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Abstract 
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1. Introduction 

 

There has been much recent interest in estimating the integrated (or local) volatility of 

short-horizon financial asset returns. Although estimators based on the squares and 

cross-products of daily returns are, in the absence of a drift, unbiased, they are very 

inaccurate because the noise that they contain dominates any signal about unobserved 

volatility. More recently, the development of the realized volatility literature has 

provided a rigorous framework for estimating integrated volatility on the basis of 

intraday returns. Under very general assumptions, the sum of squared intraday returns 

converges to the unobserved integrated volatility as the intraday interval goes to zero 

(see, for example, Andersen et al, 2001; Barndorff-Nielson and Shephard, 2002). In 

practice, however, the implementation of the realized volatility approach is limited by 

microstructure effects that induce an upward bias in estimated volatility that increases 

as the measurement interval becomes smaller (see, for example, Bandi and Russell, 

2003).  

 

More recently, the intraday range (defined as the difference between intraday high and 

low prices) has experienced renewed interest as an estimator of integrated volatility. 

Building on the earlier results of Parkinson (1980), Garman and Class (1980) and 

others, Alizadeh et al., (2002) show that, in addition to being significantly more 

efficient than the squared daily return, the daily range is much less affected by market 

microstructure noise than realized volatility, and that the log range is approximately 

normally distributed, thus greatly facilitating maximum likelihood estimation of 

stochastic volatility models. A significant practical advantage of the intraday range is 

that in contrast with intraday data (which is required for computation of realized 

volatility), the range is readily available for almost all financial assets over extended 

periods of time.1 However, a significant shortcoming of the range-based estimator is 

that no multivariate analogue of the intraday range exists, and so while it is 

straightforward to estimate the variances of individual assets, it is not generally 

possible to estimate their covariance.2 This is problematic because the application of 

                                                 
1 For example, Datastream records the intraday range for most securities, including 
equities, currencies and commodities, going back to about 1985. 
2 Christensen and Podolskij (2005) and Martens and van Dijk (2007) combine the 
range-based and realized volatility estimators to yield the ‘realized range’, which is 
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finance theory tends to rely as much on the covariance between assets as it does on 

their individual variances. For example, mean-variance optimisation, asset pricing, 

hedging, portfolio value-at-risk and the pricing of options that depend on more than 

one asset all depend on the variance-covariance matrix of returns. As a solution to this 

problem, Brandt and Diebold (2006) note that the covariance of two assets can be 

imputed from the variance of a portfolio of the two assets, and that, in certain 

circumstances, the daily range for the latter is readily available. In currency markets, 

for example, triangular arbitrage implies that cross-rates are equal to the difference 

between individual exchange rates, and so these can be used to impute their 

covariance. However, such triangular arbitrage relationships are unique to the foreign 

exchange market. In the bond market, one could argue (as Brandt and Diebold (2006) 

do) that an analogous arbitrage relationship exists in the form of the expectations 

hypothesis, and that this could be used to impute the covariance between bonds of 

different maturities. However, there is now overwhelming evidence that the 

expectations hypothesis does not hold, and so this is unlikely to provide a viable 

solution.3 In the equity market, no such triangular arbitrage relationship exists, even in 

theory. Thus, in spite of its obvious merits, the range-based estimator is thus far 

limited to estimation of individual variances. 

 

A number of studies have considered the use of the daily range in forecasting the 

variance of returns. Brandt and Jones (2006) formulate a model that is analogous to 

Nelson’s (1991) EGARCH model, but uses the square root of the intraday range in 

place of the absolute return. Similarly, Chou (2005) develops a conditional 

autoregressive range (CARR) estimator that is analogous to the conditional duration 

model of Engle and Russell (1998) (see also and Chou and Wang, 2005). Both studies 

find that the range-based GARCH estimators offer a significant improvement over 

their return-based counterparts. However, as with estimation of integrated volatility, 

the use of the range in the estimation of conditional volatility has necessarily been 

limited to the univariate case. 

                                                                                                                                            
the sum of the range-based estimator of volatility over intraday intervals. The realized 
range can be used to estimate covariances. See also Brunetti and Lildholt (2002). 
However, all of these approaches require intraday data. Moreover, since they measure 
the range over intraday intervals, they can only be applied to highly traded securities. 
3  For evidence on the rejection of the expectations hypothesis, see, for example, 
Bekaert, Hodrick and Marshall (1997). 
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This paper develops a multivariate conditional variance-covariance estimator that 

combines the range-based and return-based approaches. In particular, the new 

estimator uses a range-based exponentially weighted moving average (EWMA) 

specification (that is similar in form to the CARR estimator of Chou, 2005) to 

estimate the variances of individual assets, and a more standard return-based EWMA 

specification to estimate the time-varying conditional correlation between assets. The 

conditional covariance between individual assets is then estimated as the product of 

the (range-based) conditional standard deviations of the individual assets and the 

(return-based) conditional correlation coefficient between them. Like the standard 

return-based EWMA model, the range-based EWMA model generates estimates of the 

conditional variance-covariance matrix that are positive semi-definite under very 

general assumptions about the data generating process for returns, and is easily 

implemented in a spreadsheet package such as Excel. 

