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Peter Ashwin®
Department of Mathematical Sciences, Laver Building, University of Exeter,
Exeter EX4 4QE, United Kingdom

Alastair M. Rucklidge® and Rob Sturman®
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

(Received 25 March 2004; accepted 18 May 2004; published online 6 August 2004

Nonergodic attractors can robustly appear in symmetric systems as structurally stable cycles
between saddle-type invariant sets. These saddles may be chaotic giving rise to “cycling chaos.”
The robustness of such attractors appears by virtue of the fact that the connections are robust within
some invariant subspace. We consider two previously studied examples and examine these in detail
for a number of effectsii) presence of internal symmetries within the chaotic saddiies,
phase-resetting, where only a limited set of connecting trajectories between saddles are possible, and
(iii) multistability of periodic orbits near bifurcation to cycling attractors. The first model consists

of three cyclically coupled Lorenz equations and was investigated first by Dedihik [Int. J.
Bifurcation Chaos Appl. Sci. Engs, 1243-1247(1995]. We show that one can find a “false
phase-resetting” effect here due to the presence of a skew product structure for the dynamics in an
invariant subspace; we verify this by considering a more general bi-directional coupling. The
presence of internal symmetries of the chaotic saddles means that the set of connections can never
be clean in this system, that is, there will always be transversely repelling orbits within the saddles
that are transversely attracting on average. Nonetheless we argue that “anomalous connections” are
rare. The second model we consider is an approximate return mapping near the stable manifold of
a saddle in a cycling attractor from a magnetoconvection problem previously investigated by two of
the authors. Near resonance, we show that the model genuinely is phase-resetting, and there are
indeed stable periodic orbits of arbitrarily long period close to resonance, as previously conjectured.
We examine the set of nearby periodic orbits in both parameter and phase space and show that their
structure appears to be much more complicated than previously suspected. In particular, the basins
of attraction of the periodic orbits appear to ppeeudo-riddledn the terminology of LaiPhysica

D 150 1-13(2001)]. © 2004 American Institute of PhysicgDOI: 10.1063/1.1769111

Robust heteroclinic attractors between saddle-type equi- |. INTRODUCTION

libria or periodic orbits have been observed to arise as

attractors in a number of systems, both theoretically and
in practical models. More recently, it has been noticed
that robust heteroclinic attractors may appear between
saddles that are chaotic: so-calledtycling chaos'—® How-
ever, there is still a poor understanding of the dynamics
of such attractors due to the fact that the chaotic dynam-
ics on the invariant subspace may lead to a variety of
transverse behaviors of trajectories and indeed consider-
able difficulties for performing qualitatively accurate nu-
merics. In this paper we focus on identifying some new
phenomena in existing examples of cycling chaos. This
includes the appearance of phase-resetting, anomalous
connections caused by the presence of points of higher
symmetry within the saddles, and resonance bifurcations
of these attractors to form periodic orbits.
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In Ref. 2 cycling chaos was considered for three Lorenz-
type systems coupled in a ring. This system was found to
have attractors that consist of heteroclinic cycles between
three symmetry-related chaotic saddles, each of which is a
Lorenz attractor within the three-dimensional invariant sub-
space such that the other two systems are fixed at the origin.
The chaotic saddles in Ref. 2 are not isolated from each
other: they contain a common equilibrium at the origin. This
means that they cannot be modeled in the usual analogy with
a heteroclinic cycle between equilibria and there amema-
lous connectionsbetween the chaotic saddles caused by
close approaches to the origin. These have not previously
been permitted in analyses of cycling chaos: see, for ex-
ample, Refs. 1 and 3. However, this is a manifestation of a
more general phenomenon: chaotic saddles in symmetric
systems calfand often dd contain points with more symme-
try than typical points within the saddle, i.e., points with
higher isotropy. These higher isotropy points may be un-
i_stable fixed points or equilibri@as in the case for the Lorenz
system or even chaotic saddléas in the case of a chaotic
attractor that is “stuck on” to an invariant subspace. In either
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case the presence of higher isotropy points leads to a com Name Subspace Symmetry generators
plication in the structure of the chaotic saddle and prevents $; (x1,0,0,22,0,0, 23) K9, K3
the possibility of choosing a global section to the connec- S (0,0, 21,%2,0,0, 23) K1, K3
tions. S3 (0,0, 21,0,0, 22, x3) K1, K2
One aspect we investigate is the effect of points of Ni2 (x1,%2,0,0, z3) k3
higher isotropy; in fact we argue in Sec. I C that anomalous Va3 (0,0, z1,x2,x3) k1
connections will typically not appear within the attractor Nis (x1,0,0, 29, %3) K2
even when they are present. This means that, at least for thi £ (%, %, x) o
systems considered, the presence of points with higher isot: o (0,0,21,0,0,2,0,0,23) 1, 2, i3
ropy in the chaotic saddles does not seem to disturb the orde (a)

of visiting the chaotic saddles except in exceptional cases.
Another dynamical effect that can appear in cycling
chaos is that ophase-resetting connecticher selection of
connections In those papers phase-resetting connections ap-
peared due to the presence of a saddle equilibrium with a S;
one-dimensional unstable manifold as a node of the hetero- N Nos
clinic cycle. We were surprised to find a similar effect for the B
model of Ref. 2 even though each node is a fully chaotic
attractor and hence the set of connections between adjacer

