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Abstract

We consider a model of a Hopf bifurcation interacting as a codimension 2 bifurcation with a

saddle-node on a limit cycle, motivated by a low-order model for magnetic activity in a stellar

dynamo. This model consists of coupled interactions between a saddle-node and two Hopf bifur-

cations, where the saddle-node bifurcation is assumed to have global reinjection of trajectories.

The model can produce chaotic behaviour within each of a pair of invariant subspaces, and also

it can show attractors that are stuck-on to both of the invariant subspaces. We investigate the

detailed intermittent dynamics for such an attractor, investigating the effect of breaking the

symmetry between the two Hopf bifurcations, and observing that it can appear via blowout

bifurcations from the invariant subspaces.

We give a simple Markov chain model for the two-state intermittent dynamics that repro-

duces the time spent close to the invariant subspaces and the switching between the different

possible invariant subspaces; this clarifies the observation that the proportion of time spent near

the different subspaces depends on the average residence time and also on the probabilities of

switching between the possible subspaces.
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1 Introduction

Modelling chaotic and intermittent changes, for example in the intensity and polarity of magnetic

fields caused by stellar dynamos, is a significant challenge, whether via minimal phenomenological

models, mean-field models or detailed numerical simulations. Previous work of Tobias et al. [28]

and Knobloch et al. [16] in this direction used the dynamics near an interaction of local bifurca-

tions (saddle-node and Hopf) to suggest low-order phenomenological models for the stellar dynamo

problem. The interaction of saddle-node and Hopf bifurcations is one of the simplest bifurcations

that gives rise to chaotic attractors local to the bifurcation [12] and hence is useful in providing a

model with chaotic behaviour in a truncated bifurcation normal form.

One aim of the present paper is to combine and modify aspects of the models to overcome one of

the main problems in [16, 28], namely the fact that the attractors there are only marginally stable

and small changes to initial conditions or parameters lead to solutions that depart to infinity. We

do this by assuming that the saddle-node bifurcation occurs on a limit cycle [1, 14], and so ensure

that the dynamics will remain in a compact region in phase space; this allows much more robust

simulation of the dynamics than was possible in [16, 28]. We remark that the saddle-node/Hopf

bifurcation with global reinjection has been subject of recent study by [17, 18] and shows very rich

bifurcation and periodic orbit structure. We will be mostly concerned with the case in which there

is a chaotic attractor for two such bifurcations, symmetrically coupled.

The model (4) we derive in Section 2 consists of ordinary differential equations (ODEs) in

six (real) variables. Symmetries force the existence of two invariant subspaces of three dimensions;

these correspond to pure dipole and pure quadrupole magnetic fields in the analogous model of [16].

The intersection of the two subspaces is of one dimension and this is the variable that undergoes

the saddle-node bifurcation. The dynamics within each of the three-dimensional subspaces can be

chaotic, and attractors may include points within (or be ‘stuck on’ to) these subspaces and hence

typical trajectories show intermittency where they remain for arbitrarily long times in arbitrarily

small neighbourhoods of the invariant subspace. This leads to the appearance of on–off and other

types of intermittency; see for example [11, 13, 19, 20, 26]; for reviews, see for example [5, 24].

This leads on to the second aim of the paper; to investigate in detail some examples of intermit-

tent dynamics of some attractors for the model (4) where the dynamics is intermittent to more than

one invariant subspace. Although intermittent dynamics has been found previously in examples of

mean field dynamos, as far as we are aware this is the first example of two-state intermittency in

such a model that involves chaotic saddles within the invariant subspaces. To this end, we look at

numerical simulations typical for the system in Section 3 and consider their intermittent dynamics

in detail.

Previous examples of two-state intermittency include, for example, [3] and [10, 29], where at-

tractors are on–off intermittent to more than one invariant subspace such that the same chaotic

saddle governs approach towards and departure from the invariant subspace. Here we find in–out
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intermittency (see [5]) where different saddles are responsible for approach towards and departure

from the subspace. This in–out intermittency has previously been found in PDE and ODE dynamo

models [9] and in other situations [19] but not as a two-state intermittency.

In particular, the dynamics of the intermittent attractor explores a neighbourhood of the in-

variant subspace that includes the attractor within the invariant subspace, but which also includes

unstable dynamics within the subspace. We briefly investigate the appearance of two-state inter-

mittency via blowout bifurcations from the invariant subspaces (cf. for example [2, 3, 11, 22, 23])

and find evidence that subcritical blowout bifurcations from the invariant subspaces is succeeded

by a crisis that sets up two-state in–out intermittency.

Section 4 models two-state intermittency in the model (4) via the probability density of a Markov

model for the distance from each of the invariant subspaces. We use this to obtain estimates for the

proportion of time spent near each of the invariant subspaces, and fit the parameters in the model

to the numerical examples in previous sections. Finally in Section 5 we discuss some generalities

of the model and its dynamics, and of the probabilistic model.

2 Formulation of the model

The main model we study in this paper is a system of six coupled ODEs with two invariant subspaces

each of three dimensions; these represent pure dipole and pure quadrupole magnetic fields in the

motivating models [16, 28] for this work. The intersection of these invariant subspaces is a one

dimensional ODE corresponding to zero magnetic field.

