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Abstract

We examine the dynamics of generic Hopf bifurcation in a system that is sym-
metric under the action of the rotational symmetries of the cube. We classify the
generic branches of periodic solutions at bifurcation; there are generically 27 branches
corresponding to maximal symmetries, organized into five symmetry types. There are
also up to 22 periodic solution branches of two other symmetry types. These results
are found by examination of the normal form (with S' normal form symmetry) for
the bifurcation truncated at the third order.

In addition to the periodic branches whose branching and stability we find, there
are several branches of tori, homoclinic bifurcations and chaotic attractors in the dy-
namics of the third order normal form. Since many of these features are not amenable

to analysis we give some numerical examples. On breaking the normal form symme-



try, there may be breakup of the branches of tori, but the predictions for the periodic
solutions will be reliable.

For the Navier-Stokes equations with a particular forcing, an ABC flow is a dy-
namically stable solution for small Reynolds numbers R. For the most symmetric case,
A = B = C =1, the first instability of this system is a Hopf bifurcation at R = 13.04
with rotational symmetry of the cube. We use our normal form analysis to explain
the observed behaviour of solutions at this primary instability. Numerical simulations
show that there is supercritical branching to rotating waves that alternate between the
three axes, which undergo secondary Hopf bifurcation to a 2-torus at approximately
R = 13.09. The eight symmetrically related tori break up and then merge to form a
chaotic attractor with full symmetry. We can explain all these features by use of the

generic third order normal form and S! normal form symmetry breaking terms.

1 Introduction

The so-called ABC flow is a fully three-dimensional steady flow of incompressible fluid

with velocity field
uapc = (Asinzg + Ccoszo, Bsinzy + Acosxzs, Csinxy + Bcosz), (1)

where A, B and C are constants. This flow satisfies the Beltrami condition V X uapc =
augpe with @ = 1 and hence it is a solution to the Euler equations with the vanishing
force. Arnold [2] has proved that a steady solution to a force-free Euler equation can have
chaotic streamlines only if the solution possesses the Beltrami property; he introduced
ABC flows as the simplest analytical example of vector fields satisfying this condition. As
such, ABC flows have enjoyed a close attention of a large number of mathematicians and
physisists. Hénon [29] showed numerically that for A = /3, B = v/2, C = 1 the ABC
flow is indeed chaotic. The particle paths of a variety of ABC flows have been studied in
[16]. If at least one coefficient in (1) vanishes, the flow is integrable. Using the Painlevé
test, Dombre et al. [16] argued that this condition for integrability of an ABC flow is also
necessary. The Poincaré sections computed for certain flows of that type revealed that the
flows do have chaotic streamlines; indeed the largest Lyapunov exponents for streamlines
of some ABC flows were computed in [18] and were found to be positive.

If a triangle can be constructed with sides equal to A%, B? and C?, the flow has 8

stagnation points in a periodicity cube; there are no stagnation points otherwise. In the



case A = B = C =1 stagnation points are connected by heteroclinic trajectories, which
are straight lines [12].

Non-integrability of streamlines, giving rise to chaotic mixing of a passive scalar within
the flow, is a necessary condition for a flow to act as a fast magnetic field generator
[45, 46, 31]. For this reason, and because heteroclinic structure of trajectories of ABC
flows is rather well understood, they are widely employed in the study of magnetic field
generation. In the context of the kinematic dynamo, ABC flows were first examined in
[10]. Tt was shown that they can act as dynamos, e.g. see [4, 20, 21, 23, 24, 18, 19, 11].
These computations suggest that for certain sets of coefficients the dynamos are fast. ABC
flows were also proposed as prototypes for the study of the development of turbulence (see
[37, 38, 39]). Magnetic field reversals were observed in an ABC-force driven fully non-linear
MHD system [40)].

Generically, (1) has the symmetry group isomorphic to Dy if we exclude time reversal
symmetries (these are symmetries of the flow but not of the Navier-Stokes equations). If
two coefficients are equal, it is isomorphic to D4. For A = B = C the group, denoted
by #, has 24 elements and it is isomorphic to the rotation group of a cube [3],[16]. We
consider the particular case:

A=B=C=1. (2)

For any Reynolds number R, uspc is a steady solution of the Navier-Stokes equation

1
%:VX(VXV)—Vp—l—EAv—i—f, (3)

subject to the incompressibility condition

V-v=0 (4)
and the force
1
f = EuABc (5)

(p is the pressure). Space-periodic boundary conditions are assumed in x4, 29, 23, namely

v(zr1, 29, 23) = v(z1 + 2k, 29 + 2lT, 225 + 2mM7T)
p(x1, T2, x3,) = p(r1 + 2k™, T2 + 2l7, 23 + 2mM077)
for any (k,I,m) € Z3. In this setup, any symmetry of the ABC flow is also a symmetry of

the equation, but solutions that branch from the ABC flow solution may break some or

all of these symmetries.



One of the aims of this paper is to examine the primary dynamical instability of
this flow on increasing Reynolds number by showing that its stable dynamics near this
instability are governed by a generic Hopf bifurcation with the appropriate symmetry.
Using this we predict and find the existence of many different branches of periodic solutions
as well as more exotic dynamics.

Numerical results on bifurcations of time-dependent solutions of the Navier-Stokes
equation (1-5) for R < 50 were presented in [37]-[39]. It can be proven that for R < 0.5
the flow (1-5) is a unique steady state of (3,4), and it is stable. Computations show that the
flow is stable for R < 13.04 [22],[37] and that it is a unique attractor of this hydrodynamical
system for R < 7.8 [37]. The trivial steady state — the 1:1:1 ABC flow (1,2) — becomes
unstable in a Hopf bifurcation at some R = Ry, where Ry can be numerically located
at approximately 13.044 [39]. The action of the group H on the center eigenspace at
this bifurcation is isomorphic to the standard representation of the group of rotational
symmetries of the cube, O (see [38]).

In this paper we firstly characterize generic Hopf bifurcation with the symmetry O.
Secondly, we analyze this instability and secondary bifurcations in the particular case of
instability of uagc in the above problem at R = Ry to perturbations in the Eulerian
velocity field.

In order to do this we apply methods and results from generic equivariant bifurcation
theory to this problem; see [25, 26] for discussion and development of methods, details of
the theory and many examples. An important feature of this theory is that a generic Hopf
bifurcation of a symmetric equilibrium will (in the absence of further degeneracies) occur
within a linear subspace that is one of the C-irreducible representations (henceforth called
irreps) of the symmetry group. The group O = S4 of permutations of 4 elements has five
C-irreps Wy, - - - Wy; two of these are on C?, one on C? and two on C. We consider only
bifurcations for representation Wy on C* where O acts purely by rotations. This irrep
is two copies of the R-irrep on R? given by rotational symmetries of a cube. The other
R-irrep on R? is the set of symmetries of a regular tetrahedron acting by permuting its
vertices; note that this includes reflections and has no rotations of order four (but it does
have a rotation-reflection of order four).

