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Abstract

For piecewise isometries there is a natural coding given by the itinerary of a tra-
jectory between the pieces or atoms of the partition on which it is defined. The set
of points with the same coding is referred to as a cell and under certain general con-
ditions the periodically coded cells define an invariant set that is a disjoint union of
disks.

In this paper we investigate properties of this invariant disk packing. For a one-
parameter family of PWI on a torus, we prove that tangencies between disks in this
packing are very rare; more precisely they occur on a set of parameter values that is
at most countably infinite. If such packings are dense we show that they are maximal
in a sense of measure. We provide examples to show that the packing may not be
dense if there is continuity over boundaries in the partition, and also that the absence
of tangencies in the packing does not necessarily imply that the complement of the

packing has positive Lebesgue measure.
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1 Introduction

Piecewise isometries (PWIs) show a rich range of dynamical behaviours under iteration [1,

12, 8, 9, 7] and are a natural extension of the so-called interval exchange transformations.



We define them as follows: Let M be a compact region of the plane such that M = UM,
with {Mj}Y , disjoint convex open polygons. We say f : M — M is an orientation
preserving invertible piecewise isometry (or just PWI) if f|p;, is a planar orientation
preserving isometry, and f : M — M is invertible. We refer to My as the atoms of the
partition defining the PWI. In the standard way we identify R? = C and note that any
orientation preserving isometry can be written as a map of the form z — rx + w with
|r| =1 and w € C.

There is a full measure subset of x € M such that we can define a unique itinerary;
this is a map ¢ : M — 3(N) with X(N) the set of bi-infinite words with N letters, defined
by

[t(z)]n =k if and only if f"*(z) € M.

We say s € ¥(N) is admissible if there is an z € M such that «(z) = s. A sequence s is
periodic if there is an n > 0 such that s, = si for all k; the smallest such n is the period.
The set of points with the same itinerary we refer to as a cell, i.e. given an admissible s we
define C(s) = 17 1(s). We write P C 3(N) to be the set of periodic admissible itineraries.
Using convexity of the atoms and the preservation of convexity under isometry one can

show the following;:

Proposition 1 /9, 10, 13, 3] The cells C(s) are convez planar regions; these have interior

if and only if s € P. For all admissible s &€ P the cell is either a point or a line segment.
We say a PWI is an irrational rearrangement if f|ar, (z) = ez 4wy and 8/7 € Q.

Proposition 2 [10, 4] Any n-periodic cell for an irrational rearrangement is a disk. The
n iterate of the map acts as an irrational rotation on the disk, i.e. its centre is an

n-periodic point and it is surrounded by a nested set of invariant circles.

Hence, for PWIs that are irrational rearrangements, the set of periodic cells defines a

union of disjoint disks

c=JcCs)

sEP

that we refer to as the invariant disk packing of M induced by the piecewise isometry.

The complement (or ezceptional set [11]) is defined by

C¢=M\C



and consists of points with aperiodic (or no) codings. As a consequence, it consists of
points whose trajectories accumulate on boundaries of the partition. If the invariant disk
packing induced by a PWI is dense, we show in Corollary 1 that the packing is uniquely
defined by the periodic orbits of the map.

It is a surprisingly difficult problem to identify the set of periodic admissible codings
[13]; the thesis of Vowden studies a number of families of periodic codings for a specific map
[14] and finds parameter regions of admissibility for several families of periodic sequences.
However, the only case with a relatively complete understanding (and a description in
terms of a substitition system) is the case with §; = 7 /4 [1]. In fact, for a typical piecewise
isometry it is not even known whether C has an infinite or finite number of connected
components or even if it is non-empty. Figure 1 illustrates the numerical approximation of
a disk packing for a typical parameter of the overflow oscillation map; see [4, 7] for more
details.

In this paper we examine examples that enlighten the basic geometric properties of
such invariant disk packings. Section 2 explores dense packings and those of maximal
measure. We relate properties of the dynamics of PWIs to properties of the packing.
More precisely, we conjecture that typically, the packing is dense but does not possess full
measure and the packing graph (the graph defined by tangencies) is totally disconnected.
We finish this section by giving a construction of a dense disk packing of a triangle with
no tangents but zero measure complement.

In Section 3 we prove in Theorem 3 for a particular one-parameter family fy of PWIs
on the torus (the so-called overflow oscillation map) that there are no tangencies in the
disk packing for almost all values of . We believe that this is a general property of families
of invariant disk packings and gives some support to the conjectured behaviour discussed
in Section 2. There is work in progress to generalize the method of proof to other families
of PWIs. One major obstacle is that the general structure of parametrized families of
PWIs is still poorly understood [5].