We aim in this paper to improve the models of [16] and [28] to (a) allow chaotic behaviour

within the symmetric subspaces, (b) make the appearance of two-state intermittent attractors

between these subspaces more robust and (c) avoid problems with sensitivity to parameters and

initial condition that may lead to blowing up in [16], by making the ‘zero magnetic field’ variable

compact. We defer a detailed discussion of the motivation of the model, and the differences from

the models of [16] and [28] to section 2.6.

2.1 Saddle-node/Hopf bifurcation

We consider a codimension 2 bifurcation. The interaction of a saddle-node bifurcation and a Hopf

bifurcation is well understood [12]. This occurs when the Jacobian matrix of a flow has a pure

imaginary pair and a simple zero eigenvalue. This can be written in normal form, truncated to

quadratic order, as

ż = (µ + iω)z + εzv

v̇ = κ − v2 + e1|z|2
(1)

where z ∈ C, v ∈ R, and µ, ω, ε, κ, e1 ∈ R are parameters. A normal form symmetry is present

in the equations, namely z → zeiφ, for any fixed angle φ. (This includes the symmetry z → −z.)

3



���
�

��
� ��

� ��

�	 
�

�

��

� �� ���
���
�

��
�� ���

� � ��
�� ����   !

"#
$ $%

& && &''
( ()

*+,-

../
/

001
1

2 23

4 44 455

678 89
:;

<=

> >?

@A
BCDDE

EFG

PSfrag replacements

µ

κ

κ = µ2/ε2

H1

H2

SN

Figure 1: Bifurcation diagram for the degenerate case (1) of the interaction of a saddle-node

bifurcation (marked SN, unfolding parameter κ) and a Hopf bifurcation (marked H1, unfolding

parameter µ). Observe that there is also a heteroclinic connection on the line marked H2, and this

is degenerate in that an open set in the phase space is foliated with tori for these parameter values.

See the text and [12] for more details.

The parameter e1 is frequently rescaled to e1 = −1 (the negative sign ensures the Hopf bifurcation

is supercritical) [12] and we will take e1 = −1 throughout. A saddle-node bifurcation occurs in

the v-direction as κ passes through 0, giving fixed points, v+ and v−, at (z, v) = (0,±√
κ). The

system is axisymmetric because of the normal form symmetry, and so can be transformed into

cylindrical polars (r, θ, v) = (|z|, arg(z), v) with the angular variable decoupled. A limit cycle L at

(r, v) = (
√

κ − µ2/ε2,−µ/ε) for µ2 ≤ ε2κ is created as the complex variable z undergoes a Hopf

bifurcation on crossing the line κ = µ2/ε2. A heteroclinic connection H from v+ to v− exists at

κ = 0 (µ > 0). This indicates a degenericity in the model, since also on this half-line there is a

secondary Hopf bifurcation, in which the limit cycle bifurcates into a nested family of tori. The

behaviour of the system is summarized in figure 1, for the case ε > 0 (see [12] for details).

This system models a dynamo in which hydrodynamic behaviour (with magnetic field equal

to zero) is represented by the v-axis. The properties of a dynamo require that this axis remain

invariant. Two different convecting states (one hydrodynamically stable but magnetically unstable,
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and one hydrodynamically unstable but magnetically stable) are represented by the two fixed points

on the v-axis. The complex coordinate z represents the magnetic field. When separated into real

and imaginary parts we have a natural correspondence of real part with the toroidal field, and

imaginary part with the poloidal field [28]. The (primary) supercritical Hopf bifurcation represents

the onset of magnetic instability. Also in the ż equation is a term giving the contribution of the

velocity field to the magnetic flux. (This is the only permissible quadratic term, since v2 would

break the invariance of the v-axis, and |z|2 would break the invariance z → −z, needed to allow

a reversal of the field.) Finally, the v equation also contains a term modelling the Lorentz force

(reaction of the magnetic field) on the flow.

There is an open set of initial conditions for which trajectories escape to v = −∞. In particular,

trajectories that begin outside the heteroclinic connection H escape in this way. This can be

prevented by introducing another attracting fixed point on the v-axis, near −∞ [28]. This also

results in the degeneracy of the secondary Hopf being broken.

2.2 Breaking the degeneracy of the secondary Hopf

Adding a cubic term cv3 to the v̇ equation retains the axisymmetry, breaks the secondary Hopf

degeneracy, and introduces a new fixed point at v ≈ 1/c. Thus the system becomes

ż = (µ + iω)z + εzv

v̇ = κ − v2 + cv3 − |z|2.

The constant c is chosen to be negative to make the new fixed point v−− stable in the v-direction.

The two original fixed points remain near v+ and v− for small c. The bifurcation diagram remains

similar to the case above, but now the secondary Hopf bifurcation no longer occurs at the same

parameter values as the existence of H. We also have regions of parameter space created in which

stable two-tori are possible (see [12, 15] for details).

2.3 Breaking the axisymmetry

The axisymmetry of the system, which is a normal form symmetry, allows the angular component

to be decoupled, and so the system is two-dimensional in the remaining variables. Thus no chaotic

dynamics is possible. Breaking the axisymmetry allows more complicated trajectories to occur.

