 0, -φ and -1. Since φ > 0 (by (5.14)), and the coefficient of λ3 is positive, the graph
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b b b λ
A B 0

(a) φ 6= 1

b b λ
A,B 0

(b) φ = 1

Figure 5.2: λ(λ+ φ)(λ+ 1) given that φ > 0. A = −max(φ, 1). B = −min(φ, 1).

of the polynomial (when h= 0) is one of the two in figure 5.2. h is a positive constant so

it can be considered a height that shifts the graph up the vertical axis, as in figure 5.3.

As h increases, the root at zero becomes negative, so (5.32) never has a non-negative real

root. Also, as h increases, the largest negative root gets larger i.e. tends towards −∞,

so that (5.32) always has at least one negative root. Since (5.32) always has a negative,

real root, the cubic (5.32) factorises into a linear part and a quadratic part. The nature

of the other roots depends on the solution of the quadratic part, which depends on h.

So, the height h determines whether the polynomial has, in addition to the real negative

root: two real negative roots, or one repeated negative root, or two complex conjugate

roots.

Condition for stability: no roots with positive real part

This subsection proves equation (5.20). The equilibrium is stable if J has no eigenvalues

with positive real part. In order to prove (5.20), it is shown that (5.32) has no solutions

with positive real part, if and only if

h < φ (1 + φ) . (5.33)
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Figure 5.3: λ (λ+ 0.5) (λ+ 1) + h, h ≥ 0

To prove (5.33), the polynomial in (5.32) can be factorised as

λ (λ + φ) (λ + 1) + h = (λ + p)
{
λ2 + (φ + 1 − p)λ + φ − (φ + 1 − p) p

}
(5.34)

where h = p {φ − (φ + 1 − p) p} (5.35)

and − p ≤ −1 is the real root of (5.31). (5.36)

By the quadratic formula,
{
λ2 + (φ + 1 − p) λ + φ − (φ + 1 − p) p

}
has roots with nega-

tive real part if and only if

p < 1 + φ (5.37)

⇒ h < (1 + φ) φ by (5.35), (5.36) since (1 + φ) > p > 0. (5.38)

If h = (1 + φ) φ then the roots of (5.32) are −p = −(1 + φ) and ±i
√

φ. As discussed

above using figure 5.3, as h decreases, p decreases, so if h < (1 + φ) φ, then p < 1 + φ.

Together with (5.38) this proves (5.33).

Condition for no oscillation: no complex roots

This subsection proves (5.21). Small displacements from the equilibrium se tend smoothly

to 0, with no oscillations, so long as h is small enough for all the roots of (5.32) to be real
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and negative. Thus h must be smaller than it is in the borderline case, where (5.32) has

a negative root −p and two repeated negative roots −q. By considering how the sketches

in figure 5.2 are shifted upwards by h > 0, the repeated negative roots have the value of

λ at the turning point between 0 and point B, so that

q < min (1, φ) . (5.39)

In the borderline case, (5.32) is of the form (λ + p) (λ + q)2. So, h < pq2 and it remains to

show that the equation for pq2 in equation (5.22) is correct. This is done by factorising

(5.32) into a linear and quadratic part, as before, and then comparing coefficients of

powers of λ. In the borderline case,

(λ + p) (λ + q)2 = λ (λ + φ) (λ + 1) + h. (5.40)

Expanding,

λ3 + (p + 2q)λ2 + (2pq + q2)λ + pq2 = λ3 + (φ + 1)λ2 + φλ + h (5.41)

Equating coefficients of powers of λ,

p + 2q = φ + 1 (5.42)

2pq + q2 = φ (5.43)

pq2 = h. (5.44)

pq2 is obtained from (5.42) and (5.43). Substituting p from (5.42) into (5.43)

2(φ + 1 − 2q)q + q2 = φ (5.45)

⇒ 3q2 − 2(φ + 1)q + φ = 0 (5.46)

⇒ q =
1

3

{
φ + 1 ±

√
(φ + 1)2 − 3φ

}
. (5.47)
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The negative root of (5.47) must be taken, otherwise a contradiction appears.