In Section 4 we show how to construct classes of PWIs with an invariant disk packing
that is not dense; we also show how tangencies can be broken by introduction of extra

atoms in the partition. These are discussed further in Section 5.



Figure 1: Numerical approximation of a detail of the invariant circle packing for a discon-
tinuous map of the torus that is equivalent to a piecewise isometry under a linear shear
of the domain; hence the invariant ellipses become invariant circles after the shear. The
white regions correspond to periodically coded points while the black complement consists
of aperiodically coded points. The region shown is the square [—1, —0.875]? of the phase
space [—1,1]2 for the map (z,y) — (v,g9(—z + 2ycosf)) where g(y) is the discontinu-
ous function that is the identity on [—1,1) and is periodic with period 2. In this case

6 = cos~!(0.45); similar pictures are found for other 6 as long as /7 is irrational.



2 Disk packings

We define B,(z) ={y € C : |z —y| <r}andsay aset X C M C C is a disk packing of
M if
N

X = Bri(z)

i=1
where B, (z;) are disjoint (non-overlapping) open disks with radii ; > 0 and centres

z; € C (N may be infinite). There is a one-to-one correspondence between disk packings
and circle packings by circles of radius r;, centre z;. A disk packing is said to be dense if
X =M.

Such a packing is defined, up to permutation of the indices, by the pairs
{(zj,m) : i=1,--- ,N < o0}

with the constraints (non-empty) r; > 0, (containment) B, (z;) C M for all 4 and (no
overlap) |z; — zj| > r; + r;j for all i # j. We refer to a disk packing satisfying these as

DP({(zi,7i)}). The Lebesgue measure of this packing can be computed as
UDP({ws,ri) =7 37
i
We say a disk packing {(z;,7;)} is mazimal given centres z; if

UDP({(zi,ri)}) 2 L(DP({(xi,5i)}))

for any other packing {(z;, s;)} with the same centres. We say a disk packing DP of M is
dense if DP = M.

Theorem 1 Suppose that DP({(x;,7;)}) is dense in M, then it is mazimal and is deter-

mined uniquely by the x;.

Proof  Suppose that a disk packing {(x;,r;)} is dense, then the radii are given by r; =
infj4; |z; —x;|. To see this, let R; = inf;4; |z; —x;|. If r; > R; then there will be an overlap
between disk ¢ and some other disk. If r; < R; then for any p with r; < p < R; the disk
B,(z;) will intersect at most finitely many other disks in the packing. Hence the packing
cannot be dense in the set B,(z;) \ By, (z;) and by contradiction r; = R;. Maximality

comes from noting that if 0 < s; < r; then £(DP({(zi,si)})) < LDP({(zi,ri)})). |

The next result relates the dynamics of a PWI to its invariant disk packing.



Corollary 1 If the invariant disk packing C defined by a PWI f is dense, then the set of

periodic orbits uniquely defines the centres of disks for this disk packing.
The following lemma will be of use in later sections.

Lemma 1 Suppose that two disks in the invariant disk packing C are tangent. Then one
can find two disks Cv, Co in C that are tangent and such that and C; C My, Cy C Mo

where My, My are atoms in the partition defining the piecewise isometry.

Proof  Given any two tangent disks they must have distinct periodic codings with
periods n; and ny say. By taking images of the pair, after a finite number of iterates (less

than min(nq,n9)) they must land in different atoms of the partition. |

The packing graph A disk packing {(z;,7;)} has a tangency between disks ¢ # j if and
only if |z; — z;| = r; +r;. This naturally defines a packing graph where vertices correspond
to disks and edges correspond to tangencies between disks. A disk packing is said to be
tangent free if this graph has no edges.

There is a particularly well-studied disk packing; the Apollonian disk packing of the
unit disk (see [2] for an excellent review, recent results and a discussion of open questions).
This packing is such that every disk inscribes a curvilinear triangle comprised of the space
between three other disks that are mutually tangent.

An Apollonian packing of a region M can similarly be defined to be a dense packing
such that every disk as either tangent to M and two others that are also tangent to
OM or as above. This is clearly dense by construction; Apollonian packings have packing
graphs that have the maximum degree possible of connectivity as every vertex has an
infinite number of neighbours.

