On the fragmentation of self-gravitating discs

Farzana Meru

Submitted by Miss Farzana Karim Meru to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics, September 2010.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signed:

Miss Farzana Karim Meru

Date:
Abstract

I have carried out three-dimensional numerical simulations of self-gravitating discs to determine under what circumstances they fragment to form bound clumps that may grow into giant planets. Through radiation hydrodynamical simulations using a Smoothed Particle Hydrodynamics code, I find that the disc opacity plays a vital role in determining whether a disc fragments. Specifically, opacities that are smaller than interstellar Rosseland mean values promote fragmentation (even at small radii, $R < 25 \text{AU}$) since low opacities allow a disc to cool quickly. This may occur if a disc has a low metallicity or if grain growth has occurred. Given that the standard core accretion model is less likely to form planets in a low metallicity environment, I predict that gravitational instability is the dominant planet formation mechanism in a low metallicity environment. In addition, I find that the presence of stellar irradiation generally acts to inhibit fragmentation (since the discs can only cool to the temperature defined by stellar irradiation). However, fragmentation may occur if the irradiation is sufficiently weak that it allows the disc to attain a low Toomre stability parameter.

With specific reference to the HR 8799 planetary system, I find that it is only possible for fragments to form in the radial range where the HR 8799 planets are located ($R \approx 24 - 68 \text{AU}$) if the disc is massive. In such a high mass regime, mass transport occurs in the disc causing the surface mass density to alter. Therefore, fragmentation is not only affected by the disc temperature and cooling, but also by any restructuring due to the gravitational torques. The high mass discs also pose a problem for the formation of this system because the protoplanets accrete from the disc and end up with masses greater than those inferred from observation and thus, the growth of planets would need to be inhibited. In addition, I find that further subsequent fragmentation at small radii also takes place.

By way of analytical arguments in combination with hydrodynamical simulations using a parameterised cooling method, I explore the fragmentation criteria which in the past, has placed emphasis on the cooling timescale in units of the orbital timescale, β. I find that at a given radius the surface mass density (i.e. disc mass and profile) and star mass also play a crucial role in determining whether a disc fragments or not as well as where in the disc fragments form. I find that for shallow surface mass density profiles ($p < 2$, where $\Sigma \propto R^{-p}$), fragments form in the outer regions of the disc. However for steep surface mass density profiles ($p \gtrsim 2$), fragments form in the inner regions of a disc. In addition, I find that the critical value of the cooling timescale in units of the orbital timescale, β_{crit}, found in previous simulations is only applicable to certain disc surface mass density profiles and for particular disc radii and is not a general rule for all discs. I obtain an empirical fragmentation criteria between the cooling timescale in units of the orbital timescale, β, the surface mass density, the star mass and the radius. Finally, I carry out crucial resolution testing by performing the highest resolution disc simulations to date. My results cast some serious doubts on previous conclusions concerning fragmentation of self-gravitating discs.
Contents

1 Introduction .. 22
 1.1 Planet formation background 22
 1.2 Planet formation within the context of star formation 23
 1.3 Observations ... 25
 1.3.1 Extra solar planet observations 25
 1.3.2 Disc observations 27
 1.4 Planet formation theory 32
 1.4.1 Core accretion 32
 1.4.2 Gravitational instability 33
 1.4.3 Other secondary effects 40
 1.5 Formation of the HR 8799 planetary system 41
 1.6 Core accretion, gravitational instability, or both? 43
 1.7 Thesis focus ... 44

2 Numerical Method .. 45
 2.1 Numerical details ... 45
 2.1.1 Smoothed Particle Hydrodynamics 45
 2.1.2 Smoothing length 48
 2.1.3 Hydrodynamical equations 50
 2.1.4 Gravitational force calculations 52
 2.1.5 Artificial viscosity 53
 2.1.6 Timestepping .. 57
 2.1.7 Particle types 58
 2.1.8 Speeding up the SPH code 59
 2.2 Thermodynamics .. 60
 2.2.1 Parameterised cooling 61
 2.2.2 Radiative transfer 61
 2.2.3 Opacity .. 62
 2.2.4 Equation of state 65
 2.2.5 Boundaries ... 65
3 Opacity effects on fragmentation 70
 3.1 Introduction .. 70
 3.2 Numerical setup 70
 3.2.1 Opacity & equation of state 71
 3.2.2 Stellar irradiation 71
 3.3 Simulations ... 72
 3.3.1 Reference case 72
 3.3.2 Exploring the parameter space 73
 3.4 Results .. 73
 3.4.1 Reference case 76
 3.4.2 Opacity effects 77
 3.4.3 Colder discs 78
 3.4.4 Low temperature, low opacity discs 80
 3.4.5 300 AU discs 83
 3.5 Comparison with previous work 84

4 Formation of the HR 8799 planetary system by gravitational instability 87
 4.1 Introduction 87
 4.2 Numerical details 87
 4.3 Simulations 88
 4.3.1 Disc setup 88
 4.3.2 Constant star mass 90
 4.3.3 Evolving star mass 91
 4.4 Results ... 92
 4.4.1 Fragment locations and required disc masses ... 92
 4.4.2 Growth and radial evolution of fragments 104
 4.5 Discussion 106

5 Fragmentation criteria extended: physical factors affecting the fragmentation boundary 110
 5.1 Introduction 110
 5.2 Analytical view 111
 5.3 Numerical setup 112
 5.3.1 Numerical effects on fragmentation results ... 112
 5.4 Benchmarking simulations 113
 5.5 Main simulations 117
 5.6 Results ... 120
 5.6.1 Fragmentation dependency on the surface mass density profile ... 120
 5.6.2 Effect of the cooling timescale, β, on the fragment location ... 124
 5.6.3 The influence of star mass on fragmentation 124
 5.6.4 The influence of disc mass on fragmentation 127
 5.6.5 The role of the disc radius on fragmentation 130
5.7 Discussion .. 131
 5.7.1 The link between \(\beta, M_{\text{disc}}, M_* \), the surface mass density profile, \(p \), and
 fragmentation .. 132
 5.7.2 Implications of the new fragmentation criteria on the results of Clarke (2009) 135

