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Abstract

Suppose a chaotic attractor A in an invariant subspace loses stability on
varying a parameter. At the point of loss of stability, the most positive Lya-
punov exponent of the natural measure on A crosses zero at what has been
called a ‘blowout’ bifurcation.

We introduce the notion of an essential basin of an attractor with an invari-
ant measure y. This is the set of points such that the set of measures defined
by the sequence of measures %Ez;é 1) fk(z) has an accumulation point in the
support of u. We characterise supercritical and subcritical scenarios according
to whether the Lebesgue measure of the essential basin of A is positive or zero.

We study a drift-diffusion model and a model class of piecewise linear map-
pings of the plane. In the supercritical case, we find examples where a Lya-
punov exponent of the branch of attractors may be positive (‘hyperchaos’) or
negative, depending purely on the dynamics far from the invariant subspace.
For the mappings we find asymptotically linear scaling of Lyapunov exponents,
average distance from the subspace and basin size on varying a parameter. We
conjecture that these are general characteristics of blowout bifurcations.

1 Introduction and background

There has been a lot of recent interest in the global dynamics of systems with at-
tractors in invariant subspaces, with the recognition that the structure of basins of
attraction may be very complicated (‘riddled basins’ [1]). The structure and proper-
ties of the basins (including bifurcations) may be understood by examining Lyapunov
exponents normal to the invariant subspace. Some relevant work is listed in the bib-
liography but we mention [1, 4, 17, 18] specifically.

In this paper we investigate blowout bifurcations of chaotic attractors in invariant
subspaces and in particular ‘on-oft” intermittency. The term ‘blowout’ was coined by
Ott & Sommerer in [18] although the phenomenon was earlier recognised by Pikovsky
[19] and Yamada and Fujisaka [25]. There are two types of blowout: subcritical (or
hard) bifurcation and supercritical (or soft) bifurcation.

Although we believe that much of what we find will be found in dynamical systems
satisfying rather general conditions, our analytical results centre on model piecewise
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linear planar maps and drift-diffusion systems. In particular we investigate the dy-
namical and ergodic properties of nearby invariant sets in a class of such models. We
find that the Lebesgue measure of the basin (subcritical case), the normal Lyapunov
exponents and the average distance from the invariant subspace (supercritical case)
all scale linearly near the blowout.

We give examples where the supercritical blowout leads to blownout attractors
with either positive or negative normal Lyapunov exponents; thus one can get blowout
bifurcations that lead to hyperchaos, and ones that do not. This helps to unify the
observations of [24] and [13] (who find hyperchaos) with those of Lai [11] (who does
not). The presence or absence of hyperchaos is found to depend only on the dynamics
far from the invariant subspace.

In order to characterise the sub- and supercritical bifurcations we introduce the
notion of an essential basin of attraction. Suppose we have a compact invariant set
A for a mapping f of R". The essential basin of A, B.s(A), is the set of points
which visit each neighbourhood of A not only infinitely often but also infinitely often
with a nonvanishing frequency of return. To be more precise, © € Be,s(A) if for each
neighbourhood U D A,

limsupl#{k :f¥(2) €U, 0< k <n}>0.
n—oo T

For the model system we can characterise a blowout as being supercritical if its

essential basin has full measure in some neighbourhood of the attractor A at blowout

and subcritical if its essential basin has zero measure at blowout. In the general case,

this amounts to a conjecture.

The paper is organised as follows: in Section 2 we discuss some generalities of the
dynamics at blowout bifurcation and introduce the essential basin of attraction. We
discuss the behaviour of the Lyapunov exponents on continuous branches of attract-
ors.

In Section 3 we consider a family of maps of the plane leaving the z-axis invariant
where we can completely understand the dynamics and scaling behaviours. In fact,
we may model the dynamics as a biased random walk on a discrete set of lines or
strips. Using properties of the random walk model:

1. We investigate the system at blowout in detail; in particular the properties of
the basin (and essential basin) of attraction of A.

2. In the supercritical case we find that the average distance of a generic point from
the invariant subspace scales linearly with the bifurcation parameter when the
system exhibits on-off intermittency. The ‘blownout’ attractors may be viewed
as belonging to a continuous branch of attractors bifurcating from the invariant
subspace attractor.

