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Abstract

We propose general definitions for riddling and partial riddling of
a subset V of R™ with nonzero Lebesgue measure and show these
properties are invariant for a large class of dynamical systems. We
introduce the concept of a weak attractor, a weaker notion than a
Milnor attractor and use this to reexamine and classify riddled basins
of attractors. We find that basins of attraction can be partially rid-
dled but if this is the case then any partial riddling must be evident
near the attractor. We use these concepts to aid classification of bi-
furcations of attractors from invariant subspaces. In particular, our

weak attractor is a generalization of the absorbing area investigated



by other authors and we suggest that a transition of a basin to riddling

is usually associated with loss of stability of a weak attractor.
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1 Introduction

Progress in finite dimensional dynamical systems has been made typically by
ignoring information contained in the trajectories. For example, the study
of asymptotic properties of trajectories has given rise to a generic qualita-
tive theory that can describe many possible types of asymptotic motion.
If the asymptotic motion is chaotic, invariant measures can be used to de-
scribe ‘typical’ asymptotic behaviour by ignoring initial conditions that are
insignificant in that they have small measure.

An important development of this type was the introduction by Milnor of
a notion of attractor that ignores initial conditions on a set of zero measure
[11]. This gave a theoretical framework for understanding attractors with
‘riddled basins’ [1] that are attracting for a large measure set of initial con-
ditions (basin) but where this basin may have an open dense complement in
the phase space. In this paper, we present some definitions and basic results

about what we call riddled subsets of R™ and then apply these to describe



properties of attractors for maps of R™.

In Section 2 we define the riddled component of a subset of R™ with
positive Lebesgue area, and in this way generalize the notion of riddling
discussed by [1, 3]. We allow for the possibilities of a subset to be fully,
partially or unriddled, and in Theorem 2.1 we give some basic properties of
measurable sets in terms of riddling. We show in Theorem 2.2 that the riddled
and unriddled components of an invariant set are preserved in a natural way
for a wide class of continuous maps satisfying what we refer to as property
(P).

Section 3 discusses definitions and examples of attractors for such maps,
and we introduce a weaker notion of attractor than Milnor, a weak attractor
that we use to discuss synchronization in the final section. In Theorem 3.2
we show that in the case of a partially riddled basin, an attractor must be
contained in the (closure) of the riddled and unriddled components of the
basin. Theorem 3.3 gives necessary conditions for a Milnor attractor to have
a locally but not globally riddled basin. The section ends with examples of a
map of R? with a partially riddled basin, and an invertible map of R?® with
a riddled basin.

Section 4 uses these ideas to generalize the notion of absorbing area of
Mira and co-workers. We suggest that absorbing areas are special cases of
absorbing regions that can be defined for invertible or non-invertible maps

or flows in arbitrary finite dimension, without reference to critical curves.



We use ideas of weak attractors and absorbing regions to discuss some cases

where bifurcation can lead to creation of riddled basins of attraction.

2 Properties of riddled subsets of R™.

We first fix some notation used throughout the paper. We assume that
M =TR™, {(.) denotes Lebesgue measure on M, and subsets will be assumed

to be Borel subsets of M. We denote the -ball around z by

Bs(z) ={y : |z —y| <d}.

In applications of dynamical systems, one is usually only interested in the fate
of points up to any subsets of measure zero. To this end we define equality
and containment up to zero measure. If U and V are two (Borel) subsets of
M we say U =, V if (UAV) =0, where UAV = (U\ V) U (V \ U) is the
symmetric difference. In other words, we say U =, V if U and V differ only
on a set of measure zero. We denote the complement V¢ = M\ V. If A is
such that there is an open set C' with A =y C' then we say A is almost open.
Similarly, if A =¢ 0 we say A is almost empty. (NB we use the convention that
¢(V) > 0 includes the case £(V) = 00.) The following definitions generalize

the concept of riddling of Alexander et al. [1] to arbitrary sets.

Definition 2.1



. Suppose that V' is a measurable subset of M. We define the riddled

component of V to be

Via={z €V : L Bs(x) NV)UBs(x) N V) >0 for all 6 >0} (1)
. We refer to Viynria = V' \ Viig as the unriddled component of V.

Af Vg =0 V #o 0 then we say that the set V is (fully) riddled. If
Viia =0 O we say it is unriddled. If it is neither riddled nor unriddled,

we say it is partially riddled.

