
Hopf bifuration with ubi symmetry and instability of ABCow.Peter Ashwina and Olga Podviginaa�daShool of Mathematial SienesUniversity of ExeterExeter EX4 4QE, UKbObservatoire de la Côte d'Azur, CNRS UMR 6529,BP 4229, 06304 Nie Cedex 4, FraneInternational Institute of Earthquake Predition Theoryand Mathematial Geophysis,79 bldg. 2, Warshavskoe ave., 113556 Mosow, Russian FederationdLaboratory of General Aerodynamis, Institute of Mehanis,Lomonosov Mosow State University,1, Mihurinsky ave., 119899 Mosow, Russian FederationOtober 22, 2002AbstratWe examine the dynamis of generi Hopf bifuration in a system that is sym-metri under the ation of the rotational symmetries of the ube. We lassify thegeneri branhes of periodi solutions at bifuration; there are generially 27 branhesorresponding to maximal symmetries, organized into �ve symmetry types. There arealso up to 22 periodi solution branhes of two other symmetry types. These resultsare found by examination of the normal form (with S1 normal form symmetry) forthe bifuration trunated at the third order.In addition to the periodi branhes whose branhing and stability we �nd, thereare several branhes of tori, homolini bifurations and haoti attrators in the dy-namis of the third order normal form. Sine many of these features are not amenableto analysis we give some numerial examples. On breaking the normal form symme-1



try, there may be breakup of the branhes of tori, but the preditions for the periodisolutions will be reliable.For the Navier-Stokes equations with a partiular foring, an ABC ow is a dy-namially stable solution for small Reynolds numbers R. For the most symmetri ase,A = B = C = 1, the �rst instability of this system is a Hopf bifuration at R = 13:04with rotational symmetry of the ube. We use our normal form analysis to explainthe observed behaviour of solutions at this primary instability. Numerial simulationsshow that there is superritial branhing to rotating waves that alternate between thethree axes, whih undergo seondary Hopf bifuration to a 2-torus at approximatelyR = 13:09. The eight symmetrially related tori break up and then merge to form ahaoti attrator with full symmetry. We an explain all these features by use of thegeneri third order normal form and S1 normal form symmetry breaking terms.1 IntrodutionThe so-alled ABC ow is a fully three-dimensional steady ow of inompressible uidwith veloity �elduABC = (A sinx3 + C os x2; B sinx1 +A os x3; C sinx2 +B osx1); (1)where A, B and C are onstants. This ow satis�es the Beltrami ondition r� uABC =�uABC with � = 1 and hene it is a solution to the Euler equations with the vanishingfore. Arnold [2℄ has proved that a steady solution to a fore-free Euler equation an havehaoti streamlines only if the solution possesses the Beltrami property; he introduedABC ows as the simplest analytial example of vetor �elds satisfying this ondition. Assuh, ABC ows have enjoyed a lose attention of a large number of mathematiians andphysisists. H�enon [29℄ showed numerially that for A = p3; B = p2; C = 1 the ABCow is indeed haoti. The partile paths of a variety of ABC ows have been studied in[16℄. If at least one oeÆient in (1) vanishes, the ow is integrable. Using the Painlev�etest, Dombre et al. [16℄ argued that this ondition for integrability of an ABC ow is alsoneessary. The Poinar�e setions omputed for ertain ows of that type revealed that theows do have haoti streamlines; indeed the largest Lyapunov exponents for streamlinesof some ABC ows were omputed in [18℄ and were found to be positive.If a triangle an be onstruted with sides equal to A2, B2 and C2, the ow has 8stagnation points in a periodiity ube; there are no stagnation points otherwise. In the2



ase A = B = C = 1 stagnation points are onneted by heterolini trajetories, whihare straight lines [12℄.Non-integrability of streamlines, giving rise to haoti mixing of a passive salar withinthe ow, is a neessary ondition for a ow to at as a fast magneti �eld generator[45, 46, 31℄. For this reason, and beause heterolini struture of trajetories of ABCows is rather well understood, they are widely employed in the study of magneti �eldgeneration. In the ontext of the kinemati dynamo, ABC ows were �rst examined in[10℄. It was shown that they an at as dynamos, e.g. see [4, 20, 21, 23, 24, 18, 19, 11℄.These omputations suggest that for ertain sets of oeÆients the dynamos are fast. ABCows were also proposed as prototypes for the study of the development of turbulene (see[37, 38, 39℄). Magneti �eld reversals were observed in an ABC-fore driven fully non-linearMHD system [40℄.Generially, (1) has the symmetry group isomorphi to D2 if we exlude time reversalsymmetries (these are symmetries of the ow but not of the Navier-Stokes equations). Iftwo oeÆients are equal, it is isomorphi to D4. For A = B = C the group, denotedby H, has 24 elements and it is isomorphi to the rotation group of a ube [3℄,[16℄. Weonsider the partiular ase: A = B = C = 1: (2)For any Reynolds number R, uABC is a steady solution of the Navier-Stokes equation�v�t = v � (r� v) �rp+ 1R�v+ f ; (3)subjet to the inompressibility onditionr � v = 0 (4)and the fore f = 1RuABC (5)(p is the pressure). Spae-periodi boundary onditions are assumed in x1; x2; x3, namelyv(x1; x2; x3) = v(x1 + 2k�; x2 + 2l�; x3 + 2m�)p(x1; x2; x3; ) = p(x1 + 2k�; x2 + 2l�; x3 + 2m�)for any (k; l;m) 2 Z3. In this setup, any symmetry of the ABC ow is also a symmetry ofthe equation, but solutions that branh from the ABC ow solution may break some orall of these symmetries. 3



One of the aims of this paper is to examine the primary dynamial instability ofthis ow on inreasing Reynolds number by showing that its stable dynamis near thisinstability are governed by a generi Hopf bifuration with the appropriate symmetry.Using this we predit and �nd the existene of many di�erent branhes of periodi solutionsas well as more exoti dynamis.Numerial results on bifurations of time-dependent solutions of the Navier-Stokesequation (1-5) for R � 50 were presented in [37℄-[39℄. It an be proven that for R < 0:5the ow (1-5) is a unique steady state of (3,4), and it is stable. Computations show that theow is stable for R � 13:04 [22℄,[37℄ and that it is a unique attrator of this hydrodynamialsystem for R � 7:8 [37℄. The trivial steady state { the 1:1:1 ABC ow (1,2) { beomesunstable in a Hopf bifuration at some R = R0, where R0 an be numerially loatedat approximately 13.044 [39℄. The ation of the group H on the enter eigenspae atthis bifuration is isomorphi to the standard representation of the group of rotationalsymmetries of the ube, O (see [38℄).In this paper we �rstly haraterize generi Hopf bifuration with the symmetry O.Seondly, we analyze this instability and seondary bifurations in the partiular ase ofinstability of uABC in the above problem at R = R0 to perturbations in the Eulerianveloity �eld.In order to do this we apply methods and results from generi equivariant bifurationtheory to this problem; see [25, 26℄ for disussion and development of methods, details ofthe theory and many examples. An important feature of this theory is that a generi Hopfbifuration of a symmetri equilibrium will (in the absene of further degeneraies) ourwithin a linear subspae that is one of the C-irreduible representations (heneforth alledirreps) of the symmetry group. The group O = S4 of permutations of 4 elements has �veC-irreps W0; � � �W4; two of these are on C3, one on C2 and two on C. We onsider onlybifurations for representation W0 on C3 where O ats purely by rotations. This irrepis two opies of the R-irrep on R3 given by rotational symmetries of a ube. The otherR-irrep on R3 is the set of symmetries of a regular tetrahedron ating by permuting itsverties; note that this inludes reetions and has no rotations of order four (but it doeshave a rotation-reetion of order four).There exists a nontrivial isomorphism of the group O� S1 into itself. We will give anexpliit form for it in Setion 2. The ation of O � S1 on W1 (the C3 representation of4