\
/

saddles must have dimension strictly larger than one. We 0
resolve this paradox by noting that the phase-resetting effect
is simply because the chosen form of couplifugidirec- Si e > S,

tional) gives a skew-product factorization of the system
within the subspace containing the connections. On includ-
ing more general bi-directional coupling, this phase-resetting
disappears. We call this effefdlse phase-resetting (b)

A final aspect of these attractors that we consider in this
paper is the creation of cycling attractors at resonance bifurElG. 1. (a) Table of invariant subspaces aii} schematic illustration of the
cations. As noted in Refs. 4, 5, and 6, this bifurcation seemvariant subspaces of the system of three coupled Lorenz systems with

. . T ’ cycling attractors. The chaotic saddies(denoted by thick lingsare within

to be associated with the appearance of a very large NUMbge 5 and intersect at the origin withie.
of stable periodic orbits that shadow the orbits within the
cycling chaos. We show that this effect also appears to be
present in both models we consider, and moreover the struc-
ture of the basins of attraction of the resulting stable periodic!l' THREE CYCLING LORENZ ATTRACTORS

orbits appears to be pseudo-riddfed. We consider a system of three coupled Lorenz systems

The paper is structured as follows: in Sec. Il we examingyhich is a slight generalization of the system studied in Ref.
an example introduced by Dellni&t al. in Ref. 2 of three 2:
cyclically coupled Lorenz attractors. We characterize the rate = h o h
of attraction to the cycling attractor by means of transverse X1=9(x1) +N(X1, X2, X3),  X2=9(X2) +N(Xz, X3, %),
Lyapunov exponents algng the !ines Qf Ref. 1. We iIIustratg X3=g(X3) + h(X3,X1,Xo), (1)
that the presence of points of higher isotropy does not typi- 3 .
cally result in any major changes in observed numerical beWherex; € R°. We writex;=(x; ,y; ,z;) then we assume that
havior; however, it does mean that the footprint of transvers&2ch cbell has Lorenz dynamics in the absence of coupling
Lyapunov exponents as considered in Ref. 1 always show@'Ven PY
totally unstable measures within the saddle and complicates g(x,y,z)=(o(y—X),Rx—y—Xz,— Bz+XY), (2
the geometry of the connections. For this example we can . B B _ .
obtain a simple characterization of the footprint, discuss th%v't:lvge; 1(:%"5&)5& andf=2.4 and we set the coupling
appearance of false phase-resetting and the absence ot
anomalous connections. In Sec. Il we return to a map de-  h(Xy,Xy,X3) = |Xo| X1 + v|X3|?X4 ©)]
rived as a low dimensional model of a magnetoconvection . . . .

meaning that there is a coupling of strengghfrom i to

problem in Ref. 6. Near a resonance of the cycling attractori,_1 and one of strength from i to i + 1. This system has a

we find j[hat the basin o_f attraction of the periodic orbits hasSymmetry of the form
a complicated pseudo-riddled structure. We demonstrate how

one can estimate the location of periodic orbits near reso- P (X1,X3,X3) =(X2,X3,X1)

nance for this map. Finally, we comment on some aspects ofj has internallocal) symmetries of the fornk, , 5 where
the classification of general attractors of the type investigated -

here. Kl(X11X21X3):(_Xla_ylvleXZIX?:)
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FIG. 2. Time series for trajectories of the systénfor coupled Lorenz systems, with=0. In (a) y=—0.014 and we observe slowing down cycling chaos
as in Ref. 2 whereas iftb) y=—0.012 there is an approximately periodic orbit with period around 11 that is observed as an attractor.

and similarly fork, 3. The symmetries of the system force and so in particular when=0 (as in Ref. 2 the dynamics is
the invariance of some subspaces as in Fig. 1. Note that thee skew product over the dynamics with®#. An effect of
coordinate planes[ P1,=(x;,X,,0), etc] and axes[L; thisis that although there are many trajectories from a saddle
=(X1,0,0), etc] are invariant, and are subsets of the invari-in S, to one inS, they all project to the same trajectory
ant subspaces given in the tab(CN;; andL;CS;). How-  wijthin S,. As a result the dynamics projected orSe ap-

ever, the invariance of these subspaces is due to the form gbars to be phase resetting although in the sense of Ref. 5 it
the dynamics(a fixed point at the originrather than just @ g not. In other words, the case=0 is degenerate for the

symmetry. , dynamics of a system with this symmetry.
On the invariant subspade,, the dynamics reduces to We first reproduce in Fig.(2) the results of Ref. 2 for

the six-dimensional system v=0, choosingy= —0.014 such thap=1.1135>1 in Eq.

X1=09(X1) + Y[Xo|?X1,  Xo=0(Xp) + v|X|?Xs, (6). Here we have an attracting heteroclinic cycle between
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chaotic saddles, with cycling chaos characterized by a slow- #
ing down of the trajectory around the cycle. The cycling e S e e . .
attractor consists of chaotic attractdks for the system re- 235} §
stricted to the subspac&s and connecting orbits. For a dif- e A IR SR
ferent value ofy=—0.012, we obtain a periodic ordiFig. " e |
2(b)], demonstrating the resetting nature of the connection o
between the chaotic sets. 3 e e e
& 225t E
A. Transverse Lyapunov exponents and the footprint 2r e e NG ]
for chaotic saddles
- .——*—.- -
In the absence of any coupling€ v=0) the transverse aer i
Lyapunov exponents for the saddlasCL;CS; are easy to
compute. In both thé\;, and N3 directions the most posi- T Py Ty I TR
tive exponent for the origin is the most positive eigenvalue Mo
of FIG. 3. The footprint of transverse Lyapunov exponems;(\1,) for the
-0 o coupled Lorenz systems with= —0.013 25 and a range @f from bottom
Dg(O) = ( ) to top the footprint is given starting at= —0.0002 and increasi_ng in steps _
R -1 of 0.0001. The Lyapunov exponent for the natural measure is at the point

marked by the cross. The;,= —\ 3 line is shown and there is attracting
namely, for the parameteis=15, R=58, f=2.4 used by  ¢ycling chaos when the cross lies below this line. The footprint is the form

Ref. 2 and ourselves throughout this section, we hTayge of a line rather than a region with polygonal boundary because the depen-
~ N . . dencies of the L ts it identical.