3. We find scenarios where the blowout leads to hyperchaos and scenarios where
it does not.

4. We recover results of [10, 17] on the distribution of laminar phases in on-off
intermittency and in the subcritical case (before blowout) we show that the



measure of the basin of attraction also scales linearly with the bifurcation para-
meter.

Finally, in Section 4 we address further problems and generalisations of this ap-
proach.

2 Essential basins and branching of chaotic at-
tractors

Ott and Sommerer [18] first noted that a system near a blowout bifurcation (char-
acterised by a normal Lyapunov exponent passing through zero) may exhibit on-off
intermittency, riddled basins and a variety of related behaviours. They conjectured
the existence of two scenarios:

1. A hysteretic (subcritical) scenario where riddled basins before the blowout give
rise to a ‘hard’ loss of stability (Pikovsky [19]). In other words, after blowout,
almost all points near the invariant subspace eventually move away, never to
return.

2. A non-hysteretic (supercritical) scenario giving a ‘soft’ loss of stability to an
‘on-off intermittent’ attractor [21]. The characteristic feature of this scenario is
that trajectories return close to the invariant subspace and remain nearby for
long periods of time.

In [4] it was shown that before blowout bifurcation both scenarios display ‘locally
riddled basins’: in any neighbourhood of the attractor there is a positive measure
set of points whose trajectories iterate to a uniform distance from the attractor.
These trajectories are either re-injected to the neighbourhood or are lost to the basin
of another attractor. For the model in Section 3 we show that we can distinguish
between sub- and supercritical blowout depending on whether the essential basin of
the attractor in the invariant subspace has positive measure or not at the point of
blowout.

Suppose f : M — M is a locally invertible smooth map on some compact open
region M C R" and ¢, is Lebesgue measure on M. For a compact set B C M define

M(B) ={p : pisan f-invariant measure with supp(u) C B and u(B) = 1}

and equip this with the C* topology. Let w(z) denote the set of accumulation points
of {f™(z)} in M and let ¢, denote the point measure at the point z € M. We let
Q(z) be the set of accumulation points of the sequence of measures

1 n—1

=3 6 pge)-
2 0

Any accumulation points will lie in M(M). We define the essential w-limit set of
by

wess(x) = UuEQ(w)SuPp(H’)'
Note that compactness of M implies that M (M) is also compact and therefore w(z)
and wess(x) are non-empty; trivially w(x) D wess(x). The next result follows directly
from the definition.



Lemma 1 The essential w-limit set of an initial point x can be alternatively charac-
terised as the set of y such that, for all e > 0, the limat

limsupl#{o <i<n o |fi(z)—y|<el >0,
n—oo T
In other words, the w.,, is the set of all limit points that contribute to averages
along the trajectory of z. By the above w(z) D wess(x) but typically they can
differ (for example, see the discussion of Sigmund [23]). We can use this to define a
generalisation of the usual notion of a basin of attraction. Suppose A C M; recall
that the (topological) basin of attraction is defined as

BA)={ze M : w(x) C A}.

An attractor for a mapping f is a compact, invariant set A such that £,,(B(A)) > 0.
By a natural ergodic measure y for an attractor A we mean a measure such that
limy, o0 = 370 &(fH(2)) = [, ¢dp for all continuous functions ¢ and Lebesgue almost
every x in B(A).

Definition 2 We define the essential basin as
Bess(A) ={x € M : wes(z) C A}

Note that
B(A) C Bess(A).

The essential basin of an attractor can be much bigger than the basin. For example,
consider an attracting homoclinic cycle; the basin of attraction of the equilibrium is
just the cycle while the essential basin will be a neighbourhood of the cycle.

2.1 Branching of chaotic attractors from invariant subspaces

We introduce the notion of a branch of attractors, characterised by continuity of the
family of natural invariant measures supported on them. For periodic orbits or fixed
points this corresponds to the usual idea of a branch. Unfortunately these cannot
be expected to exist for non-uniformly hyperbolic attractors, but they can exist for
idealised families, especially such as those arising from skew product or chaotically
forced systems and we suspect that they may exist as continuous families on sets in
parameter space with large measure.

Definition 3 A branch of attractors (Ac, m) is a family of f.-invariant sets A, sup-
porting ergodic natural measures m, such that m, is a continuous map from R to

M(M).

