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tWe examine the dynami
s of generi
 Hopf bifur
ation in a system that is sym-metri
 under the a
tion of the rotational symmetries of the 
ube. We 
lassify thegeneri
 bran
hes of periodi
 solutions at bifur
ation; there are generi
ally 27 bran
hes
orresponding to maximal symmetries, organized into �ve symmetry types. There arealso up to 22 periodi
 solution bran
hes of two other symmetry types. These resultsare found by examination of the normal form (with S1 normal form symmetry) forthe bifur
ation trun
ated at the third order.In addition to the periodi
 bran
hes whose bran
hing and stability we �nd, thereare several bran
hes of tori, homo
lini
 bifur
ations and 
haoti
 attra
tors in the dy-nami
s of the third order normal form. Sin
e many of these features are not amenableto analysis we give some numeri
al examples. On breaking the normal form symme-1



try, there may be breakup of the bran
hes of tori, but the predi
tions for the periodi
solutions will be reliable.For the Navier-Stokes equations with a parti
ular for
ing, an ABC 
ow is a dy-nami
ally stable solution for small Reynolds numbers R. For the most symmetri
 
ase,A = B = C = 1, the �rst instability of this system is a Hopf bifur
ation at R = 13:04with rotational symmetry of the 
ube. We use our normal form analysis to explainthe observed behaviour of solutions at this primary instability. Numeri
al simulationsshow that there is super
riti
al bran
hing to rotating waves that alternate between thethree axes, whi
h undergo se
ondary Hopf bifur
ation to a 2-torus at approximatelyR = 13:09. The eight symmetri
ally related tori break up and then merge to form a
haoti
 attra
tor with full symmetry. We 
an explain all these features by use of thegeneri
 third order normal form and S1 normal form symmetry breaking terms.1 Introdu
tionThe so-
alled ABC 
ow is a fully three-dimensional steady 
ow of in
ompressible 
uidwith velo
ity �elduABC = (A sinx3 + C 
os x2; B sinx1 +A 
os x3; C sinx2 +B 
osx1); (1)where A, B and C are 
onstants. This 
ow satis�es the Beltrami 
ondition r� uABC =�uABC with � = 1 and hen
e it is a solution to the Euler equations with the vanishingfor
e. Arnold [2℄ has proved that a steady solution to a for
e-free Euler equation 
an have
haoti
 streamlines only if the solution possesses the Beltrami property; he introdu
edABC 
ows as the simplest analyti
al example of ve
tor �elds satisfying this 
ondition. Assu
h, ABC 
ows have enjoyed a 
lose attention of a large number of mathemati
ians andphysisists. H�enon [29℄ showed numeri
ally that for A = p3; B = p2; C = 1 the ABC
ow is indeed 
haoti
. The parti
le paths of a variety of ABC 
ows have been studied in[16℄. If at least one 
oeÆ
ient in (1) vanishes, the 
ow is integrable. Using the Painlev�etest, Dombre et al. [16℄ argued that this 
ondition for integrability of an ABC 
ow is alsone
essary. The Poin
ar�e se
tions 
omputed for 
ertain 
ows of that type revealed that the
ows do have 
haoti
 streamlines; indeed the largest Lyapunov exponents for streamlinesof some ABC 
ows were 
omputed in [18℄ and were found to be positive.If a triangle 
an be 
onstru
ted with sides equal to A2, B2 and C2, the 
ow has 8stagnation points in a periodi
ity 
ube; there are no stagnation points otherwise. In the2




ase A = B = C = 1 stagnation points are 
onne
ted by hetero
lini
 traje
tories, whi
hare straight lines [12℄.Non-integrability of streamlines, giving rise to 
haoti
 mixing of a passive s
alar withinthe 
ow, is a ne
essary 
ondition for a 
ow to a
t as a fast magneti
 �eld generator[45, 46, 31℄. For this reason, and be
ause hetero
lini
 stru
ture of traje
tories of ABC
ows is rather well understood, they are widely employed in the study of magneti
 �eldgeneration. In the 
ontext of the kinemati
 dynamo, ABC 
ows were �rst examined in[10℄. It was shown that they 
an a
t as dynamos, e.g. see [4, 20, 21, 23, 24, 18, 19, 11℄.These 
omputations suggest that for 
ertain sets of 
oeÆ
ients the dynamos are fast. ABC
ows were also proposed as prototypes for the study of the development of turbulen
e (see[37, 38, 39℄). Magneti
 �eld reversals were observed in an ABC-for
e driven fully non-linearMHD system [40℄.Generi
ally, (1) has the symmetry group isomorphi
 to D2 if we ex
lude time reversalsymmetries (these are symmetries of the 
ow but not of the Navier-Stokes equations). Iftwo 
oeÆ
ients are equal, it is isomorphi
 to D4. For A = B = C the group, denotedby H, has 24 elements and it is isomorphi
 to the rotation group of a 
ube [3℄,[16℄. We
onsider the parti
ular 
ase: A = B = C = 1: (2)For any Reynolds number R, uABC is a steady solution of the Navier-Stokes equation�v�t = v � (r� v) �rp+ 1R�v+ f ; (3)subje
t to the in
ompressibility 
onditionr � v = 0 (4)and the for
e f = 1RuABC (5)(p is the pressure). Spa
e-periodi
 boundary 
onditions are assumed in x1; x2; x3, namelyv(x1; x2; x3) = v(x1 + 2k�; x2 + 2l�; x3 + 2m�)p(x1; x2; x3; ) = p(x1 + 2k�; x2 + 2l�; x3 + 2m�)for any (k; l;m) 2 Z3. In this setup, any symmetry of the ABC 
ow is also a symmetry ofthe equation, but solutions that bran
h from the ABC 
ow solution may break some orall of these symmetries. 3



One of the aims of this paper is to examine the primary dynami
al instability ofthis 
ow on in
reasing Reynolds number by showing that its stable dynami
s near thisinstability are governed by a generi
 Hopf bifur
ation with the appropriate symmetry.Using this we predi
t and �nd the existen
e of many di�erent bran
hes of periodi
 solutionsas well as more exoti
 dynami
s.Numeri
al results on bifur
ations of time-dependent solutions of the Navier-Stokesequation (1-5) for R � 50 were presented in [37℄-[39℄. It 
an be proven that for R < 0:5the 
ow (1-5) is a unique steady state of (3,4), and it is stable. Computations show that the
ow is stable for R � 13:04 [22℄,[37℄ and that it is a unique attra
tor of this hydrodynami
alsystem for R � 7:8 [37℄. The trivial steady state { the 1:1:1 ABC 
ow (1,2) { be
omesunstable in a Hopf bifur
ation at some R = R0, where R0 
an be numeri
ally lo
atedat approximately 13.044 [39℄. The a
tion of the group H on the 
enter eigenspa
e atthis bifur
ation is isomorphi
 to the standard representation of the group of rotationalsymmetries of the 
ube, O (see [38℄).In this paper we �rstly 
hara
terize generi
 Hopf bifur
ation with the symmetry O.Se
ondly, we analyze this instability and se
ondary bifur
ations in the parti
ular 
ase ofinstability of uABC in the above problem at R = R0 to perturbations in the Eulerianvelo
ity �eld.In order to do this we apply methods and results from generi
 equivariant bifur
ationtheory to this problem; see [25, 26℄ for dis
ussion and development of methods, details ofthe theory and many examples. An important feature of this theory is that a generi
 Hopfbifur
ation of a symmetri
 equilibrium will (in the absen
e of further degenera
ies) o

urwithin a linear subspa
e that is one of the C-irredu
ible representations (hen
eforth 
alledirreps) of the symmetry group. The group O = S4 of permutations of 4 elements has �veC-irreps W0; � � �W4; two of these are on C3, one on C2 and two on C. We 
onsider onlybifur
ations for representation W0 on C3 where O a
ts purely by rotations. This irrepis two 
opies of the R-irrep on R3 given by rotational symmetries of a 
ube. The otherR-irrep on R3 is the set of symmetries of a regular tetrahedron a
ting by permuting itsverti
es; note that this in
ludes re
e
tions and has no rotations of order four (but it doeshave a rotation-re
e
tion of order four).There exists a nontrivial isomorphism of the group O� S1 into itself. We will give anexpli
it form for it in Se
tion 2. The a
tion of O � S1 on W1 (the C3 representation of4



