Relating forced climate change to natural variability and emergent dynamics of the climate-economy system

Submitted by

Owen Kellie-Smith

to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Mathematics, March 2010.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material is included for which a degree has previously been conferred upon me.

............................
Owen Kellie-Smith
Abstract

This thesis is in two parts. The first part considers a theoretical relationship between the natural variability of a stochastic model and its response to a small change in forcing. Over a large enough scale, both the real climate and a climate model are characterised as stochastic dynamical systems. The dynamics of the systems are encoded in the probabilities that the systems move from one state into another. When the systems’ states are discretised and listed, then transition matrices of all these transition probabilities may be formed. The responses of the systems to a small change in forcing are expanded in terms of the eigenfunctions and eigenvalues of the Fokker-Planck equations governing the systems’ transition densities, which may be estimated from the eigenvalues and eigenvectors of the transition matrices. Smoothing the data with a Gaussian kernel improves the estimate of the eigenfunctions, but not the eigenvalues. The significance of differences in two systems’ eigenvalues and eigenfunctions is considered. Three time series from HadCM3 are compared with corresponding series from ERA-40 and the eigenvalues derived from the three pairs of series differ significantly.

The second part analyses a model of the coupled climate-economic system, which suggests that the pace of economic growth needs to be reduced and the resilience to climate change needs to be increased in order to avoid a collapse of the human economy. The model condenses the climate-economic system into just three variables: a measure of human wealth, the associated accumulation of greenhouse gases, and the consequent level of global warming. Global warming is assumed to dictate the pace of economic growth. Depending on the sensitivity of economic growth to global warming, the model climate-economy system either reaches an equilibrium or oscillates in century-scale booms and busts.
Acknowledgements

This work is the result of a lot of people’s thought and care and encouragement and I am very grateful to you all.

The first part was conceived by Prof John Thuburn, and was developed with Prof Thuburn and Prof Jonathan Gregory and Prof Stuart Townley. The European Research Course on Atmospheres, NCAS Summer Schools, Dynamics Days Europe and courses at the University of Exeter introduced the science. Dr Daan Crommellin suggested the kernel density estimation method. The British Atmospheric Data Centre helped identify relevant datasets. The second part spun off from the training for the first part and was a collaboration with Prof Peter Cox. Participants at the internal seminars in the School of Engineering, Maths and Computing at the University of Exeter made many constructive suggestions. Dr Nigel Byott explained the algebra. Prof Thuburn and anonymous reviewers of an earlier draft clarified the second part. Prof Cox and Dr Tim Osborn placed the whole work in context and drew out its conclusions. Many thanks to my supervisors for your skill, patience, advice and encouragement.

The project was funded by the Natural Environment Resources Council and the Met Office. Thank you for this great opportunity.

A huge community kept me on the road. Special thanks to my family, especially Ewa, Nadia, Maya, and Mum & Dad for your love and interest and encouragement. Thanks to Prof Townley and Dr Sebastian Wieczorek for steering me through the PhD doldrums. Thanks to friends at Exeter and ERCA and NCAS for sharing laughs and rants and entertainment. Finally thanks to my inspiring school Maths teachers: Colin Harding and the late lamented Jonathan Bull.
Contents