. IfU and V have L(U) > 0, (V) >0 and UNV =0, and for almost

all z € U and all § > 0 we have
UBs(z)NV)L(Bs(x)NU) >0 (2)
then we say that U is riddled with V.

. If U 1is riddled with V' and V is riddled with U then we say the sets are

intermingled.

Any embedded manifold is unriddled, as is any set with zero Lebesgue

measure. A simple example of a riddled set can be constructed as follows:

Take a sequence of points p; dense in [0,1] and consider

Sc=10,1]\ (U[pi,pﬁ;])

1€EN

One can show that £(S.) > 1 — € and so if € < 1, this set will be fully riddled

but still have open dense complement.
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Theorem 2.1 Suppose that V #q 0 is a measurable subset of M.
(i) Vyiaq is closed in the subset topology of V.
(#) Vunria is almost open.

(11i) If V is the closure of its interior then Vypria = Int(V') and Vg = 0OV .

Proof: (i) Suppose z, is a sequence in V,;; that converges to some point
x € V. Consider any 0 > 0 and note that there is an N and ¢ > 0 such that

B(zn) C Bs(z). Therefore if U =V or V¢ then
UBs(z)NU) > UBe(zny)NU) >0

and so x € V4.

(ii) Let
U={zxe M : Thereisad >0 with {(Bs(z) N V) =0}

and

V={r eV : Thereisad >0 with £(Bs(z) N V) = 0}

and note that if z € U has § > 0 such that ¢(Bs(z) N V*¢) = 0 then for any
Y € B;a(x), £(Bs/2(y) N V) = 0. Hence y € U and so U is open.
Observe that trivially Vi,.q C U UV and suppose that £(U \ Vynria) > 0.

An application of the Lebesgue density theorem gives £(V') = 0 and by further

application of the Lebesgue density theorem we can choose an = € U such



that £(Bs(z)NV¢) > 0 for all § > 0 which contradicts the assumption z € U.
Hence U =4 Vyuriq and consequently Vi, is almost open as required.

(iii) Let U = Int(V) and by assumption we have V = U. Clearly U C Vynrid-
By part (i) and the fact that V is closed, the riddled component V,;; must
also be closed and so Vj,,,,;¢ must be an open subset of V. Since U contains
all open subsets of V' we conclude that U = V54 and V,;q = 0V

QED

2.1 Mappings of riddled sets

Assume that a map f: M — M is continuous. We say that it is of type (P)

if the following is true:

(P1) f is almost everywhere a local homeomorphism, i.e. for -almost every
x € M there is a neighbourhood U of z such that f : U — f(U) is a

homeomorphism.

(P2) £(V) > 0 if and only if £(f(V)) > 0 for all measurable V.

We do not require that the map is invertible; many non-invertible (e.g. piece-
wise smooth) maps also satisfy (P). If f is almost everywhere a local diffeo-
morphism then both (P1) and (P2) follow directly. Unless stated other-
wise, we shall assume henceforth that the mappings on M consid-

ered in this paper are of type (P). If f(V) =¢ V we say V is almost
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invariant under f; in the stronger case that f(V) =V we say V is invariant

under f.

Theorem 2.2 If V is almost invariant under a map f: M — M then V,yq
and Vynria are almost invariant. If additionally f is a local homeomorphism

and V is tnvariant then Vg and Vynria are invariant.

Proof: By (P1), for almost all z € V' we can find open neighbourhoods U;
of z and U; of f(x) such that f: U; — Us is a homeomorphism.

Now consider any § > 0 such that Bs(z) C U; and Bs(f(z)) C Us. By
continuity of f on U; we can find an € with § > € > 0 such that f(B.(z)) C
Bs(f(x))-

Therefore £(Bs(f(z)) NVE) > L(f(Be(z)) NVe). As f : Uy — Us is
invertible we have f(AN B) = f(A) N f(B) for any A, B C U;. Now f(V N
Up) = f(VNU) NUs = VN U, because V is almost invariant. Hence its
complement in U is almost invariant, ie f(V¢NUy) =¢ VN Us.

Suppose that £(Bs(f(z)) N V¢) = 0 and note that £(f(B.(x) N V°)) =
(f(Be(z)) NVe) < UBs(f(x)) NVe). Therefore £(f(Be(z)) NV¢)) =0 and
by (P2) we have £(B.(z) N V¢) =0.