=N\13=22.3150F \. We exploit the special structure of the encies of the Lyapunov exponents yt) are identica

coupling by h to give an explicit formula for the largest

Lyapunov exponents given any ergodic invariant meagure for the natural measure; the Lyapunov exponents for this

supported inS, . This is measure are given by the crosses in the diagram.
~ ~ The footprint of transverse Lyapunov exponents for the
Ni3=Nggt 7f IX[2du(x), Npp=Aip+ VJ X2 dp(x). cycling Lorenz saddles is never contained within one quad-

(4 rant as was the case in Ref. 1. This is due to the presence of

In order t ity this, first note that the I ration t a nontrivial intersection of the chaotic saddles. More pre-
n order to veri is, first note that the linearization trans- . ~ o~ - .
verse at £,0,0)€ S, in the directionNys is given by the cisely (\,\) in the positive quadrar(pbff the scale in Fig. B

linear cocvcle is in the footprint simply because there is a Dirac measure at
y the origin common to al/A;. As a consequence, the set of
y=(Dg YIX1|)Y- connecting orbit<,, that consist of points iMN,\(S;U
(DQ(0)+7/x4/) (5) ting orbit<C,, that t of points iNy\(S;USy)

We claim that the most unstable direction is simply given byWhose"’ anda limits are contained ir,U S, will not con-

the eigenvectoe corresponding to the most unstable eigen-SISt pgrely Of. a closed S.Et of trajectories fr@nto S,; the
value ofDg(0). To see this, note that any solution of E§) cycle isdirty in the terminology of Ref. 1.
has the formy(t) =e®*"z(t) wherea= y|x,|?> andz satisfies
7=Dg(0)z. Hence the most unstable direction for Eg)is  B. Numerical loss of coherence and phase-resetting
given by e and the Lyapunov exponent in this direction is  As discussed in Refs. 4 and 5, a cycle with only one
N1a=N+¥{|x1|?). Applying the ergodic theorem for the trajectory in the connections between saddle equilibria will
measureu (and the same argument fig,) gives Eq.(4). mean that connecting trajectories reset to asymptotically the
The form of Eq.(4) means one can easily compute same value on entering a saddle. This means that we observe
(Mo m), N 13(m)) for any measureu in the set of ergodic identical segments of trajectory during the active phases. For
measures supported on the chaotic saddlén S;. The set  the system here, we do not have this as the saddles are cha-
of points obtained was termed tHeotprint of transverse otic, however, in the special case that 0, trajectories ap-
Lyapunov exponents in Ref. 1 and this can be used to chapear to follow identical pathésee Fig. 2 due to the skew
acterize the attractiveness or otherwise of the heterocliniproduct form of the coupling; we refer to this as “false
cycle. We say an ergodic measygeundergoes a resonance phase-resetting.”

bifurcation when A 3(u)/N5(n)=—1. By Eq. (4) this Before breaking the skew product structure by setting
means that in(y,v)-parameter space the resonance bifurcav+ 0, we discuss the issue of numerical loss of coherence.
tion occurs wherey+ v=—2X/(|x?|). If we write Just as chaotic systems do not permit their full trajectories to

be computed numerically without loss of precision from their
p=IN12/Nid, ©) initial conditions, so in this system of coupled Lorenz sys-
then the cycling is attracting in the cape-1 and repelling tems we cannot expect to see periodic orbits of arbitrarily
for p<1. Figure 3 shows the numerically computed footprintlong period, or expect phase setting of active trajectory seg-
for this system aty=—0.01325 and a range of For the ments to persist for arbitrarily long phases of an attracting
casey=—0.01324 and’=0 this is very close to resonance cycle. Instead, sensitive dependence on initial conditions
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120 T ' ' ' ' ' active phase in the same way it diverges after a time signifi-
cantly less tharm*.
1o 1 Figure 5 shows trajectory segments plotted in the same
way as Fig. 4. Fifteen trajectory segments are shown in each
plot. In each ploty=—0.014, and the trajectory segments
get successively longer, as the trajectory approaches the at-
tracting cycle. The four plots show increasing values.dh
(@), =0, and the phase-resetting is complete up to the point
at which numerical loss of coherence causes the trajectory
segments to separatas in Fig. 4. Figures %b), 5(c), and
w0k . 5(d) showr=10"12 10°°, 10 ©, respectively. The onset of
loss of coherence occurs earlier agcreases.
o . = s " pm P * Similar to the computation of* above, the timel at