O�S1 distint from W0) an be represented as a omposition of the isomorphism and theation of the group on W0. Thus all our results onerning bifurations with symmetrygroup O�S1 on W0 are also appliable to the representation W1, the isomorphism beingtaken into aount. (However, representations of the group O on W0 and W1 are notrelated by an automorphism of the group, and so the bifurations on W0 and W1 aredi�erent in this sense.)Generi steady state bifurations with several types of ubi symmetry have beeninvestigated by many authors. In partiular, bifurations on ubi latties are studiedin [8℄. An analysis of steady state bifuration with the 48 element group ~O of rotationsand reetions of the ube is onsidered in [35℄. Some work has been done on steadybifuration with another element subgroup of ~O of elements that preserves the orderingof the axes; in partiular [27℄ uses the third order normal form to show that branhes ofrobust attrating heterolini yles an arise as a generi possibility. However, this groupis not isomorphi to O; it has no elements of order four. As to Hopf bifurations, ananalysis of generi Hopf bifuration on square (resp. ubi) latties was arried out in [42℄(resp. [14℄). Barany and Swift [44℄ examine generi Hopf bifuration with the symmetry ofan index 2 subgroup of O; they �nd branhes of robust homolini orbits branhing fromthe trivial solution for an open and dense set of normal form oeÆients (these homoliniorbits were further investigated in [6℄).For the ation of O� S1 on C3 that we onsider here, there are two families of �xedpoint subspaes that are isomorphi to C2. In one of these we an apply the analysis ofthe Hopf bifuration with dihedral D4 symmetry of Swift [43℄ to �nd branhes of periodisolutions with submaximal symmetries. The other subspae also supports submaximalsymmetry periodi solutions.The struture of the paper is as follows: In Setion 2 we haraterize the group O,disuss its representation on R3 by rotations and the representation it indues on C3at a generi Hopf bifuration. For this representation we disuss the isotropy subgroupsand invariant subspaes and derive the general normal form at bifuration. Muh ofthe dynamis we investigate here is determined by the normal form trunated at thirdorder. We lassify the generi branhing behaviour and stabilities of these periodi orbitsat bifuration in terms of the oeÆients of this normal form. There are �ve familiesof periodi solutions with maximal symmetries (all maximal symmetries are C-axial in5



the terms of [15℄). These solutions are always present; two additional families (withsubmaximal symmetries) are present for an open (but not dense) set of normal formoeÆients. All these periodi solutions have frequenies lose to the Hopf frequeny.Sine all branhing periodi solutions are determined at third order for an open set ofnormal form parameters, Theorem 11.2 in [26℄ implies that the branhing of periodisolutions of the full equations are generially determined by the third order normal form.In addition to periodi branhing behaviour, other branhes an our in the normalform to haoti attrators and quasiperiodi branhes (for an open set of normal formoeÆients) and homolini/heterolini yles (for a odimension one set of normal formoeÆients). In Setion 3 some indiative examples of this are investigated numeriallyby path-following, as a omplete analytial lassi�ation of all possible attrators is notpresently possible. We also disuss the e�et of breaking the normal form symmetry intro-dued at Hopf bifuration by virtue of the fat that all terms that do not ommute withthe S1 symmetry of phase shifts given by solution of the linear equations an be trans-formed away to arbitrarily high order. These `at terms' an however ause dynamiallyimportant e�ets suh as torus breakup; we give some examples.In Setion 4 we return to the partiular ase of instability of the ABC ow, desribingand disussing attrators observed numerially at the bifuration. We disuss how theobserved transition to a haoti attrator with full symmetry on inreasing R an beexplained by the normal form model analysed in Setions 2 and 3. The branhes of periodisolutions orrespond to time-periodi Eulerian solutions lose to the original ABC ow;moreover, the quasiperiodi and haoti solutions are also lose to the original ABC owand an be thought of as its time-dependent perturbations. Finally, some limitations,the e�ets of symmetry breaking, and possible extensions of this present work are brieydisussed in Setion 5.2 Hopf bifuration with rotational symmetry of the ube.The group We onsider Hopf bifuration with ubi symmetry for the omplex irre-duible ation on C3 of the group O� S1 generated by the three-fold rotation�111 : (z1; z2; z3) 7! (z2; z3; z1);6



the four-fold rotation �001 : (z1; z2; z3) 7! (z2;�z1; z3);and the normal form S1 phase shift symmetry� : (z1; z2; z3) 7! ei�(z1; z2; z3):We refer to the group ating in this way as O � S1 (the representation on W0 of theintrodution). We denote�+110 : (z1; z2; z3) 7! (z2; z1;�z3); ��110 : (z1; z2; z3) 7! (�z2;�z1;�z3); et.Note that �+110 = �2111�001�2111 and ��110 = �2001�+110. The symmetry �111 has order three andorresponds to a rotation around a vertex of the ube, �001 has order four and orrespondsto a rotation about the entre of a ube fae by one quarter of a turn, �+110 has order twoand orresponds to a rotation about a line through midpoints of opposite edges of the ubeby a half of a turn. We refer to the (onjugay lass of the) group generated by ��011�as Z2(e) and to the one generated by �2001� as Z2(f). The  at as temporal phase-shiftsymmetries that are present in the normal form but in fat these symmetries are brokenin generi problems by high order terms. The isomorphism of the group O� S1 to itselfthat relates the C3 representations W0 and W1 is given by:�111 7! �111; �001 7! ��001; � 7! �:Invariant subspaes For an ation of a group G, the isotropy subgroup of a point x isthe largest subgroup of G that �xes that point. Given any subgroup H the �xed pointspae Fix(H) is the set of points �xed by all group elements in H (see e.g. [26℄).The isotropy subgroups and invariant subspaes for the irreduible ation of O�S1 onC3 are listed in Table 1 with a typial point, dimension, generators, number of onjugatesand normalizers tabulated. Note that all nontrivial isotropy subgroups ontain mixedspatio-temporal symmetries; often these are di�erentiated from purely spatial symmetriesby addition of a tilde, but in this ase it is unneessary. This is similar to the ase for D4Hopf bifuration where the ation of D4 � S1 on C2 has non-trivial kernel. Reall that ifH is an isotropy subgroup then the normalizer Norm(H) = fg 2 O� S1 : gH = Hgg isthe largest subgroup that maps Fix(H) to itself. The isotropy subgroups an be partiallyordered into the lattie shown in Figure 1 by onsidering ontainment (up to onjugay).7