Considering f~! : Uy — U; this is also a homeomorphism that satisfies
(P2) and so for any ¢ > 0 such that ¢(Bs(z) N V¢) = 0 and B;(z) C Uy we

can find an € > 0 such that ¢(B.(f(z) NV*)) = 0.



Hence, for almost all z € V, {(Bs(z) NV¢) = 0 for some § > 0 if and only
if /(Bs(f(z))NV¢) = 0 for some 6 > 0. This is equivalent to saying that V;;4
and Vi, are almost invariant under f.

If f is everywhere a local homeomorphism then the above argument can

be applied at all points x € V and we can conclude that Vs and V,;; are

both invariant. QFED

3 Attractors and riddling

We start by recalling some standard definitions and giving a very weak notion
of an attractor. For f : M — M and any © € M we define
wiz)= ] U @),
N>0n>N
the w-limit set of z. Suppose now that z* = {z*,}°°, is a backwards tra-
jectory of f through z, that is, such that f(z*,) = z*,,, and = = z. We

define

alz") = m U x*,

N>0n>N

to be the a-limit of z* through x.
We say a subset A is absorbingif f(A) C A. If Ais compact and absorbing

then w(x) C A for all x € A. Moreover, w(x) is invariant for any z. Given



any compact invariant set A we define its basin of attraction
B(A)={ze M : w(z)C A}
and its unstable set
U(A) = {x € M : there is an z* through = with a(z*) C A}.

If A is invariant then y € U(A) means that there is a backwards trajectory
through y whose a-limit is contained in A, in particular A C U(A). We use

the basin of attraction to define the following notions of attractor.

3.1 Weak attractors

Definition 3.1 Suppose that A is a compact invariant subset of M. If
L(B(A)) >0

then we say A is a weak attractor.

Following Milnor [11] (though note that he assumed the sets are closed,
we assume additionally compactness for convenience and because of the ap-

plications we consider) we define:

Definition 3.2

1. If A is a weak attractor and any proper compact invariant subset A" C A
satisfies

{(B(A)\ B(A") >0

10



then we say A is a Milnor attractor.

2. If A is a Milnor attractor and any proper compact invariant subset
A" C A satisfies
{(B(A)) =0
then we say A is a minimal Milnor attractor.
These definitions are successively more restrictive,

Weak attractor < Milnor attractor < minimal Milnor attractor

and there are examples that show that the implications cannot be reversed.
Note that any compact invariant set containing a Milnor attractor is a weak
attractor. If A is a compact invariant set that has positive Lebesgue mea-
sure then it is a weak attractor, but in dissipative systems, weak attractors

themselves will typically have zero measure.

Remark 3.1 A natural measure is an ergodic invariant probability measure
1 such that for a positive measure set of x and any continuous ¢ : M — R
we have

=

S §(F(z) = / o(y) du(y).

If v is a natural measure then the support of p is a minimal Milnor attractor.

lim
n—oo N

Suppose that V is a Borel subset of M such that V contains a compact

invariant set A. We define the basin of A relative to V to be

By(A)={z €M : w(x) CA and f*(z) CV forall k€0,1,2,..}. (3)
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If U DV D A then clearly By(A) D By (A).

By examining not just the measure of the basin but also the basin topol-
ogy we get several more concepts of attractor that are increasingly more
restrictive than that of Milnor attraction. An almost open basin attractor is
a Milnor attractor whose basin is almost open. An open basin attractor is a
Milnor attractor whose basin is open. The strongest notion of attraction we

consider is the following:

Definition 3.3 If B(A) is a neighbourhood of A and for all neighbourhoods
V' of A there is a neighbourhood U of A such that f*(U) CV for alln € N,

we say A is asymptotically stable.

An alternative way to put this is as follows:

Lemma 3.1 An invariant set A is an asymptotically stable attractor if and

only if for any neighbourhood V of A, By (A) is a neighbourhood of A.

