MODELLING THE EFFICIENCY OF AN AUTOMATED SENSOR-BASED SORTER

Submitted by

Ofonime Bassey Udoudo

to

The University of Exeter as a thesis for the degree of Doctor of Philosophy by research in Earth Resources, September 2010.

This thesis is available for library use on the understanding that it is a copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all materials in this thesis which is not my work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

(Signature)
ABSTRACT

For future development of automated sensor-based sorting in the mining industry, an improvement in the separation efficiency of the equipment is desirable. This could be achieved through a better understanding of the identification and separation aspects of the automated sorter. For automated sorters that undertake separation through the use of compressed air jets, the problem of poor separation efficiency has been linked with co-deflection losses. Co-deflection losses occur as particles meant to pass on to the ‘accept’ bin are co-deflected with the particles (which are to be deflected) meant to go to the ‘reject’ bin.

To study co-deflection losses and suggest means of improving automated sorter separation efficiency, this research investigates the effects of particle size, shape, throughput, together with the proportion of particles (out of the total test batch) required to be deflected on separation efficiency. The effect of the air valve configuration on separation efficiency was also studied. Presented also is a mathematical model which could be used to predict automated sorter separation efficiency.

All separation efficiency investigations were undertaken using a TiTech Combisense© (BSM 063) automated sorter. Samples of granite were sized into -20+15mm, -15+10mm and -10+6mm size fractions and grouped into cubic and flaky shape fractions. These fractions were then divided into two with one portion painted for colour separation efficiency investigations.

The separation efficiency results confirmed earlier research indicating that particle size and the fraction requiring deflection affects separation efficiency, with separation efficiency decreasing with a decrease in particle size and an increase in throughput. It was observed that co-deflection loss occurs when correctly identified ‘accept’ particles are co-deflected due to their close proximity to ‘reject’ particles that are to be deflected. Observations from the tests indicate that an increase in the proportion of
particles requiring deflection increases the probability of finding ‘accept’ particles in close proximity to ‘reject’ particles leading to co-deflections.

Monte Carlo simulations were used to produce a random distribution of particles on the conveyor belt as would be obtained from actual investigations. From these simulations particle proximity relationships and particle co-deflections were studied. Results indicate that the Monte Carlo simulations under-predicts particle proximity associations.

The effect of shape on co-deflection was investigated with results indicating that flaky shaped particles produce higher number of co-deflections compared to cubic shaped particles. It was also observed that the valve sensitivity determined from valve opening and closing times is of importance to the selectivity (precision) of the separating air jets.

A mathematical separation efficiency model is presented which contains two variables, the belt loading (calculated using particle size, shape and throughput) and the particle fraction of the total test batch that are to be deflected (% deflection). The separation efficiency can be calculated once these two variables are determined.
ACKNOWLEDGEMENTS

I have enjoyed support and assistance from many parties too numerous to list here during the course of this research, my thanks to you all.

I thank my sponsors the Akwa Ibom State government. I also would like to thank my supervisors Dr. Richard Pascoe and Prof. Hylke Glass for their contributions and useful suggestions while undertaking this research. I also wish to express my thanks to Dr. Robert Fitzpatrick and Steve Pendray for helping in the laboratory; and to Stefan Juergensen of TiTech for helping with some of the technical information with respect to the automated sorter.

To my colleagues Adam, Dan, Edward, James, KP, Matt, Philip and Solomon thanks a lot for all the camaraderie we enjoyed and the various tips we shared to enhance the research experience. Finally to my wife, I say thank you dear for your patience and support as I spent long hours away from home undertaking this research. Glory to God!
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>4</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>5</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>9</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>15</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>16</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS AND ACRONYMS</td>
<td>18</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>20</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.0 THESIS STRUCTURE .. 22
1.1 AIMS OF RESEARCH ... 24
1.2 BACKGROUND AND JUSTIFICATION OF RESEARCH 25
1.3 RESEARCH METHODOLOGY 28