Abstract 2
Acknowledgements 3
Contents 4
List of Figures 8

I Relating forced climate change to natural variability 21

1 Introduction: testing climate models 22
 1.1 Background ... 22
 1.1.1 Standards of proof vary by science 22
 1.1.2 Observational constraints placed on climate models 24
 1.1.3 Transition densities .. 26
 1.1.4 Differences in forced response even if model matches real
 mean density exactly .. 28
 1.1.5 Comparing transition densities 29
 1.2 Theory ... 30
 1.2.1 Climate defined as a probability density function (pdf) ... 30
 1.2.2 Earth-atmosphere dynamics assumed to be a diffusion process 30
 1.2.3 Eigenfunctions of Fokker Plank equation are used to form a
 basis for the pdf .. 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.4</td>
<td>Expansion of forced steady pdf in terms of eigenfunctions of unforced FPE and adjoint</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Meaning of eigenvalues and eigenfunctions</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Significance to climate models</td>
</tr>
<tr>
<td>2</td>
<td>Method of analysing time series</td>
</tr>
<tr>
<td>2.1</td>
<td>Estimating eigenfunctions and eigenvalues</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Transition matrix is a function of eigenvalues and eigenfunctions</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Eigenvalues and eigenfunctions are functions of transition matrix</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Sampling error weakens results</td>
</tr>
<tr>
<td>2.2</td>
<td>Getting the transition matrix</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Bin-counting: getting the transition matrix by counting transitions</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Kernel density estimation of transition density</td>
</tr>
<tr>
<td>2.3</td>
<td>Detecting differences in transition matrices</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Measure of difference in eigenvectors</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Significance of difference in eigenvectors</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary</td>
</tr>
<tr>
<td>3</td>
<td>Test Cases: linear Langevin equations</td>
</tr>
<tr>
<td>3.1</td>
<td>Test model: Brownian motion</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Exact eigenfunctions and eigenvalues</td>
</tr>
<tr>
<td>3.2</td>
<td>Verification of theory</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Direct calculation of response of 1-d Langevin equation to constant forcing</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Direct calculation of response of 1-d Langevin equation to forcing proportional to state variable</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Equilibrium response to forcing by eigenfunction is next eigenfunction</td>
</tr>
</tbody>
</table>
3.3 Estimating eigenfunctions via transition matrices 60
 3.3.1 Generated time series ... 60
 3.3.2 Estimated eigenfunctions ... 61
3.4 Estimating eigenvalues via transition matrices 67
 3.4.1 Too few bins causes an overestimate of eigenvalues 67
 3.4.2 Kernel density smoothing overestimates eigenvalues 70
 3.4.3 Eigenvalue variance scales with reciprocal of length of time
 series ... 71
3.5 Test Case: Box model ... 76
 3.5.1 Model timescales .. 78
3.6 Detecting a change in eigenvalues 81
 3.6.1 Dimension reduction .. 81
 3.6.2 Method ... 82
 3.6.3 Expected result ... 83
 3.6.4 Actual result .. 84
 3.6.5 Conclusions .. 92

4 Comparison of climate model and reanalysis data 94
 4.1 Data source ... 95
 4.2 Eigenvalues and eigenfunctions of Fokker-Planck equation 95
 4.3 Construction and validation of time series 96
 4.3.1 ERA-40 Nino 3.4 index .. 96
 4.3.2 ERA-40 Arctic Oscillation 100
 4.3.3 ERA-40 surface air temperature 103
 4.3.4 HadCM3 Nino 3.4 index .. 107
 4.3.5 HadCM3 Arctic Oscillation 109
 4.3.6 HadCM3 surface air temperature 112
 4.4 Comparison of series .. 114
 4.4.1 Eigenvalues for single series 114
 4.4.2 Eigenvalues for pairs of series 116
 4.5 Conclusion .. 118
References for part I 120

II Emergent dynamics of the climate-economy system 125

5 Emergent dynamics of the climate-economy system 126

5.1 Introduction 126
5.2 Model definition 127
 5.2.1 Model dynamics 128
 5.2.2 Non-dimensional form of model 130
5.3 Model equilibria 130
 5.3.1 Zero equilibrium is unstable 131
 5.3.2 Stability of positive equilibrium 131
 5.3.3 Proof of stability conditions 132
 5.3.4 Period of oscillations 138
 5.3.5 Critical values in dimensional variables 139
5.4 Model parameters 139
5.5 Model results 141
5.6 Relation to other models 143
5.7 Conclusion 146

