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Abstract

We examine a coupled map lattice (CML) consisting of an infinite chain of logistic maps
coupled in one direction by inhibitory coupling. We find that for sufficiently strong coupling
strength there are dynamical states with ‘decelerating defects’, where defects between stable
patterns (with chaotic temporal evolution and average spatial period two) slow down but never
stop. These defects annihilate each other when they meet. We show for certain states that this
leads to a lack of convergence (non-ergodicity) of averages taken from observables in the system
and conjecture that this is typical for these states.

1 Introduction

Coupled map lattices (CMLs) are simple dynamical systems consisting of arrays of maps that are
coupled together in some way. They have been proposed since the mid-1980s as a paradigm in which
one can understand many properties of high-dimensional spatially extended nonlinear systems while
keeping within a framework that allows for very easy simulation and analysis, and enables progress
in understanding the phenomenology of spatially extended systems. They have been particularly
successful in illuminating the transition from turbulent isotropic space-time chaos to chaos that
has spatial structure [11, 14, 15], in understanding the persistence of space-time chaos under the
influence of weak coupling [3, 6, 10], and in examining critical coupling effects [12].

Many studies of coupled map lattices have concentrated on asymptotic behaviour that is char-
acterized by natural (SRB) ergodic invariant measures. However, in the dynamics of systems with
invariant subspaces it has been recognised for several years that attractors of heteroclinic type can
appear robustly, see for example [9] for a review of robust heteroclinics in symmetric systems, [7]
for cycles in flows on simplices. These cycles may also be robust between chaotic invariant sets
[1, 4]. The dynamics of such maps F' : M — M possessing such cycles are non-ergodic in the sense
that averages of a smooth observable ¢ : M — R
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do not converge as n — oo but continue to oscillate progressively at a slower rate ad infinitum for
an open set of initial conditions; see [5, 13]. A consequence of this lack of convergence is that the
trajectory is not typical for any ergodic invariant measure of the system and so, loosely speaking,
we term the trajectory as being non-ergodic.

This means that averaged observed quantities such as Lyapunov exponents are not well defined
but will similarly oscillate. This paper examines a CML that shows non-ergodic behaviour in a
robust way. Although the results we prove in detail are for a specific system, we discuss in Section 4
some ingredients for this behaviour to remain typical.

Consider an infinite chain of coupled maps

Xk = f(X)e X 1)
where f(z) = rz(1 — x) is the logistic map and X = {XF} is the state of the system indexed at
spatial location k € Z and time n € N. We have two parameters; r determining the local behaviour
of the maps, and v determining the coupling strength. We are only interested in the case that
r > 2, meaning that there can be non-trivial dynamics of (1).

The CML (1) has coupling in one direction only (from left to right) allowing information to
flow only one way along the chain. However as we will discuss in Section 4, the assumption of
one-way (or local) coupling is not necessary for the behaviour we discuss. Although the model is
not intended as a model of any specific spatially extended system, it represents a chain of coupled
chaotic units that have a parametric inhibiting effect on their neighbours and so is analogous to a
neural circuit where neighbouring connections are inhibitory.

In Section 2 we examine the spatio-temporal dynamics of the CML (1). For small y the dynamics
of the CML are qualitatively close to that for v = 0, namely spatio-temporal chaos for large enough
r. For this regime we observe well-defined ergodic behaviour. There is a v, > 0 such that for
v > 7. > 0 we see the appearance of stable patterns of spatially periodic stripes where for fixed
k € Z, X2 are chaotic and X2**! tend to zero (cf [15]). For an infinite chain, the stable patterns
will form locally with defects between them. We hence numerically observe and conjecture the
existence of a state of decelerating defects for typical initial conditions and any vy > «y.. The defects
propagate in the direction of coupling and slow down, but never stop unless they are pinned by one
of the sites being exactly zero. The defects annihilate on collision leading to a gradual reduction
in the density of defects in the system.

