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Abstract

Synchronization of the chaotic intensity fluctuations of three modulated
Nd:YAG lasers oriented in a linear array with either a modulated pump or
loss is investigated experimentally, numerically and analytically. Experiment-
ally, synchronization is only seen between the two outer lasers, with little
synchrony between outer and inner lasers. Using a false nearest neighbors
method, we numerically estimate the experimental system dynamics to be
five dimensional, which is in good agreement with analytical results. Nu-
merically, synchronization is only seen between the two outer lasers, which
matches the experimental data well. Lack of synchrony between outer and in-
ner lasers, is explained analytically and then we numerically investigate loss of
synchronization of the outer two lasers, observing the occurrence of a blowout
bifurcation. Finally, the effects of noise and symmetry breaking are examined

and discussed.

Typeset using REVTEX

*Department of Mathematics and Statistics, University of Surrey, Guildford GU2 5XH, UK

tSchool of Physics and Technology, Suzhou University, Suzhou, Jiangsu 215006, People’s Republic
of China



I. INTRODUCTION

Experimental and theoretical investigations of chaotic synchronization in coupled nonlin-
ear systems have attracted much attention in recent years due to the possibility of practical
applications of this fundamental phenomenon. Several papers have studied the synchron-
ization of chaotic signals in the context of electronic circuits [1-3], secure communication
[4-6], turbulence in fluids [7,8], chemical and biological systems [9], and laser dynamics
[10-14]. Winful and Rahman have numerically investigated the possibility of synchroniza-
tion of chaos in semiconductor laser arrays on a nanosecond time scale [10] and previously,
we have also performed experimental measurements and demonstrated synchronization of
two chaotic lasers [15]. To our knowledge, however, the experimental synchronization of

chaos in laser arrays with more than two lasers has yet to be reported.

In this paper, the synchronization, both experimentally and numerically, of three coupled,
chaotic, Nd:YAG (trivalent neodymium doped yttrium aluminum garnet) lasers in the sep-
arate cases of pump and loss modulation is reported. In a linear array of three lasers, a high
degree of synchronization between the two outer lasers is seen, whilst little if any synchron-
ization is observed between the outer and inner lasers. The experimental observations are
in good agreement with analytical results, which clearly explain the lack of synchronization
between outer and inner laser. Similar results were seen by Winful and Rahman [10] in a

numerical model for three semiconductor lasers coupled in a linear array .

The numerical simulations show similar behavior in this coupled linear array of three
lasers to that seen in a system of two coupled lasers [14] and we present numerical evidence
to suggest that synchronization between the two outer lasers may be lost through a blowout
bifurcation, where an attractor contained within the synchronized submanifold loses its
transverse stability [16]. This indicates that as in the two laser case, forced symmetry

breaking is not necessary for desynchronization of the two outer lasers to occur.



The rest of this paper is arranged as follows. In Section II we describe the experimental
setup for a system of three Nd:YAG lasers coupled in a linear array and explain the tech-
niques that we used in obtaining the experimental data. Section III describes the equations
we used to model the laser system and investigates the occurrence of synchronization between
the two outer lasers and also the lack of synchronization between the outer and inner laser.
In Section IV, we describe how the numerical simulations were performed in the case of loss
modulation and finally in Section V, we discuss our findings and consider the implications

for coupling large systems of lasers in a linear array.

II. EXPERIMENTAL SETUP

To study the dynamics of a pump or loss modulated three laser array we use the exper-
imental system as shown in Figure 1. This set-up consists of three equal intensity, parallel
and laterally separated beams created by pumping a Nd:YAG rod, 5mm in both length and
diameter in a plane parallel cavity. Three Art pump beams (A=514.5 nm) are formed by
passing a single beam through a fan-out grating designed to produce equal intensities for
the zeroth and first order beams, and negligible intensities elsewhere. The separation and
relative orientation of the three beams of interest are controlled using a simple telescope.
The pump beams, in the end, are parallel and symmetric with respect to the axis of the
YAG crystal. The optical cavity consists of one high reflection coated end face of the rod
and of an external planar output coupler with 2% transmittance. The pump power for the
pump modulation case is approximately 5.8 W, and 5.0 W for the loss modulation case. For
these parameters, the relaxation oscillation frequency, vg, is of the order of 100 KHz. A
thick etalon ensures single longitudinal mode operation. This etalon doubles as an intra-
cavity acousto-optical modulator (AOM) for the loss modulation case. Pump modulation is

attained using an AOM positioned before the fan out grating.