T which the skew-product-breaking term causes the separation

FIG. 4. Numerical loss of coherence for the system 1 with0. Each time  Of trajectory segments is given By~ —log(v)/\ ;. (recallh .
ann;= x| passes through 16°with n;>0 we sefT=0 and the trajectory s the most positive internal Lyapunov exponerftor small
is plotted until the nextx;| passes through 10° the end of the segmentis ,5jues of v the numerical loss of coherence in the system

marked by a circle. Six successive segments of approach are shown here . to d inate thi £ WA bi the t
after transients have been resolved. The parameters are as before but gins 1o aominate this agreement. VW& combine the two es-

y=—0.0131. Note that although the segments are all the same length, ifimates to give the time at which loss of coherence occurs:
dicating periodic-type behavior, there is a loss of coherence after dout

=22 time units. This is to be expected due to the positive internal Lyapunov

exponent of the Lorenz system overcoming finite machine precision. = |Og(| V| + | 77|)

Ay

80

Ix1l, Ixal, |x3

60 [

40

within the chaotic saddle means that by the time numerical his line is plotted in Fig. @dotted ling, along with(solid
round-off errors have grown to a significant size, we may bdine) values of T at which coherence is seen to be lost for
shadowing a number of different trajectories. We called thigdifferent values ofv (this was obtained from time series like
effect numerical loss of coherenda Ref. 5. Fig. 5, spottingT by eys.

This effect is present in the systeth). The effective
time horizon can be estimated &%~ —log(#)/\, wherey
is the machine accuracy and is the most positive internal )
Lyapunov exponent. For the Lorenz equations with the giverf*- APsence of anomalous connections
parameters this exponent ks, ~1.433, and so for double Although the saddles, all contain the origifand hence
precision machine accuracy;&10™ ) we can only expect there are connecting orbits that do not follow the order
periodic orbits of up to IengﬂT*~22. Figure 4 demon- AlHAZHA?)'%Al) in practice we never seanomalous
strates this loss of coherence in a graphical representatiofwitchescaused by close approaches te 8,. We explain
used repeatedly in this paper. A single trajectory for the systhis by reference to the expected recurrence times to a neigh-
tem is computed. Each time an=|x;| passes through 18°  horhood of the origin within the attractor.
with n;>0 we setT to zero and the segment of trajectory is  \We can estimate the likely distance of closest approach
plotted until the nextx;| grows through 10%°. This method  of a trajectory to 0 as follows. Let &be the dimension at 0
superimposes each active phase of the trajectory on the pref the natural measure on A; (5> 1/3); then the measure of
vious ones. A circle is plotted as each segment ends so thgt 41 of radiuse about 0 will scale asp(B(0))~Ce'?.

the relative lengths of the collections of trajectory segmentSrherefore, ife(T) is the distance of closest approach to 0 of

can be compared. ~ some typical trajectory approachidg as timeT progresses,

In Fig. 4 we have sey=—0.0131, a parameter at which {hen we expece(T)~C,T°. Observe thaC,>0 is con-
periodic orbits might be expectésincep<<1). The identical  gtant on each visit to aA;, and is constant throughout the
length of successive trajectory segments concurs with thi‘irajectory for the phase resetting case. By contrast, the de-
although the trajectory is not periodic as the natural period Of:aying variable nead; will be of the form C,e*1s with

the system is longer thaf*, with successive trajectories \15<0. Thus an anomalous switch on an approaching trajec-
losing coherence at arounid =22. Note that in Figs. @) tory can occur only if

and Zb) the length of the phases shown and the period of the
periodic orbit(respectively are less tha* and so we can
observe the phase-resetting phenomenon. We note that plot-
ting Fig. 2a) for a longer time series shows evidence of a
numerical loss of coherence. This implies that anomalous switches become ever more un-

When we break this skew product structure by settindikely as approach to the cycle continues; the only circum-
v#0, we obtain attracting cycling chaos without phase-stances in which we expect them to appear is for phase-
resetting at the same parameter values as Fa. Zhe tra-  resetting cycling when the connection comes close to being a
jectory slows down as before but now after starting eacthomoclinic connection to the origin.

C T < C et
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FIG. 5. In(a) (top-lef) »=0.0, and again we see the numerical loss of coherence of the system at &feu@d. In(b), (c), and(d), v=10"*2 10°°, 1075,

respectively, and the onset of loss of coherehteoccurs at increasingly early times. The diagrams show repeated approaches to a chaotic saddle for the

original system. As in Fig. 4, each time pn| passes through 16° we setT to zero and the trajectory is plotted until the next passes through 10% the
end of the segment is marked by a circle. Fifteen successive trajectories are shown for different vallresibpicturesy= —0.014, and the slowing down

is reflected in the fact that the segments get successively longer.

D. Bifurcation diagram and approximation of periodic

orbits

slowing down behaviors. The resonance bifurcation as a
function of y and v is plotted by computing the transverse

In this section we give more numerical details of thelyapunov exponenta;, and A5 for different parameters

structure of parameter space for the systémFigure 7 is a

(recall that the resonance occurs whes |[\1o/\14=1).

bifurcation diagram showing periodic, nonperiodic, andThe black solid line shows wheye=1. The position of the

T at loss of coherence

2
1e-16

FIG. 6. The timeT of loss of coherence as a function mfThe dotted line
is T=— (log|s|+| 7))/, . The solid line takes values Gf from time series
such as in Fig. 5. Note the saturationTat T* when v reaches machine

precision.

L L
1e-14 1e-12

L L L
1e-08 1e-06 0.0001

14

L
1e-10

0.01

resonance bifurcation depends roughly linearly:om this
diagram.