In Section 3 we attempt a rigorous description of the periodic patterns and the decelerating
defect state. We obtain estimates for how these defects move along the chain; they move such that
the times between propagation of the defect by one site increase geometrically. For the special
case where the initial condition is spatially periodic with period-3 we prove that the behaviour
is non-ergodic for large enough v and conjecture that this is true for a full measure set of initial
conditions on the infinite lattice and v > 7.

Finally, Section 4 discusses several aspects including the genericity of the model and its results.

Notation We write X = {X*} € §:=[0,1]? as the initial vector and assume that 2 < r < 4 and
0 < 7 are chosen so that the forward orbit is well-defined within S, i.e. we write (1) as a map

d:5— S

Note that the maximum that any site can reach under iteration by (1) is f(1/2) = r/4 and so we
define }
S={XecS : Xk<r/aforallkec Z}



and note that ®(S) C S. Hence by ignoring the first iterate we can assume that X € S. We define
as usual the £*-metric on S by || X||cc = supgeyz |X*| for all n,k and note that one can define a
probability measure g on S given by product of Lebesgue measure in each factor. The system
possesses an uncountably infinite number of invariant subspaces; given any subset I C Z the set of
{X : X* =0 if k € I} is an invariant subspace. In particular if we set any spatial site to zero it
will remain zero thereafter.

2 Stable patterns

In this paper we consider values of r such that the logistic map f has chaotic dynamics and examine
the stable dynamics of the CML (1).

2.1 Turbulent dynamics

The CML (1) shows a variety of stable dynamics; the simplest dynamics is for values of v close
to zero, where an uncoupled attractor is apparently only deformed. If there is a natural measure
for f that is weak-mixing, note that this means that the infinite product measure is ergodic for
the uncoupled system and hence there is a natural measure in this case. For example, Figure 1(a)
illustrates the turbulent state for » = 3.8 and v = 0 and apparent decay of correlations in both
space and time. We find that this behaviour is qualitatively preserved for small values of -y, though
not for any interval. There are circumstances where one can prove persistence of the fully turbulent
state (for example [3, 6, 8]) but these rely on having coupled particular expanding maps. For our
system the fragility of chaotic attractors of the logistic map [2] means that we expect a positive
measure (but not open) set of y that have essentially the same dynamics as v = 0.

2.2 Period-2 spatial dynamics

For larger values of v we obtain attractors that are chaotic patterns such that for any continuous
observable ¢ : [0,1] — R the average at each site

= Jm Z HX

has period two in k; in such a case we say the state has spatial period two on average.

In between this and the turbulent dynamics there are a number of transitions that we have not
examined in detail but they show right propagating fluctuations within the patterns, for example
Figure 1(b). The period-2 patterns are stable when sites are suppressed on average by their neigh-
bours. We refer to the suppressed sites where Xﬁ — 0 as quiescent. We can estimate that these
are stable when the geometric average of the growth rate re™"» of a quiescent state near 0 is less
than unity, i.e. when Inr — ~(z,) < 0, giving that this state is stable when

Inr
— 2
Y > Ye 1 (2)

where Ay, = (z,) is the average of x for the natural measure of the logistic map f. For r = 3.8 we
numerically estimate this as v, = 2.079.



2.3 Decelerating defects

Consider a spatially periodic state with period N for v > .. Clearly if N is odd, the pattern with
average spatial period 2 cannot occur and there must be at least one defect; numerical experiments
suggest that almost all initial conditions lead to a state where there is exactly one defect and an
average spatial period 2 pattern of length N — 1; (see Section 4 for a further discussion). We
estimate how long it takes for a defect to move by seeing how close a quiescent state comes to
zero. In the time it takes for a defect to move forwards by one step, a quiescent state will decay at
average rate re 74> for N — 2 time periods and then grow at a rate r. In the case that

(re7A=)N=2. <1 3)

then the smallest quiescent state will be even smaller after the defect has moved, meaning that the
defect will take longer to move next time. The inequality (3) implies that slowing down will occur

for
(N—-1)lnr

(N - 2)Aoo
For N = 3 this confirms the case examined in [1] while for N — oo this converges to 7.. Hence

for any v > v, in the infinite system we expect to observe decelerating defects when the domains
separating them become large enough.