Thermal lensing in the YAG rod, generated by Art pump beams with waist radii ~20

pm allows the formation of three separate and stable cavities [11]. The TEMy, infrared laser
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beams generated in the YAG crystal have radii ~200 pm. Radii are measured at 1/e? of the
maximum intensity of the Gaussian profile. The coupling between the beams is determined
by their nearest neighbor separation which can be shifted by adjusting the grating and the
telescope lenses’ positions. The pump beam separations and profiles are measured directly
using a rotating slit method. The minimum value for nearest neighbor separation used
was 0.64mm, for which there is no appreciable overlap of the pump beams and coupling is
entirely due to the spatial overlap of the infrared laser fields. The couplings and detunings
were chosen such that, in the absence of modulation, the lasers exhibit an instability caused
by the resonance of the phase dynamics with the relaxation oscillations as described for

example in [13].

The three infrared beams produced by the Nd:YAG laser are separated using a sequence
of non-polarizing cube beam splitters and prisms. The intensity dynamics of the individual
lasers are recorded simultaneously using fast photodiodes and a four channel digital oscillo-
scope. A scanning Fabry-Pérot interferometer is utilized to ensure that the individual lasers

have only a single longitudinal mode.

Experimental measurements for the pump modulated case are displayed in Figure (2) for
nearest neighbor separations of approximately 0.975 mm. Chaotic synchronization between
the two outer lasers is clearly seen, whereas there is no apparent synchronization between
outer and inner lasers. In the case of loss modulation they are displayed in Figure 3 for
nearest neighbor separations of approximately 0.64 mm. Despite additional noise present in
the loss modulated experimental set-up, chaotic synchronization between lasers 1 and 3 is
readily apparent. Again, pairing intensities of lasers 1 and 2, as well as lasers 3 and 2 show

little synchrony.

It is interesting to note the harmonic relationships between the side lasers, 1 and 3, and
the center beam, laser 2. The intensity of laser 2 oscillates at a rate approaching twice

the frequency of the side beam oscillations. Fig 4 compares the power spectrums of the

4



individual beams. The dominant peak of the central beam approaches 150 KHz while the
side beams display peaks at approximately 80 KHz. The sharp spike at 166 KHz is due to

modulation at this frequency.

The intensity time series dynamics of all three lasers was numerically estimated to be
five dimensional (Figure (5)), using a false nearest neighbors method [17], with 25000 time
units considered. This result agrees with the dynamically invariant state labeled Amplitude
antisynchronized in Table I, corresponding to a system with amplitude synchronization and

equal left and right detunings present.

III. EQUATIONS OF MOTION

The equations describing the time evolution of the slowly varying, complex electric field
amplitude E; and real gain G; of laser 4 in an array of three spatially coupled, pump modu-

lated single mode Class B lasers are similar to those of the two laser system [15] and are as

follows:
% =17'[(G1 — &1(T))E) — KEy) + iw Ey
dG
d—Tl = Tf_l(pl(T) -G, -Gy ‘E1‘2)
dE
d—; == Tc_l[(GQ — 62(T))E2 - K,(El + E3)] + iw2E2
(1)
dG
d—TQ = Tf_l(p2(T) — Gy — Gy ‘E2‘2)
dE
d—; = Tc_l[(Gg — 63(T))E3 — K/EQ] + ileg
dG
d—T3 = 7',71(1?3(T) — G3— G3 |E3]?)

In these equations, 7, is the cavity round trip time, 77 is the fluorescence time of the upper
lasing level of the Nd** ion, and p;(T) = po; + p1i cos(QT), €(T) = € + €1;c08(QT), and
w; are the modulated pump parameters, modulated losses, and detunings (from a common

cavity mode), respectively, of laser i. It is assumed that NOT both the pump and the
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loss are modulated at the same time. In the Nd:YAG lasers considered in the experiments,
the round trip time of light in the cavity 7. is 0.40 — 0.50 ns, while the decay time of the
upper lasing level 7y is &~ 240us. (3 is the modulation depth of the pump beams. 2 is the

modulation frequency and is chosen to be near the relaxation frequency.