For, suppose q =
1

3

{
φ + 1 +

√
(φ + 1)2 − 3φ

}
(5.48)

and consider the case where φ < 1 (5.49)

so that q < φ, by (5.39). (5.50)

Thus q =
1

3

{
φ + 1 +

√
(φ + 1)2 − 3φ

}
< φ (5.51)

⇒
√

(φ + 1)2 − 3φ < 2φ − 1 (5.52)

⇒ (φ + 1)2 − 3φ < (2φ − 1)2 (5.53)

⇒ 0 < 3φ (φ − 1) (5.54)

⇒ 1 < φ,which contradicts (5.49). (5.55)

A similar contradiction appears for the case where φ > 1. If φ = 1, then the positive

root of (5.47) makes q = 1, contradicting (5.39). So,

q =
1

3

{
φ + 1 −

√
φ2 − φ + 1

}
(5.56)

⇒ p =
1

3

{
φ + 1 + 2

√
φ2 − φ + 1

}
by (5.42) (5.57)

⇒ pq2 =
1

27

{
−2 + 3φ + 3φ2 − 2φ3 + 2

(
1 − φ + φ2

)3/2}
. (5.58)

Approximate values for the stable equilibrium to have no oscillations

This subsection justifies (5.23) and (5.24). Via binomial expansion of
(
1 − φ + φ2

)3/2
in

equation (5.58), for small φ

pq2 =
φ2

4
+ O(φ3). (5.59)

For large φ, via binomial expansion of φ3
(
1/φ2 − 1/φ + 1

)3/2
,

pq2 =
φ

4
− 1

8
+ O

(
1

φ

)
. (5.60)

Furthermore, it appears empirically, as shown in figure 5.4, for all φ in the likely relevant

range for the model, that

min

(
φ

8
,
φ2

8

)
< pq2 < min

(
φ

4
,
φ2

4

)
. (5.61)
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Figure 5.4: The critical value of h for the stable equilibrium to have no oscillations

appears to lie between 1/8 and 1/4 of min(φ, φ2)

5.3.4 Period of oscillations

The period of the oscillations toward the stable equilibrium is 2π
ω where ω is the imaginary

part of the complex eigenvalues [12].

By applying the quadratic formula to the quadratic part of (5.34),

ω =
1

2

√
4 {φ − (φ + 1 − p) p} − (φ + 1 − p)2, (5.62)

where 4 {φ − (φ + 1 − p) p} > (φ + 1 − p)2 . (5.63)

Hence ω <
1

2

√
4 {φ − (φ + 1 − p) p} (5.64)

=
√

φ − (φ + 1 − p) p (5.65)

<
√

φ by (5.36) & (5.37). (5.66)

So the period of oscillations towards the stable equilibrium is

>
2π√

φ
. (5.67)
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5.3.5 Critical values in dimensional variables

The above conditions for stability and the period of oscillations may be expressed in the

original dimensions by applying (5.10)–(5.15) to the non-dimensional results.

The equilibrium point for Ĉ and T̂ is, from (5.16)



Ĉe

T̂e

Ŵe


 =




CPIe
x̂−1(µ) log 2/∆T2∗CO2

x̂−1(µ)

CPI
τC

{
ex̂−1(µ) log 2/∆T2∗CO2 − 1

}
eµt̂

χ


 . (5.68)

From (5.20), the equilibrium is stable if and only if

−∆T2∗CO2

log 2

dx̂(T̂e)

dT̂

{
1 − e−x̂−1(µ) log 2/∆T2∗CO2

}
<

1

τT
+

1

τC
(5.69)

From (5.23), the system does not oscillate near the equilibrium if

−∆T2∗CO2

log 2

dx̂(T̂e)

dT̂

{
1 − e−x̂−1(µ) log 2/∆T2∗CO2

}
<

1

8
min

(
1

τT
,

1

τC

)
(5.70)

and, from (5.24), the system does oscillate near the equilibrium if

−∆T2∗CO2

log 2

dx̂(T̂e)

dT̂

{
1 − e−x̂−1(µ) log 2/∆T2∗CO2

}
>

1

4
min

(
1

τT
,

1

τC

)
. (5.71)

From (5.67), the period of oscillations towards the stable equilibrium is

> 2π
√

τT τC years. (5.72)

5.4 Model parameters

Clearly, from (5.69), the parameters chosen for the model determine whether its equilib-

rium is stable or not. On the left hand side of (5.69), a higher level of tolerable global

warming or a decrease in the decarbonisation rate are destabilising, as they allow longer

lags before the system has to adjust. A higher level of climate sensitivity and a steeper

damage function are also destabilising, as they imply a faster pace of change to which the

system must adjust. On the right hand side of (5.69), greater thermal or carbon cycle

inertia is destabilising, as it means the system can only adjust slowly. Consistent with

this, climate sensitivity and response lags have been found to be sensitive determinants

of the social cost of carbon [21]. The initial conditions, including the initial carbon in-

tensity, affect the system’s trajectory, but do not affect the stability of the equilibrium.
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The numerical simulations in this section use parameters based on the following:

1. An initial carbon intensity χ of 0.025 ppmv / $ tr, consistent with current CO2

rises of approx 2 ppmv per year.