 

To investigate the performance of the multivariate range-based EWMA estimator, we 

generate estimates of the conditional variance-covariance matrix of returns for the 

USD/GBP, USD/EUR and USD/JPY exchange rates over the period 01/01/2003 to 

31/12/2006. As a benchmark, we use the realized variance-covariance matrix based on 

30-minute returns. We compare the performance of the range-based EWMA 

estimators with the corresponding return-based EWMA estimator using a number of 

statistical forecast criteria, and by evaluating their use in estimating the minimum 

variance hedge ratio for three-cross hedged currency portfolios. Using the RiskMetrics 

decay factor of 0.94, the range-based estimator offers a significant improvement over 

the return-based estimator in terms of forecast accuracy, bias and efficiency, and 

yields significantly superior hedging performance. A further feature of the range-

based estimator, is that its statistical and economic performance is much less sensitive 

to the choice of decay factor, enhancing its reliability in practice where the ‘true’ 

decay factor for a given sample of data is unknown.4    

 

                                                 
4 The decay factor of the EWMA model can of course be estimated, for example by 
specifying a conditional distribution and using maximum likelihood. However, the 
efficacy of such an approach is predicated on the assumption that the decay factor is 
stable over time, which is unlikely to be the case in practice.  
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The outline of the remainder of the paper is as follows. The following section 

provides the analytical framework for volatility, and describes the return-based and 

range-based EWMA conditional volatility models. Section 3 describes the data used 

for the analysis of the EWMA models and the criteria against which the models are 

evaluated. Section 4 presents the empirical results and undertakes a sensitivity 

analysis. Section 5 concludes and offers some suggestions for future research. 

 

2. Theoretical background  

 

Consider an Nx1 vector of continuous logarithmic prices, )(tp , that follow a 

multivariate diffusion given by 

 

)()()()( tdWtdtttdp Ω+= µ       (1) 

 

where )(tµ  is the N-dimensional stationary instantaneous drift, [ ]N
jiij tt

1,
)()(

=
=Ω σ  is 

the N-dimensional diffusion matrix, and )(tW  is a standard N-dimensional Brownian 

motion processes with 0))(),(cov())(),(cov( == ttdWttdW jkijki σσ  for 

Nkji ,,1,, K= . Suppose that prices are observed at discrete intervals, Tt ,,1K= . 

The stochastic process governing the discretely observed Nx1 logarithmic return 

vector, )1()( −−= tptprt , is given by 

 

tttt zr Ω+= µ          (2) 

 

where tz  is an Nx1 vector of standard normally distributed, serially uncorrelated 

random variables and [ ]N
jitijt 1,, =

=Ω σ  is the NxN integrated variance-covariance matrix 

given by 

 

∫
−

Ω=Ω
t

t
t dss

1

)(          (3) 

 



 6

(See, for example, Andersen, Bollerslev and Diebold, 2003). The integrated variance-

covariance matrix given by (3) is unobservable. However, an estimate of tΩ  is given 

by 

 

∑
=

+−+−=Ω
q

s
sqtsqt

qRV
t rr

/1

1

'
11

)(          (4) 

 

Under very general conditions, )(qRV
tΩ  converges uniformly in probability to tΩ  as 

0→q  (see Andersen, Bollerslev and Diebold, 2003). With the growing availability of 

intra-day data on security prices, increasingly precise estimates of integrated volatility 

can be obtained using finer measures of )(qRV
tΩ . However, the accuracy of such an 

approach is limited by the fact that market microstructure effects distort the 

measurement of returns at high frequencies in such a way that measured returns no 

longer satisfy the regularity conditions that are required for the consistency properties 

of realised volatility. In particular, microstructure effects induce an upward bias in 

estimated volatility that increases as the measurement interval becomes smaller (see, 

for example, Ait-Sahalia, Mykland and Zhang, 2005; Zhang, Mykland and Ait-

Sahalia; 2003; Bandi and Russell, 2003). Consequently, some researchers have 

proposed estimation of integrated volatility by sampling returns at non-negligible time 

intervals. Generally, the empirical evidence suggests that intervals between five and 

30 minutes are effective for the estimation of integrated volatility (Andersen, 

Bollerslev, Diebold, and Labys, 2001, 2003; Barndorff-Nielsen and Shephard, 2002, 

2004b). 