O�S1 distin
t from W0) 
an be represented as a 
omposition of the isomorphism and thea
tion of the group on W0. Thus all our results 
on
erning bifur
ations with symmetrygroup O�S1 on W0 are also appli
able to the representation W1, the isomorphism beingtaken into a

ount. (However, representations of the group O on W0 and W1 are notrelated by an automorphism of the group, and so the bifur
ations on W0 and W1 aredi�erent in this sense.)Generi
 steady state bifur
ations with several types of 
ubi
 symmetry have beeninvestigated by many authors. In parti
ular, bifur
ations on 
ubi
 latti
es are studiedin [8℄. An analysis of steady state bifur
ation with the 48 element group ~O of rotationsand re
e
tions of the 
ube is 
onsidered in [35℄. Some work has been done on steadybifur
ation with another element subgroup of ~O of elements that preserves the orderingof the axes; in parti
ular [27℄ uses the third order normal form to show that bran
hes ofrobust attra
ting hetero
lini
 
y
les 
an arise as a generi
 possibility. However, this groupis not isomorphi
 to O; it has no elements of order four. As to Hopf bifur
ations, ananalysis of generi
 Hopf bifur
ation on square (resp. 
ubi
) latti
es was 
arried out in [42℄(resp. [14℄). Barany and Swift [44℄ examine generi
 Hopf bifur
ation with the symmetry ofan index 2 subgroup of O; they �nd bran
hes of robust homo
lini
 orbits bran
hing fromthe trivial solution for an open and dense set of normal form 
oeÆ
ients (these homo
lini
orbits were further investigated in [6℄).For the a
tion of O� S1 on C3 that we 
onsider here, there are two families of �xedpoint subspa
es that are isomorphi
 to C2. In one of these we 
an apply the analysis ofthe Hopf bifur
ation with dihedral D4 symmetry of Swift [43℄ to �nd bran
hes of periodi
solutions with submaximal symmetries. The other subspa
e also supports submaximalsymmetry periodi
 solutions.The stru
ture of the paper is as follows: In Se
tion 2 we 
hara
terize the group O,dis
uss its representation on R3 by rotations and the representation it indu
es on C3at a generi
 Hopf bifur
ation. For this representation we dis
uss the isotropy subgroupsand invariant subspa
es and derive the general normal form at bifur
ation. Mu
h ofthe dynami
s we investigate here is determined by the normal form trun
ated at thirdorder. We 
lassify the generi
 bran
hing behaviour and stabilities of these periodi
 orbitsat bifur
ation in terms of the 
oeÆ
ients of this normal form. There are �ve familiesof periodi
 solutions with maximal symmetries (all maximal symmetries are C-axial in5



the terms of [15℄). These solutions are always present; two additional families (withsubmaximal symmetries) are present for an open (but not dense) set of normal form
oeÆ
ients. All these periodi
 solutions have frequen
ies 
lose to the Hopf frequen
y.Sin
e all bran
hing periodi
 solutions are determined at third order for an open set ofnormal form parameters, Theorem 11.2 in [26℄ implies that the bran
hing of periodi
solutions of the full equations are generi
ally determined by the third order normal form.In addition to periodi
 bran
hing behaviour, other bran
hes 
an o

ur in the normalform to 
haoti
 attra
tors and quasiperiodi
 bran
hes (for an open set of normal form
oeÆ
ients) and homo
lini
/hetero
lini
 
y
les (for a 
odimension one set of normal form
oeÆ
ients). In Se
tion 3 some indi
ative examples of this are investigated numeri
allyby path-following, as a 
omplete analyti
al 
lassi�
ation of all possible attra
tors is notpresently possible. We also dis
uss the e�e
t of breaking the normal form symmetry intro-du
ed at Hopf bifur
ation by virtue of the fa
t that all terms that do not 
ommute withthe S1 symmetry of phase shifts given by solution of the linear equations 
an be trans-formed away to arbitrarily high order. These `
at terms' 
an however 
ause dynami
allyimportant e�e
ts su
h as torus breakup; we give some examples.In Se
tion 4 we return to the parti
ular 
ase of instability of the ABC 
ow, des
ribingand dis
ussing attra
tors observed numeri
ally at the bifur
ation. We dis
uss how theobserved transition to a 
haoti
 attra
tor with full symmetry on in
reasing R 
an beexplained by the normal form model analysed in Se
tions 2 and 3. The bran
hes of periodi
solutions 
orrespond to time-periodi
 Eulerian solutions 
lose to the original ABC 
ow;moreover, the quasiperiodi
 and 
haoti
 solutions are also 
lose to the original ABC 
owand 
an be thought of as its time-dependent perturbations. Finally, some limitations,the e�e
ts of symmetry breaking, and possible extensions of this present work are brie
ydis
ussed in Se
tion 5.2 Hopf bifur
ation with rotational symmetry of the 
ube.The group We 
onsider Hopf bifur
ation with 
ubi
 symmetry for the 
omplex irre-du
ible a
tion on C3 of the group O� S1 generated by the three-fold rotation�111 : (z1; z2; z3) 7! (z2; z3; z1);6



the four-fold rotation �001 : (z1; z2; z3) 7! (z2;�z1; z3);and the normal form S1 phase shift symmetry
� : (z1; z2; z3) 7! ei�(z1; z2; z3):We refer to the group a
ting in this way as O � S1 (the representation on W0 of theintrodu
tion). We denote�+110 : (z1; z2; z3) 7! (z2; z1;�z3); ��110 : (z1; z2; z3) 7! (�z2;�z1;�z3); et
.Note that �+110 = �2111�001�2111 and ��110 = �2001�+110. The symmetry �111 has order three and
orresponds to a rotation around a vertex of the 
ube, �001 has order four and 
orrespondsto a rotation about the 
entre of a 
ube fa
e by one quarter of a turn, �+110 has order twoand 
orresponds to a rotation about a line through midpoints of opposite edges of the 
ubeby a half of a turn. We refer to the (
onjuga
y 
lass of the) group generated by ��011
�as Z2(e) and to the one generated by �2001
� as Z2(f). The 
 a
t as temporal phase-shiftsymmetries that are present in the normal form but in fa
t these symmetries are brokenin generi
 problems by high order terms. The isomorphism of the group O� S1 to itselfthat relates the C3 representations W0 and W1 is given by:�111 7! �111; �001 7! 
��001; 
� 7! 
�:Invariant subspa
es For an a
tion of a group G, the isotropy subgroup of a point x isthe largest subgroup of G that �xes that point. Given any subgroup H the �xed pointspa
e Fix(H) is the set of points �xed by all group elements in H (see e.g. [26℄).The isotropy subgroups and invariant subspa
es for the irredu
ible a
tion of O�S1 onC3 are listed in Table 1 with a typi
al point, dimension, generators, number of 
onjugatesand normalizers tabulated. Note that all nontrivial isotropy subgroups 
ontain mixedspatio-temporal symmetries; often these are di�erentiated from purely spatial symmetriesby addition of a tilde, but in this 
ase it is unne
essary. This is similar to the 
ase for D4Hopf bifur
ation where the a
tion of D4 � S1 on C2 has non-trivial kernel. Re
all that ifH is an isotropy subgroup then the normalizer Norm(H) = fg 2 O� S1 : gH = Hgg isthe largest subgroup that maps Fix(H) to itself. The isotropy subgroups 
an be partiallyordered into the latti
e shown in Figure 1 by 
onsidering 
ontainment (up to 
onjuga
y).7



