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Nonergodic attractors can robustly appear in symmetric systems as structurally stable cycles
between saddle-type invariant sets. These saddles may be chaotic giving rise to ‘‘cycling chaos.’’
The robustness of such attractors appears by virtue of the fact that the connections are robust within
some invariant subspace. We consider two previously studied examples and examine these in detail
for a number of effects:~i! presence of internal symmetries within the chaotic saddles,~ii !
phase-resetting, where only a limited set of connecting trajectories between saddles are possible, and
~iii ! multistability of periodic orbits near bifurcation to cycling attractors. The first model consists
of three cyclically coupled Lorenz equations and was investigated first by Dellnitzet al. @Int. J.
Bifurcation Chaos Appl. Sci. Eng.5, 1243–1247~1995!#. We show that one can find a ‘‘false
phase-resetting’’ effect here due to the presence of a skew product structure for the dynamics in an
invariant subspace; we verify this by considering a more general bi-directional coupling. The
presence of internal symmetries of the chaotic saddles means that the set of connections can never
be clean in this system, that is, there will always be transversely repelling orbits within the saddles
that are transversely attracting on average. Nonetheless we argue that ‘‘anomalous connections’’ are
rare. The second model we consider is an approximate return mapping near the stable manifold of
a saddle in a cycling attractor from a magnetoconvection problem previously investigated by two of
the authors. Near resonance, we show that the model genuinely is phase-resetting, and there are
indeed stable periodic orbits of arbitrarily long period close to resonance, as previously conjectured.
We examine the set of nearby periodic orbits in both parameter and phase space and show that their
structure appears to be much more complicated than previously suspected. In particular, the basins
of attraction of the periodic orbits appear to bepseudo-riddledin the terminology of Lai@Physica
D 150, 1–13~2001!#. © 2004 American Institute of Physics.@DOI: 10.1063/1.1769111#

Robust heteroclinic attractors between saddle-type equi-
libria or periodic orbits have been observed to arise as
attractors in a number of systems, both theoretically and
in practical models. More recently, it has been noticed
that robust heteroclinic attractors may appear between
saddles that are chaotic: so-calledcycling chaos.1–3 How-
ever, there is still a poor understanding of the dynamics
of such attractors due to the fact that the chaotic dynam-
ics on the invariant subspace may lead to a variety of
transverse behaviors of trajectories and indeed consider-
able difficulties for performing qualitatively accurate nu-
merics. In this paper we focus on identifying some new
phenomena in existing examples of cycling chaos. This
includes the appearance of phase-resetting, anomalous
connections caused by the presence of points of higher
symmetry within the saddles, and resonance bifurcations
of these attractors to form periodic orbits.

I. INTRODUCTION

In Ref. 2 cycling chaos was considered for three Lorenz-
type systems coupled in a ring. This system was found to
have attractors that consist of heteroclinic cycles between
three symmetry-related chaotic saddles, each of which is a
Lorenz attractor within the three-dimensional invariant sub-
space such that the other two systems are fixed at the origin.
The chaotic saddles in Ref. 2 are not isolated from each
other: they contain a common equilibrium at the origin. This
means that they cannot be modeled in the usual analogy with
a heteroclinic cycle between equilibria and there areanoma-
lous connectionsbetween the chaotic saddles caused by
close approaches to the origin. These have not previously
been permitted in analyses of cycling chaos: see, for ex-
ample, Refs. 1 and 3. However, this is a manifestation of a
more general phenomenon: chaotic saddles in symmetric
systems can~and often do! contain points with more symme-
try than typical points within the saddle, i.e., points with
higher isotropy. These higher isotropy points may be un-
stable fixed points or equilibria~as in the case for the Lorenz
system! or even chaotic saddles~as in the case of a chaotic
attractor that is ‘‘stuck on’’ to an invariant subspace. In either
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case the presence of higher isotropy points leads to a com-
plication in the structure of the chaotic saddle and prevents
the possibility of choosing a global section to the connec-
tions.

One aspect we investigate is the effect of points of
higher isotropy; in fact we argue in Sec. II C that anomalous
connections will typically not appear within the attractor
even when they are present. This means that, at least for the
systems considered, the presence of points with higher isot-
ropy in the chaotic saddles does not seem to disturb the order
of visiting the chaotic saddles except in exceptional cases.

Another dynamical effect that can appear in cycling
chaos is that ofphase-resetting connections4 or selection of
connections.5 In those papers phase-resetting connections ap-
peared due to the presence of a saddle equilibrium with a
one-dimensional unstable manifold as a node of the hetero-
clinic cycle. We were surprised to find a similar effect for the
model of Ref. 2 even though each node is a fully chaotic
attractor and hence the set of connections between adjacent
saddles must have dimension strictly larger than one. We
resolve this paradox by noting that the phase-resetting effect
is simply because the chosen form of coupling~unidirec-
tional! gives a skew-product factorization of the system
within the subspace containing the connections. On includ-
ing more general bi-directional coupling, this phase-resetting
disappears. We call this effectfalse phase-resetting.