The system as a dynamo model also demands that the axisymmetry is broken, as it implies the

equivalence of the poloidal and toroidal fields, which is not true for the dynamo process. However,

changing the sign of the magnetic field is a symmetry of the dynamo problem. We break this

symmetry in a way that preserves the invariance of the v-axis and retains the symmetry z → −z,

by adding a term proportional to z3. (The symmetry z → −z is erroneously absent from the model
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in [28].)

ż = (µ + iω)z + εzv + dz3

v̇ = κ − v2 + cv3 − |z|2
(2)

Although this results in a system with a degree of non-genericity (the invariance of the v-axis), this

constraint is required for the system to be a viable model of a dynamo — any purely hydrodynamic

states must remain purely hydrodynamic for all time.

2.4 Preventing escape of trajectories to infinity

In order to prevent solutions from escaping to v = −∞ or being attracted to a fixed point near

−∞, we can render the system periodic in v. On the v-axis, instead of a saddle-node bifurcation on

an infinite line, we have a saddle-node bifurcation on a limit cycle. Any trajectories threatening to

escape close to the lower unstable manifold of v− return close to the upper stable manifold of v+:

we call this process the global reinjection. This type of reinjection of solutions has been studied

in many models, and its interaction with a Hopf bifurcation is studied in [17, 18], for models of

optically driven lasers.

We choose to make v periodic on the interval [πL/2, πL/2], where L is a new parameter. In

order to ensure that the v variable and its powers remain continuous on this interval, we observe

that we need trigonometric functions that are (a) periodic on [−πL/2, πL/2], and (b) proportional

to v, v2, and v3 for v close to 0. Set u1 = L sin(v/L), so that for sufficiently small v, u1 ≈ v.

Similarly, set u2 = L
2 sin 2v

L
: for small v, u2 ≈ v as well. The new variable u1 is not periodic on

[πL/2, πL/2], but u2 and u2
1 are, as is u2

1u2. The system can thus be made periodic and continuous

by substituting

v → u2

v2 → u2
1

v3 → u2
1u2

and confining v to the interval [−πL/2, πL/2]. Hence the full system becomes

ż = (µ + iω)z + εzu2 + dz3

v̇ = κ − u2
1 + cu2

1u2 − |z|2
(3)

with u1 = L sin(v/L) and u2 = L
2 sin 2v

L
.

This system can produce, for suitable parameter choices, all the behaviour discussed in [28],

with the added advantage that nearly all trajectories remain in a compact region of phase space.

In particular, the secondary Hopf bifurcation creates quasiperiodic behaviour in the form of an

attracting two-torus. Increasing the linear growth term µ triggers a breaking down of the two-

torus and a transition to chaos. During this transition, parameter values exist at which typical

trajectories are attracted to frequency-locked limit cycle. In fact, parameter values exist at which
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Figure 2: Attractors for the system (3) on increasing µ, with other parameters ω = 10.0, ε = 1.0,

d = 4.9, κ = 1.0, c = −0.1, L = 2.0. In (a) µ = 0.026 we have a stable periodic orbit, with

the trajectory winding twelve times around the v-axis during one full period. In (b) µ = 0.026

again, but different initial conditions give a chaotic attractor. This is a Poincaré section through

Im(z) = 0. Superimposed are circles representing the periodic solution of (a). The equilibria

(indicated by crosses) are located at (Re(z), v) = (0, 0.966), (0,−1.114). In (c) µ = 0.027, and the

chaotic attractor gets closer to the v-axis. Finally in (d), with µ = 0.028, reinjections are common

and the trajectory spends a long time with |z| very small.
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chaotic motion is bistable with periodic attractors. Figure 2(a) shows a periodic attractor for

parameter values µ = 0.026, ω = 10.0, ε = 1.0, d = 4.9, κ = 1.0, c = −0.1, L = 2.0. The

trajectory winds twelve times around the v-axis during one full period. Similar limit cycles appear

at smaller values of µ, apparently for most initial conditions. At these parameter values however,

the basin of attraction for this limit cycle seems very small. Most initial conditions lead to chaotic

motion illustrated in figure 2(b). This is a Poincaré section formed by plotting (Re(z), v) when

the trajectory hits the section Im(z) = 0. The parameter values are as above, but for different

initial conditions. It shows the heteroclinic tangle caused by the unstable manifold of v+ crossing

the stable manifold of v−. (The fixed points v+ and v− are given by crosses on figures 2(b), (c)

and (d).) Superimposed on the chaotic solution are circles plotted where the periodic orbit of

figure 2(a) crosses the Poincaré section. Increasing µ further allows the chaotic attractor to much

smaller values of |z|, close to the v-axis, owing to the heteroclinic connection and the reinjection

mechanism. Figure 2(c) shows an attractor for µ = 0.027. Here very occasional reinjections are

required. When the trajectory reaches v = −πL/2 = −π it is reinjected at v = π. Figure 2(d)

shows an attractor for µ = 0.028. At this parameter the trajectory makes a reinjection roughly as

often as it travels up the v-axis. This is as close as the attractor will get to |z| = 0, as increasing µ

further results in a move away from the v-axis, as reinjections become more common and eventually

inevitable.

2.5 Interaction of saddle-node bifurcation with two Hopf bifurcations

We now introduce a second transverse complex direction and assume there are Hopf bifurcations

in each of the variables z1 and z2. We include an equation representing an antisymmetric velocity

component, w along the lines of [16] giving the 6-dimensional system that we consider for the rest

of this paper.