 

An alternative estimator of the diagonal elements of the integrated variance-

covariance matrix is based on the intraday range, which is defined as the difference 

between the log intraday high price and the log intraday low price. Specifically, the 

range-based estimator of the integrated variance of  tir ,  is given by 

 

2
,,, )(

2ln4
1 L

ti
H
ti

Range
tii pp −=σ ,   Ni ,,1K=   (5) 
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where H
tip ,  and L

tip ,  are the intraday maximum and minimum of tip , , respectively. 

Parkinson (1980) shows that if )(tpi  follows the Brownian Motion process given by 

(1), the MSE of Range
tii,σ  (with respect to the true integrated variance, tii,σ ) is about five 

times smaller than the MSE of )1(
,

RV
tiiσ . In practice, since prices are only observed at 

discrete intervals, the sample range under-estimates the true range of the continuous 

price. However, in liquid markets where there may be 1000 or more trades each day, 

this bias becomes negligible. Alizadeh, Brandt and Diebold (2002) show that the 

range-based estimator given by (5) is relatively robust to market microstructure noise, 

and, unlike the squared return, is approximately log normally distributed, which 

greatly improves the estimation efficiency of stochastic volatility models using 

maximum likelihood. A significant shortcoming of the range-based estimator, 

however, is that there is no multivariate analogue of the intraday range, and so it is not 

possible to directly estimate the off-diagonal elements of the variance-covariance 

matrix. Brandt and Diebold (2006) note that if we have the daily range of a portfolio 

of the two assets, we can impute the range-based estimate of the covariance between 

from the range-based estimate of the variance of the portfolio. However, while in the 

foreign exchange market, such two-asset portfolios are observed in the form of cross-

exchange rates that are determined through triangular arbitrage, in other markets such 

triangular arbitrage relationships either do not exist in theory (such as in the stock 

market), or exist in theory but not in practice (such as the expectations hypothesis in 

the bond market). 

 

Applications in finance typically require an estimate of the conditional variance-

covariance matrix of returns, which is given by 

 

[ ]1|ˆ
−ΛΩ=Ω ttt E        (6) 

 

where [ ].E  is the mathematical expectation operator and tΛ  is the time-t information 

set. A number of approaches to estimating the conditional variance-covariance matrix 

have been proposed, including rolling window estimation of the sample variance-

covariance matrix, exponentially weighted moving average (EWMA) models, 

multivariate GARCH models, multivariate stochastic volatility models and dynamic 
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models of the realized variance-covariance matrix. 5  A number of authors have 

employed the range-based estimator for forecasting the diagonal elements of the 

variance-covariance matrix. For example, Brandt and Jones (2006) formulate a model 

that is analogous to the EGARCH model of Nelson’s (1991), but uses the square root 

of the intraday range in place of the absolute return. Similarly, Chou (2005) develops 

a conditional autoregressive range (CARR) estimator that is analogous to the 

conditional duration model of Engle and Russell (1998), and is essentially a GARCH 

model specified in terms of the range (see also and Chou and Wang, 2005). Both 

studies find that the range-based GARCH estimators offer an improvement over their 

return-based counterparts. However, since no multivariate counterpart of the intraday 

range exists, the use of the range in forecasting volatility is necessarily limited to the 

univariate case. 

 

Here we propose a simple estimator of the variance-covariance matrix of returns that 

combines the range-based and return-based approaches, and which offers significant 

advantages over the purely return-based approach. The estimator is based on the 

multivariate EWMA model of the conditional variance-covariance matrix, which is 

given by 

 
)1(

1,0
)1(

1,0
)1(

, )1(ˆˆ RV
tij

RV
tij

RV
tij −− −+= σλσλσ ,  Nji ,,1, K=   (7) 

 

where 0λ  is the single decay factor. The mean return is assumed to be zero, which is a 

common assumption practice when dealing with short horizon returns (see, for 

example, Figlewski, 1997; Hull and White, 1998). The multivariate EWMA model is 

a special case of the diagonal vech multivariate GARCH model of Engle and Kroner 

(1995), and corresponds to an integrated diagonal vech model with no constant vector. 