Name Typial point dimC Generators Conj. Norm.O� S1 (0; 0; 0) 0 f�111; �100; �g 1 O� S1D3 (z; z; z) 1 f�111; ��110�g 4 D3 � S1D2 (z; z; 0) 1 f�+110; ��110�g 6 D2 � S1D4 (z; 0; 0) 1 f�100; �2001�g 3 D4 � S1Z4 (z; iz; 0) 1 f�001�=2g 6 Z4 � S1Z3 (z; ze2�i=3; ze4�i=3) 1 f�1112�=3g 8 Z3 � S1Z2(f) (z1; z2; 0) 2 f�2001�g 3 D4 � S1Z2(e) (z1; z2; z2) 2 f��011�g 6 D2 � S11 (z1; z2; z3) 3 feg 1 O� S1Table 1: Table of the isotropy subgroups for the ation of O� S1 on C3 onsidered here.There are nine possible symmetry types; the number of onjugate subgroups and the normal-izer are listed as well as the dimension of the �xed point subspae and a list of generators.The suÆes (e) and (f) refer to edge and fae symmetries respetively.Note that there is a andidate for a robust (relative) heterolini yle that onnetsequilibria in the D2 and D4 subspaes and passes through Z2(e) and Z2(f). This setupis not present in the D4 Hopf bifuration and is a truly 3D phenomenon. We have notmanaged to rule out suh robust heterolini yles but neither have we observed them inthe normal form dynamis.One an demonstrate that there are no robust homolini yles for this group ation,by noting that the only hains of properly ontained subgroups 1 < K < H < O�S1 haveK = Z2(e) or Z2(f), and in both ases there is no g and H suh that Norm(K)\ gH = ;and K < H \Hg. Hene by Proposition 2.3 in [7℄ there an be no suh robust homoliniyles (although there may still be robust heterolini yles).Normal form The general formal normal form for a vetor �eld with the given ationO� S1 symmetry an be written as follows:_z1 = X(l1;l2;q1;q2;q3)2I0 C1l1;l2;q1;q2;q3zl11 jz1j2q1(zl22 z1�l1�l23 jz2j2q2 jz3j2q3 + zl23 z1�l1�l22 jz3j2q2 jz2j2q3)
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1Figure 1: The isotropy lattie for the irreduible ation of O� S1 on C3.where I 0 is the subset of (l1; l2; q1; q2; q3) 2 Z5 suh that8>>>>>>>>><>>>>>>>>>:

l1 oddl2 � 1�l12 and l2 evenq1 � max(�l1; 0)q2 � max(�l2; 0)q3 � max(1� l1 � l2; 0):The other omponents, _z2 and _z3, an be obtained by yli permutation of the indies ofz1; z2 and z3. We show this by onsidering the formal power series expansion of a vetor�eld on C3 as follows:_zi = X(l1;l2;l3)2Z3 X(q1;q2;q3)2I Cil1;l2;l3;q1;q2;q3zl11 zl22 zl33 jz1j2q1 jz2j2q2 jz3j2q3 (6)(i = 1; 2; 3), whereI = f(q1; q2; q3) 2 Z3 : q1 � max(�l1; 0); q2 � max(�l2; 0) and q3 � max(�l3; 0)g:The series (6) ommutes with the ation of O� S1 if and only if it ommutes with all itsgenerators. It ommutes with �111 ifC2l3;l1;l2;q3;q1;q2 = C1l1;l2;l3;q1;q2;q3and C1l1;l2;l3;q1;q2;q3 = C3l2;l3;l1;q2;q3;q1for all li, qi. It ommutes with �001 ifC1l1;l2;l3;q1;q2;q3 = (�1)l2C2l2;l1;l3;q2;q1;q3;C2l1;l2;l3;q1;q2;q3 = (�1)l2+1C1l2;l1;l3;q2;q1;q3 andC3l1;l2;l3;q1;q2;q3 = (�1)l2C3l2;l1;l3;q2;q1;q3:9