ż1 = (µ + σ + iω1)z1 + ε1z1u2 + d1z
3
1 + b1|z2|2z1 + (β1 + γ1u

2
1)wz2

ż2 = (µ + iω2)z2 + ε2z2u2 + d2z
3
2 + b2|z1|2z2 + (β2 + γ2u

2
1)wz1

v̇ = κ − u2
1 + cu2

1u2 − (|z1|2 + |z2|2)
ẇ = −τw + e(z1z̄2 + z2z̄1),

(4)

where µ, σ, ω1,2, ε1,2, d1,2, b1,2, γ1,2, κ, c, τ , e ∈ R and β1,2 ∈ C are all parameters. This system of

ODEs has symmetries

S1 : (z1, z2, v, w) → (−z1, z2, v,−w)

S1S2 : (z1, z2, v, w) → (z1,−z2, v,−w)

S2 : (z1, z2, v, w) → (−z1,−z2, v, w)

and in the case that σ = 0 and the parameters are independent of their subscripts, there is an

additional symmetry z1 ↔ z2. In the general case there are three dimensional invariant subspaces
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given by

D = {(z1, 0, v, 0)} and Q = {(0, z2, v, 0)}, (5)

and the intersection of these D ∩Q corresponding to z1 = z2 = w = 0.

We have not attempted to include all possible parameters that will unfold the system to any

particular order; merely we have included parameters such that the observed dynamics appears to

be robust. Note that the presence of the symmetries imply that the global reinjection occurs within

the invariant subspace D ∩Q and so is persistent as a global connection.

2.6 Interpretation and motivation

The physical motivation behind this model comes from stellar dynamo theory. Mean-field models

of stellar dynamos often exhibit oscillatory instabilities to magnetic fields with dipole or quadrupole

symmetry: fields that either change sign or that are left invariant by reflections in the equatorial

plane of the star. In these models, the instabilities to dipole and quadrupole dynamos occur for

similar parameter values and produce similar nonlinear behaviour (apart from symmetry type).

The complex variables z1 and z2 represent dipole and quadrupole magnetic fields, with the real

and imaginary parts representing toroidal and poloidal components of the field, and the near-

equivalence of dipole and quadrupole modes is represented by having |σ| � µ, ω1 ≈ ω2, d1 ≈ d2,

b1 ≈ b2, β1 ≈ β2 and γ1 ≈ γ2. The interaction of non-chaotic dipole and quadrupole dynamos was

considered in [16] using a model similar to (4), but with d1 = d2 = 0.

Real stellar dynamos (and most obviously the Solar dynamo) show behaviour that is not simply

oscillatory, but consists of oscillations that are modulated chaotically over a time-scale many times

longer than the basic period of the oscillation. The chaotic modulation of a dipole dynamo was

considered in [28] using a model similar to (2).

Effectively, we have extended the dipole-quadrupole model of [16] to include the chaotic modu-

lation of [28], by including cubic terms to break axisymmetry. We have also made the model more

robust by making v periodic, preventing trajectories from escaping to infinity.

3 Intermittent attractors for the model

We now turn to an investigation of the properties of the model (4). In particular, we are interested

in how the chaotic modulation of [28] influences the intermittent switching between dipole and

quadrupole activity observed by [16]. In this section we show some numerical results and their

interpretation in terms of forms of intermittency. Dynamics is possible which spends time close to

each of the invariant subspaces D and Q in turn. Throughout this paper we fix some parameters

as follows except where explicitly stated:

ω1 = ω2 = 10.0, ε1 = ε2 = 1, κ = 1, c = −0.1, e = 1.0,

τ = 1.0, L = 2, µ = 0.026, σ = 0.0 and d1 = d2 = 4.9.
(6)
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Figure 3: Time series for symmetric parameters showing switching between invariant subspaces:

µ = 0.026, σ = 0. The black line denotes |z1| and grey |z2|. The time intervals between intermittent

visits close to D and Q are apparently random, with a preference for alternating, but have a well-

defined mean. The symmetry in the parameters mean that on average an equal time is spent near

each invariant subspace.

Recall that L governs the distance between v+ and v− via the reinjection, and hence L = 2 means

that the distance between the fixed points in either direction is comparable. We set the nonlinear

coupling parameters as

β1 = β2 = −0.5 + 0.5i, γ1 = γ2 = 2.5, b1 = b2 = −0.1. (7)

3.1 A numerical example of two-state in–out intermittency

With these symmetric parameters (σ = 0) we can find trajectories which alternate between visiting

regions very close to D and Q, as shown in figure 3. The dynamics is interpreted as follows, using

figure 4 as a schematic guide. As the trajectory nears D (resp. Q), the active variable z1 (resp. z2)

approaches some invariant (periodic) dynamics D in (resp. Qin) within that subspace, whilst the
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Figure 4: A schematic diagram showing the two-state in–out intermittency observed in Figure 3.

The dynamics switches between laminar phases where it remains close to each of the subspaces Q
and D. The approach to the subspace, say Q, is close to the stable manifold of a periodic orbit

Qin that is unstable within Q to a chaotic attractor Qout with a positive transverse Lyapunov

exponent; trajectories then move away from Q while remaining close the the unstable set of Qout.