The multivariate EWMA model, popularised by its use in the RiskMetrics VaR 

software of JP Morgan (see JP Morgan, 1994), is perhaps the most widely used 

conditional volatility model among practitioners, who often eschew more 

sophisticated models in favour of their simpler counterparts. The popularity of the 

                                                 
5 For a recent review of multivariate GARCH models, see Bauwens et al. (2006). For 
a review of multivariate stochastic volatility models, see Harvey, Ruiz and Shephard 
(1994). 
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EWMA model is due partly to the simplicity of its implementation, and partly 

because, in spite of its simplicity, it typically outperforms more sophisticated 

conditional volatility models (see, for example, Boudoukh, Richardson and Whitelaw, 

1997; Alexander and Leigh, 1997; Brooks and Chong, 2001). In contrast with the 

more general diagonal vech model that nests it, imposing the restriction that the decay 

factor is identical for all conditional variances and covariance ensures that the 

resulting conditional variance-covariance matrix, tΩ̂ , is positive semi-definite. The 

decay factor, 0λ , is typically set to 0.94, estimated by JP Morgan as the average value 

of the decay factor that minimises the mean square error of daily out-of-sample 

conditional volatility forecasts for a wide range of assets. The success of the 

multivariate EWMA model stems from the fact that while the true data generating 

process for conditional volatility is not actually integrated, it is close to being 

integrated and so the cost of the restrictions imposed by the EWMA model is low 

relative to the benefits that arise from its parsimonious specification. 

 

The range-based estimator of the conditional variance-covariance matrix that we 

propose is given by  

 

⎪⎩
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tjj
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RV
tij
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)1(

1,2
)1(

1,2
)1(

, )1(ˆˆ RV
tij

RV
tij

RV
tij −− −+= σλσλσ ,  Nji ,,1, K=   (10) 

 

The conditional variance equation is a univariate EWMA model for the range-based 

variance, with a single decay factor, 1λ , and can be thought of as a special case of the 

CARR model of Chou (2005). As with the returns-based EWMA model, the 

restrictions imposed by the range-based model are almost certainly counterfactual. 

However, the extent to which this outweighs any potential gain from the parsimony of 
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the model is an empirical matter, which we explore in the following section. The 

conditional covariance is specified as the product of the range-based conditional 

standard deviations and the returns-based conditional correlation coefficient. The 

formulation of the covariance equation in this way is motivated by the fact that while 
)1(

,
RV

tijσ  is an inherently noisy estimate of tij ,σ  (and hence )1(
,ˆ RV
tijσ  will be an inherently 

noisy measure of the true conditional covariance, tij ,σ̂ ), a proportion of this noise 

cancels in the estimation of the conditional correlation coefficient because the 

elements of the variance-covariance matrix share a common trend (see, for example, 

Andersen et al., 2005). Our expectation, therefore, is that the range-based EWMA 

model should provide more accurate forecasts of the integrated variance-covariance 

matrix than the return-based model. Note also that since the range-based conditional 

covariance is simply the product of the return-based EWMA correlation coefficient, 

with a single decay factor, 2λ , and the range-based standard deviations, the range-

based variance-covariance matrix will be positive semi-definite by construction. The 

model described here can also be thought of as a special case of the Dynamic 

Conditional Correlation model of Engle and Shephard (2001) and Engle (2002), with 

range-based EWMA estimation of the conditional variances and return-based EWMA 

estimation of the dynamic correlation.  

 

3. Data and methodology 

 

We use the return-based EWMA model and the range-based EWMA model to 

estimate the conditional variance-covariance matrix of the daily log returns for the 

USD/GBP, USD/EUR and USD/JPY exchange rates. We implement both models 

using the commonly used RiskMetrics decay factor of 0.94, but also explore the 

sensitivity of the performance of each model with respect to the decay factor. We 

evaluate the conditional volatility estimates using both statistical and economic 

measures. In this section, we describe the data that we use in the empirical tests and 

the evaluation criteria. 
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3.1 Data 

 

We estimate the conditional variance-covariance matrix of daily log returns for the 

USD/GBP, USD/EUR and USD/JPY exchange rates. As a benchmark, we use the 

estimated realized variance-covariance matrix based on 30-minute returns. The use of 

30-minute returns should be of a sufficiently high frequency to provide an accurate 

estimate of the true, integrated variance-covariance matrix, but of a sufficiently low 

frequency to avoid the impact of microstructure effects. Intraday data for the period 

02 January 2001 to 29 December 2006 were provided by Bank of America. The 

market operates around the clock, and so there are a total of 48 30-minute 

observations each day, or 75,072 observations in total for each series. The dataset 

reports the 30-minute exchange rate and the intraday high and low exchange rates for 

each currency. The data contained three outliers that were clearly the result of data 

entry errors, and so the values for these observations were linearly interpolated from 

their adjacent values. 