Suppose now that f leaves a smoothly embedded codimension one submanifold
N invariant, such that f|yx has a chaotic attractor A supporting a natural measure
w4 (we restrict to codimension one invariant subspaces for simplicity). As in Ashwin
et al. [4] we define the normal Lyapunov spectrum for the attractor A to be the set
of normal Lyapunov exponents for all ergodic invariant measures supported on A.
We write Aj (i) to be the most positive normal Lyapunov exponent of an ergodic
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invariant measure p. As discussed in [4], if there is non-trivial (chaotic) dynamics on
A then generically there are ergodic invariant measures fiy;, and fimax such that

)\J_(,Ufmin) < )\J_(/J'A) < /\J_(,U'max) (21)

where the inequalities are strict and 4 is the natural measure for f|y (supported on
A).

We consider smooth one-parameter families of maps f. : M — M such that f; is
at a blowout bifurcation:

Definition 4 A branch of attractors (A, m,) for f.|y undergoes a blowout bifurcation
at € = 0 if £p7(B(A¢)) > 0 for € < 0 and ¢p;(B(A,)) =0 for € > 0.

From [4, Theorems 2.19, 2.20] and the definition of a blowout bifurcation it follows
that the normal Lyapunov exponent A, (mg) is zero at € = 0 and is continuous in e.
Typically a blowout bifurcation occurs where A; (m¢) < 0 for e < 0 and A  (m,) >0
for e > 0.

If the only branch of attractors emanating from a blowout bifurcation is contained
in the invariant subspace, we say it is subcritical. Otherwise we say the blowout is
supercritical. The branch of attractors for € > 0 in the supercritical case exhibits
on-off intermittency [18, 21] and they are stuck on [3] to N.

We discuss basic properties of branches near blowout bifurcations. Suppose now
that f. is a smooth one-parameter family of maps that is a skew product over a fixed
map fo|y on the invariant subspace, i.e. we assume we can write the map in the form

Tpy1 = g(xn)

Yn+1 = he(xnayn)

with z,, € N and y,, € R where g has an attractor Ay in the invariant subspace N
(note that h(x,0) = 0). The skew product structure means that one of the Lyapunov
exponents always corresponds to the rate of growth of tangent vectors in the normal
direction. In this case the normal Lyapunov exponent measures the rate of growth of
the normal derivative D f+ = %—’;j. The normal Lyapunov spectrum of A is continuous

in € in the case of codimension one invariant subspaces [4].

Theorem 5 Suppose (Ao, mo) undergoes a blowout bifurcation at e = 0. Any branch
(A, me) of attractors with mg = mgy must also have a normal Lyapunov exponent that
limits to zero at € = 0.

PROOF  The Lyapunov exponent of A, in the normal direction is given by the
expression

[ 108" (ID (@) dine

(as a result of the ergodicity of f. with respect to m.). When evaluated at € = 0 this
gives zero since Ay = Ay. By continuity of log* (| Df(x)|) in € and the continuity of
din. in the C* topology with € we see that the normal Lyapunov exponent of A, must
limit to zero as € tends to zero. QED



2.2 Unfolding the blowout; criticality

Suppose that f; has an invariant set Ay at the blowout bifurcation i.e. A; (mg) = 0,
and suppose that f. is a parametrised family of maps with an associated branch
of attractors (A, m.). We can generically assume that f. unfolds the blowout, i.e.
A1(me) <0 for e < 0and Ay (me) > 0 for € > 0.

We conjecture there are links between the essential basin of attraction at the point
of blowout bifurcation and the criticality of the blowout.

Subcritical case. If B (A) has zero £j-measure we conjecture that generically
the unfolding gives a subcritical scenario. In this case there can be no attracting
invariant sets intersecting a neighbourhood Uy of A and therefore no branches of
nearby attractors for € > 0. The fact that the essential basin of A has no measure
in U4 does not mean that almost all points leave U4 never to return; however, we
believe that this is typically the case.

Supercritical case If B.s;(A) has positive £);,-measure in some neighbourhood Uy
of A we conjecture that the blowout is generically supercritical, i.e. we conjecture
there is typically a continuous branch of attractors (A.,7m,.) bifurcating from the
invariant subspace for € > 0.