Proof: Suppose that A is asymptotically stable. Then given any neighbour-
hood V of A there is a neighbourhood U such that U C By (A) and so By (A)
is a neighbourhood. Conversely, if By (A) is a neighbourhood for any neigh-
bourhood V', B(A) D By (A) is a neighbourhood and U = By (A) will satisfy

f™(U) CV for all m € N. QED
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Observe that an asymptotically stable attractor is not necessarily minimal
or even a Milnor attractor, but it is a weak attractor. We now prove some
elementary results that relate these concepts of attraction. If X is a subset
of M that is not almost empty, we define the limit set Q(X) = Upexw(z)
(NB we take the closure since the union is not necessarily closed) and the
likely limit set

AX) =[] Q)
Y=0X
where we take the intersection over all Borel Y that differ by X on a set
of zero measure (this is referred to as A(f, X) in Milnor’s paper [11]). Note
that Q(X) D A(X) and if X is almost empty then A(X) is empty. Note that
Q(X) is a weak attractor containing A(X).

Lemma 1 of Milnor [11] implies that if X is any positive measure compact
absorbing subset of M then A(X) is an attractor that contains all Milnor
attractors in X, for the restricted map f,x. Moreover, the same paper shows
that if X is any positive measure then A(X) is a non-empty closed and
invariant; if A(X) is compact then it is a Milnor attractor.

Suppose that C' is any positive measure invariant set contained in a com-
pact absorbing set. If D C C'is not almost empty then we have A(D) C A(C)

and so C' Cy B(A(C)).

Lemma 3.2 Suppose that A is a weak attractor. Then there is a Milnor
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attractor A,, C A such that
B(A) = B(Ap).

Proof: Let A,, = A(B(A)); note that A, is an attractor with 4,, C A
and so B(A,,) C B(A). Now consider any positive measure set C' Cy B(A)
and note that A(C) C A,,. Hence C' C, B(A,,) for all C' and therefore

B(A) =¢ B(Ap,). Thus, A, is a Milnor attractor. QED

Note that weak attractors containing a single common Milnor attractor
need not be contained in each other. For example, consider the mapping on
R given by

f(z) =z +z(2® - 1).

This has two weak attractors [—1,0] and [0,1]. However the only Milnor

attractor is the point 0. More generally we can state the following:

Lemma 3.3 Suppose that A is a weak attractor.

(i) If Ap, is a minimal (Milnor) attractor A,, C A with B =y B(A,,) and

B open such that B D A then A,, is the only (Milnor) attractor in A.

(i) If B(A) is open then there is a Milnor attractor A,, C A with an almost

open basin.
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The first part of the previous Lemma follows on noting that A(B) = A,,;
the second part can be shown by application of Lemma 3.2.
The next result relates the unstable set of an attractor to notions of

attraction.

Theorem 3.1 Suppose that A is a weak attractor with non-empty unstable

set U(A).

(i) If U(A) is bounded then U(A) is a weak attractor.

(ii) Suppose that A is an asymptotically stable attractor. Then U(A) = A.

Proof:

(i) This follows because U(A) D A and so B(U(A)) D B(A). (ii) Suppose
that one can find an x € U(A) \ A and pick any neighbourhood V of A
that does not contain x. Since there is a backwards trajectory x* such that
a(z*) C A, given any U neighbourhood of A there is a trajectory that starts

in U and leaves V after a finite time. This contradicts the assumption of

asymptotic stability and so U(A) = A. QED

It may also be the case that ¢(A) is unbounded or U/ (A) may contain other
Milnor attractors. Note that if A,, is a Milnor attractor then there may be

many (possibly infinitely many) weak attractors A with B(A) = B(4,)-
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3.2 Riddling, intermingling and local riddling of basins

The work of Alexander et al. [1] showed that one can have a minimal Milnor

attractor with basins that are riddled in the following sense:

Definition 3.4 A weak attractor A has a globally riddled basin if B(A) is

fully riddled.

It may also be the case that ¢/(A) is unbounded or U(A) may contain
other Milnor attractors. Any weak attractor contains a Milnor attractor by
Lemma 3.2 and so if A is a weak attractor with a riddled basin then the
Milnor attractor A,, also has a riddled basin. An important consequence of

the previous results is the following:

Theorem 3.2 Suppose that A is a minimal Milnor attractor and let B =

B(A). If B is partially riddled then
A g Brid N Bunrid-

Proof: Since B is assumed to be partially riddled, both B,;; and B,,;q have
positive measure; therefore A(B,;q) and A(Bynriq) are nonempty. Clearly
both are closed subsets of the compact set A(B) = A and hence they are
Milnor attractors. Because A is minimal it is the only attractor in A(B) and

therefore

A= A<Bmd) = A(Bunmd)
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By Theorem 2.2, both B,;; and By, are almost invariant. Since B4
is closed in B and moreover all w-limit sets of points in B,;; remain in B,
we have A(Biy) C Bpig- Therefore A = A(B,iq) C Byig- Now Bypria has
positive measure and is almost invariant. Almost invariance implies there
is a full measure set of points that remain in B,,,;; under iteration and so
their limits are in By, implying that A(Bunria) € Bunrig- Hence A =

A<Bunrid) g Bunrid . QED

Similarly, if B is a basin relative to some open neighbourhood of A we
can conclude that A must be in the intersection of the closures of the riddled
and unriddled components of B.

A consequence of this result is that any attractor with a basin that has full
measure in a neighbourhood of the attractor must have an unriddled basin.
For example, Figure 1 shows (in black) part of the local basin of attraction

of a periodic orbit for the map
f(z,y) = (3.886052(1 — ) — 0.3zy?, 0.545¢e"y — ¢°) (4)

consisting of all points that remain within y € [0,0.1]. This is a particular
case of a map studied by [4]; the attractor is in the apparently open region of
black. Although the basin boundary becomes very convoluted as one moves
further away from the immediate neighbourhood of the periodic orbit, The-

orem 3.2 implies that the basin is unriddled. For this example, the periodic
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orbit is hyperbolic and so the basin is open, not just almost open.

Figure 1 goes here

Definition 3.5 Suppose that A is a weak attractor. We say it has a locally
riddled basin if there exists a neighbourhood V of A such that the basin of A

relative to 'V, ie By (A), is riddled.

This means that an arbitrarily small ball centered around any point of
By (A) has a set of positive measure which eventually leaves V under iteration.
Clearly a riddled basin is locally riddled, but vice-versa need not apply; it is
possible for a locally riddled basin to be almost open.

NB This is a more restrictive assumption than the definition of local rid-
dling in [3], who assumed that there is an open set V and U(V') = (o, f*(V)

such that
U(Bs(z) NU(V)) >0 (5)

for all 6 > 0 and all x € A. We require moreover that the above holds for
all z € U(V). This has the advantage that it excludes some undesirable
examples, for example the fixed point @ = 0 of the ODE § = 1 — cos (mod
2m) is not locally riddled according to our definition, though it is according

to the previous definition in [3].
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Lemma 3.4 Suppose that A is a weak attractor such that B(A) is locally
riddled. Then there is a Milnor attractor A,, C A such that B(A,,) is locally

riddled.

Proof: If A is a weak attractor with a locally riddled basin then there exists
a neighbourhood V' of A such that By (A) is riddled. By Lemma 3.2 there
is a Milnor attractor A,, C A such that V is also a neighbourhood of A,,
and B(A,,) =0 B(A). Hence By (A,,) =¢ By (A) and consequently By (A,,) is

riddled. QED

It is interesting to note that the converse of Lemma 3.4 is false. In general
it is not true that the basin of a weak attractor A is locally riddled if the
basin of a Milnor attractor A,, C A is locally riddled.

If the basin is almost open then for almost all z € B(A)

((Bs(z) N B(A)) £(Bs(z) N B(A)) = 0

for small enough §. Hence B(A) is not globally riddled.

Lemma 3.5 Suppose that a weak attractor A has a basin that is almost open.

Then its basin is not globally riddled.

This does not however preclude A from having a locally riddled basin

even if it is the unique Milnor attractor inside a weak attractor whose basin
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is not locally riddled. The following result gives necessary (but not sufficient)

conditions for a basin of an attractor to be locally riddled.

Theorem 3.3 Suppose that A is a weak attractor with an almost open basin
and a unique Milnor attractor A,, C A. Then B(A;,) is not globally riddled.
If in addition An, # A and there is a dense orbit {f™(&)}nen in A, then the

basin of attraction of A,, is locally riddled.