There are numerical estimations of the Hausdorff dimension of the complement of
Apollonian packings that indicate that they have dimension 1.3056867. A conjecture of
Boyd [6] surmises that Apollonian packings are maximal in another sense; namely that
they have complements with minimal Hausdorff dimension, i.e. any other packing must
have a complement with Hausdorff dimension that is at least this value of 1.3056867.

Lower bounds have been found [2] but these remain much lower than this amount.



2.1 Example of a tangent-free dense disk packing with zero measure

complement

One might surmise that a tangent free disk packing necessarily has less than full measure.
In this section we construct a tangent-free dense disk packing with zero measure comple-
ment to show that this is not the case. The construction is shown diagrammatically in
Figure 2. We consider an ‘upwards’ equilateral triangle 77 and pack this with its maximal
inscribed disk C and in infinite number of ‘downwards’ equilateral triangles {77 ;}:°, as
shown.

We then repeat the process by filling each ‘downwards’ triangle 7' ; with its maximal
inscribed disk C7; and a similar copy of the triangle 77, now ‘upwards’ {Tl,i,j}?‘;l by
similarities S; such that S;(771) = T1,;. These triangles are uniquely defined by placing
the triangle within each curvilinear triangle such that the line from where the curved side
meets the vertex of the new triangle to the opposite vertex bisects the angle there.

This process is repeated on each triangle to get a packing with a countable number of

disks C'1;; 4y, and we write C to denote the union of all such disks in the packing. At

“in
each step all points are either within a curvilinear triangle with at most one curved side
that will be subdivided, or in a disk. Hence one can see that the set of disks constructed is
dense in the original 77. Moreover, note that any two disks in the packing are inscribed in
different triangles, and because of alternating generations of ‘upwards’ and ‘downwards’

triangles, triangles 17 ;, ;, ... ;, can only touch with the vertex of one against the side of

sin

the other. Hence there can be no tangencies between disks in C.
Theorem 2 This packing is full measure, i.e. £(Ty) = £(C).

Proof We define D; = Cy, Dy11 = Dy U (U;S;(Dy)) and note that C = U, D,,. Now
define P = £(C)/¢(T1) to be the proportion of T; taken up by the disk packing. By

construction we see that
UTy) = £(C1) + > 4(T1)
i

as the complement of UT} ; in T; \ C; are a countable union of Sierpinski gaskets and as
such have zero measure. The uniform scaling of meausure of the similarities S; implies

that P =£4(C NTi;)/¢(T1,;) for all 4, and so

UC) = £(C1) + 3 UC NTi) = £(Cr) + Py A(Tiy)

7



Figure 2: The construction of a tangent-free dense disk packing of the triangle Ty with
zero measure complement. The whole of Ty is repeatedly mapped into each Ti; using
similarities to give a union of disks that are images of Cy1 and which pack Ty densely,

using full measure and with no tangencies between disks.

which implies that P¢(T}) = £(C1)+ Y, P4(T1;). This, together with the other expression
for £(T1) implies that either £(C;) = 0 (which is plainly a contradiction) or P = 1 which

gives the required result. i

The complement of the packing C' can be generated as the limit set of the countable

set of the similarities {S;}:°,. Note that copies of the Sierpinsky gasket can be found as

subsets of C, implying that dimg (C) > iggg.

3 Genericity of tangent-free packings for a piecewise isom-

etry of the torus.

In this section we prove that tangencies are extremely rare for a particular one parameter
family of PWIs of the torus known as the lossless overflow oscillation problem. This map
is usually written as a linear map of the square [—1,1)? to itself, and an numerically

obtained circle packing is shown in Figure 1. The map is equivalent to the following



Figure 3: The rhombus on which the piecewise isometry of the torus is defined. The
image of the partition into two triangles and a hexagon is shown on the right. There is

a one-parameter of such maps parameterized by the angle 0 of the rhombus. We write

w=¢e",

piecewise isometry after a linear change of coordinates.

Fix 6 € (0,7) and consider the rhombus unit cell for a torus:
My={z€C : |Re(z)| <1 and [Re(ze®)| < 1}
illustrated in Figure 3. We define f : My — My by

f(2) = €2+ Wk(2)

where W = — anza is a constant and

+1  if Re(ze*?) > 1
k(z) =< —1 if Re(ze??) < —1
0 otherwise
Obviously, k(z) identifies the partition elements {—1,0,+1} and we use this coding. It is
clear from the geometry that, disregarding the discontinuities, the mapping is invertible.