A final aspect of these attractors that we consider in this
paper is the creation of cycling attractors at resonance bifur-
cations. As noted in Refs. 4, 5, and 6, this bifurcation seems
to be associated with the appearance of a very large number
of stable periodic orbits that shadow the orbits within the
cycling chaos. We show that this effect also appears to be
present in both models we consider, and moreover the struc-
ture of the basins of attraction of the resulting stable periodic
orbits appears to be pseudo-riddled.7

The paper is structured as follows: in Sec. II we examine
an example introduced by Dellnitzet al. in Ref. 2 of three
cyclically coupled Lorenz attractors. We characterize the rate
of attraction to the cycling attractor by means of transverse
Lyapunov exponents along the lines of Ref. 1. We illustrate
that the presence of points of higher isotropy does not typi-
cally result in any major changes in observed numerical be-
havior; however, it does mean that the footprint of transverse
Lyapunov exponents as considered in Ref. 1 always shows
totally unstable measures within the saddle and complicates
the geometry of the connections. For this example we can
obtain a simple characterization of the footprint, discuss the
appearance of false phase-resetting and the absence of
anomalous connections. In Sec. III we return to a map de-
rived as a low dimensional model of a magnetoconvection
problem in Ref. 6. Near a resonance of the cycling attractor,
we find that the basin of attraction of the periodic orbits has
a complicated pseudo-riddled structure. We demonstrate how
one can estimate the location of periodic orbits near reso-
nance for this map. Finally, we comment on some aspects of
the classification of general attractors of the type investigated
here.

II. THREE CYCLING LORENZ ATTRACTORS

We consider a system of three coupled Lorenz systems
which is a slight generalization of the system studied in Ref.
2:

ẋ15g~x1!1h~x1 ,x2 ,x3!, ẋ25g~x2!1h~x2 ,x3 ,x1!,

ẋ35g~x3!1h~x3 ,x1 ,x2!, ~1!

wherexjPR3. We writexi5(xi ,yi ,zi) then we assume that
each cell has Lorenz dynamics in the absence of coupling
given by

g~x,y,z!5~s~y2x!,Rx2y2xz,2bz1xy!, ~2!

with s515, R558, andb52.4 and we set the coupling
between cells to be

h~x1 ,x2 ,x3!5gux2u2x11nux3u2x1 , ~3!

meaning that there is a coupling of strengthg from i to
i 21 and one of strengthn from i to i 11. This system has a
symmetry of the form

F~x1 ,x2 ,x3!5~x2 ,x3 ,x1!

and has internal~local! symmetries of the formk1,2,3 where

k1~x1 ,x2 ,x3!5~2x1 ,2y1 ,z1 ,x2 ,x3!

FIG. 1. ~a! Table of invariant subspaces and~b! schematic illustration of the
invariant subspaces of the system of three coupled Lorenz systems with
cycling attractors. The chaotic saddlesAi ~denoted by thick lines! are within
the Si and intersect at the origin withinO.
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and similarly fork2,3. The symmetries of the system force
the invariance of some subspaces as in Fig. 1. Note that the
coordinate planes@P125(x1 ,x2,0), etc.# and axes @L1

5(x1,0,0), etc.# are invariant, and are subsets of the invari-
ant subspaces given in the table (Pi j ,Ni j andLi,Si). How-
ever, the invariance of these subspaces is due to the form of
the dynamics~a fixed point at the origin! rather than just a
symmetry.

On the invariant subspaceP12 the dynamics reduces to
the six-dimensional system

ẋ15g~x1!1gux2u2x1 , ẋ25g~x2!1nux2u2x2 ,

and so in particular whenn50 ~as in Ref. 2! the dynamics is
a skew product over the dynamics withinS2 . An effect of
this is that although there are many trajectories from a saddle
in S1 to one in S2 they all project to the same trajectory
within S2 . As a result the dynamics projected ontoS2 ap-
pears to be phase resetting although in the sense of Ref. 5 it
is not. In other words, the casen50 is degenerate for the
dynamics of a system with this symmetry.

We first reproduce in Fig. 2~a! the results of Ref. 2 for
n50, choosingg520.014 such thatr51.1135.1 in Eq.
~6!. Here we have an attracting heteroclinic cycle between

FIG. 2. Time series for trajectories of the system~1! for coupled Lorenz systems, withn50. In ~a! g520.014 and we observe slowing down cycling chaos
as in Ref. 2 whereas in~b! g520.012 there is an approximately periodic orbit with period around 11 that is observed as an attractor.
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chaotic saddles, with cycling chaos characterized by a slow-
ing down of the trajectory around the cycle. The cycling
attractor consists of chaotic attractorsAi for the system re-
stricted to the subspacesSi and connecting orbits. For a dif-
ferent value ofg520.012, we obtain a periodic orbit@Fig.
2~b!#, demonstrating the resetting nature of the connection
between the chaotic sets.

A. Transverse Lyapunov exponents and the footprint
for chaotic saddles

In the absence of any coupling (g5n50) the transverse
Lyapunov exponents for the saddlesAi,Li,Si are easy to
compute. In both theN12 andN13 directions the most posi-
tive exponent for the origin is the most positive eigenvalue
of

Dg~0!5S 2s s

R 21D
namely, for the parameterss515, R558, b52.4 used by
Ref. 2 and ourselves throughout this section, we havel̃12

5l̃13522.315 015l̃. We exploit the special structure of the
coupling by h to give an explicit formula for the largest
Lyapunov exponents given any ergodic invariant measurem
supported inS1 . This is

l135l̃131gE uxu2 dm~x!, l125l̃121nE uxu2 dm~x!.

