Studies of Signal and Noise Properties of Perpendicular Recording Media

Submitted by

Komkrit Chooruang

to the University of Exeter as a thesis for the degree of Doctor of Philosophy (Ph.D.) in Engineering, August 2010.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other university.

Signature: ...
Tables of Contents

TABLES OF CONTENTS... 2
LIST OF FIGURES ... 5
LIST OF TABLES ... 10
ABSTRACT .. 11
DECLARATION .. 13
PREFACE ... 14
ACKNOWLEDGEMENTS .. 15
CHAPTER 1 ... 16
INTRODUCTION AND BACKGROUND ... 16
 1.1 INTRODUCTION ... 16
 1.2 LONGITUDINAL MAGNETIC RECORDING 17
 1.3 PERPENDICULAR MAGNETIC RECORDING 18
 1.3.1 PERPENDICULAR WRITE HEAD 19
 1.3.2 READ SENSOR .. 20
 1.3.3 PERPENDICULAR RECORDING MEDIA 23
 1.4 SUPERSPARAMAGNETIC LIMIT .. 24
 1.5 PROJECT AIM AND OBJECTIVES 26
 1.6 OUTLINE OF THE THESIS .. 28
CHAPTER 2 ... 29
REPLAY SIGNAL ... 29
 2.1 INTRODUCTION ... 29
 2.2 RECIPROCITY PRINCIPLE .. 30
 2.3 FOURIER TRANSFORM OF LAPLACE’S EQUATION 32
 2.3.1 FOURIER TRANSFORM OF TWO-DIMENSIONAL MAGNETIC
 FIELDS ... 34
 2.3.2 MODELLING OF SHIELDED MR HEAD 36
 2.4 MAGNETIC TRANSITIONS AND THEIR FOURIER TRANSFORMS
 39
 2.5 REPLAY SIGNAL ... 41
 2.5.1 ISOLATED REPLAY SIGNAL 42
 2.5.2 PULSE CROWDING ... 45
 2.5.3 SIGNAL ROLL-OFF CURVES 48
 2.6 SUMMARY ... 49
CHAPTER 3 .. 50

THE CONTACT RECORDING TEST SYSTEM ... 50

3.1 INTRODUCTION .. 50
3.2 OVERVIEW OF THE CONVENTIONAL SPIN-STAND SYSTEM .. 51
3.3 INTRODUCTION TO THE CONTACT RECORDING TEST SYSTEM 52
3.3.1 SYSTEM INSTRUMENT AND DEVICES ... 53
3.3.2 NANO-POSITIONING STAGE .. 54
3.3.3 SIGNAL GENERATOR .. 56
3.3.4 DIGITAL PHOSPHOR OSCILLOSCOPE (DPO) .. 58
3.3.5 PREAMPLIFIER INTERFACE CIRCUIT ... 59
3.3.6 THE RECORDING (WRITE) CIRCUIT ... 61
3.3.7 THE READ CIRCUIT .. 62
3.3.8 RECORD/READOUT HEADS .. 63
3.3.9 THE GUI CONTROL SOFTWARE .. 65
3.4 SYSTEM TESTING ... 67
3.4.1 WRITE CIRCUIT TESTING ... 67
3.4.2 READ CIRCUIT .. 69
3.4.3 TWO-DIMENSIONAL SCAN IMAGING .. 70
3.5 SUMMARY .. 75

CHAPTER 4 .. 76

RECORD AND READOUT MEASUREMENTS .. 76

4.1 INTRODUCTION .. 76
4.2 GENERAL MAGNETIC MEDIA CHARACTERISATION ... 77
4.2.1 HYSTERESIS LOOP .. 77
4.2.2 PERPENDICULAR RECORDING MEDIA MEASUREMENT 78
4.3 PARAMETRIC TESTS .. 80
4.3.1 SATURATION CURVE .. 80
4.3.2 OVERWRITE CURVE .. 81
4.3.3 TMR BIAS CURRENT ... 82
4.3.4 SIGNAL ROLL-OFF CURVE ... 84
4.3.5 D_{50} AND T_{50} RELATION ... 86
4.4 TRANSITION NOISE ... 88
4.4.1 MEASURING TRANSITION JITTER NOISE ALGORITHM 89
4.4.2 AREAL DENSITY ... 93
4.5 SUMMARY .. 94

