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Infinities of stable periodic orbits in systems of coupled oscillators
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We consider the dynamical behavior of coupled oscillators with robust heteroclinic cycles between saddles
that may be periodic or chaotic. We differentiate attracting cycles into types that we callphase resettingand
free runningdepending on whether the cycle approaches a given saddle along one or many trajectories. At loss
of stability of attracting cycling, we show in a phase-resetting example the existence of an infinite family of
stable periodic orbits that accumulate on the cycling, whereas for a free-running example loss of stability of the
cycling gives rise to a single quasiperiodic or chaotic attractor.
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Physical systems where an invariant subspace, or se
subspaces, are preserved because of symmetry or other
straint give rise to a number of new types of robust behav
~i.e., behavior that is robust to perturbations that preserve
structure! that would be highly degenerate for systems wi
out the symmetry or constraint. There is an extensive lite
ture discussing theory and examples of this for a variety
physical problems@1#.

Structurally stable heteroclinic cycles between equilib
are well documented in ordinary differential equations w
symmetries. Examples have been found in many applicat
such as rotating convection and population dynamics@2#,
where the system repeatedly spends long periods of
near one equilibrium state, then rapidly switches to anot
Heteroclinic cycles between chaotic saddles are also ro
in systems with symmetry; these have been found in coup
oscillators@3# and models of planar magnetoconvection@4#,
the latter example being a cycle alternating between equ
ria and chaotic saddles. This kind of behavior arises in m
symmetric physical systems of sufficient complexity.
coupled oscillator examples, initially one oscillator is acti
~it could be periodic or chaotic! while the others are sup
pressed; later, one of these becomes active and quenche
original active oscillator, and so on. This phenomenon is
counterpart of synchronization.

By analogy with cycles between equilibria for flow
whether such cycling between periodic orbits or chao
saddles is an attractor or not can be determined by exami
the ratios of Lyapunov exponents at the saddles@4,5#. The
cycling loses stability at a bifurcation which occurs wh
rates of linear expansion and contraction become equa~a
resonanceof Lyapunov exponents!. Numerical simulations
in Ref. @4# suggest that such a resonance creates a l
number of periodic attractors that branch from the cycl
chaos. By contrast, for the skew-product example of cycl
chaos examined in Ref.@5# the resonance was found to giv
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rise not to periodic orbits but to a chaotic attractor with a
erage cycling chaos, or to quasiperiodicity that is intermitt
~stuck on! to the cycling chaos.

In this note, we aim to reconcile these differences by ch
acterizing them as examples of qualitatively different typ
of cycling. For what we call ‘‘phase-resetting’’ cycling, ther
is only one approach trajectory towards each saddle wi
the cycle, while in ‘‘free-running’’ cycling, there are multipl
approaches to a single saddle.

We consider two systems of coupled iterated maps wh
the attraction of the cycling is determined by the strength
the coupling. These maps can be related to flows in the u
way via a Poincare´ return map, noting that equilibria an
periodic points for a map both correspond to periodic orb
for a flow.

At the resonance bifurcation, for the phase-resetting c
we find a plethora of stable high-period periodic orbits w
an infinite number of stable periodic orbits accumulating
resonance. For the free-running case the branching attra
are typically unique and quasiperiodic or chaotic. We o
serve no other scenarios for these models but believe t
will be other scenarios for problems with higher dimension
saddles and connections.

Model I is a map of@0,1#3 with Z3 symmetry given by

~xn11 ,yn11 ,zn11!5FI~xn ,yn ,zn!,

where

FI~x,y,z!5„ f ~x!e2gz, f ~y!e2gx, f ~z!e2gy
…,

and f (x)5rx(12x) denotes the logistic map with paramet
r. This map clearly preserves the coordinate planesxyz
50. In each variable three distinct types of evolutions a
possible. For example, considerx: if z!1 andx!1 thenx
grows approximately linearly—the growing phase. Forz
!1 and x'O(1), x evolves according to logistic ma
dynamics—the active phase. Finally ifz'O(1) the dynam-
ics in thex direction is suppressed by the coupling term—t
decaying phase.
©2002 The American Physical Society01-1
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Model II is identical to Model I except that the logisti
map f during agrowing phaseis replaced byf̃ ,

f̃ ~xn!5H f ~xn!, xn,e or xn. f ~e!

f 2~e!5h, xnP@e, f ~e!#.

