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In the presence of symmetries or invariant subspaces, attractors in dynamical systems can become
- very complicated, owing to the interaction with the invariant subspaces. This gives rise to a number
of new phenomena, including that of robust attractors showing chaotic itineraricy. At the simplest
level this is an attracting heteroclinic cycle between equilibria, but cycles-between more general
invariant sets are also possible. In this paper we introduce and discuss an instructive example of an
ordinary differential equation where one can observe and analyze robust cycling behavior. By
design, we can show that there is a robust cycle between invariant sets that may be chaotic saddles
(whose internal dynamics correspond to a Rossler system), and/or saddle equilibria. For this model,
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we distinguish between cycling that includes phase resetting connections (where there is only one -

connecting trajectory} and more general non(phase) resetting cases, where there may be an infinite
number (even a continnum) of connections. In the nonresetting case there is a question of
connection selection: which connections are observed for typical attracted trajectories? We discuss
the instability of this cycling to resonances of Lyapunov exponents and relate this to a conjecture
that phase resetting cycles typically lead to stable periodic orbits at instability, whereas more general
cases may give rise to “stuck on” cycling. Finally, we discuss how the presence of positive
Lyapunov exponents of the chaotic saddle mean that we need to be very careful in interpreting
numerical simulations where the return times become long; this can critically influence the
simulation of phase resetting and connection selection. © 2003 American Institute of Physics.
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One of the main obstructions to a good understanding of
‘the dynamics of high-dimensional coupled systems (such
as neural information processing networks) is the relative
absence of a clear and useful classification of the attrac-
tors that one can typically find; see Refs. 1, 2. For this
reason, the recognition that chaotic itinerancy can occur
in such systems is a significant step towards a better clas-
sification. Similar behavior, where attractors show robust
intermittent behavior has been seen in models with sym-
metries or invariant subspaces such as Refs. 3, 4; see the
review of Krupa.® Itinerancy in the form of robust het-
eroclinic cycles has been found in several models for
_coupled cells; for example, Refs. 6—8, and there are re-
lated weak notions of attraction such as those considered
in Refs, 2, 9, 10 as well as cycles between chaotic sets.”! In
this paper we examine a specific ordinary differential
equation (ODE) model for a robust cycle between chaotic
and equilibrium saddles that is amenable to analysis. For
this model we discuss the qualitative properties of phase
resetting connections and the selection of connections.
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I. INTRODUCTION

There is still much that is not understood about the typi-
cal form of robust heteroclinic-like attractors, In this paper,
we examine a particular feature (phase resetting) that is not
present in connections between equilibria but that is common
in cycles between more complicated invariant sets. This type
of behavior has been seen in systems of cyclically coupled
maps'>" and also in a truncated model of magneto-
convection.'* However, the analysis of the first system re-
quires the inclusion of singularities in the map while the
latter system is too complicated to analyze fully. In this paper
we consider a new model ODE on R® with symmetry <
=(Z,)*, where a wide variety of attracting robust cycles are
possible. Moreover, the ODE is simple enough to be ame-
nable to analysis,

In Sec. IT we describe the ODE, which is constructed by
coupling a Guckenheimer—Holmes robust heteroclinic cycle®
with a Rossler system' in such a way that the following
occurs.

(1] There are attractors that include cycles between
saddle equilibria and saddle chaotic sets.

(i)  The attractors persist under perturbations that pre-
serve the symmetry G.

. © 2003 American Institute of Physics
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(iii) The system is well approximated by a skew product in

a neighborhood of each saddle, but globally is not a
skew product system. ~

This model was developed from a skew product system
considered previously in Ref. 10. The skew product structure
in this system arose throngh the Rossler system acting as a
forcing system on the Guckenheimer—Holmes system. Our
new model breaks the skew product to a more general two-

way coupling and allows new and, we believe, moye. typical

behavior.
In Sec. I1I, we show that the model displays a range of
cycling chaotic attractors including cycles between equilibria

and chaotic saddles. We also describe how these attractors
lose stability. We distinguish between phase resetting con-. -

nections, where there is only one connection between two

saddles (of “nodes™) in the cycle, and nonresetfing connec-
tions with a possibly infinite number of connections (the lat-

ter corresponds to the “free running™ scenario described in
Ref. 12). The system has been constructed to show both
types of behavior. We also predict and examine the loss of
stability of such robust attracting cycles at resonance bifur-
cation by using transverse Lyapunov exponents. For the
“mapping model studied in Ref. 12, phase resetting is associ-
ated with the bifurcation of an infinity of stable periodic
solutions whereas the nonresetting results in attractors ‘that
are chaotic and approximately follow the cycling. For the
“cycle studied here, one convection is always nonresettmg
and we observe dynamics exhibiting aspects of both non-
phase resetting and phase resetting cycles, but with a com-
plicated detailed structure. We mention some problems that
arise in the numerical simulation of this cycle. In particular,
we.show how phase resetting may be lost due to numerical
inaccuracies and we believe this is an issue that needs to be
better understood for the simulation of general robust and
chaotic itinerant atfractors. S

In Sec. IV we invesiigate the classification of more gen-
eral robust cycling attractors. We highlight the problem of
cycle selection in nonresetting cycles. Specifically, if there
are an infinite number of connections, which of them will
appear in the w-limit set for “typical” initial conditions?