We plot the bifurcation diagram by computing trajecto-
ries for different parameter values. For fixed parameters, we
compute a long trajectory and record the lendthef suc-
cessive segments defined as before to begin whenxphe
grows through 10'° and to end when the nexx;| grows
through this point. Then we compute the ratip=1,/1},_1;
for a periodic orbit we expect, to approach unity for large
k, whereas for nonperiodic behavi@tuck-on chaos in the
terminology of Refs. 1 and)4 7, fluctuates around unity.
Finally, if any of the|x;| gets too close to an invariant sub-
space(here within 10329, it becomes numerically stuck in
that subspacelX;| =0 for all time) and the numerics become
unreliable beyond this point. This case corresponds to the
trajectory being attracted to a stable cyad thus eventu-
ally approaches too close to an invariant subspameto a
very long periodic orbit which goes too close to an invariant
subspace.

In Fig. 7, to the left of the resonance line all points are
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bifurcation, a series of high period periodic attractors are
created, such that the periods of these periodic orbits appear
to accumulate at the resonance.

To study further the phenomena in the ODEs, the system
was reduced in Ref. 6 to the following approximate return
map to a neighborhood of one of the equilibria, and we con-
sider the appearance of cycling chaos within the dynamics of
this map.

0.0025 =

A. The magnetoconvection map

The map is defined on the phase space

~0.001 ' 4
0015 ~0005 {(X0.X2,¥0,Y2) e R* & |xp|=1

FIG. 7. Bifurcation diagram of periodic orbits, stuck-on chaos, and cycling or |y,|=1 and xo,yo are smal

chaos. Black points indicate periodic orbits, whdtgeo—1|, [7e=1. a5 a piecewise smooth function; this definition comprises
| 7g— 1|<0.01 (see the text for the definition af). White points represent

nonperiodic behaviofstuck-on chags where|r,o5— 1| or | 79— 1| Or | 7og four parts. Near th_e Inva”?‘nt subspdeg corresponding to
—1|>0.01. Gray points indicate cycling chaos or very long periodic orbits, X2= =1 the evolution ofk, is governed by the Lorenz map,
where the trajectory is numerically rounded into an invariant subspace/, undergoes roughly linear growth, ang, undergoes
(Ixi|=0). The solid black line marks the resonance bifurcation and therough|y linear decay:
dashed line isv=0. The initial conditions used werex{,X,,X3)
=(0.1,0.2,0.3,101%2x1071%,3x 107 1,3x 10 2,2x 10 107 %) and pe-  (Xg,X,=* 1Y0,Y2)— (SgNM Xo)( — K+ Cq|Xo|%2),
riodic orbits were examined after a transient was computed.

—X2,CaYolXo| 2,Cay2lX0| %) (7)

The exponents, and 5 are such that the average values of
?xo|52 and|xo|% are greater and less than one, respectively.
This map is valid whildxg| >|y,|. As soon as this inequality

is violated, we have awitch mapwhich takes the trajectory
close toPy:

gray, indicating the expected cycling chaos. Gray points als
encroach on the right side of the resonance [ife “non-
cycling” side), indicating very long periodic orbitor
stuck-on chagswhich accumulate on the cycling. Further to
the right, trajectories no longer get numerically stuck in in-
variant subspaces and we see a region of coexisting period{o.X2==*1Yq,Y2)

orbits and nonperiodic behavior. Observe however that for e (CaXolVal Yol %2+ Celyal ®lyol = sqriyo)
the degenerate case=0 the “false phase resetting” effect aXol Y2l Yol % = LslY2l 1Yol = S0MYo
gives a line of periodic orbits iiy,») space. Further from X (— K+ Cg|ya| %|yo| ), s0M(Y,)). 8)

resonance there are regions where all trajectories are peq'_he next component is equivalent to B@) (up to a relabel-
odic, or nonperiodic. These regions intermingle with each . .

) . Ing), andy, has Lorenz map dynamics, whitg andx, grow
other in a complicated manner.

and decay, respectively,

1. A MAPPING MODEL FROM (X0.X2,Y0,Y2= +1)—(CaXo|Yo| 2, C3Xa| yo| 3, 59My0)
MAGNETOCONVECTION X(—k+Calyol®),—v2). (9

~ We now turn to a second example of cycling chaos; ingimilarly, this map continues unfy/o|<|x,| when we apply
this case, phase resetting effects are genuine, and we are algother switch map back @, :

to demonstrate the creation of an infinite number of stable
periodic orbits at resonance, as observed in Ref. 4 for a diftX0:X2:Y0,Y2=*1)

ferent system anq conjectured. by Rgf. 6 for this system. —(SGM(Xo) ( — K+ Cg|Xa] %8| Xo| 1), SGM(X,),
In Ref. 6, nonlinear three-dimensior@D) magnetocon-
vection in a certain limit was modeled using a set of ninth- CaYolXa| *4|Xol °2, % Cs|%5| %|xo| ). (10)

order truncated ordinary differential equatif@DES. The  Erom fitting the dynamics of the map to the ODES, values for
system has symmetries which force the presence of invariaihe constants and the eigenvalues depending on a bifurcation
subspace_s; in particular the_re.are a number of invariant S“tb'arameterﬂ are given in Ref. 6. Note that this system is
spaces given by, and Py within which are chaotic invari-  gyiremely sensitive with respect to parameter values, and so
ant setsA, and Ay, respectively, and an attracting hetero- e give these to precisely the same number of decimal
clinic cycle between these two chaotic sets and two ﬁxe‘blaces as are used in o(double precisionnumerical com-

points may exist and be robust for some region in parametes ;tations. Thes exponents are determined from solutions of
space(we refer to Ref. 6 for more detajlsThis differs from the ODE:

the above-considered Lorenz equations example in that the
cycle sequentially visits equilibrium points and chaotic sets.. — ¢

A
¢ ¢
When such a cycle loses transverse stability via a resonancé  u (1+3), % M 1, M (1+89),
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FIG. 8. Basin of attraction for different periodic orbits, wijth=1.089. The
map is iterated with different initial values of lyg| (horizontal axig and
logly,| (vertical axig. Initial conditions leading to periodic orbits of period

Ashwin, Rucklidge, and Sturman

k=—0.014072345, n=0.1655.