2 LITERATURE REVIEW

2.0 SENSOR-BASED SORTER COMPONENTS AND CONFIGURATIONS 31
2.0.1 The feeding and presentation systems 32
2.0.2 The identification system 36
 2.0.2.1 Sensors applied to sorting 38
2.0.3 The separation system 51
2.1 DEVELOPMENTS OF SENSOR-BASED SORTERS IN THE MINING INDUSTRY .. 54
2.2 APPLICATIONS OF SENSOR-BASED SORTERS 58
 2.2.1 Mining Industry ... 58
 2.2.2 Waste and recycling Industry 59
2.3 COMPETING TECHNOLOGY WITH AUTOMATED SENSOR-BASED SORTING IN THE MINING INDUSTRY 60
2.4 CHALLENGES TO IMPROVING SENSOR-BASED SORTING EFFICIENCY .. 62
2.5 THE KING MODEL FOR SENSOR-BASED SORTING 66
2.6 MONTE CARLO ANALYSIS .. 68
2.7 EVALUATING SEPARATION EFFICIENCY 69
3 EXPERIMENTAL EQUIPMENT .. 71
 3.0 THE VIBRATORY FEEDER .. 71
 3.1 THE TITECH AUTOMATED SENSOR-BASED SORTER 73
 3.1.1 The operational sequence 73
 3.1.2 The conveyor system ... 74
 3.1.3 The sensor .. 75
 3.1.4 The separation components 80
 3.1.5 The control components 81
 3.1.5.1 An introduction to the PACT software 82
 3.1.5.2 The automated sorter starting procedures 84
 3.1.6 Obtaining data from the automated sorter 89
4 SAMPLE PREPARATION AND EFFICIENCY TEST PROCEDURES .. 92
 4.0 SAMPLE PREPARATION ... 94
 4.1 MACHINE PREPARATION .. 100
 4.1.1 Valve tests .. 100
 4.1.2 Belt speed .. 100
 4.1.3 Background colour determination 100
 4.2 TEST PROCEDURES ... 102
 4.2.1 Colour classification tests 102
 4.2.2 Optimisation tests .. 103
 4.2.3 Separation efficiency tests 111
 4.2.4 Particle proximity tests 113
 4.2.5 Video observations .. 117
 4.2.6 Valve precision tests 120
 4.2.7 Belt loading tests .. 123
 4.3 MATERIAL DESCRIPTIONS 128
 4.3.1 Particle weight .. 128
 4.3.2 Particle surface area 128
 4.3.3 Particle belt distribution 129
5 SEPARATION EFFICIENCY TEST RESULTS AND DISCUSSIONS.. 131
 5.0 RECOVERY OF BLUE PARTICLES 132
 5.1 SEPARATION EFFICIENCY ... 134
 5.1.1 Throughput and separation efficiency 134
 5.1.2 Percent blue deflection and separation efficiency 136
 5.1.3 Co-deflection and throughput 139
 5.1.4 Shape and co-deflection 141
APPENDIX A - DESCRIPTIONS OF THE PACT SOFTWARE AND COMPLETE DATA EXTRACTED USING PACT ... 195
APPENDIX B - RESULTS OF SHAPE TESTS ... 202
APPENDIX C – SEPARATION EFFICIENCY TEST RESULTS OF ALL SIZE FRACTIONS ... 212
LIST OF FIGURES

Figure No.

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic flow sheet of a typical sorting system</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>The feed and presentation system - conveyor belt configuration (from King, 1978)</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>The feed and presentation system - rotatory disc configuration (after King, 1978)</td>
<td>34</td>
</tr>
<tr>
<td>2.4</td>
<td>The presentation system in free fall configuration (from CommoDas, 2006)</td>
<td>35</td>
</tr>
<tr>
<td>2.5</td>
<td>Some material information that could be used for identification classification and sorting (after Manouchehri, 2006; Arvidson, 1988)</td>
<td>37</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic of the image processing procedure(s) (after Kattentidt et al 2003, Cinque and Lombardi, 1995)</td>
<td>38</td>
</tr>
<tr>
<td>2.7</td>
<td>The general working principle of a sensor (after Killmann and Pretz, 2006)</td>
<td>39</td>
</tr>
<tr>
<td>2.8</td>
<td>Two-dimensional representation of the electromagnetic vector (after Skoog et al, 1996)</td>
<td>40</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic of energy states/changes that occur during molecular absorption (after Skoog et al, 1996)</td>
<td>41</td>
</tr>
<tr>
<td>2.10</td>
<td>Modes of light energy measurements (after Pasquini, 2003)</td>
<td>42</td>
</tr>
<tr>
<td>2.11</td>
<td>A diagram of the electromagnetic spectrum (after Skoog et al, 1996)</td>
<td>43</td>
</tr>
<tr>
<td>2.12</td>
<td>Monochromation by a diffraction grating (after Denney and Sinclair, 1987)</td>
<td>44</td>
</tr>
<tr>
<td>2.13</td>
<td>Operation of a conductivity sensor (after CommoDas, 2006)</td>
<td>51</td>
</tr>
<tr>
<td>2.14</td>
<td>Various configurations of deflection nozzles</td>
<td>52</td>
</tr>
</tbody>
</table>
Figure 2.1: A diagram of a MAC latching solenoid valve (after MAC, 2008) .. 53