6 Resolution effects on the fragmentation boundary 139
 6.1 Introduction .. 139
 6.2 The impact of inaccurate values of \(\alpha_{\text{GL,max}} \) on physical and observational conclusions 140
 6.3 Simulations .. 141
 6.4 Results ... 143
 6.4.1 Fragmentation boundary 143
 6.4.2 Dissipation and cooling rates 145
 6.5 Discussion .. 151
 6.5.1 Implications on results of previous chapters 154
 6.5.2 Implications of a lack of convergence on observational interpretation ... 155

7 Conclusions .. 156
 7.1 Future studies ... 158

A Boundary height calculation .. 161

B Improved boundary height calculation 163

C Seiss stellar evolution models ... 165
List of Figures

1.1 Schematic diagram showing the different stages of star formation. The early phase is the Class 0 phase (top left) where the molecular cloud is contracting and a stellar core forms. During the Class I phase (top right) a disc forms and is embedded in an envelope of gas. The penultimate stage involves an isolated star-disc system in which planets may form (Class II; bottom left) and in the Class III stage (bottom right) a disc is no longer present. Reproduced with permission from Mark McCaughrean. ... 23

1.2 Plot showing the mass against semi-major axis of all the extra-solar planets discovered, separated out by their detection technique. The earlier planets discovered were more massive and close to the parent star while recently, detection limits have been pushed so that smaller and more distant planets are being detected. Data obtained from http://exoplanet.eu/ ... 25

1.3 Schematic diagram showing the regions of a disc that different wavebands probe when observing discs. Scattered optical light only allows the surface to be seen. The various infrared wavebands probe slightly further. The longer wavelengths allow the inner regions of a disc to be observed. Image used with permission from Carsten Dominik, Kees Dullemond and Michiel Min. 28

1.4 Near infrared image of the spiral structure in the disc surrounding the Herbig Ae star, AB Aurigae, observed by Fukagawa et al. (2004). The spiral structures extend to > 500 AU. Credit: National Astronomical Observatory of Japan (NAOJ) 29

1.5 Fraction of sources with infrared excess (indicative of the presence of a disc) determined by Haisch et al. (2001b). The lack of excess around older objects suggests that discs are depleted within ≈ 6 Myr. ... 30

1.6 Schematic diagram showing the length scales over which pressure and rotational forces act to stabilise a disc. Pressure forces stabilise a disc on small scales while rotational forces stabilise a disc on large scales. If the largest scale over which pressure forces stabilise a disc, R_p, is larger than the smallest scale over which rotational forces stabilise the disc, R_c, then the disc is stable against collapse. On the other hand, if $R_c > R_p$, the disc may fragment into clumps. 36

1.7 The HR 8799 planetary system observed in the near-infrared waveband (Marois et al. 2008). This planetary system was the first multiple planet system detected using the direct imaging technique. ... 41
2.1 Final image of the Wegen test disc. Previous authors who have simulated this disc with a fixed gravitational softening and using a Balsara switch implementation for the artificial viscosity, find that a fragment forms. However, the same simulation carried out here with a spatially adaptive softening and a fixed viscosity shows no fragmentation. Thus, fragmentation results may be numerically dependent.

2.2 Plot showing the dissipation rate per unit mass against radius for a disc simulated with various different artificial viscosity parameters. The black solid line uses $(\alpha_{\text{SPH}}, \beta_{\text{SPH}}) = (0.1, 0.2)$ as done so by Lodato & Rice (2004) and Rice et al. (2005). Blue lines refer to values of $\alpha_{\text{SPH}} < 0.1$ ($(\alpha_{\text{SPH}}, \beta_{\text{SPH}}) = (0.01, 0.02)$ and $(\alpha_{\text{SPH}}, \beta_{\text{SPH}}) = (0.07, 0.14)$ are the blue solid and dotted lines, respectively). Green lines represent a viscosity higher than the $(0.1, 0.2)$ by up to a factor of 10 ($(\alpha_{\text{SPH}}, \beta_{\text{SPH}}) = (0.13, 0.26), (\alpha_{\text{SPH}}, \beta_{\text{SPH}}) = (0.3, 0.6)$ and $(\alpha_{\text{SPH}}, \beta_{\text{SPH}}) = (1.0, 2.0)$ are the green dotted, dashed and solid lines, respectively). Magenta lines represent even higher viscosities $(\alpha_{\text{SPH}}, \beta_{\text{SPH}}) = (3.0, 6.0)$ and $(\alpha_{\text{SPH}}, \beta_{\text{SPH}}) = (10.0, 20.0)$ are the magenta solid and dotted lines, respectively). The red lines represent no change in α_{SPH} but $\beta_{\text{SPH}} = 0.01$ and 0.0 for the solid and dotted lines, respectively. A simulations with $(\alpha_{\text{SPH}}, \beta_{\text{SPH}}) = (0.0, 0.0)$ was also carried which, as expected, produced no dissipation at all.

2.3 Plot showing the change in opacity with temperature for a density $\rho = 1\times10^{-8}$ g/cm3. The Rosseland mean interstellar opacity tables used in these simulations include the dust opacities produced by Pollack, McKay, & Christoferson (1985), as well as the gas opacities produced by Alexander (1975).

2.4 Plot showing the vertical height against radius of a simulated disc. The red particles are the boundary particles while the black particles are those that make up the bulk of the disc. The boundary particles have been determined by comparing their vertical height to equation 2.59.

2.5 Toomre stability profiles of a 0.1M$_{\odot}$, 25 AU disc (around a 1M$_{\odot}$ star) evolved with the boundary height scaled to 0.5\times (solid line), 0.75\times (dotted line), 1.0\times (short-dashed line), 1.1\times (long-dashed line), 1.25\times (dot-short dashed line and 1.5\times (dot-long dashed line) the location of the boundary height calculated using equation 2.59. Moving the boundary height higher up into the optically thin region does not affect the results significantly, but moving it down into the optically thick region causes the disc temperature to become artificially low.