The lasers are coupled linearly to one another with strength &;;, assumed to be small.
For laser beams of Gaussian intensity profile and 1/e? beam radius wq the coupling strength,
as determined from overlap integral of the two electric fields ¢ and j is defined as

2
2wg

Kij = €xp (— (2)
The coupling strength is normalized such that ;; = 1 if d; — d; = 0. As the coupling
between lasers 1 and 3 is assumed negligible, only nearest-neighbor coupling is considered
in 1.
In the analysis which follows we only consider the case of loss modulation, i.e.p;; =
p12 = p13 = 0, but note that the analysis is equally valid in the case of pump modulation

18].

We first let F; = X;e'® where X; is the amplitude and ¢; the phase of laser i and rescale
time, expressed in units of the round-trip time of light around the cavity 7.. We subsequently
introduce &7, = ¢ — ¢ and Pr = ¢ — @3 (and similarly for Ay, and Ag), so that we may

rewrite equations 1 as the following system of ordinary differential equations defined on RS,

dX
d—tl = (F, — (1)) X1 — kX5 cos(®y)

dF

d—tl =y(A—F, — F,X?)

dX,

= = (Fy — €5(t)) Xo — k(X1 cos(Pr) + X3 cos(Pg))

dF.

d—t2 =7(A-F - KXJ) (3)
dX

d—tf‘ = (Fy — e3(t)) X3 — kX5 cos(Pg)



dF:
=94~ F— BXj)

dt

dd Xo X, . X; .

d—tL =A; + /{((f + Y;) sin(®r) + YZ sin(®))
dd Xs  Xo. . X .

d—tR =Ap+ K((fz + YZ) sin(®g) + f; sin(®y))

The issue of synchronization between the two outer lasers may be addressed by in-
troducing the sum and difference of these lasers and assuming that all three lasers are
equally detuned, i.e.A; = Agr = 0. Then, X3, = %(Xl + X3), Xq3- = %(Xl - X3),
Fizy = %(Fl + F3), Fi3_ = %(Fl — F3). and synchronization between the two outer lasers
occurs when X3 = Fj3_ = 0. The transformed system is equivariant under the action of

the following symmetries,

EX, Foy Xo, Fo, X JF_ @, 0p)= (X, Fy, Xo, F5,—X_|—F &p &;)
corresponding to interchanging the two outer lasers,

WX, Fyy Xo, Fo, X JF &, Op)= (X, F, X0, F5, X |F ,—®;,—Dp)
corresponding to conjugating the phases of the electric fields of all three lasers.

There is also a parameter symmetry involving the coupling parameter x that takes
(K, @r, ®r) = (=K, 1 + 7, Pp + )

which adds 7 onto the phase of the middle laser whilst reversing the sign of . It is interesting
to note that all three lasers are phase synchronized when x is negative, corresponding to
®;, = & = 0. However, only the two outer lasers are phase synchronized when « is positive

and this is the physically relevant situation since x is assumed positive in some sense.

Owing to these symmetries, the dynamically invariant subspaces illustrated in Table I
exist. Notice in particular the five dimensional subspace labeled Amplitude antisynchron-

ized, corresponding to the case where the o symmetry has been broken, via equal detuning of
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the two outer beams from a common cavity mode. The dimensionality of the experimental
system as calculated using the false nearest neighbors method gives good agreement with

this state and gives emphasis to our assumptions about the parameter regimes considered.

Note that although there are several invariant subspaces where the phases of all three
lasers are locked, there are NO invariant subspaces forced by symmetry such that the all
amplitude and gains are equal, X, = X, and F; = F;. We may examine this using two
approaches; firstly by examining the set of such points in the phase space and showing that
it is not invariant (cf [19]) and secondly by reducing the system of three lasers to one of two

lasers with unequal coupling.

To this end, we define the manifold
My ={(X1, F1, Xo, F5, X3, F3, P, Pp) : X1 =Xy, 1 =F, & Pp=0 orn}

corresponding to perfect (anti)synchronization between lasers 1 and 2 in terms of the original

variables.

A. Non-invariance of M,

We demonstrate that if k # 0, any non-zero trajectory can only be in My instant-
aneously, by assuming that X; and X, are non-zero and examining the evolution of the

(X1 + Xs3). Note that

difference z_ = 1(X; — X>) and sum z, = 3
dr- F+ F F - F 1
:ijt = 1—; 2y + L 5 2x+ —e(t)r_ + ko cos<I>L+§/$X3 cos Op.