Each time a growing variable reaches the interval@e, f (e)#
~we usee51026), it is set toh5 f 2(e). From this point on,
all trajectories then evolve in an identical way. The interv
@e, f (e)# is of sufficient size to ensure that all trajectori
visiting xn,e in the growing phase are reset in this way. T
effect of the resetting is to force trajectories leaving o
saddle to approach the next one close to a single trajec
This is observed in cycling that alternates between equilib
and chaos for flows@4#. To ensure thate, f (e) we taker
P@1/(12e),4#.

For both models the coupling is trivial wheng50. When
the coupling parameterg is sufficiently strong both the mod
els exhibit robust cycling between invariant sets. In this st
each variable alternates cyclically between thegrowing, the
active, and thedecayingphases. We term a change in th
phases a ‘‘switch.’’ More precisely, we say a switch occu
when the growing variable exceeds lnr/g. Figure 1 shows a
time series for Model I of the three variables cycling, illu
trating the three possible phases and the switches betw
them. As in Ref.@4#, for both the models, the number o
iterations between switches increases geometrically as tra
tories approach the invariant subspaces, and this rate o
crease depends on the couplingg. The rate of increase o
switching times approaches zero asg approaches some criti
cal value from above, which forms the limit of the stabili
of cycling chaos. Referring to Fig. 1, decreasingg would
result in a slower rate of increase in the number of iterati
between switches, and the line formed by connecting
local minima would become more horizontal.

The behavior in the active phase is governed byr. For r
,3 the cycles are between period one points; asr is in-
creased~after period doubling! we obtain cycles progres

FIG. 1. Attracting cycling chaos, withr 54.0, g56.0. Model I
is iterated andx,y,z plotted ~in logarithmic coordinates! against
time. The chaotic behavior isO(1) and is visible in the inset. The
trajectory cycles through growing, active, and then decaying ph
for each variable, with the length of phase increasing approxima
geometrically. The same behavior is found for Model II.
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Since numerical simulations of this system need to resolv
neighborhood of the invariant subspaces very clearly, we
logarithmic coordinates@4#. The time series in Fig. 1 is fo
parameters that produce attracting cycling chaos; Mode
produces similar behavior at this parameter value.

Suppose that cycling chaos loses stability on decreasing
through a critical valuegc . We can computegc analytically,
either from a resonance condition of Lyapunov exponents
as follows. Suppose that a switch has just occurred and
growing variable isz, soz!1, x is O(1) andy is decaying.
The evolution ofz is governed byzn115rzn(12zn)e2gyn,
and this can be approximated byz→rz. Starting at a switch
at z5z0, suppose that the number of iterations until the n
switch is N. Then zN'r Nz0, and sincezN is O(1) at a
switch, N'2 ln z0 /ln r. While z is growing, y is decaying,
and for criticalg we requireyN5z0. We approximateyN in
a similar way, with y0 an O(1) number. Throughout the
decay phasey!1 but it is forced by the active variablex.
Here we approximate byy→rye2gx, and replacex by its
long-term averageA`@5 limm→`(1/m)( i 50

m21f i(x0)# for each
of the N iterations, givingyN'r Ne2gNA`. Then substituting
our expression for N, we have lnyN'2ln z0
1(g ln z0A`)/(ln r). The critical value ofg occurs whenyN
5z0, giving gc52 ln r/A` . The averageA` is easy to com-
pute numerically, and so we obtain a curve of criticalg
shown in Fig. 2. The criticalg for Model II can be found as
for Model I because the dynamics in the invariant subsp
y5z50 and its linearization about that subspace is ident
to Model I.