Figure 2.16: Principle of DMS sorting ... 60

Figure 2.17: Existence probabilities of n-th particle overlap planes as a function of the particle rate; (after De Jong et al, 2005) 64

Figure 2.18: Sorter throughput as a function of particle size and % deflection (after Arvidson, 2002) ... 65

Figure 3.1: A diagram of the feeding system .. 72

Figure 3.2: Path of a particle from the chute to the conveyor belt 72

Figure 3.3: The TiTech automated sorter, indicating the operational sequence (after CommoDas 2006) .. 74

Figure 3.4: Positioning of lighting of the TiTech automated sorter 76

Figure 3.5: Positioning of the camera indicating the line of sight angle 76

Figure 3.6: Trichroic prism splitting light into RGB components (after TVI, 2010) ... 77

Figure 3.7: How a 2D image is obtained from a line scan camera 77

Figure 3.8: Surface area of material captured by the automated sorter camera varying with incident angle of light (after Fitzpatrick, 2008) 79

Figure 3.9: A diagram indicating the deflection of materials into the ‘reject’ bin by air jets .. 81

Figure 3.10: The PACT controlling system concept (after CommoDas, 2006) ... 82

Figure 3.11: A simplistic image processing procedure 83

Figure 3.12: Flowchart of set up of the TiTech automated sorter for colour separation purposes ... 85

Figure 3.13: A typical YUV analysis tab with the background colour also included ... 87

Figure 3.14: An example of colour class utilised to define material rules 88
Figure 3.15: The valve configuration for a deflected particle based on “reject rule 1” (after CommoDas, 2006) ... 89
Figure 3.16: The valve configuration for a deflected particle based on “reject rule 3” (after CommoDas, 2006) ... 89
Figure 3.17: A screen shot of selected data obtained from the image processing analyser of the PACT software ... 90
Figure 3.18: A diagram indicating the calibration of the automated sorter for the purposes of data capture ... 91
Figure 4.1: Lees (1964) classification chart of aggregates (after Smith and Collis, 1993) ... 96
Figure 4.2: -15+10mm fraction, calibrated using the British standard Classification ... 97
Figure 4.3: -20+15mm fraction, calibrated using the British standard Classification ... 98
Figure 4.4: UV colour space classification of the blue painted granite, granite and the background .. 103
Figure 4.5: Throughput calibration of some of the sample fractions 104
Figure 4.6: Delay time test results for -10+6mm fraction 105
Figure 4.7: Delay time test results for cubic shaped -20+15mm fraction ... 106
Figure 4.8: Delay time test results for flaky shaped -20+15mm fraction ... 106
Figure 4.9: Positioning of the splitter with respect to the edge of the conveyor belt ... 107
Figure 4.10: Deflection scenarios for reject rules 1 and 3 110
Figure 4.11: A diagram indicating the points where composite boundaries were delineated ... 114
Figure 4.12: Distribution of particle surface pixels for all size fractions ... 114
Figure 4.13: Schematic showing the position of the video camera with respect to the conveyor belt and particles .. 118

Figure 4.14: Belt distribution of -20+15mm sized particles 120

Figure 4.15: A diagram indicating positions of the blue (b) and granite particles utilised to determine zone of influence of sample composites121

Figure 4.16: Flow chart indicating belt loading determination procedures .. 124

Figure 5.1(a): Throughput and separation efficiency relationships for cubic particles at 10 and 50% blue deflect .. 135