2.3 Drift-diffusion model

We now verify that the conjecture holds when M has dimension two, the blowout is
supercritical and can be modelled by a one-dimensional drift-diffusion model [7, 10,
16, 17, 20]. Assume that the dynamics take place on a unit square [0, 1] x [0, 1] with
the invariant subspace being the unit interval [0, 1] on the z-axis and that trajectories
going into y > 1 are reinjected back at y = 1. We make a change of coordinates and
let z = —logy; in these coordinates the ‘reinjection’ takes place at z = 0 and we
assume that the system is near blowout (so that the drift is close to zero). The
drift-diffusion model has two parameters A and D and

1
A= {(6z) and D = 5(((52 —(62))%)
where (-) indicates expected value and 0z = z,,1 — 2z,. A probability distribution
P(z,t) evolves according to the equation [17]
oP oP 0*P
— = A—+D—.
ot 0z * 02>
As in [17], A is the Lyapunov exponent while D can be interpreted as the scaling of
the standard deviation of finite-time Lyapunov exponents.
The reinjection at z = 0 is modelled by a zero probability flux at z = 0; this
together with the normalisation condition gives the boundary conditions

P
()\P + Dd—>
dz

=0, /OOP(z,t)dz= 1.
0

2=0



The drift-diffusion equation has a steady state solution satisfying these boundary
conditions given by P(z) = %e~ D% which is normalisable in z € (0, 00) precisely if
A > 0; all initial probability distributions will evolve towards this one. In terms of

the variable y we get a density

N A

P(y) = ByD

dz

dy

_A -1+3

D

Translating this back to the original problem gives a continuous branch of attractors
with these normal invariant probability densities for A > 0.

In the limit of A = 0 (at the point of blowout bifurcation) this model gives a non-
normalisable invariant measure with density proportional to y~! and corresponds to
having an essential basin of attraction for the invariant subspace with full Lebesgue
measure. In contrast, the measure of the (topological) basin of the attractor is zero,
because almost all trajectories display large deviations away from the invariant sub-
space after arbitrarily long times. Moreover, the scalings of average distance of the
invariant measures for A > 0 can be computed to scale linearly with the Lyapunov
exponent which may be taken as a generic unfolding parameter.

3 A model piecewise linear map of the plane

We consider in some detail a modification of a family of mappings proposed by [7,
10, 16, 17]. This is a three parameter family of mappings of [0, 1] x R to itself defined
by

f(z,y) = (9(2), h(z,y)) (3.2)
where
)z for0<z<a
g(x) = == fora<r<1
and
vy ify<land 0 <z <«
h(z,y) =< v 'y ify<landa<z<1

1+801—y) ify>1.

We assume a symmetry y — —y to define the map on the lower half plane. The
parameters are a € (0,1), v > 0 and 3 € R.
We note that
A=10,1] x {0}

is an invariant subspace for the map (3.2) whose basin of attraction B(A) may or
may not have positive measure.

Without loss of generality we can assume that v > 1 (if ¥ = 1 the dynamics near
the z-axis are trivial). This mapping can be used to investigate both supercritical
and subcritical blowout bifurcations of A. When we vary « through % it exhibits a
supercritical blowout for small 8 > 0 and a subcritical blowout for small 5 < 0.



Properties of the base transformation, g. The Markov map g can be conjug-
ated on a set of full Lebesgue measure to a semi-shift on two symbols with state
space {0, 1}N defined in the usual way by mapping z to the sequence {w;}, .y where
w; = 0 if f'(x) lies in the interval [0, @) and w; = 1 if f%(z) lies in the interval (c, 1].

For every p € [0, 1] there is a closed invariant set C, C [0, 1] supporting a measure
m,, corresponding to symbol sequences where the 0 appears with average frequency
p. The normal Lyapunov exponent of the measure m, can be easily computed to give

AL(mp) = (2p —1)logly|

and so for any a € (0,1) the map defined by this choice of a has uncountably
many invariant measures {m,} with both positive and negative normal Lyapunov
exponents.

For a given 0 < a < 1 the measure m, is equivalent to Lebesgue measure on
[0, 1], and so m, is a natural ergodic invariant measure for g; the normal Lyapunov
exponent is determined as above. If we define ¢ by

(1 + e)
o =
2
then we can vary elog~y, the normal Lyapunov exponent.
There is a countable infinity of periodic measures and other aperiodic invariant

measures associated with (for example) adding machines. In short, the ergodic struc-
ture of the mapping g is complicated but well understood.