Finally, in Sec. V, we briefly sum up some ideas for
extensions of this work,

Ii. AN ODE MODEL WITH ROBUST CYCLING
BETWEEN CHAOTIC SADDLES

Let 52 denote the unit sphere in R>. We will define a

coupled system of ODEs on $*XR?. The uncoupled dynam- -

.ics will basically be the product of the Guckenheimer—
Holmes dynamics with those of the Rossler equation.
- Throughout, we denote coordmates on S2XR? by (x,¥).
where x=(x,,x;,X3) and Sat=

A. The Guckenheimer—Holmes and Rossler systems

We start by defining a vector field on S? that is related to
the Guckenheimer—Holmes system. If ¢:R*—R? is any
smooth function and {-,-) the standard inner product, we de-
fine a smooth vector field F on 5 by
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FIG. i. Guckenheimer—Holmes dynatmcs on one octznt of the sphere for
the case &#+c, bc, b<0.

F(x)= Q(x) (Q(x%),%x)x, .'xeSz

Note that if Q is radial (a multlple of x) then F=0: We define
a parametrized family F(x;b,c,d) of vector fields on S2 by

taking 0 =(Q1.Q,.03), where
Ql(x,b,c',d):xl(bx2+cx3+dx§x%);
Q.(x,b,c,d) =‘x2(bx3+cx1+dx3xl) :
Q+(x.b,¢ d)=x3(bx1+cx2+dx_1x2),

and b, ¢, d are real parameters. :

The equations used in computattonal simulations are ei-
ther obtained by constraining X=F(x) to X€ $? or by adding
radial dynamics that causes S> to become aftracting. That is,

by considering x=F(x), where. .
- F(x)= (1"13‘1 )X+F(X)

The models F and F clearly reduce 1o the $ame vector field
on § 2, and §% i is flow invariant for the dynamics defined by
F. In Fig. 1 we show the dynamics on §% for the case d

=0 and b+e¢, be, b<0 [for. details and computation, see

Field (Ref. 16, Chap. 6)]. Referring to the figure, e;, €, €;
are the positive unit vectors along the x;, x, and x5 axes,
respectively, and at p. When bc<<0, the only. zeros of F in
thie first octant of §2 are e, , €,, €;, and p- The equilibria ¢,
e,, €3 are hyperbolic saddles. If & +c<0, then p is a source

- and the saddle connections between e;, €;, €y form an at-

tracting heteroclinic cycle. Since F is equivariant w1th re-
spect to the action of G on 5% defined by (x[,x2.%3)

—(tx,,*x,,*x,), the dynamics i the remaining octants
is obtained by repeated reflection in the eoordmate planes of
the dynamics in the first octant. .

Remark 2.1: The great circles on 52 defined by the in-
tersection of §2 with the coordinate planes are flow invariant
for the. dynamics of the vector field F. This invariance is
preserved when we couple with the Rossler system and it
follows that we shall only need to consider dynamics on the
flow invariant first octant of $2.

- OnR? the Rossler system y= G(y) (w1th spe01ﬁc param—
eter choices) is defined by

Gy)=—y:{ys,
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Ga{y)=y:+0.2y,,
CGa(y)=02+y3(y,—5.7),

and it is well known (see, for example, Ref. 15} that solu-
tions of this system with initial conditions close enough to
the origin are observed to converge to a compact chaotic
attractor .A. In addition to 4, the system has equilibria at

- y*=(0.007,-0.035,0.035),
and

- yP=(—5.71,28.54,—-28.54).
" Both equilibria are hyperbolic saddles: y* has a one-
dimensional stable manifold and a two-dimensional unstable
manifold with expanding complex eigenvalues; v® has one-
dimensional stable and two-dimensional unstable manifolds
with real eigenvalues. However, the second equilibriumm will

not be of particular interest for the parameter values consid-
" ered in this paper.