If the system state lies on My this means that x_ = 0 and F} = Fy; so the trajectory at
this point will have
dx_ 1

= §I£X3 cos(Pg)

Thus the trajectory must leave M, unless x = 0, X3 = 0 and/or ®p = 5 + kn, k € Z. We

eliminate the first possibility by assumption. If X3 = 0 then we note that



% = —k Xy cos(Pg) (4)
and so this will be non-zero as long as ®y # 7 + kn for some k € Z, but from our definition
of My, g = 0 or 7, so any trajectory satisfying (4) will not be contained in M,. For the
same reason we rule out the case ®p = 7 + k7 and this implies that a trajectory can only
be in M, for an instant in time. As a result, My is ONLY an invariant subspace for the

ordinary differential equation if 4 = 0 and the only trajectories that remain within M for

all time have X; = Xy, = X5 = 0.

B. Reduction to a system of two lasers with unequal coupling

If we assume that we lie on one of the amplitude synchronized subspaces, where X_ =
F_ =0, i e X; = X3 and F; = F3, then the system (3) simplifies to a two laser system with

unequal coupling between the two lasers.

dX
—dtl = (F] —€(t)) Xy — kX3 cos(P)
dFy 9
— =v(A-F - X
dt 7 ( 1 1X1)
dX
d—t? = (Fy — €(t)) X2 — 26X, cos(®) (5)
dFy
— =y (A-F, - FX?
dt 7 ( 2 »X7)
d@ _1 _1 .
il (Xo X7 +2X1X5 ) sin(®)

Introducing sum and difference variables in this case gives us the transformed system,

dX
d—t+ =X, (Fy —€(t))+ F.X_ —kcos(P)(3X, + X_))
dd% =y(A-—F;(1+X2+X?)—2F X _X,)
dX_
7 :X_(F+ —E(t)) +F_X++KJCOS(®)(3X_+X+) (6)
dF_
— = (-1 + X+ X2)+2F, X X))
2

I BXT 43X X+ X))

— =k > 5 sin(®)

dt (X3 —-X7)



If we assume that the two lasers X; and X, are synchronized then we find that,

% = rkcos(P) X
dd% =0 (7)
% = 3k sin(P)
assuming that x # 0, X, # 0, then we see that X_ = 0 for at most an instant in time.

Since if cos(®) = 0 then & = % + km for some k € Z and so

dd

= 3K (8)

which is nonzero and therefore ® moves away from % (mod 7). Consequently df—t‘ moves

away from 0 and so X_ also moves from 0. Therefore synchronization is not achieved in the

asymmetric two laser setup and thus not achieved in the original three laser system.

IV. NUMERICAL RESULTS

We carried out numerical simulations independently in both the loss modulation situ-
ation as well as modulation of the pump excitation. We concentrate on the loss modulated
situation due to numerical considerations, but note that our results remain valid in the case

of pump modulation [18].

A. Loss Modulated Case

For the loss modulated case, the simulations were performed using both Bulirsch-Stoer
and Runge-Kutta integrators. Due to numerical considerations we were forced to consider
more moderate values of the stiffness parameter v, which was of the order 0.01 and 0.001.
The parameter regimes considered were also altered in order that the difference in v was
taken into account. In both the cases v = 0.01 and v = 0.001 we saw similar results, and
although the experiments were carried out with v ~ 1075, the use of longer resonators would

give a value of the stiffness parameter somewhat closer to that considered numerically. We
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carried out simulations for many values of the pump coefficient and various modulation

strengths for the loss.

As in the model for a two laser system, in the case 0 < v < 1, the system undergoes a
period doubling cascade to chaos as the strength of loss modulation is increased. Typically
we see that for small values of the coupling parameter «, there is no amplitude synchroniza-
tion and the amplitude behavior of all three lasers appears to be independent, although with
Antiphase synchronization between adjacent lasers. As the coupling strength is increased, a
period of on-off intermittent type behavior [20], is observed in the amplitude fluctuations of
the two outer lasers. During this period there are times when the two outer lasers appear
to be synchronized in both amplitude and phase, before bursts away from amplitude syn-
chronization, whilst remaining completely phase (anti)synchronized. Then as the coupling
strength is increased still further, there is no more bursting away from synchrony and the

two outer lasers remain amplitude synchronized for all time after an initial transient phase.