References for part II 146
List of Figures

1.1 This figure shows that two systems can have the same steady probability density function (pdf), but different steady-state responses to a change in forcing. The left graph shows time series for two stochastic dynamical systems of the form $dX = -(\alpha X - r) \, dt + \sqrt{2\alpha} \, dW$. X is the state variable and W is the state of a Wiener process, so that dW is gaussian white noise with variance dt over a timescale dt. Both systems have the same steady pdf (a gaussian with mean 1, variance 1) but have different characteristic timescales [43] equal to $1/\alpha$. Because of the different timescales, the two systems have different equilibrium responses to a change in forcing. This is shown in the right plot, where r has been reduced by 0.5 for both systems. The new blue equilibrium for the slow system is a gaussian with mean 0.5 and variance 1. But the red system is ten times as fast as the slow blue system. So, the fast red system’s equilibrium mean is reduced by one tenth of the reduction to the slow blue system’s equilibrium mean. If the slow system were a model and the fast system were reality, then no matter how small a change in forcing, the slow system would overestimate the real system’s response to the change in forcing by a factor of 10.
1.2 This figure shows the evolution of 2 pdfs under advection and diffusion. The left plot shows advection – there is only drift towards the origin, so the pdf is compressed towards the origin. The right plot shows only diffusion, which evens out the highs and lows i.e. the convexity in the pdf.

1.3 Each graph shows, in solid red, the exact steady pdf when a constant forcing of $r \, dt$ is applied to the 1-dimensional Langevin equation $dX = -\alpha X \, dt + \epsilon \, dW$. The forced system evolves according $dX = -\alpha X \, dt + r \, dt + \epsilon \, dW$. The unforced steady pdf is a Gaussian density with zero mean and variance $\epsilon^2 / 2\alpha$. The forced steady pdf is also a Gaussian density with variance $\epsilon^2 / 2\alpha$ but with mean r / α. The best possible estimate via eigenfunctions of the forced steady pdf is shown in solid blue. The exact difference between the unforced and forced steady pdf is in the red broken line. The blue broken line shows the difference calculated using eigenfunctions. The differences are divided by the ratio of the change in mean to the unforced standard deviation, so that the accuracy of the eigenfunction method can be compared for different levels of forcing. As the theory predicts, the eigenfunction method is more accurate for small levels of forcing. In this case, ‘small’ means in relation to the size of the standard deviation of the unforced system.
1.4 Each graph shows, in solid red, the exact steady pdf when a forcing of $-\psi \alpha x \, dt$ is applied to the 1-dimensional Langevin equation $dX = -\alpha X \, dt + \epsilon \, dW$. The forced system evolves according to $dX = -\alpha (1 + \psi) X \, dt + \epsilon \, dW$. The unforced steady pdf is a Gaussian density with zero mean and variance $\frac{\epsilon^2}{2\alpha}$. The forced steady pdf is also a Gaussian density with zero mean and variance $\frac{\epsilon^2}{2\alpha}(1 + \psi)$. The best possible estimate via eigenfunctions of the forced steady pdf is shown in solid blue. The exact difference between the unforced and forced steady pdf is in the red broken line. The blue broken line shows the difference calculated using eigenfunctions. The differences are divided by ψ, so that the accuracy of the eigenfunction method can be compared for different levels of forcing. As the theory predicts, the eigenfunction method is more accurate for small levels of forcing (the blue and red broken lines are closest for small values of ψ).

2.1 Estimate of second eigenfunction for the system $dX = -X \, dt + \sqrt{2} \, dW$ 100 seconds, sampled at 10 Hz split into 130 (blue line) and 10 (red line) equally probable bins. The exact eigenfunction is the function x weighted by a Gaussian density.

3.1 $dX = -X \, dt + \sqrt{2} \, dW$; first three eigenfunctions of Fokker-Planck equation for Langevin model in (3.1).