Proof: Suppose that A,, is the unique Milnor attractor such that A,, C A
implies that B(A,,) =¢ B(A). By Lemma 3.5, B(A) is not globally riddled

and hence neither is B(A,,). Now pick any y € A and € > 0 such that

Now choose any V', a neighborhood of A,, such that

V() Bcy) =0

Consider any x € By (A4,,) and 6 > 0. Due to the existence of a dense orbit,
there is an ng such that f"0(§) € Bs(x). Also there is an ny; > ng such that
f™ (&) € Be(y). By continuity of f, given any neighbourhood P of y, there
is a @ C Bs(z) such that fm~"(Q) C P. Hence @ C U(V)°. Therefore,

Bs(z) U(V)® D @ implies that

U(Bs(z) (YU(V)) > £(@Q) >0
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and so we can conclude that the basin of A,, is locally riddled. QED

If a weak attractor A has a basin that is locally riddled but not globally
riddled there may be a weak attractor C with B(A) =y B(C) such that the
basin of C is neither locally nor globally riddled; it may even be asymptoti-
cally stable! This could happen in particular if A has a locally riddled basin

and

B (U(A)) =0 B(4).

3.3 Example of an attractor with a partially riddled
basin

If we examine the mapping

F(z,y) = (f(z,9),9(z,9)) (6)

on z € [0,1], y € [-2,2] where f(z,y) = 4z(1 —z)(1 — 0.1y?) and

y y=>1
9(z,y) = { exp(sinz — Ny 1>y>0 -
y/2 y<0

Note that f(x,0) is the full logistic map on y = 0, y = 0 is invariant as
g(x,0) = 0 and ¢ is continuous but only piecewise smooth in (z,y). Figure 2

illustrates the basin of attraction of and attractor in [0, 1] that appears to be
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partially riddled; y > 0 contains the riddled component of the basin while

y < 0 has the almost open component.

‘Figure 2 goes here

For the map (6) one can prove the assertions above that the basin is
partially riddled by observing as follows: one can define upper and lower
transverse Lyapunov Exponents (L.E.s) (ie for y > 0 and y < 0) and these
are in general different. The transverse L.E.s for y > 0 are positive for some
periodic measures whereas that for the natural measure is negative. For
y < 0 there is uniform contraction with all L.E.s are equal to —log2 and so
this part of the basin is open. In agreement with Theorem 3.2, the attractor
in this example is in the intersection of the riddled and the closure of the
unriddled component, even though the map f is discontinuous at y=1.

Note that this map does not have well defined L.E.s on A as the deriva-
tive at A is not defined. Also, note that the attractor lies in an invariant
manifold that splits the basin into two distinct parts. We believe that this is
a necessary condition for partial riddling of a basin of attraction to occur and
conjecture that the existence of a partially riddled basin in this case is also
due to the lack of smoothness. More precisely, we conjecture the following

holds in general:
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Conjecture: A minimal attractor A of a C**® map f with natural measure
# cannot have a partially riddled basin if all L.E.s with respect to u are

non-zero.

There are examples where such attractors have riddled or non-riddled
basins [1], and lack of riddling is implied by uniform hyperbolicity of an

attractor in a smooth system.

3.4 Example of an invertible map with a riddled basin

Although the following example may be obvious to some readers, we find it
appropriate to include it at this point. We define a map of [0,1)? x R* to
itself by

F(z,y,2) = (f(z),9(z,y), h(z, 2))

where f(z) =2z — |2z, g(z,y) = (y + |2x])/2 and

h(z,z) = /Oz H(z,z)dz

where H(z,z) a positive function, smooth in z and z that satisfies H(z,0) =
exp(3 — ), H(z,z) — 2 as z — oo (uniformly in z) and which is monotonic
increasing in z > 0 for any fixed z.

This map on [0,1)% x R* is invertible (the map on (z,y) is the Baker’s
transformation and z — h(z, z) is invertible due to positivity of H). The

natural measure for the Baker’s map is simply two dimensional Lebesgue
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measure on [0,1)? and the mapping leaves the subspace z = 0 invariant.
There is also an attracting fixed point at z = £o00. One can compute the

transverse L.E. for any ergodic invariant measure p in z = 0 as

Ap) = /1og\%|du(w,y),
_ / log|H (x,0)| dps(z,y),
— [ 1ogexp( - ) dutz.),
_ /(%—x)du(x,y).

For the natural measure this is A(u,) = —¢ < 0 but for the fixed point at
(z,y) = (0,0) is A = 3 > 0. Note moreover that points of the form (0,0, 2)
with z # 0 will iterate to infinity. Since there is a dense set of points that are
asymptotic to the fixed point (0, 0), we can conclude that the plane z = 0 is

an attractor with a riddled basin (see e.g. [1, 3]).