Figure 5.1(b): Throughput and separation efficiency relationships for flaky particles at 10, 30 and 50% blue deflect .. 135

Figure 5.2(a): Relationship between separation efficiency and % blue deflect for cubic shaped -20+15mm fraction at varying throughputs 137

Figure 5.2(b): Relationship between separation efficiency and % blue deflect for flaky shaped -20+15mm fraction at varying throughputs 137

Figure 5.2(c): Relationship between separation efficiency and % blue deflect for cubic shaped -15+10mm fraction at varying throughputs 138

Figure 5.2(d): Relationship between separation efficiency and % blue deflect for flaky shaped -15+10mm fraction at varying throughputs 138

Figure 5.2(e): Relationship between separation efficiency and % blue deflect for -10+6mm fraction at varying throughputs 139

Figure 5.3(a): Co-deflections and throughput relationships for -20+15mm fraction at varying % blue deflect .. 140

Figure 5.3(b): Co-deflections and throughput relationships for -15+10mm fraction at varying % blue deflect .. 140

Figure 5.3(c): Co-deflections and throughput relationship for -10+6mm fraction at varying % blue deflect .. 141

Figure 5.4: Relationship between shapes with throughput for -20+15mm and -15+10 mm fraction at 50% blue deflection 142

Figure 5.5(a): Throughput and belt loading relationships for the cubic shaped fractions ... 144
Figure 5.5(b): Throughput and belt loading relationships for the flaky fraction ... 145

Figure 5.6: Co-deflection and belt loading relationships for all samples at varying % blue deflect .. 146

Figure 5.7: Particle groupings referred to as composites 147

Figure 5.8(a): Calculated particles in composites for flaky shaped -20+15mm fraction .. 147

Figure 5.8(b): Calculated particles in composites for cubic shaped -20+15mm fraction .. 148

Figure 5.8(c): Calculated particles in composites for flaky shaped -15+10mm fraction ... 148

Figure 5.8(d): Calculated particles in composites for cubic shaped -15+10mm fraction ... 149

Figure 5.8(e): Calculated particles in composites for -10+6mm fraction ... 149

Figure 5.9(a): Composites and co-deflection relationship for cubic shaped -20+15mm fraction ... 150

Figure 5.9(b): Composites and co-deflection relationship for flaky shaped -20+15mm fraction ... 151

Figure 5.9(c): Composites and co-deflection relationship for cubic shaped -15+10mm fraction ... 151

Figure 5.9(d): Composites and co-deflection relationship for flaky shaped -15+10mm fraction ... 152

Figure 5.9(e): Composites and co-deflection relationship for -10+6mm Fraction .. 152

Figure 5.10: Flow chart showing the classification procedure for Monte Carlo analysis ... 156

Figure 5.11: Particle positioning for Monte Carlo analysis 158
Figure 5.12: A screen shot of Monte Carlo simulation of belt loading for
-10+6mm fraction 30% blue deflect, at 2.5 tonnes/hr 159

Figure 5.13(a): Comparison of Monte Carlo analysis determination with
actual single touching sample particles for cubic shaped -20+15mm
fraction .. 160

Figure 5.13(b): Comparison of Monte Carlo analysis determination with
actual single touching sample particles for cubic shaped -15+10mm
fraction .. 160

Figure 5.13(c): Comparison of Monte Carlo analysis determination with
actual single touching sample particles for -10+6mm fraction 161

Figure 5.14: Positions of the blue and granite particles utilised to investigate
zone of influence of sample composites ... 162

Figure 5.15: A particle zone of influence .. 163

Figure 6.1: Distribution of samples based on identification parameters
(I(a/a) = 0.99, I(d/d) = 0.93) and deflection parameters (D(a/a) = 0.98
and D(d/d) = 0.99) ... 171

Figure 6.2: The slope and belt loading relationship 175

Figure 6.3: Throughput calibration for the -20+14mm particles 178
LIST OF PLATES

Plate 3.1: A picture of the sensor-based sorter in the laboratory 75

Plate 4.1: A picture of a flaky sieve ... 94

Plate 4.2: A picture of a frame of cubic shaped -20+15mm samples119

Plate 4.3: A picture of coarse particles placed before a test122

Plate 4.4: Progressive video frames (progressing from 1 to 2)
2 frames apart .. 123