B.__Definition of the coupled system
 We define a‘smooth map p:S2—R by
tanh(4(2x%— 1))+ tanh(4)
2 tanh(4)

u(x)=

" The function g is chosen so that u(0)=0, g is even in

-xy, and p{x1)=1. Moreover, u increases monotonically
" with the greatest rate of change occurring near the circles
x;= £ £ on the unit sphere.

For >0, let A, denote the diagonal matrix
diag(e,2¢,3¢) and pick a fixed vector y =(!.,y5.¥3)
..E R?. The dynamics of the y variables will be coupled to the
X variables by the x-dependent term — (XA (y—¥"). We
" also couple the x dynamics to the y dynamics by making the
" coefficients b and ¢ functions of y.

We define our coupled system of ODEs on-S2X R? by

%=F{x;b(y).c(y).d),

(1
UG - ,u(x)Ae(y ¥,
-:where
i b(Y) bo"'blsm()’;) c(y)=coteysin(ys).
Observe that when =0 (and x,=0, x3+x3=1), the y dy-

“y‘hamics are identical to the Rossler equations, whereas for
S =1 (x{==*1, x,=x3=0), y has an attracting fixed point
ratyf.

The group (Z,)° of reflections on 52 extends to the ac-
tion on $2XR?, defined by

(X1.X0,%3,Y1.¥2,¥3)> (2 xy, 2 %0, £ x3,51,¥2,¥3)-

Since g is clearly (Z,)* invariant, it follows that for any
choice of parameters, the system {1} is symmetric with re-
spect to (Z,)°.

- Remark 2.2: The Guckenheimer—Holmes® model is also
symmetric with respect to the Z; action defined by
(x1,2x5,x3)>(xy,%5,x;). However, g is not Z; invariant
and so (1) is not Z; symmetric. [ndeed, we have deliberately
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TABLE 1. With the exception of M, the listed subspaces of §2XR? (or F)
are invariant for any {Z,)*-symmetric fiow on 5° X R3. The second column
gives the notation we use for the intersection of this space with F.

Name Intersection with ¥ Subspace Dim
*P, P, {+e xR 3
+p, Py {+e,} XR? 3-
P, Py {+e}xR? 3
M P {p}<R3 3
Niz Ep SpXR 4
Ny En SnXR? 4

_ Nis Ep SpXR? 4

broken the Z; symmetry to ensure that we can obtain cycles
between saddles with different dynamics. However, it is easy
to verify that the subspace {p} X R® is flow invariant for the
system (1), Solutions lying on this subspace can be regarded
as synchronized solutions. These solutions wilt not play a
major role for us in this paper.

For i<je{1,23}, let §;; ;j denote the great circle of 52
defined as the intersection of the x;x;-coordinate plane with

i
§Z. Each §; ; 18 flow invariant for every (Z,)* symmetric

flow on §2. The pairwise intersections of all the circles Si

define the points *e,, ¥=1,2,3, which must be flow i mvan—
ant, and therefore equilibria, for every (Z,)> symmetric flow
on §2. Tet O={x:x;=0, x,=>0 and x3=0} denote the posi-

‘five octant of §2. Set

F=0XxR3CS*XR?,

and let E;; denote the flow invariant subsets of S2XR? de-
fined by the intersection of §;;X R* with F.

In Table I we list the subspaces of S2X R? and F that are
flow invariant for {1). These are depicted schematically in
Fig. 2.

It follows from Table I that 6F=U; ;E;; is flow invariant
and so F is a flow-invariant subspace of $2XR>. Moreover,
just as for the Guckenheimer—Holmes system, once we can
describe the flow on F we can obtain the rest of the flow on
$2XR? by applying symmetry transformations [F is a fun-
damental domain for the action of (Z2)3 on $7X R>]. Hence-
forth in this paper we will restrict attention to the flow of (1)
on F.

FIG. 2. A schematic representation of the invariant subspaces for the system
(1) projected onto the x; coordinates. There can be robust connections be-
tween invariant sets in the P; with connections in fhe itlustrated invariant
subspaces N; -



976 Chaos, Vol. 13, No. 3, 2003

The dynamics of the y variables in the system can be
characterized as follows. On the subspace F,; of F defined
by x1=0, the dynamics are those of the Rossler equation and
so trajectories starting close enough to the origin will typi-
cally be asymptotic to a Rossler attractor A. On the other
hand, when x;=1 (and x,=x3=0), then the dynamics on
P will be asymptotic to.the globally attracting fixed point y*
with eigenvalues —¢, —2¢, —3e. Roughly speaking, for inj-
tial conditions x, between these states, trajectories projected
into R? (y space) switch between these ‘extreme states. For
future reference, we define ' :

A={e} X ACP;,

for j=2,3. The sets A; arc Rossler a_ttractdrs for the flow of
(1) restricted to P, j=23. '

C. Equilibria for the coupled system

The system { 1) has five hypefb'olic equih'bria in the flow-

invariant set P ;U P,U P,. We shall be interested in three of

these equilibria: ' _
@={e.¥), @w=(e;,¥"), and ¢s={(e;,y%).