Finally, it ommutes with S1 ifCil1;l2;l3;q1;q2;q3 = 0 for l1 + l2 + l3 6= 1:After some algebra the above relations for C1l;q an be redued to C1l1;l2;l3;q1;q2;q3 = 0 if l1is even, l2 is odd, or l3 is odd andC1l1;l2;l3;q1;q2;q3 = C1l1;l3;l2;q1;q3;q2 :Substitution of the above expressions into (6) for i = 1 yields the equivariant normal formgiven.Alternatively, one an ompute that 1 and jz1j2 + jz2j2 + jz3j2 generate the ring ofinvariants up to ubi orders while the module of equivariants (to ubi order) is generatedby 0BBB� z1z2z3 1CCCA ; 0BBB� jz1j2z1jz2j2z2jz3j2z3 1CCCA ; 0BBB� (z22 + z23)z1(z21 + z23)z2(z21 + z22)z3 1CCCAover the ring of invariants. Hene one an see that the ubi order normal form is givenby _z1 = (�+ i!)z1 +A1jz1j2z1 +A2(jz2j2 + jz3j2)z1 +A3(z22 + z23)z1_z2 = (�+ i!)z2 +A1jz2j2z2 +A2(jz1j2 + jz3j2)z2 +A3(z21 + z23)z2_z3 = (�+ i!)z3 +A1jz3j2z3 +A2(jz1j2 + jz2j2)z3 +A3(z21 + z22)z3: (7)For onveniene we write A1 = A1r + iA1i; et.We are interested in the ase where � � 0 and ! = O(1) for Hopf bifuration. The �fthorder normal form has �rst omponent given by_z1 = (�+ i!)z1 +A1jz1j2z1 +A2(jz2j2 + jz3j2)z1 +A3(z22 + z23)z1+ �A4jz1j2(z22 + z23) +A5(jz2j2z22 + jz3j2z23) +A6(jz2j2z23 + jz3j2z22)� z1+ �A7(z22 + z32)z21 +A8jz1j4 +A9(jz2j4 + jz3j4) +A10jz2z3j2� z1: (8)and the other omponents an be found by yli permutation of the indies of z1; z2 andz3. There an be seen to be seven di�erent equivariants at �fth order.
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Name Branh jxj2 No of solutionsD3 (z; z; z) ��(A1r + 2A2r + 2A3r)�1 4D2 (z; z; 0) ��(A1r +A2r +A3r)�1 6D4 (z; 0; 0) ��(A1r)�1 3Z4 (z; iz; 0) ��(A1r +A2r �A3r)�1 6Z3 (z; ze2�i=3; ze4�i=3) ��(A1r + 2A2r �A3r)�1 8Table 2: Branhing for the maximal symmetry branhes at generi Hopf bifuration withsymmetry O. All branhes have non-degenerate branhing behaviour as determined by thethird order normal form.Maximal symmetry branhes All maximal isotropy subgroups for this ation of O�S1 have �xed point spaes that are one (omplex) dimensional; the Equivariant HopfLemma [26℄ then implies that eah of these supports a branh of solutions. In this asewe an ompute the branhing behaviour as in Table 2 and their stability in Table 3.Observe that all branhes are di�erent for generi values of the oeÆients; this meansthat branhing is not degenerate if we only use the 3rd order normal form. From thisinformation we see that in the ase A1r < 0 we an get branhing of the maximal symmetrysolutions in the � > 0 diretion (and hene possible stable branhes) for the regions shownin Figure 2. As usual we refer to branhes that appear for � > 0 as superritial and thosefor � < 0 as subritial. We summarize:� The branhing only depends on (A1r; A2r; A3r), but the stability depends also on(A1i; A2i; A3i).� For the ase A1r < 0 illustrated, the D4 branh always branhes superritially.� The ase A1r > 0 is not illustrated but will lead to a similar pattern of branhingdepending on (A2r; A3r).� One an only realize 20 of the 32 possible ombinations of sub/superritial branhingof the maximal subgroups by appropriate hoie of normal form oeÆients.The stability of the maximal symmetry branhes is alulated in Table 3. The stabilityis given in terms of eigenvalues � for the linearisation about these relative equilibria. These11



Name Type e.v.=� # BranhestoD3 r �2 1t �A1r+A2r+4A3r�p(A1r�A2r+2A3r)2+12A3i(A1i�A2i�A3i)A1r+2A2r+2A3r 4 Z2(e)D2 r �2 1t �A1r+A2r+3A3r�p(A1r�A2r+A3r)2+8A3i(A1i�A2i�A3i)A1r+A2r+A3r 2 Z2(f)t A1r�A2r+A3r�p4jA3j2�(A1i�A2i+A3i)2A1r+A2r+A3r 2 Z2(e)D4 r �2 1t A1r�A2r�pjA3j2�(A1i�A2i)2A1r 4 Z2(e; f)Z4 r �2 1t A1�A2�A3A1r+A2r�A3r ; .. 2t �A1r+A2r�3A3r�p(A1r�A2r�A3r)2+8A3i(�A1i+A2i�A3i)A1r+A2r�A3r 2 Z2(f)Z3 r �2 1t �k�A1r�2A2r+A3r (k = 1; 2; 3; 4) 4Table 3: Stabilities of the maximal branhes of periodi solutions bifurating at generiHopf bifuration with symmetry O. The type refers to whether the eigendiretion is (r)radial, ie within the �xed point subspae or (t) transverse out of the �xed point subspae.the olumn # refers to the number of eigenvalues with this form. The �nal olumn indiatesthe symmetry types of any periodi solutions that appear at seondary bifuration assoiatedwith these eigenvalues being zero; all branhes an also undergo seondary Hopf bifurationto tori. These stabilities are given in terms eigenvalues of the relative equilibria of the thirdorder normal form oeÆients, ignoring the zero eigenvalues along the group orbit of thenormal form symmetry S1. The quantities �k are roots of the equation (9); these rootsome as two omplex pairs and .. denotes omplex onjugate.
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an be onverted into Floquet exponents for the periodi orbits (with period T ) simplyby omputing e�T .The eigenvalues of the Z3 solution are given by solving the polynomial equation�4 + 3�3 + 2�2 + 1� + 0 = 0 (9)where0 = 36jA3j2j �A1 +A2 +A3j21 = 24 �(�A1r +A2r + 2A3r)A23r + (2A23i � (A1r �A2r)2 +A3i(A1i �A2i))A3r+(�2A1r + 2A2r)A23i + (A1r �A2r)(�A1i +A2i)A3i�2 = 4(A21r +A22r +A23r)� 8A1rA2r + 12A3i(A1i �A2i)+24A23i + 28A3r(A1r �A2r)3 = �4A1r + 4A2r � 8A3rWe have not been able to simplify this substantially, but this equation appears to havefour proper omplex roots for almost all parameter values.The �nal olumn in Table 3 giving the symmetry of the submaximal relative equilibriathat branh when these eigenvalues pass through zero. These are found by examining thelimiting behaviour of the submaximal relative equilibria.Note that all maximal isotropy subgroups have one omplex dimensional �xed pointspaes and so are C-axial in terms of [15℄. We note that there are 5 suh maximalsubgroups, and so we an onlude that at suh a bifuration we will have 27 branhes ofperiodi solutions bifurating with the 5 maximal symmetry types.2.1 Dynamis in Fix(Z2(f))The normal form on Fix(Z2(f)) redues to the D4 normal form studied by Swift [43℄,namely if z3 = 0 then_z1 = (�+ i!)z1 +A1jz1j2z1 +A2jz2j2z1 +A3z22z1_z2 = (�+ i!)z2 +A1jz2j2z2 +A2jz1j2z2 +A3z21z2 (10)As in [43℄ one an better understand the dynamis of this system by parametrizing C2 byoordinates (r; �; �;  ) 2 R4, wherez1 = pr os �2 exp�i�+  2 � ; z2 = pr sin �2 exp�i��+  2 � ; (11)13
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so that the ondition for a periodi orbit  = Kt an be expressed asr os � = jz1j2 � jz2j2 = K1;r sin � exp i� = 2z1z2 = K2: (12)where K1 2 R and K2 2 C are onstants. Observe that the S1 oordinate  is removedby this hange of oordinates. Hene we an �nd the loations of periodi orbits in (7) bydi�erentiating the above expressions to obtain the equationsr(2 os �(A1rr + �) + (rA3i sin2 �) sin 2�) = 0 (13)r sin ���+ r(12A1r + 12A2r +A3r(�12 + os2 �)�A3i os � sin� os �)� = 0 (14)r2 sin ��os ��12(A1i �A2i +A3i)�A3i os2 ���A3r sin� os�� = 0: (15)Note that from these equations we an reover (a) the trivial solution r = 0, (b) themaximal branhes where sin � = 0 or os � = 0, () the submaximal branhes where � and� vary depending on the normal form oeÆients.Submaximal branhes in Fix(Z2(f)) Restriting by exluding the ases (a-) abovewe an obtain submaximal branhes as follows: solving (13) we getsin 2� = 2 os �(rA1r + �)rA3i sin2 � (16)whereas solving (15) we obtainos � = A3r sin 2�A2i �A1i +A3i os 2�: (17)Moreover rearranging (14) we getr = �2�A1r +A2r +A3r os 2�+A3i os � sin 2� (18)and using this to eliminate r, we an de�ne P4 and P5 byP4 := os 2� = A3r(A1r �A2r) +A3i(A1i �A2i)A23r +A23i = Re(A3(A1 �A2))jA3j2and P5 := os2 � = jA3j4 � jRe(A3(A1 �A2))j2jIm(A3(A1 �A2))j2 :Hene there will be a branh of submaximals with symmetry Z2(f) if and only if�1 < P4 < 1 and 0 < P5 < 1 (19)15