Name Typi
al point dimC Generators Conj. Norm.O� S1 (0; 0; 0) 0 f�111; �100; 
�g 1 O� S1D3 (z; z; z) 1 f�111; ��110
�g 4 D3 � S1D2 (z; z; 0) 1 f�+110; ��110
�g 6 D2 � S1D4 (z; 0; 0) 1 f�100; �2001
�g 3 D4 � S1Z4 (z; iz; 0) 1 f�001
�=2g 6 Z4 � S1Z3 (z; ze2�i=3; ze4�i=3) 1 f�111
2�=3g 8 Z3 � S1Z2(f) (z1; z2; 0) 2 f�2001
�g 3 D4 � S1Z2(e) (z1; z2; z2) 2 f��011
�g 6 D2 � S11 (z1; z2; z3) 3 feg 1 O� S1Table 1: Table of the isotropy subgroups for the a
tion of O� S1 on C3 
onsidered here.There are nine possible symmetry types; the number of 
onjugate subgroups and the normal-izer are listed as well as the dimension of the �xed point subspa
e and a list of generators.The suÆ
es (e) and (f) refer to edge and fa
e symmetries respe
tively.Note that there is a 
andidate for a robust (relative) hetero
lini
 
y
le that 
onne
tsequilibria in the D2 and D4 subspa
es and passes through Z2(e) and Z2(f). This setupis not present in the D4 Hopf bifur
ation and is a truly 3D phenomenon. We have notmanaged to rule out su
h robust hetero
lini
 
y
les but neither have we observed them inthe normal form dynami
s.One 
an demonstrate that there are no robust homo
lini
 
y
les for this group a
tion,by noting that the only 
hains of properly 
ontained subgroups 1 < K < H < O�S1 haveK = Z2(e) or Z2(f), and in both 
ases there is no g and H su
h that Norm(K)\ gH = ;and K < H \Hg. Hen
e by Proposition 2.3 in [7℄ there 
an be no su
h robust homo
lini

y
les (although there may still be robust hetero
lini
 
y
les).Normal form The general formal normal form for a ve
tor �eld with the given a
tionO� S1 symmetry 
an be written as follows:_z1 = X(l1;l2;q1;q2;q3)2I0 C1l1;l2;q1;q2;q3zl11 jz1j2q1(zl22 z1�l1�l23 jz2j2q2 jz3j2q3 + zl23 z1�l1�l22 jz3j2q2 jz2j2q3)
8
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1Figure 1: The isotropy latti
e for the irredu
ible a
tion of O� S1 on C3.where I 0 is the subset of (l1; l2; q1; q2; q3) 2 Z5 su
h that8>>>>>>>>><>>>>>>>>>:

l1 oddl2 � 1�l12 and l2 evenq1 � max(�l1; 0)q2 � max(�l2; 0)q3 � max(1� l1 � l2; 0):The other 
omponents, _z2 and _z3, 
an be obtained by 
y
li
 permutation of the indi
es ofz1; z2 and z3. We show this by 
onsidering the formal power series expansion of a ve
tor�eld on C3 as follows:_zi = X(l1;l2;l3)2Z3 X(q1;q2;q3)2I Cil1;l2;l3;q1;q2;q3zl11 zl22 zl33 jz1j2q1 jz2j2q2 jz3j2q3 (6)(i = 1; 2; 3), whereI = f(q1; q2; q3) 2 Z3 : q1 � max(�l1; 0); q2 � max(�l2; 0) and q3 � max(�l3; 0)g:The series (6) 
ommutes with the a
tion of O� S1 if and only if it 
ommutes with all itsgenerators. It 
ommutes with �111 ifC2l3;l1;l2;q3;q1;q2 = C1l1;l2;l3;q1;q2;q3and C1l1;l2;l3;q1;q2;q3 = C3l2;l3;l1;q2;q3;q1for all li, qi. It 
ommutes with �001 ifC1l1;l2;l3;q1;q2;q3 = (�1)l2C2l2;l1;l3;q2;q1;q3;C2l1;l2;l3;q1;q2;q3 = (�1)l2+1C1l2;l1;l3;q2;q1;q3 andC3l1;l2;l3;q1;q2;q3 = (�1)l2C3l2;l1;l3;q2;q1;q3:9



Finally, it 
ommutes with S1 ifCil1;l2;l3;q1;q2;q3 = 0 for l1 + l2 + l3 6= 1:After some algebra the above relations for C1l;q 
an be redu
ed to C1l1;l2;l3;q1;q2;q3 = 0 if l1is even, l2 is odd, or l3 is odd andC1l1;l2;l3;q1;q2;q3 = C1l1;l3;l2;q1;q3;q2 :Substitution of the above expressions into (6) for i = 1 yields the equivariant normal formgiven.Alternatively, one 
an 
ompute that 1 and jz1j2 + jz2j2 + jz3j2 generate the ring ofinvariants up to 
ubi
 orders while the module of equivariants (to 
ubi
 order) is generatedby 0BBB� z1z2z3 1CCCA ; 0BBB� jz1j2z1jz2j2z2jz3j2z3 1CCCA ; 0BBB� (z22 + z23)z1(z21 + z23)z2(z21 + z22)z3 1CCCAover the ring of invariants. Hen
e one 
an see that the 
ubi
 order normal form is givenby _z1 = (�+ i!)z1 +A1jz1j2z1 +A2(jz2j2 + jz3j2)z1 +A3(z22 + z23)z1_z2 = (�+ i!)z2 +A1jz2j2z2 +A2(jz1j2 + jz3j2)z2 +A3(z21 + z23)z2_z3 = (�+ i!)z3 +A1jz3j2z3 +A2(jz1j2 + jz2j2)z3 +A3(z21 + z22)z3: (7)For 
onvenien
e we write A1 = A1r + iA1i; et
.We are interested in the 
ase where � � 0 and ! = O(1) for Hopf bifur
ation. The �fthorder normal form has �rst 
omponent given by_z1 = (�+ i!)z1 +A1jz1j2z1 +A2(jz2j2 + jz3j2)z1 +A3(z22 + z23)z1+ �A4jz1j2(z22 + z23) +A5(jz2j2z22 + jz3j2z23) +A6(jz2j2z23 + jz3j2z22)� z1+ �A7(z22 + z32)z21 +A8jz1j4 +A9(jz2j4 + jz3j4) +A10jz2z3j2� z1: (8)and the other 
omponents 
an be found by 
y
li
 permutation of the indi
es of z1; z2 andz3. There 
an be seen to be seven di�erent equivariants at �fth order.
10