There exists a nontrivial isomorphism of the group O x S! into itself. We will give an

explicit form for it in Section 2. The action of O x S' on W; (the C? representation of



O x S! distinct from Wp) can be represented as a composition of the isomorphism and the
action of the group on Wy. Thus all our results concerning bifurcations with symmetry
group O x S! on Wy are also applicable to the representation W, the isomorphism being
taken into account. (However, representations of the group O on Wy and Wj are not
related by an automorphism of the group, and so the bifurcations on Wy and W; are
different in this sense.)

Generic steady state bifurcations with several types of cubic symmetry have been
investigated by many authors. In particular, bifurcations on cubic lattices are studied
in [8]. An analysis of steady state bifurcation with the 48 element group O of rotations
and reflections of the cube is considered in [35]. Some work has been done on steady
bifurcation with another element subgroup of O of elements that preserves the ordering
of the axes; in particular [27] uses the third order normal form to show that branches of
robust attracting heteroclinic cycles can arise as a generic possibility. However, this group
is not isomorphic to O; it has no elements of order four. As to Hopf bifurcations, an
analysis of generic Hopf bifurcation on square (resp. cubic) lattices was carried out in [42]
(resp. [14]). Barany and Swift [44] examine generic Hopf bifurcation with the symmetry of
an index 2 subgroup of O; they find branches of robust homoclinic orbits branching from
the trivial solution for an open and dense set of normal form coefficients (these homoclinic
orbits were further investigated in [6]).

For the action of O x S' on C? that we consider here, there are two families of fixed
point subspaces that are isomorphic to C2. In one of these we can apply the analysis of
the Hopf bifurcation with dihedral D4 symmetry of Swift [43] to find branches of periodic
solutions with submaximal symmetries. The other subspace also supports submaximal
symmetry periodic solutions.

The structure of the paper is as follows: In Section 2 we characterize the group O,
discuss its representation on R3 by rotations and the representation it induces on C3
at a generic Hopf bifurcation. For this representation we discuss the isotropy subgroups
and invariant subspaces and derive the general normal form at bifurcation. Much of
the dynamics we investigate here is determined by the normal form truncated at third
order. We classify the generic branching behaviour and stabilities of these periodic orbits
at bifurcation in terms of the coefficients of this normal form. There are five families

of periodic solutions with maximal symmetries (all maximal symmetries are C-axial in



the terms of [15]). These solutions are always present; two additional families (with
submaximal symmetries) are present for an open (but not dense) set of normal form
coefficients. All these periodic solutions have frequencies close to the Hopf frequency.
Since all branching periodic solutions are determined at third order for an open set of
normal form parameters, Theorem 11.2 in [26] implies that the branching of periodic
solutions of the full equations are generically determined by the third order normal form.

In addition to periodic branching behaviour, other branches can occur in the normal
form to chaotic attractors and quasiperiodic branches (for an open set of normal form
coefficients) and homoclinic/heteroclinic cycles (for a codimension one set of normal form
coefficients). In Section 3 some indicative examples of this are investigated numerically
by path-following, as a complete analytical classification of all possible attractors is not
presently possible. We also discuss the effect of breaking the normal form symmetry intro-
duced at Hopf bifurcation by virtue of the fact that all terms that do not commute with
the S! symmetry of phase shifts given by solution of the linear equations can be trans-
formed away to arbitrarily high order. These ‘flat terms’ can however cause dynamically
important effects such as torus breakup; we give some examples.

In Section 4 we return to the particular case of instability of the ABC flow, describing
and discussing attractors observed numerically at the bifurcation. We discuss how the
observed transition to a chaotic attractor with full symmetry on increasing R can be
explained by the normal form model analysed in Sections 2 and 3. The branches of periodic
solutions correspond to time-periodic Eulerian solutions close to the original ABC flow;
moreover, the quasiperiodic and chaotic solutions are also close to the original ABC flow
and can be thought of as its time-dependent perturbations. Finally, some limitations,
the effects of symmetry breaking, and possible extensions of this present work are briefly

discussed in Section 5.

2 Hopf bifurcation with rotational symmetry of the cube.

The group We consider Hopf bifurcation with cubic symmetry for the complex irre-

ducible action on C? of the group O x S! generated by the three-fold rotation

pii1 : (21,22, 23) = (22, 23, 21),



the four-fold rotation

poot : (21, 22,23) ¥ (22, —21, 23),

and the normal form S' phase shift symmetry

Yo : (21,22, 23) — 6’7:6(21,22,23).

We refer to the group acting in this way as O x S' (the representation on Wy of the

introduction). We denote
Kot (21,22, 23) ¥ (22,21, —23), Ky (21,22,23) = (=29, —21, —23), etc.

Note that x7,, = p?11 00010217 and k1,5 = pag1K11o- The symmetry piq1 has order three and
corresponds to a rotation around a vertex of the cube, pgg; has order four and corresponds
to a rotation about the centre of a cube face by one quarter of a turn, ”1+10 has order two
and corresponds to a rotation about a line through midpoints of opposite edges of the cube
by a half of a turn. We refer to the (conjugacy class of the) group generated by ky;;7vx
as Zo(e) and to the one generated by p3,,7x as Za(f). The 7 act as temporal phase-shift
symmetries that are present in the normal form but in fact these symmetries are broken
in generic problems by high order terms. The isomorphism of the group O x 8! to itself

that relates the C? representations Wy and W, is given by:
p111 7 P111, P00l = YxP001s Vo — V6-

Invariant subspaces For an action of a group G, the isotropy subgroup of a point z is
the largest subgroup of G that fixes that point. Given any subgroup H the fixed point
space Fix(H) is the set of points fixed by all group elements in H (see e.g. [26]).

The isotropy subgroups and invariant subspaces for the irreducible action of O x S' on
C? are listed in Table 1 with a typical point, dimension, generators, number of conjugates
and normalizers tabulated. Note that all nontrivial isotropy subgroups contain mixed
spatio-temporal symmetries; often these are differentiated from purely spatial symmetries
by addition of a tilde, but in this case it is unnecessary. This is similar to the case for Dy
Hopf bifurcation where the action of D4 x S' on C? has non-trivial kernel. Recall that if
H is an isotropy subgroup then the normalizer Norm(H) = {g € O x S! : gH = Hg} is
the largest subgroup that maps Fix(H) to itself. The isotropy subgroups can be partially

ordered into the lattice shown in Figure 1 by considering containment (up to conjugacy).