~4!

In order to verify this, first note that the linearization trans-
verse at (x1,0,0)PS1 in the directionN13 is given by the
linear cocycle

ẏ5~Dg~0!1gux1u2!y. ~5!

We claim that the most unstable direction is simply given by
the eigenvectore corresponding to the most unstable eigen-
value ofDg(0). To see this, note that any solution of Eq.~5!
has the formy(t)5ea(t)z(t) whereȧ5gux1u2 andz satisfies
ż5Dg(0)z. Hence the most unstable direction for Eq.~5! is
given by e and the Lyapunov exponent in this direction is
l135l̃1g^ux1u2&. Applying the ergodic theorem for the
measurem ~and the same argument forl12) gives Eq.~4!.

The form of Eq. ~4! means one can easily compute
(l12(m),l13(m)) for any measurem in the set of ergodic
measures supported on the chaotic saddleA1 in S1 . The set
of points obtained was termed thefootprint of transverse
Lyapunov exponents in Ref. 1 and this can be used to char-
acterize the attractiveness or otherwise of the heteroclinic
cycle. We say an ergodic measurem undergoes a resonance
bifurcation when l13(m)/l12(m)521. By Eq. ~4! this
means that in~g,n!-parameter space the resonance bifurca-
tion occurs whereg1n522l̃/^ux2u&. If we write

r5ul12/l13u, ~6!

then the cycling is attracting in the caser.1 and repelling
for r,1. Figure 3 shows the numerically computed footprint
for this system atg520.013 25 and a range ofn. For the
caseg520.013 24 andn50 this is very close to resonance

for the natural measure; the Lyapunov exponents for this
measure are given by the crosses in the diagram.

The footprint of transverse Lyapunov exponents for the
cycling Lorenz saddles is never contained within one quad-
rant as was the case in Ref. 1. This is due to the presence of
a nontrivial intersection of the chaotic saddles. More pre-
cisely (l̃,l̃) in the positive quadrant~off the scale in Fig. 3!
is in the footprint simply because there is a Dirac measure at
the origin common to allAi . As a consequence, the set of
connecting orbitsC12 that consist of points inN12\(S1øS2)
whosev anda limits are contained inS1øS2 will not con-
sist purely of a closed set of trajectories fromS1 to S2 ; the
cycle isdirty in the terminology of Ref. 1.

B. Numerical loss of coherence and phase-resetting

As discussed in Refs. 4 and 5, a cycle with only one
trajectory in the connections between saddle equilibria will
mean that connecting trajectories reset to asymptotically the
same value on entering a saddle. This means that we observe
identical segments of trajectory during the active phases. For
the system here, we do not have this as the saddles are cha-
otic, however, in the special case thatn50, trajectories ap-
pear to follow identical paths~see Fig. 2! due to the skew
product form of the coupling; we refer to this as ‘‘false
phase-resetting.’’

Before breaking the skew product structure by setting
nÞ0, we discuss the issue of numerical loss of coherence.
Just as chaotic systems do not permit their full trajectories to
be computed numerically without loss of precision from their
initial conditions, so in this system of coupled Lorenz sys-
tems we cannot expect to see periodic orbits of arbitrarily
long period, or expect phase setting of active trajectory seg-
ments to persist for arbitrarily long phases of an attracting
cycle. Instead, sensitive dependence on initial conditions

FIG. 3. The footprint of transverse Lyapunov exponents (l13 ,l12) for the
coupled Lorenz systems withg520.013 25 and a range ofn; from bottom
to top the footprint is given starting atn520.0002 and increasing in steps
of 0.0001. The Lyapunov exponent for the natural measure is at the point
marked by the cross. Thel1252l13 line is shown and there is attracting
cycling chaos when the cross lies below this line. The footprint is the form
of a line rather than a region with polygonal boundary because the depen-
dencies of the Lyapunov exponents onx1(t) are identical.
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within the chaotic saddle means that by the time numerical
round-off errors have grown to a significant size, we may be
shadowing a number of different trajectories. We called this
effect numerical loss of coherencein Ref. 5.

This effect is present in the system~1!. The effective
time horizon can be estimated asT* ;2 log(h)/l1 whereh
is the machine accuracy andl1 is the most positive internal
Lyapunov exponent. For the Lorenz equations with the given
parameters this exponent isl1'1.433, and so for double
precision machine accuracy (h510214) we can only expect
periodic orbits of up to lengthT* '22. Figure 4 demon-
strates this loss of coherence in a graphical representation
used repeatedly in this paper. A single trajectory for the sys-
tem is computed. Each time anni5uxi u passes through 10210

with ṅi.0 we setT to zero and the segment of trajectory is
plotted until the nextuxj u grows through 10210. This method
superimposes each active phase of the trajectory on the pre-
vious ones. A circle is plotted as each segment ends so that
the relative lengths of the collections of trajectory segments
can be compared.

In Fig. 4 we have setg520.0131, a parameter at which
periodic orbits might be expected~sincer,1). The identical
length of successive trajectory segments concurs with this,
although the trajectory is not periodic as the natural period of
the system is longer thanT* , with successive trajectories
losing coherence at aroundT* 522. Note that in Figs. 2~a!
and 2~b! the length of the phases shown and the period of the
periodic orbit~respectively! are less thanT* and so we can
observe the phase-resetting phenomenon. We note that plot-
ting Fig. 2~a! for a longer time series shows evidence of a
numerical loss of coherence.