3.1 Supercritical blowout; G > 0

Invariant lines. Assume that 8 > 0. For each N = 1,2,..., if there is a solution
yn of
yv =1+ 61 —+yn),

such that 0 < v*yy < 1for k=1,---,N —1 and vVyy > 1, then there is a set of
lines
Ly ={(z,7" ™yy) : z€[0,1], n=0,1,...}

that is invariant under f. Note that the inequality v~ ~'yy < 1 implies that we can
find such a yy if § satisfies

,.}/N—l -1

LT
In particular we can have a number of simultaneously existing invariant line families
corresponding to differing values of N.
Note that the existence of such a family of lines is independent of the parameter
« (although the dynamics on and near them is not). On such an invariant set of lines
we can completely understand the dynamics by observing that the y dynamics is a
random walk on non-negative integers. If we assume that

1
0<pB<p =—
Y

then there only exists one set of invariant lines, namely L;.
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The random walk on L;. The map f restricted to L; is conjugate to a map

T:[0,1] x Ly — [0,1] x L4

defined by
T(z,n) = (9(z), m(z,n))
where
n—1 ifz<aandn>1
m(z,n) =4 n+1 ifz>aandn>1
1 if n=0.

The second component of 7" is a Markov process on non-negative integers with the
non-zero transition probabilities given by

Pii1 = 5¢ fori>1
piio1 = 2¢ fori>1
po,1 = 1.

Steady state distributions and ergodic measures. The steady state probab-
ility distribution is found by solving the recurrence relation
1—e€ 1+e€
P = sz'—l + ?H—H
with initial condition P, = 1—J:P1 (note that Py = %Pl). The solution for this
recurrence relation (n > 1) is P, = AA™ + B where

_1—6

A= )
1+e¢

If and only if € > 0, we can normalise the invariant measure >, P, = 1 giving

B =0 and

_ 2¢
T 1—¢2

A(e)

and so
2€ €

]_—62An (’1’1,21), PO:]_—{—G'
There are dense orbits in L; for any e.

For # > 0 we obtain a supercritical scenario where an attractor blows out at
o= % to a family of on-off intermittent attractors. For small 0 < 8 < 3* we get a
blowout to an attractor supported on L; with one positive Lyapunov exponent; for
larger 4 > 0 we can get blowout to an attractor with two positive Lyapunov exponents
(hyperchaos) supported on a two dimensional set. We deal with these cases separately.
Note that in both cases Theorem 5 implies that the normal Lyapunov exponent must
go to zero at the point of bifurcation.

P, =



<

Figure 1: A schematic representation of a supercritical blowout bifurcation, plotting 7
(the average value of the normal coordinate) against the parameter e. Note the linear
scaling with € > 0. AT and A~ are symmetrically related ‘blown out’ attractors.

3.2 Blowout to attractor with one positive Lyapunov expo-
nent

We assume that 0 < § < (3*; although there is no Lyapunov exponent defined in
the vertical direction for the dynamics on L; (this is a one-dimensional set), we can
compute one for the dynamics embedded in the plane. Note that the dynamics in the
y-direction consists of simple scalings dependent on the y-itinerary of a given point.
In fact we can write the y-Lyapunov exponent for L; as

AL(Ly) = log(87) Py = log(8y) —

1+e

This can be seen if we examine the returns of an orbit to 0 in L; the total expansion
or contraction will be the product v3; weighting this by the frequency of visits to
0 gives the result. It is clear that A (L;) is negative for 8 < %, and to first order
it scales linearly with e. An example of an attracting L; is shown in Figure 2(a)
after transients have died away. For larger positive values of [ it is possible to
get more than one set of lines simultaneously stable. In this case we note that the
blowout bifurcation creates multiple branches of attractors. Whether this is possible
for typical systems remains to be seen.

Schematically, we represent the blowout bifurcation to riddled basins on varying
e by Figure 1. This is analogous to a pitchfork bifurcation of equilibria, and the
scaling of the Lyapunov exponents is linear with e. There is a crucial difference
that the average distance from the invariant subspace scales linearly rather than as
a square-root (see Section 3.4).