Name Typical point dimec  Generators  Conj. Norm.
O x S! (0,0,0) 0 {pi1,pr00,7} 1 O x S!
D; (2,2, 2) L {pi11, 61107} 4 D; x S!
D, (z,2,0) 1 {sf0, K107} 6 D, x S!
Dy (2,0,0) 1 {pi00, Pio1¥x} 3 DyxS!
Z, (2,iz2,0) 1 {po01Vx/2} 6 Z4 x S!
Zs (2, ze2™1/3 ze4mi/3) L A{p11ven/3} 8 Zs x St
Zsy(f) (21, 22,0) 2 {G01 7} 3  DyxS!
Zs(e) (21, 22, 22) 2 {Kg117x} 6 Dy xS!
1 (21, 22, 23) 3 {e} 1 O x S!

Table 1: Table of the isotropy subgroups for the action of O x S' on C? considered here.
There are nine possible symmetry types; the number of conjugate subgroups and the normal-
izer are listed as well as the dimension of the fized point subspace and a list of generators.

The suffices (e) and (f) refer to edge and face symmetries respectively.

Note that there is a candidate for a robust (relative) heteroclinic cycle that connects
equilibria in the Dy and Dy subspaces and passes through Zs(e) and Zy(f). This setup
is not present in the D4 Hopf bifurcation and is a truly 3D phenomenon. We have not
managed to rule out such robust heteroclinic cycles but neither have we observed them in
the normal form dynamics.

One can demonstrate that there are no robust homoclinic cycles for this group action,
by noting that the only chains of properly contained subgroups 1 < K < H < O x S! have
K = Z5(e) or Zs(f), and in both cases there is no g and H such that Norm(K)NgH = ()
and K < HN HY. Hence by Proposition 2.3 in [7] there can be no such robust homoclinic

cycles (although there may still be robust heteroclinic cycles).

Normal form The general formal normal form for a vector field with the given action

O x S! symmetry can be written as follows:

. l lo 1—11—1 : lo 1—11—1 :
Z1 = Z Cl]hlz,q],qg,qull|Zl‘2q1(22223 1 2|22‘2qz|23‘ZQ3+232Z2 1 2|23‘2qz|22‘2q3)

(l1,02,q1,92,93)€T’



Figure 1: The isotropy lattice for the irreducible action of O x S* on C3.

where I’ is the subset of (I1,l2,q1,q2,q3) € Z° such that

(1, odd
ly > % and [y even
{ @@ > max(—I,0)
g2 > max(—l9,0)
[ @3 > max(1 —I; —[3,0).

The other components, z; and Z3, can be obtained by cyclic permutation of the indices of
71,22 and z3. We show this by considering the formal power series expansion of a vector

field on C3 as follows:

. i I a2 1 :
Zi = Z Z CZ1712713,Q1,Q27Q3211 222233‘Zl|2q1 ‘22|2q2‘23|2q3 (6)

(I1,l2,13)€Z3 (q1,92,93)€T

(1 =1,2,3), where
I={(q1,q2,q3) € Z® : g1 > max(—1I,0), g2 > max(—I»,0) and g3 > max(—I3,0)}.
The series (6) commutes with the action of O x S! if and only if it commutes with all its

generators. It commutes with pyqq if

2 oA
013711 12,43,91,92 011 JM2,03,91,G2,93
and

1 _ 3
Cl1,l2,ls,Q1,QQ7Q3 - 012,13,11,1127(137(11

for all [;, ¢;. It commutes with pgg if

lo 12
(71) : Clz,h J13,q2,q1,q93°
(71)l2+101 and

l2,l1,03,92,q1,q3
1\l 3
- ( 1) 012711,13711271117113'

1
Ch J12,03,G1,92,q3

2
CllalZ;lS:‘h 192,43

3
CllalZ;lS:‘h 192,43



Finally, it commutes with S' if

=0 forly+1ly+135#1.

7
Ch JM2,03,91,G2,93

After some algebra the above relations for C|_ can be reduced to C =0if
lq l1,02,03,q1,q2,q3

is even, [y is odd, or I3 is odd and

1 _ 1
Cl1,l2,13711171127Q3 - Cll,ls,lzyquqsan'

Substitution of the above expressions into (6) for i = 1 yields the equivariant normal form
given.

Alternatively, one can compute that 1 and |z;|? + |22]? + |23/ generate the ring of
invariants up to cubic orders while the module of equivariants (to cubic order) is generated

by

21 2122 (25 + 23)71
2z | 22|%20 | (21 + 23)72
23 23] 23 (21 + 23)z3

over the ring of invariants. Hence one can see that the cubic order normal form is given

by

Z1 = (Atiw)z + Az 221 + Ao(|z2)? + |23]2) 21 + Ag(Zg + zg)Z

22

23

(A +iw)zs + A1]z2]?22 + Ag(|21 | + |23]%) 22 + A3(2] + 23) 72
()\ + 7&))23 + A1‘23|223 + A2(|Zl|2 + |22‘2)23 + Aq(Z% + Z%)K

For convenience we write

A] = A]r —|—’iA]i, etc.

We are interested in the case where A ~ 0 and w = O(1) for Hopf bifurcation. The fifth

order normal form has first component given by

71 = (A +iw)z + Ar|z1]%21 + Ag(|22]? + |23)2) 21 + A3(22 + 22)77
+ (Aalz1 (25 + 23) + As(|22°25 + [23[°23) + As(|22]?25 + |23]%23)) 71 (8)
+ (A7(722 + 73%) 2] + As|z1|* + Ag(|z2|* + |23]") + Avo|z223]?) 21.
and the other components can be found by cyclic permutation of the indices of 27, z9 and

z3. There can be seen to be seven different equivariants at fifth order.

10



Name Branch |2 No of solutions

D3 (2,2,2) — Ay, + 24y, +243,) 7! 4
D, (2,2,0) “ Ay, + Ay + Az,) ! 6
D, (2,0,0) —A(Ay,) ! 3
7., (2,iz,0) ~MAy, + Ay — As) 7! 6
Z3 (Z, Ze?m’/S’ Ze47ri/3) *A(Alr + 2A2r _ ABT)—] 8

Table 2: Branching for the mazimal symmetry branches at generic Hopf bifurcation with
symmetry O. All branches have non-degenerate branching behaviour as determined by the

third order normal form.