[The other two equilibria are (e,,y") and (e;,y%).]
The issue of whether or not there exist any other equi-

libria in JF for (1) is trickier and we sketch only some partial

results. Let €;; denote the'edge S,-jﬂO,'i<je{1,2_,3}. If
(%,¥) & dF is a hyperbolic equilibrium with x interior to the
edge ¢;;, then we must have :

.(b0+blsiﬂy1)(C0+¢1 Siﬂj}3)>0. (2)

If we replace p(x) in (1) by the new variable a (0,1}, we
find two equilibrium points u(a), v(a) for y. These can de-
termine equilibrium points:of (1) only if (2) is satisfied. For
example, if |bo|>|b,f, |co|>]cy| and Byey<0 then we can
never satisfy (2) and so in this case there must be exactly five
equilibrium points in oK. ' .

If U is an open isolating neighborhood of the Rossler
attractor ACR? and b(y)c(y)<0, all ye U, then there will
be no equilibria of (1) in e43X UC E,;. This impliés that all
trajectories in interior(E,;) with initial conditions close
enough to A;CP; will be forward asymptotic to A;C P,.
Rather than this strong assumption, we will instead choose
parameter values (see Sec. III) such that the ergodic average

-of b(y}c(y) over A is negative.

Matters are more difficult when we study the dynamics
on interior(E ;) and interior(£y;). One way of proceeding is
to replace the smooth function g with ‘a discontinuous
threshold. function, say

ﬁ‘(x):{)v lxl.l<%!

=L b=t

The advantage of using a fuiiction of this form is that it now
becomes relatively easy to obtain precise analytical estimates
(see Ref. 16). The disadvantage is that it becomes much
. harder to estimate errors in numerical investigations. In any
case, if we assume thatL(l) b(y)c(y)<0, all ye U, where U
is an isolating neighborhood of A, and (2) y* e U, then it.is
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. possible to verify that in this case there are no new equilibria

in JOX U and that every trajectory starting in JOX [/ stays
in JOX U and is forward asymptotic to either y* or one of

- Az, Ajz. This result continues to hold if we approximate &t

by a smooth function equal to iz away from a small neigh-
borhood of {x,{=1/2.

D. Stabilities of the equilibria .forc_:ed by symmetry

Given any ye R?, we define

7(¥)=(bo+bysiny ) eo+ersiny;) =b(ye(y).

Since we are interested in cycles, we consider only the case
in which 7(y")<<0, 5(y*)<0: This guarantees that each of
these equilibria has one expanding and ‘one ‘contracting
eigendirection on $2. Note that though this is not a sufficient-
condition for the existence -of a cycle, it ‘does enable us to
compuie the dimensions of the stable and unstable manifolds
of the equilibria. Furthermore, we restrict to the case b(y")
<0, b(y*)<<0, so that the orientation of a cycle has to be
e, —e;—e3—e;. Since y* is a fixed point of the Rossler
system, and since y¥ is an x-independent equilibrium - of (y
~y"), the subspaces (e;,¥%), (e,,¥%). {e3,5"), and e,
X {y"} are invariant. If y"=y*, all the subspaces (e; ,y") and
e;;x{y"} are invariant, '

If we regard’ % 'as embedded in R* and compute the
Jacobian in R*XR?, we find, for example, that -

botb;siny? 0 0 -0
e 0 0 0 0
(‘h)— 0 0 c0+clsiny§1 0 ’

0 0 0 CE(yY

where E(y) is the Jacobian of the Rossler equation at y. The
row of zeros follows si,_nm'.VS'2 is fiow invariant for (1) and the
{normal or radial) 3 dx; derivative is zero at e,. [For F we
have a —2 eigenvalue since §2 is flow invariant and globally
attracting for (1). The radial direction is disregarded in the
following discussion. of ‘dimensions.] The block. diagonal
structure of the matrix gives the dimensions of stable and
unstable manifolds of the equilibria directly. Hence the ei-
genvalues of the Jacobian of (1) at q, are bg+b, siny?, ¢,
+¢y sin 4, together with three eigenvalues for Rossler equa-
tions at y* [recall that E(y') has one Tnegative eigenvalue

and two eigenvalues with. a positive real part]. Thus, the

points ¢;, j=2,3, have a thrée-dimensional unstable mani-
fold consisting of the two unstable directions leading to A,
and the unstable direction normal to P ;- Evaluating the Jaco-
bian at the point q, similarly gives a diagonal matrix with
entries “by+b sinyl, 0, coteysinyl, —¢ —2¢ -3e
Hence, the point q; has a oné-dimensional unstable mani-
fold: - SR S
In the following we will assume that y¥ is close to vi It

is important to note that if y*=y*, then the unstable mani-

fold of q, cannot be transverse to the stable manifold of q,.
Indeed, if y"=y*, then the unstable manifold of q, (in F) is
e12X{y"} {less the point 4> =(e,,y")] and is thercfore con-
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?, P