When reaching a state of approximately the same distance from Q and D, the nonlinear dynamics

can send the trajectory either back towards Q or D in a seemingly random manner.
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quiescent variable z2 (resp. z1) is suppressed. The dynamics in Din (resp. Qin) within D (resp.

Q) is unstable to another (chaotic) invariant set Dout (resp. Qout). When the system is in this

state, the quiescent variable is allowed to grow. When the quiescent variable has grown to a similar

magnitude to the active variable, a nonlinear switching mechanism sends the system back towards

either D or Q in a seemingly random manner but with a preference for a switch between D and

Q. The time intervals between switches appear random, but have a well-defined mean. Indeed,

for these symmetric parameters, on average an equal amount of time is spent near each invariant

subspace. Note that here the dynamics appear to flip almost every time quiescent variables grows

to a comparable magnitude as the active variable, but there are occasions when the variables fail

to switch and an active dipole (say) phase is followed by another (for example at t = 2500).

3.2 Detailed description of the mechanisms of the intermittency

The suppression or growth of the quiescent variable is mainly governed by the magnitude of the

active variable. The larger the time-average of the active variable, the greater the suppression (or

smaller the growth) of the quiescent variable (for this choice of parameters). This is because of

(for instance) the −|z2|2z1 term in the z1 equation in (4). This suppression and growth, and the

sets Din etc., can be seen explicitly in figures 5 and 6. Figure 5 shows a detail from the time series

in figure 3. The five marked segments are displayed in figure 6 as plots of Re(z1) (in black) and

Re(z2) (in grey) against Im(z1) and Im(z2), and |z1| and |z2| against v. First in segment I we see

the system heading into the nonlinear switching region. Here z1 spirals in and z2 spirals out to

meet in a region in which the two variables are of similar magnitude. Since the parameters are

symmetric it is a delicate issue which variable is favoured in the switching mechanism. Segment II

shows the system favouring the dipole z1 variable, and the system leads into the region D in. Note

that the similar magnitude of z1 and z2 causes the damping of the variable v via the −(|z1|2 + |z2|2)
term in the v̇ equation. In segment III we have reached D in, which is a periodic torus around the

v-axis. This torus has a sufficiently large average 〈|z1|〉 to suppress z2 further. Din unstable within

D and in segment IV we see both the torus and v growing, leading to Dout. The set Dout can be

seen in segment V, and is equivalent to the chaotic attractor shown in figure 2(b). This allows the

growth of the quiescent variable because although |z1| reaches larger values, it also spends a long

time much closer to the v-axis, and this results in a smaller average 〈|z1|〉.

3.3 Breaking the z1 ↔ z2 symmetry

We can break the symmetry of the parameters in the linear growth term, for example, by setting

σ 6= 0 to the equations. One might suppose, setting a greater rate of linear growth in z1 leads

to the z1 (dipole) subspace being preferred, as when a switch is possible, when z1 and z2 are of

comparable size, the direction with the greatest eigenvalue should dominate. However, it appears

that the opposite can be true, at least for the parameter values we have investigated.

12



1e-08

1e-06

0.0001

0.01

1

100

2450 2500 2550 2600 2650 2700 2750 2800

P
S
frag

rep
lacem

en
ts

t

|z 1
|,
|z 2

|

I II III IV V

Figure 5: Close-up of the time series in figure 3 detailing the different episodes during a ‘laminar

phase’ of the intermittency as the trajectory approaches the subspace D.
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Figure 6: Projections of phase portraits of different time segments of figure 5 showing the different

episodes of the in–out intermittency for the active variable z1, while the quiescent variable z2 decays

and then grows. In the plots in the left column black lines represent z1 and grey lines represent z2.

In I the trajectory is approaching the nonlinear switching region; II shows the trajectory leading

into Din; in III it is near Din; IV shows it leading towards Dout; finally in V the trajectory is near

Dout.
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Figure 7: Time series as for figure 3, but with µ = 0.026 and σ = 0.001. Here the linear growth

rate is greater in the dipole variable. However, the quadrupole subspace is on average favoured.

Figure 7 shows a time series as in figure 3, but now with µ = 0.026 and σ = 0.001, so the

growth rate for z1 is greater than that for z2. The dynamics for these parameters starting with

initial conditions solely in Q are equivalent to those given in figure 2(b) (or figure 2(a) for a more

specific, and very precise, choice of initial conditions), and for initial conditions solely in D we

have the dynamics in figure 2(c). For initial conditions not in either invariant subspace, a typical

trajectory switches between these behaviours.

Despite the larger linear growth rate in z1, the trajectory favours the activity in z2. There are

many factors involved in taking precedence over the linear growth rate. These include the transverse

Lyapunov exponents at Din, Dout, Qin and Qout; the tangential Lyapunov exponents at D in, Dout,

Qin and Qout; the average suppression from the active variable on the quiescent variable; the length

of the laminar phases between switches; nonlinear effects within the switching mechanism; the

type of attracting dynamics within the invariant subspaces (periodic or chaotic); other invariant or

nearly-stable sets within the invariant subspaces. These are all important, but we will concentrate

in section 4 on two — the length of laminar phases and the switching mechanism. We give results
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to suggest that large bias towards dipole (resp. quadrupole) stems from an increased tendency in

the switching mechanism to follow a dipole (resp. quadrupole) active phase with another.