One of the questions raised in Ref.@4# is what sort of
attractors branch from cycling chaos at resonance. In
paper, numerical evidence was presented suggesting tha
cycling chaos gives way to families of long-period period
orbits made up of repeated segments of a single chaotic
jectory. In Model I this does not occur; forg,gc we find
irregular cycling in which the number of iterations betwe
switches behaves erratically. Model II, like Model I, exhibi
attracting cycling above the resonance valuegc . However,

es
ly

FIG. 2. The critical value ofg at which loss of stability of
cycling chaos occurs for Models I and II. Above the line, the c
cling is an attractor; below the line the cycling persists but is
longer an attractor.
1-2
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for g,gc we find existence of many periodic orbits, consi
ing of cycles between either periodic points or chaotic t
jectories~depending on the value ofr ). We argue that this
multistability of long-period orbits is caused by, and is typ
cal for, cycling with phase-resetting approach to chao
saddles.

For the remainder of this note, we investigate these p
odic orbits by carefully considering the evolution of the va
ables over one third of a periodic orbit as shown in Fig.
~Throughout, the period of the orbit will be 3N.! We assume
that x has just reset toxn5h at n50, so thaty is the active
variable andz is in the decay phase. For a periodic orbit
period 3N to be possible, we require thatzN5h—i.e., that
zN21P@e, f (e)#. We takeyk5a, where a is either some
O(1) numberĀ ~for a rough estimate!, or more precisely
takes the valuef N1k(h) @sincey05xN' f N(h)]. There fol-
low N iterates of forced decay. We approximate this
yN1k5r Nyke

2gNb, where b approximates the suppressin
effect of the forcing. Again, for a rough estimate, we takeb
to be the long-term averageA` , but for a more accurate
estimate we take b to be the N average AN

51/N( i 50
N21f i@ f k(h)#. Since this is a periodic orbit,yN1k

5zk5r Nae2gNb. Finally we have (N2k21) iterations of
growth, approximated by z→rz. This gives zN21
5r 2N2k21ae2gNb. Taking logarithms, this estimate predic
that a periodic orbit will exist when

ln e,~2N2k21!ln r 1 ln a2gNb, ln e1 ln r ,

that is, for the rough estimatea5Ā, b5A` , for

N P@N1 ,N2#5F a

2 ln r 2gA`
,

a1 ln r

2 ln r 2gA`
G ,

wherea5 ln e2ln Ā1(k11)ln r. This defines a pair of hyper
bolas between whichN must lie for a periodic orbit to exist
and suggests that allNP@N1 ,N2# should be present. Bothe
and r are fixed, andk ~the number of iterations from th
resetting point to the next switch! can be calculated. To es
timate the latter, we consider the number of iterations to t
x05h to xk. ln r/g under the approximationxn115rxn giv-
ing k'@ ln(ln r/gh)#/ln r. In other words, the hyperbolas a
governed by a single fitting parameterĀ. Note that the de-

FIG. 3. Schematic diagram of a periodic orbit of period 3N for
Model II; one third of a period is shown. This is a periodic orbit
the final and initial phases match up as shown. The iteratek shows
where the phases switch.
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nominators in these expressions equal zero wheng
52 ln r/A`5gc . Such a pair of hyperbolas can be seen in
inset of Fig. 4.

This estimate works well for the case in which the acti
phase of the maps is a period one point—i.e., forr ,3. Nu-
merically located periodic orbits lie within the predicted h
perbolas. In particular, for a giveng we obtain all periods for
N betweenN1 andN2 with a suitable choice ofĀ. For more
complicated behavior within the invariant subspaces this
timate works less well. Asr is increased the logistic ma
undergoes period doubling. For values ofr in this region the
numerically located periodic orbits still lie roughly betwee
the predicted hyperbolas. However, we no longer find
periods forN in @N1 ,N2#: some are not present nearN1 and
N2.

As r increases further, the saddles become chaotic and
bifurcation diagram of periodic orbits gets more comp
cated. In this case we use the improved estimate witha
5 f N1k(h), b5AN . This gives the estimate

zN215r 2N2k21f N1k~h!e2gNAN. ~1!