Plate 4.5: Progressive video frames (progressing from 1 to 2)
2 frames apart .. 123
LIST OF TABLES

Table 2.1: Applications/developments of sorting machines in the Mining industry ... 55
Table 2.2: Summary of differences between DMS and sensor-based sorting ... 61
Table 4.1: YUV values of blue and red painted particles (-20+15 mm fraction) ... 103
Table 4.2: Splitter deflection test results ... 108
Table 4.3: Optimal air pressures for the various size fractions and shapes ... 109
Table 4.4: Misplaced and co-deflected particles at reject rule 1 and 3 for -10+6mm fraction ... 110
Table 4.5: Cut off value test results .. 111
Table 4.6: Comparison between 20% and 50% cut off values based on separation efficiency for flaky shaped -20+15mm fraction (at a 50% blue deflection) ... 112
Table 4.7: Example of cut point values determined for -10+6mm fraction ('x' set to 0.95) ... 116
Table 4.8: Converted data from the image analyser of the TiTech automated sorter for -10+6mm fraction ... 125
Table 4.9: Average particle weight data ... 128
Table 4.10: Average particle surface area data ... 129
Table 4.11: Average belt distribution data ... 129
Table 5.1 Measure of efficiency of blue particle separation 132
Table 5.2: Standard deviation for separation efficiency tests at varying % blue deflect and throughputs for all the size fractions 134
Table 5.3: Calculated composites data for all size fractions 150
Table 5.4: Weighted distribution of belt area for -15+10mm fraction 154
Table 5.5: Sample groupings .. 157
Table 5.6(a): Particle positions for the -10+6mm fractions 162
Table 5.6(b): Particle positions for the -15+10mm fractions 162
Table 5.6(c): Particle positions for the -20+15mm fractions 163
Table 6.1: Y colour scale values used for validation tests 177
Table 6.2: Validation and calculated separation efficiency results 180
LIST OF ABBREVIATIONS AND ACRONYMS

2D: Two-dimensional
AOTF: Acousto-Optical Tunable Filter
CCD: Charge-coupled device
CYMK: Cyan-Yellow-Magenta-black
DE-XRT: Dual energy x-ray transmission
DMS: Dense medium separation
ELV: End of life vehicle
EM: Electromagnetic
FIR: far Infrared
HDPE: High-density polyethylene
LDPE: Low-density polyethylene
LED: Light-emitting diodes
LIBS: Laser induced breakdown spectroscopy
LIF: Laser induced fluorescence
MIR: mid Infrared
NIR: near Infrared
PET: Polyethylene terephthalate
PP: Polypropylene
PVC: Polyvinyl chloride
RGB: Red-Green-Blue
UV: Ultraviolet
WEEE: Waste electrical and electronic equipment
XRD: X-ray diffraction
XRF: X-ray fluorescence

XRT: X-ray transmission

YUV: Y (luma/luminance/brightness) UV (chroma) colour scale
LIST OF SYMBOLS

A = Absorbance of materials, m

B = Magnetic induction, T

B_L = Belt loading, %

c = Velocity of electromagnetic radiation in a vacuum, ms^-1

= Magnetic field gradient, T/m

ΔE = A quantum (photon) of energy, J

E_{electr} = Energy associated with the electrons in the various outer orbitals of the molecules, J

E_{over} = The overall energy, J

E_{rot} = Energy associated with the rotation of molecules about the centre of gravity of the atom, J

E_{vib} = Energy due to inter-atomic vibrations, J

F = The magnetic force, N

H = Magnetic field strength, A/m

\hbar = Planck’s constant, 6.626 \times 10^{-34} \text{ J}

I = intensity of light transmitted through the sample at a given wavelength, m

I_o = intensity of incident light on the sample at a given wavelength, m

k = volume magnetic susceptibility

N_d = blue deflect, %

R_b = Recovery of blue painted particles, %

R_g = Recovery of granite particle, %

S.E = Separation efficiency, %

TotE = Total efficiency, %
\(\lambda = \) Wavelength of the electromagnetic radiation, m

\(\mu = \) Magnetic permeability, H/m