3.4 Blowout bifurcation to intermittency

Consider a family of dynamical systems smoothly parametrized by some λ ∈ R with a proper

invariant subspace N for all values of λ. If the dynamics in N is independent of λ we say λ is a

normal parameter relative to N . As discussed in [2, 5] for normal parameters one can expect to

locate blowout bifurcations relatively easily; for more general parameters this is not the case. An

examination of the equations (4) reveals that for the invariant subspace Q the following are normal

parameters

σ, ω1, ε1, d1, b1, β1, γ1, τ, e

while for D the following are normal parameters

ω2, ε2, d2, b2, β2, γ2, τ, e

In particular, only τ and e are normal for both subspaces. On varying these from the values (6)

we can stabilise an attractor in the invariant subspace via a blowout bifurcation whilst leaving

the dynamics within the subspace unaffected. The blowout appears to be subcritical and we find

no cases where there are attractors that are for example stuck on to only one invariant subspace.

Figure 8 illustrates the changes in typical dynamics on increasing τ . For τ < 1.5 we find stable

two-state in–out intermittency for typical initial conditions, as in figure 8(a). Increasing τ beyond

1.5 creates an attractor close to z2 = 0 but bounded away from it, as in figures 8(b), (c) and (d)

(here the initial conditions are chosen close to D - similar time series close to Q can be easily found

with different initial conditions.) In figure 8(b) we have τ = 3.0 and the resulting attractor has

regular oscillations near D. In 8(c) we have τ = 7.0 and an aperiodic attractor, and in 8(d) τ = 8.0

gives another oscillatory attractor of very long period. Increasing τ further causes these bounded

attractors to give way to attracting dynamics within D (again for these initial conditions close to

D). Both figures 8(e) and 8(f) have τ = 10.0 and the variable z2 decays to zero. The different

rates of decay is due to the different dynamics within D — in 8(e) the initial conditions lead to the

chaotic attractor of figure 2(b), whereas in 8(f) the initial conditions lead to the periodic attractor

of figure 2(a). As the parameters admit the permutation symmetry z1 ↔ z2 this means that the

intermittency will be the same to both D and Q subspaces.

3.5 Influence of noise

Including additive noise in the model effectively destroys the invariance of the subspaces D and Q.

We introduce the noise by adding to each variable a random variable from a normal (Gaussian)

distribution scaled with some noise level ξ, and with the square root of the previous time step.

The results of this, for ξ = 10−6, ξ = 10−4 and ξ = 10−3 are shown in figure 9. Small amounts of
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Figure 8: Dynamics for the symmetric parameters (6) and (7) on increasing τ . All figures plot |z1|
in black and |z2| in grey. Figure (a) has τ = 1.0, and shows stable two-state intermittent dynamics.

Increasing τ beyond 1.5 creates an attractor close to z2 = 0 but bounded away from it, as in figure

(b), with τ = 3.0. Increasing τ further causes this attractor to move closer to the invariant subspace

D, but remain bounded away from it. Figure (c) has τ = 7.0. In figure (d) we have long period

oscillatory behaviour, with τ = 8.0. In figures (e) and (f) we have τ = 10.0 and D has become

attracting. Different initial conditions in (e) and (f) lead to different dynamics within D. In (e) the

initial conditions lead to the chaotic attractor of figure 2(b), whereas in (f) the initial conditions

lead to the periodic attractor of figure 2(a). The larger average value of |z1| in this periodic orbit

causes a much quicker decay in |z2|.
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Figure 9: The effect of noise on the proportion of time spent near each invariant subspace. The

data are produced by running a typical intermittent trajectory and recording the proportion of

time that |z1| > |z2|, up to t = 2 × 106 for each σ. The noise levels are ξ = 0.0 (empty circles),

ξ = 10−6 (solid hexagons), ξ = 10−4 (squares), ξ = 10−3 (triangles).

noise have, as expected, little effect on the proportion of time spent near each invariant subspace,

but for larger ξ we find the effect on the proportion of time spent near a specific subspace upon

breaking the symmetry of the parameters is even more pronounced. The behaviour of the laminar

phases are not changed greatly by the addition of noise, but within the switching mechanism we

see a greater tendency for the trajectory to be pushed towards D (say) many time in succession,

without visiting Q (see section 4.1 and figure 12).

4 Modelling two-state intermittency as a Markov process

In the section we construct a probabilistic Markov chain model for the two-state intermittency

observed in the the dynamics of the attractor (such as that in figure 3) where trajectories move

between neighbourhoods of pure dipole and pure quadrupole invariant subspaces.
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Figure 10: The Markov chain used to model the two-state in–out intermittency observed in the

saddle-node/Hopf model. The states rn and represent transverse distances ρ|n| from an invariant

subspace near the ‘out’ dynamics while sn represent transverse distances ρ|n| from the ‘in’ dynamics

for some 0 < ρ < 1. The switching mechanism is determined also by a random process with

probabilities γd,q and is subject to an additional delay of Tq,d − 2 steps, so the minimum time spent

in the d, q chain is Td,q.