When we break this skew product structure by setting
nÞ0, we obtain attracting cycling chaos without phase-
resetting at the same parameter values as Fig. 2~a!. The tra-
jectory slows down as before but now after starting each

active phase in the same way it diverges after a time signifi-
cantly less thanT* .

Figure 5 shows trajectory segments plotted in the same
way as Fig. 4. Fifteen trajectory segments are shown in each
plot. In each plotg520.014, and the trajectory segments
get successively longer, as the trajectory approaches the at-
tracting cycle. The four plots show increasing values ofn. In
~a!, n50, and the phase-resetting is complete up to the point
at which numerical loss of coherence causes the trajectory
segments to separate~as in Fig. 4!. Figures 5~b!, 5~c!, and
5~d! shown510212, 1029, 1026, respectively. The onset of
loss of coherence occurs earlier asn increases.

Similar to the computation ofT* above, the timeT̂ at
which the skew-product-breaking term causes the separation
of trajectory segments is given byT̂;2 log(n)/l1 ~recalll1

is the most positive internal Lyapunov exponent!. For small
values ofn the numerical loss of coherence in the system
begins to dominate this agreement. We combine the two es-
timates to give the time at which loss of coherence occurs:

T̃;2
log~ unu1uhu!

l1
.

This line is plotted in Fig. 6~dotted line!, along with~solid
line! values ofT̃ at which coherence is seen to be lost for
different values ofn ~this was obtained from time series like
Fig. 5, spottingT̃ by eye!.

C. Absence of anomalous connections

Although the saddlesAi all contain the origin~and hence
there are connecting orbits that do not follow the order
A1°A2°A3°A1) in practice we never seeanomalous
switchescaused by close approaches to 0PAi . We explain
this by reference to the expected recurrence times to a neigh-
borhood of the origin within the attractor.

We can estimate the likely distance of closest approach
of a trajectory to 0 as follows. Let 1/d be the dimension at 0
of the natural measurem onAi (d.1/3); then the measure of
a ball of radiuse about 0 will scale as:m(Be(0));C̃e1/d.
Therefore, ife(T) is the distance of closest approach to 0 of
some typical trajectory approachingAi as timeT progresses,
then we expecte(T);C1T2d. Observe thatC1.0 is con-
stant on each visit to anAi , and is constant throughout the
trajectory for the phase resetting case. By contrast, the de-
caying variable nearAi will be of the form C2el13T with
l13,0. Thus an anomalous switch on an approaching trajec-
tory can occur only if

C1T2d,C2el13T.

This implies that anomalous switches become ever more un-
likely as approach to the cycle continues; the only circum-
stances in which we expect them to appear is for phase-
resetting cycling when the connection comes close to being a
homoclinic connection to the origin.

FIG. 4. Numerical loss of coherence for the system 1 withn50. Each time
anni5uxi u passes through 10210 with ṅ1.0 we setT50 and the trajectory
is plotted until the nextuxj u passes through 10210; the end of the segment is
marked by a circle. Six successive segments of approach are shown here
after transients have been resolved. The parameters are as before but with
g520.0131. Note that although the segments are all the same length, in-
dicating periodic-type behavior, there is a loss of coherence after aboutT*
522 time units. This is to be expected due to the positive internal Lyapunov
exponent of the Lorenz system overcoming finite machine precision.
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D. Bifurcation diagram and approximation of periodic
orbits

In this section we give more numerical details of the
structure of parameter space for the system~1!. Figure 7 is a
bifurcation diagram showing periodic, nonperiodic, and

slowing down behaviors. The resonance bifurcation as a
function of g and n is plotted by computing the transverse
Lyapunov exponentsl12 and l13 for different parameters
~recall that the resonance occurs whenr5ul12/l13u51).
The black solid line shows wherer51. The position of the
resonance bifurcation depends roughly linearly onn in this
diagram.

We plot the bifurcation diagram by computing trajecto-
ries for different parameter values. For fixed parameters, we
compute a long trajectory and record the lengthsl i of suc-
cessive segments defined as before to begin when oneuxi u
grows through 10210 and to end when the nextuxj u grows
through this point. Then we compute the ratiotk5 l k / l k21 ;
for a periodic orbit we expecttk to approach unity for large
k, whereas for nonperiodic behavior~stuck-on chaos in the
terminology of Refs. 1 and 4!, tk fluctuates around unity.
Finally, if any of theuxi u gets too close to an invariant sub-
space~here within 102320), it becomes numerically stuck in
that subspace (uxi u50 for all time! and the numerics become
unreliable beyond this point. This case corresponds to the
trajectory being attracted to a stable cycle~and thus eventu-
ally approaches too close to an invariant subspace!, or to a
very long periodic orbit which goes too close to an invariant
subspace.

In Fig. 7, to the left of the resonance line all points are

FIG. 5. In ~a! ~top-left! n50.0, and again we see the numerical loss of coherence of the system at aroundT* 522. In ~b!, ~c!, and~d!, n510212, 1029, 1026,
respectively, and the onset of loss of coherenceT* occurs at increasingly early times. The diagrams show repeated approaches to a chaotic saddle for the
original system. As in Fig. 4, each time anuxi u passes through 10210 we setT to zero and the trajectory is plotted until the nextuxj u passes through 10210; the
end of the segment is marked by a circle. Fifteen successive trajectories are shown for different values ofn. In all picturesg520.014, and the slowing down
is reflected in the fact that the segments get successively longer.