CHAPTER 5 .. 95

ESTIMATION OF RECORDED MAGNETISATION TRANSITION SHAPE USING
WEINER DECONVOLUTION ... 95

5.1 INTRODUCTION .. 95
5.2 DECONVOLUTION PROCESS .. 96
5.3 WIENER DECONVOLUTION ... 98
5.3.1 INTERPRETATION OF WIENER FILTER OPERATION .. 100
5.3.2 ESTIMATION OF NOISE VARIANCE ... 101
5.4 VALIDATION OF DECONVOLUTION TECHNIQUE AND SIMULATION EXAMPLES 102
5.4.1 HEAD PARAMETERS .. 102
List of Figures

Figure 1.1 Schematic drawing of a longitudinal recording system where B is the bit length, W is the track width, t is the medium thickness and d is the flying height of the head above the medium (Moser 2000). .. 17
Figure 1.2 Schematic drawing of a perpendicular magnetic recording system with a SUL and single-pole head (Moser 2000).. 18
Figure 1.3 Single pole perpendicular recording head with return pole, and ideal image in the SUL. The coloured contours represent the magnetic fields inside the magnetic recording medium... 19
Figure 1.4 SEM images of single-pole perpendicular recording heads from the air-bearing side of the slider. (a) A trailing shield head (van der Heijden, Bonhote et al. 2006). (b) A wrapped-around shield head (Hsu, Nikitin et al. 2007)............................. 20
Figure 1.5 Basic TMR structure. .. 21
Figure 1.6 The arrangement of a TMR structure in the gap of a shielded head.............. 22
Figure 1.7 TEM image of first-generation prototype TMR head (Kazuo 2006)............. 22
Figure 1.8 A schematic of a typical perpendicular medium... 23
Figure 1.9 The concept of superparamagnetic limit due to random magnetic field fluctuation.. 24
Figure 2.1 Magnetic interaction between two coils illustrating the concept of mutual induction, and used in the derivation of the reciprocity formulation for the readout signals in magnetic recording.. 30
Figure 2.2 Simple head and medium definitions and co-ordinate system used in the replay signal theory development.. 31
Figure 2.3 Generalised two-dimensional geometry of readout head and underlayer used for the development of the head field function and readout signal. ... 34
Figure 2.4 Read element and its image over perpendicular recording medium with a SUL.. 36
Figure 2.5 Shielded MR head with a SUL configuration. Also shown is the assumed potential distribution on the surface of the shielded head, which is required for the derivation of the readout head sensitivity function for the reciprocity formulation...... 37
Figure 2.6 Vertical head field of the readout element at various head-to-medium separations calculated using the parameters in Table 2.1... 39
Figure 2.7 Magnetisation transition profiles for different analytical models used in the development of the readout signal using the reciprocity principle. ... 40
Figure 2.8 Isolated replay signal for an arctangent function for different head-to-medium separations. .. 44
Figure 2.9 Isolated replay signal at various transition width parameters. 44
Figure 2.10 Linear superposition of isolated replay signals at different linear densities showing the effects of intersymbol interference. 47
Figure 2.11 Signal roll-off curves at different head to medium separations using the tanh transition function, and showing the linear density at which the signal reduces by 50% of its peak value (D50) to estimate the practical linear density of a recording medium. 48
Figure 3.1 The Guzik V2002 Spin-Stand (Guzik 2010). .. 51
Figure 3.2 The developed contact recording test system hardware and interfacing architecture. ... 53
Figure 3.3 E-516 controller and P-527 piezo nano-positioning stages used for the development of the high-precision contact recording tester in this work. 54
Figure 3.4 Unidirectional and bidirectional raster-scanning modes that are programmed in the developed contact recording system. ... 55
Figure 3.5 The captured replay signal using the DPO at various stage velocities. The magnified section of the captured waveform is highlighted by a rectangle. The signal amplitude variations at the stage velocity of 30 and 75 µm/s are due to track misregistration caused by positioning errors. ... 56
Figure 3.6 Showing definition of bit spacing, B, in the measured readout signals. 57
Figure 3.7 The Tektronix DPO-7104 used in this work to capture and digitise the readout signals using the equipped differential probe shown on the right. 58
Figure 3.8 Head Stack Assembly (HSA) of the hard-disk drive that was employed in the contact recording system. ... 59
Figure 3.9 Simplified preamplifier circuit for interfacing the PC (and software GUI) to the HSA. ... 60
Figure 3.10 Write signal translator circuit to enable using external signals, applied through a signal generator, with the HSA write amplifier. .. 62
Figure 3.11 (a) SEM images of perpendicular write/read heads used in the contact recording system, (b) focused SEM image of the writer and (c) focused SEM image of the reader. .. 64
Figure 3.12 Screen shot of the software control developed for the contact recording system. ... 65
Figure 4.11 Isolated replay signal and definition of T_{50}. ... 86
Figure 4.12 T_{50} from the measured replay signal (a) and the screen capture of the software reported T_{50} and D_{50} values (b). ... 87
Figure 4.13 Illustrating the adopted, time-domain algorithm for estimating the transition jitter noise. (a) Captured replay signal at 25KFCI, showing zero crossings and reconstructed transitions. (b) Showing linear regression of measured transitions and clock array. (c) Magnified section of a transition region showing the measured and ideal zero crossing locations. ... 92
Figure 4.14 Measured rms transition jitter noise of the disk sample, using the time-domain algorithm, at various linear densities ... 93
Figure 5.1 Simple diagram of reproduction process of replay signal. 97
Figure 5.2 (a) Simulated noisy replay signal and smoothed version (using a spline algorithm) and (b) extracted noise... 101
Figure 5.3 Simulated ideal replay signal with added random noise (SNR = 35dB). ... 103
Figure 5.4 Magnified section of unfiltered and filtered simulated replay signal (SNR = 35dB). ... 103
Figure 5.5 Simulated high noise situation of replay signal (SNR = 15dB). The Wiener filter was used to calculate the filtered signal shown. ... 104
Figure 5.6 Computational error versus SNR in estimating the transition width from inverse filtering of replay signals. ... 105
Figure 5.7 Estimated ‘a’ parameter versus an ideal ‘a’ parameter for (a) 15dB and (b) 60dB. ... 106
Figure 5.8 Computed magnetisation from inverse filtering for a 60dB signal-to-noise ratio, compared with the ideal arctangent transition. ... 107
Figure 5.9 Replay signal (SNR = 60dB) and computed magnetisation from inverse filtering. ... 107
Figure 5.10 Measured replay signal for a 25KFCI recorded pattern used for the inverse filtering process. ... 109
Figure 5.11 FFT spectrum of the measured replay signal at 25KFCI. 110
Figure 5.12 Captured replay signal compared with filtered signal. 111
Figure 5.13 Extracted magnetisation transition for the contact recording tester, compared with theoretical transition functions. .. 112
Figure 5.14 Computed magnetisation transition for the non-contact recording tester. 113
Figure 5.15 (a) A focused MFM image of the transition region recorded using the non-contact tester. (b) A focused MFM image of the transition region recorded using the contact tester. The arrows indicate the direction of magnetisation for the different coloured regions. Also shown are the line profiles of the transition regions. 114