Name Bran
h jxj2 No of solutionsD3 (z; z; z) ��(A1r + 2A2r + 2A3r)�1 4D2 (z; z; 0) ��(A1r +A2r +A3r)�1 6D4 (z; 0; 0) ��(A1r)�1 3Z4 (z; iz; 0) ��(A1r +A2r �A3r)�1 6Z3 (z; ze2�i=3; ze4�i=3) ��(A1r + 2A2r �A3r)�1 8Table 2: Bran
hing for the maximal symmetry bran
hes at generi
 Hopf bifur
ation withsymmetry O. All bran
hes have non-degenerate bran
hing behaviour as determined by thethird order normal form.Maximal symmetry bran
hes All maximal isotropy subgroups for this a
tion of O�S1 have �xed point spa
es that are one (
omplex) dimensional; the Equivariant HopfLemma [26℄ then implies that ea
h of these supports a bran
h of solutions. In this 
asewe 
an 
ompute the bran
hing behaviour as in Table 2 and their stability in Table 3.Observe that all bran
hes are di�erent for generi
 values of the 
oeÆ
ients; this meansthat bran
hing is not degenerate if we only use the 3rd order normal form. From thisinformation we see that in the 
ase A1r < 0 we 
an get bran
hing of the maximal symmetrysolutions in the � > 0 dire
tion (and hen
e possible stable bran
hes) for the regions shownin Figure 2. As usual we refer to bran
hes that appear for � > 0 as super
riti
al and thosefor � < 0 as sub
riti
al. We summarize:� The bran
hing only depends on (A1r; A2r; A3r), but the stability depends also on(A1i; A2i; A3i).� For the 
ase A1r < 0 illustrated, the D4 bran
h always bran
hes super
riti
ally.� The 
ase A1r > 0 is not illustrated but will lead to a similar pattern of bran
hingdepending on (A2r; A3r).� One 
an only realize 20 of the 32 possible 
ombinations of sub/super
riti
al bran
hingof the maximal subgroups by appropriate 
hoi
e of normal form 
oeÆ
ients.The stability of the maximal symmetry bran
hes is 
al
ulated in Table 3. The stabilityis given in terms of eigenvalues � for the linearisation about these relative equilibria. These11



Name Type e.v.=� # Bran
hestoD3 r �2 1t �A1r+A2r+4A3r�p(A1r�A2r+2A3r)2+12A3i(A1i�A2i�A3i)A1r+2A2r+2A3r 4 Z2(e)D2 r �2 1t �A1r+A2r+3A3r�p(A1r�A2r+A3r)2+8A3i(A1i�A2i�A3i)A1r+A2r+A3r 2 Z2(f)t A1r�A2r+A3r�p4jA3j2�(A1i�A2i+A3i)2A1r+A2r+A3r 2 Z2(e)D4 r �2 1t A1r�A2r�pjA3j2�(A1i�A2i)2A1r 4 Z2(e; f)Z4 r �2 1t A1�A2�A3A1r+A2r�A3r ; 
.
. 2t �A1r+A2r�3A3r�p(A1r�A2r�A3r)2+8A3i(�A1i+A2i�A3i)A1r+A2r�A3r 2 Z2(f)Z3 r �2 1t �k�A1r�2A2r+A3r (k = 1; 2; 3; 4) 4Table 3: Stabilities of the maximal bran
hes of periodi
 solutions bifur
ating at generi
Hopf bifur
ation with symmetry O. The type refers to whether the eigendire
tion is (r)radial, ie within the �xed point subspa
e or (t) transverse out of the �xed point subspa
e.the 
olumn # refers to the number of eigenvalues with this form. The �nal 
olumn indi
atesthe symmetry types of any periodi
 solutions that appear at se
ondary bifur
ation asso
iatedwith these eigenvalues being zero; all bran
hes 
an also undergo se
ondary Hopf bifur
ationto tori. These stabilities are given in terms eigenvalues of the relative equilibria of the thirdorder normal form 
oeÆ
ients, ignoring the zero eigenvalues along the group orbit of thenormal form symmetry S1. The quantities �k are roots of the equation (9); these roots
ome as two 
omplex pairs and 
.
. denotes 
omplex 
onjugate.
12




an be 
onverted into Floquet exponents for the periodi
 orbits (with period T ) simplyby 
omputing e�T .The eigenvalues of the Z3 solution are given by solving the polynomial equation�4 + 
3�3 + 
2�2 + 
1� + 
0 = 0 (9)where
0 = 36jA3j2j �A1 +A2 +A3j2
1 = 24 �(�A1r +A2r + 2A3r)A23r + (2A23i � (A1r �A2r)2 +A3i(A1i �A2i))A3r+(�2A1r + 2A2r)A23i + (A1r �A2r)(�A1i +A2i)A3i�
2 = 4(A21r +A22r +A23r)� 8A1rA2r + 12A3i(A1i �A2i)+24A23i + 28A3r(A1r �A2r)
3 = �4A1r + 4A2r � 8A3rWe have not been able to simplify this substantially, but this equation appears to havefour proper 
omplex roots for almost all parameter values.The �nal 
olumn in Table 3 giving the symmetry of the submaximal relative equilibriathat bran
h when these eigenvalues pass through zero. These are found by examining thelimiting behaviour of the submaximal relative equilibria.Note that all maximal isotropy subgroups have one 
omplex dimensional �xed pointspa
es and so are C-axial in terms of [15℄. We note that there are 5 su
h maximalsubgroups, and so we 
an 
on
lude that at su
h a bifur
ation we will have 27 bran
hes ofperiodi
 solutions bifur
ating with the 5 maximal symmetry types.2.1 Dynami
s in Fix(Z2(f))The normal form on Fix(Z2(f)) redu
es to the D4 normal form studied by Swift [43℄,namely if z3 = 0 then_z1 = (�+ i!)z1 +A1jz1j2z1 +A2jz2j2z1 +A3z22z1_z2 = (�+ i!)z2 +A1jz2j2z2 +A2jz1j2z2 +A3z21z2 (10)As in [43℄ one 
an better understand the dynami
s of this system by parametrizing C2 by
oordinates (r; �; �;  ) 2 R4, wherez1 = pr 
os �2 exp�i�+  2 � ; z2 = pr sin �2 exp�i��+  2 � ; (11)13
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Figure 2: For A1r = �m < 0, the maximal symmetry solutions bran
h in the � > 0dire
tion for these values of the normal form 
oeÆ
ients in the (A2r; A3r) plane. Thelines where bran
hing 
hanges dire
tion are indi
ated on this diagram. Observe that thereare D4 bran
hes everywhere for A1r < 0 and that there are 10 di�erent 
ases; A1r > 0gives a further 10 
ases.
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so that the 
ondition for a periodi
 orbit  = Kt 
an be expressed asr 
os � = jz1j2 � jz2j2 = K1;r sin � exp i� = 2z1z2 = K2: (12)where K1 2 R and K2 2 C are 
onstants. Observe that the S1 
oordinate  is removedby this 
hange of 
oordinates. Hen
e we 
an �nd the lo
ations of periodi
 orbits in (7) bydi�erentiating the above expressions to obtain the equationsr(2 
os �(A1rr + �) + (rA3i sin2 �) sin 2�) = 0 (13)r sin ���+ r(12A1r + 12A2r +A3r(�12 + 
os2 �)�A3i 
os � sin� 
os �)� = 0 (14)r2 sin ��
os ��12(A1i �A2i +A3i)�A3i 
os2 ���A3r sin� 
os�� = 0: (15)Note that from these equations we 
an re
over (a) the trivial solution r = 0, (b) themaximal bran
hes where sin � = 0 or 
os � = 0, (
) the submaximal bran
hes where � and� vary depending on the normal form 
oeÆ
ients.Submaximal bran
hes in Fix(Z2(f)) Restri
ting by ex
luding the 
ases (a-
) abovewe 
an obtain submaximal bran
hes as follows: solving (13) we getsin 2� = 2 
os �(rA1r + �)rA3i sin2 � (16)whereas solving (15) we obtain
os � = A3r sin 2�A2i �A1i +A3i 
os 2�: (17)Moreover rearranging (14) we getr = �2�A1r +A2r +A3r 
os 2�+A3i 
os � sin 2� (18)and using this to eliminate r, we 
an de�ne P4 and P5 byP4 := 
os 2� = A3r(A1r �A2r) +A3i(A1i �A2i)A23r +A23i = Re(A3(A1 �A2))jA3j2and P5 := 
os2 � = jA3j4 � jRe(A3(A1 �A2))j2jIm(A3(A1 �A2))j2 :Hen
e there will be a bran
h of submaximals with symmetry Z2(f) if and only if�1 < P4 < 1 and 0 < P5 < 1 (19)15