Maximal symmetry branches All maximal isotropy subgroups for this action of O X
S! have fixed point spaces that are one (complex) dimensional; the Equivariant Hopf
Lemma [26] then implies that each of these supports a branch of solutions. In this case
we can compute the branching behaviour as in Table 2 and their stability in Table 3.
Observe that all branches are different for generic values of the coefficients; this means
that branching is not degenerate if we only use the 3rd order normal form. From this
information we see that in the case A, < 0 we can get branching of the maximal symmetry
solutions in the A > 0 direction (and hence possible stable branches) for the regions shown
in Figure 2. As usual we refer to branches that appear for A > 0 as supercritical and those

for A < 0 as subcritical. We summarize:

The branching only depends on (Aj,, Ay, Az, ), but the stability depends also on
(Avi, Agi, Azg).

For the case A, < 0 illustrated, the D4 branch always branches supercritically.

The case A1, > 0 is not illustrated but will lead to a similar pattern of branching

depending on (Asg,, As,).

e One can only realize 20 of the 32 possible combinations of sub/supercritical branching

of the maximal subgroups by appropriate choice of normal form coefficients.

The stability of the maximal symmetry branches is calculated in Table 3. The stability

is given in terms of eigenvalues ¢ for the linearisation about these relative equilibria. These

11



Name | Type e.v./A # Branches
to
D3 r -2 1
¢ —Alp+ Ay +4Az £/ (Al — Asp +2A3,)2+12A3; (A1, — As— As;) 4 Zo(e)
’ A1r+2A27‘+2A37‘ 21¢
D2 r -2 1
¢ — Al +Ag +3A3, £/ (A1, — Asyp+ A3, ) 2+8A3; (A1 — Az — As;) 9 Zo(f)
' A1T+A2T+A3T 2\
¢ AIT*AQT‘}’ASTi\/ZHAB‘2*(A1i*A2i+A3i)2 9 7 (6)
A1T+A2T+A3T 2
D4 r -2 1
Arp—Aor /[ A3|2—(A1;—Ag;)?
6 A 4 Zs(e, f)
Z4 r -2 1
A1 —Ax—As
t A1T+A27‘7A37" ¢.C. 2
¢ — A1, + A —3Ag, /(A1 —As, — Az )2+8Ag; (— Arit+Agi — Asi) 9 Zo(f)
A1T+A27‘7A37' 2
Zg r -2 1
& _
t *A17‘*2A27‘+A3r (k 7 17 27 37 4) 4

Table 3: Stabilities of the mazimal branches of periodic solutions bifurcating at generic
Hopf bifurcation with symmetry O. The type refers to whether the eigendirection is (r)
radial, ie within the fized point subspace or (t) transverse out of the fized point subspace.
the column # refers to the number of eigenvalues with this form. The final column indicates
the symmetry types of any periodic solutions that appear at secondary bifurcation associated
with these eigenvalues being zero; all branches can also undergo secondary Hopf bifurcation
to tori. These stabilities are given in terms eigenvalues of the relative equilibria of the third
order normal form coefficients, ignoring the zero eigenvalues along the group orbit of the
normal form symmetry S'. The quantities £ are roots of the equation (9); these roots

come as two complex pairs and c.c. denotes complex conjugate.

12



can be converted into Floquet exponents for the periodic orbits (with period T') simply
by computing €7

The eigenvalues of the Z3 solution are given by solving the polynomial equation
544—63534-(3252 +c1é+cg=0 (9)

where

cy = 36‘143‘2‘ — A] —i—Ag +A3‘2

cp= 24 ((*Alr + Aoy + 2A37«)A%T + (2A§z — (Alr — AQT)Q + A37;(A17; — AQ/,:))A37~
+(—241, 4+ 242,) A3, + (Ary — Aoy ) (—Ari + Ag;) Asi)

Cy = 4(A?r —|— A%r —|— A%r) — 8A]T-A2r —|— 12A31 (Alz — AQZ)
+24 A%, + 2843, (A1, — Agy)
c3 = —4A, + 449 — 843,

We have not been able to simplify this substantially, but this equation appears to have
four proper complex roots for almost all parameter values.

The final column in Table 3 giving the symmetry of the submaximal relative equilibria
that branch when these eigenvalues pass through zero. These are found by examining the
limiting behaviour of the submaximal relative equilibria.

Note that all maximal isotropy subgroups have one complex dimensional fixed point
spaces and so are C-azial in terms of [15]. We note that there are 5 such maximal
subgroups, and so we can conclude that at such a bifurcation we will have 27 branches of

periodic solutions bifurcating with the 5 maximal symmetry types.

2.1 Dynamics in Fix(Z,(f))

The normal form on Fix(Zs(f)) reduces to the Dy normal form studied by Swift [43],

namely if z3 = 0 then

Z1 = ()\+iw)z1 +A]‘Z1‘221 +A2‘22|221 +A32§Z (10)
29 = ()\ + 7:(4))22 + Al‘ZQ‘QZQ + A2‘21|222 + qu%ﬁ
As in [43] one can better understand the dynamics of this system by parametrizing C? by
coordinates (r, 0, ¢,4) € R*, where

zlzﬁcosgexp <7¢—;¢>, 22:\/1_“singexp <7_¢2+¢>, (11)

13



Figure 2: For Ay, = —m < 0, the mazimal symmetry solutions branch in the X > 0
direction for these wvalues of the normal form coefficients in the (Ao, As.) plane. The
lines where branching changes direction are indicated on this diagram. Observe that there

are Dy branches everywhere for Ay, < 0 and that there are 10 different cases; Ay, > 0

gives a further 10 cases.

14



so that the condition for a periodic orbit 1) = Kt can be expressed as

rcosf = [21|2 — |%|? = K1,
217 — [22] 1 (12)
rsinfexpip = 221Z9 = Ko.

where K; € R and K, € C are constants. Observe that the S' coordinate 1 is removed
by this change of coordinates. Hence we can find the locations of periodic orbits in (7) by

differentiating the above expressions to obtain the equations

r(2cos O(A1,7 + A) + (rAs;sin?0)sin20) = 0 (13)

1 1 1
rsinf ()\ + r(§A1T + EAQT- + Agr(—§ + cos® ) — As; cos 6 sin ¢ cos gb)) = 0 (14)
1
r?sinf ((:089 <§(A17; — Ag; + Asj) — As; cos? (;S) — Az, sin ¢ cos ¢> = 0. (15)

Note that from these equations we can recover (a) the trivial solution » = 0, (b) the
maximal branches where sin = 0 or cos = 0, (c) the submaximal branches where 6 and

¢ vary depending on the normal form coefficients.