Figure 6.1 Shingled recording process (Wood, Williams et al. 2009). 118

Figure 6.2 Experimental setup of non-contact measurement system. 120

Figure 6.3 Two-dimensional voltage image of recorded data tracks written and recovered using the non-contact recording tester. .. 121

Figure 6.4 Saturation and overwrite curves for the non-contact recording tester; used to determine the optimum writing current for the head/medium combination used. 123

Figure 6.5 Voltage image of recorded tracks at 200KFCI at different write currents.. 123

Figure 6.6 Microtrack profile of a 100nm wide track written using the non-contact tester, and used to determine the erase band width of the writing single-pole head in the HSA used in the experiments. ... 124

Figure 6.7 (a) Two-dimensional readout scan for two shingled track written at frequencies F1=100KFCI and F2=50KFCI, at track pitch 100nm and (b) the corresponding replay signals at three different locations across the shingled tracks.. 126

Figure 6.8 Voltage image of conventional and shingled recording on the non-contact tester at track pitches (a) 200nm, (b) 200nm, (c) 100nm and (d) 100nm, respectively.127

Figure 6.9 Roll-off curves measured on the non-contact tester, using track pitches of 200nm and 100nm for conventional and shingled recording respectively. 128

Figure 6.10 (a) Voltage enhancement at low linear density in shingled recording and (b) voltage enhancement and reduction (constructive + destructive interferences) at high linear density in shingled recording... 129

Figure 6.11 Transition noise on the non-contact tester. The track pitches were 200nm and 100nm for conventional and shingled recording respectively. 130

Figure 6.12 Voltage image of recorded tracks at 200KFCI on the contact tester (track pitch was 400nm) illustrating the well defined recorded bits and readout signals in contact mode.. 131

Figure 6.13 Roll-off curves from the contact recording tester for track pitches of 200nm and 100nm for conventional and shingled recording respectively. 132

Figure 6.14 Transition noise on the contact recording tester for track pitches of 200nm and 100nm for conventional and shingled recording respectively.................. 133
List of Tables

Table 2.1 Modelling parameters that correspond to experimental system......................... 38
Table 2.2 List of possible shapes of recorded magnetisation distributions and their
Fourier transforms (Aziz 1999)... 40
Table 5.1 Commercial readout head parameters used in the modelling........................ 102
Table 6.1 Summary of the non-contact system configuration.. 120
Abstract

Areal densities of perpendicular hard-disk drives over 500Gb/in2 have already been demonstrated, with 1Tb/in2 densities being forecasted in the near future. However, at these high areal densities the information bearing units on the magnetic storage medium are magnetically unstable at temperatures expected in hard-disk drives. To extend or bypass this limit, new developments in head and media technologies and understanding of their record, readout and noise performances are necessary.