Just as in Refs. 6 and 4 we iterate the map in logarithmic
coordinates in order to resolve the large dynamic range of the
variables.

B. Basin of attraction

This model exhibits a plethora of periodic orbits whose
periods appear to accumulate as the resonance bifurcation is
approached, as discussed in Ref. 6. These periodic orbits
appear to have interesting basins of attraction; Fig. 8 shows
an example of a numerically obtained bifurcation diagram.
We iterate the map with a grid of initial conditions in |gg
and lody,|. Here 5=1.089, and we plot different shades to
represent the different periods of periodic orbits. All initial
conditions shaded in the gray region on the right of the figure
finish up at periodic orbits of period 10plotted as the fur-

102 are plotted in gray in the rightmost region. The period-102 orbit liesthest top-right black circle in the figu)r.eNote that the peri-

clustered around the top right black circle, on the edge of the basin boun
ary. Four other period&32, 344, 410, 460are represented by increasingly

dark shades, together with black dots representing the periodic orbits th

%bdic orbits of period 102 are not all absolutely identical, but
are the same to one or two decimal places. Other periods

appear to be close to the edges of their basins of attraction. White in the toplotted here are 232, 344, 410, 460, in other shades of gray.
right corner means that trajectories escape, while white in the bottom lefThe basins shown in Fig. 8 are only a small part of a much

corner indicates that trajectories mainly go to even longer periodic orbits.

= )\+ ,

where the eigenvalues,, A *, and\, are computed from
the ODEs as

A,=—0.059697, \"=0.29606, \, =—0.048978.

_Bu
==,

A

Oy 5:}\—+: 06

Finally the constants are given by
C,=-0.12449854, C,=0.271996 31,
C;=0.167 91468,

C,4=609.64770, C5=0.86514592,
Ce¢=0.001597 3505,

more complicated picture—periodic orbits for other periods

exist and the full basin diagram has many intermingled ba-
sins. Note that the periodic orbits lie on a straight line in

log|yol-logly,| space, and the striped basin boundaries. The
presence of a scattering of white throughout most of the ba-
sins, especially to the right of the figure, suggests that their
basins are pseudo-riddI&.

Because of the pseudo-riddled nature of the basins of
attraction, these periodic orbits appear fragile in the sense
that altering parameters, initial conditions, or perturbing the
model very slightly can cause a trajectory close to a periodic
orbit to leave the vicinity of the invariant subspaces and tend
to a low period attracting state as illustrated in Fig. 9. Each
plot shows a time series of lpg| for the fixed parameters
above, and3=1.088. Three initial conditions are fixed as
(x xP vy = (k+1,1,10%9. Figure 9a) has yY
=10 3% and this initial condition leads to a stable periodic

log |xo

-160 T

-180 | 1

-200

(a)

. L
1000 1500
(2

-200

i :
1000 . 1500

FIG. 9. Time series showing the fragility of periodic orbits in the magnetoconvection m@iéin initial value of y)=10"3% and an attracting periodic

orbit. (b) Identical parameters and initial conditions but now the iniyigll=10"3%,

orbit far from the invariant subspaces.

resulting in the periodic orbit being attracted to a low period periodic
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g | el =1ele?”l  and logyg' D>loglx)" Y|=log|f™"Y(x)| [i.e., we assume a
log 20" = log |s] 1og!y(z)|—loglz(2l switch occurs at precisely theN¢ 1)th iteratd. Here fO)
tog lyg” | tog 4] = log 3| represents th¢th iterate of the Lorenz map. While iterating
map (7) we usey,— C,Yo|Xo| %2 which in logarithmic coor-
tog {?) ol —ogy?  dinAtES is
loglyol—loglyol +109(C5) + &; log|xo
i=0 i :IA’rf v

Hence aftek iterations we have

FIG. 10. Schematic diagram of half a periodic orbit for the nt@p-(10).

There areN—1 iterates of map7) followed by a single iterate of ma(®).

By matching the final and initial states we can construct an approximationto  log|y{|=log|y{”)| + k(log|C,| + 5,Ay),
a long-period orbit of the map.

whereA, = (1/n) =1'§ log|f(x)|. Now lody§”|=log|x}"| for
a periodlc orbit. Observe that 16¢"¥| is computed from one
iterate of map(8): xo— C4Xo|Y2| *|yo|?2 so that

orbit. Figure gb) is for the same system, but now hgs’

=103%2 Here convergence to the periodic orbit is not found
and the trajectory leaves the vicinity of the invariant sub-
spaces. A similar effect can be observed by incorporating a
small perturbation, e.g., te. logly®| = log|x{¥| = log| C4| + log| x|