where P4 and P5 are real funtions of the ubi order oeÆients as de�ned above. Thediretion of branhing will depend of the sign of the denominator of (18). Note that theseexpressions are equivalent to the slightly more ompat expressions of Swift [43℄, but theyare expressed in the original variables rather than transformed ones.On varying one of the normal form oeÆients as a seond parameter, the Z2(f)submaximal branhes will limit to the following maximal isotropy subspaes as follows:Limit (z1; z2) (�; �) (P4; P5) BranhingD4 z2 = 0 � = 0 P5 = 1 jA3j = jA1 �A2jD2 z1 = z2 � = �=2; � = 0; � P4 = 1; P5 = 0 jA3j2 = Re(A3(A1 �A2))Z4 z2 = iz1 � = �=2; � = �=2 P4 = �1; P5 = 0 jA3j2 = Re(A3(A2 �A1))The onditions for branhing from maximals to Z2(f) are found from the expressions forP4 and P5 and it an be heked that these give rise to a zero eigenvalue for the relevantmaximal solution.2.2 Dynamis in Fix(Z2(e))On the invariant subspae (z1; z2; z2) the dynamis is given by_z1 = (�+ i!)z1 +A1jz1j2z1 + 2A2jz2j2z1 + 2A3z22z1_z2 = (�+ i!)z2 + (A1 +A2 +A3)jz2j2z2 +A2jz1j2z2 +A3z21z2: (20)One an perform the same substitution (11) to obtain submaximal branhes when�+ r2 �A1r + 2A2r �A3r + (3 os � � 1)(A3r os2 �+A3i os� sin�)� = 0 (21)12 os �(A1i �A2i + 2A3i +A3r sin� os ��A3i3 os2 �)+A3i2 (os2 �� 1)� 32A3r sin� os� = 0 (22)rA3r(os2 �� 1) + 3rA3i sin� os�+ os �(2�+ r(2A1r +A2r �A3r))+r os2 �(�A2r +A3r os2 �� 3A3i sin� os�) = 0 (23)The above equations do not have the symmetries of the Z2(f) equations with the onse-quene that we have not been able to solve them expliitly. Nevertheless, their branhingbehaviour is omputable.Submaximal branhes in Fix(Z2(e)) In this subspae there an be branhes of peri-odi solutions with submaximal symmetry, namely when (21-23) have nontrivial solutions(r; �; �). 16



These solutions limit onto the D2 maximal branh when os � = 0 and onto the D4maximal branh when os � = �1. They bifurate from the D3 maximal branh whensin � = os � and � = 0. In other words, these solutions branh from maximal solutionsunder the following onditionsLimit (z1; z2) (�; �) BranhingD2 z1 = 0 � = �; 2jA3j = jA1 �A2 +A3jD4 z2 = 0 � = 0; jA3j = jA2 �A1jD3 z1 = z2 � = �=2; � = 0 jA3j2 = Re(A3(A1 �A2))Note that there an be saddle-node bifurations within Fix(Z2(e)) when sin2 � = 1, r 6= 1and � 6= 0. These are not assoiated with bifuration to or from any invariant subspae.3 Examples of attrating behaviourWe now attempt to understand the possible dynamis of the normal form (7). Note thateven for the D4 Hopf bifuration [43℄ proving the exat form and generiity of the branhof quasiperiodi solutions is impossible if one inludes normal form symmetry breakingterms, due to the appearane of resonanes. In this setion we use the dynamial systemspakage dstool tk [28℄ with the `quality ontrolled' 4th order Runge-Kutta method.3.1 Symmetries of attratorsWe say a ompat invariant set A is an attrator, if it is the !-limit set of a positive measureset of initial onditions (for example, see the disussion in [5℄). It is important to make adistintion between two kinds of symmetries that an be attributed to an attrator in asymmetri system. Given an attrator A, we de�neT(A) = f� 2 G : �(x) = x for all x 2Ag and �(A) = f� 2 G : �(A) = Ag as in [13℄. The former subgroup we refer to as thepoint symmetry of the attrator whereas the latter subgroup is the symmetry on averageof the attrator. In this paper we employ the latter notion to disuss the symmetry ofan attrator; the former notion orresponds to the isotropy type of a typial point on theattrator whih may have less symmetry than the attrator.Projetion onto S1-orbits The S1 symmetry of the normal form means that periodiorbits an be redued to equilibria on fatoring out this symmetry. This allows us to loate17



Case � A1 A2 A3I� 1 + i �1� 0:9i �0:2 + 0:45i �0:3 + �iII� 1 + i �1� 0:9i �0:1 + 0:1i �0:3 + �iTable 4: The two families of parameter values of the oeÆients in (7) investigated nu-merially in Setion 3.2.and ontinue branhes of periodi (resp. quasiperiodi) orbits as if they were equilibria(resp. periodi orbits). To this end we projet the 3rd order normal form (7) onto anR-odimension one setion in C3 as follows. We de�ne an ODE on (v1; v2; v3) 2 C3 by_v1 = f1(v1; v2; v3) + iav1_v2 = f2(v1; v2; v3) + iav2_v3 = f3(v1; v2; v3) + iav3 (24)where the original equations (7) are expressed as _zi = fi(z1; z2; z3), and where we hoosea = �Im(f1z1)jz1j2 :This equation is well-de�ned for all z1 6= 0 and its solutions are in orrespondene withgroup orbits of those of (7) in the sense thatvk(t) = zk(t) exp(i(t))for (t) suh that for all � 2 [0; 2�) the spaesS� = f(v1; v2; v3) : jv1j > 0 and arg(v1) = �g (25)are invariant; this enables us to study periodi orbits of (7) by studying equilibria of (24).By hoosing initial onditions with x1 real and positive, we will remain in the subspaeS0 for all time and hene e�etively redue the dimension of the system from six to �ve.There are bifurations apparent between haoti attrators in the ubi normal formsystem (7) at some example parameter values. These transitions appear to be typial inthis system, although proving generiity is only possible in a very limited sense. Table 4gives the values of the normal form parameters that we investigate here.3.2 Numerial examplesBifurations in the family I� The family of systems I� (parametrized by �) in Table 4an be observed to have a number of attrators and bifurations that start to show the18