where P4 and P5 are real fun
tions of the 
ubi
 order 
oeÆ
ients as de�ned above. Thedire
tion of bran
hing will depend of the sign of the denominator of (18). Note that theseexpressions are equivalent to the slightly more 
ompa
t expressions of Swift [43℄, but theyare expressed in the original variables rather than transformed ones.On varying one of the normal form 
oeÆ
ients as a se
ond parameter, the Z2(f)submaximal bran
hes will limit to the following maximal isotropy subspa
es as follows:Limit (z1; z2) (�; �) (P4; P5) Bran
hingD4 z2 = 0 � = 0 P5 = 1 jA3j = jA1 �A2jD2 z1 = z2 � = �=2; � = 0; � P4 = 1; P5 = 0 jA3j2 = Re(A3(A1 �A2))Z4 z2 = iz1 � = �=2; � = �=2 P4 = �1; P5 = 0 jA3j2 = Re(A3(A2 �A1))The 
onditions for bran
hing from maximals to Z2(f) are found from the expressions forP4 and P5 and it 
an be 
he
ked that these give rise to a zero eigenvalue for the relevantmaximal solution.2.2 Dynami
s in Fix(Z2(e))On the invariant subspa
e (z1; z2; z2) the dynami
s is given by_z1 = (�+ i!)z1 +A1jz1j2z1 + 2A2jz2j2z1 + 2A3z22z1_z2 = (�+ i!)z2 + (A1 +A2 +A3)jz2j2z2 +A2jz1j2z2 +A3z21z2: (20)One 
an perform the same substitution (11) to obtain submaximal bran
hes when�+ r2 �A1r + 2A2r �A3r + (3 
os � � 1)(A3r 
os2 �+A3i 
os� sin�)� = 0 (21)12 
os �(A1i �A2i + 2A3i +A3r sin� 
os ��A3i3 
os2 �)+A3i2 (
os2 �� 1)� 32A3r sin� 
os� = 0 (22)rA3r(
os2 �� 1) + 3rA3i sin� 
os�+ 
os �(2�+ r(2A1r +A2r �A3r))+r 
os2 �(�A2r +A3r 
os2 �� 3A3i sin� 
os�) = 0 (23)The above equations do not have the symmetries of the Z2(f) equations with the 
onse-quen
e that we have not been able to solve them expli
itly. Nevertheless, their bran
hingbehaviour is 
omputable.Submaximal bran
hes in Fix(Z2(e)) In this subspa
e there 
an be bran
hes of peri-odi
 solutions with submaximal symmetry, namely when (21-23) have nontrivial solutions(r; �; �). 16



These solutions limit onto the D2 maximal bran
h when 
os � = 0 and onto the D4maximal bran
h when 
os � = �1. They bifur
ate from the D3 maximal bran
h whensin � = 
os � and � = 0. In other words, these solutions bran
h from maximal solutionsunder the following 
onditionsLimit (z1; z2) (�; �) Bran
hingD2 z1 = 0 � = �; 2jA3j = jA1 �A2 +A3jD4 z2 = 0 � = 0; jA3j = jA2 �A1jD3 z1 = z2 � = �=2; � = 0 jA3j2 = Re(A3(A1 �A2))Note that there 
an be saddle-node bifur
ations within Fix(Z2(e)) when sin2 � = 1, r 6= 1and � 6= 0. These are not asso
iated with bifur
ation to or from any invariant subspa
e.3 Examples of attra
ting behaviourWe now attempt to understand the possible dynami
s of the normal form (7). Note thateven for the D4 Hopf bifur
ation [43℄ proving the exa
t form and generi
ity of the bran
hof quasiperiodi
 solutions is impossible if one in
ludes normal form symmetry breakingterms, due to the appearan
e of resonan
es. In this se
tion we use the dynami
al systemspa
kage dstool tk [28℄ with the `quality 
ontrolled' 4th order Runge-Kutta method.3.1 Symmetries of attra
torsWe say a 
ompa
t invariant set A is an attra
tor, if it is the !-limit set of a positive measureset of initial 
onditions (for example, see the dis
ussion in [5℄). It is important to make adistin
tion between two kinds of symmetries that 
an be attributed to an attra
tor in asymmetri
 system. Given an attra
tor A, we de�neT(A) = f� 2 G : �(x) = x for all x 2Ag and �(A) = f� 2 G : �(A) = Ag as in [13℄. The former subgroup we refer to as thepoint symmetry of the attra
tor whereas the latter subgroup is the symmetry on averageof the attra
tor. In this paper we employ the latter notion to dis
uss the symmetry ofan attra
tor; the former notion 
orresponds to the isotropy type of a typi
al point on theattra
tor whi
h may have less symmetry than the attra
tor.Proje
tion onto S1-orbits The S1 symmetry of the normal form means that periodi
orbits 
an be redu
ed to equilibria on fa
toring out this symmetry. This allows us to lo
ate17



Case � A1 A2 A3I� 1 + i �1� 0:9i �0:2 + 0:45i �0:3 + �iII� 1 + i �1� 0:9i �0:1 + 0:1i �0:3 + �iTable 4: The two families of parameter values of the 
oeÆ
ients in (7) investigated nu-meri
ally in Se
tion 3.2.and 
ontinue bran
hes of periodi
 (resp. quasiperiodi
) orbits as if they were equilibria(resp. periodi
 orbits). To this end we proje
t the 3rd order normal form (7) onto anR-
odimension one se
tion in C3 as follows. We de�ne an ODE on (v1; v2; v3) 2 C3 by_v1 = f1(v1; v2; v3) + iav1_v2 = f2(v1; v2; v3) + iav2_v3 = f3(v1; v2; v3) + iav3 (24)where the original equations (7) are expressed as _zi = fi(z1; z2; z3), and where we 
hoosea = �Im(f1z1)jz1j2 :This equation is well-de�ned for all z1 6= 0 and its solutions are in 
orresponden
e withgroup orbits of those of (7) in the sense thatvk(t) = zk(t) exp(i
(t))for 
(t) su
h that for all � 2 [0; 2�) the spa
esS� = f(v1; v2; v3) : jv1j > 0 and arg(v1) = �g (25)are invariant; this enables us to study periodi
 orbits of (7) by studying equilibria of (24).By 
hoosing initial 
onditions with x1 real and positive, we will remain in the subspa
eS0 for all time and hen
e e�e
tively redu
e the dimension of the system from six to �ve.There are bifur
ations apparent between 
haoti
 attra
tors in the 
ubi
 normal formsystem (7) at some example parameter values. These transitions appear to be typi
al inthis system, although proving generi
ity is only possible in a very limited sense. Table 4gives the values of the normal form parameters that we investigate here.3.2 Numeri
al examplesBifur
ations in the family I� The family of systems I� (parametrized by �) in Table 4
an be observed to have a number of attra
tors and bifur
ations that start to show the18