+ 84 loglyS" Y|+ S,loglySN Y|

C. Constructing approximate periodic orbits

The map exhibits a form of “phase-resetting” due to the
fact that thex, or y, variable always starts at « for any  giving
connecting orbit, since for any such orbip=0 initially.
This corresponds to starting on the unstable manifold of an

equilibrium point in the original ODEs. As found in Ref. 4, log|ly{¥|=log|Cy| +log|x]N V| + 8, loglyN )|
resonance near a phase-resetting cycle can result in creation (N-1)
of a large number of stable periodic orbits. For the remainder +8;loglyy. “[+k(log|Col+ 82A1).  (11)

of this section we aim to construct these periodic orbits near
resonance. This gives some insight as to why there are so
many simultaneously stable periodic orbits in Fig. 8. Similarly,

We follow the method of Ref. 4 and use Fig. 10 as a
guide. In this figure we plot only half a period and assume
that .the two halves are ideptical up to a 'relabeling. More  joglyN Y| =logly$?| + (N—1)(log|Cs| + S35An_1)
precisely, we assume that &t0, we have just made one
iterate of map(10), resetting so that we are close to tAg
subspace. Thus we have initial values|ij=log|«] (this is
taken to be exact as we need “phase-resetting” for periodi@"
orbits to appear logx|=0, logy{| and lody). There fol-
low N—1 iterates of map(7), during which time logy,|
grows and lofy,| decays(but roughly linearly, while x,
undergoes iterates of the Lorenz map, andxdpgemains at + 55 Iogly(’\"l)|
zero. AfterN—1 iterates we assume g has grown suffi- 0
ciently so that lofyd' > log|x* )|, and then a switch oc-
curs, in the form of a single iterate of m&®). If we assume
the two halves of a periodic orbit are identical, then weafter one iterate of magg). Combining these two expres-
should find(after relabeling sions gives

loglx§|=logly”|,  loglx$"| =loglys”),

logly$”’| = log|x$V| = log| Cs| + Sslogly$" )|

logly$¥ Y| =log|Cs| + Ssloglys" )|+ s5logly N Y
logly§V|=log|x¥| =log| x|, loglyd¥|=log|x{?)|=0. alyz" | =log|Cs|+ Ssloglys™ 7|+ Szloglyy |

+(N=1)(log|Cs| + S3AN-1)

For a periodic orbit we wish to find logf 2| and lody{' )|
such that
logly§" 2| <log|x{" 2| =log| fN~2)(x)], and after rearranging we get
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(N—1)(log|Cs|+ 83Ay_1) +log|C5| + 85 logly§ |

(N— 1)|
1_65

loglys

Substituting this into Eq(11) gives
logly§?| =log|C4| +logIx§" ™| + 5, logly§" ™| +k(log| Cal + 5,A4)

5 (N~ 1)(log|C4| + 83Ay-1) +10g| Cs| + 85 log|y§* Y|

N 1— 55 (12)

Settingk=N—1 now enables us to extract an expression forage A... This leads to straight line equations for both
logly®~Y): logly$¥~ 2)| and lody(" Y| with gradients and intercepts that
are functions only of3.

logly§' Y| =[(1— 85)(log|C4| +log|x$" V| + (N—1)
X (log|Ca| + 8,AN-1)) + 84((N—1)

D. Computing a bifurcation diagram
X (log|C3| + 85An-1) +10g|Cs|) 1/[ (1

Figure 11 shows the curves of lg§' 2| (dark and
— 65)(1— 62) — 8364] loglyd"Y)| (light) for three values of3: (a) B=1.0887% ;,

(b) B=1.0896= ., (c) B=1.091>B.. Also plotted are the
and this can be substituted into EG-2) with k=N—2 to  Lorenz iterates log™ Y(«)| (black), together with the
obtain an expression for I6¢" ?)|. Both expressions are straight line approximations to the curvésiack solid and
long, but simply rely on being able to computeiterates of  dashed lines We expect a periodic orbit whenever the black
the Lorenz map. Each is computed numerically, and comeurve is between the light and dark gray curves. As in Ref. 4,
pared with iterates of (k) (exactly the samé\ iterates of  for B<j,, the overall positive gradient of the two curves
the Lorenz map In a similar way to Ref. 4 we look for takes them away from the Lorenz iterates after some cross-
values ofN which are good candidates for a periodic orbit. ings, here neaN= 1000, indicating that we may expect pe-
In this case, this means values Mf for which quy‘N 2)| riodic orbits of period around 1000, but that much longer
<log|fN~ 2)(K)| and lody§'™ 1)|>Iog|f(N D(k)|. Our expres- periodic orbits should not be expected. ot B, there is no
sions for logy(" 2| and lodyJ'"?| can be simplified further overall linear growth of the curves, but increasing chaotic
by replacing both the N—1)-averageAy_,, and the N fluctuations(driven by theN Ay _; term) ensure that we have
—1)th iterate Io@é’“’lﬂ with the long-term(ergodig aver- repeated crossing of the Lorenz iterates, for arbitrarily high

e "'nm"a'i""
e |W"‘T Tl m...uuuuuu -Au Hﬂwaﬁu\ ) FIG. 11. Three plots of |dg§)N*2)‘
(dark and lody$'™Y)| (light) crossing
! the chaotic evolution of Igg™~Y(«)|
0 500 1000 1500 2000 2500 3000 3500 4000 (black. Solid and dotted lines indicate
L the linear approximations to these
curves. Plot(a) is for B<p., and we
! have several crossings before the over-
NW'WT’""‘»-« S AAURRE M"W‘ Ty all linear growth takes the curves away
i ' lw Tl IV from the Lorenz iterates. Plgb) is for
B= B, for which there is no overall
growth, and we get repeated crossings
! L L - L L L as the chaotic fluctuations of the
0 500 1000 1500 2000 2500 3000 3500 4000 curves increase. Fofc) we have 8
> B. and we get relatively short peri-
odic orbits indicated before the nega-
R iy O —— tive gradient again takes the curves
1 LT T '--~u-«-.i* Nikkal away from the Lorenz iterates.
-10 B q Jof meﬂﬁfwﬁ' ~~~~~~~~~~~~~~~~~~~~ i g

Arons

LuLnuy
WO RNO .