Examining the dynamics of the intermittency, we note for example from figure 3 that the

approach towards Din, Qin is approximately uniform, as is the departure from Dout,Qout. We

therefore use a chain to model these as shown in figure 10 and assume that the leakage from the

‘in’ chain to the ‘out’ chain happens at a uniform rate εd,q. We also assume that the switching

mechanism is similarly governed by a Markov process parametrized by constants γd,q and that there

is a delay of Td,q steps during the switching mechanism.

The Markov model as shown in figure 10 has states that correspond to the intermittent model

as follows: We model approach to Din by a chain of states {sn}, Qin by a chain of states {s−n},
Dout by a chain of states {rn}, and Qout by a chain of states {r−n}, where we approach the relevant

invariant set in the limit as n → ∞. More precisely, there is a ρ < 1 such that for example pn

gives the probability of being approximately distance ρn from D. If P (a, b) is the probability of a

transition from a to b we assume that within the chains, for n ≥ 1

P (rn+1, rn) = 1, P (r−n−1, r−n) = 1

P (sn+1, rn+1) = εd, P (sn+1, sn+2) = 1 − εd

P (s−n−1, r−n−1) = εq, P (s−n−1, s−n−2) = 1 − εq

for constants εd,q ∈ (0, 1). All other transitions within the chains have zero probability, and all

transitions take one time step, apart from the transition from s1 to s2 which takes Td − 2 steps and

from s−1 to s−2 which takes Tq − 2 steps. The transitions in the switching mechanism between the

chains are assumed to have probabilities

P (r1, s1) = γd, P (r1, s−1) = 1 − γd,

P (r−1, s−1) = γq, P (r−1, s1) = 1 − γq,
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for constants γd,q also in (0, 1). The constants εd,q can be interpreted as the probability per unit

time of leaking from the ‘in’ dynamics to the ‘out’ dynamics near the subspaces D,Q, and this

gives rise to an exponential distribution of the durations that a trajectory is near the invariant

subspaces after the constant delay Td,q. The constants γd,q correspond to the probability that the

dynamics near the switching region send a trajectory that enters from Dout, Qout back into Din, Qin

respectively.

One can easily calculate the invariant probability p of the chain as

p(r1) = p(s1) = A

p(rn) = p(sn) = A(1 − εd)
(n−2), n ≥ 2

p(r−1) = p(s−1) = B

p(r−n) = p(s−n) = B(1 − εq)
(−n+2), n ≥ 2

implying that the residence time near each of the invariant subspaces is exponentially distributed.

We have p(rn) = p(sn) since the trajectories passing through rn are precisely those that have

previously passed through sn. One can find that average residence times Ad,q in the chains:

Ad = Td + 2

∞
∑

n=1

nεd(1 − εd)
(n−1) = Td +

2

εd

and similarly Aq = Tq + 2
εq

. Moreover, the transition between the q and d states at the end of the

laminar phases is governed by γd and γq; observe that

A = p(s1) = (1 − γq)p(r−1) + γdp(r1) = (1 − γq)B + γdA,

1 = A(Td + 2/εd) + B(Tq + 2/εq)

and so

A =
εdεq(γq − 1)

2εd(γd − 1) + 2εq(γq − 1) + εdεq(γdTq + γqTd − Td − Tq)

and there is a similar formula for B. The invariant probability density can be used to find the

probability of a laminar phase in the ‘dipole’ and ‘quadrupole’ chains is

Pd =
1 − γq

2 − γd − γq

, Pq =
1 − γd

2 − γd − γq

(8)

giving the proportion of time spent in the ‘dipole’ and ‘quadrupole’ chains:

Md =
PdAd

PdAd + PqAq

, Mq =
PqAq

PdAd + PqAq

. (9)

Note that, as discussed in Section 3.3, the relative proportion of visits to say the dipole subspace

depend on both the average residence times Ad,q and the probabilities of switching, namely γd,q.

One can verify the validity of the individual components of the Markov model for the original

ODE problem. For example in figure 11 we show the distribution of the lengths of the laminar phases
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σ Td Tq εd εq γd γq

0 130 130 0.04254 0.04254 0.16215 0.16319

−0.003 159 176 0.04354 0.04214 0.45547 0.20377

Table 1: Numerical estimates for the Markov chain parameters. Observe that the greatest effect of

the symmetry breaking term σ = −0.003 is to change the transition probabilities γd,q within the

switching mechanism.

for a long timeseries with (a) corresponding to figure 3 (µ = 0.026, σ = 0) and (b) corresponding to

µ = 0.026, σ = −0.003. Note that the switching mechanism for the ODE takes a certain minimum

time after which the frequency of occurrence drops off exponentially.

To estimate the proportion of time spent in near D and Q we take a threshold (|z1| < 10−2) to

determine when we are close the invariant subspace and find the transition probabilities γq,d. These

can be estimated by classifying the timeseries into D and Q phases and so associate the timeseries

with a string {wi}n
i=1 with wi ∈ {D,Q}. We can then estimate

γd =
#{1 ≤ i < n : wi = wi+1 = D}

#{1 ≤ i ≤ n : wi = D} ,

that is, γd is the frequency of observing D as the next laminar phase give that the previous one was

D. γq can be estimated similarly. Table 1 gives estimates of the parameters as computed from the

timeseries (we take Td,q to the nearest integer for the discrete time Markov chain). Once having

fitted the parameters εd,q, Td,q and γd,q one can use the model to predict for example using (9), the

proportion of time spent near the dipole model. As an example, for σ = 0 we estimate Md from

the parameters and M̃d from a (different) timeseries and find

Md = 0.4997, M̃d = 0.5023

for σ = 0, while

Md = 0.5724, M̃d = 0.5760

for σ = −0.003.