3.2 $dX = -X \, dt + \sqrt{2} \, dW$. Series and sample autocorrelation function (blue line). The sample autocorrelation fits the theoretical autocorrelation function (red line) which is e^{-t}. The series was generated with a time step of 0.0001 time units but was sampled only every 0.01 time units i.e. at 100 Hz.
3.3 Unsmoothed eigenfunctions; first three eigenfunctions (going across the page) of the Fokker-Planck equation for a 1-dimensional Langevin equation. The time series is a simulation of $dX = -X \, dt + \sqrt{2} \, dW$, sampled at 10Hz for a series 100 s long. The smoothing bandwidth is 10^{-5}, which is next to no smoothing. The state space is split into 20, 40, 80, 160 (increasing down the page) equally spaced bins on $[-5,5]$. The absolute error between the exact and sampled eigenfunction is shaded. Both the exact and the sampled eigenfunctions are normalised to have absolute area of one. 64

3.4 Optimally smoothed eigenfunctions; first three eigenfunctions (going across the page) of the Fokker-Planck equation for a 1-dimensional Langevin equation. The time series is a simulation of $dX = -X \, dt + \sqrt{2} \, dW$, sampled at 10Hz for a series 100 s long. The smoothing bandwidth is 0.4, which is optimal on average for estimating the steady pdf. 65

3.5 Oversmoothed eigenfunctions; first three eigenfunctions (going across the page) of the Fokker-Planck equation for a 1-dimensional Langevin equation. The time series is a simulation of $dX = -X \, dt + \sqrt{2} \, dW$, sampled at 10Hz for a series 100 s long. The smoothing bandwidth is 1, which is about four times the optimal level suggested by (2.34). 66

3.6 Sample mean ISE from 2000 runs each of 1001 samples of $dX = -X \, dt + \sqrt{2} \, dW$, sampled at 10 Hz. Eigenfunctions normalised to have absolute area of one. 80 bins on $[-5,5]$. Transition matrix obtained by Gaussian kernel density with various bandwidths. The best bandwidth for estimating the dominant eigenfunctions is approximately 0.4. 67

3.7 Sample mean ISE from 2000 runs each of 10001 samples of $dX = -X \, dt + \sqrt{2} \, dW$, sampled at 10 Hz. Eigenfunctions normalised to have absolute area of one. 80 bins on $[-5,5]$. The best bandwidth for estimating the dominant eigenfunctions is approximately 0.2. 68
3.8 Eigenvalues for the problem (3.1) are overestimated if there are less than 100 equally likely bins. The graph shows the result of estimating the first non-zero eigenvalue for \(dX = -1Xdt + \sqrt{2}dW \). 100 simulations of the system over 10, 100, 1000 model seconds were made and sampled at 10 Hz. Transition matrices were calculated using 10, 25, 50, 100, 200 equally likely bins, and using bin-counting, with no kernel density smoothing. The theoretical eigenvalue is 1. The sampled eigenvalues have ranges of about 1 which reduce only a little if more bins are used. The range also reduces slowly with larger series. In addition, there is an upwards bias in the sampled values if fewer than 100 bins are used.

3.9 Estimate of first non-zero eigenvalue is biased upwards with Gaussian kernel smoothing. The graph shows the result of estimating the first non-zero eigenvalue for \(dX = -1Xdt + \sqrt{2}dW \). 100 simulations of the system over 100 time units were made and sampled at 10 Hz. Transition densities were estimated via gaussian kernel estimation with bandwidths which were various multiples of the sample standard deviation of the series. The densities were integrated over 100 bins, equally spaced between the lowest sample (less 3 times the bandwidth) to the highest sample (plus 3 times the bandwidth).
3.10 Each graph shows the sample variance of the first 4 non-zero eigenvalues of transition matrices based on simulations of \(dX = -1Xdt + \sqrt{2}dW \). The vertical scale is determined by the timestep \(\Delta t \). 200 simulations of the system over \(N=20, 40, 80, 160, 320 \) model seconds were made and sampled at 100 Hz. The transition matrices were calculated using 20 (top) or 100 (bottom) equally spaced or equally likely bins, using bin-counting, with no kernel density smoothing. The straight lines are each a constant times \(1/N \). The sample variance of each sampled eigenvalue lies roughly on one of the straight lines, indicating that the sample variance scales approximately with \(1/N \). Where the bins are equally sized, and especially for the higher eigenvalues, the variance scales more slowly than the reduction in \(1/N \). 74