Submaximal branches in Fix(Zs(f)) Restricting by excluding the cases (a-c) above

we can obtain submaximal branches as follows: solving (13) we get

2cosO(rAy, + )

sin2¢ = 16
sin2¢ rAs;sin® 6 (16)
whereas solving (15) we obtain
Ag, sin2¢
cosf = - . 17
Ag; — Ay + Asicos2¢ (17)
Moreover rearranging (14) we get
—2)
r— . (18)
Ay, + Ay + Aspcos2¢ + As;cosfsin2¢
and using this to eliminate r, we can define P4 and Ps by
Az (A — A Asi (A1 — Ao (Az(A; — A
Py = cos 2 — ar(Arr 2;) + 2%7( 1i — Agi) _ Re(As( 12 2))
A3r + A3z' |A3|
and
Az|* — |Re(A35(A; — Ay))|?
P5 = COS20: | 3‘ ‘_P( 3( 1 22))| )
Im(A5(A; — Ag))]
Hence there will be a branch of submaximals with symmetry Zs(f) if and only if
—1<P<1l and0<P5<1 (19)

15



where Py and Ps are real functions of the cubic order coefficients as defined above. The
direction of branching will depend of the sign of the denominator of (18). Note that these
expressions are equivalent to the slightly more compact expressions of Swift [43], but they
are expressed in the original variables rather than transformed ones.

On varying one of the normal form coefficients as a second parameter, the Zy(f)
submaximal branches will limit to the following maximal isotropy subspaces as follows:

Limit | (z1,22) (0, ¢) (Py, P5) Branching

D, z2=0 0=0 P=1 |Ag| = |A1 — Ag]

D, |z1=20 0=x/2, ¢=0,1 P,=1,P=0 |A3]> =Re(A3(4; — A3))

Z, 2 =iz 0=m/2, =72 Py=—1,P5=0 |A3>=Re(A3(4y — 4}))

The conditions for branching from maximals to Zy(f) are found from the expressions for
P, and Ps and it can be checked that these give rise to a zero eigenvalue for the relevant

maximal solution.

2.2 Dynamics in Fix(Zs(e))

On the invariant subspace (z1, 22, 22) the dynamics is given by

Z1 = (A tiw)zr + Ar|z1]?21 4+ 2A49]29)%21 + 2432377 (20)
29 = ()\ + ia))ZQ + (A1 + Ay + A3)|22‘222 + A2|21‘222 + AqZ%@
One can perform the same substitution (11) to obtain submaximal branches when
A+ g [A]T + 245, — Az, + (3cos 0 — 1)(As, cos® ¢ + As; cos $sin ng)] = 0 (21)

1
5 00 O(Ay; — Ao; + 2A3; + Az, singcos ¢ — Az;3 cos® §)

Aszi
+%(cOs2¢—1)—%A3rsin¢cos¢ -0 2

Az, (cos® ¢ — 1) + 3rAg; sin ¢ cos ¢ + cos 0(2) + (241, + Ag, — As,))
+7 cos? O(—Agy + A3, cos? ¢ — 3As; sin ¢ cos $) = 0 (23)
The above equations do not have the symmetries of the Zs(f) equations with the conse-
quence that we have not been able to solve them explicitly. Nevertheless, their branching

behaviour is computable.

Submaximal branches in Fix(Zs(e)) In this subspace there can be branches of peri-

odic solutions with submaximal symmetry, namely when (21-23) have nontrivial solutions

(r,0,¢).
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These solutions limit onto the Dy maximal branch when cosf = 0 and onto the Dy
maximal branch when cosf# = —1. They bifurcate from the D3 maximal branch when
sinf = cosf and ¢ = 0. In other words, these solutions branch from maximal solutions

under the following conditions

Limit | (z1,29) (6, ¢) Branching

D, z21=0 60=m, 2|Az| = |A1 — Ay + Aj|
Dy 22=0 6=0, |Az| = [A2 — A4

D3 21=20 0=7/2, =0 |A3]? = Re(43(4; — A))

Note that there can be saddle-node bifurcations within Fix(Zs(e)) when sin? ¢ =1, r # 1

and 6 # 0. These are not associated with bifurcation to or from any invariant subspace.

3 Examples of attracting behaviour

We now attempt to understand the possible dynamics of the normal form (7). Note that
even for the D4 Hopf bifurcation [43] proving the exact form and genericity of the branch
of quasiperiodic solutions is impossible if one includes normal form symmetry breaking
terms, due to the appearance of resonances. In this section we use the dynamical systems

package dstool_tk [28] with the ‘quality controlled’ 4th order Runge-Kutta method.

3.1 Symmetries of attractors

We say a compact invariant set A is an attractor, if it is the w-limit set of a positive measure
set of initial conditions (for example, see the discussion in [5]). It is important to make a
distinction between two kinds of symmetries that can be attributed to an attractor in a
symmetric system. Given an attractor A, we define T(A) ={oc € G : o(z) =z for all z €
A} and £(A) = {o € G : 0(A) = A} as in [13]. The former subgroup we refer to as the
point symmetry of the attractor whereas the latter subgroup is the symmetry on average
of the attractor. In this paper we employ the latter notion to discuss the symmetry of
an attractor; the former notion corresponds to the isotropy type of a typical point on the

attractor which may have less symmetry than the attractor.

Projection onto S'-orbits The S' symmetry of the normal form means that periodic

orbits can be reduced to equilibria on factoring out this symmetry. This allows us to locate
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Case | M\ Ay Ay Az
I 1472 —-1-0.9: —-0.2+045; —-0.3+ K2

T, 1+ -1-09 —-0.140.1¢ —0.3+ &1

Table 4: The two families of parameter values of the coefficients in (7) investigated nu-

merically in Section 3.2.

and continue branches of periodic (resp. quasiperiodic) orbits as if they were equilibria
(resp. periodic orbits). To this end we project the 3rd order normal form (7) onto an

R-codimension one section in C? as follows. We define an ODE on (v1,v2,v3) € C3 by

01 = fi(vi,ve,v3) + iavy
vy = favr,ve,v3) + iavy (24)
v3 = f3(vi,ve,v3) + iavs

where the original equations (7) are expressed as %; = f;(z1, 22, 23), and where we choose

_ —Im(f17))
E—.

This equation is well-defined for all z; # 0 and its solutions are in correspondence with

group orbits of those of (7) in the sense that
v (t) = 2k (t) exp(iy ()
for v(t) such that for all ¢ € [0,27) the spaces
Sy = {(vi,v2,v3) : || >0 and arg(vi) = ¢} (25)

are invariant; this enables us to study periodic orbits of (7) by studying equilibria of (24).
By choosing initial conditions with z; real and positive, we will remain in the subspace
Sy for all time and hence effectively reduce the dimension of the system from six to five.