For the particular case where all losses are modulated equally at the rate, 0.9 + 0.2 cos
( 0.045 t ), the pump parameters were equal to 1.2 for each laser and Ay = Agp = 0, the
behavior of a typical trajectory is as follows. Upon varying the strength of coupling x, we
see that there exists a critical value k. ~ 0.003125 such that for values of k¥ < k., trajectories
evolve on to the Phase Antisynchronized state. For values of k > k. trajectories evolve on
to the Amplitude antisynchronized state. This transition at k. is strongly suggestive of a

blowout bifurcation, as was the case in a system of two lasers [14].

A blowout bifurcation occurs when a normal Lyapunov exponent governing the exponen-
tial rate of change transverse to a submanifold of the total phase space passes through 0.
In the case where there is more than one transverse Lyapunov exponent we need consider
only the largest or normal Lyapunov exponent. If the normal exponent is negative, then
on average nearby trajectories are attracted onto the submanifold and the attractor within

the subspace is an attractor for the full system. If the exponent is positive then on average
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trajectories close to the submanifold are repelled away from it.

We have numerically computed the Lyapunov exponents of (3) by integrating the vari-
ational equations and examine the change that occurs in the exponents upon varying the

coupling strength k. These are illustrated in the case of no detunings in Fig 6.

For this system, the blowout bifurcation does not occur at an isolated parameter value
because the bifurcation parameter x varies the dynamics tangentially within the Antisyn-
chronized subspace as well as those in a transverse direction from it; it is not a normal
parameter for the dynamics [21,22]. Because of this (and apparent fragility of the chaotic
attractors) we do not expect the Lyapunov exponents to vary smoothly or even continuously

with the parameter. Hence we observe a blurred blowout [22].

The tangential variation of the dynamics is clearly indicated in figures 6 and 7, where
windows of stability arise as the coupling strength & is increased. These windows of stability
correspond to all Lyapunov exponents of system 3 being negative. In particular there is a

window of stability shortly after the bifurcation point.

In order to examine the branching behavior at blowout, we have simulated the behavior
of typical trajectories that are not in any invariant subspace. Starting at k., there appears
to exist a chaotic attractor A within the Antisynchronized subspace, since after an initial
transient phase (which may be prolonged for some initial conditions), all trajectories even-
tually appear to converge to the Antisynchronized subspace. Reducing x towards k. we find

regions of region of on-off intermittent type behavior, typical for a supercritical blowout.

After the blowout, we no longer observe any attractors in the Antisynchronized subspace,
but there is a new branch of attractors in the Phase antisynchronized subspace are created
at the bifurcation. Just after k. these attractors are apparently on-off intermittent and close

to the antisynchronized subspace. The average position of the trajectory moves away as
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k — 0. This is a strong indicator that the blowout is of supercritical, soft or non-hysteretic

type [16].

We also performed simulations of three loss modulated lasers in situations where the
detunings were equal, 7. e. Ay = Ap = A. We calculated the Lyapunov spectrum in this
case and saw similar results to that of the purely symmetric case, with the main difference
being a bifurcation from the Amplitude antisynchronized subspace, rather than the Anti-
synchronized subspace. Again the blowout appears to be soft with an extended period of

on-off intermittent behavior.

For the particular case with parameters identical to those considered above and a value
of the detuning, A = 0.001, the Lyapunov spectrum upon varying « is illustrated in figure 7.
Again a blurred blowout is evident, and the normal Lyapunov exponent passes through zero

at k. ~ 0.003175.

B. Pump Modulation

The numerical simulations in the case of modulation of the pump excitation were carried
out using a Runge-Kutta integrator with a variable timestep. Frequency of the depth of
modulation was chosen so that the dynamics of the system was in a region of chaotic behavior
and in this case was chosen to be 100.53 kHz (in the case of loss modulation it was 139.62
kHz). As in the case of loss modulation, excellent agreement between the experimental
results and the numerical simulations are seen. A high degree of synchronization between
the two outer lasers and no apparent synchronization between outer and inner laser. The
transient behavior displayed similar characteristics when compared to the loss modulated
simulations, such as bursts away from synchronization over short time scales, before settling

on to the synchronized subspace after longer periods of time.