3 Rigorous characterisation of the dynamics

We now prove the existence and nature of some of the dynamics discussed above. The following
results are not optimal with regard to estimates for 7 in particular, but serve to illustrate the
dynamics for large +.

3.1 Stability of the period 2 spatial dynamics

The space-periodic dynamics can be characterized as the state where the individual cells alternate
between being active (with average value positive) or quiescent. We define

P,,={X : X% <y and X% > 1}

and
Py, ={X : X*=0and X***' > v} = (| Py,
u>0

We assume that X € S.

Theorem 1. For any 2 < r < 4 and small enough v, if v > IHTT then Py, attracts all nearby
trajectories in the £>° norm.

Note that the estimate thT is considerably greater than 7, defined in (2); this is because we
prove a stronger form of stability (asymptotic stability). Figure 1(c) and (d) illustrate these period
two stripes appearing within more complex patterns; they only become unstable through invasion
by other patterns. Again, if  is such that z — rz(1 — z) has a natural invariant measure g that
is weakly mixing then we can infer that there is a natural invariant measure for the system in
Theorem 1. This is the product of i at all active sites and a delta function at 0 at all quiescent
sites. We now prove Theorem 1 via the following lemmas. Assume that X € S.
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Lemma 1. Suppose that Xk < p, X' > v, 4y > v = =- and let p = re”". Then we have
XF  <pp (and p<1asy>Inr/v)

n

Proof. Observe that X¥ , = f(Xﬁ)e_”’Xg_1 < rX,’fe_”’Xs_l <re "XE < pp. O

Lemma 2. If XF <y and Xk > v where p < 1 = —In (;ﬁ) /v and v < vy = f2(1/2) =
%(1 —r/4), then we have Xﬁﬂ > v.

Proof. Observe that for the logistic map f(z) with parameter r, the maximum value of an iterate
of the map is given by f(1/2) = r/4, and that the map sends the interval [v, f(1/2)] into itself for

any v < vy (recall that X € §). Including the effect of the coupling, this means that

2

XEHL = f(xEH) e xR S %(1 —r/4)e XN
2

> Tz(l —r/d)e” ™ > >

Proof. (of Theorem 1.) For 2 < r < 4, choose v = %%(1 — r/4) and assume that v > 7 =
(Inr)/v and p < min(p, 1“72) (note that % < €™ < 1 and so v < vy where yu; and vy are as in
Lemma —reflemtwo). Then the set P, , is forward invariant in that

maw)::{mX):X%<ummX%“>u}

C {X . X% < py and X2 > 1/}
(by lemmas 1 and 2)

= P,

where p = re™7”. Since p < 1, we have ®~(P,,) C P,x,, = Py, as N = oc. O

3.2 Propagation of a single decelerating defect

We now turn our attention to defects that appear at the boundaries of domains of period two spatial
patterns discussed in the previous section, as illustrated in Figure 1(c), (d). A defect creates a shift
of one cell in the phase of the spatial periodicity. We say a pattern X has a single defect at location
m if X € Dy, ,,me where

Xm+2l<:—|—1 > v,

Xm—2k—2 > v,
Dyymo=1<X : X™2+2 <y forallk >0

Xm—Qk—l < L

Xm =0

A schematic illustration of such a defect is shown in Figure 2. More generally, we say X has a
defect at location m for threshold y > 0 if X™ ! < y and X™*? < . Note that the threshold u
needs to be chosen small enough for this to be meaningful (see the statements of the theorems that
follow).

For large enough +, this pattern is preserved while § remains small but travels two spatial units
to the right when it becomes active. Recall from Theorem 1 that the spatially 2-periodic state is
stable if v > IHT’"



Theorem 2. Suppose that 2 < r < 4 and let v = %%(1 — %), pick vy > QII/ﬂ and p < min(ln%,ul)

(with py as in Lemma 2). Suppose that X_1 € Dy m-—24_, and Xo = ®(X_1) € Dy ym.6,- Then
there are M, N with 0 < M < N such that such that for n < M and some 6,

Qn(XO) € Duﬂu7m70n
while for some some Oy.
®N(X) € Dpyvim+2,0y-

Moreover, one can estimate
A—Blnfy< N < A —B'lnby

and

xCOP < oy < C'0P
where Xg)nﬂ = x, for constants A, B, C, C', D and D' that depend only on r, v, u and v, such
that D > D' > 1. The value of D' can be made arbitrarily large by increasing ~y.