For fixed r, g, e, andh, zN21 is a function only ofN and
there are no free parameters. Figure 4 plots this estimat
ln zN21 for differentN for r 53.1, and shows how it succes
fully predicts periodic orbits when the line falls within th
band defined by@ ln e,ln e1ln r#. The squares on the diagram
represent actual periodic orbits. The inset shows the hy
bolas from the simple approximation.

For values ofr that give chaotic dynamics within invari
ant subspaces, the situation is more complicated, but the
proved approximation still does a good job of predicting p
riodic orbits. The approximation forzN21 is plotted in Fig. 5
for r 53.75 andg54.01. Figure 6 is a bifurcation diagram o
periodic orbits present for the chaotic caser 53.75, together
with the predicted envelope. The actual periodic orbits
well inside the prediction, with the exception of some long

FIG. 4. Predicted and actual period 3N orbits for r 53.1, g
53.495 for Model II. The squares indicate the location of perio
orbits, the line is the improved approximation ofzN21: if it lies in
the band@e,r e# we predict that the resetting will lead to a stab
periodic orbit. The inset shows the hyperbolas~plotted as lines!
predicted by the rough estimate, with actual periodic orbits~plotted

as points! lying between them (Ā52.8).
1-3
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period orbits lying above the envelope. These tend to
orbits that just fail to join up and make a period 3N orbit, but
instead become periodic after 6N iterations. Using this
method to create an envelope not only gives a good wa
predict the location of periodic orbits, but again makes cl
that upon approachinggc we expect to find periodic orbits o
increasing period. Forg5gc the chaotic curve of lnzN21
againstN neither increases nor decreases on average~cf. Fig.
5!, but the fluctuations, driven by theNAN term in Eq.~1!,
can be expected to increase. Hence we expect periodic o
of arbitrarily high period as the curve repeatedly crosses
band@e,r e#. For g close togc ~above or below! the fluctua-
tions for N large lead to possible long-periodic orbits, b
eventually the linear average behavior leads the curve a
from the band.

In the phase-resetting case~Model II!, the qualitative dy-
namics is independent of the value ofh. The presence of the
multiplicity of periodic orbits presents an intriguing parall
between this model and the persistent phenomenon
‘‘Newhouse sinks’’ in a neighborhood of a homoclinic ta
gency@6#. One difference is that even in the simpler case
robust cycling between periodic points in Model II, the ta
gency between unstable and stable manifolds will be deg
erate owing to the invariant manifolds containing the co

FIG. 5. Predicted and actual periodic orbits forr 53.75, g
54.01 for Model II. As in Fig. 4, squares represent stable perio
orbits and the line is the approximation ofzN21.
n

.
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nections. Another difference is that the stable periodic orb
in this case are easy to locate numerically and indeed th
appear to be no other attractors nearby. The mechanism
creates the periodic orbits in Model II resembles that fou
by Chawanya@7# near a robust heteroclinic network contai
ing connections to a heteroclinic cycle. Model II is artifici
in that it has a discontinuity at the phase resetting step. T
means that the periodic orbits typically bifurcate from th
discontinuity in a degenerate way. However, one can cle
remove this problem by smoothing out the discontinuity.

In summary, we have demonstrated how the abse
~Model I! or presence~Model II! of phase resetting in the
connections between saddles of a cycling~robust hetero-
clinic! attractor can cause qualitatively different behaviors
loss of stability of the attractor by resonance of Lyapun
exponents, even though the behaviors for attraction are s
lar. These models are instructive in that they are sim
enough to allow a precise estimation of the location of pe
odic orbits while having what we believe are the main fe
tures of robust types of dynamical behavior in flows.

The research of P.A., A.R., and R.S. is supported
EPSRC Grant No. GR/N14408.

c
FIG. 6. Period 3N stable periodic orbits for Model II withr

53.75 are marked by dots. The lines show the predicted enve
on varying the parameterg. The period of the periodic orbits ap
proaches infinity asg approachesgc54.061 167.
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