2. Initial levels of CO2 concentation, global warming and global wealth of 380 ppmv,

0.7K, $160 tr [5]

3. A central estimate for the equilibrium climate sensitivity of ∆T2∗CO2=3K, ap-

proached on a characteristic climate timescale of τT = 50 years.

4. A preindustrial level of CO2 of 280 ppmv.

5. A characteristic carbon timescale of τC = 50 years, consistent with a fixed airborne

fraction.

6. A decarbonisation rate µ = 1% per year, based on records of economic and CO2

emissions growth for the late 20th century [15, 17, 3]

7. A linear expansion (or damage) function for wealth of

dŴ

dt̂
= ξ

(
1 − δT̂

)
Ŵ . (5.73)

Equation (5.73) assumes the rate of economic growth is reduced by a fraction δ for each

kelvin of global warming. The orthodox climate prediction chain essentially assumes that

δ ≈ 0, such that there is no feedback from climate change to economic growth. The

actual fraction δ is unknown, though it is constrained by the 20th century experience.

Parry et al. [21] estimates global mean losses of GDP (for a 4K warming) as between 1-5%

GDP, but considers this likely to be an underestimate. Rearranging the linear damage

function in (5.73),

ξ =
x̂(T̂ )

1 − δT̂
(5.74)

⇒ ξ − µ =
x̂(T̂ )

1 − δT̂
− µ. (5.75)

Using the observed values of µ, T̂ , x̂(T̂ ) for the late twentieth century which are 1%,

0.7K and 3%, and allowing for a 10% error in each measurement, then

⇒ ξ − µ =
3% ± 0.3%

1 − δ(0.7 ± 0.07)
− (1% ± 0.1%) (5.76)
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which constrains (ξ − µ) and δ in figure 5.6 to the brown region marked as observed.

Parry et al. [21] suggests a net positive effect on GDP for a small level of warming, so

that 3% pa growth could in fact be above the background level of economic growth. The

actual growth experienced since the 1950s could be considered atypical, being attributed

to the recovery from World War II or advances in technology. While the results of (5.69)

– (5.72) are more general, resting only on assumptions of section 5.2.1, figures 5.5–5.7

are less certain, as they rely on the more specific parameters in this section.

In low-level climate change impacts (5.73) would imply an exponential growth of Ŵ

at a constant background-rate of ξ. In the late 20th century the global economic growth-

rate, ξ, averaged about 3% per year [31]. However, the Special Report on Emissions

Scenarios for 21st century growth [18] translate into growth-rates of between 1 and 4 %

per year, and these extremes for ξ are used in the next section.

5.5 Model results

Figure 5.5 compares the model projections of the 21st and 22nd centuries for the standard

no-feedback case (dashed lines) with projections when δ=0.5, a value that would produce

an equilibrium global warming of T̂=2(1-µ/ξ)K. A low background economic growth-rate

of ξ=1% per year is considered (green lines) as is a high background economic growth-rate

of ξ=4% per year (black lines). In both cases the closure of the climate-economy feedback

loop significantly affects the projections, especially in the 22nd century. However, the

emergent dynamics are very different in the low and high growth cases.

In the low growth-rate case the impact of climate change on economic growth leads

to a soft-landing at the equilibrium in which the negative climate-economy feedback loop

counteracts the background economic growth-rate, the CO2 emission rate stabilises, and

the economy grows at the decarbonisation rate of µ per year. In contrast, in the high

growth case the negative feedback loop is too slow to balance the background growth-

rate. This leads to an overshoot of the climate equilibrium that precedes an economic

crash (see Figure 5.5c, red continuous line). The high growth-rate case projects an

economic depression for the whole of the 22nd century, although rather ironically the

CO2 concentration and climate recover as a result.

The linear analysis in section 5.3 identified three regimes: the soft-landing associated

with low background economic growth-rates, the instability associated with high growth-



5.5. MODEL RESULTS 142

2000 2050 2100 2150 2200
300

400

500

600

CO
2
 concentration

Year

p
p

m
v

(a)

2000 2050 2100 2150 2200
0

1

2

3

4
Global Warming

Year

K

(b)

2000 2050 2100 2150 2200
0

100

200

300

400

500
Global Wealth

Year

$ 
tr

.