3.1 Azimuthally averaged values of the Toomre parameter at the start (solid line) and at a time $t = 6.4$ ORPs (dotted line) for the Reference simulation. The disc is unable to cool rapidly due to the internal heating and hence its end state is more stable than the initial disc. Also shown is the equivalent disc simulated by Lodato & Rice (2004, short dashed line) which cools using simplified cooling (with $\beta = 7.5$) rather than by radiative cooling, and also does not consider the effects of stellar irradiation. The critical value of $Q_{\text{crit}} = 1$ is also marked.
3.2 Logarithm of the gas temperature (in K) rendered in cross-sectional views of the Reference (top panel) and Kappa0.01 (bottom panel) discs at a time $t = 6.4$ ORPs. The surface of the Reference disc is clearly colder than the midplane whilst the midplane of the Kappa0.01 disc is closer to a state of thermal equilibrium with the boundary. Axis units are in AU. .. 75

3.3 Azimuthally averaged values of the Toomre stability parameter at the start (solid line) and at a time $t = 6.4$ ORPs, for the Reference (dotted line), Kappa10 (short dashed line), Kappa0.1 (long dashed line) and Kappa0.01 (dot-dashed line) simulations. The critical value of $Q_{\text{crit}} = 1$ is also marked. Decreasing the opacity causes the disc to cool more efficiently. .. 76

3.4 Cooling timescale, ψ, profiles for the Reference (dotted line), Kappa10 (short dashed line), Kappa0.1 (long dashed line) and Kappa0.01 (dot-dashed line) simulations at a time $t = 6.4$ ORPs. Decreasing the opacity causes the cooling rate in the disc to increase (and ψ to decrease), but only until the disc can reach thermal equilibrium with its boundary. .. 77

3.5 Initial (thin lines) and final (at $t = 6.4$ ORPs; heavy lines) Toomre stability profiles for the Reference (solid line), Qmin1 (dotted line) and Qmin0.75 (dashed line) simulations. The critical value of $Q_{\text{crit}} = 1$ is also marked. None of the three discs which have interstellar opacity values can cool rapidly enough to maintain thermal equilibrium with their boundaries. .. 78

3.6 Surface density rendered image of the Qmin0.75 disc at a time $t = 6.4$ ORPs. At the end of the simulation, the disc has not fragmented despite initially being in a critical state because with interstellar opacities, it heats up. .. 79

3.7 Cooling timescale, ψ, profiles for the Reference (solid line), Qmin1 (dotted line) and Qmin0.75 (dashed line) simulations at time $t = 6.4$ ORPs. With interstellar opacities, these discs are simply not able to cool rapidly enough to obtain a ψ value that is low enough for fragmentation. .. 79

3.8 Toomre stability profiles at $t = 6.4$ ORPs for the Qmin0.75 (short dashed line) and Qmin0.75-Kappa0.1 (long dashed line) simulations and at $t = 8$ ORPs (just before it begins to fragment) for the Qmin0.75-Kappa0.01 (dotted line) simulation in comparison to the initial (solid line) Toomre stability profile for these discs. The critical value of $Q_{\text{crit}} = 1$ is also marked. The lower opacity disc cools rapidly enough to attain a state of thermal equilibrium with its boundary. It eventually fragments at $t = 9.7$ ORPs .. 80

3.9 Surface density rendered image of the fragmented Qmin0.75-Kappa0.01 disc at a time of $t = 10.5$ ORPs. The disc not only requires reduced irradiation, but also low opacities are essential for it to cool rapidly enough to fragment. .. 81
3.10 Cooling timescale, ψ, profiles for the Qmin0.75-Kappa0.01 simulation (dotted line) at $t = 8$ ORPs, just before it begins to fragment, in comparison to the Qmin0.75 (short dashed line), Kappa0.01 (long dashed line) and Qmin0.75-Kappa0.1 (dot-dashed line) simulations at $t = 6.4$ ORPs. The fragmenting disc has a low ψ value (≈ 15) in the outer part of the disc where it fragments. 81

3.11 Toomre stability profiles for simulations L-Qmin1 (dotted line), L-Qmin1-Kappa10 (short dashed line) and L-Qmin1-Kappa0.1 (long dashed line) at a time of $t = 6.4$ ORPs as well as the boundary profile for these discs (solid line). The critical value of $Q_{\text{crit}} = 1$ is also marked. Larger discs do not require as low opacities as smaller discs to attain a state of thermal equilibrium with their boundaries. 82

3.12 Surface density rendered image of the large, low opacity disc, L-Qmin1-Kappa0.1, at a time of $t = 2.9$ ORPs. A low opacity is also required for a large disc to fragment, though the opacity does not have to be as low as the 25AU discs. 83

4.1 Initial Toomre stability profiles for the simulations carried out with a constant star mass, $M_* = 1.5M_\odot$, and a surface mass density profile, $\Sigma \propto R^{-3/2}$ set up so that the minimum value of the Toomre parameter at the outer edge, $Q_{\text{min}} = 1.1$ (solid line), 1.0 (dotted line), 0.9 (short dashed line), 0.8 (long dashed line) and 0.7 (dot-short dashed line). The critical value of $Q_{\text{crit}} \approx 1$ is also marked. Many of these discs are so massive that they are initially Toomre unstable. However, the internal heating processes cause the discs to heat up so that rapid fragmentation due to the unstable initial conditions does not occur. 90

4.2 Final Toomre stability profiles of the discs with initially constant values of $Q = 1.1$ (solid line, $M_{\text{disc}} = 1.2M_\odot$, simulation Mstar1.5-Q1.1-p1.75-0.3IS) and 1.0 (dotted line, $M_{\text{disc}} = 1.3M_\odot$, simulation Mstar1.5-Q1-p1.75-0.3IS) for the simulations carried out with a constant star mass, $M_* = 1.5M_\odot$, and a surface mass density profile, $\Sigma \propto R^{-7/4}$ and with opacity values that are $0.3 \times$ the interstellar values. The internal heating is too high for the disc to maintain low Toomre stability values. 93