There are bifurcations apparent between chaotic attractors in the cubic normal form
system (7) at some example parameter values. These transitions appear to be typical in
this system, although proving genericity is only possible in a very limited sense. Table 4

gives the values of the normal form parameters that we investigate here.

3.2 Numerical examples

Bifurcations in the family I,, The family of systems I, (parametrized by ) in Table 4

can be observed to have a number of attractors and bifurcations that start to show the
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On separate page ‘

Figure 3: Bifurcation diagrams showing details of some of the bifurcations for the family I,
computed using zppaut. (a) shows the bifurcations on varying k against Re(x3) while (b)
shows it against Im(x3). The diagrams (c) and (d) show the same diagram over a smaller
range of k. All lines represent relative equilibria and the horizontal lines represent relative
equilibria with mazimal symmetry; the thick lines are stable. Note that the only relative
equilibria that are stable are the Zs solutions for k < 0.025. The circles are branches of
stable periodic solutions that branch at a Hopf bifurcation at A. This branch is destroyed
at a homoclinic bifurcation at B. C, D and E are bifurcations of submazximal branches
with symmetry Zo(e) and Zo(f) from the maximal branches. Observe that there are two
folds of the branch of Zs(e) solutions between B and C on this diagram. The values of k
at A, B, C, D, E can be found numerically using the tables in Section 2 and are 0.02514,
0.04465, 0.10322, 0.32564 and 0.59563 respectively.

dynamical richness of the normal form (7). Figure 3, computed using xppaut [17] shows
some branches of relative equilibria and periodic orbits in the family for the ‘interesting’
range of —0.2 < k < 0.7. The solutions are shown projected into the Re(z3) and Im(z3)
components for the S' reduced system (24) with Re(z1) > 0 and Im(z;) = 0, where
x; = Re(v;). The steady states and periodic orbits of the reduced system correspond to
periodic orbits and tori of the original system (7), respectively. Note that varying x does
not change the position of the maximal solutions, only their stability. Hence they appear
as horizontal lines on these diagrams. The figure shows only relative equilibria and the Zj
periodic orbits. For x > 0.045 all of the solutions on this digram are unstable; however
they are all of saddle type and many appear to be embedded within the chaotic attractor
for larger k.

Figure 4 shows attractors for the family I,. There is a transition from stable Zg
periodic orbit to fully symmetric chaos; A Poincaré section of the case (d) is shown in
Figure 5(a) while (b) shows the network of heteroclinic connections that occur at the
isolated parameter value in I,; associated with a transition from Zj tori to Z4 tori. Figure 6
shows the transition at Iy ggs47 schematically in a Poincaré section; before the bifurcation

there are Z3 symmetric tori which become Z, symmetric after the bifurcation.
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T3y | 1 T3y

R R

Figure 4: Attractors for the system (7) are shown with transient behaviour for parameter
values (a) I g5, a stable Zs relative equilibrium, (b) Iyos, a stable Zs relative periodic
orbit, (¢) Iy.oas, a stable Zy relative periodic orbit, (d) Iye, a fully symmetric attractor
formed by merging of all Zy relative periodic orbits. In all cases, the attractors are shown
in the (xo,,x3,;) plane for the system (24) with the continuous symmetry projected out. In

these figures, the projection (and section) preserves a Dy symmetry that fizes x11 = 0.
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Z3r Z3r

Qe

(a) (b)

Figure 5: (a) is a Poincaré section taken at Re(x1) = 0.96 for Iyo. (b) Iy.ooar; two

equilibria of type Zs(e) and their unstable manifolds are shown; these are close to forming

a network of heteroclinic connections.

Figure 6: Schematic of a heteroclinic network between periodic orbits with symmetry Zs(e)
(i.e. (z1,21,22)). This is formed at the bifurcation where Zz symmetric tori are replaced
by Z, symmetric tori shown with the S' symmetry factored out and so the periodic orbits
are replaced by equilibria. Before the bifurcation the connections are broken such that there
are periodic orbits on the triangular faces corresponding to Zs tori in the full system. After

the bifurcation there are Zy symmetric relative periodic orbits on the shaded square faces.
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The family IT, On increasing  this has a branch of stable Z3 periodic orbits that have

a subcritical bifurcation leading directly to fully symmetric chaos.

3.3 Breaking the normal form symmetry

As previously stated, the S! normal form symmetry is not present in the full dynamics.
Although it does not affect the branching of periodic attractors and their stability, it will
cause degeneracies of any more complicated attractors. In particular, tori will only be
visible in the dynamics of the full system for isolated parameter values as the presence of
resonances will cause breakup of tori at what may be a very small scale.

To examine the effects of normal form symmetry breaking we simulate the system

21 = fi(z1,22,23) + €2}
Z0 = fa(z1,22,23) + €z (26)
z3 = f3(z1,22,23) + €z

with f; the cubic order normal form in (7). The extra term ez} breaks the S! symmetry
for € # 0 while retaining the O symmetry. Figure 7 (a) and (b) show one of the conjugate
attractors for the parameters Iy gog with € = —0.047; the detail (b) shows the presence
of small scale folding and presumably chaos in the attractor. (c) Shows an attractor
for Iy035 with e = —0.047 that is apparently chaotic and possesses full symmetry. This
perturbation can cause the branch of Z3-symmetric tori to break up into a chaotic attractor
before merging into a single fully symmetric chaotic attractor. Note that the observed
quantitative effect of the symmetry breaking terms on the fully symmetric attractor is not

great.

4 Instability of ABC flow.

In this section we consider time-dependent solutions to the Navier-Stokes equation with
the 1:1:1 ABC forcing. We study in detail the bifurcations, occurring immediately after
the trivial steady state — the 1:1:1 ABC flow (1,2) — becomes unstable in a Hopf bifurcation
at R =~ 13.044. According to [38], the action H of the group on the center eigenspace is
isomorphic to the representation Wy (see Section 1), and hence results of Section 2 can be

applied to this bifurcation.
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Figure 7: Simulations of the normal form with broken S' symmetry, (26) with x; = Re(z;),

a Poincaré section taken at x1 constant. (a) and (b) show a conjugate attractor for Iy gos,

e = —0.047; (¢) shows an attractor for Iy 35 with e = —0.047 with fully symmetric chaos.

24



4.1 The symmetry group of the Navier-Stokes equation with the 1:1:1
ABC force.

The symmetry group H of (3,4) with forcing (1,2,5) is generated by
S1: X1 — X2, g — T3, T3 — I

and

s m m
S9 : x1—>§—x2, x2—>§—i—x1, x3—>—§+x3.