3.3 Blowout to attractor with two positive Lyapunov expo-
nents (hyperchaos)

For motivation, we first consider the map with only expanding components given by

Ynt+1 = h(yn)
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(and trivial action on the z variable) where

sov_ )Y ify <1,
h(y)_{ 1+B(1—y) ify>1.
We define the strips
L=[0,1]x(n""'%™), n=-10123,... (3.3)

The height of the strip I, is h, = 7y (v — 1); clearly h, — 0 as n — cc.

If we set 8 = 77—*;1 and 1 < v < % (so that 1 < (3) then the action of the map

is such that 5 B 5
h(ll) - Io, h(Io) - I_l, h(I_l) - Il U IO

if we restrict to the full measure subset of I,, that never iterates to the discontinuity.
There is an invariant set with full measure in the union of the strips I,, n = —1,0, 1.
Note that the map h is everywhere expanding and we show that it can also be
conjugated to a random walk model described in terms of the measure d, on the
strip I,,.

By considering the Frobenius-Perron equation for this map, it can be shown that
the natural probability density is constant on each of the three strips I,,, n = —1,0, 1.
If the natural measure on each strip is given by d,, then it can be shown that

5 y+1 ~ v+1 ~ 1
dfl_ 0= 5. o 1= .
2y +3 2v+3

29+ 3

The Lyapunov exponent for this attractor can be evaluated and is given by

A = (dy+dp)logy+d_log s

v+ 2 v+1
_ 1 log 3.
(27+3> °g7+<27+3> 08 3

Clearly \ > 0 provided that 8 > 1 as expected.

We now reintroduce the contracting part of the normal dynamics and consider
again the model where we have both expansion and contraction by a factor of v or
~v~! respectively. In this case, the iterates can escape from the strip I; and iterate
towards the invariant subspace. Note however that as long as y, < 1, the iterates
will move up and down on a particular set of invariant lines, since y,, is multiplied by
either v or 7~! at each iteration. Only when y, exceeds 1 for some n will the set of
lines be changed on which the iterates move.

The map f maps strips into strips and so the density on each strip will be constant.
The random walk model for the invariant lines can therefore be applied in this example

in terms of the total measure d, on the strip I, giving

1-— 1
dn:(T€> dn1+< _2'_€>d”+1, n=23,.... (3-4)

To derive the initial condition we consider the measure on the three strips I;, Iy and
I_4; this leads to the equations

hy 1—e¢ 1+e€
_ 3.5
h0+h1d1+( 2 )d°+( 2 >d2 (3:5)

11
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h 1
dy = 0 d1+< +6) d, (3.6)

ho + hy 2
1
d, = ( '2”) do. (3.7)
Simplifying equation (3.5) using (3.6) and (3.7) gives the initial condition

where A = ﬁ as before. The solution of the recurrence relation (3.4) together with
the initial condition (3.8) is then

d,=cA", n=12...
and from equations (3.6) and (3.7) we obtain
L =90+
’ 2+9(1—¢)
1-e)(r+1)
c :
22+ v(1—¢))

The constant ¢ can be found from the normalisation condition },° _; d,, = 1 which
gives

d,1 =

2¢(2+ (1 —¢))
(1-e)24+e+v(1+¢)

The normal Lyapunov exponent for this attractor is therefore given by

> 1 1-—
A= Y d, [( ;6) logy + (Tﬁ) log(v_l)] +d_ilogp3
n=0

€

= 2+6+7(1+6)[(7+2)log7+(7+1)10gﬂ]

1
= ¢ (log’y + (%) log 6) + O(€%).

The coefficient of € in A, is clearly positive whenever > 1. Thus, for small ¢ and
1 < v < 1.618, the blown out attractor has two positive Lyapunov exponents and so
is hyperchaotic. An example of such a hyperchaotic attractor is shown in Fig. 2(b).
We note that, as in the previous example, the normal Lyapunov exponent goes to
zero as the blowout bifurcation is approached.