On separate pageFigure 3: Bifur
ation diagrams showing details of some of the bifur
ations for the family I�,
omputed using xppaut. (a) shows the bifur
ations on varying � against Re(x3) while (b)shows it against Im(x3). The diagrams (
) and (d) show the same diagram over a smallerrange of �. All lines represent relative equilibria and the horizontal lines represent relativeequilibria with maximal symmetry; the thi
k lines are stable. Note that the only relativeequilibria that are stable are the Z3 solutions for � < 0:025. The 
ir
les are bran
hes ofstable periodi
 solutions that bran
h at a Hopf bifur
ation at A. This bran
h is destroyedat a homo
lini
 bifur
ation at B. C, D and E are bifur
ations of submaximal bran
heswith symmetry Z2(e) and Z2(f) from the maximal bran
hes. Observe that there are twofolds of the bran
h of Z2(e) solutions between B and C on this diagram. The values of �at A, B, C, D, E 
an be found numeri
ally using the tables in Se
tion 2 and are 0:02514,0:04465, 0:10322, 0:32564 and 0:59563 respe
tively.dynami
al ri
hness of the normal form (7). Figure 3, 
omputed using xppaut [17℄ showssome bran
hes of relative equilibria and periodi
 orbits in the family for the `interesting'range of �0:2 < � < 0:7. The solutions are shown proje
ted into the Re(x3) and Im(x3)
omponents for the S1 redu
ed system (24) with Re(x1) > 0 and Im(x1) = 0, wherexi = Re(vi). The steady states and periodi
 orbits of the redu
ed system 
orrespond toperiodi
 orbits and tori of the original system (7), respe
tively. Note that varying � doesnot 
hange the position of the maximal solutions, only their stability. Hen
e they appearas horizontal lines on these diagrams. The �gure shows only relative equilibria and the Z3periodi
 orbits. For � > 0:045 all of the solutions on this digram are unstable; howeverthey are all of saddle type and many appear to be embedded within the 
haoti
 attra
torfor larger �.Figure 4 shows attra
tors for the family I�. There is a transition from stable Z3periodi
 orbit to fully symmetri
 
haos; A Poin
ar�e se
tion of the 
ase (d) is shown inFigure 5(a) while (b) shows the network of hetero
lini
 
onne
tions that o

ur at theisolated parameter value in I� asso
iated with a transition from Z3 tori to Z4 tori. Figure 6shows the transition at I0:0047 s
hemati
ally in a Poin
ar�e se
tion; before the bifur
ationthere are Z3 symmetri
 tori whi
h be
ome Z4 symmetri
 after the bifur
ation.19
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x2r
x3r
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1

x2r
x3r
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(
) (d)Figure 4: Attra
tors for the system (7) are shown with transient behaviour for parametervalues (a) I�0:05, a stable Z3 relative equilibrium, (b) I0:03, a stable Z3 relative periodi
orbit, (
) I0:045, a stable Z4 relative periodi
 orbit, (d) I0:2, a fully symmetri
 attra
torformed by merging of all Z4 relative periodi
 orbits. In all 
ases, the attra
tors are shownin the (x2r; x3r) plane for the system (24) with the 
ontinuous symmetry proje
ted out. Inthese �gures, the proje
tion (and se
tion) preserves a D4 symmetry that �xes x1i = 0.
21



x2r
x3r
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1

x2r
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-1 1-1
1

(a) (b)Figure 5: (a) is a Poin
ar�e se
tion taken at Re(x1) = 0:96 for I0:2. (b) I0:0047; twoequilibria of type Z2(e) and their unstable manifolds are shown; these are 
lose to forminga network of hetero
lini
 
onne
tions.

Figure 6: S
hemati
 of a hetero
lini
 network between periodi
 orbits with symmetry Z2(e)(i.e. (z1; z1; z2)). This is formed at the bifur
ation where Z3 symmetri
 tori are repla
edby Z4 symmetri
 tori shown with the S1 symmetry fa
tored out and so the periodi
 orbitsare repla
ed by equilibria. Before the bifur
ation the 
onne
tions are broken su
h that thereare periodi
 orbits on the triangular fa
es 
orresponding to Z3 tori in the full system. Afterthe bifur
ation there are Z4 symmetri
 relative periodi
 orbits on the shaded square fa
es.22



The family II� On in
reasing � this has a bran
h of stable Z3 periodi
 orbits that havea sub
riti
al bifur
ation leading dire
tly to fully symmetri
 
haos.3.3 Breaking the normal form symmetryAs previously stated, the S1 normal form symmetry is not present in the full dynami
s.Although it does not a�e
t the bran
hing of periodi
 attra
tors and their stability, it will
ause degenera
ies of any more 
ompli
ated attra
tors. In parti
ular, tori will only bevisible in the dynami
s of the full system for isolated parameter values as the presen
e ofresonan
es will 
ause breakup of tori at what may be a very small s
ale.To examine the e�e
ts of normal form symmetry breaking we simulate the system_z1 = f1(z1; z2; z3) + �z31_z2 = f2(z1; z2; z3) + �z32_z3 = f3(z1; z2; z3) + �z33 (26)with fi the 
ubi
 order normal form in (7). The extra term �z3i breaks the S1 symmetryfor � 6= 0 while retaining the O symmetry. Figure 7 (a) and (b) show one of the 
onjugateattra
tors for the parameters I0:028 with � = �0:047; the detail (b) shows the presen
eof small s
ale folding and presumably 
haos in the attra
tor. (
) Shows an attra
torfor I0:035 with � = �0:047 that is apparently 
haoti
 and possesses full symmetry. Thisperturbation 
an 
ause the bran
h of Z3-symmetri
 tori to break up into a 
haoti
 attra
torbefore merging into a single fully symmetri
 
haoti
 attra
tor. Note that the observedquantitative e�e
t of the symmetry breaking terms on the fully symmetri
 attra
tor is notgreat.4 Instability of ABC 
ow.In this se
tion we 
onsider time-dependent solutions to the Navier-Stokes equation withthe 1:1:1 ABC for
ing. We study in detail the bifur
ations, o

urring immediately afterthe trivial steady state { the 1:1:1 ABC 
ow (1,2) { be
omes unstable in a Hopf bifur
ationat R � 13:044. A

ording to [38℄, the a
tion H of the group on the 
enter eigenspa
e isisomorphi
 to the representation W0 (see Se
tion 1), and hen
e results of Se
tion 2 
an beapplied to this bifur
ation. 23
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(
)Figure 7: Simulations of the normal form with broken S1 symmetry, (26) with xi = Re(zi),a Poin
ar�e se
tion taken at x1 
onstant. (a) and (b) show a 
onjugate attra
tor for I0:028,� = �0:047; (
) shows an attra
tor for I0:035 with � = �0:047 with fully symmetri
 
haos.
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4.1 The symmetry group of the Navier-Stokes equation with the 1:1:1ABC for
e.The symmetry group H of (3,4) with for
ing (1,2,5) is generated bys1 : x1 ! x2; x2 ! x3; x3 ! x1and s2 : x1 ! �2 � x2; x2 ! �2 + x1; x3 ! ��2 + x3:Let # : O! H be the isomorphism su
h that #(�111) = s1 and #(�001) = s2. Some otherelements of the group are#(�+110) = s3 : x1 ! �2 + x2; x2 ! ��2 + x1; x3 ! �2 � x3and #(��110) = s4 : x1 ! ��2 � x2; x2 ! ��2 � x1; x3 ! ��2 � x3:4.2 Numeri
al simulations.Standard pseudospe
tral methods are used for numeri
al solution of (3-5). The 
ow isrepresented as a Fourier series: v(t) =Xk vk(t)eik�x: (27)The resolution provided by 163 Fourier harmoni
s suÆ
es and is used throughout. Wehave reprodu
ed results of some 163 harmoni
s 
omputations, using the resolution of 243harmoni
s; see the next se
tion for details.For the a
tion of H �= O, the spa
e of 2�-periodi
 fun
tions 
an be de
omposed into�ve isotypi
 