4.3 Temperature rendered cross-sectional plot of the final disc in simulation Mstar1.5-Q1-p1.75-0.3IS. The internal heating is too high for the disc to maintain a state of thermal equilibrium with the boundary temperature (set by irradiation from the star) as the surface over most of the disc is colder. The simulation uses opacity values that are $0.3 \times$ the interstellar values and simulates a $1.3M_\odot$ disc with a surface mass density profile, $\Sigma \propto R^{-7/4}$, around a $1.5M_\odot$ star. Temperature units are in Kelvin. 93
4.4 Surface mass density (left panel) and temperature (right panel) profiles at the start (solid line) and a short while before fragmentation ($t = 373$ yrs; dotted line) of simulation Mstar1.5-Q1.1-p1.75-0.1IS (a $1.2M_\odot$ disc with $\Sigma \propto R^{-7/4}$) surrounding a star with $M_* = 1.5M_\odot$). The solid line in the temperature graph also represents the boundary temperature. While the temperature in the disc increases, the restructuring of the disc (due to mass transport as a result of gravitational torques) allows it to attain a low Toomre stability parameter at $\lesssim 15$ AU, thus allowing it to eventually fragment. The fragmenting disc is shown in Figure 4.5.

4.5 Surface mass density rendered image of an initially $1.2M_\odot$ disc with surface mass density profile, $\Sigma \propto R^{-7/4}$ (such that $Q = 1.1$), surrounding a $1.5M_\odot$ star (simulation Mstar1.5-Q1.1-p1.75-0.1IS), at time $t = 398$ yrs. The fragments form out of a single dense spiral arm. The surface mass density and temperature profiles for this disc a short while before fragmentation are shown in Figure 4.4.

4.6 Surface mass density rendered images of the discs in simulations Mstar1.5-Q0.9-p1.75-0.1IS (left panel), Mstar1.5-Q0.9-p1.75-0.2IS (middle panel) and Mstar1.5-Q0.9-p1.75-0.3IS (right panel). The simulations are identical except that they have been run with opacity scalings of 0.1 (left panel), 0.2 (middle panel) and 0.3 (right panel). The simulation with the lower opacity fragments quicker and qualitatively appears to produce more fragments than those with a higher opacity, though the simulations have also been run for different lengths of time.

4.7 Final Toomre stability profiles of the discs with initially constant values of $Q = 1$ (solid line, $M_{\text{disc}} = 0.8M_\odot$, simulation Mstar0.8-Q1-p1.75-0.3IS) and 0.9 (dotted line, $M_{\text{disc}} = 0.9M_\odot$, simulation Mstar0.7-Q0.9-p1.75-0.3IS) for the simulations carried out with an evolved star mass, $M_* = 0.8$ and $0.7M_\odot$, respectively. The discs have a surface mass density profile, $\Sigma \propto R^{-7/4}$, and are modelled using opacity values that are $0.3\times$ the interstellar values. The discs do not fragment but settle into a state where the Toomre stability parameter, $Q \approx 1$, over a large portion of the disc.

4.8 Surface mass density (left panel) and temperature (right panel) profiles at the start (solid line) and at a later time for a $0.9M_\odot$ disc around a $0.7M_\odot$ star (with $Q_{\text{min}} = 0.9$ and $L = 1.45L_\odot$) modelled using opacity scalings of 0.3 (dotted line, simulation Mstar0.7-Q0.9-p1.75-0.3IS) and 0.1 (dashed line, simulation Mstar0.7-Q0.9-p1.75-0.1IS) for the inner 40 AU of the disc. The graphs for a scaling of 0.1 have been produced at a time shortly before fragmentation. The temperature in both discs increases significantly compared to the initial and boundary value (solid line). In the non-fragmenting case, the disc restructures itself significantly but does not fragment, while in the fragmenting case, the fragments form too rapidly before much restructuring can take place.
4.9 Surface mass density rendered image of an initially $0.9M_\odot$ disc with surface mass density profile, $\Sigma \propto R^{-7/4}$ (such that $Q = 1$), surrounding a $0.7M_\odot$ star (simulation Mstar0.7-Q1-p1.75-0.1IS), at time $t = 350$ yrs. The fragments form out of a single dense spiral arm. .. 97

4.10 Toomre stability (top left panel), surface mass density (top right panel) and temperature (bottom panel) profiles of the initial (solid line) and final (dotted line) state of the disc in simulation Mstar1.5-Q0.9-p1.5-0.1IS which is a $0.9M_\odot$ disc surrounding a $1.5M_\odot$ star (with $Q_{\text{min}} = 0.9$). This simulation was carried out using opacity values that are $0.1 \times$ the interstellar Rosseland mean values. The initial temperature profile is also the same as the boundary profile set by the irradiation from the central star. Q is marginally less than the critical value between $R \approx 55 - 70$ AU. Though the final temperature (dotted line) is mostly higher than the boundary temperature (solid line), the final Toomre stability profile is below the initial value since the disc has restructured itself such that the surface mass density in the final state (dotted line) is higher than the initial surface mass density (solid line) for most of the disc. The high gravitational torques in the disc causes mass transport which results in the restructuring. The critical value of $Q_{\text{crit}} \approx 1$ is also marked on the Toomre stability plot. .. 99

4.11 Surface mass density rendered image of the fragmenting disc in simulation Mstar1.5-Q0.7-p1.5-0.3IS at $t = 1125$ yrs. The central star and the fragments are represented by black stars. The fragments form at ≈ 25, 49 and 60 AU and evolve to ≈ 19, 48 and 77 AU, respectively, i.e. a little more spread out than the locations of the observed HR 8799 planets. .. 100