The aim of this project was to study the record, readout and noise properties of conventional and future perpendicular magnetic recording media, heads and their related technologies. The objectives were therefore to develop a flexible and robust experimental recording platform to test the performance of different heads and media, and develop the necessary readout theory to predict the replay performance.

In line with the project objectives, a high-precision open contact recording tester was developed with 1nm resolution. The open nature of this system allows different heads and media combinations to be tested. A second, closed system was also developed based on a commercial perpendicular hard-drive, modified to serve as a spin-stand to provide signal and noise measurements in practical drive conditions.

The readout process in perpendicular recording was modelled based on the reciprocity principle for a shielded TMR head to study the parameters that affect the readout signal performance, and for comparison with the experimental measurements.

Measured signal roll-off curves showed a practical linear density of 450KFCI for the commercial perpendicular disk medium, and indicated that non-linear effects happen at linear densities approaching 550KFCI. These results were in agreement with the theoretical calculations of the replay process. Two-dimensional readout scans were found have similar or higher resolution than Magnetic Force Microscopy (MFM) images of the same recorded regions – indicating the versatility and precision of the developed contact tester.

Inverse filtering employing the Wiener filter was used to extract the magnetic transition. The extracted transition profiles and transition extents from the replay signals had much higher resolution than MFM images measured for the same transition region, thus showing the applicability of the developed testers for in situ magnetic characterisation.

The developed contact and non-contact testers allowed the investigation of a new proposed recording scheme, Shingled Magnetic Recording (SMR). Measured signal roll-off curves of shingled tracks indicated a rise in the signal amplitude at low densities. At higher linear densities the signal performance was the same as conventionally written tracks with guardbands. It was found that a 30% reduction in track width in SMR, increase the areal density by a factor of 1.58 above that in existing hard drives.
To my parents
Declaration

No portion of the work referred to in the thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.

1. Copyright in text of this thesis rests with the Author. Copies (by any process) either in full, or of extracts, may be made only in accordance with instructions given by the Author and lodged in the University Library of Exeter. Details may be obtained from the Librarian. This page must form part of any such copies made. Further copies (by any process) of copies made in accordance with such instructions may not be made without the permission (in writing) of the Author.

2. The ownership of any intellectual property rights which may be described in this thesis is vested in the University of Exeter, subject to any prior agreement to the contrary, and may not be made available for use by third parties without the written permission of the University, which will prescribe the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may take place is available from the Head of College of Engineering, Mathematics, and Physical Sciences.
Preface

Komkrit Choouruang received his B.Eng and M.Eng degrees in Electronic and Electrical Engineering from King Mongkut's Institute of Technology Ladkrabang and Khon Kean University, Thailand in 1999 and 2004 respectively.

He worked as a test engineer for Western Digital and Seagate Technologies, Thailand in 2004 and 2005 respectively. Since then in 2006, he has awarded the Royal Thai Government Scholarship to pursue a Ph.D. degree at University of Exeter. His research involved the development of high precision automated perpendicular recording testers for the experimental investigation of signal and noise characteristics of perpendicular and shingled recording. His interests include the theoretical and experimental evaluation of ultra-high density magnetic recording systems.
Acknowledgements

I would like to express my sincere gratitude to Dr. Mustafa M. Aziz and Professor C. David Wright, who have been my supervisors since the beginning of my study. They provided me with many helpful suggestions, important advice and constant encouragement during the course of this work.

I am very thankful to all the members of the College of Engineering, Mathematics, and Physical Sciences at University of Exeter especially to Dr. Lesley Wears for her help in using the MFM and Dr. Desmond Choo for helpful discussions. I would also like to thank all the members of my thesis committee for the time and effort they put into reading and commenting on this thesis.

I am very grateful to the Royal Thai Government for the financial support. I also wish to thank Assoc. Prof. Dr. Apirat Siritaratiwat who initially guided me into the world of magnetic recording technologies and all of my friends at Seagate Technologies, Thailand.

Last but not least, to my family, especially for my lovely sister, my brother-in-law and my girlfriend: thank you for your patience and support during the very intense months of putting this thesis together.