omponents, 
orresponding to �ve representations of the group O. Thesefun
tional subspa
es were des
ribed in [38℄ by relations between Fourier 
oeÆ
ients oftheir elements. In parti
ular, the quantitiesq1(v) = 0:5(Re(v2100) + Im(v3100)); q2(v) = 0:5(Re(v3010) + Im(v1010));q3(v) = 0:5(Re(v1001) + Im(v2001))vanish for fun
tions from any of the four subspa
es not asso
iated with the representationW0. It is 
onvenient to use the qi's to des
ribe symmetries of attra
tors, be
ause a symme-try si 2 H transforms these three quantities in the same way as #�1(si) 2 O transformsthe three 
oordinates of a ve
tor. 25



4.3 Bifur
ations to Z3 symmetri
 attra
torsBeyond the Hopf bifur
ation, for R > R0 we observe appearan
e of eight symmetri
allyrelated attra
ting periodi
 orbits with symmetry Z3 (see Table 1). Plots of the quantitiesqi(v), i = 1�3 (shown on Figure 8a for one of the orbits for R = 13:05) are shifted by onethird of the period. The third order symmetry s1 = #(�111) permutes the values of qi's:q1(u) = q2(v); q2(u) = q3(v); q3(u) = q1(v);where u = s1(v). Other symmetries from the group H permute the values and may also
hange signs, e.g. for u = s2(v)q1(u) = q2(v); q2(u) = �q1(v); q3(u) = q3(v)and for u = s3(v) q1(u) = q2(v); q2(u) = q1(v); q3(u) = �q3(v):Appli
ation of symmetries from H yields eight symmetri
 attra
tors with all eight possible
ombinations of signs of time averages of the three quantities (note that time averages of qifor any i do not vanish). Thus signs of the time averages of qi label the eight attra
tors (forexample, see time series for the (+ ++) orbit on Figure 8a). Proje
tion of the traje
toryfor R = 13:05 in the saturated regime into the 
omplex plane q1(v) + exp(2�i=3)q2(v) +exp(�2�i=3)q3(v) is a 
ir
le (see Figure 9a), indi
ating that the traje
tory possesses thesymmetry S1. For 13:06 � R � 13:09 the solution is also periodi
.At the interval 13:05 � R � 13:13 the system has eight symmetry related attra
tors.Bifur
ations of ea
h of them are apparently not a�e
ted by existen
e of its seven symmetri

ounterparts at this interval of the Reynolds number. Bifur
ations of only one of the eightattra
tors will be des
ribed in what follows, the other seven evidently undergoing the samebifur
ations.For R = 13:1 the behaviour is quasi-periodi
: a torus with the se
ond frequen
y,f2 � 0:0017, mu
h smaller than the �rst one, f1 � 0:043 (
f. Figures 11a,b) emergesin a Hopf bifur
ation from the periodi
 orbit at R = R1 ( 13:09 < R1 < 13:1 ). These
ond frequen
y is visible in the time evolution of q1(v) for R = 13:1 (see Figure 8b).Figure 9b, showing proje
tion of the traje
tory in the saturated regime into the 
omplexplane q1(v) + exp(2�=3i)q2(v) + exp(�2�=3i)q3(v), demonstrates that the attra
tor la
ks26



(a) (b)

(
) (d)Figure 8: The quantities qi(v(t)), i = 1 � 3 (a) or i = 1 (b-d) (verti
al axis) versus time(horizontal axis) for R = 13:05 (a), R = 13:1 (b), R = 13:12 (
) and R = 13:14 (d).

(a) (b)Figure 9: Proje
tion of the traje
tory in the saturated regime into the 
omplex planeq1(v(t)) + exp(2�i=3)q2(v(t)) + exp(�2�i=3)q3(v(t)) for R = 13:05 (a) and R = 13:1(b). 27



(a) (b)

(
) (d)

(e) (f)Figure 10: Poin
ar�e se
tion q1(v(t)) = 0 of attra
tors for R = 13:1 (a), R = 13:117 (b),R = 13:1175 (
), R = 13:118 (d), R = 13:12 (e) and R = 13:14 (f). Horizontal axis:q2(v(t)), verti
al axis: q3(v(t)). 28



(a) (b)

(
) (d)

(e) (f)Figure 11: Frequen
y spe
trum of q1(v(t)) for R = 13:05 (a), R = 13:1 (b), R = 13:117(
), R = 13:1175 (d), R = 13:118 (e) and R = 13:12 (f). Horizontal axis: frequen
y (Hz).
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the S1 symmetry. Figure 10a, showing a Poin
ar�e se
tion of the attra
tor, also suggeststhat the attra
tor is a torus.The next bifur
ation at R = R2 (13:1 < R2 < 13:11) is torus doubling with emer-gen
e of the frequen
y f2=2 (
f. Figures 10a,b, Figures 11b,
). In 
ontrast the well-knownFeigenbaum s
enario for period doubling of periodi
 orbits, torus doubling bifur
ation se-quen
es usually terminate after a few doublings [1℄ and in our 
ase we get transition toa 3-torus (possessing three main frequen
ies; see Figures 10
,11d) takes pla
e at R = R3(13:117 < R3 < 13:1175). At R = 13:1175, 
lose to the point of bifur
ation, the emergingfrequen
y f3 is very 
lose (but not exa
tly equal) to f2=18. f3 varies with R mu
h fasterthan f1 and f2 (see Figures 11d-f). Attra
tors found in 
omputations are: R = 13:1177{ a 3-torus; R = 13:118 { a 2-torus with the main frequen
ies f1 and f2=14 (see Fig-ures 10d,11e); R = 13:119 { a 2-torus with the main frequen
ies f1 and f2=10; R = 13:1195{ a 2-torus with the main frequen
ies f1 and f2=16; R = 13:12 and 13.13 { 
haoti
 (seeFigures 8
,10e,11f).These results are obtained with the resolution of 163 harmoni
s. When the resolutionis in
reased to 243 harmoni
s the sequen
e of bifur
ations is not a�e
ted, but the valuesof R at whi
h the bifur
ations o

ur slightly 
hange: the torus doubling takes pla
e at13:12 < R < 13:125; the transition to the 3-torus { at 13:125 < R < 13:13, for R = 13:13the emerging third frequen
y remains 
lose to f2=18; for R = 13:14 the behavior is 
haoti
,resembling the dynami
s for R = 13:12 with the 163 resolution.4.4 Bifur
ation to fully symmetri
 
haosAt R = R4 (13:13 < R4 < 13:14) the eight symmetri
ally related 
haoti
 attra
tors joininto a single attra
tor possessing on average all symmetries of the system { a symmetryin
reasing bifur
ation in the terminology of [13℄. At R = 13:14 the behaviour be
omesintermittent: a traje
tory of the system spends a long time (from 2000 to 150,000 timeunits in a sample run of duration of 1.5 million time units) in the vi
inity of one of theformer 
haoti
 attra
tors, then moves to the vi
inity of a symmetri
 
opy of the formerattra
tor, the transition taking approximately 1000 time units. As indi
ated above, theformer attra
tors are labelled by signs of time averages of the quantities qi. Computationsshow, that labels of su