FIG. 6. The timeT̃ of loss of coherence as a function ofn. The dotted line

is T̃52(logunu1uhu)/l1 . The solid line takes values ofT̃ from time series

such as in Fig. 5. Note the saturation atT̃5T* when n reaches machine
precision.
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gray, indicating the expected cycling chaos. Gray points also
encroach on the right side of the resonance line~the ‘‘non-
cycling’’ side!, indicating very long periodic orbits~or
stuck-on chaos! which accumulate on the cycling. Further to
the right, trajectories no longer get numerically stuck in in-
variant subspaces and we see a region of coexisting periodic
orbits and nonperiodic behavior. Observe however that for
the degenerate casen50 the ‘‘false phase resetting’’ effect
gives a line of periodic orbits in~g,n! space. Further from
resonance there are regions where all trajectories are peri-
odic, or nonperiodic. These regions intermingle with each
other in a complicated manner.

III. A MAPPING MODEL FROM
MAGNETOCONVECTION

We now turn to a second example of cycling chaos; in
this case, phase resetting effects are genuine, and we are able
to demonstrate the creation of an infinite number of stable
periodic orbits at resonance, as observed in Ref. 4 for a dif-
ferent system and conjectured by Ref. 6 for this system.

In Ref. 6, nonlinear three-dimensional~3D! magnetocon-
vection in a certain limit was modeled using a set of ninth-
order truncated ordinary differential equations~ODEs!. The
system has symmetries which force the presence of invariant
subspaces; in particular there are a number of invariant sub-
spaces given byPx andPy within which are chaotic invari-
ant setsAx and Ay , respectively, and an attracting hetero-
clinic cycle between these two chaotic sets and two fixed
points may exist and be robust for some region in parameter
space~we refer to Ref. 6 for more details!. This differs from
the above-considered Lorenz equations example in that the
cycle sequentially visits equilibrium points and chaotic sets.
When such a cycle loses transverse stability via a resonance

bifurcation, a series of high period periodic attractors are
created, such that the periods of these periodic orbits appear
to accumulate at the resonance.

To study further the phenomena in the ODEs, the system
was reduced in Ref. 6 to the following approximate return
map to a neighborhood of one of the equilibria, and we con-
sider the appearance of cycling chaos within the dynamics of
this map.

A. The magnetoconvection map

The map is defined on the phase space

$~x0 ,x2 ,y0 ,y2!PR4 : ux2u51

or uy2u51 and x0 ,y0 are small%

as a piecewise smooth function; this definition comprises
four parts. Near the invariant subspacePx corresponding to
x2561 the evolution ofx0 is governed by the Lorenz map,
y0 undergoes roughly linear growth, andy2 undergoes
roughly linear decay:

~x0 ,x2561,y0 ,y2!→~sgn~x0!~2k1C1ux0ud1!,

2x2 ,C2y0ux0ud2,C3y2ux0ud3). ~7!

The exponentsd2 andd3 are such that the average values of
ux0ud2 and ux0ud3 are greater and less than one, respectively.
This map is valid whileux0u.uy0u. As soon as this inequality
is violated, we have aswitch map, which takes the trajectory
close toPy :

~x0 ,x2561,y0 ,y2!

→~C4x0uy2ud4uy0ud2,6C5uy2ud5uy0ud3,sgn~y0!

3~2k1C6uy2ud6uy0ud1!,sgn~y2!!. ~8!

The next component is equivalent to Eq.~7! ~up to a relabel-
ing!, andy0 has Lorenz map dynamics, whilex0 andx2 grow
and decay, respectively,

~x0 ,x2 ,y0 ,y2561!→~C2x0uy0ud2,C3x2uy0ud3,sgn~y0!

3~2k1C1uy0ud1!,2y2). ~9!

Similarly, this map continues untiluy0u<ux0u when we apply
another switch map back toPx :

~x0 ,x2 ,y0 ,y2561!

→~sgn~x0!~2k1C6ux2ud6ux0ud1!,sgn~x2!,

C4y0ux2ud4ux0ud2,6C5ux2ud5ux0ud3). ~10!

From fitting the dynamics of the map to the ODEs, values for
the constants and the eigenvalues depending on a bifurcation
parameterb are given in Ref. 6. Note that this system is
extremely sensitive with respect to parameter values, and so
we give these to precisely the same number of decimal
places as are used in our~double precision! numerical com-
putations. Thed exponents are determined from solutions of
the ODE:

d15
2lz

m
~11d6!, d25

2lz

m
d421, d35

2lz

m
~11d5!,

FIG. 7. Bifurcation diagram of periodic orbits, stuck-on chaos, and cycling
chaos. Black points indicate periodic orbits, whereut10021u, ut9921u,
ut9821u,0.01 ~see the text for the definition oft!. White points represent
nonperiodic behavior~stuck-on chaos!, whereut10021u or ut9921u or ut98

21u>0.01. Gray points indicate cycling chaos or very long periodic orbits,
where the trajectory is numerically rounded into an invariant subspace
(uxi u50). The solid black line marks the resonance bifurcation and the
dashed line is n50. The initial conditions used were (x1 ,x2 ,x3)
5(0.1,0.2,0.3,10210,2310210,3310210,3310220,2310220,10220) and pe-
riodic orbits were examined after a transient was computed.