Some of the numerical simulations we performed are illustrated in figure 8. The bi-
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furcation analysis is not performed here, since the simulations indicate similar bifurcation

behavior to that of the loss modulated case, as would be expected [18].

V. DISCUSSION

Concluding this work, the synchronization of three Class B Nd:YAG lasers, coupled in
a straight line linear array, is investigated experimentally, analytically and numerically. We
investigate the separate cases of pump modulation and loss modulation both experimentally
and numerically. In the experiments, a high degree of synchronization is observed between
the two outer lasers of the array, whilst no synchronization is observed between outer and
inner lasers. This is in good agreement with the theory, which demonstrates this lack
of synchronization between outer and inner laser. In the case of loss modulation we see
numerically how the loss of synchronization between the two outer lasers is lost in both the
fully symmetric case and in the case with equal left and right detunings, via an apparent
supercritical blowout bifurcation. This is achieved by varying the strength of coupling

between the three lasers.

For the experimental system, noise and symmetry breaking are both inherent, but even
with quite high levels of noise, we have demonstrated a good degree of synchronization
particularly in the loss modulated case. In the numerical simulations, noise and symmetry
breaking have similar effects; in the region of on-off intermittency, it is unlikely that there will
be a noticeable change if the perturbations are small. Low levels of noise and imperfections
can result in bubbling type effects [24], which can resemble on-off intermittency in numerical
simulations. Consequently, the effect of bubbling on systems such as ours is similar to
the effects of on-off intermittency, namely bursts away from a synchronized state. Such
bubbling persists up to a point known as a bubbling transition [25] (see also the related
riddling bifurcation [26]). This situation arises when an orbit embedded in a symmetric
chaotic attractor loses its transverse stability. A more detailed description of this situation

may be found in [27].
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It is interesting to see the harmonic relationships between the central and the outer
beams. Particularly for the loss modulated case with small nearest neighbor separations,
the central beam appeared to be at a rate approaching twice that of the two outer beams.
We conjecture that this surprising phenomenon may be caused by the central beam com-
municating a greater quantity of information than the two outer beams. One area of future
research is to investigate these dynamics and examine the effect of parameter variation on

the harmonic relationship.

Although we have shown that there will be no synchronization between the outer and
inner lasers in a three laser array, the question of generalized synchronization [28] arises. As
we have shown, assuming that the two outer lasers are synchronized allows us to simplify
the model to a system of two lasers with unequal coupling between the two lasers. This does
not immediately fall into the category of generalized synchronization, since there is feedback
from the "response” system into the ”driving” system. However, it may still be possible
to make similar conclusions to those of generalized synchronization in the case where the

feedback from the one system is small compared to the input from the other.

Numerical simulations of the model suggests that for small symmetry breaking perturba-
tions of the amplitude synchronized state, an instability should arise in the phase-locking of
the three lasers as predicted analytically and numerically in a system of two lasers coupled in
a linear straight line array [19]. Another interesting area of future experimental work would
be to heterodyne the outer beams, examine the beat frequencies over time to investigate the
phase-locking instability. Such an instability may have an important bearing on maximizing

power output and coherence in larger arrays of coupled lasers.
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TABLES

Symmetry Representative point Dim. Name
Zo (&) x Ziop ()"0 (X4, Fy, X9, F5,0,0,0,0) 4 Synchronized
Zo(&) X Zo(p)™ (X4, Fy, Xo, F2,0,0,7,m) 4 Antisynchronized
Zo(u) (X4, Fy, Xo, F5,0,0, 0, —¢) 5 Amplitude antisynchronized
Zo(p)"0 (X4, Fy, X9, F5, X_,F_,0,0) 6 Phase synchronized
Zo(p)™™ (X4, Fy, X9, F5, X _|F_ 7, m) 6 Phase antisynchronized