Note that D, , ¢ is open in £ if we allow 6 to lie in an open interval; hence the theorem
holds for an open set of defects. We say the state X switches at the first N such that ¢~ (X) has
a defect that is translated (cf [1]) and the theorem above provides an estimate of the time it takes
between switches. In the following we write 6 = 6.

Lemma 3. Suppose that the parameters are as in Theorem 2 and X € D, m 9. Then
Qn (X) E D.U’Vamﬁn

n(lnr)—In~8

1
forn < =y and some 6,.

Proof. This is because after n iterates we have
0, < (re ¥7)"0
until 6,, > h‘TT at which point the active site at m + 1 will start to decay. O

To estimate bounds for N we observe that the state containing the defect, X™ must first grow
in i iterates from 6 to X™ > Inr /v, at which value it begins to have a suppressing effect on X™+!

variable. Then the state at X™*! must decay for j iterates until X Zf_}'l < u and hence we have

"I (X) € Dy m+2,0
for some @' = Oy and N = i + j. Observe that for any state X* < %, the next iterate is bounded
by %Xﬁe“’max{Xﬁ_l} <Xk < rX,’fe‘Vmin{X’ri_l}. We now obtain upper and lower estimates
imin <% <imax and  Jmin < J < Jmax-
Lemma 4. For

. In(12)_Ing
Pmin = —r
min Inr )

. In(1n2)_Ing
Z — 77
max In(r/2)—yu

we have X" < IHTT for i < imin and X" > h‘TT for some © > imax.



Proof. Whilst X™ is growing it is forced by X~! which is bounded by 0 < X~ < y for all
n < 4. Hence we have bounds

ng‘e_w < X, <rX;!
so that
O(re”™/2)' < XM <10
and hence we obtain the expressions for i, and 4y, - O

Lemma 5. For
s Inv—Inp
Jmin = ~yr/4—In(r/2)
. _ | In(r/4)-Inpu
Jmax = | T, "r

we have Xﬁjl > p for j < Jmin and Xﬁ}‘l < p for some j > jmax.

Proof. Whilst X™*! ig decaying it is forced by X™ which is bounded by v < X" < r/4 for all
i <1< i+ j. Also, the active state X™*! is bounded by v < le+1 < r/4. Hence we have bounds

T _ _
EleHe < X{Tl'l <7"le+le v

for [ in this range, and so

v(re 14 )2)7 < Xﬂ_}'-'l < r(re” ") /4.

Hence we get the estimate for jnin, and jpax by examining the first j such that Xﬁ_}'-’l < W O

Proof. (of Theorem 2.) Note that the first part is proven by Lemma 3. Combining the estimates
from Lemmas 4 and 5 means that we can obtain

z.rnin + jmin S N g 'L.max + jmam

and so ) |
ln(%)—ln9+ Inv—Ing < ln(%)—lne In(r/4) —Inp
Inr yr/4 — In(r/2) In(r/2) — yu yv —Inr
which gives the required estimate for V. As before, let p = re™7” and note that p < 1. For | < imin,
le+2 < u, and le+1 > v, and so we can apply lemma 1 to give

Tmin

In(Inr/7v) _ .
and hence Oy < C'07’, where C' = p wr pand D' = =122 — 2% _ 1  Since we have assumed

Inr Inr
that v > 21% this implies that D’ > 1. Similarly, we can obtain a lower bound for 8y by observing
that the maximum forcing X" can receive is bounded by leH < r/4 for | < ipax, and so,
writing XS'H'Q = x we have

X(re_7r/4)ima" < Oy

Inr—~r/4
and hence Oy > xCOP, where C = (h‘TT)(lﬂ(T/ﬁ—W). Observe that
D— yr/4 —lnr S yr/4 —lnr S i _p
In(r/2) — yu Inr Inr

and so we can choose D' arbitrarily large by appropriately choice of large ~. O



3.3 Annihilation of defects.

Given an initial state with two defects at say 0 and K > 0, there are a number of possible behaviours
depending on the path of each defect. If the paths cross at some point in the future then the two
defects annihilate each other to create a stable spatial period-2 domain.