(c)

Figure 5.5: Impact of the climate-economy feedback on projections for the 21st and

22nd century. Coupled projections are shown by the continuous lines, and uncou-

pled simulations are shown by the broken lines. Black lines assume a background

economic growth-rate of 4%pa; green lines assume 1% pa.

rates, and oscillations at intermediate growth-rates. Figure 5.6 shows the location of these

regimes in the parameter-space defined by the background growth-rate of CO2 emissions

(ξ − µ), and the fractional suppression of economic growth per unit of global warming,

δ. The possible parameters are constrained by the historical level of global warming and

economic growth. In the absence of any intervention, a soft landing requires the economy

to be almost insensitive to global warming, that is for δ to be less than about 0.05. This

is equivalent to requiring that the economy can withstand global warming of more than

20K without contracting, which seems very unlikely. It therefore seems likely that the

climate-economy system is currently in an oscillatory regime, with the possibility of even

more abrupt instabilities if economic growth is faster in the future or if the damage

function for wealth is more steep or nonlinear than we have supposed.

Figure 5.7 shows the stability regimes in the parameter-space defined by the back-

ground economic growth-rate and the decarbonisation rate, for two values of δ, the eco-

nomic damage due to climate change. It is clear that decarbonisation raises the threshold

under which a soft landing is possible.



5.6. RELATION TO OTHER MODELS 143

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ba
ck

gr
ou

nd
 e

m
is

si
on

s 
gr

ow
th

 r
at

e 
(%

/y
r)

d = suppression of economic growth by climate change (frac/K)

Adaptation
M

iti
ga

tio
n

Observed

Soft landing

Oscillation

Instability

Figure 5.6: Stability regimes of the climate-economy system as a function of the

background rate of growth of CO2 emissions ξ − µ and the economic damages due

to global warming. The brown area is consistent with the observed level of global

warming and recent economic growth, according to the data in section 5.4. Climate

sensitivity is assumed to be 3K and the characteristic timescales for T̂ and CO2 are

both taken as 50 years.

5.6 Relation to more sophisticated Integrated As-

sessment Models

In the climate-emissions equilibrium state the economic growth rate is equal to the de-

carbonisation rate. Decarbonisation is typically understood to represent an economic

cost [13], but in this model it is only through decarbonisation that the economy can

grow sustainably.

A limitation of the model is that the price of decarbonisation and the resources

spent on decarbonisation are not explicitly modelled. The parameter µ is externally

prescribed and does not depend on wealth. This appears to conflict with the theory
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Figure 5.7: Stability regimes of the climate-economy system as a function of the

background economic growth-rate ξ and the rate of decarbonisation of the economy

(µ). Left and right panels show different economic damages due to global warming;

(a) δ=0.5 per K; (b) δ=0.1 per K.

of the Environmental Kuznets Curve (EKC) which holds that a clean environment is a

luxury good [6], so that under the EKC theory, µ might be an increasing function of

wealth. However, [6] shows two reasons why the EKC may not apply to global CO2

emissions. First, there is a clearer case for an EKC in pollutants whose effects are short-

term and local, than for pollutants whose effects are long-term and global. Second, and

consistent with the first reason, the apparent drop in pollution in richer societies may

be achieved to some degree by just exporting that pollution to poorer societies. No such

export is possible at a global level.

The assumption of a linear damage function is more optimistic than most commen-

tators’ [28] though its size is an order of magnitude more severe. The well known DICE

model, if suitably simplified and with a scaled-up damage function, exhibits similar be-

haviour to the three-variable model presented here. Figure 5.8 compares a simplified

version of the global DICE model (dashed lines) with the our model (solid lines). The

simplifications made to the DICE model are:

i The DICE capital share is set to one, removing the sensitivity to DICE’s exogeneous

population growth. This is defensible if population is treated as a function, indeed



5.6. RELATION TO OTHER MODELS 145

2000 2050 2100 2150 2200
500

1000

1500

2000

2500

3000

Year

p
p

m
v

CO
2
 concentration

(a)

2000 2050 2100 2150 2200
0

2

4

6

8

Year

K

Global Warming

(b)

2000 2050 2100 2150 2200
0

1000

2000

3000

Year

$ 
tr

.

Global Capital

(c)

Figure 5.8: Impact of the climate-economy feedback on projections for the 21st and

22nd century. Simplified DICE (dashed lines) is compared with the 3-variable model

in this chapter (solid lines).

a component of global wealth parameters. It is consistent with [9] which attributes

the bulk of productivity differences to the accumulation of social infrastructure.

ii The DICE exogeneous productivity growth rate is set to zero. This is no more

arbitrary than setting the exogeneous decarbonisation rate to a constant.

iii The DICE carbon intensity is set to reduce by 10% per decade, consistent with the

historical record.

iv The DICE savings rate is fixed at 23%, approximately the level set by the optimised

DICE model.

v The DICE damage function is multiplied by ten. This is the most striking change,

but part of the increase in the damage-to-production function is due to the fact

that the DICE-99 depreciation function is fixed, whereas it is reasonable to suppose

that the replacement cost of assets will increase along with the production cost.