essive former attra
tors visited by a traje
tory 
an di�er in onlyone pla
e (i.e. we observe transitions from (+ + +) to (+ + �), (+ � +) or to (� + +),30



but never to, say, (��+) or (���) ). Comparison of Poin
ar�e se
tions (Figures 10e,f)also makes it evident that the attra
tor under 
onsideration is a union of eight formerattra
tors. (See on Figure 8d behaviour of q1 near the point of transition from the (��+)former attra
tor to the (+�+) one.)For 13:14 � R � 13:4 in the vi
inity of the trivial steady state the system possessesthe single 
haoti
 attra
tor having all the symmetries of the system. As the Reynoldsnumber is in
reased, the average time spent by a sample traje
tory in the vi
inity of ea
hformer attra
tor de
reases. For R � 13:2 there is no intermitten
y any more, the solutionis 
haoti
 revealing apparent fast mixing within phase spa
e. We 
an neither identify anybifur
ation in this interval, nor 
an we guarantee absen
e of bifur
ations.4.5 Interpretation of the sequen
e of bifur
ationsWe suggest the following explanation of the observed sequen
e of attra
tors. When R, theonly parameter at our disposal, is varied, the eight bran
hes of periodi
 attra
tors withthe symmetry group �(A) = Z3 (as well as many other unstable bran
hes) emerge in ageneri
 Hopf bifur
ation at R = R0. On varyingR we also alter the third order normal form
oeÆ
ients and this results in a se
ondary bifur
ation at R = R1, whi
h is a super
riti
alHopf bifur
ation (or Sa
ker-Neimark bifur
ation) to a quasiperiodi
 attra
tor (also with�(A) = Z3). Note in parti
ular that the frequen
y introdu
ed in su
h a se
ondary Hopfbifur
ation must be very small, sin
e near bifur
ation all non-trivial solutions of an S1-
ommuting ve
tor �eld are periodi
 and the higher order terms will 
ause only a slow driftbetween these orbits.This se
ondary bifur
ation 
reates a bran
h that is however subje
t to instabilitiesbrought about by the presen
e of S1 symmetry breaking terms. The terms are apparentlyresponsible for the torus doubling bifur
ation at R = R2 and also for the Hopf bifur
ationat R = R3. Both torus doubling and transition from a T n-torus to T (n+1) have beeninvestigated analyti
ally (see [9℄, [30℄ and referen
es therein). The third frequen
y thatappears varies fast with R and 
onsequently more 2-tori and periodi
 orbits emerge dueto frequen
y lo
king on the 3-torus.A detailed explanation for the quantitative details of this sequen
e of bifur
ationsis not yet available. In parti
ular, the normal form with S1 symmetry 
annot modelthe three frequen
y quasiperiodi
ity, and hen
e why we observe this parti
ular sequen
e31



of bifur
ations. Moreover, when general torus bifur
ations are investigated analyti
ally,usually the dynami
s of the system 
annot be determined in a 
ertain region of the pa-rameter spa
e (Chen
iner bubbles) [34℄. In our 
ase one 
an therefore 
onje
ture thatfor R > R1 there exists a `fat fra
tal' set of parameters with positive measure on whi
hthere are quasiperiodi
 attra
tors; within the gaps of this set there are resonan
es ofnon-quasiperiodi
 attra
tors and 
ompli
ated bifur
ation sequen
es 
an o

ur. Thus thesequen
e of bifur
ations is likely to be more 
omplex than the one outlined in the previousse
tion; due to limitations of numeri
al investigation we have not attempted to lo
ate andidentify all bifur
ations.The transition at R = R4 to fully symmetri
 
haos is a 
risis where unstable invariantsets on a basin boundary merge with an attra
tor to 
reate a more symmetri
 attra
tor[13℄. It is very similar in 
hara
ter to another se
ondary bifur
ation, also observed in thenormal form from Z3 to full symmetry (see Figure 7). In the normal form we observea transition from a Z3 quasiperiodi
 attra
tor via a Z4 quasiperiodi
 attra
tor to fullysymmetri
 
haos that at �rst is highly intermittent. These transitions o

ur under a small
hange in the normal form 
oeÆ
ient in the presen
e of the normal form terms breakingthe S1 symmetry. This sequen
e 
ould be trun
ated to the one observed at R = R4.5 Dis
ussionWe have presented a detailed investigation of the generi
 Hopf bifur
ation with the sym-metry O a
ting as rotations of a 
ube for an irredu
ible representation on C3. We 
onsidera general system de�ned by the third order normal form and a parti
ular hydrodynami
alsystem that has this group of symmetries. For the generi
 bifur
ation problem we 
lassifythe possible primary bran
hes and their stability and among other things, �nd the possi-bility of dire
t bifur
ation to fully symmetri
 
haos or to tori and show that the periodi
orbit bran
hing is determined by the third order trun
ation of the normal form.The third order normal form exhibits a ri
h variety of bifur
ations be
ause of theavailable dimensions; this is re
e
ted in the se
ondary bifur
ations of the hydrodynami
alsystem. The normal form 
an be used to analyti
ally explain the �rst two bifur
ationsof the hydrodynami
al system: emergen
e of periodi
 orbits and their transition to eightsymmetri
ally related stable tori; for ea
h of the orbits and of the tori with �(A) = Z3.32



These bifur
ations are followed by torus doubling and appearan
e of the third frequen
y;it be
omes progressively more diÆ
ult to identify subsequent bifur
ations. The sequen
e is
on
luded with a symmetry in
reasing bifur
ation where eight attra
tors, ea
h possessinga symmetry group �(A) = Z3, join into one with full symmetry, �(A) = O. (Note that allattra
tors A observed in numeri
al simulations with R > R0 have point symmetry T (A)that is trivial.) This is also reprodu
ed in the normal form. Although this o

urs over asmall range of Reynolds numbers, we see that many di�erent dynami
al behaviours o

urwithin this range.Neither analyti
al nor numeri
al approa
hes 
urrently provide an explanation of allbifur
ations o

urring in the hydrodynami
al system. This suggests an approa
h for afurther analysis: we are in the pro
ess of obtaining the relevant normal form 
oeÆ
ients forthe Hopf bifur
ation of the hydrodynami
al system to enable us to numeri
ally investigatethe details of the bifur
ations. A paper is 
urrently in preparation [41℄ whi
h 
on�rms theobserved primary bifur
ation for the simulations dis
ussed here.Further analysis of normal form related to Hopf bifur
ation with symmetryO would behelpful, e.g. investigation of se
ondary bifur
ations of the observed bran
hes of periodi
solutions. It is of interest to establish either existen
e of robust hetero
lini
s betweeninvariant sets in the system de�ned by the normal form, or to rule them out. The unfoldingof the bifur
ation by adding symmetry breaking terms, say from O to D4 and then to nosymmetry, 
ould further aid to understand the primary instability of ABC 
ows for themore general 
ases A = B 6= C and A 6= B 6= C.Investigation of bifur
ations of the solutions of the Navier-Stokes equations for Reynoldsnumbers larger than those 
onsidered here is presumably possible by the study of intera
-tion of the steady state and Hopf bifur
ations; both of these are identi�ed in [37, 38, 39℄.The ABC 
ow instabilities we examine here are restri
ted to perturbations that havethe same spatial periodi
ity as the 
ow. As it was proven analyti
ally in [32, 33, 36℄, the
ow is unstable to long-wavelength perturbations for R � 1. It is of interest to identifythe resultant sequen
e of bifur
ations; however, this task is beyond the s
ope of this paper.
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