On separate pageFigure 3: Bifuration diagrams showing details of some of the bifurations for the family I�,omputed using xppaut. (a) shows the bifurations on varying � against Re(x3) while (b)shows it against Im(x3). The diagrams () and (d) show the same diagram over a smallerrange of �. All lines represent relative equilibria and the horizontal lines represent relativeequilibria with maximal symmetry; the thik lines are stable. Note that the only relativeequilibria that are stable are the Z3 solutions for � < 0:025. The irles are branhes ofstable periodi solutions that branh at a Hopf bifuration at A. This branh is destroyedat a homolini bifuration at B. C, D and E are bifurations of submaximal branheswith symmetry Z2(e) and Z2(f) from the maximal branhes. Observe that there are twofolds of the branh of Z2(e) solutions between B and C on this diagram. The values of �at A, B, C, D, E an be found numerially using the tables in Setion 2 and are 0:02514,0:04465, 0:10322, 0:32564 and 0:59563 respetively.dynamial rihness of the normal form (7). Figure 3, omputed using xppaut [17℄ showssome branhes of relative equilibria and periodi orbits in the family for the `interesting'range of �0:2 < � < 0:7. The solutions are shown projeted into the Re(x3) and Im(x3)omponents for the S1 redued system (24) with Re(x1) > 0 and Im(x1) = 0, wherexi = Re(vi). The steady states and periodi orbits of the redued system orrespond toperiodi orbits and tori of the original system (7), respetively. Note that varying � doesnot hange the position of the maximal solutions, only their stability. Hene they appearas horizontal lines on these diagrams. The �gure shows only relative equilibria and the Z3periodi orbits. For � > 0:045 all of the solutions on this digram are unstable; howeverthey are all of saddle type and many appear to be embedded within the haoti attratorfor larger �.Figure 4 shows attrators for the family I�. There is a transition from stable Z3periodi orbit to fully symmetri haos; A Poinar�e setion of the ase (d) is shown inFigure 5(a) while (b) shows the network of heterolini onnetions that our at theisolated parameter value in I� assoiated with a transition from Z3 tori to Z4 tori. Figure 6shows the transition at I0:0047 shematially in a Poinar�e setion; before the bifurationthere are Z3 symmetri tori whih beome Z4 symmetri after the bifuration.19
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() (d)Figure 4: Attrators for the system (7) are shown with transient behaviour for parametervalues (a) I�0:05, a stable Z3 relative equilibrium, (b) I0:03, a stable Z3 relative periodiorbit, () I0:045, a stable Z4 relative periodi orbit, (d) I0:2, a fully symmetri attratorformed by merging of all Z4 relative periodi orbits. In all ases, the attrators are shownin the (x2r; x3r) plane for the system (24) with the ontinuous symmetry projeted out. Inthese �gures, the projetion (and setion) preserves a D4 symmetry that �xes x1i = 0.
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(a) (b)Figure 5: (a) is a Poinar�e setion taken at Re(x1) = 0:96 for I0:2. (b) I0:0047; twoequilibria of type Z2(e) and their unstable manifolds are shown; these are lose to forminga network of heterolini onnetions.

Figure 6: Shemati of a heterolini network between periodi orbits with symmetry Z2(e)(i.e. (z1; z1; z2)). This is formed at the bifuration where Z3 symmetri tori are replaedby Z4 symmetri tori shown with the S1 symmetry fatored out and so the periodi orbitsare replaed by equilibria. Before the bifuration the onnetions are broken suh that thereare periodi orbits on the triangular faes orresponding to Z3 tori in the full system. Afterthe bifuration there are Z4 symmetri relative periodi orbits on the shaded square faes.22



The family II� On inreasing � this has a branh of stable Z3 periodi orbits that havea subritial bifuration leading diretly to fully symmetri haos.3.3 Breaking the normal form symmetryAs previously stated, the S1 normal form symmetry is not present in the full dynamis.Although it does not a�et the branhing of periodi attrators and their stability, it willause degeneraies of any more ompliated attrators. In partiular, tori will only bevisible in the dynamis of the full system for isolated parameter values as the presene ofresonanes will ause breakup of tori at what may be a very small sale.To examine the e�ets of normal form symmetry breaking we simulate the system_z1 = f1(z1; z2; z3) + �z31_z2 = f2(z1; z2; z3) + �z32_z3 = f3(z1; z2; z3) + �z33 (26)with fi the ubi order normal form in (7). The extra term �z3i breaks the S1 symmetryfor � 6= 0 while retaining the O symmetry. Figure 7 (a) and (b) show one of the onjugateattrators for the parameters I0:028 with � = �0:047; the detail (b) shows the preseneof small sale folding and presumably haos in the attrator. () Shows an attratorfor I0:035 with � = �0:047 that is apparently haoti and possesses full symmetry. Thisperturbation an ause the branh of Z3-symmetri tori to break up into a haoti attratorbefore merging into a single fully symmetri haoti attrator. Note that the observedquantitative e�et of the symmetry breaking terms on the fully symmetri attrator is notgreat.4 Instability of ABC ow.In this setion we onsider time-dependent solutions to the Navier-Stokes equation withthe 1:1:1 ABC foring. We study in detail the bifurations, ourring immediately afterthe trivial steady state { the 1:1:1 ABC ow (1,2) { beomes unstable in a Hopf bifurationat R � 13:044. Aording to [38℄, the ation H of the group on the enter eigenspae isisomorphi to the representation W0 (see Setion 1), and hene results of Setion 2 an beapplied to this bifuration. 23
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()Figure 7: Simulations of the normal form with broken S1 symmetry, (26) with xi = Re(zi),a Poinar�e setion taken at x1 onstant. (a) and (b) show a onjugate attrator for I0:028,� = �0:047; () shows an attrator for I0:035 with � = �0:047 with fully symmetri haos.
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4.1 The symmetry group of the Navier-Stokes equation with the 1:1:1ABC fore.The symmetry group H of (3,4) with foring (1,2,5) is generated bys1 : x1 ! x2; x2 ! x3; x3 ! x1and s2 : x1 ! �2 � x2; x2 ! �2 + x1; x3 ! ��2 + x3:Let # : O! H be the isomorphism suh that #(�111) = s1 and #(�001) = s2. Some otherelements of the group are#(�+110) = s3 : x1 ! �2 + x2; x2 ! ��2 + x1; x3 ! �2 � x3and #(��110) = s4 : x1 ! ��2 � x2; x2 ! ��2 � x1; x3 ! ��2 � x3:4.2 Numerial simulations.Standard pseudospetral methods are used for numerial solution of (3-5). The ow isrepresented as a Fourier series: v(t) =Xk vk(t)eik�x: (27)The resolution provided by 163 Fourier harmonis suÆes and is used throughout. Wehave reprodued results of some 163 harmonis omputations, using the resolution of 243harmonis; see the next setion for details.For the ation of H �= O, the spae of 2�-periodi funtions an be deomposed into�ve isotypi omponents, orresponding to �ve representations of the group O. Thesefuntional subspaes were desribed in [38℄ by relations between Fourier oeÆients oftheir elements. In partiular, the quantitiesq1(v) = 0:5(Re(v2100) + Im(v3100)); q2(v) = 0:5(Re(v3010) + Im(v1010));q3(v) = 0:5(Re(v1001) + Im(v2001))vanish for funtions from any of the four subspaes not assoiated with the representationW0. It is onvenient to use the qi's to desribe symmetries of attrators, beause a symme-try si 2 H transforms these three quantities in the same way as #�1(si) 2 O transformsthe three oordinates of a vetor. 25