The natural density on the strip I, at y ~ Y, =~ is given by

c = 2e + O(€%).

d, Y ket
pn = — = n
h, ~v—1
where log A 5
k=82 €+ O(e%).
logy logvy

Pikovsky and Grassberger [20] study a model synchronisation problem and obtain
a normal density function proportional to y* ! with k = 0 at the blowout bifurca-
tion. This is also consistent with the normal density obtained from the drift-diffusion
model in section 2.3. The normal density in this example is a piecewise constant
approximation to this function.
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(b)

Figure 2: Attractors for supercritical blowouts at v = 1.25, ¢ = 0.04 and (a) § = 0.4;
an attractor is supported on a countable set of lines and has one positive and one
negative Lyapunov exponent. (b) # = 1.44; a hyperchaotic attractor is supported
on a rectangle [0, 1] x [0,7]. There is evidence of the predicted ‘steps’ in the natural

invariant density.
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3.4 Scaling near supercritical blowout

Basin size before blowout We demonstrate that there is a neighbourhood of A
containing a full measure set of initial points that converge to A before the blowout.

Theorem 6 For 0 < f<1/(y—1) and 0 < a < 5 in (8.2) the basin of A has full
measure in [0, 1] x [0,7].

ProoF Note that § < 1/(y—1) implies that all images of y € [0, y] under the map
are within [0,7]. If @ < 3 a full measure set (with respect to Lebesgue measure) of
x in [0, 1] are such that f™(x,y) — A for every y € [0, 1]. This is because for almost
every z € [0, 1] the frequency of times that f™(z,y) moves upwards in the y direction
tends to a. The frequency of times that the map in the y direction can take the
form 1 — (1 — y) is at most « (since we must have at least one upward step for each
downward step of the form 1 — (1 — y)) and hence asymptotically there is a net
drift towards y = 0 at an exponential rate of at least v¢ in n i.e. the y coordinate
of f*(z,y) tends to 0 faster than "¢ asymptotically in n for almost every z € [0, 1].

QED

Theorem 7 For 0 < § <1/(y—1) and o = 5 the essential basin of attraction of A
has full measure in [0, 1] X [0, y] whereas the basin of attraction of A has zero measure.
Proor For a = %, close to the invariant subspace there is an unbiased random
walk in the logarithm of the y variable. Since this is almost surely recurrent, almost
all initial y € [0,+] do not have w-limit sets contained in A and therefore the basin
of A has zero measure.

The only invariant measure supported in [0, 1] x (0, ] that projects to Lebesgue
measure on the x direction is given by a Markov model as above, and this is not
normalisable and therefore not in M([0, 1] x[0,]). As noted in Section 2 the essential
w-limit set of an initial point must be contained in M([0, 1] x [0,]). Thus for a set
of full Lebesgue measure in [0, 1] X [0, 7] the natural invariant measure supported on
A is the essential w-limit set of these points and therefore the essential basin of A
has full measure. QED

Mean distance from invariant subspace after blowout. We calculate the
mean distance from the invariant subspace y = 0 for a typical orbit (x,y) under
iteration of f for the dynamics on an attracting L;. Note that the lines are located
at y = Ky~" with K constant. The mean distance 7 for this attractor is given by

g = '?zo:O K,Y—npn n
2 00 A
= Ky + Kfa o5 ()

=K (2 +1) +0(e?)

y—

as € — 0. Thus, to leading order, the average distance of the orbit from the invariant
subspace is linear in e. A similar result is obtained for the case of hyperchaotic
attractors.
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Distribution of laminar phases for on-off intermittency. To further validate
the model, we recover the previous results of [10] on the distribution of laminar phases
for on-off intermittency and additionally their scaling with €. A laminar phase is a
portion of an orbit that stays close to the invariant subspace and then moves away in
a “burst ” to a certain threshold level 7. To determine the statistics governing this
behaviour in our system we consider an asymmetric random walk {X (k)}>o starting
at a state n (i.e. X(0) = n), which hits the threshold state 7 = k < n for the first
time after m steps.

In other words m is the least positive integer such that X (m) = k. We suppose
that the probability of moving to a lower state is given by % and the probability

of moving to a higher state is @ Let
Sm(k) = { probability of first passage from 0 to 2k at time 2m}
The probability is given by [8, Hitting time theorem (p 79)],

(k) = (

m+k 2 2

k( 2m ><1+e>m+’“<1—e>m"“

(note that S,,(k) = 0 for £ < m) which may be simplified to

! o (1T €\F K (2m)!
Sm(k) = o (1 =€) (1 —e> m (m—k)(m+ k)