We make the following conjecture for the behaviour of the system for large v based on numerical
experiments. Suppose that we can divide a spatial pattern of length / into K domains of stable
spatial period 2 patterns and defects between them, then we say the pattern has defect density
K/l. Similarly one can define such a quantity for an infinite domain assuming that defects are
distributed in a regular fashion.

Conjecture 1. Given 2 < r < 4 and 7 sufficiently large there is a full measure set of initial
conditions X € S such that ®™(X) is a state with defect density p(n), and

0<p(n)—0
as the time n — 00.

There are a number of obstacles to proving such a result. Firstly, during the initial transient
there will be states that are not easily classified into being defects. Secondly, one needs to have a
good understanding of the time it takes for an annihilation to occur to overcome problems of more
than two defects meeting at some point in space-time.

3.4 Failure of ergodicity

For large values of v we expect the convergence of long-time averages to fail under some fairly
weak assumptions on the initial condition. We prove this explicitly for the case of a single defect
propagating in a spatial period-3 lattice, and then explain why we believe the extension to arbitrary
numbers of defects in other periodic lattices should follow. For infinite lattices we expect some
(carefully chosen) initial conditions will violate this result even for large 7. Let

§'={XeS : XF3=Xx* forallkcZ}

be the set of initial conditions that are periodic with spatial period 3, and note that ®(S’) C §'.
Most initial conditions in S’ will give a defect at every third site, but for example initial states with
X* all equal will not.

Theorem 3. Suppose that 2 < r < 4, v is sufficiently large, X € S’ is any initial condition that
has X* # 0 for all k and ®"(X) has a defect for some n. Then the ergodic sum

1 n—1
lim ~ " X))
=0

n—-oon

does not converge.

The system on S’ is formally equivalent to the ‘free-running’ dynamics of the system in [1] and
so X0 will alternate between epochs of length T}, where every third epoch it is active and in between
it is quiescent.



Lemma 6. Suppose that 0 < v < X0 < 1 for the duration of every third epoch, 0 < X9 < p for
the other two and the duration of the epochs satisfies

Tri1
A< 2L A
T,

where y can be chosen arbitrarily small and X arbitrarily large. Then

lim sup — ZX 7é11m1nf ZXO

n—00

Proof. Observe that bounds for the extrema of the sum will occur when the first n — 1 epochs are
as long as possible and the nth epoch is as short as possible. Hence taking T; = A*~! for i < n,
T, = AA""! and defining

n—1
Sn=2_T
i=0
one can compute that
T A
— 1l =1-
Sn AA—1)+A ¢

for n — oo, where € ~ % Using this and the assumptions on the values of X2 during each epoch

we get
Sn—1

1 0
llnIgloIéf— Z X; <ve+(1-e)p
and
Sp—1
lim su XO (1—¢€)v
Mops Z

where € — 0 as A — o0o. Hence, by choosing u small enough we can ensure that

n—1
limsu X0 > liminf — XO
nﬁoop n ]2:0 n—oo 1N Z

O

Proof. (of Theorem 3) By the assumption that no X7 = 0 we know that a defect will arrive and
pass through X© infinitely often. Suppose that the nth defect remains at X° for a time 7;,. By
Theorem 2 we can associate each time a defect passes with 8, such that

COP < 0,1 < C'OY

for some D > D' > 1, and we seek an expression for T}, 11/T, (the assumption that the spatial
period is three means that the new location of the defect has just decayed from being active, and
so we can take x = p and define C' = uC). Taking logarithms and dropping the tilde, we obtain

InC+ DIné, < 0,1 <InC'+ D'Inéb,

and, also from Theorem 2,
A—Blnb, <T, <A —B'Iné,.