577Chaos, Vol. 14, No. 3, 2004 Cycling chaotic attractors

Downloaded 07 Oct 2004 to 129.11.77.159. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



d45
bm

l1 , d55
lz

l1 , d65
2l2

2

l1 ,

where the eigenvalueslz , l1, andl2
2 are computed from

the ODEs as

lz520.059 697, l150.296 06, l2
2520.048 978.

Finally the constants are given by

C1520.124 498 54, C250.271 996 31,

C350.167 914 68,

C45609.647 70, C550.865 145 92,

C650.001 597 350 5,

k520.014 072 345, m50.1655.

Just as in Refs. 6 and 4 we iterate the map in logarithmic
coordinates in order to resolve the large dynamic range of the
variables.

B. Basin of attraction

This model exhibits a plethora of periodic orbits whose
periods appear to accumulate as the resonance bifurcation is
approached, as discussed in Ref. 6. These periodic orbits
appear to have interesting basins of attraction; Fig. 8 shows
an example of a numerically obtained bifurcation diagram.
We iterate the map with a grid of initial conditions in loguy0u
and loguy2u. Hereb51.089, and we plot different shades to
represent the different periods of periodic orbits. All initial
conditions shaded in the gray region on the right of the figure
finish up at periodic orbits of period 102~plotted as the fur-
thest top-right black circle in the figure!. Note that the peri-
odic orbits of period 102 are not all absolutely identical, but
are the same to one or two decimal places. Other periods
plotted here are 232, 344, 410, 460, in other shades of gray.
The basins shown in Fig. 8 are only a small part of a much
more complicated picture—periodic orbits for other periods
exist and the full basin diagram has many intermingled ba-
sins. Note that the periodic orbits lie on a straight line in
loguy0u-loguy2u space, and the striped basin boundaries. The
presence of a scattering of white throughout most of the ba-
sins, especially to the right of the figure, suggests that their
basins are pseudo-riddled.10

Because of the pseudo-riddled nature of the basins of
attraction, these periodic orbits appear fragile in the sense
that altering parameters, initial conditions, or perturbing the
model very slightly can cause a trajectory close to a periodic
orbit to leave the vicinity of the invariant subspaces and tend
to a low period attracting state as illustrated in Fig. 9. Each
plot shows a time series of logux0u for the fixed parameters
above, andb51.088. Three initial conditions are fixed as
(x0

(0) ,x2
(0) ,y0

(0))5(k11,1,1022.5). Figure 9~a! has y2
(0)

5102300 and this initial condition leads to a stable periodic

FIG. 8. Basin of attraction for different periodic orbits, withb51.089. The
map is iterated with different initial values of loguy0u ~horizontal axis! and
loguy2u ~vertical axis!. Initial conditions leading to periodic orbits of period
102 are plotted in gray in the rightmost region. The period-102 orbit lies
clustered around the top right black circle, on the edge of the basin bound-
ary. Four other periods~232, 344, 410, 460! are represented by increasingly
dark shades, together with black dots representing the periodic orbits that
appear to be close to the edges of their basins of attraction. White in the top
right corner means that trajectories escape, while white in the bottom left
corner indicates that trajectories mainly go to even longer periodic orbits.

FIG. 9. Time series showing the fragility of periodic orbits in the magnetoconvection model.~a! An initial value of y2
(0)5102300 and an attracting periodic

orbit. ~b! Identical parameters and initial conditions but now the initialy2
(0)5102302, resulting in the periodic orbit being attracted to a low period periodic

orbit far from the invariant subspaces.
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orbit. Figure 9~b! is for the same system, but now hasy2
(0)

5102302. Here convergence to the periodic orbit is not found
and the trajectory leaves the vicinity of the invariant sub-
spaces. A similar effect can be observed by incorporating a
small perturbation, e.g., tok.

C. Constructing approximate periodic orbits

The map exhibits a form of ‘‘phase-resetting’’ due to the
fact that thex0 or y0 variable always starts at2k for any
connecting orbit, since for any such orbity250 initially.
This corresponds to starting on the unstable manifold of an
equilibrium point in the original ODEs. As found in Ref. 4,
resonance near a phase-resetting cycle can result in creation
of a large number of stable periodic orbits. For the remainder
of this section we aim to construct these periodic orbits near
resonance. This gives some insight as to why there are so
many simultaneously stable periodic orbits in Fig. 8.

We follow the method of Ref. 4 and use Fig. 10 as a
guide. In this figure we plot only half a period and assume
that the two halves are identical up to a relabeling. More
precisely, we assume that ati 50, we have just made one
iterate of map~10!, resetting so that we are close to thePx

subspace. Thus we have initial values logux0
(0)u5loguku ~this is

taken to be exact as we need ‘‘phase-resetting’’ for periodic
orbits to appear!, logux2

(0)u50, loguy0
(0)u and loguy2

(0)u. There fol-
low N21 iterates of map~7!, during which time loguy0u
grows and loguy2u decays~but roughly linearly!, while x0

undergoes iterates of the Lorenz map, and logux2u remains at
zero. AfterN21 iterates we assume loguy0u has grown suffi-
ciently so that loguy0

(N21)u. logux0
(N21)u, and then a switch oc-

curs, in the form of a single iterate of map~8!. If we assume
the two halves of a periodic orbit are identical, then we
should find~after relabeling!

logux0
(N)u5 loguy0

(0)u, logux2
(N)u5 loguy2

(0)u,

loguy0
(N)u5 logux0

(0)u5 loguku, loguy2
(N)u5 logux2

(0)u50.