4.3 Bifurations to Z3 symmetri attratorsBeyond the Hopf bifuration, for R > R0 we observe appearane of eight symmetriallyrelated attrating periodi orbits with symmetry Z3 (see Table 1). Plots of the quantitiesqi(v), i = 1�3 (shown on Figure 8a for one of the orbits for R = 13:05) are shifted by onethird of the period. The third order symmetry s1 = #(�111) permutes the values of qi's:q1(u) = q2(v); q2(u) = q3(v); q3(u) = q1(v);where u = s1(v). Other symmetries from the group H permute the values and may alsohange signs, e.g. for u = s2(v)q1(u) = q2(v); q2(u) = �q1(v); q3(u) = q3(v)and for u = s3(v) q1(u) = q2(v); q2(u) = q1(v); q3(u) = �q3(v):Appliation of symmetries from H yields eight symmetri attrators with all eight possibleombinations of signs of time averages of the three quantities (note that time averages of qifor any i do not vanish). Thus signs of the time averages of qi label the eight attrators (forexample, see time series for the (+ ++) orbit on Figure 8a). Projetion of the trajetoryfor R = 13:05 in the saturated regime into the omplex plane q1(v) + exp(2�i=3)q2(v) +exp(�2�i=3)q3(v) is a irle (see Figure 9a), indiating that the trajetory possesses thesymmetry S1. For 13:06 � R � 13:09 the solution is also periodi.At the interval 13:05 � R � 13:13 the system has eight symmetry related attrators.Bifurations of eah of them are apparently not a�eted by existene of its seven symmetriounterparts at this interval of the Reynolds number. Bifurations of only one of the eightattrators will be desribed in what follows, the other seven evidently undergoing the samebifurations.For R = 13:1 the behaviour is quasi-periodi: a torus with the seond frequeny,f2 � 0:0017, muh smaller than the �rst one, f1 � 0:043 (f. Figures 11a,b) emergesin a Hopf bifuration from the periodi orbit at R = R1 ( 13:09 < R1 < 13:1 ). Theseond frequeny is visible in the time evolution of q1(v) for R = 13:1 (see Figure 8b).Figure 9b, showing projetion of the trajetory in the saturated regime into the omplexplane q1(v) + exp(2�=3i)q2(v) + exp(�2�=3i)q3(v), demonstrates that the attrator laks26



(a) (b)

() (d)Figure 8: The quantities qi(v(t)), i = 1 � 3 (a) or i = 1 (b-d) (vertial axis) versus time(horizontal axis) for R = 13:05 (a), R = 13:1 (b), R = 13:12 () and R = 13:14 (d).

(a) (b)Figure 9: Projetion of the trajetory in the saturated regime into the omplex planeq1(v(t)) + exp(2�i=3)q2(v(t)) + exp(�2�i=3)q3(v(t)) for R = 13:05 (a) and R = 13:1(b). 27



(a) (b)

() (d)

(e) (f)Figure 10: Poinar�e setion q1(v(t)) = 0 of attrators for R = 13:1 (a), R = 13:117 (b),R = 13:1175 (), R = 13:118 (d), R = 13:12 (e) and R = 13:14 (f). Horizontal axis:q2(v(t)), vertial axis: q3(v(t)). 28



(a) (b)

() (d)

(e) (f)Figure 11: Frequeny spetrum of q1(v(t)) for R = 13:05 (a), R = 13:1 (b), R = 13:117(), R = 13:1175 (d), R = 13:118 (e) and R = 13:12 (f). Horizontal axis: frequeny (Hz).
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the S1 symmetry. Figure 10a, showing a Poinar�e setion of the attrator, also suggeststhat the attrator is a torus.The next bifuration at R = R2 (13:1 < R2 < 13:11) is torus doubling with emer-gene of the frequeny f2=2 (f. Figures 10a,b, Figures 11b,). In ontrast the well-knownFeigenbaum senario for period doubling of periodi orbits, torus doubling bifuration se-quenes usually terminate after a few doublings [1℄ and in our ase we get transition toa 3-torus (possessing three main frequenies; see Figures 10,11d) takes plae at R = R3(13:117 < R3 < 13:1175). At R = 13:1175, lose to the point of bifuration, the emergingfrequeny f3 is very lose (but not exatly equal) to f2=18. f3 varies with R muh fasterthan f1 and f2 (see Figures 11d-f). Attrators found in omputations are: R = 13:1177{ a 3-torus; R = 13:118 { a 2-torus with the main frequenies f1 and f2=14 (see Fig-ures 10d,11e); R = 13:119 { a 2-torus with the main frequenies f1 and f2=10; R = 13:1195{ a 2-torus with the main frequenies f1 and f2=16; R = 13:12 and 13.13 { haoti (seeFigures 8,10e,11f).These results are obtained with the resolution of 163 harmonis. When the resolutionis inreased to 243 harmonis the sequene of bifurations is not a�eted, but the valuesof R at whih the bifurations our slightly hange: the torus doubling takes plae at13:12 < R < 13:125; the transition to the 3-torus { at 13:125 < R < 13:13, for R = 13:13the emerging third frequeny remains lose to f2=18; for R = 13:14 the behavior is haoti,resembling the dynamis for R = 13:12 with the 163 resolution.4.4 Bifuration to fully symmetri haosAt R = R4 (13:13 < R4 < 13:14) the eight symmetrially related haoti attrators joininto a single attrator possessing on average all symmetries of the system { a symmetryinreasing bifuration in the terminology of [13℄. At R = 13:14 the behaviour beomesintermittent: a trajetory of the system spends a long time (from 2000 to 150,000 timeunits in a sample run of duration of 1.5 million time units) in the viinity of one of theformer haoti attrators, then moves to the viinity of a symmetri opy of the formerattrator, the transition taking approximately 1000 time units. As indiated above, theformer attrators are labelled by signs of time averages of the quantities qi. Computationsshow, that labels of suessive former attrators visited by a trajetory an di�er in onlyone plae (i.e. we observe transitions from (+ + +) to (+ + �), (+ � +) or to (� + +),30