The main result of this section is the following:

Theorem 3 There is a countable set of 0 € [0,27) for which there are tangencies between
any periodic disks in the disk packing C induced by fg. Therefore there is a full measure
set of 0 such that the disk packing C' has no tangencies.



We will prove this by showing that tangencies can only occur at isolated parameter
values. Let w = €% and consider any periodic coding (we do not assume at this stage that

it is admissible) k of minimal period n where k; € {—1,0,+1} such that
k = P(kokiks -+ kn_1)

where P denotes the periodic concatenation of its argument. If this is admissible then

there will be a unique periodic point z = 2 with ¢(z) = k satisfying
n—1 .
z=w'z+W Z whkp_j_1.
j=0

This means that

n—1

w ik

2k — 1—wn EO(JJ n—j—1-
j=

If we write 7 = ¢'* and 6 = 2t then this can be written as

W n—1 ) 1 n—1 '
Zk — ————————— Z‘I’]2jink’n_j_1 = Zn2]_nkn_j_1. (].)

= sin 2¢ sin nt =
Lemma 2 Suppose that k,¢ € P are nonidentical admissible periodic sequences. Then
the largest inscribed disks of these cells with these codings are tangent for at most a finite

number of values of 8. In consequence, there are at most finitely many irrational 0 at

which the disks C(k) and C(£) are tangent.

Proof  Suppose that the two disks C'(k) and C'(m) are tangent. If kg = mg then they
are in the same atom and so their images under f will still be tangent, hence we can
assume without loss of generality (by iterating if necessary) that kg # my.

The tangencies must occur at the tangencies of the atoms, and hence on the lines
where Re(w?z) = £1. Since the centres of the disks are given by 2z and zy, we see that

whenever there is a tangency
® = Im(w?(2k — 2m)) = 0
although note that this condition is not sufficient for a tangency. Writing
¢ = Psinf

to remove the 6 dependent term of W, and using (1) we see that the left hand side can be

computed as

1 n—1 1 m—1
— Im _§ : 4—|—2]—nk = — § : 4+2]—mm e
¢ sinnt 4 " n—y-1 sinmt “4 " m—j—1
j=0 j=0

10



and so

1 n—1 . ' 1 m—1 . '
b= > knojoasin((4+2j —n)t) — — D M joasin((4+ 25 —m)t)  (2)
j=0 J=0

where ¢ = 6/2. Note that we can write ¢(n) as a ratio of polynomials of order at most
2nm. Therefore either ¢ is identically zero for all n € C, or it has a finite number of zeros
corresponding to zeros of the numerator. In particular, if it is not identically zero then
it can only have a finite number of zeros on |n| = 1. Writing ¢ = p(t)/q(t) as a rational

trigonometric polynomial we see that

3

n—1
p(t) = Z kp—j—1sinmtsin(4 + 25 — n)t — Mpm—j—18inntsin(4 + 25 — m)t.
J=0 J

I
<]

If m = n we can remove the factor sinmt and then note that this is identically zero if and

only if

n—1

Z(kn_j_l - mn_j_l) sin(4 + 25 — ’)’L)t
=0

is identically zero. Observe for alln > 1, the highest frequency term here is (kg—my) sin(2+
n)t. Since this cannot be cancelled by sums of lower frequency terms, this can only happen
if ky = my, giving a contradiction.

If m # n we can expand p(t) in terms of a sum of cos kt terms. Identifying the terms
multiplying ko and mg we have kg sinmtsin(2 + n)t — mg sinnt sin(2 + m)t which, when

expanded, gives rise to a highest frequency term of the form
(mg — ko) cos(2 +n + m)t.

As above this cannot be cancelled by other cos kt terms as these have |k| < 2+ n + m.

Therefore, p identically zero implies that kg = mg, which is again a contradiction. |

We are now in a position to prove the main result of this section.

Proof  [of Theorem 3] If we consider the set of all possible periodic sequences of the
three symbols {—1,0,+1}, this is countable, as is the set of pairs of non-identical periodic
sequences. For any such pair (k, m) Lemma 2 shows that there are at most a finite number
of 6 at which tangencies can occur. Hence the set of 8 for which there are tangencies is at

most countably infinite. |

11



The proof relies on the fact that the centres of the disks can be found explicitly
as nontrivial analytic functions of the parameter. It is probable that such a proof can
be adapted to show that there are no tangencies for certain other affine maps, e.g. of
the form examined in [10]. However, at present there is not enough known about more
general families of piecewise isometries (such that the number of atoms and their faces are

preserved) [5] to be able to apply a similar method.