For a periodic orbit we wish to find loguy0
(N22)u and loguy0

(N21)u
such that

loguy0
(N22)u, logux0

(N22)u5 logu f (N22)~k!u,

and loguy0
(N21)u.logux0

(N21)u5loguf(N21)(k)u @i.e., we assume a
switch occurs at precisely the (N21)th iterate#. Here f ( j )

represents thej th iterate of the Lorenz map. While iterating
map ~7! we usey0→C2y0ux0ud2 which in logarithmic coor-
dinates is

loguy0u→ loguy0u1 log~C2!1d2 logux0u.

Hence afterk iterations we have

loguy0
(k)u5 loguy0

(0)u1k~ loguC2u1d2Ak!,

whereAn5(1/n) ( j 50
n21 loguf(j)(k)u. Now loguy0

(0)u5logux0
(N)u for

a periodic orbit. Observe that logux0
(N)u is computed from one

iterate of map~8!: x0→C4x0uy2ud4uy0ud2 so that

loguy0
(0)u5 logux0

(N)u5 loguC4u1 logux0
(N21)u

1d4 loguy2
(N21)u1d2loguy0

(N21)u

giving

loguy0
(k)u5 loguC4u1 logux0

(N21)u1d4 loguy2
(N21)u

1d2 loguy0
(N21)u1k~ loguC2u1d2Ak!. ~11!

Similarly,

loguy2
(N21)u5 loguy2

(0)u1~N21!~ loguC3u1d3AN21!

and

loguy2
(0)u5 logux2

(N)u5 loguC5u1d5loguy2
(N21)u

1d3 loguy0
(N21)u

after one iterate of map~8!. Combining these two expres-
sions gives

loguy2
(N21)u5 loguC5u1d5loguy2

(N21)u1d3loguy0
(N21)u

1~N21!~ loguC3u1d3AN21!

and after rearranging we get

FIG. 10. Schematic diagram of half a periodic orbit for the map~7!–~10!.
There areN21 iterates of map~7! followed by a single iterate of map~8!.
By matching the final and initial states we can construct an approximation to
a long-period orbit of the map.
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loguy2
(N21)u5

~N21!~ loguC3u1d3AN21!1 loguC5u1d3 loguy0
(N21)u

12d5
.

Substituting this into Eq.~11! gives

loguy0
(k)u5 loguC4u1 logux0

(N21)u1d2 loguy0
(N21)u1k~ loguC2u1d2Ak!

1d4

~N21!~ loguC3u1d3AN21!1 loguC5u1d3 loguy0
(N21)u

12d5
. ~12!

Settingk5N21 now enables us to extract an expression for
loguy0

(N21)u:

loguy0
(N21)u5@~12d5!~ loguC4u1 logux0

(N21)u1~N21!

3~ loguC2u1d2AN21!!1d4~~N21!

3~ loguC3u1d3AN21!1 loguC5u!#/@~1

2d5!~12d2!2d3d4#

and this can be substituted into Eq.~12! with k5N22 to
obtain an expression for loguy0

(N22)u. Both expressions are
long, but simply rely on being able to computeN iterates of
the Lorenz map. Each is computed numerically, and com-
pared with iterates off (N)(k) ~exactly the sameN iterates of
the Lorenz map!. In a similar way to Ref. 4 we look for
values ofN which are good candidates for a periodic orbit.
In this case, this means values ofN for which loguy0

(N22)u
,loguf(N22)(k)u and loguy0

(N21)u.loguf(N21)(k)u. Our expres-
sions for loguy0

(N22)u and loguy0
(N21)u can be simplified further

by replacing both the (N21)-averageAN21 , and the (N
21)th iterate logux0

(N21)u with the long-term~ergodic! aver-

age A` . This leads to straight line equations for both
loguy0

(N22)u and loguy0
(N21)u with gradients and intercepts that

are functions only ofb.

D. Computing a bifurcation diagram

Figure 11 shows the curves of loguy0
(N22)u ~dark! and

loguy0
(N21)u ~light! for three values ofb: ~a! b51.0887,bc ,

~b! b51.08965bc , ~c! b51.091.bc . Also plotted are the
Lorenz iterates loguf(N21)(k)u ~black!, together with the
straight line approximations to the curves~black solid and
dashed lines!. We expect a periodic orbit whenever the black
curve is between the light and dark gray curves. As in Ref. 4,
for b,bc , the overall positive gradient of the two curves
takes them away from the Lorenz iterates after some cross-
ings, here nearN51000, indicating that we may expect pe-
riodic orbits of period around 1000, but that much longer
periodic orbits should not be expected. Forb5bc there is no
overall linear growth of the curves, but increasing chaotic
fluctuations~driven by theNAN21 term! ensure that we have
repeated crossing of the Lorenz iterates, for arbitrarily high

FIG. 11. Three plots of loguy0
(N22)u

~dark! and loguy0
(N21)u ~light! crossing

the chaotic evolution of loguf(N21)(k)u
~black!. Solid and dotted lines indicate
the linear approximations to these
curves. Plot~a! is for b,bc , and we
have several crossings before the over-
all linear growth takes the curves away
from the Lorenz iterates. Plot~b! is for
b5bc , for which there is no overall
growth, and we get repeated crossings
as the chaotic fluctuations of the
curves increase. For~c! we have b
.bc and we get relatively short peri-
odic orbits indicated before the nega-
tive gradient again takes the curves
away from the Lorenz iterates.
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periods. Forb.bc we have relatively short periodic orbits
indicated before the negative gradient again takes the curves
away from the Lorenz iterates.