Az

- tained in the stable manifold of q,. When y"#y*, the un-
 stable manifold of q, does not intersect the stable manifold
& of q2 . ’
We sum up our computations and observations in the
. next lemma and Fig. 3. The connections between sets are
- verified numerically in the next section.
Lemma 2.3: There is a nonempty open set of parameters
by, by, g,y dy eandyF such that

dim(W*(q,))=1,

'_ and
dim(W*(qp))=dim(W*(g3))=3.
- If ' we assume that

WHA) CWH( A3}, WHA)CTW (qy),

‘and :
L W) CW(@U A, WHQy) CWH(A,UqsU As),
W*(q3) CW(A3U qy).

Then ' :

WS(‘]?.), fOl' yF=yA7
WA,), Vfor yrEY,

and the system has heteroclinic networks as illustrated in
Fig. 3.. o ‘ :
Our system has a total of nine real parameters: by, b,
€g, €1, d, & and yF. The cycles shown in Fig. 3 are only
robust for the case y* #y*; and then they will be present for
' a nonempty open set of parameter values. In the next section
we examine the stability of the cycles.
‘ Referring to the figure, we remark that P, contains the
equilibrium point q; that is attracting within P, . The invari-
ant subspaces P, and P contain the saddle points ¢, j
=23, as well as copies of the Rossler attractor 4. Stabilities
of the saddle points in JF are as indicated in Fig. 3. The
. saddle points q;, j=2,3 have invariant manifolds contained
- within gF and dim(W*(q;)})=3, dim(W*(q;))=2 in both
cases. Since p=0 on E,4, it follows easily from the explicit
equations that W*(q,) intersects W*(q;} transversally along
- the connection enx{y*}. Generically, we expect that
WH(q,) meets W¥(qs;) transversally within all of E,;, in
which: case there exist finitely many connections from g, to
qs.- Although, in principle, there can exist more than one
connection from q to q3, we mark the connection ¢,—qy
as phase resetting.

W*{(q;)C
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FIG. 3. The dynamics on JF for y* =y*, and the more
general case ¥¥ not equal but close to y*. The connec-
tions that are crossed consist of an infinite number of
connections, while those that are not crossed are phase
resetting. For y* =y, the connection in E 12 OCCuEs be-
tween equilibria; otherwise it is from equilibfium to
chaotic saddle.

Ill. ATTRACTORS INVOLVING CYCLING
FOR THE MODEL

Robust homoclinic cycles between invariant sets can
gain or lose stability at a resonance bifurcarion—that is, for
parameter values at which the expanding and contracting ei-
genvalues become equal in magnitude.” A similar mecha-
nism, using Lyapunov exponents in place of eigenvalues, can
cause cycles between chaotic saddles to gain and lose stabil-
ity; see, for example, Refs. 10, 14, The presence in (1) of
invariant subspaces greatly simplifies the calculation of the
normal Lyapunov exponents. The cycle in question is be-
tween three invariant subspaces—one containing an equilib-
rium, and two coantaining chaotic saddles, respectively, q;,
A, and A, . To calculate the normal Lyapunov exponents of
the cycle we multiply together the normal Lyapunov expo-
nents of the constittien_t parts of the cycle. As earlier, the
block diagonal structure of the Jacobian makes it very simple
to calculate these exponents. In particular, the contracting
and expanding normal Lyapunov exponents at q;, which we
call ?\Eq’) and )\gq‘), respectively, are given by R£q1)=b0
+by siny’ and ngl);co+c1 siny}. The normal exponents
at A, and A5 can also be found {see Ref, 10) by averaging
the derivatives. Hence for an ergodic invariant measure sup-
ported on 4, the transverse Lyapunov exponents are

AiAz}(,u,) = JA b(w,v,w)du(u,0,w),
X :

A () = L c(u,v.w)du(u,o,w),
2

and similarly for A;. These can be approximated as in Ref,
10 to give :

AP AT =0 A
={byg—0.05360b,c9+0.116 29¢,).
If we define
h(ql)?\(AZ)}\-(‘Aﬁi)
< [s 4
p=

k3

A_(ql))\(AZJ}\{AS}
e € [

then we expect the cycle to be asymptotically stable for p=>1
(since in this case the normal contraction onto the cycle
dominates over the expansion), and unstable for p<<1. The
resonance of Lyapunov exponents occurs at p=1. We use c,
as a control parameter to govern the stability of the cycle.