TABLE 1. Dynamically invariant subspaces in Eqgs. 3. A list of symmetry forced invariant

subspaces of the equations for a system of three linearly coupled lasers. We have listed only those

states which contained an attractor in the numerical simulations. Note that other states exist but

are not seen as attracting for the system.
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FIGURES
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FIG. 1. Ezperimental system for generating three laterally coupled lasers in a Nd:YAG crystal
and observing the synchronization of chaotic laser intensities. A diffractive optic is used to split the
Argon laser into three beams with almost equal intensities. The three beams are made parallel by a
telescope; changing the magnification of the telescope changes the separation d between each laser.
An Acousto-Optic Modulator (AOM) is placed in position (a) in the case of loss modulation and
in position (b), in the case of pump modulation. The Nd:YAG crystal is coated for high reflectivity
(HR) on one side and antireflection coated (AR) on the other. The output coupler (OC) is 2%
transmissive; both mirrors are flat. A CCD camera is used to measure the far-field intensity
pattern of the array, while the three photodetectors PD1, PD2, and PD3 simultaneously measure

each lasers’ intensity dynamics, which are subsequently recorded on a digital sampling oscilloscope

(DSO).
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FIG. 2. Ezperimental measurements of the relative intensities of three coupled lasers for pump
beam separations d = 0.975 mm and modulation depth p1; = 0.20 (for i=1,2,3). A high degree of

intensity synchronization is seen only between lasers 1 and 3.

21



Laser 1 Intensity Time Series Laser 1 Intensity vs Laser 2 Intensity

250 T T T 200
180
200
2 =160
[%] (%]
g 150 8 140
1S 1S
— N
% 100 5 120
@ @
| —1100
50 80
0 60
1200 1400 1600 1800 0 50 100 150 200 250
Time (us) Laser 1 Intensity
Laser 2 Intensity Time Series Laser 1 Intensity vs Laser 3 Intensity
200 T T 200 T T T T
180
2160 21
[%] (%]
c c
g 140 g
~ p 100
+ 120 .
[} [}
2 ’ 2
S 100 lz S 5
80
60 0
1200 1400 1600 1800 0 50 100 150 200 250
Time (us) Laser 1 Intensity
Laser 3 Intensity Time Series Laser 3 Intensity vs Laser 2 Intensity
200 T T T 200 - - .
180
21 2160
2 2
g g 140
p 100 ~
. + 120
[} [}
& kY
- 5 - 100
80
0 60
1200 1400 1600 1800 0 50 100 150 200
Time (us) Laser 3 Intensity

FIG. 3. Experimental measurements of the relative intensities of three coupled lasers with loss
modulation. Here the nearest neighbor separation d = 0.64 mm. Once again, a high degree of

intensity synchronization is seen only between lasers 1 and 3.
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FIG. 4. Power spectrum of three linearly coupled lasers, in the case of loss modulation at a
rate of 166KHz. Here the nearest neighbor separations are again 0.64mm. Notice the peak in the
central beam close to 150K Hz which is not present in the two outer beams. However, the side beams
display a peak at approrimately 80KHz of a greater intensity than the corresponding peak in the

central beam . The peak in all beams at 166 KHz corresponds to modulation at this rate.
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Dimension of Loss Modulated Intensity Time Series
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FIG. 5. Using the false nearest neighbors method, we numerically estimate the dimensionality
of the experimental system, using measured time series of the intensity fluctuations. The 1% mark
suggests that the system is five dimensional, giving good agreement between the experiments and

the dimensionality of the model.
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FIG. 6. Lyapunov exponent diagram in the case of modulated loss. The parameter values for the
lasers were assumed identical and were ag; = 0.9, ay; = 0.2, p; = 1.2 (for i=1,2,3). We assumed
the detunings of the lasers were such that A, = Ar = 0. We have labelled the largest tangential
Lyapunov exponent A1. Notice that this is positive for most values of the coupling strength . The
non-normality of k is apparent through the windows of stability that arise when varying «. These
correspond to the periods where A1 is negative. The blowout occurs when the normal Lyapunov

exponent, \1 passes through 0. In this case this occurs for k ~ 0.003125
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FIG. 7. Lyapunov exponent diagram in the case of modulated loss. Here the detunings were
assumed equal with A, = Ag = 0.001 and the exzponents were plotted upon varying the strength
of coupling k. The parameter values for the lasers were assumed identical and were once again
ap; = 0.9, ay; = 0.2, p; = 1.2 (for i=1,2,3). We have labelled the largest tangential Lyapunov
exponent Ay and the normal Lyapunov exponent Ai. Similar behavior to the case of no left and

right detuning is seen. However, the point of blowout is altered, in this case k ~ 0.003175
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FIG. 8. Numerical simulated three laser model with pump modulation. The modulation rate

was again chosen to be near the relzation oscillation frequency of the lasers so as to induce chaotic

fluctuations in the intensities.
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