Using Stirlings formula n! — n™e™",/(27n) as n — oo we see that

k 2 3 /14+¢€ k
- k) ~ — mlog (1—e*) —( ) .
Sm (k) \/7_re ™o\

For our model we assume a threshold level T = % implying that the distribution
of laminar phases with threshold 7" is asymptotically

log T
Sm ~ ﬂemlog(l—é)m_% (1 + 6) log .
logyy/T 1—¢

From this expression we see that the distribution of laminar phases of length m
scales as m= for small to moderate values of m and e™1°8 (=€) for large values of m.
For moderate values of threshold level T' the distribution of laminar phases reaching
a threshold level of T scales linearly with log7 and at high values of T it scales
algebraically with log 7'

3.5 Subcritical scenario

In the subcritical case, 8 < 0, one obtains a bifurcation from a riddled basin attractor
to dynamics where almost all points near the invariant subspace are in the basin of
another attractor, namely that at y = 1" for —1 < 8 < 0 or y = oo for 3 < —1.
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Random walk in the subcritical scenario By considering the map of Section 3
with f < 0 we model the subcritical case and get a random walk model (as derived
by [17]) which has the property that points that iterate to y > 1 are lost to another
attractor. We split the phase space into strips I,, as in (3.3) and note that f is
conjugate to a mapping on the I, (with I} identified for & < 0) defined by

T(z,n) = (g(x), m(z,n))

where
n—1 ifz<aandn>1
m(z,n)=q¢ n+1 ifz>candn>1
0 if n=0.

This gives rise to a transient Markov chain on the non-negative integers where initial
states either get trapped in {I; : k < 0} or go to +oo, i.e. the invariant subspace.

Measure of the riddled basin before blowout. We investigate the scaling of
the measure of the basin of attraction as a function of € < 0 where A has a basin of
attraction with positive measure. We estimate the measure as a function of the para-
meter €. The probability of points in [,, converging to A is given by the distribution
of the asymptotic behaviour of random walks starting at state n.

Let g, be the probability that a walk starting at state n is attracted to the state
n = 0; clearly ¢o = 1, ¢, € [0,1] and we assume that ¢,(1 — ¢,) — 0 as n — oo. We

obtain the recurrence
1+e 1—c¢
dn = D) dn—1 + D) dn+1

which we solve to give
Qn:A_n (€<0)7 qn:1 (620)

where A = %Lf; as before. Thus before the blowout, the probability that a walk starts
at state n and is attracted to the invariant subspace is 1 — A™". Thus the measure
M (€) of points that are attracted to the invariant subspace is given by

n

M) = i (" =y (L= A
A—1
v—1

A

which to first order in € < 0 is

M(e) = — e+ O(é2).

v—1
We can use the above result with € > 0 to give the following:

Theorem 8 For f < 0 (subcritical case) and € > 0 the basin and essential basin of
A both have zero measure.
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4 Discussion

At the point of blowout bifurcation we see that, at least for the examples discussed,
we can distinguish between sub- and supercritical blowout bifurcations by examining
the essential basin of attraction at the point of blowout.

e In the supercritical case the set A has essential basin with full measure in a
neighbourhood of A.

e In the subcritical case the set A has a zero measure essential basin.

In both cases, the basin of A has zero measure and this cannot distinguish critic-
ality. We conjecture that this result holds for generic systems undergoing blowout
bifurcation.

Our work was partially motivated by Conjecture 1 in [4]. We show in Theorem 6
that in the supercritical case before blowout, there is a full measure basin (but not
necessarily open as conjectured in [4, Conjecture 1(a)]). Moreover, the on-off inter-
mittent attractors that appear in the supercritical case do actually branch from the
invariant subspace in a measure-theoretic sense; this confirms [4, Conjecture 1(b)] for
a specific family of mappings.

We have investigated scaling of Lyapunov exponents and average distance from
the invariant subspace and find in all the cases we have investigated that they scale
linearly. We have also found such linear scaling at blowout in a smooth map studied
in [3]. In contrast, numerical results in [6] on an O(2)-equivariant map found evidence
of square-root scaling of the distance from the invariant subspace; reconciling these
results is a matter of current research.

This work suggests that there may be many analogies between blowout bifurcation
and steady-state bifurcation. In particular, we have made some progress on classifying
blowout bifurcations by the codimension of their unfolding (in preparation). This
paper has identified some aspects where the analogy to steady bifurcation is broken;
for example the possibility of branching to attractors with or without hyperchaos,
and the linear scaling of distances from the invariant subspace.
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