4.12 Toomre stability profiles of the final state of the discs with surface mass density profiles, $\Sigma \propto R^{-3/2}$, in simulations Mstar0.9-Q0.9-p1.5-0.1IS ($M_{\text{disc}} = 0.7M_\odot$, $M_\star = 0.9M_\odot$, $Q_{\text{min}} = 0.9$, solid line), Mstar0.8-Q0.8-p1.5-0.1IS ($M_{\text{disc}} = 0.7M_\odot$, $M_\star = 0.7M_\odot$, $Q_{\text{min}} = 0.8$, dotted line) and Mstar0.8-Q0.7-p1.5-0.3IS ($M_{\text{disc}} = 0.8M_\odot$, $M_\star = 0.8M_\odot$, $Q_{\text{min}} = 0.7$, dashed line). The former two simulations are run with opacity scalings of 0.1 while the latter simulation is run with a scaling of 0.3. The discs have settled into a marginally stable state with $Q \approx 1$. The critical value of $Q_{\text{crit}} \approx 1$ is also marked. .. 101

4.13 Toomre stability (top left panel), surface mass density (top right panel) and temperature (bottom panel) profiles of the initial (solid line) and final (dotted line) state of the discs in simulation Mstar0.9-Q0.9-p1.5-0.1IS. This simulation involves a $0.7M_\odot$ disc with surface mass density profile, $\Sigma \propto R^{-3/2}$ (such that $Q_{\text{min}} = 0.9$), around a $0.9M_\odot$ star. The initial temperature profile is also the same as the boundary profile set by the irradiation from the central star. The temperature has increased over most of the disc and therefore it is the increase in surface mass density that causes the final Toomre stability profile to be smaller than the initial for the majority of the disc. The critical value of $Q_{\text{crit}} \approx 1$ is also marked on the Toomre stability plot. .. 102
4.14 Surface mass density rendered images of the fragmenting disc in simulation Mstar0.8-
Q0.7-p1.5-0.11S at $t = 1300$ yrs (top panel) and $t = 1550$ yrs (bottom panel). The
three fragments form close together at 50, 57 and 65 AU in a single dense spiral
arm (top panel), but then evolve to radii of 29, 50 and 61 AU, i.e. within the radii
range that the HR 8799 planets are observed (bottom panel). In the bottom panel,
the fragments have been replaced by sink particles which, along with the central
star, are represented by black stars. 103

4.15 Surface mass density rendered image of the fragmenting disc in simulation Mstar1.5-
Q0.7-p1.5-0.31S (a 1.2M_\odot disc surrounding a 1.5M_\odot star with initial $Q_{\text{min}} = 0.7$)
at $t = 1178$ yrs. The simulation was run using an opacity scaling of 0.3. After
the first few fragments form (Figure 4.11), further fragmentation occurs in a sin-
gle dense spiral arm. The fragments have been replaced by sink particles which,
along with the central star, are represented by black stars. 104

4.16 Surface mass density rendered image of the fragmenting disc in simulation Mstar1.5-
Q0.7-p1.5-0.31S (a 1.2M_\odot disc surrounding a 1.5M_\odot star with initial $Q_{\text{min}} = 0.7$)
at $t = 1328$ yrs. The simulation was run using an opacity scaling of 0.3. Following
the initial formation of the fragments (Figure 4.11) and subsequent fragmentation
(Figure 4.15), the formation of many more fragments causes the disc to be com-
pletely disrupted. The fragments have been replaced by sink particles which, along
with the central star, are represented by black stars. 105

4.17 Surface mass density rendered image of the fragmenting disc in simulation Mstar1.5-
Q0.7-p1.5-0.11S (a 1.2M_\odot disc surrounding a 1.5M_\odot star with initial $Q_{\text{min}} = 0.7$)
at $t = 721$ yrs. The simulation was run using an opacity scaling of 0.1. The first
fragments form at similar radii ($R \approx 55 - 62$ AU) out of two spiral arms. The.fragments have been replaced by sink particles which, along with the central star,
are represented by black stars. 106

5.1 Azimuthally averaged values of the Toomre parameter for the initial discs with de-
creasing Toomre stability profile (simulations Benchmark1-8), set up in the same
way as Rice et al. (2005, solid line), and with a flat Q profile with $Q = 2$ (simu-
lations Benchmark9-11; dotted line). The critical value of $Q_{\text{crit}} = 1$ is also marked. 114

5.2 Surface mass density rendered image of the first fragments forming in the simu-
lations using a decreasing Toomre stability profile (simulation Benchmark8, left
image) and a disc set up with a flat Q profile with $Q = 2$ (simulation Benchmark9,
right image). The discs were run with $\beta = 5$. In both cases the discs first fragment
at $R_f \approx 20$ AU confirming that the initial temperature profile does not play a part
in the evolution of the discs. The colour scale is a logarithmic scale ranging from
log $\Sigma = -7$ (dark) to -3 (light) M_\odot/AU2. 115
5.3 Azimuthally averaged values of the Toomre parameter for the discs with initially
decreasing (solid line) and flat (dotted line) Toomre stability profiles (simulations
Benchmark3 and 10, respectively). The discs were run with $\beta = 6$. Despite having
different initial temperature profiles, both discs reach a steady-state with very sim-
ilar Toomre stability profiles, confirming that the initial temperature does not play
a part in the evolution of the discs. The critical value of $Q_{\text{crit}} = 1$ is also marked.

5.4 Surface density rendered image of the fragmenting disc in simulation Bench-
mark11 with an initial flat Q profile with $Q = 1$. The simulation was run with
$\beta = 5$. Despite the initial disc being in a state of marginal stability such that, in
theory, any part of the disc may fragment, the disc only fragments in the outer
regions. The colour scale is a logarithmic scale ranging from $\log \Sigma = -8$ (dark) to
-3 (light) M_\odot/AU2.

5.5 Initial surface mass density profiles of the discs used in simulations p1-beta6
(dashed line) and p1-beta6-extended (dotted line). The extended disc has the same
surface mass density profile as the smaller disc.

5.6 Surface mass density rendered image of the fragmenting disc with initial surface
mass density profile $\Sigma \propto R^{-1}$. The simulation (Reference-beta5.5) uses $\beta = 5.5$.
The fragment forms in the outer regions of the disc, confirming the analytical
predictions in Section 5.2. The colour scale is a logarithmic scale ranging from
$\log \Sigma = -6$ (dark) to -3 (light) M_\odot/AU2.