4 Absorbing regions

The concept of an absorbing area of a two dimensional non-invertible map
was introduced in 1977 [6] as a region in R? bounded by images of critical
curves. This has proven very useful in describing the structure of attractors
for two dimensional non-invertible maps. More recently, a number of articles
[5, 7, 9, 10] have shown that there are connections between absorbing areas

and the bifurcations and basins of attraction of systems exhibiting riddled
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basins and blowout bifurcations.

We generalise the idea of an absorbing area to consider absorbing regions;
these can be defined even for smooth invertible maps that do not have critical
curves in the sense of [6], and hence we should also be able to extend these
ideas to apply to flows generated by ODEs. As before we suppose that

M = R™, and that we have a type (P) map,
fM—->M

Definition 4.1 We say that an unriddled set A C M is an absorbing region

for f if the following properties are satisfied:

(A1) f(A) So A.

(A2) L(A) > 0.
Note the fact that A is unriddled implies that A is almost open, (A2) implies
that A #, 0.

An absorbing area in the sense of [5, 6, 9] is an absorbing region in our
sense but they also require that A has a boundary that consists of segments
of images of a critical curve corresponding for differentiable maps to LC' =
{r € M : det(Df(z)) = 0}. Our absorbing region is a generalisation in
that the map f can be invertible and/or smooth, and the notion generalises
easily to flows or semiflows in arbitrary dimension as long as the time-T
maps satisfy property (P). The phase space is not restricted to one or two

dimensions.
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The strength of using critical curves is that they provide a tool one can use
to construct absorbing regions numerically. We do not suggest that absorbing
areas are in general easy to find, nor do we aim to give any methods to find
them.

If A is an absorbing region such that f(.A4) = A we say it is an invariant
absorbing region. Noting that ¢(B(A)) > ¢(A) > 0 leads us to conclude the

following:
Lemma 4.1 If A is an invariant absorbing region then it is a weak attractor.

In other words, an invariant absorbing region is a special case of a weak
attractor. More generally, if an absorbing region is not invariant it must
contain a weak attractor which can be constructed by

A=) F(A).

neN

along the lines of [11, Lemma 1].

In [9], Maistrenko et al.consider a system of two coupled logistic maps
and demonstrate how a synchronized chaotic attractor can lose stability via
either a hard or soft blowout bifurcation. They give evidence that the change
from hard to soft blowout is caused by a collision between the basin boundary
and the absorbing area A containing the attractor. More recently, Bischi and
Gardini [5] show that this can only be the case if A is an invariant absorbing

area, as an absorbing area for which f(.A) C A is a proper containment will
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have transient points on the boundary. Moreover they indicate that their
arguments in [5] go through if one considers absorbing area of mixed type
(these have boundaries that consist not only of segments of critical curves).
We indicate here that their results can be understood in the general setting
of weak attractors; the precise form of the boundary of a weak attractor

appears to be unimportant.

4.1 Absorbing regions and bifurcations of chaotic at-
tractors

Suppose we have a family of type (P) mappings
friM—M

indexed by r € R such that f changes continuously with r. Suppose that f,.
has a continuous family of invariant absorbing regions A, (recall that these
are weak attractors) and a family of minimal Milnor attractors A, C A, such

that

e A, #o A, forr <y
e A, =y A, for r > ry.

Then we say A, undergoes an expansion bifurcation at r = ry. The following

is a simple consequence of Theorem 3.3.
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Lemma 4.2 Suppose f. has a family of attractors that undergoes an expan-

ston bifurcation at ro. Then no A, has a globally riddled basin.

This has the following consequence for blowout bifurcations [13]: suppose
that an attractor inside an almost open invariant absorbing region under-
goes a blowout such that at all times there is only one attractor within the
absorbing region. Then this blowout must be supercritical [2].

Note that a weak attractor can undergo a bifurcation itself without the
attractor within bifurcating. Such a bifurcation can take the form of a crisis
where the boundary of a weak attractor hits some unstable dynamics that is
not in its basin of attraction. This will typically lead to destruction of the
weak attractor.

If A is an invariant absorbing region that is asymptotically stable, then
A will persist under small perturbations of the map. Correspondingly, if
an absorbing region suddenly ceases to exist, this must be due to its basin
of attraction (which is almost equal to the basin of attraction of Milnor
attractors inside the region) touching the boundary of the absorbing region.