but never to, say, (��+) or (���) ). Comparison of Poinar�e setions (Figures 10e,f)also makes it evident that the attrator under onsideration is a union of eight formerattrators. (See on Figure 8d behaviour of q1 near the point of transition from the (��+)former attrator to the (+�+) one.)For 13:14 � R � 13:4 in the viinity of the trivial steady state the system possessesthe single haoti attrator having all the symmetries of the system. As the Reynoldsnumber is inreased, the average time spent by a sample trajetory in the viinity of eahformer attrator dereases. For R � 13:2 there is no intermitteny any more, the solutionis haoti revealing apparent fast mixing within phase spae. We an neither identify anybifuration in this interval, nor an we guarantee absene of bifurations.4.5 Interpretation of the sequene of bifurationsWe suggest the following explanation of the observed sequene of attrators. When R, theonly parameter at our disposal, is varied, the eight branhes of periodi attrators withthe symmetry group �(A) = Z3 (as well as many other unstable branhes) emerge in ageneri Hopf bifuration at R = R0. On varyingR we also alter the third order normal formoeÆients and this results in a seondary bifuration at R = R1, whih is a superritialHopf bifuration (or Saker-Neimark bifuration) to a quasiperiodi attrator (also with�(A) = Z3). Note in partiular that the frequeny introdued in suh a seondary Hopfbifuration must be very small, sine near bifuration all non-trivial solutions of an S1-ommuting vetor �eld are periodi and the higher order terms will ause only a slow driftbetween these orbits.This seondary bifuration reates a branh that is however subjet to instabilitiesbrought about by the presene of S1 symmetry breaking terms. The terms are apparentlyresponsible for the torus doubling bifuration at R = R2 and also for the Hopf bifurationat R = R3. Both torus doubling and transition from a T n-torus to T (n+1) have beeninvestigated analytially (see [9℄, [30℄ and referenes therein). The third frequeny thatappears varies fast with R and onsequently more 2-tori and periodi orbits emerge dueto frequeny loking on the 3-torus.A detailed explanation for the quantitative details of this sequene of bifurationsis not yet available. In partiular, the normal form with S1 symmetry annot modelthe three frequeny quasiperiodiity, and hene why we observe this partiular sequene31



of bifurations. Moreover, when general torus bifurations are investigated analytially,usually the dynamis of the system annot be determined in a ertain region of the pa-rameter spae (Cheniner bubbles) [34℄. In our ase one an therefore onjeture thatfor R > R1 there exists a `fat fratal' set of parameters with positive measure on whihthere are quasiperiodi attrators; within the gaps of this set there are resonanes ofnon-quasiperiodi attrators and ompliated bifuration sequenes an our. Thus thesequene of bifurations is likely to be more omplex than the one outlined in the previoussetion; due to limitations of numerial investigation we have not attempted to loate andidentify all bifurations.The transition at R = R4 to fully symmetri haos is a risis where unstable invariantsets on a basin boundary merge with an attrator to reate a more symmetri attrator[13℄. It is very similar in harater to another seondary bifuration, also observed in thenormal form from Z3 to full symmetry (see Figure 7). In the normal form we observea transition from a Z3 quasiperiodi attrator via a Z4 quasiperiodi attrator to fullysymmetri haos that at �rst is highly intermittent. These transitions our under a smallhange in the normal form oeÆient in the presene of the normal form terms breakingthe S1 symmetry. This sequene ould be trunated to the one observed at R = R4.5 DisussionWe have presented a detailed investigation of the generi Hopf bifuration with the sym-metry O ating as rotations of a ube for an irreduible representation on C3. We onsidera general system de�ned by the third order normal form and a partiular hydrodynamialsystem that has this group of symmetries. For the generi bifuration problem we lassifythe possible primary branhes and their stability and among other things, �nd the possi-bility of diret bifuration to fully symmetri haos or to tori and show that the periodiorbit branhing is determined by the third order trunation of the normal form.The third order normal form exhibits a rih variety of bifurations beause of theavailable dimensions; this is reeted in the seondary bifurations of the hydrodynamialsystem. The normal form an be used to analytially explain the �rst two bifurationsof the hydrodynamial system: emergene of periodi orbits and their transition to eightsymmetrially related stable tori; for eah of the orbits and of the tori with �(A) = Z3.32



These bifurations are followed by torus doubling and appearane of the third frequeny;it beomes progressively more diÆult to identify subsequent bifurations. The sequene isonluded with a symmetry inreasing bifuration where eight attrators, eah possessinga symmetry group �(A) = Z3, join into one with full symmetry, �(A) = O. (Note that allattrators A observed in numerial simulations with R > R0 have point symmetry T (A)that is trivial.) This is also reprodued in the normal form. Although this ours over asmall range of Reynolds numbers, we see that many di�erent dynamial behaviours ourwithin this range.Neither analytial nor numerial approahes urrently provide an explanation of allbifurations ourring in the hydrodynamial system. This suggests an approah for afurther analysis: we are in the proess of obtaining the relevant normal form oeÆients forthe Hopf bifuration of the hydrodynamial system to enable us to numerially investigatethe details of the bifurations. A paper is urrently in preparation [41℄ whih on�rms theobserved primary bifuration for the simulations disussed here.Further analysis of normal form related to Hopf bifuration with symmetryO would behelpful, e.g. investigation of seondary bifurations of the observed branhes of periodisolutions. It is of interest to establish either existene of robust heterolinis betweeninvariant sets in the system de�ned by the normal form, or to rule them out. The unfoldingof the bifuration by adding symmetry breaking terms, say from O to D4 and then to nosymmetry, ould further aid to understand the primary instability of ABC ows for themore general ases A = B 6= C and A 6= B 6= C.Investigation of bifurations of the solutions of the Navier-Stokes equations for Reynoldsnumbers larger than those onsidered here is presumably possible by the study of intera-tion of the steady state and Hopf bifurations; both of these are identi�ed in [37, 38, 39℄.The ABC ow instabilities we examine here are restrited to perturbations that havethe same spatial periodiity as the ow. As it was proven analytially in [32, 33, 36℄, theow is unstable to long-wavelength perturbations for R � 1. It is of interest to identifythe resultant sequene of bifurations; however, this task is beyond the sope of this paper.
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