5.7 Surface mass density rendered image of the fragmenting disc with initial surface
mass density profile $\Sigma \propto R^{-3/2}$. The simulation (p1.5-beta3.5) uses $\beta = 3.5$.
The fragment forms in the outer regions of the disc, confirming the analytical
predictions in Section 5.2. The colour scale is a logarithmic scale ranging from
$\log \Sigma = -7$ (dark) to -2 (light) M_\odot/AU2.

5.8 Surface mass density rendered image of the fragmenting disc with initial surface
mass density profile $\Sigma \propto R^{-2}$ (simulation p2-beta3). The simulation used $\beta = 3$.
The fragment forms in the inner regions of the disc as shown by the zoomed in
image of the disc, confirming the analytical predictions in Section 5.2. The colour
scale is a logarithmic scale ranging from $\log \Sigma = -11$ (dark) to 2 (light) M_\odot/AU2
in the zoomed out image and from $\log \Sigma = -3.5$ (dark) to 1 (light) M_\odot/AU2 in the
zoomed in image.

5.9 Surface mass density rendered image of the fragmenting disc with initial surface
mass density profile $\Sigma \propto R^{-5/2}$ (simulation p2.5-beta3.5). The simulation used $\beta = 3.5$.
The fragment forms in the inner regions of the disc, confirming the analytical
predictions in Section 5.2. The colour scale is a logarithmic scale ranging from
$\log \Sigma = -12$ (dark) to 3 (light) M_\odot/AU2 in the zoomed out image and from $\log
\Sigma = -4$ (dark) to 0.4 (light) M_\odot/AU2 in the zoomed in image.

5.10 Plot of disc aspect ratio, H/R (solid line), against the RHS of equation 5.3 (dotted
line) for simulation Reference-beta5.5. Condition 5.3 is satisfied at ≈ 20AU where
the disc first fragments, confirming the analytical predictions in Section 5.2.
5.11 Plot of disc aspect ratio, H/R (solid line), against the RHS of equation 5.3 (dotted line) for simulation p1.5-beta3.5. Condition 5.3 is satisfied at ≈ 19 AU where the disc first fragments, confirming the analytical predictions in Section 5.2.

5.12 Plot of disc aspect ratio, H/R (solid line), against the RHS of equation 5.3 (dotted line) for simulation p2-beta3.5 for the radial range of the entire disc (upper panel) as well as zoomed into the inner regions (lower panel). Condition 5.3 is marginally satisfied at ≈ 0.4 AU where the disc first fragments, confirming the analytical predictions in Section 5.2.

5.13 Plot of disc aspect ratio, H/R (solid line), against the RHS of equation 5.3 (dotted line) for simulation p2.5-beta3.5 for the radial range of the entire disc (upper panel) as well as zoomed into the inner regions (lower panel). Condition 5.3 is satisfied at ≈ 0.4 AU where the disc first fragments, confirming the analytical predictions in Section 5.2.

5.14 The radius at which the first fragment forms in the Reference simulations. The discs in these simulations are identical with a surface mass density profile, $p = 1$, but were run with different values of the cooling timescale in units of the orbital timescale, β. The radius at which the first fragment forms moves inwards with more efficient cooling.

5.15 Surface mass density profiles for simulation p1-beta7-Mdisc1 at the start (solid line) and at a time more than 4 ORPs later (dotted line). Unlike the low mass simulations whose surface mass density profiles do not change throughout the simulations, the profile for this disc steepens causing a change in the effective values of Σ_0 and p.

5.16 Plot of disc aspect ratio, H/R (solid line), for simulation p1-beta7-Mdisc1, against the RHS of equation 5.3 using the initial values of Σ_0 and p (dashed line) and the new values of Σ_0 and p (dotted line) determined after the disc has evolved for > 4 ORPs by which time its surface mass density profile has changed. The condition is satisfied using the initial values of Σ_0 and p but not using the new values and hence the disc does not fragment.

5.17 Surface mass density rendered image of the fragmenting disc in simulation p1-beta8-extended with initial surface mass density profile $\Sigma \propto R^{-1}$, but extending to 50 AU rather than 25 AU. This simulation was run with $\beta = 8$. According to Rice et al. (2005), this disc should not fragment since the cooling timescale, β, is larger than the critical value previously obtained with a radius of 25 AU. This simulation shows that the fragmentation criterion is more complex than a single critical cooling parameter. The colour scale is a logarithmic scale ranging from $\log \Sigma = -8$ (dark) to -2 (light) M_\odot/AU2.
LIST OF FIGURES

5.18 Logarithmic graph showing the trend between β and $\Sigma R_f^2/M_\star$ determined by considering the location at which the first fragment forms in the discs, R_f. The results include those simulations with a surface mass density profile, $p = 1$ (filled triangles), $p = 1.5$ (open triangles), $p = 2$ (open squares) and $p = 2.5$ (crosses). It is clear that a single critical value of β is not the case for all discs and that there is a relation between β, M_{disc}, M_\star and the surface mass density profile, p, that determines whether fragmentation occurs or not. The trendline has been determined by considering discs with shallow surface mass density profiles, $p < 2$ only as those discs with $p \geq 2$ will always fragment in the innermost regions first. The grey shaded region is where I expect subsequent fragmentation may take place in discs with $p < 2$. ... 132

5.19 Logarithmic plot from Clarke (2009) showing the steady state mass accretion rate against radius for a disc around a $1M_\odot$ star. The boundary between fragmentation and no fragmentation is the solid line that lies immediately to the left of the region marked frag. zone. ... 136