3.11 Variance of estimate of smallest positive eigenvalue increases as timescale \(1/\alpha \) increases. A slower system, with lower \(\alpha \), requires a longer time-series to be sampled well and obtain reliable estimates of eigenvalues. 100 equally likely bins. Transition matrix obtained by bin-counting with no smoothing. 75

3.12 Variance of estimate of eigenvalues falls as length of time series falls. 75

3.13 Stocks and flows of fourbox model. 76

3.14 Approximate eigenvector of general warming. Ocean heat capacity is \(D \), and ocean heat is lost to space at rate \(\Lambda B \) and time scale is \(D(\Lambda + B)/\Lambda B \). 81

3.15 Approximate eigenvector of meridional air temperature difference. Air heat capacity is \(C \), and time scale is \(C/(\Lambda + B + 2K_A) \). 82

3.16 Approximate eigenvector of air-ocean temperature difference. Air heat capacity is \(C \), and time scale is \(C/\Lambda B \). 83

3.17 Eigenvector of meridional ocean temperature difference. Ocean heat capacity is \(D \), and time scale is \(D/2K_O + (\Lambda(B + 2K_A)/(\Lambda + B + 2K_A) \). 84
3.18 Histograms of samples of the four-box state variables projected onto the eigenvectors of the drift matrix M. As the relaxation timescale of the eigenvector increases, the required length of series to recognise a Gaussian distribution also increases. The model system has no varying forcing, so the variation observed is only from internal variability. If varying forcing were included (as for the real world) then a much shorter observation period would be required to observe the system’s variability. .. 85

3.19 Estimates of the smallest positive eigenvalue of Fokker-Planck equation for the pdf of the reduced-dimension box model, when model parameter B is varied. The better a series is at detecting a change in model parameter, the greater is the ratio of the gradient of the mean estimate to the variance of the estimates. Tropical atmospheric temperature variable A_1 shows (from all the single raw variables) the greatest detectability of the change in model climate sensitivity parameter B. Variables (A_1, A_2) show almost no detectability of the change in B, though other pairs of raw variables are even worse at detecting a change in B. .. 86

3.20 Estimates of the smallest positive eigenvalue of Fokker-Planck equation for the pdf of the reduced-dimension box model, projected onto eigenvectors of the drift matrix. Meridional air temperature contrast variable λ_1 detects most easily (from all the projections onto single eigenvectors of the drift matrix) the change in model climate sensitivity parameter B. Variables (λ_1, λ_2) detect the change in B most easily for a pair of projected variables, but less easily than just λ_1 alone. .. 87
3.21 Estimates of the smallest positive eigenvalue of Fokker-Planck equation for the pdf of the reduced-dimension box model, projected onto the empirical orthogonal functions of the sampled series. The principal component that explains the least variance detects most easily (from all the principal components) the change in model climate sensitivity parameter B. The pair of principal components that explain respectively the least and most variance detect the change in B most easily for a pair of principal components, but less easily than the best principal component alone. .. 88

3.22 Estimates of the smallest positive eigenvalue of Fokker-Planck equation for the pdf of the reduced-dimension box model, when model heat flux parameter Λ is varied. The tropical atmospheric temperature variable A_1 shows (from all the single raw variables) the greatest detectability of the change in Λ. As Λ increases, the noise from the Niño variable is amplified throughout the system and so the variance in the sampled eigenvalue increases. Variables (A_1, N) where N is the Niño variable itself, detect the change in Λ most easily for a pair of raw variables, but detect the change less easily than does just variable A_1 alone. .. 89

