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Abstract

This thesis is in two parts. The first part considers a theoretical relationship be-

tween the natural variability of a stochastic model and its response to a small

change in forcing. Over a large enough scale, both the real climate and a climate

model are characterised as stochastic dynamical systems. The dynamics of the

systems are encoded in the probabilities that the systems move from one state

into another. When the systems’ states are discretised and listed, then transition

matrices of all these transition probabilities may be formed. The responses of the

systems to a small change in forcing are expanded in terms of the eigenfunctions

and eigenvalues of the Fokker-Planck equations governing the systems’ transition

densities, which may be estimated from the eigenvalues and eigenvectors of the

transition matrices. Smoothing the data with a Gaussian kernel improves the esti-

mate of the eigenfunctions, but not the eigenvalues. The significance of differences

in two systems’ eigenvalues and eigenfunctions is considered. Three time series from

HadCM3 are compared with corresponding series from ERA-40 and the eigenvalues

derived from the three pairs of series differ significantly.

The second part analyses a model of the coupled climate-economic system,

which suggests that the pace of economic growth needs to be reduced and the

resilience to climate change needs to be increased in order to avoid a collapse

of the human economy. The model condenses the climate-economic system into

just three variables: a measure of human wealth, the associated accumulation of

greenhouse gases, and the consequent level of global warming. Global warming

is assumed to dictate the pace of economic growth. Depending on the sensitivity

of economic growth to global warming, the model climate-economy system either

reaches an equilibrium or oscillates in century-scale booms and busts.
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√
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X is the state variable and W is the state of a Wiener process, so

that dW is gaussian white noise with variance dt over a timescale

dt. Both systems have the same steady pdf (a gaussian with mean

1, variance 1) but have different characteristic timescales [43] equal

to 1/α. Because of the different timescales, the two systems have

different equilibrium responses to a change in forcing. This is shown

in the right plot, where r has been reduced by 0.5 for both systems.

The new blue equilibrium for the slow system is a gaussian with

mean 0.5 and variance 1. But the red system is ten times as fast

as the slow blue system. So, the fast red system’s equilibrium mean

is reduced by one tenth of the reduction to the slow blue system’s

equilibrium mean. If the slow system were a model and the fast

system were reality, then no matter how small a change in forcing,

the slow system would overestimate the real system’s response to

the change in forcing by a factor of 10. . . . . . . . . . . . . . . . . 40
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