 

The full sample is divided into an initialisation period, from 02 January 2001 to 02 

December 2002 (500 observations) and a forecast period from 03 December 2002 to 

29 December 2006 (1,064 observations). The initialisation period is used to remove 

any dependency of the EWMA models on the initial variance or covariance, which is 

set to an estimate of the conditional variance or covariance over the initialisation 

period. Realized variances and covariances were computed using (4), and range-based 

variances computed using (5). The half-hour exchange rates were used to calculate 

daily log returns, using the 12.00am price. Table 1 reports summary statistics for the 

daily returns and the realized and variances and covariances over the forecast period. 

 

[Table 1] 

 

3.2 Forecast evaluation 

 

In order to evaluate the forecasting performance of the return-based and range-based 

conditional volatility models, two approaches are used. The first considers the 

statistical performance of the volatility forecasts, using realized volatility as the 
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benchmark. For each of the conditional volatility models, { }),
)1(

,, ˆ,ˆˆ Range
tij

RV
tijtij σσσ = , we 

employ the following measures: 

 

(1) Root mean square error (RMSE) 

 

∑
=

−=
T

t
tij

RV
tijT

RMSE
1

2
,

)48(
, )ˆ(1 σσ      (11) 

 

(2) Mean absolute error (MAE) 

 

 ∑
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1

,
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, ˆ1 σσ       (12) 

 

(3) Mincer-Zarnowitz regression  

 

 tijtijijij
RV

tij ,,
)48(

, ˆ εσβασ ++=       (13) 

 

(4) Encompassing regression 

 

 tij
Range

tijij
RV

tijijij
RV

tij ,,
)1(

,
)48(

, ˆˆ εσγσβασ +++=     (14) 

 

The RMSE and MAE measure the accuracy of the forecasts from each model. The 

Mincer-Zarnowitz regression measures the bias and efficiency of the forecasts from 

each model. In particular, if the model is unbiased, we should not be able to reject the 

null hypothesis  tijijijH ,1 )1(: σβα −= , where tij ,σ  is the unconditional variance or 

covariance. If the model is (weakly) efficient then we should not be able to reject the 

null hypothesis 1,0:2 == ijijH βα . We test both of these hypotheses for each model, 

for each element of the variance-covariance matrix, for each pair of currencies. The 

R-squared coefficient from the Mincer-Zarnowitz regression reveals the explanatory 

power of the model’s forecasts, independently of any bias or inefficiency. Finally, the 

encompassing regression tests whether the forecasts of one model contains any 
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incremental information over the forecasts of the other model. In particular, we can 

separately test the null hypotheses 0:3 =ijH β  and 0:4 =ijH γ . 

 

The second way in which we evaluate the forecasting performance of the different 

conditional volatility models is to use the estimated conditional variance-covariance 

matrix to construct a forecast of the daily minimum-variance hedge ratio between 

each pair of currencies, and then evaluate the performance of the resulting hedged 

portfolios. In particular, on each day t, for each of the three pairs of currencies, we 

construct the conditional minimum-variance hedge ratio given by 

 

tjj

tij
tijh

,

,
, ˆ

ˆˆ
σ
σ

=         (15) 

 

We then construct a hedge portfolio whose log return is given by 

 

tjtijtitp rhrr ,,,,
ˆ−=        (16) 

 

We calculate the percentage reduction of the hedged portfolio variance with respect to 

the variance of the unhedged currency 

 

)var(
)var()var(

,

.,

ti

titp

r
rr −

       (17) 

 

4. Results 

 

Table 2 reports the RMSE and MAE for the return-based EWMA model and the 

range-based EWMA model over the forecast period, using the realized variance-

covariance matrix as the benchmark. The single decay factor for the return-based 

EWMA model, 0λ ,  and the two decay factors for the range-based EWMA model, 1λ  

and 2λ , are all set to the RiskMetrics value of 0.94. In all cases, the range-based 

EWMA model outperforms the return-based EWMA model in terms of forecast 

accuracy. In some cases, the differences are substantial. For example, for the 



 14

conditional variance of USD/EUR, the RMSE of the range-based model is about 13 

percent lower than that of the return-based model. Generally, the difference in RMSE 

is greater than the difference in MAE, suggesting that the range-based model is less 

sensitive to outlying errors in the conditional variance-covariance matrix. Also, the 

improved performance of the range-based model applies equally to both the variances 

of the three exchange rates return series and the covariances between them. For the 

conditional variances, these results are comparable with those of Chou (2005) and 

Brandt and Jones (2006). 