5.20 Variation of the critical radius at which a disc around a $1M_\odot$ star will fragment for mass accretion rates ranging between $\dot{M} = 10^{-8} - 10^{-3}M_\odot\text{yr}^{-1}$ and for critical values of the cooling timescale in units of the orbital timescale ranging between $\beta_{\text{crit}} = 1 - 8$. The upper panel shows the three-dimensional plot whereas the lower panel shows the projection of this onto the $\dot{M} - R$ plane. For low accretion rates, the critical radius can vary by as much as ≈ 37 AU. The fragmentation boundary as identified by Clarke (2009) for $\alpha_{\text{GL,max}} = 0.06$ is highlighted in blue. 137

6.1 Surface mass density rendered discs with 31,250 (upper left), 250,000 (upper right), 2 million (bottom left) and 16 million (bottom right) particles using values of the cooling timescale in units of the orbital timescale of $\beta = 3, 5.5, 8$ and 10, respectively (simulations 31k-beta3, 250k-beta5.5, 2m-beta8 and 16m-beta10, respectively). The images are produced at time $t = 5.3, 6.4, 5.3$ and 2.5 ORPs, respectively. ... 143

6.2 Surface mass density rendered images of the borderline cases (simulations 250k-beta5.6, 2m-beta10, 16m-beta18) for discs set up with 250,000 ($\beta = 5.6$), 2 million ($\beta = 10$) and 16 million ($\beta = 18$) particles (top, middle and bottom panels, respectively). The left panels show a hint of fragmentation at times, $t = 3.8, 4.8$ and 6.0 ORPs (top, middle and bottom panels, respectively). The right panels show the equivalent simulations a short time later at times, $t = 4.2, 5.8$ and 6.2 ORPs (top, middle and bottom panels, respectively). Within 1 ORP, the fragments have been sheared apart, classing these simulations as borderline. 144
6.3 Toomre stability profiles for the borderline simulations for discs set up with 250,000 (solid line), 2 million (dotted line) and 16 million (dashed line) particles (simulations 250k-b5.6, 2m-b10 and 16m-b18, respectively) at time \(t = 6.4, 6.4 \) and 6.3 ORPs. These plots are produced at times \(\Delta t = 2.3, 0.7 \) and 0.1 ORPs after the fragments are identified to have sheared apart. The simulation with 250,000 particles has evolved for a longer time after the fragments have sheared apart and hence its Toomre stability profile is closer to the marginal state of \(Q = 1 \). The simulations with 2 million and 16 million particles have not evolved as far and so their Toomre stability profiles are higher due to the heating from the gravitational instability. The critical value of \(Q_{\text{crit}} = 1 \) is also marked. ... 146

6.4 Graph of \(\beta \) against resolution of the non-fragmenting (open squares), fragmenting (solid triangles) and borderline (open circles) simulations. Also included are the simulations that have not finished (asterix). The borderline simulations are those that fragment but whose fragments are sheared apart and no further evidence of fragmentation is seen. The solid black line shows a dividing line between the fragmenting and non-fragmenting cases and the grey region is where fragmentation can take place. The graph shows no evidence of convergence of results with increased resolution. The thin dotted line shows how the trend will continue if convergence is not reached with higher resolution than 16 million particles whereas the heavy dotted line shows how the trend might continue with higher resolution if convergence begins to take place. ... 147

6.5 Graphs of total dissipation rate per unit mass (solid line) against radius for discs with 31,250 (left panel) and 250,000 (right panel) particles using \(\beta = 3.5 \) and 6, respectively (simulations 31k-beta3.5 and 250k-beta6, respectively). Overlaid is the cooling rate per unit mass (dotted line). The discs are in a steady state as the dissipation and cooling rates balance each other throughout the disc. The data for the simulations with 2 million and 16 million particles is unavailable at the time of writing this thesis. ... 148

6.6 Graphs of dissipation rate per unit mass against radius averaged over 1 ORP for a disc with 31,250 (left panel) and 250,000 (right panel) particles (simulations 31k-beta3.5 and 250k-beta6, respectively). The thin black line shows the total dissipation rate per unit mass as measured and recorded during the simulations. Also plotted are the dissipation rates per unit mass due to artificial viscosity (green line), Reynolds stress (blue line) and gravitational stress (red line). The heavy black line shows the sum of these three stresses and would be expected to lie on top of the thin black line. It is clear that there is an additional source of heating present in the simulations that is not expected and is likely to be caused by \textit{additional numerical dissipation}. The data for the simulations with 2 million and 16 million particles is unavailable at the time of writing this thesis. 149
6.7 Graph of fractional difference between the dissipation rate calculated in the simulations and the total dissipation rate due to the gravitational stress, Reynolds stress and artificial viscosity for a disc with 31,250 (solid line) and 250,000 (dotted line) particles using $\beta = 3.5$ and 6, respectively (simulations 31k-beta3.5 and 250k-beta6 respectively). The fractional difference decreases as the resolution increases. The data for the simulations with 2 million and 16 million particles is unavailable at the time of writing this thesis. ... 150

6.8 Logarithmic graph showing the trend between β and $\Sigma R^2_i / M_*$ determined by considering the location at which the first fragment forms in the discs, R_i. This graph is identical to that in Figure 5.18 but overlaid with the fragmenting results from this chapter using 31,250 (red triangles) and 16 million (magenta triangle) particles, as well as the fragmenting 2 million (cyan triangles) particle simulation results presented in this chapter and in Table 5.3 in Chapter 5. This graph suggests that the trend identified in Chapter 5 is evident. The exact value of the constant of proportionality certainly seems like it would be different for different resolutions. It is not clear from the few simulations run here whether the slope will also change with resolution. 153
List of Tables

2.1 Opacity scaling with density and temperature in each of the dominant regimes. The opacity is given by $\kappa = \kappa_0 \rho^p T^q$. The temperature range in which each regime applies is also given. The scaling with temperature is illustrated in Figure 2.3. 63

3.1 Summary of the simulations carried out. The opacity scalings refer to multiples of interstellar Rosseland mean opacity values as described in Section 3.2. Q_{min} refers to the minimum value of the Toomre parameter (at the outer edge of the disc) at the start of the simulation. 72