Let ¢ : O — H be the isomorphism such that ©¥(p111) = $1 and ¥(pgo1) = s2. Some other

elements of the group are

s s T
19(/<a1+10):53: 1 —>§+x2, x2—>—§+x], x3—>§—x3

and

_ T T s
V(K1) =S4 1 — —g T2, @2 — 5 L @ — 5 s

4.2 Numerical simulations.

Standard pseudospectral methods are used for numerical solution of (3-5). The flow is

represented as a Fourier series:
v(t) =Y vi(t)e™™. (27)
k

The resolution provided by 163 Fourier harmonics suffices and is used throughout. We
have reproduced results of some 163 harmonics computations, using the resolution of 243
harmonics; see the next section for details.

For the action of H = O, the space of 27-periodic functions can be decomposed into
five isotypic components, corresponding to five representations of the group O. These
functional subspaces were described in [38] by relations between Fourier coefficients of

their elements. In particular, the quantities
1 (v) = 0.5(Re(vigg) + Im(viyg)),  g2(v) = 0.5(Re(v510) + Im(vg)),
q3(v) = 0.5(Re(vgg;) + Im(vgy,))

vanish for functions from any of the four subspaces not associated with the representation
Wy. It is convenient to use the g;’s to describe symmetries of attractors, because a symme-
try s; € H transforms these three quantities in the same way as 9~ '(s;) € O transforms

the three coordinates of a vector.
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4.3 Bifurcations to Z; symmetric attractors

Beyond the Hopf bifurcation, for R > Ry we observe appearance of eight symmetrically
related attracting periodic orbits with symmetry Zs (see Table 1). Plots of the quantities
qi(v), i = 1 —3 (shown on Figure 8a for one of the orbits for R = 13.05) are shifted by one

third of the period. The third order symmetry s; = 9(p111) permutes the values of ¢;’s:

where u = s1(v). Other symmetries from the group H permute the values and may also

change signs, e.g. for u = sy(v)

@) = @), @) =-qa(v), g@g)=g)

and for u = s3(v)

q(u) = @), @)=qlv), gu)=—gv).

Application of symmetries from H yields eight symmetric attractors with all eight possible
combinations of signs of time averages of the three quantities (note that time averages of ¢;
for any 4 do not vanish). Thus signs of the time averages of ¢; label the eight attractors (for
example, see time series for the (+ + +) orbit on Figure 8a). Projection of the trajectory
for R = 13.05 in the saturated regime into the complex plane ¢1(v) + exp(27i/3)ga(v) +
exp(—2mi/3)qs(v) is a circle (see Figure 9a), indicating that the trajectory possesses the
symmetry S;. For 13.06 < R < 13.09 the solution is also periodic.

At the interval 13.05 < R < 13.13 the system has eight symmetry related attractors.
Bifurcations of each of them are apparently not affected by existence of its seven symmetric
counterparts at this interval of the Reynolds number. Bifurcations of only one of the eight
attractors will be described in what follows, the other seven evidently undergoing the same
bifurcations.

For R = 13.1 the behaviour is quasi-periodic: a torus with the second frequency,
f2 =~ 0.0017, much smaller than the first one, f; ~ 0.043 (cf. Figures 1la,b) emerges
in a Hopf bifurcation from the periodic orbit at R = Ry ( 13.09 < R; < 13.1 ). The
second frequency is visible in the time evolution of ¢;(v) for R = 13.1 (see Figure 8b).
Figure 9b, showing projection of the trajectory in the saturated regime into the complex

plane ¢ (v) + exp(27/3i)g2(v) + exp(—27/37)g3(v), demonstrates that the attractor lacks
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Figure 10: Poincaré section q1(v(t)) = 0 of attractors for R = 13.1 (a), R = 13.117 (b),
R = 13.1175 (¢), R = 13.118 (d), R = 13.12 (e) and R = 13.14 (f). Horizontal azis:

q2(v(t)), vertical axis: q3(v(t)).
28



10712

0.01

0.02 0.03 0.04 0.05

(b)

1076

10’87

10710k

10712

10714 \ \ \ \ 10 \ \ ‘ ‘

0000 0001 0002 0003 0004  0.005 0000 0001 0002 0003 0004  0.005

(c) (d)
1078
1078 R
10710 |
10712 H |
. . . . 10714 . . . .
0,000 0001 0002 0003 0004  0.005 0000 0001 0002 0003 0004  0.005

(e)

(f)

Figure 11: Frequency spectrum of q1(v(t)) for R = 13.05 (a), R = 13.1 (b), R = 13.117
(¢c), R=13.1175 (d), R = 13.118 (e) and R = 13.12 (f). Horizontal azis: frequency (Hz).

29



the S; symmetry. Figure 10a, showing a Poincaré section of the attractor, also suggests
that the attractor is a torus.

The next bifurcation at R = Ry (13.1 < Ry < 13.11) is torus doubling with emer-
gence of the frequency fo/2 (cf. Figures 10a,b, Figures 11b,c). In contrast the well-known
Feigenbaum scenario for period doubling of periodic orbits, torus doubling bifurcation se-
quences usually terminate after a few doublings [1] and in our case we get transition to
a 3-torus (possessing three main frequencies; see Figures 10c,11d) takes place at R = Rj
(13.117 < R3 < 13.1175). At R = 13.1175, close to the point of bifurcation, the emerging
frequency f3 is very close (but not exactly equal) to fo/18. f3 varies with R much faster
than f; and fy (see Figures 11d-f). Attractors found in computations are: R = 13.1177

a 3-torus; R = 13.118 a 2-torus with the main frequencies f; and fy/14 (see Fig-
ures 10d,11e); R = 13.119 — a 2-torus with the main frequencies f; and fy/10; R = 13.1195
— a 2-torus with the main frequencies f; and fo/16; R = 13.12 and 13.13 — chaotic (see
Figures 8c,10e,11f).

These results are obtained with the resolution of 16 harmonics. When the resolution
is increased to 24% harmonics the sequence of bifurcations is not affected, but the values
of R at which the bifurcations occur slightly change: the torus doubling takes place at
13.12 < R < 13.125; the transition to the 3-torus — at 13.125 < R < 13.13, for R = 13.13
the emerging third frequency remains close to fo/18; for R = 13.14 the behavior is chaotic,

resembling the dynamics for R = 13.12 with the 163 resolution.