Combining these two inequalities we produce:

A— B]n0n+1 < Tn_|_1 < A, - BI 1n0n+1
A—B(InC'+D'Inb,) < Thi1 <A —B'(InC+ DInb,)
E—-BD'In6, < T,.1<E —B'Dlng,
BD' B'D
E‘i‘?(Tn_AI) < Top1 <E'+ 5 (T, — A)
BD' B'D
F + 5 T, < Tpi1 <F'+ 5 T,
BD' T, B'D
A= o < ;Zl < 5 = A for sufficiently large n

where B =1/Inr and B’ = 1/(In(r/2) — yu), for suitable constants E and F depending only on 7,
v, «v and p. By noting that given r we can choose v > 0 and then we can attain an arbitrarily large
value of A > 0 by choice of v such that, on choosing u sufficiently small we have non-ergodicity of
X9 on applying Lemma 6. O

4 Discussion

We briefly discuss some aspects of this work including some exceptional initial conditions and the
genericity of the behaviour. Up to now we have concentrated on the case where r is large enough
that the logistic map is chaotic; but the above applies equally for periodic cases as long as r > 2,
subject to some obvious simplifications.

By choosing initial states that are spatially periodic with period N we have observed asymptotic
states that have a finite density of defects even in the case as time goes to infinity for N odd. If N = 3
this system is identical to the ‘free-running’ system investigated in [1] which has robust attracting
cycling chaos. In this case our numerical studies suggest that for typical initial conditions with
spatial period N, the defect density p(n) — 0 as n — oo for N even and p(n) — 1/N for N odd.
Clearly there are initial conditions (e.g. homogeneous) that give a higher asymptotic density of
defects or converge to states that are not classifiable as having defects but we believe that these
states are exceptional.

Similar behaviour is expected for generalizations of (1) as long as the local map f(z) has a
fixed point whose location is unaffected by the coupling (although its stability can be affected).
This preserves the dynamically invariant subspaces that are important for the robust appearance
of heteroclinic attractors and non-ergodic behaviour.

The one-way coupling is not necessary; we obtain very similar behaviour e.g. for

k—1 k+1
Thiy = f(ah)e 7 T

as long as 0 < 7/ < 7. Similarly, one could choose coupling that is not nearest neighbour. The
translation invariance of the CML is also not necessary; it should make no difference if there are
anisotropies in the chain, for example if f(z) is replaced by fx(z) = rgz(l — z) with r chosen
randomly within a certain range, or even choosing different maps fi at each site.
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r=3.8 gamma=0

r=3.8, gamma=2.0

Figure 1:

Space-time plots showing the behaviour of 1 where the length of each horizontal line indicates the
value of XF at time n and spatial location k. In all cases a random i.i.d initial condition was
chosen at n = 0 and spatially periodic boundary conditions on a domain of size 59 are chosen, for
r = 3.8. (a) v = 0 showing the evolution of the uncoupled system. For (b) v =2 and XF (plotted
every 11 timesteps) settles into a state where a single defect propagates at a finite velocity. Moving
to the regime shown in (c) at v = 2.5 we can see the formation of domains of pattern with spatial
period-2 separated by right moving decelerating defects. Finally, in case (d) v = 4.5 (plotted every
2 timesteps) we can see fast approach to a set of domains separated by decelerating right-moving
defects. These annihilate, for example, at the location indicated. This behaviour is typical for larger
values of y. Note that in cases (c,d) the active sites are oscillating chaotically and independently
of each other, and that after a long enough period all defects annihilate except for one.
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r=3.8, gamma=2.5

r=3.8, gamma=4.5

Annihilation of defects

Figure 1 continued.

time‘ m—2 m—-1 m m+1 m+2

N|— % — * — * — On *x — * —

N—-1|— % — * — On—1 X — * — % —

0] — x — * — 0y * — x — ok —

-1|—- *x — 6_4 X - * — * — ok —

Figure 2:

The bottom line shows the spatial pattern for a defect at location m at time n that has just moved.
This propagates forward to arrive at location m+ 2 after a further N iterates. Here, ‘*’ denotes an

[

active site with value > v, a quiescent site with value < p and X denotes a site that has value
> u. The value 6; increases for the defect to move along.
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