978 Chaos, Vol. 13, No. 3, 2003

Fixing by, &, cy, the resonance condition gives a cubic
equation for.cf (the value of ¢, at resonance). In all of the
following numerics we set by=—0.1,-b;=¢,=0.5, so that
the resonance condition becomes

644.604(c E +0.017 56)(c § +0.058 14)2=1,

which gives cg #=0.07285. Note that for these parameters,

we have 7(y)< 0 for ergodic trajectories within A, . We also
fix d=~—0.1, e=1 throughout the following.

It is natural to ask what type of attractors are created
when cycling chaos loses stability {or, equivalently, to de-

scribe the mechanisms involved in the creation of cycling

chaos). These matters have been addressed in Refs. 1214,

* with particular reference to the differerce between phase re-

setting effects. A phase resetting connection occurs When
there is only one trajectory between two invariant sets. In
contrast, for nonrésetting connections, an mﬁmte pumber of
different connecting trajectories may be present.’

These computations assume that we are in the case. yF
#y*. Observe, moreover, that the connection from A, to A3
is always nonresetting. In the other case yi=yF the stability

of the cycle may also depend on eigenvalues at g, and g;.

12—

Previous papers'>~™* have conjectured that phase resetting

connections usually give rise to stable periodic orbits whose

periods accumulate at a resonance, whereas nonphase reset-
ting connections may not. For the cycles discussed in this
paper where some connections may be phase resetting and
others are not, we find trajectories that are representative of
both types of behavior, but whose detailed structure is a com-
plicated combination. o '

A. Some numerical results

Asn accurate simulation of (1) requires some care. As an
attracting cycle approaches the invariant subspaces, some of
the x variables get extremely close to zero, while the y vari-
ables remain O(1). These hugely differing scales result in
the. potential for phenomena that are purely numerical arti-
facts and some problems caused by this are addressed in
more detail in Sec. I B. Figure 4 shows convergence toward
a cycling chaotic attractor for c¢p=0.07, and y"
=(0.01,1,0.01). The same trajectory is shown in Fig. 5 in

logarithmic x coordinates. For these parameter values, the -

saddle point q; has one positive eigenvalue for the Jacobian,
and so the connection from gq;—.A, is phase resetfing. The
successive approaches to the connections are shown in Fig.
6. Plot (a) shows that the connection q;— 4, is phase reset-
ting while the connection A,— A; shown in (b) is nonreset-
ting (see also Fig. 9 later). In Fig. 6 the connection q;—q, is
shown in_the case ¢;=0.07 and y*=y*. Numerical errors in
the specification of yF , however, mean that the connection
from q to q is not exact and, in fact, we see the same effect
as a phase resetting connection (a), just with a long time of
residence near q, (shown by y,=0 in this plot); we expect
great sensitivity to noise in this case.

Each time arcund the cycle the dynaimcs get closer to

the invariant subspaces E;;, and this is reflected in the ap-
proximately geometric increase of the length 7', of the nth
epoch (see, for example, Ref. 13). Also plotted is y;, depict-

Ashwin ef al.

FIG. 4. A trajectoty approaching a cycling chaotic attractor for by=-0.1,
By=0.5, cg=0.07, ¢;=0.35, d=—0.1, e=1, and ¥ =(0.01,1,001); time
series for three components of x and y, are shown. Successive epochs where
the trajectory is close to the saddle equilibrium q; and the chaotic saddles
Ay, Ay are labeled at the top of the diagram. The connection q;— A, is
phase resetting as it follows the one-dimensional unstable manifold for the
equilibrium q . '

ing the change in behavior of the y variables, as these switch
between the fixed point at q; and the chaotic behavior of .4;
for j=2,3. On increasing ¢ by a small amount we lose at—
traction of the cyclc at a resonance,-and for this system with
d<0, we appeart to create an approximately periodic chaotic
attractor-—see the example illustrated in Fig. 7 with cp
-=0.09. |
Examining the geometric rate of increase R as approxi-
mated by R=T,,,/T, can clarify the behavior for param-
eters on either side of the resonance bifurcation. Figure 8
shows this ratio plotted against the number of circumnaviga-
tions of the cycle for two different parameter values on either
side of the resonance. In both plots, the solid line corre-
sponds to ¥"=(0.01,—0.04,0.04) and the dotted line to y°
= y*=(0.007,—0.035,0.035) given to within double preci-
ston accuracy. In plot (a) we have co=0.08>¢} . We ob-
serve that T, /T, tends to unity on a periodic orbit for
y'#y*. In contrast, for y* =y (doited line) we find instead