5 T T T T T T T

25 (c)
_30 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
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20000

approximation of stable periodic orbits that appear near reso-
nance, and investigate the structure of the basins of attraction
of periodic orbits. For the coupled Lorenz system we discuss
the appearance of false phase-resetting for the cas® By
introducing a bidirectional coupling we destroy the appear-
ance of this false phase-resetting and can estimate the time to
loss of phase coherence over successive approaches to the
chaotic saddles. For the first system we also argue that al-
though the chaotic saddles contain points of higher isotropy,
and because of this anomalous connections, the rate of ap-
proach to invariant subspaces is so fast that the anomalous
connections will typically not be seen with the attractor.

By contrast, the magnetoconvection map exhibits genu-
ine phase-resetting, owing to the presence of equilibria in the
cycle, as investigated in Refs. 5 and 8. We suspect that gen-
FIG. 12. Bifurcation diagram of periodic orbits for the méfH—(10) com- erally speaking, cycling chaos between sets that include
puted by cpn;tructiqg approximate periodic orbits as in Fig. 11. The period%qu”ibria will contain the phase-resetting connections
of the periodic orbits get longer as the resonance is approa@ted, . . .
=1.0896). Dots represent predicted periodic orbits, and the overlaid hori—needed to see Iong-pgrlod perIOdIC orbits Close to resona_nce‘
zontal bars are actual periodic orbits. The black outlines are simply thdn the absence of this we expect nonresetting connections
envelope of the predicted dotthe first and last crossings of the curyes and stuck-on chaos after resonance.
showing of accumulation of the periodic orbits as peribésoo. One might ask Why cycIing attractors have not been ob-
served much in the literature. We tend to think that although
such attractors are not very common, there may well be cases
where they have been observed, but then dismissed as being

; %o complicated.” We expect our ideas to be applicable to a
away from the Lorenz iterates. range of examples, in particular to coupled cell systems

Note that there is a difference between these figures ang. 9 ples, P P y f

. . . Where there has been interest and observation of such
the corresponding ones in Ref. 4; in that paper the curveé

15000

10000

5000

(O e L
1.086 1.087 1.088  1.089 1.09 1.091 1.092 1.093 1.094 1.095 1.096

B8

periods. ForB> B, we have relatively short periodic orbits
indicated before the negative gradient again takes the curv

) . ttractors»1° Coupled cell systems appear naturally in a va-
begin below the threshold required to construct a return, an P Y bp y

) e ... .. fety of contexts; an important example is model networks of
so we are guaranteed crossings on the “periodic orbit S|deC upled neurons which has motivated work observing het-
ggtgi(;etﬁznrig(;?aigg ;Vr? tﬁ;e“gu;irr?nfes?(?etoHZ?\e/ethloge V(\)/_%roclinic cycles between cluster states, e.g., Refs. 11 and 12.

€Yo ycling ' € OPPOH e of the main obstructions to a good understanding of the
site is true, so that far from resonance on the periodic S'dedynamics of such high-dimensional coupled systems is the
no periodic orbits are indicated, whereas short periodic orbits

. . Do L relative absence of a clear and useful classification of the
on the cycling side are always indicated. This is in agreement

: . . : . .~ attractors that one can typically find, and these systems are
with the numerically computed bifurcation diagram, in . .
. . - . so complicated that a natural response is to abandon any
which a collection of short periodic orbits appear for all pa-

rameter values beyond the resonance, and suggests that ﬁl%empt at a systematic understanding. Our results have
. y . S 99 P ... opened up ways of analyzing these kinds of systems, and the
resonance bifurcation cycling chaos in this map is “subcriti-

cal.” recognition that cycling chaos can occur in such systems is a

A bifurcation diaaram can be computed in the same wa significant step towards a better classification.
9 P y Finally, our investigations indicate that numerical simu-

as in Ref. 4;Ns,el)e Fig. 12. F(ﬁfgaCh val.useculae compute the lation of these robust attractors is very difficult. Not only is
curves logy? | and lody 2| and find values oiN for . :
careful choice of grid necessary to resolve the very small

. . - . Nil) -
th|cr: t:,:eg lie orn e';h?r Sllzd? Ofrlr?tj . ('r?" Tthesle prCi)lréltiS rquantities to obtain correct qualitative behavior even for a
giti ?o?med basi? ?a}fcino fﬁe ?u”CO sr::ms\(/)vit’ha; uﬁ dp(?f icr)witi(;lo relatively small time, but also the appearance of periodic
. oy lerating sy 9 . orbits with complicated and as yet unexplained basin struc-
conditions is overlaid in dark points. The envelope contain-

ing the approximated periodic orbits is plotted as a solidture seems to be possible. In particular, the lack of any hy-

i o . i erbolicity of the cycling attractor as a whole means that
black line, cpmputed by. fmdmg the first an.d Ias_t crossings 0f’;)\ppeals to the shadowing property for chaotic attractors will
the Lorenz iterates. This gives an approximation of the rat

; . %e in vain.
of approach to the accumulation of periods at resonance.
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