Note that there is a difference between these figures and
the corresponding ones in Ref. 4; in that paper the curves
begin below the threshold required to construct a return, and
so we are guaranteed crossings on the ‘‘periodic orbit’’ side
of the resonance, and we are guaranteed to have none well
beyond the resonance on the ‘‘cycling’’ side. Here the oppo-
site is true, so that far from resonance on the periodic side,
no periodic orbits are indicated, whereas short periodic orbits
on the cycling side are always indicated. This is in agreement
with the numerically computed bifurcation diagram, in
which a collection of short periodic orbits appear for all pa-
rameter values beyond the resonance, and suggests that the
resonance bifurcation cycling chaos in this map is ‘‘subcriti-
cal.’’

A bifurcation diagram can be computed in the same way
as in Ref. 4; see Fig. 12. For each value ofb we compute the
curves loguy0

(N21)u and loguy0
(N22)u and find values ofN for

which they lie on either side of loguf(N21)(k)u. These points
are plotted as gray dots. For comparison, actual periodic or-
bits found by iterating the full system with a grid of initial
conditions is overlaid in dark points. The envelope contain-
ing the approximated periodic orbits is plotted as a solid
black line, computed by finding the first and last crossings of
the Lorenz iterates. This gives an approximation of the rate
of approach to the accumulation of periods at resonance.

IV. DISCUSSION

In summary, we have returned to two systems in the
literature that display robust attracting heteroclinic cycles be-
tween chaotic saddles. The first case is a ring of three
coupled Lorenz systems from Ref. 2, the second is a map-
ping approximating a limiting case of 3D magnetoconvection
from Ref. 6. In both cases we give a detailed description and

approximation of stable periodic orbits that appear near reso-
nance, and investigate the structure of the basins of attraction
of periodic orbits. For the coupled Lorenz system we discuss
the appearance of false phase-resetting for the casen50. By
introducing a bidirectional coupling we destroy the appear-
ance of this false phase-resetting and can estimate the time to
loss of phase coherence over successive approaches to the
chaotic saddles. For the first system we also argue that al-
though the chaotic saddles contain points of higher isotropy,
and because of this anomalous connections, the rate of ap-
proach to invariant subspaces is so fast that the anomalous
connections will typically not be seen with the attractor.

By contrast, the magnetoconvection map exhibits genu-
ine phase-resetting, owing to the presence of equilibria in the
cycle, as investigated in Refs. 5 and 8. We suspect that gen-
erally speaking, cycling chaos between sets that include
equilibria will contain the phase-resetting connections
needed to see long-period periodic orbits close to resonance.
In the absence of this we expect nonresetting connections
and stuck-on chaos after resonance.

One might ask why cycling attractors have not been ob-
served much in the literature. We tend to think that although
such attractors are not very common, there may well be cases
where they have been observed, but then dismissed as being
‘‘too complicated.’’ We expect our ideas to be applicable to a
range of examples, in particular to coupled cell systems,
where there has been interest and observation of such
attractors.9,10 Coupled cell systems appear naturally in a va-
riety of contexts; an important example is model networks of
coupled neurons which has motivated work observing het-
eroclinic cycles between cluster states, e.g., Refs. 11 and 12.
One of the main obstructions to a good understanding of the
dynamics of such high-dimensional coupled systems is the
relative absence of a clear and useful classification of the
attractors that one can typically find, and these systems are
so complicated that a natural response is to abandon any
attempt at a systematic understanding. Our results have
opened up ways of analyzing these kinds of systems, and the
recognition that cycling chaos can occur in such systems is a
significant step towards a better classification.

Finally, our investigations indicate that numerical simu-
lation of these robust attractors is very difficult. Not only is
careful choice of grid necessary to resolve the very small
quantities to obtain correct qualitative behavior even for a
relatively small time, but also the appearance of periodic
orbits with complicated and as yet unexplained basin struc-
ture seems to be possible. In particular, the lack of any hy-
perbolicity of the cycling attractor as a whole means that
appeals to the shadowing property for chaotic attractors will
be in vain.
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FIG. 12. Bifurcation diagram of periodic orbits for the map~7!–~10! com-
puted by constructing approximate periodic orbits as in Fig. 11. The periods
of the periodic orbits get longer as the resonance is approached~at bc

51.0896). Dots represent predicted periodic orbits, and the overlaid hori-
zontal bars are actual periodic orbits. The black outlines are simply the
envelope of the predicted dots~the first and last crossings of the curves!,
showing of accumulation of the periodic orbits as periodN→`.
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