s
o

60—

Lol | 1 | 1
0 2000 40 6000
1

g

FIG. 5. Attraétin’g cyeling chaos shown for the same trajeétdry as.F'ig 4, but
instead showing y, and the logarithms of the x;. The lengths of the phases
T, increase approximately: geomefrically as the tra]ectory approaches the
cycle.
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15 C T T T I T T r
10— (a)
_ 5F e i o 1 1E ; FIG. 6. A number of orbit segments (of increasing
L oAy 1 A Y ‘ i length} are shown for (a) a phase resetting connection
S V ‘1’ I I 1 1 E‘h [ ‘ H for the attractor of the trajectory in Fig. 4. Each time the
10 © ' ‘ -] trajectory enters |x,|>0.8 we set T to 0 and each time it -
—15'0 . ! (I)O . 2(‘}0 1 3(|]0 . 200 leaves |x1_]>0.8 we r}aa:k by a circle. {b) Tpis shows the
: a nonresetting connection between the chaotic saddles A,
— and A, for.the same cycle. On entering |x5]>0.8 we set
: T to 0 and mark with a circle when we leave |x,}
i‘! >0.8. The segments get longer each time around the
I cycle as the trajectory slows down, finally leaving a
y single signal for T>>330. Observe that there is no ap-
200 parent coherence comparable to (a). {c) This shows a
T ] connection for the case as above, but with ¢4=0.07 and
o y*=¥* to double precision accuracy, with T==0 on en-
tering |x,|>0.8. Observe that after about 200 time
sk units, numerical inaccuracies in specifying y* cause
b _E the com_lection to head toward .A; as a phase resetting
st . i . [ . t . . _ connection.
0 100 2%0 300 400 :

_fluctuations about unity. Here R has a mean of 1.008 with a
standard deviation of £0.0332. In (b), which has ¢,=0.072
‘<, we expect to find (for both values of y*) the ratio R
tending (o a value greater than one, which gives the exponent
of the geometric rate of stowing. Both models ciearly have
T,+1/T, consistently greater than one, but neither has con-
verged after 80 times around the cycle (the phase resetting
system has R=1.024+(0.0258, and the nonresetting version
has R =1.040+0.0327). This is symptomatic of the difficulty
of numerics for cycles—here the rate of convergence is very
slow. We can increase this rate of convergence (and increase
R) simply by decreasing cg, but this also has the effect of
making the dynamics approach E;; much more quickly, and
so fewer circuits around the cycle are possible before the

~calculations lose significance.

B. Aspects of numerical simutation

The numierical simulation of approach of trajectories to a
cycling attractor, and, in particular, the selection of connec-
tion, is difficuit to realize accurately because:

| I

=L =
I

Ey
-5
-10

0 500 1000

FIG. 7. A trajectory approaching an approximately periodic chactic attractor
for the same parameters as Figs. 4 and 3, but with ¢,=0.09; time series for
. three components of x and ¥, are shown. The orbit includes segments of the
': one-dimensional unstable manifold for the equilibrium q; .

(1) There are directions with positive Lyapunov exponents
within the chaotic saddles A; 5.

(2} The connection selected depends critically on the time of
residence near a saddle, and this can become unbounded.

This means that we can only believe the qualitative be-
havior of connection selection for residence times near

‘saddles that are up to length T such that

nexp(AT)<1,

where X is the most positive tangential Lyapunov exponent
for the chaotic saddle and # is the machine accuracy. Thais
means that we have an effective time horizon,

_ log(#)
h *

' beyond which errors will have accumulated to the extent that

different selection behavior may appear. For the numerics in

(a)

IS

=

L=
I
[

0 20 40 60 ' 80
n

FIG. 8. The ratio R of successive times T, plotted against circumnaviga-
tions n. The fixed parameters ate (as before} by=—0.1, b, —0.5, ¢,=0.5,
d=—0.1, e=1, Solid lines represent the phase resetting model with ¥F
=(0.01,—0.04,0.04) and dotied lines the nonresetting version with y* =y*
{to double precision accuracy). The control parameter values are (a) ¢q
=0.08>cf; (b) cu=0.072<cf . -
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FIG. 9. Loss of coherence after a phase reseiting connection during attract-
ing cycling. After approximately 300 time units for the trajectory segments
shown in Fig. 6(a} one loses coherence due to numerical inaccuracy.

Sec. Il A we can estimate \ as approximately 0.0713 for the
Rossler system. Hence, for order one y at double-precision
accuracy, we have 7= 107'% and can expect separation from
a phase resetling connection after a few hundred time units.
Figure 9 illustrates this effect.