3.23 Estimates of the smallest positive eigenvalue of Fokker-Planck equation for the pdf of the reduced-dimension box model, projected onto eigenvectors of the drift matrix. Meridional air temperature contrast variable λ_1 detects most easily (from all single variables) the change in model heat flux parameter Λ. Equation (3.81) shows that the eigenvalue itself is proportional to Λ, and so it is most sensitive to a change in Λ. Also, as the characteristic timescale of the series is small, the available series is effectively long, so there is less sampling noise and the eigenvalues are less spread out. Variables (λ_1, λ_2) detect the change in Λ most easily for a pair of projected variables, but less easily than just λ_1 alone. 90
3.24 Estimates of the smallest positive eigenvalue of Fokker-Planck equation for the pdf of the reduced-dimension box model, projected onto the empirical orthogonal functions of the sampled series. The principal component that explains the least variance detects most easily (from all the principal components) the change in model heat flux parameter Λ. The pair of principal components that explain respectively the most and fourth most variance detect the change in Λ most easily for a pair of principal components, but less easily than the best principal component alone.

4.1 Illustration of area weighting of datapoints, used to calculate Niño3.4 index. Points on the boundary of the relevant area are given half the weighting of points in its interior. Points on the corner are given a quarter of the weighting of points in the interior.

4.2 ERA-40 Nino3.4 index, calculated from approx 45 years of reanalysis. (a) actual index. (b) anomaly index, that is excess of index over seasonal mean. (c) seasonal mean (mean daily value). (d) autocorrelation of anomaly index, fitted to exponential. (e) estimated smallest eigenvalues of Fokker-Planck equation. (f) estimated dominant eigenfunctions of Fokker-Planck equation.

4.3 Niño 3.4 anomalies based on ERA-40 match monthly means as calculated by NOAA. NOAA figures are from [32].

4.4 The autocorrelation of the observed NINO3.4 index from 1951–1995 (solid line), which shows a similar shape to the autocorrelation calculated in figure 4.2. From [6] based on NCEP data. Reproduced with kind permission of G.Burgers.

4.5 First empirical orthogonal function of mean sea level pressure anomalies. The EOF based on ERA-40 data, has the same main features as those of the first EOF calculated by NOAA.
4.6 ERA-40 Arctic Oscillation index, calculated from approx 45 years of reanalysis. (a) actual index. (b) anomaly index, that is excess of index over seasonal mean. (c) seasonal mean (mean daily value). (d) autocorrelation of anomaly index, fitted to exponential. (e) estimated smallest eigenvalues of Fokker-Planck equation. (f) estimated dominant eigenfunctions of Fokker-Planck equation. 102

4.7 ERA-40 Surface Air temperature index, calculated from 45 years of reanalysis. (a) actual index. (b) anomaly index, that is excess of index over seasonal mean. (c) seasonal mean (mean daily value). (d) autocorrelation of anomaly index, fitted to exponential. (e) estimated smallest eigenvalues of Fokker-Planck equation. (f) estimated dominant eigenfunctions of Fokker-Planck equation. 104

4.8 Annual and Five-year means of global surface temperature anomaly, ERA-40 vs NASA. Note that the NASA graph covers twice the period of the ERA-40 graph and has a different reference mean. The NASA graph is from [38] which is an update of [21]. 105

4.9 ERA-40 Global mean surface air temperature index. (a) detrended anomaly, which is excess over seasonal mean minus the quadratic trend. (b) autocorrelation function of the detrended anomaly. (c) estimated eigenvalues of the Fokker-Planck equation corresponding to the detrended anomaly. (d) estimated eigenfunctions of the Fokker-Planck equation corresponding to the detrended anomaly. Once the trend is removed the autocorrelation function becomes more similar to the autocorrelation function of the HadCM3 surface air temperature anomaly in figure 4.13. 106
4.10 HadCM3 Nino3.4 index, calculated from approx 310 model years.
(a) actual index. (b) anomaly index, that is excess of index over seasonal mean. (c) seasonal mean (mean daily value). (d) autocorrelation of anomaly index, fitted to exponential. (e) estimated smallest eigenvalues of Fokker-Planck equation. (f) estimated dominant eigenfunctions of Fokker-Planck equation. 108