4 Changing the partition

In this section we give two constructions. The first shows how to construct a disk pack-
ing that is not dense while the second shows how tangencies can easily be broken by

introduction of new atoms in the partition.

Example of a PWI such that C is not dense. We demonstrate that one can easily
perturb the partitions of PWIs such that the set of admissible periodically coded points
is not dense, simply by subdividing an atom containing a periodic island that is rotating
irrationally.

Consider any invertible piecewise isometry f : M — M with irrational rotations on
some partition {Mj}}_, of M. We pick any atom, say M, that is hit by at least one
periodic disk C(k) with coding k. We split this atom into two to give a new partition
{Nk}Zill where

Ny =My for 1 <k <n, N, UNp1 C M,

such that the line segment L = N, N N, intersects C (k). Now consider the periodically
coded set C defined by the same map f but using this new partition. All periodic codings
that were admissible and do not include M,, remain as before. If we consider the disk
C(k), some iterate of the map acts as an irrational rotation on the disk and so iterates
of the line L N C(k) contained in the discontinuity set will be dense in an open annulus
A C C(k) (see Figure 4). All points in A will have coding that is aperiodic. Therefore
D D A and C is not dense.

The following result is much weaker than that obtained for the overflow oscillation

map, but at least it shows that tangencies are easily destroyed in more general PWIs.

Lemma 3 Suppose that we have an irrational rearrangement such that two periodically

12



c(k)

Figure 4: Construction of a PWI such that C is not dense. Suppose that a PWI has a disk
C(k) of periodically coded points on which the first return is an irrational rotation in the
atom M,. By splitting this atom along the line L we ensure that all points in the annulus

shaded grey are aperiodically coded and therefore C avoids this annulus.

coded disks C1 and Cy are tangent. Then by adding new partitions, one can find an open
set of nearby PWIs (in the topology induced by measuring the L1 norm of the difference

between the maps) such that Cy and Co are no longer tangent.

Proof  Without loss of generality we can assume that C; and Cy have centres on the
real axis with common tangent that is the imaginary axis. The centres of C; we take to
be z; with z; < 0 and 2 > 0. Note that e'®iz; + w; = z; for some ¢; = n;# and w;
determined only by the coding and the piecewise isometry. According to Lemma 1, we
can assume Cy C My, Cy C My where My, My are atoms in the partition defining the
piecewise isometry.

If we can perturb the isometry to destroy tangency while preserving the invertibility,
then we are done. If not we only need to perturb one of the atoms M; and My, M; say,
to destroy the tangency between C; and C3. The perturbation can be done in the way
shown in Figure 5.

We define a new piecewise isometry g : M — M as follows: g(z) = f(z) for z ¢ C.,
where C. is the thin “loop” in Figure 5 (a); when z is in a corner of C; (see Figure 5 (b)),
we define g(4) = f(B), g(B) = [(4), g(C) = f(D), g(D) = f(C), g(E) = f(F),
g(F) = f(E); when z is in the thin rectangles of C. in Figure 5 (a), we define g(z) = f(z'),
where 7’ is a point shifted a certain distance clockwise along the “loop” consisting only the

thin rectangles of C. in Figure 5 (a). g is a invertible piecewise isometry over a partitiion

13



(a) (b)

Figure 5: The perturbation of a piecewise isometry. (a) Shows how to perturb the atom M.
(b) Shows how to deal with the corners in (a), where A,B,C,D are congruent triangles,

and E,F are congruent rectangles.

with more atoms. When ¢ is small enough, g will be arbitrarily close to f except on a set

of arbitrarily small measure. |

5 Discussion

The invariant disk packings induced by planar piecewise isometries are remarkable and
compelling subsets of the plane. We have shown here that at least for one particular family
of such maps, these packings are loose in the sense that they are tangent free. This is
consistent with the conjecture that they do not have full Lebesgue measure.

It would be interesting to be able to characterize any self-similar structure of the
dynamically defined packing; this has been done for a very particular map in [1]. For
smooth maps, renormalization provides a useful tool in the study of self-similar behaviour
of an area-preserving maps and universal behaviour of a class area-preserving maps. If a
map f converges under renormalization to a fixed point of the renormalization operator, f
would have asymptotically self-similar behaviour on long timescales and small space scales.

For the tangent-free packing constructed in Section 2.1 there are exact self similarities.

14



However, the evidence is that any self similarity for the dynamically defined disk packings

is likely to be much more subtle.
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