 

[Table 2] 

 

The estimation results of the Mincer-Zarnowitz regression given by (13) are reported 

in Table 3, together with the p-values for the tests of the hypotheses H1 (unbiasedness) 

and H2 (efficiency). For all elements of the conditional variance-covariance matrix 

except the variance of USD/JPY, the return-based model is unbiased. However, the 

unbiasedness hypothesis H1 can be rejected for the range-based model at the five 

percent significance level in three of the six cases. This is almost certainly because the 

return-based EWMA model is unbiased by construction since it is a weighted sum of 

squared (or the cross-product of) returns, the expectation of which is equal to the 

unconditional variance (or covariance).6 In contrast, the intra-day range is a biased 

estimator of the integrated variance when prices are discrete. Nevertheless, from Table 

1 it is evident that the higher degree of bias of the range-based model does not 

translate into lower accuracy. In all cases, the estimated slope coefficient is less than 

unity, and for all cases, we can reject the efficiency hypothesis H2, implying that the 

forecasts from both models are weakly inefficient, with high forecasts tending to be 

too high, and low forecasts too low. In particular, they are too dispersed. However, the 

range-based model is clearly much more efficient than the return-based model, with 

an estimated slope coefficient that is closer to unity in all cases. The range-based 

model has greater explanatory power in five of the six cases, and in some cases, the 

difference is substantial.  

 

[Table 3] 
                                                 
6  In this respect, the apparent bias for the variance of USD/JPY is likely to be 
suprious. 
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Table 4 reports the estimation results of the encompassing regression given by (14). In 

all but one case, we cannot reject the hypothesis H3 that the range-based model 

encompasses the return-based model, and in no case can we reject the hypothesis H4 

that the return-based model encompasses the range-based model. In particular, except 

for the conditional variance of USD/GBP, the estimated slope coefficient for the 

return-based model is not significantly different from zero. In contrast, the estimated 

slope coefficient for the range-based model is not significantly different from unity in 

five of the six cases. Thus, it would appear that the range-based EWMA model 

dominates the return-based EWMA model in terms of accuracy, efficiency and 

information content.  

 

[Table 4] 

 

The hedging performance of the two models is reported in Table 5. Here, again, the 

range-based model dominates the return-based model, offering a greater reduction in 

hedged portfolio variance for all three currency pairs.  

 

[Table 5] 

 

Sensitivity Analysis 

 

The results presented up to this point have all been based on an implementation of 

both the return-based EWMA model and the range-based EWMA model using the 

RiskMetrics decay factor of 0.94. As noted above, the RiskMetrics decay factor is 

based on an average optimal decay factor for a large number of assets and so it is 

unlikely that the value of 0.94 is the optimal value for either model in any particular 

setting. Here we undertake a limited sensitivity analysis of the performance of each 

model to the decay factor. For the return-based EWMA model, there is a single decay 

factor that controls the dynamic equations both for the conditional variances and the 

conditional covariance. We analyse the performance of the return-based model for 

values of the decay factor between 0.900 and 0.995. For the range-based model, there 

are two separate decay factors: one for the conditional variance equations, and one for 

the conditional covariance equations. We analyse the performance of the range-based 
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model in relation to each of these decay factors separately, varying them from 0.900 

to 0.995. For the sake of brevity, we report results only for the root mean square error 

of the conditional variance-covariance matrix for one of the three currency pairs, 

namely USD/GBP and USD/EUR. However, similar conclusions are drawn from the 

other evaluation criteria and for the other currency pairs. 7  Figure 1 shows the 

sensitivity of the conditional variances of USD/GBP and USD/EUR to changes in the 

decay factor for the two models. For both models, and for both currencies, increasing 

the decay factor leads to a deterioration in model accuracy. For the return-based 

EWMA model, the optimal decay factor in terms of RMSE is 0.945 for USD/GBP and 

0.950 for the USD/EUR, both very close to the RiskMetrics value of 0.94. For the 

range-based model, the performance improves as the decay factor is reduced, and the 

optimal decay factor for both currencies is lower than 0.9.8 However, a notable feature 

of the range-based model is that it is less sensitive to the choice of decay factor, with 

very little difference observed between 0.90 and 0.96. In contrast, the performance of 

the return-based model worsens as the decay factor falls, especially for USD/GBP. 