Even for cycles that are shorter than this, computauon of -

Lyapunov exponents has to be done very carefully due to the
fact that the local behavior changes greatly as one moves
around the cycle. Therefore, any Lyapunov exponent calcu-
lation will typically show. very large fluctuations and slow
conifergence as the trajectery proceeds around the cycle.

A similar effect in the computation of approaches to in-
variant subspdces is observed in Refs, 14, 18, which can be
overcome by representing the distance from the invariant
subspace using an exponential numerical grid. This approach
is not easily transferable to the sort of problem we consider

here, as the distance from a given trajectory W*(q;) (rather

than from a single point) would need to be stored in an
exponential grid. '

Finally, we rematk that we can change the choice of the
numeérical value 4 in the definition of the function M S0 as to
vary max g'. However, that if max " becomes too large, this
can cause problems for the numerical integration. On the
other hand, if max &' is too small then the coupling can
create new invariant sets near those in which we are inter-
ested, and further complicate the dynamics.

IV. CONNECTION SELECTION FOR NONRESETTING
CYCLES

The attractors we observe in the model {1} are comprised
of a finite number of nodes—saddle equilibria or chaotic
saddles—together with possibly infinitely many connections.

In what follows, we continue to work within the funda-.

mental domain F. Let ¢, denote the flow of (1) restricted to
F. For zeF, XCF, let d(z,X)=inff|z—a| |aX} (and so
if X is compact d(z,X)=0 if and only if z ¢ X). If we define
A=qq, then A,CP; is an aftractor for the dynamics re-
stricted to P;, i=1.2, 3 The .A are connecied via the sets of
connectlons

r
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Ci={x]d(¢p{x),A;41)—0 and
d(p_,(x), A} —~0 as (—oo},
Eqﬁivalentiy, we may write
Ci= WH(AI) M Ws(Aj+ 1), )
where W** are the unstable (resp., stable) sets of A;.
Provided that y"+y*; the cycle for (1) is given by
2 = U A,U Ci .
i=1

'We can define a connection C; as being phase resetting

~ ifiitis a'single trajectory In the case that C; is nonresetting,

the following question arises. :
Selection of connections: Given an asymptotically stable _
robust cycle 2 with basin of attraction B(Z), what is the
likely limit set of B(3) (in the sense of Milnor'®)? In other
words, if we discount sets of zero measure in the basin of
B(X), what subset 2’ of ¥ is unavoidable for the w-limit
sets of points in B(Z)?
- This. problem was raised and partially addressed in Ref
20 for a heteroclinic cycle between equilibria. It was found
that for the two-dimensional connection sets studied that if
E; was the strongly unstable eigenspace at A; then %' was
typically a union of one-dimensional connections (corre-

_sponding to the strong unstable manifolds) if dim(E)=1;

whereas 2" =3, if dim(E;)=2, and the strongly unstable ei-
genvalues are complex.
Even for direct products of rather simple systems, the

" problem of cycle selection seems to be very subtie—see Ref.

21. However, it is possible to obtain results showing an ab-
sence of cycle selection if we assume strong enough results

-on nodal dynamics (the existence.of Markov partitions). We

refer to Ref. 21 for more details.

In the context of connections between chaotic sets, there
is a significant new feature. Connections selected in an at-
tractor determine the approach to the chaotic- saddles and
may, for example, select “atypical” routes of approach that
give different Lyapunov exponents to that expected for any
“natural” measure. ' '

For model (1} in cases where the C; are more-than one
dimensional, we do not understand which connections will
typically be selected, and this may be a feature that is vital in
understanding the dynamics near more general chaotic itin-
erant attractors, Even numerical simulations are not at all
easy to interpret. Possibly, a better approach is to consider a
noise-perturbed system in which case cycle selection will
only occur on a probabilistic level.

V. DISCUSSION

In summary, we have introducéd a new model system in
-which, one can observe a variety of cycling altractors with
and without phase resetting connections. Phase resetting is
not possible in the system discussed in Ref. 10 because it is
a global skew product. This model system is Tocally .well

approximated by a skew product near each of the nodes, but
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is not globally a skew product. Although the system is care-
fully constructed to have the desired behavior, it should be
stressed that the connections will be robust to any perturba-
tion of the system as long as the symmetries are preserved
and the nature of the chaos is not changed too greatly. In this
sense, the values of the parameters and the exact forms of the
functions chosen are relatively unimportant.

We believe that the property of phase resetting deserves
a closer examination in more general chaofic itinerant attrac-
_ tors, as does the guestion of cycle selection, which may be

‘helpful in a better statistical understanding of these attrac-.

{ors.
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