4.1 Two-state in–out intermittency and noise

The details of the dynamics near the invariant subspaces for instance in Figure 3 reveals that the

‘in’ dynamics within D is periodic while the ‘out’ dynamics is chaotic, and so one could construct

a model where the deterministic flow away from the invariant subspace is replaced by a biased

random walk. This will not substantially increase the accuracy for this case, but in cases where

the variance of the ‘out’ chain propagation is much larger it would be necessary; this would give a

more sophisticated model than here or in [4]. Similarly, one could make the Markov model a lot
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Figure 11: Distributions of the lengths of laminar phase T (near either D or Q) subspaces for (a)

the symmetric case shown in Figure 3 (µ = 0.026, σ = 0) and (b) an asymmetric case µ = 0.026,

σ = −0.003. Observe that there is a good fit to a constant delay and an exponential probability

distribution of phase length T in both cases where for (a) we have P ∼ e−0.02127T for approaches

to either, and (b) we have P ∼ e−0.02177T for approaches to D and P ∼ e−0.02107T for approaches

to Q. Note that the lengths of laminar phases change very little.
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Figure 12: Time series showing intermittency in the presence of noise. The parameter values are

as in figure 3, but with σ = −0.003 and ξ = 10−4. The dipole subspace is greatly preferred because

the transition probabilities in the switching mechanism now favour a dipole → dipole switch.

more sophisticated by including a continuum of states and by including noise effects along the lines

of [4, 8, 25].

In fact, the introduction of noise to the system accentuates the findings of the above — that the

greatest effect of the symmetry breaking term σ is to change the transition probabilities γd,q within

the switching mechanism. Figure 12 shows a time series showing the intermittency for σ = −0.003

and ξ = 10−4, with the other parameters as before. Here it is clear that the dipole subspace is

much favoured, and this bias is far more pronounced than with ξ = 0 (recall that for σ = −0.003,

ξ = 0 we had M̃d = 0.5760 — here M̃d = 0.8976). It is clear that the tendency within the switching

mechanism is now to follow a dipole active phase with another dipole phase, and in fact we can

estimate the transition probabilities as before as γd = 0.93467 and γq = 0.35801.
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5 Discussion and conclusions

In summary, we have examined a system that displays intermittent switching between chaotic

dynamics in two invariant subspaces. In detail, the intermittency mechanism involves four states,

two in each of the invariant subspaces. Two of these states (D in and Qin) are transversely stable but

unstable within the invariant subspaces. The other two ( Dout and Qout) are transversely unstable

but attractors within the invariant subspaces. Once the system moves away from the invariant

subspaces, there is nonlinear switching and reinjection towards D in and Qin. We have developed

a Markov model of this intermittency mechanism that is capable of capturing the exponential

distribution of times spent near each invariant subspace. This switching mechanism is a new

feature of two-state intermittency that is not present in previous examples of in–out intermittency.

Our work also sheds light on the switching behaviour observed in other dynamo models, for example

the mean-field dynamo model [16] and the model of geodynamo reversals in [21]. In the latter case

the switching mechanism seems to be be comparable to the mechanism in the present paper.

Although we have derived the model from perturbations near the codimension-two interaction of

a saddle-node bifurcation with two symmetry-related Hopf bifurcations, and we have not included

all possible interaction terms even up to cubic order, we presume (but cannot prove) that the

dynamics we have described is robust or at least prevalent. We have used the degeneracy as an

organizing centre to give dynamics that has two-state intermittency. The model we have considered

is also physically motivated by consideration of hydrodynamic and magnetic instabilities — see for

example [16]. In addition, the Hopf bifurcations to dipolar and quadrupolar dynamo activity

often occur for similar (or even the same) parameter values in mean-field dynamo models, so it is

reasonable to regard a notional symmetry between these Hopf bifurcations as being only weakly

broken.

One of the most surprising results of this investigation has been the recognition that linear

growth rates (or average residence times) near the invariant subspaces D and Q do not determine

the average proportion of time spent close to the two subspaces. There are are many other factors

that determine which of the two subspaces is preferred. The most important, at least for the Markov

model, is the “switching mechanism” operating in the fully nonlinear regime that determines a

preference of one phase to the other, once the equivalence of the two invariant subspaces is broken.

We observe that switching can be greatly affected by the addition of noise.

As discussed in [6] and [7], numerical simulations of cycling chaos need to be carried out with

great care. The simulations presented in this paper were performed to double precision accuracy

using the Bulirsch–Stoer adaptive step integrator [27] with a relative tolerance of 10−8 at each time

step. Rounding errors may force the dynamics into invariant subspaces, and care was taken to

interpret correctly when this occurred. The dynamics of (4) was also simulated with the inclusion

of small amounts of additive isotropic noise, in which case the effects of rounding into an invariant

subspace could be easily avoided.
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