4.1 Summary of the simulations carried out. The opacity scalings refer to multiples of interstellar Rosseland mean opacity values as described in Section 3.2.1. Q_{min} refers to the minimum value of the Toomre parameter (at the outer edge of the disc) at the start of the simulation. The luminosity has been determined using the stellar evolution models of Siess et al. (2000, Appendix C). p refers to the initial surface mass density, Σ, profile in the disc where $\Sigma \propto R^{-p}$. The penultimate column indicates if the simulation has been run with sink particles to follow the evolution of the fragments further (more details of these simulations can be found in Table 4.2). 89

4.2 Summary of the simulations carried out with sink particles. The opacity scalings refer to multiples of interstellar Rosseland mean opacity values as described in Section 3.2.1. Q_{min} refers to the minimum value of the Toomre parameter (at the outer edge of the disc) at the start of the simulation. The maximum sink mass is the largest mass sink particle that is present at the final simulation time. 101

5.1 Summary of the benchmarking simulations described in Section 5.4. p and q are the initial surface mass density and temperature profiles, $\Sigma \propto R^{-p}$ and $T \propto R^{-q}$, respectively. Simulations Benchmark1-8 have been set up in the same way as Rice et al. (2005) whereas simulations Benchmark9-11 have been set up with a uniform Toomre stability profile over the entire disc. 113
5.2 Summary of the main simulations. \(p \) describes the initial surface mass density profile, \(\Sigma \propto R^{-p} \), and \(\Sigma_0 \) is the normalisation constant required to produce a disc with mass \(M_{\text{disc}} \). The final column represents the RHS of equation 5.3 for the location at which the first fragment forms, \(R_1 \). The simulations were run with an initial flat Toomre stability profile, \(Q \). .. 118

5.3 Summary of the higher resolution simulations with \(2 \times 10^6 \) SPH particles. \(p \) describes the initial surface mass density profile, \(\Sigma \propto R^{-p} \), and \(\Sigma_0 \) is the normalisation constant required to produce a disc with mass \(M_{\text{disc}} \). The final column represents the RHS of equation 5.3 for the location at which the first fragment forms, \(R_1 \). The simulations were run with an initially decreasing Toomre stability profile, \(Q \), with \(Q \propto R^{-3/4} \) and minimum value at the outer edge, \(Q_{\min} \). 133

5.4 Summary of the preliminary simulations carried out using the 2-dimensional grid-based polar hydrodynamics code FARGO. \(p \) describes the initial surface mass density profile, \(\Sigma \propto R^{-p} \), and \(\Sigma_0 \) is the normalisation constant required to produce a disc with mass \(M_{\text{disc}} \). The final column represents the RHS of equation 5.3 for the location at which the first fragment forms, \(R_1 \). (Note that since the outputs for these particular runs were very infrequent, the values of \(R_1 \) are indicative and may not be accurate.) The simulations were run with an initially flat Toomre stability profile, \(Q \). .. 133

6.1 Table showing how the critical radius of fragmentation according to Clarke (2009) may be affected for a disc surrounding a 1, 1.5 and 2.1M\(_\odot\) star if the value of \(\alpha_{\text{GI, max}} \) is not correctly determined. The value of \(\Sigma R^2/M_\star \) is kept constant. 140

6.2 Table showing the properties of the discs simulated in this chapter. 141

6.3 Table showing the simulations carried out and the key fragmenting results. Note that the simulations with 250,000 particles were carried out in Chapter 5. The simulations labelled as \textit{borderline} are those that show fragments forming which then shear apart in less than 1 ORP. The simulations that have not finished at the time of writing this thesis are labelled as \textit{incomplete}. 142

6.4 Table showing how the critical radius of fragmentation according to Clarke (2009) may be affected for a disc surrounding a 1, 1.5 and 2M\(_\odot\) star for the different values of \(\beta_{\text{crit}} \) identified for discs with 31,250, 250,000, 2 million and 16 million particles. The value of \(\Sigma R^2/M_\star \) is kept constant. 154

C.1 Luminosity and corresponding star mass at an age of 1 Myr, determined using the stellar evolution models of Siess et al. (2000), using a metallicity of \(Z = 0.01 \) 165
Declaration

This thesis contains work that has been published with Professor Matthew R. Bate.

The results of Chapter 3 have been published in EXOPLANETS AND DISKS: THEIR FORMATION AND DIVERSITY: Proceedings of the International Conference. AIP Conference Proceedings, Volume 1158, pp. 139-140 (2009).

These results were also published in Monthly Notices of the Royal Astronomical Society, 2010, Volume 406, Issue 4, pp. 2279-2288.

The results of Chapter 5 have been accepted by Monthly Notices of the Royal Astronomical Society in August 2010 and are currently in press.

The results of Chapter 4 have been submitted to Monthly Notices of the Royal Astronomical Society.
Acknowledgements

I would like to thank my supervisor, Professor Matthew R. Bate, for his help, guidance and excellent scientific insight that has helped me to progress through my PhD. His scientific abilities are truly inspiring. I would also like to thank him for allowing me to make the most of a number of opportunities that I have been presented with during my PhD including numerous conferences, schools and research programmes.

I would also like to thank Dr. Kacper Kornet, Professor Jim Pringle, Professor Cathie Clarke and Dr. Daniel Price for very useful scientific discussions, as well as the rest of the University of Exeter Astrophysics group for inspiring discussions.

I would also like to thank my mentors, Professor Tim Naylor and Professor Arif Babul, for the immense support and priceless advice that they have given me with regards to my PhD and my future career.

In addition, I would like to thank my fiancé, Asif Wallani, my parents, Karim and Khadija Meru, and my sister, Zahra Meru, for their support throughout my PhD.

The calculations reported in this thesis were performed using the University of Exeter’s SGI Altix ICE 8200 supercomputer and Intel Nehalem (i7) cluster. The disc images were produced using SPLASH (Price 2007). In addition, some of the simulations were run using the Grape cluster at the University of California, Santa Cruz, for which I would like to thank the ISIMA (2010) programme.

Farzana Meru
University of Exeter, U.K.
22nd September 2010