4.4 Bifurcation to fully symmetric chaos

At R = Ry (13.13 < Ry < 13.14) the eight symmetrically related chaotic attractors join
into a single attractor possessing on average all symmetries of the system — a symmetry
increasing bifurcation in the terminology of [13]. At R = 13.14 the behaviour becomes
intermittent: a trajectory of the system spends a long time (from 2000 to 150,000 time
units in a sample run of duration of 1.5 million time units) in the vicinity of one of the
former chaotic attractors, then moves to the vicinity of a symmetric copy of the former
attractor, the transition taking approximately 1000 time units. As indicated above, the
former attractors are labelled by signs of time averages of the quantities ¢;. Computations
show, that labels of successive former attractors visited by a trajectory can differ in only

one place (i.e. we observe transitions from (+ + +) to (++ —), (+ — +) or to (— + +),
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but never to, say, (— — +) or (— — —) ). Comparison of Poincaré sections (Figures 10e,f)
also makes it evident that the attractor under consideration is a union of eight former
attractors. (See on Figure 8d behaviour of ¢; near the point of transition from the (— —+)
former attractor to the (+ — +) one.)

For 13.14 < R < 13.4 in the vicinity of the trivial steady state the system possesses
the single chaotic attractor having all the symmetries of the system. As the Reynolds
number is increased, the average time spent by a sample trajectory in the vicinity of each
former attractor decreases. For R > 13.2 there is no intermittency any more, the solution
is chaotic revealing apparent fast mixing within phase space. We can neither identify any

bifurcation in this interval, nor can we guarantee absence of bifurcations.

4.5 Interpretation of the sequence of bifurcations

We suggest the following explanation of the observed sequence of attractors. When R, the
only parameter at our disposal, is varied, the eight branches of periodic attractors with
the symmetry group X(A) = Z3 (as well as many other unstable branches) emerge in a
generic Hopf bifurcation at R = Ry. On varying R we also alter the third order normal form
coefficients and this results in a secondary bifurcation at R = Ry, which is a supercritical
Hopf bifurcation (or Sacker-Neimark bifurcation) to a quasiperiodic attractor (also with
Y(A) = Z3). Note in particular that the frequency introduced in such a secondary Hopf
bifurcation must be very small, since near bifurcation all non-trivial solutions of an S'-
commuting vector field are periodic and the higher order terms will cause only a slow drift
between these orbits.

This secondary bifurcation creates a branch that is however subject to instabilities
brought about by the presence of S' symmetry breaking terms. The terms are apparently
responsible for the torus doubling bifurcation at R = R9 and also for the Hopf bifurcation
at R = R3. Both torus doubling and transition from a T"-torus to T("*") have been
investigated analytically (see [9], [30] and references therein). The third frequency that
appears varies fast with R and consequently more 2-tori and periodic orbits emerge due
to frequency locking on the 3-torus.

A detailed explanation for the quantitative details of this sequence of bifurcations
is not yet available. In particular, the normal form with S' symmetry cannot model

the three frequency quasiperiodicity, and hence why we observe this particular sequence
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of bifurcations. Moreover, when general torus bifurcations are investigated analytically,
usually the dynamics of the system cannot be determined in a certain region of the pa-
rameter space (Chenciner bubbles) [34]. In our case one can therefore conjecture that
for R > R, there exists a ‘fat fractal’ set of parameters with positive measure on which
there are quasiperiodic attractors; within the gaps of this set there are resonances of
non-quasiperiodic attractors and complicated bifurcation sequences can occur. Thus the
sequence of bifurcations is likely to be more complex than the one outlined in the previous
section; due to limitations of numerical investigation we have not attempted to locate and
identify all bifurcations.

The transition at R = R4 to fully symmetric chaos is a crisis where unstable invariant
sets on a basin boundary merge with an attractor to create a more symmetric attractor
[13]. It is very similar in character to another secondary bifurcation, also observed in the
normal form from Zj3 to full symmetry (see Figure 7). In the normal form we observe
a transition from a Zs quasiperiodic attractor via a Z4 quasiperiodic attractor to fully
symmetric chaos that at first is highly intermittent. These transitions occur under a small
change in the normal form coefficient in the presence of the normal form terms breaking

the S! symmetry. This sequence could be truncated to the one observed at R = Ry.

5 Discussion

We have presented a detailed investigation of the generic Hopf bifurcation with the sym-
metry O acting as rotations of a cube for an irreducible representation on C3. We consider
a general system defined by the third order normal form and a particular hydrodynamical
system that has this group of symmetries. For the generic bifurcation problem we classify
the possible primary branches and their stability and among other things, find the possi-
bility of direct bifurcation to fully symmetric chaos or to tori and show that the periodic
orbit branching is determined by the third order truncation of the normal form.

The third order normal form exhibits a rich variety of bifurcations because of the
available dimensions; this is reflected in the secondary bifurcations of the hydrodynamical
system. The normal form can be used to analytically explain the first two bifurcations
of the hydrodynamical system: emergence of periodic orbits and their transition to eight

symmetrically related stable tori; for each of the orbits and of the tori with X(A) = Zs.
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These bifurcations are followed by torus doubling and appearance of the third frequency;
it becomes progressively more difficult to identify subsequent bifurcations. The sequence is
concluded with a symmetry increasing bifurcation where eight attractors, each possessing
a symmetry group 3(A) = Zs, join into one with full symmetry, 3(A) = O. (Note that all
attractors A observed in numerical simulations with R > Ry have point symmetry T(A)
that is trivial.) This is also reproduced in the normal form. Although this occurs over a
small range of Reynolds numbers, we see that many different dynamical behaviours occur
within this range.

Neither analytical nor numerical approaches currently provide an explanation of all
bifurcations occurring in the hydrodynamical system. This suggests an approach for a
further analysis: we are in the process of obtaining the relevant normal form coefficients for
the Hopf bifurcation of the hydrodynamical system to enable us to numerically investigate
the details of the bifurcations. A paper is currently in preparation [41] which confirms the
observed primary bifurcation for the simulations discussed here.

Further analysis of normal form related to Hopf bifurcation with symmetry O would be
helpful, e.g. investigation of secondary bifurcations of the observed branches of periodic
solutions. It is of interest to establish either existence of robust heteroclinics between
invariant sets in the system defined by the normal form, or to rule them out. The unfolding
of the bifurcation by adding symmetry breaking terms, say from O to D4 and then to no
symmetry, could further aid to understand the primary instability of ABC flows for the
more general cases A =B # C and A # B # C.

Investigation of bifurcations of the solutions of the Navier-Stokes equations for Reynolds
numbers larger than those considered here is presumably possible by the study of interac-
tion of the steady state and Hopf bifurcations; both of these are identified in [37, 38, 39].

The ABC flow instabilities we examine here are restricted to perturbations that have
the same spatial periodicity as the flow. As it was proven analytically in [32, 33, 36], the
flow is unstable to long-wavelength perturbations for R > 1. It is of interest to identify

the resultant sequence of bifurcations; however, this task is beyond the scope of this paper.
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