 

[Figure 1] 

 

Figure 2 reports the sensitivity analysis for the conditional covariance of USD/GBP 

and USD/EUR. In particular, for the return-based model, it reports the RMSE for 

values of 0λ  between 0.900 and 0.995. For the range-based model, two sensitivity 

analyses are reported. The first varies the decay factor that controls the correlation 

coefficient, 2λ , while holding 1λ  constant at the RiskMetrics value of 0.94. The 

second varies the decay factor that controls the conditional variance equations, 1λ , 

while holding 2λ  constant. Perhaps the most striking feature of the range-based 

conditional covariance is its insensitivity to the decay factor for the correlation 

coefficient, 2λ . Although there is some deterioration in the RMSE as 2λ  falls, the 

difference in RMSE between 900.02 =λ  and 995.02 =λ  is negligible. The optimal 

value of 2λ  in terms of RMSE is about 0.997, although for the other currency pairs 

                                                 
7 The results of the sensitivity analysis for the remaining evaluation criteria and for all 
three currencies are available from the authors. 
8 The optimal value of 1λ  is 0.885 for USD/GBP and 0.880 for USD/EUR. 
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(not reported), it was somewhat lower. Varying 1λ , but holding 2λ  fixed at 0.94 

reduces the performance of the range-based model as 1λ  rises above about 0.96, but it 

is again relatively insensitive to the choice of decay factor as 1λ  falls. In contrast, the 

return-based model is sensitive to both a lower and higher decay factor, with the 

optimal value of 0λ  being 0.95, again very close to the RiskMetrics value of 0.94.  

 

5. Conclusion 

 

Estimates of integrated variance based on the intraday range offer substantial 

efficiency improvements over those based on the squared return. However, since no 

multivariate analogue of the intraday range exists, it can not be directly used to 

estimate the integrated covariance of returns. While partial solutions to this problem 

have been suggested, their use is limited to cases where triangular arbitrage 

relationships exists that allow the covariance of returns to be imputed from the 

variance of a two-asset portfolio. Except for the foreign exchange market, this 

approach is unlikely to be useful in practice. In this paper, we have introduced a 

simple yet effective model for estimating both the variances and covariances of 

returns that exploits both the return-based and range-based estimates of integrated 

volatility. The range-based model is more accurate than the return-based model, 

contains more information about integrated volatility, and generates better 

performance when applied to the economic problem of conditional minimum-variance 

hedging.  Moreover, the performance of the range-based model is less sensitive to the 

choice of parameter values, enhancing its reliability in practice where the true values 

of the parameters are unknown and subject to instability. 

 

The range-based EWMA model that we propose could be extended in several 

directions. Firstly, it can be thought of as a special case of the dynamic conditional 

correlation model of Engle and Shephard (2001) and Engle (2002). In particular, the 

conditional variance equations are specified in terms of range-based measures of 

volatility, while the dynamic correlation coefficient is based on the EWMA return 

model. It would be natural to investigate whether a more general formulation of the 

model (in particular in a GARCH-type framework) offers any improvement in model 

performance.  
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It would also be useful to investigate the performance of the range-based EWMA 

model in other markets, such as equities, bonds and commodities, and over a longer 

sample period. While accurate assessment of statistical performance necessitates the 

use of intraday data to construct a benchmark measure of the integrated variance-

covariance matrix, it would nevertheless be interesting to evaluate the models against 

purely economic criteria, such as hedging performance, the accuracy of value at risk 

forecasts, or in terms of portfolio efficiency in a mean-variance optimisation context. 
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Table 1 Summary Statistics for Daily Returns, Variances and Covariances 
 

 Mean S.D. Skewness Kurtosis 
     

Returns     
     

GBP 0.02% 0.54% -0.05 0.45 
EUR 0.03% 0.60% -0.01 0.55 
JPY 0.00% 0.55% 0.15 1.42 

     
Realized 
variances     

     
GBP 2.80E-05 1.81E-05 2.59 10.64 
EUR 3.42E-05 2.38E-05 2.65 12.78 
JPY 3.29E-05 2.82E-05 4.95 38.59 

     
Realized 

covariances     
     

GBP-EUR 2.17E-05 1.67E-05 2.51 10.78 
GBP-JPY 1.30E-05 1.32E-05 3.65 31.94 
EUR-JPY 1.68E-05 1.48E-05 3.54 27.19 

     
 
Notes: The table reports the mean standard deviation, skewness and kurtosis for daily log 
close-to-close returns and for the realized variances and covariances for USD/GBP, 
USD/EUR and USD/JPY. The realized variances and covariances are computed with 30-
minute returns using equation (4). The sample period is 03/12/02 to 29/12/06 (1064 daily 
observations). 
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Table 2 Root Mean Square Error and Mean Absolute Error 
 

 
)1(

,ˆ RV
tijσ   

Range
tij ,σ̂  

      
 RMSE MAE  RMSE MAE 
      

Variances      
      

GBP 11.42 16.84  10.41 16.42 
EUR 15.84 23.15  13.79 21.96 
JPY 14.71 27.40  13.96 27.06 

 11.42 16.84  10.41 16.42 
Covariances      

      
GBP-EUR 11.86 16.65  10.46 15.55 
GBP-JPY 9.24 13.73  8.53 13.19 
EUR-JPY 10.42 15.77  9.64 15.06 

      
 
Notes: The table reports the Root Mean Square Error and the Mean Absolute Error for the 
daily estimates of the elements of the conditional variance-covariance matrix using the return-
based EWMA model and the range-based EWMA model, relative to the corresponding 
elements of the realized variance-covariance matrix, computed using 30-minute returns. The 
decay factors for both models are equal to 0.94.  