The parameters for our model are the same as those in section 5.5 except that:

i the damage coefficient is set to 0.15 (implying a climate induced recession at 7K

of global warming).

ii The background economic growth rate is set to 5%.
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5.7 Conclusion

Even damped oscillations are likely to be damaging to the long-term well-being and

security of humanity [26], so how can they be avoided? Figures 5.1a and 5.6 suggest

four possible ways to ensure a soft-landing for the climate-economy system. The first

is to reduce the background rate of economic growth to rates (ξ < 0.5% per year) that

can be gradually counteracted by the climate-economy feedback loop. The second to

increase the decarbonisation rate, though this is unlikely to be sustainable for long, if

decarbonisation gets progressively harder to achieve. The third is to reduce the sensitivity

of the economy [24] to global warming (i.e. reduce δ) through adaptation measures. The

fourth way is to break the link between economic output and climate change, for instance

by geo-engineering to offset the radiative forcing of CO2.

The inclusion of even a relatively weak feedback loop between climate change and

economic growth leads to projections for the 21st and 22nd centuries that differ funda-

mentally from the standard no-feedback case. The climate-economy feedback permits a

climate equilibrium state in which the background economic growth-rate (i.e. in the ab-

sence of climate change) is counteracted by climate change impacts on the economy. Eco-

nomic growth in this climate state is equal to the rate of decarbonisation, so mitigation

efforts are critical to ensure long-term sustainable growth. However, the assumptions be-

hind figure 5.7 indicate that decarbonisation will not be enough to ensure a soft-landing

on this sustainable trajectory. Instead they anticipate over-shoot oscillations or even

instabilities under historical rates of economic growth, and feasible levels of economic

damage due to climate change. Navigating the climate-economy system to a soft-landing

will require massive efforts in both mitigation and adaptation, but also lower but more

sustainable rates of global economic growth.
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[12] José, J. V. and Saletan, E. J. (1998). Classical dynamics: a contemporary approach.

Cambridge University Press. 676 pages.

[13] Keller, K., Hall, M., Kim, S. R., Bradford, D. F., and Oppenheimer, M. (2005).

Avoiding dangerous anthropogenic interference with the climate system. Climatic

Change, 73(3), 227–238.



REFERENCES 148

[14] Knack, S. and Keefer, P. (1997). Does Social Capital Have An Economic Payoff? A

Cross-Country Investigation*. Quarterly Journal of Economics, 112(4), 1251–1288.

[15] Marland, G., Boden, T. A., Andres, R. J., Brenkert, A. L., and Johnston, C. A.

(2006). Global, regional, and national fossil fuel CO2 emissions. Trends: A compendium

of data on global change. Carbon Dioxide Information Analysis Center.

[16] Meadows, D., Meadows, D. H., and Randers, J. (2004). Limits to Growth: The 30

Year Global Update. Chelsea Green Publishing Company. 338 pages.

[17] Metz, B. and Davidson, O. R. (2007). Climate Change 2007 Mitigation: Contribu-

tion of Working Group III to the Fourth Assessment Report of the Intergovernmental

Panel on Climate Change. Published for the Intergovernmental Panel on Climate

Change by Cambridge Univ. Press. 851 pages.

[18] Nakicenovic, N. and Swart, R. (2000). Special report on emissions scenarios. Cam-

bridge University Press. 599 pages.

[19] Nordhaus, W. (2008). A Question of Balance: Weighing the Options on Global

Warming Policies. Yale University Press. 234 pages.

[20] Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., and Hanson,

C. E. (2007a). Climate change 2007: Impacts, adaptation and vulnerability: Contri-

bution of working group II to the fourth assessment report of the intergovernmental

panel on climate change. Cambridge University Press. 976 pages.

[21] Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P., and Hanson,

C. E. (2007b). IPCC, 2007: Climate Change 2007: Impacts, Adaptation and Vul-

nerability. Contribution of Working Group II to the Fourth Assessment Report of the

Intergovernmental Panel on Climate Change. Cambridge University Press. 976 pages.

[22] Raupach, M., Marland, G., Ciais, P., Le Quéré, C., Canadell, J., Klepper, G., and
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