We say a branch of minimal Milnor attractors A, (that may or may not
be contained in absorbing areas) undergoes a bifurcation to (global) riddling

if there are basins of attraction B, = B(A,) such that
e B, is unriddled for r < ry.

e B, is riddled for r > 7.
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Similarly, we say there is a bifurcation to local riddling if A, is contained in
a family of neighbourhood U, and the above holds for B, = By, (A,). In the
literature, there are several ways that global riddling can happen, and the

above definition brings the following cases together:

1. An attractor in an invariant subspace can lose asymptotic stability
at what is called a riddling bifurcation, or a bifurcation to bubbling
[2, 8, 12, 18]. In this case unstable dynamics bifurcates away from A,

transversely, typically a periodic orbit loses transverse stability.

2. The basin of attraction of an attractor can undergo a crisis leading to
‘leakage’ from the basin. This will occur if the attractor is contained
inside a weak attractor A, that loses asymptotic stability; for example
if the invariant absorbing region has a boundary crisis and hits part
of its basin boundary. This case has been investigated recently by
Maistrenko et al. [7, 9, 10] and gives a transition from local riddling to

global riddling.

3. A chaotic attractor in an invariant subspace is created at bifurcation
from a stable periodic orbit. This situation was found in [4] to occur
readily in systems with parameters that do not preserve dynamics on

invariant subspaces (non-normal parameters).

These three cases above are shown schematically in Figure 3. It is quite

possible that there are other mechanisms by which these bifurcations may
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occur and there is still evidently much work needed before we can say that

we understand generic bifurcations to riddling in chaotic systems.

Figure 3 goes here

5 Discussion

In this paper we have tried to understand some of the interplay between
topology and measure in dynamical systems that possess invariant sets that
are riddled, with the aim of understanding the appearance and structure of
basins that have a riddled component. A more precise quantitative classifi-
cation of riddled sets using, for example, exterior dimension should also be
possible but we have not considered this up to now. We have also not con-
sidered the implications for the dynamics on basin boundaries and expect
that bifurcations to riddling will affect this greatly; see for example [16]

By introducing the concept of a weak attractor, we have demonstrated
sufficient conditions to ensure that a basin of attraction is or is not globally
riddled, a fact which has important consequences in particular for synchro-
nization problems [2, 14, 15, 17]. For example, if two or more oscillators
are coupled in a way that preserves a symmetry, riddled basins have been
observed to appear in a very natural way. Indeed, they have not been seen
robustly in systems that do not have invariant submanifolds. The existence

of riddled basins is associated with instability of an attractor to perturbations
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by noise and so is of important interest in applications.
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Figure 1: The black region shows that computed basin of attraction of an
attractor for the map (4) relative to the strip 0 < y < 0.1. The basin in the
area (z,y) € [0.49,0.50] x [0.,0.05] is shown. Observe that the (local) basin
contains open sets and these contain a stable attracting periodic point in
y = 0. As a result of Theorem 3.2 we can conclude that the basin is totally

unriddled. (Reproduced from [4]).
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Figure 2: The black region shows a numerical approximation of a partially
riddled basin of attraction for an attractor of the map (6) that lies in y = 0.
Observe that the basin has a riddled component in ¥y > 0 and unriddled
component in y < 0. In agreement with Theorem 3.2, the attractor lies in

the intersection of the closures of the riddled and unriddled components.
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Figure 3: The three cases of bifurcation to global riddling of basins as dis-
cussed in the text. In all cases there is an attractor contained in the horizontal
invariant subspace. Points outside the grey region are assumed to be in the
basin of some other attractor. In case (1) an attractor in an invariant sub-
space loses asymptotic stability via a transverse bifurcation. In case (2) an
attractor is contained in a weak attractor and the latter loses asymptotic
stability at a crisis. In case (3) an attractor in an invariant subspace un-
dergoes an explosion which causes it to lose asymptotic stability. In case
(2) note that although the weak attractor is destroyed at a crisis with the
basin boundary, many invariant sets within the weak attractor will persist
on the basin boundary. Case (3) requires perturbation within the invariant
subspace but cases (1) and (2) do not. Case (2) has a locally riddled basin

before the bifurcation whereas (1) and (3) do not.
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