Table 3 Mincer-Zarnowitz Regression Results 
 

 
)1(

,ˆ RV
tijσ   

Range
tij ,σ̂  

            
 Intercept Slope R-squared H1 H2  Intercept Slope R-squared H1 H2 
            

Variances            
            

GBP 8.38E-06 0.667 0.191 0.240 0.000  4.23E-06 0.899 0.190 0.497 0.002 
 (1.34E-06) (0.042)     (1.59E-06) (0.057)    

EUR 1.35E-05 0.567 0.140 0.787 0.000  6.72E-06 0.866 0.159 0.000 0.000 
 (1.72E-06) (0.043)     (2.05E-06) (0.061)    

JPY 1.28E-05 0.659 0.083 0.002 0.000  6.10E-06 0.907 0.092 0.405 0.000 
 (2.22E-06) (0.067)     (2.72E-06) (0.088)    
            

Covariances            
            

GBP-EUR 7.68E-06 0.554 0.134 0.691 0.000  4.61E-06 0.763 0.144 0.040 0.000 
 (1.19E-06) (0.043)     (1.37E-06) (0.057)    

GBP-JPY 6.30E-06 0.427 0.054 0.252 0.000  5.14E-06 0.536 0.062 0.005 0.000 
 (9.46E-07) (0.055)     (1.02E-06) (0.064)    

EUR-JPY 1.20E-05 0.264 0.019 0.407 0.000  1.02E-05 0.390 0.025 0.755 0.000 
 (1.17E-06) (0.059)     (1.34E-06) (0.075)    
            

 
Notes: The table reports the results of the Mincer-Zarnowitz regression given by equation (15) in the main text. The table also reports the p-values for the tests 
of the hypotheses tijijijH ,1 )1(: σβα −=  and 1,0:2 == ijijH βα . Standard errors for the estimated parameters are reported in parentheses. 
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Table 4 Encompassing Regression Results 
 
 
 

 Intercept Slope ( )1(
,ˆ RV
tijσ ) Slope ( Range

tij ,σ̂ ) R-squared 
     

Variances     
     

GBP 5.87E-06 0.362 0.434 0.196 
 (1.70E-06) (0.133) (0.180)  

EUR 6.23E-06 -0.075 0.969 0.159 
 (2.23E-06) (0.136) (0.194)  

JPY 6.70E-06 0.120 0.763 0.092 
 (2.86E-06) (0.174) (0.227)  
     

Covariances     
     

GBP-EUR 4.63E-06 0.006 0.756 0.144 
 (1.49E-06) (0.167) (0.222)  

GBP-JPY 4.99E-06 -0.185 0.744 0.063 
 (1.03E-06) (0.200) (0.234)  

EUR-JPY 9.54E-06 -0.303 0.757 0.027 
 (1.40E-06) (0.191) (0.243)  
     

 
Notes: The table reports the results of the encompassing regression given by equation (15) in the main text. Standard errors for the estimated parameters are 
reported in parentheses. 
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Table 5 Hedging Performance 
 

 
)1(

,ˆ RV
tijσ   

Range
tij ,σ̂  

    
GBP-EUR -60.20%  -60.58% 
GBP-JPY -24.80%  -25.47% 
EUR-JPY -26.74%  -27.50% 

      
 
Notes: The table reports the reduction in the unconditional variance of the hedged portfolio, relative to the unconditional variance of the unhedged currency. 
The conditional hedge ratio is constructed using the conditional variance-covariance matrix estimated using the return-based and range-based EWMA 
models.. 
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Figure 1 Sensitivity Analysis: Root Mean Square Error for GBP and EUR Conditional Variances 
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Notes: The figure shows the Root Mean Square Error of the conditional variances of the GBP and the EUR for (a) the return-based EWMA model for 
different values of 0λ , (b) the range-based EWMA model for different values of  2λ . 
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Figure 2 Sensitivity Analysis: Root Mean Square Error for GBP-EUR Conditional Covariance 
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Notes: The figure shows the Root Mean Square Error of the conditional covariance of the EUR and GBP for (a) the return-based EWMA model for different 
values of  0λ , (b) the range-based EWMA model for different values of 2λ , with 1λ  held constant at 0.94, and (c) the range-based EWMA model for 
different values of 1λ , with 2λ held constant at 0.94.  