4.11 HadCM3 Arctic Oscillation index, calculated from 310 model years.
(a) actual index. (b) anomaly index, that is excess of index over seasonal mean. (c) seasonal mean (mean daily value). (d) autocorrelation of anomaly index, fitted to exponential. (e) estimated smallest eigenvalues of Fokker-Planck equation. (f) estimated dominant eigenfunctions of Fokker-Planck equation. 110

4.12 Dominant empirical orthogonal function (EOF1) of Mean sea level pressure anomalies, based on ERA-40, is similar to the corresponding EOF1 based on HadCM3. 111

4.13 HadCM3 Surface Air temperature index, calculated from approx 310 model years. (a) actual index. (b) anomaly index, that is excess of index over seasonal mean. (c) seasonal mean (mean daily value). (d) autocorrelation of anomaly index, fitted to exponential. (e) estimated smallest eigenvalues of Fokker-Planck equation. (f) estimated dominant eigenfunctions of Fokker-Planck equation. 113

4.14 Smallest non-zero eigenvalues for Fokker-Planck equations based on single series. Blue crosses are for HadCM3 control runs. Red cross is for ERA 40. Green cross in graph (c) is for detrended ERA 40. (Vertical axes are meaningless). 115
4.15 Smallest non-zero eigenvalues for Fokker-Planck equations based on two series. Blue crosses are for HadCM3 control runs. Red cross is for ERA 40. (Vertical axis is meaningless). Left column is compares ERA-40 with HadCM3 control run. Right column compares ERA-40 (with the quadratic trend removed from the surface air temperature anomaly) with HadCM3 control run. The difference between eigenvalues involving the Niño series persists after the trend in surface air temperature is removed.

5.1 Schematic of climate-economy model, with predator-prey model for comparison. Red lines indicate positive feedbacks and blue lines indicate negative feedbacks. On the left, the blue dot-dash line is the climate change impact on the economy, which is the main subject of this chapter.

5.2 $\lambda(\lambda + \phi)(\lambda + 1)$ given that $\phi > 0$. $A = -\max(\phi, 1)$. $B = -\min(\phi, 1)$.

5.3 $\lambda (\lambda + 0.5) (\lambda + 1) + h, h \geq 0$.

5.4 The critical value of h for the stable equilibrium to have no oscillations appears to lie between $1/8$ and $1/4$ of $\min(\phi, \phi^2)$.

5.5 Impact of the climate-economy feedback on projections for the 21st and 22nd century. Coupled projections are shown by the continuous lines, and uncoupled simulations are shown by the broken lines. Black lines assume a background economic growth-rate of 4%pa; green lines assume 1% pa.

5.6 Stability regimes of the climate-economy system as a function of the background rate of growth of CO$_2$ emissions $\xi - \mu$ and the economic damages due to global warming. The brown area is consistent with the observed level of global warming and recent economic growth, according to the data in section 5.4. Climate sensitivity is assumed to be 3K and the characteristic timescales for \hat{T} and CO$_2$ are both taken as 50 years.
5.7 Stability regimes of the climate-economy system as a function of the background economic growth-rate ξ and the rate of decarbonisation of the economy (μ). Left and right panels show different economic damages due to global warming; (a) $\delta=0.5$ per K; (b) $\delta=0.1$ per K. 144

5.8 Impact of the climate-economy feedback on projections for the 21st and 22nd century. Simplified DICE (dashed lines) is compared with the 3-variable model in this chapter (solid lines). 145